WorldWideScience

Sample records for co2 separation capture

  1. Evaluation of Mars CO2 Capture and Gas Separation Technologies

    Science.gov (United States)

    Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents

  2. Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Vahdat, Nader

    2013-09-30

    The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

  3. New polymer material for CO_2 capture by membrane separation process

    International Nuclear Information System (INIS)

    Solimando, Xavier

    2016-01-01

    In this PhD thesis, two types of membrane materials were developed for CO_2 separation. The first ones associate a reference polymer material (Pebax) with new pseudo-peptidic bio-conjugates additives. These pseudo-peptide-polymer bio-conjugates were obtained by a 'grafting-to' synthetical pathway from alkyne-functionalized 1:1[a/a-Na-Bn-hydrazino] dimer and tetramer pseudopeptides. Poly(diethylene glycol acrylate) (PEDEGA) oligomeric part was synthesized under controlled conditions using Single Electron Transfer Living Radical Polymerization (SET-LRP) from an azido-functionalized initiator allowing direct coupling via CuAAC 'click' chemistry. The influence of these additives on CO_2 sorption and separation properties was analyzed in terms of properties-morphology-structure relationships. These original additives allowed to enhance CO_2 separation performances of the reference membrane, increasing CO_2 permeability by 46%, and maintaining good selectivities aCO_2/N_2 = 44 et aCO_2/CH_4 = 13. In another work, two families of poly(urethane-imide)s (PUIs) with controlled architecture were developed for obtaining membrane materials with high content in ethylene-oxide units while avoiding their crystallization. Linear multi-blocks PUIs were first synthesized by polycondensation with different sizes of Jeff amine polyether soft block, corresponding to soft block contents varying from 40 to 70%wt. To further increase the soft phase content until a very high level (85%wt), grafted multi-blocks PUIs were obtained by a 'grafting-to' strategy from an alkyne-functionalized precursor PUI and azido-PEDEGA oligomers with different molar weights. The evolution of their CO_2 separation performances were correlated to their soft phase content, morphology and CO_2 sorption ability. For the maximum soft phase content (85%wt), high performances were obtained for CO_2 separation (PCO_2 = 196 Barrer; aCO_2/N_2 = 39 et aCO_2/CH_4 = 12). Compared to the precursor PUI, the grafting strategy

  4. Microbial electrolytic capture, separation and regeneration of CO2 for biogas upgrading

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Zhang, Yifeng; Li, Xiaohu

    2017-01-01

    challenges. In this study, an innovative microbial electrolytic system was developed to capture, separate and regenerate CO2 for biogas upgrading without external supply of chemicals, and potentially to treat wastewater. The new system was operated at varied biogas flow rates and external applied voltages....... CO2 was effectively separated from the raw biogas and the CH4 content in the outlet reached as high as 97.0±0.2% at the external voltage of 1.2 V and gas flow rate of 19.6 mL/h. Regeneration of CO2 was also achieved in the regeneration chamber with low pH (1.34±0.04). The relatively low electric...... and potentially expands the application of microbial electrochemical technologies....

  5. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making

  6. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre

  7. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    CO2 capture and storage including its utilization or reuse presents an opportunity to achieve deep reductions in greenhouse gas emissions from fossil energy use. The development and deployment of this option could significantly assist in meeting a future goal of achieving stabilization of the presently rising atmospheric concentration of greenhouse gases. CO2 capture from process streams is an established concept that has achieved industrial practice. Examples of current applications include the use of primarily, solvent based capture technologies for the recovery of pure CO2 streams for chemical synthesis, for utilization as a food additive, for use as a miscible agent in enhanced oil recovery operations and removal of CO2 as an undesired contaminant from gaseous process streams for the production of fuel gases such as hydrogen and methane. In these applications, the technologies deployed for CO2 capture have focused on gas separation from high purity, high pressure streams and in reducing (or oxygen deficient) environments, where the energy penalties and cost for capture are moderately low. However, application of the same capture technologies for large scale abatement of greenhouse gas emissions from fossil fuel use poses significant challenges in achieving (at comparably low energy penalty and cost) gas separation in large volume, dilute concentration and/or low pressure flue gas streams. This paper will focus on a review of existing commercial methods of CO2 capture and the technology stretch, process integration and energy system pathways needed for their large scale deployment in fossil fueled processes. The assessment of potential capture technologies for the latter purpose will also be based on published literature data that are both 'transparent' and 'systematic' in their evaluation of the overall cost and energy penalties of CO2 capture. In view of the of the fact that many of the existing commercial processes for CO2 capture have seen applications in

  8. Recent development of capture of CO2

    CERN Document Server

    Chavez, Rosa Hilda

    2014-01-01

    "Recent Technologies in the capture of CO2" provides a comprehensive summary on the latest technologies available to minimize the emission of CO2 from large point sources like fossil-fuel power plants or industrial facilities. This ebook also covers various techniques that could be developed to reduce the amount of CO2 released into the atmosphere. The contents of this book include chapters on oxy-fuel combustion in fluidized beds, gas separation membrane used in post-combustion capture, minimizing energy consumption in CO2 capture processes through process integration, characterization and application of structured packing for CO2 capture, calcium looping technology for CO2 capture and many more. Recent Technologies in capture of CO2 is a valuable resource for graduate students, process engineers and administrative staff looking for real-case analysis of pilot plants. This eBook brings together the research results and professional experiences of the most renowned work groups in the CO2 capture field...

  9. Gas permeation process for post combustion CO2 capture

    International Nuclear Information System (INIS)

    Pfister, Marc

    2017-01-01

    CO 2 Capture and Storage (CCS) is a promising solution to separate CO 2 from flue gas, to reduce the CO 2 emissions in the atmosphere, and hence to reduce global warming. In CCS, one important constraint is the high additional energy requirement of the different capture processes. That statement is partly explained by the low CO 2 fraction in the inlet flue gas and the high output targets in terms of CO 2 capture and purity (≥90%). Gas permeation across dense membrane can be used in post combustion CO 2 capture. Gas permeation in a dense membrane is ruled by a mass transfer mechanism and separation performance in a dense membrane are characterized by component's effective permeability and selectivity. One of the newest and encouraging type of membrane in terms of separation performance is the facilitated transport membrane. Each particular type of membrane is defined by a specific mass transfer law. The most important difference to the mass transfer behavior in a dense membrane is related to the facilitated transport mechanism and the solution diffusion mechanism and its restrictions and limitations. Permeation flux modelling across a dense membrane is required to perform a post combustion CO 2 capture process simulation. A CO 2 gas permeation separation process is composed of a two-steps membrane process, one drying step and a compression unit. Simulation on the energy requirement and surface area of the different membrane modules in the global system are useful to determine the benefits of using dense membranes in a post combustion CO 2 capture technology. (author)

  10. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  11. Microbial Electrolytic Capture, Separation and Regeneration of CO2 for Biogas Upgrading.

    Science.gov (United States)

    Jin, Xiangdan; Zhang, Yifeng; Li, Xiaohu; Zhao, Nannan; Angelidaki, Irini

    2017-08-15

    Biogas upgrading to natural gas quality is essential for the efficient use of biogas in various applications. Carbon dioxide (CO 2 ) which constitutes a major part of the biogas is generally removed by physicochemical methods. However, most of the methods are expensive and often present environmental challenges. In this study, an innovative microbial electrolytic system was developed to capture, separate and regenerate CO 2 for biogas upgrading without external supply of chemicals, and potentially to treat wastewater. The new system was operated at varied biogas flow rates and external applied voltages. CO 2 was effectively separated from the raw biogas and the CH 4 content in the outlet reached as high as 97.0 ± 0.2% at the external voltage of 1.2 V and gas flow rate of 19.6 mL/h. Regeneration of CO 2 was also achieved in the regeneration chamber with low pH (1.34 ± 0.04). The relatively low electric energy consumption (≤0.15 kWh/m 3 biogas) along with the H 2 production which can contribute to the energy input makes the overall energy need of the system low, and thereby makes the technology promising. This work provides the first attempt for development of a sustainable biogas upgrading technology and potentially expands the application of microbial electrochemical technologies.

  12. An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation

    International Nuclear Information System (INIS)

    Belaissaoui, Bouchra; Cabot, Gilles; Cabot, Marie-Sophie; Willson, David; Favre, Eric

    2012-01-01

    Post-combustion Carbon Capture and Storage (CCS) is currently intensively investigated as a key issue for the mitigation of greenhouse gases emissions. A very large number of studies is dedicated to coal power plants. In this paper, the possibility to achieve carbon capture on a gas turbine, based on a combination of flue gas recycle and membrane separation is reported. Membrane processes are effectively known to offer attractive performances in terms of energy efficiency, as soon as concentrated and/or pressure mixtures have to be treated. Two different flow schemes have been simulated and compared: flue gas recycle with air combustion and flue gas recycle with an oxygen enriched feed mixture. The energy requirement of the different processes, expressed in GJ (thermal basis) per ton of recovered CO 2 , and the size of the membrane capture process (expressed in m 2 of membrane area) have been systematically estimated for different membrane separation performances. It is shown that an overall energy requirement down to 2.6 GJ per ton can possibly be achieved when optimal operating conditions, based on oxygen enriched air (OEA) combustion together with a highly selective membrane (CO 2 /N 2 selectivity of 200) are combined. Additional possibilities in order to minimise the energy penalty of the process are discussed. -- Highlights: ► A carbon capture process for gas turbine has been investigated for the first time, with membrane separation unit. ► Air combustion systematically induces CO 2 capture specific energy requirement far above alternative capture processes. ► Remarkably, a very low energy requirement can be achieved (down to 2.6 GJ/ton) with Oxygen Enriched Air combustion. ► Target membrane selectivities and optimal oxygen content for combustion have been identified.

  13. Polyether based block copolymer membranes for CO2 separation

    NARCIS (Netherlands)

    Reijerkerk, Sander

    2010-01-01

    The work described in this thesis is dedicated to the development of polymeric membrane materials for the separation of CO2 from light gases, and in particular to the separation of CO2 from nitrogen as required in a post-combustion capture conguration for the separation of CO2 from flue gases. An

  14. Transient modeling of electrochemically assisted CO2 capture and release

    DEFF Research Database (Denmark)

    Singh, Shobhana; Stechel, Ellen B.; Buttry, Daniel A.

    2017-01-01

    to analyze the time-dependent behavior of CO2 capture and electro-migration transport across the cell length. Given high nonlinearity of the system, we used a finite element method (FEM) to numerically solve the coupled mass transport equations. The model describes the concentration profiles by taking......The present work aims to develop a model of a new electrochemical CO2 separation and release technology. We present a one-dimensional transient model of an electrochemical cell for point source CO2 capture and release, which mainly focuses on the simultaneous mass transport and complex chemical...... reactions associated with the separation process. For concreteness, we use an ionic liquid (IL) with 2 M thiolate anion (RS−) in 1 M disulfide (RSSR) as an electrolyte in the electrochemical cell to capture, transport and release CO2 under standard operating conditions. We computationally solved the model...

  15. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from the exhaust gas, contacting the separated CO2 with one or more of a second MOF composition sufficient to store the CO2 and wherein the one or more first MOF composition comprises one or more SIFSIX-n-M MOF and wherein M is a metal and n is 2 or 3. Embodiments also describe an apparatus or system for capturing and storing CO2 onboard a vehicle.

  16. An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2014-05-01

    Full Text Available In this study, an improved CO2 separation and purification system is proposed based on in-depth analyses of cryogenic separation and distillation theory as well as the phase transition characteristics of gas mixtures containing CO2. Multi-stage compression, refrigeration, and separation are adopted to separate the majority of the CO2 from the gas mixture with relatively low energy penalty and high purity. Subsequently, the separated crude liquid CO2 is distilled under high pressure and near ambient temperature conditions so that low energy penalty purification is achieved. Simulation results indicate that the specific energy consumption for CO2 capture is only 0.425 MJ/kgCO2 with 99.9% CO2 purity for the product. Techno-economic analysis shows that the total plant investment is relatively low. Given its technical maturity and great potential in large-scale production, compared to conventional MEA and SelexolTM absorption methods, the cost of CO2 capture of the proposed system is reduced by 57.2% and 45.9%, respectively. The result of this study can serve as a novel approach to recovering CO2 from high CO2 concentration gas mixtures.

  17. CO2 capture by gas hydrate crystallization: Application on the CO2-N2 mixture

    International Nuclear Information System (INIS)

    Bouchemoua, A.

    2012-01-01

    CO 2 capture and sequestration represent a major industrial and scientific challenge of this century. There are different methods of CO 2 separation and capture, such as solid adsorption, amines adsorption and cryogenic fractionation. Although these processes are well developed at industrial level, they are energy intensive. Hydrate formation method is a less energy intensive and has an interesting potential to separate carbon dioxide. Gas hydrates are Document crystalline compounds that consist of hydrogen bonded network of water molecules trapping a gas molecule. Gas hydrate formation is favored by high pressure and low temperature. This study was conducted as a part of the SECOHYA ANR Project. The objective is to study the thermodynamic and kinetic conditions of the process to capture CO 2 by gas hydrate crystallization. Firstly, we developed an experimental apparatus to carry out experiments to determine the thermodynamic and kinetic formation conditions of CO 2 -N 2 gas hydrate mixture in water as liquid phase. We showed that the operative pressure may be very important and the temperature very low. For the feasibility of the project, we used TBAB (Tetrabutylammonium Bromide) as thermodynamic additive in the liquid phase. The use of TBAB may reduce considerably the operative pressure. In the second part of this study, we presented a thermodynamic model, based on the van der Waals and Platteeuw model. This model allows the estimation of thermodynamic equilibrium conditions. Experimental equilibrium data of CO 2 -CH 4 and CO 2 -N 2 mixtures are presented and compared to theoretical results. (author)

  18. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-05-01

    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  19. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification

    Science.gov (United States)

    Wang, Jun

    Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation. In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties. In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity. In chapter 3, a

  20. Subtask 2.18 - Advancing CO2 Capture Technology: Partnership for CO2 Capture (PCO2C) Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Kay, John; Azenkeng, Alexander; Fiala, Nathan; Jensen, Melanie; Laumb, Jason; Leroux, Kerryanne; McCollor, Donald; Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler

    2016-03-31

    Industries and utilities continue to investigate ways to decrease their carbon footprint. Carbon capture and storage (CCS) can enable existing power generation facilities to meet the current national CO2 reduction goals. The Partnership for CO2 Capture Phase III focused on several important research areas in an effort to find ways to decrease the cost of capture across both precombustion and postcombustion platforms. Two flue gas pretreatment technologies for postcombustion capture, an SO2 reduction scrubbing technology from Cansolv Technologies Inc. and the Tri-Mer filtration technology that combines particulate, NOx, and SO2 control, were evaluated on the Energy & Environmental Research Center’s (EERC’s) pilot-scale test system. Pretreating the flue gas should enable more efficient, and therefore less expensive, CO2 capture. Both technologies were found to be effective in pretreating flue gas prior to CO2 capture. Two new postcombustion capture solvents were tested, one from the Korea Carbon Capture and Sequestration R&D Center (KCRC) and one from CO2 Solutions Incorporated. Both of these solvents showed the ability to capture CO2 while requiring less regeneration energy, which would reduce the cost of capture. Hydrogen separation membranes from Commonwealth Scientific and Industrial Research Organisation were evaluated through precombustion testing. They are composed of vanadium alloy, which is less expensive than the palladium alloys that are typically used. Their performance was comparable to that of other membranes that have been tested at the EERC. Aspen Plus® software was used to model the KCRC and CO2 Solutions solvents and found that they would result in significantly improved overall plant performance. The modeling effort also showed that the parasitic steam load at partial capture of 45% is less than half that of 90% overall capture, indicating savings that

  1. Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process.

    Science.gov (United States)

    Zeng, Shaojuan; Zhang, Xiangping; Bai, Lu; Zhang, Xiaochun; Wang, Hui; Wang, Jianji; Bao, Di; Li, Mengdie; Liu, Xinyan; Zhang, Suojiang

    2017-07-26

    The inherent structure tunability, good affinity with CO 2 , and nonvolatility of ionic liquids (ILs) drive their exploration and exploitation in CO 2 separation field, and has attracted remarkable interest from both industries and academia. The aim of this Review is to give a detailed overview on the recent advances on IL-based materials, including pure ILs, IL-based solvents, and IL-based membranes for CO 2 capture and separation from the viewpoint of molecule to engineering. The effects of anions, cations and functional groups on CO 2 solubility and selectivity of ILs, as well as the studies on degradability of ILs are reviewed, and the recent developments on functionalized ILs, IL-based solvents, and IL-based membranes are also discussed. CO 2 separation mechanism with IL-based solvents and IL-based membranes are explained by combining molecular simulation and experimental characterization. Taking into consideration of the applications and industrialization, the recent achievements and developments on the transport properties of IL fluids and the process design of IL-based processes are highlighted. Finally, the future research challenges and perspectives of the commercialization of CO 2 capture and separation with IL-based materials are posed.

  2. Capturing CO2: conventional versus ionic-liquid based technologies

    International Nuclear Information System (INIS)

    Privalova, E I; Mäki-Arvela, P; Murzin, Dmitry Yu; Mikkhola, J P

    2012-01-01

    Since CO 2 facilitates pipeline corrosion and contributes to a decrease of the calorific value of gaseous fuels, its removal has become an issue of significant economic importance. The present review discusses various types of traditional CO 2 capture technologies in terms of their efficiency, complexity in system design, costs and environmental impact. The focus is hereby not only on conventional approaches but also on emerging 'green' solvents such as ionic liquids. The suitability of different ionic liquids as gas separation solvents is discussed in the present review and a description on their synthesis and properties in terms of CO 2 capture is provided. The bibliography includes 136 references.

  3. Highly Surface-Active Ca(OH)2 Monolayer as a CO2 Capture Material.

    Science.gov (United States)

    Özçelik, V Ongun; Gong, Kai; White, Claire E

    2018-03-14

    Greenhouse gas emissions originating from fossil fuel combustion contribute significantly to global warming, and therefore the design of novel materials that efficiently capture CO 2 can play a crucial role in solving this challenge. Here, we show that reducing the dimensionality of bulk crystalline portlandite results in a stable monolayer material, named portlandene, that is highly effective at capturing CO 2 . On the basis of theoretical analysis comprised of ab initio quantum mechanical calculations and force-field molecular dynamics simulations, we show that this single-layer phase is robust and maintains its stability even at high temperatures. The chemical activity of portlandene is seen to further increase upon defect engineering of its surface using vacancy sites. Defect-containing portlandene is capable of separating CO and CO 2 from a syngas (CO/CO 2 /H 2 ) stream, yet is inert to water vapor. This selective behavior and the associated mechanisms have been elucidated by examining the electronic structure, local charge distribution, and bonding orbitals of portlandene. Additionally, unlike conventional CO 2 capturing technologies, the regeneration process of portlandene does not require high temperature heat treatment because it can release the captured CO 2 by application of a mild external electric field, making portlandene an ideal CO 2 capturing material for both pre- and postcombustion processes.

  4. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  5. Borophene as a Promising Material for Charge-Modulated Switchable CO2 Capture.

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2017-06-14

    Ideal carbon dioxide (CO 2 ) capture materials for practical applications should bind CO 2 molecules neither too weakly to limit good loading kinetics nor too strongly to limit facile release. Although charge-modulated switchable CO 2 capture has been proposed to be a controllable, highly selective, and reversible CO 2 capture strategy, the development of a practical gas-adsorbent material remains a great challenge. In this study, by means of density functional theory (DFT) calculations, we have examined the possibility of conductive borophene nanosheets as promising sorbent materials for charge-modulated switchable CO 2 capture. Our results reveal that the binding strength of CO 2 molecules on negatively charged borophene can be significantly enhanced by injecting extra electrons into the adsorbent. At saturation CO 2 capture coverage, the negatively charged borophene achieves CO 2 capture capacities up to 6.73 × 10 14 cm -2 . In contrast to the other CO 2 capture methods, the CO 2 capture/release processes on negatively charged borophene are reversible with fast kinetics and can be easily controlled via switching on/off the charges carried by borophene nanosheets. Moreover, these negatively charged borophene nanosheets are highly selective for separating CO 2 from mixtures with CH 4 , H 2 , and/or N 2 . This theoretical exploration will provide helpful guidance for identifying experimentally feasible, controllable, highly selective, and high-capacity CO 2 capture materials with ideal thermodynamics and reversibility.

  6. Analysis of hybrid membrane and chemical absorption systems for CO2 capture

    International Nuclear Information System (INIS)

    Binns, Michael; Oh, Se-Young; Kwak, Dong-Hun; Kim, Jin-Kuk

    2015-01-01

    Amine-based absorption of CO 2 is currently the industry standard technology for capturing CO 2 emitted from power plants, refineries and other large chemical plants. However, more recently there have been a number of competing technologies under consideration, including the use of membranes for CO 2 separation and purification. We constructed and analyzed two different hybrid configurations combining and connecting chemical absorption with membrane separation. For a particular flue gas which is currently treated with amine-based chemical absorption at a pilot plant we considered and tested how membranes could be integrated to improve the performance of the CO 2 capture. In particular we looked at the CO 2 removal efficiency and the energy requirements. Sensitivity analysis was performed varying the size of the membranes and the solvent flow rate

  7. Oxy combustion with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    An update for oxyfuel-combustion carbon capture in the power industry is provided. The report was developed by the Electric Power Research Institute (EPRI) on behalf of the Global CCS Institute. In the oxyfuel-combustion processes, the bulk nitrogen is removed from the air before combustion. The resulting combustion products will have CO2 content up to about 90 per cent (dry basis). The flue gas impurities (predominantly O2, N2, and Ar) may be removed by reducing the flue gas (at moderate pressure) to a temperature at which the CO2 condenses and the impurities do not. Oxyfuel-combustion may be employed with solid fuels such as coal, petroleum coke, and biomass, as well as liquid and gaseous fuels. Some key points raised in the oxyfuel-combustion carbon capture report are: The oxyfuel-combustion/CO2 capture power plant designs being developed and deployed for service in the next four or five years are based on individual component technologies and arrangements which have demonstrated sufficient maturity, with the greatest remaining technical challenge being integrating the systems into a complete steam-electric power plant; By its nature, an oxyfuel-coal power plant is likely to be a 'near zero' emitter of all criteria pollutants; Existing air-fired power plants might be retrofitted with an air separation unit, oxyfuel-fired burners, flue gas recycle, and a CO2 processing unit, with the large fleet of air-fired power plants in service calling for more study of this option; and, Future efficiency improvements to the oxyfuel-combustion process for power generation point toward an oxyfuel-combustion plant with near zero emissions of conventional pollutants, up to 98 per cent CO2 capture, and efficiency comparable to the best power plants currently being built.

  8. Canadian CO2 Capture and Storage Technology Network : promoting zero emissions technologies

    International Nuclear Information System (INIS)

    2004-11-01

    This brochure provided information on some Canadian initiatives in carbon dioxide (CO 2 ) capture and storage. There has been growing interest in the implementation of components of CO 2 capture, storage and utilization technologies in Canada. Technology developments by the CANMET Energy Technology Centre concerning CO 2 capture using oxy-fuel combustion and amine separation were examined. Techniques concerning gasification of coal for electricity production and CO 2 capture were reviewed. Details of a study of acid gas underground injection were presented. A review of monitoring technologies in CO 2 storage in enhanced oil recovery was provided. Issues concerning the enhancement of methane recovery through the monitoring of CO 2 injected into deep coal beds were discussed. Storage capacity assessment of Canadian sedimentary basins, coal seams and oil and gas reservoirs were reviewed, in relation to their suitability for CO 2 sequestration. Details of the International Test Centre for Carbon Dioxide Capture in Regina, Saskatchewan were presented, as well as issues concerning the sequestration of CO 2 in oil sands tailings streams. A research project concerning the geologic sequestration of CO 2 and simultaneous CO 2 and methane production from natural gs hydrate reservoirs was also discussed. 12 figs.

  9. Pre-Combustion Capture of CO2 in IGCC Plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    Pre-combustion capture involves reacting a fuel with oxygen or air and/or steam to give mainly a 'synthesis gas (syngas)' or 'fuel gas' composed of carbon monoxide and hydrogen. The carbon monoxide is reacted with steam in a catalytic reactor, called a shift converter, to produce CO2 and more hydrogen. CO2 is then separated, usually by a physical or chemical absorption process, resulting in a hydrogen-rich fuel which can be used in many applications, such as boilers, furnaces, gas turbines, engines and fuel cells. Pre-combustion capture is suitable for use in integrated gasification combined cycle (IGCC) plants especially since the CO2 partial pressures in the fuel gas are higher than in the flue gas. After the introduction there follows a short discussion of the water-gas shift (WGS) reaction. This is followed by chapters on the means of CO2 capture by physical and chemical solvents, solid sorbents, and membranes. The results and conclusions of techno-economic studies are introduced followed by a look at some of the pilot and demonstration plants relevant to pre-combustion capture in IGCC plants.

  10. Advances in CO2 capture technology: A patent review

    International Nuclear Information System (INIS)

    Li, Bingyun; Duan, Yuhua; Luebke, David; Morreale, Bryan

    2013-01-01

    Highlights: ► Timely updates on carbon capture technologies: More than 1000 patents on solvent, sorbent, and membrane. ► More patents on solvent and sorbent compared to membrane. ► Environmental and health concerns exist regarding carbon capture technologies. -- Abstract: Carbon dioxide (CO 2 ) emissions are believed to be a major contributor to global warming. As a consequence, large anthropogenic CO 2 sources worldwide will eventually be required to implement CO 2 capture and storage technologies to control CO 2 emissions. In order to guide the establishment of policies for CO 2 removal, we reviewed the current status of CO 2 capture patents and technologies based on the Espacenet patent database and found that more than 1000 patents have been published on sorbent, solvent, and membrane. More than 60% of these patents were published since the year 2000, and a sharp increase in patent numbers was seen in the last several years; ∼25% patents were published in the last 2 years. Substantially more patents on CO 2 removal and separation technologies are expected in the coming years. Meanwhile, the top four major types of patents, which consist of more than 2/3 of these patents, were patents granted by Japan (JP), United States (US), World Intellectual Property Organization (WO), and China (CN), and approximately half of the patents were JP and US patents. Unfortunately, no current technologies for removing CO 2 from large sources like coal-based power plants exist which satisfy the needs of safety, efficiency, and economy; further enhancement and innovation are much needed.

  11. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef; Shekhah, Osama

    2016-01-01

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from

  12. Corrosion in CO2 Post-Combustion Capture with Alkanolamines – A Review

    Directory of Open Access Journals (Sweden)

    Kittel J.

    2014-09-01

    Full Text Available CO2 capture and storage plays an important part in industrial strategies for the mitigation of greenhouse gas emissions. CO2 post-combustion capture with alkanolamines is well adapted for the treatment of large industrial point sources using combustion of fossil fuels for power generation, like coal or gas fired power plants, or the steel and cement industries. It is also one of the most mature technologies to date, since similar applications are already found in other types of industries like acid gas separation, although not at the same scale. Operation of alkanolamine units for CO2 capture in combustion fumes presents several challenges, among which corrosion control plays a great part. It is the aim of this paper to present a review of current knowledge on this specific aspect. In a first part, lessons learnt from several decades of use of alkanolamines for natural gas separation in the oil and gas industry are discussed. Then, the specificities of CO2 post-combustion capture are presented, and their consequences on corrosion risks are discussed. Corrosion mitigation strategies, and research and development efforts to find new and more efficient solvents are also highlighted. In a last part, concerns about CO2 transport and geological storage are discussed, with recommendations on CO2 quality and concentration of impurities.

  13. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  14. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  15. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion

    International Nuclear Information System (INIS)

    Singh, D.; Croiset, E.; Douglas, P.L.; Douglas, M.A.

    2003-01-01

    The existing fleet of modern pulverised coal fired power plants represents an opportunity to achieve significant reductions in greenhouse gas emissions in the coming years providing that efficient and economical CO 2 capture technologies are available for retrofit. One option is to separate CO 2 from the products of combustion using conventional approaches such as amine scrubbing. An emerging alternative, commonly known as O 2 /CO 2 recycle combustion, involves burning the coal with oxygen in an atmosphere of recycled flue gas. Both approaches can be retrofitted to existing units, however they consume significant amounts of energy to capture, purify and compress the CO 2 for subsequent sequestration. This paper presents a techno-economic comparison of the performance of the two approaches. The comparison was developed using the commercial process simulation packages, Hysys and Aspen Plus. The results show that both processes are expensive options to capture CO 2 from coal power plants, however O 2 /CO 2 appears to be a more attractive retrofit than MEA scrubbing. The CO 2 capture cost for the MEA case is USD 53/ton of CO 2 avoided, which translates into 3.3 cents/kW h. For the O 2 /CO 2 case the CO 2 capture cost is lower at USD 35/ton of CO 2 avoided, which translates into 2.4 cents/kW h. These capture costs represent an approximate increase of 20-30% in current electricity prices

  16. Study of CO2 capture processes in power plants

    International Nuclear Information System (INIS)

    Amann, J.M.

    2007-12-01

    The aim of the present study is to assess and compare various processes aiming at recover CO 2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post-combustion CO 2 capture using chemical solvents, natural gas reforming for pre-combustion capture by methanol and oxy-fuel combustion with cryogenic recovery of CO 2 . These processes were evaluated using the process software Aspen PlusTM to give some clues for choosing the best option for each type of power plant. With regard to post-combustion, an aqueous solution based on a mixture of amines (N-methyldiethanolamine (MDEA) and triethylene tetramine (TETA)) was developed. Measurements of absorption were carried out between 298 and 333 K in a Lewis cell. CO 2 partial pressure at equilibrium, characteristic of the CO 2 solubility in the solvent, was determined up to 393 K. The solvent performances were compared with respect to more conventional solvents such as MDEA and monoethanolamine (MEA). For oxy-fuel combustion, a recovery process, based on a cryogenic separation of the components of the flue gas, was developed and applied to power plants. The study showed that O 2 purity acts on the CO 2 concentration in the flue gas and thus on the performances of the recovery process. The last option is natural gas reforming with CO 2 pre-combustion capture. Several configurations were assessed: air reforming and oxygen reforming, reforming pressure and dilution of the synthesis gas. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents. (author)

  17. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    Science.gov (United States)

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing

  18. Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery

    International Nuclear Information System (INIS)

    Iribarren, Diego; Petrakopoulou, Fontina; Dufour, Javier

    2013-01-01

    This study evaluates the environmental and thermodynamic performance of six coal-fired power plants with CO 2 capture and storage. The technologies examined are post-combustion capture using monoethanolamine, membrane separation, cryogenic fractionation and pressure swing adsorption, pre-combustion capture through coal gasification, and capture performing conventional oxy-fuel combustion. The incorporation of CO 2 capture is evaluated both on its own and in combination with CO 2 transport and geological storage, with and without beneficial use. Overall, we find that pre-combustion CO 2 capture and post-combustion through membrane separation present relatively low life-cycle environmental impacts and high exergetic efficiencies. When accounting for transport and storage, the environmental impacts increase and the efficiencies decrease. However, a better environmental performance can be achieved for CO 2 capture, transport and storage when incorporating beneficial use through enhanced oil recovery. The performance with enhanced coal-bed methane recovery, on the other hand, depends on the impact categories evaluated. The incorporation of methane recovery results in a better thermodynamic performance, when compared to the incorporation of oil recovery. The cumulative energy demand shows that the integration of enhanced resource recovery strategies is necessary to attain favourable life-cycle energy balances. - Highlights: ► Evaluation of six different CO 2 capture technologies for coal-fired power plants. ► Calculation of life-cycle environmental impacts and exergetic efficiencies. ► Suitability of post-combustion capture with membrane separation. ► Suitability of pre-combustion capture through coal gasification. ► Improved performance when incorporating enhanced resource recovery

  19. CO2 Capture and Separation Properties in the Ionic Liquid 1-n-Butyl-3-Methylimidazolium Nonafluorobutylsulfonate

    Directory of Open Access Journals (Sweden)

    Lingyun Zhou

    2014-05-01

    Full Text Available Recently, the use of ionic liquids (ILs for carbon capture and separation processes has gained great interest by many researchers due to the high solubility of CO2 in ILs. In the present work, solubility measurements of CO2 in the novel IL 1-n-butyl-3-methylimidazolium nonafluorobutylsulfonate [C4mim][CF3CF2CF2CF2SO3] were performed with a high-pressure view-cell technique in the temperature range from 293.15 to 343.15 K and pressures up to about 4.2 MPa. For comparison, solubilities of H2, N2, and O2 in the IL were also measured at 323.15 K via the same procedure. The Krichevsky-Kasarnovsky equation was employed to correlate the measured solubility data. Henry’s law constants, enthalpies, and entropies of absorption for CO2 in the IL were also determined and presented. The CO2 solubility in this IL was compared with other ILs sharing the same cation. It was shown that the solubility of CO2 in these ILs follows the sequence: [C4mim][CF3CF2CF2CF2SO3] ≈ [C4mim][Tf2N] > [C4mim][CF3CF2CF2COO] > [C4mim][BF4], and the solubility selectivity of CO2 relative to O2, N2, and H2 in [C4mim][CF3CF2CF2CF2SO3] was 8, 16, and 22, respectively. Furthermore, this IL is regenerable and exhibits good stability. Therefore, the IL reported here would be a promising sorbent for CO2.

  20. Capture, transport and storage of CO2

    International Nuclear Information System (INIS)

    De Boer, B.

    2008-01-01

    The emission of greenhouse gas CO2 in industrial processes and electricity production can be reduced on a large scale. Available techniques include post-combustion, pre-combustion, the oxy-fuel process, CO2 fixation in industrial processes and CO2 mineralization. In the Netherlands, plans for CO2 capture are not developing rapidly (CCS - carbon capture and storage). [mk] [nl

  1. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef; Guillerm, Vincent; Eddaoudi, Mohamed

    2016-01-01

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  2. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef

    2016-03-30

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  3. Capture and geological storage of CO2. Innovation, industrial stakes and realizations

    International Nuclear Information System (INIS)

    Lavergne, R.; Podkanski, J.; Rohner, H.; Otter, N.; Swift, J.; Dance, T.; Vesseron, Ph.; Reich, J.P.; Reynen, B.; Wright, L.; Marliave, L. de; Stromberg, L.; Aimard, N.; Wendel, H.; Erdol, E.; Dino, R.; Renzenbrink, W.; Birat, J.P.; Czernichowski-Lauriol, I.; Christensen, N.P.; Le Thiez, P.; Paelinck, Ph.; David, M.; Pappalardo, M.; Moisan, F.; Marston, Ph.; Law, M.; Zakkour, P.; Singer, St.; Philippe, Th.; Philippe, Th.

    2007-01-01

    : the ULCOS program; CO 2 capture technologies: road-maps and potential cost abatement; membranes: oxygen production and hydrogen separation; CO2GeoNet: integration of European research for the establishment of confidence in CO 2 geologic storage; CO2SINK, CO 2 geologic storage test at the European pilot site of Ketzin (Germany); storage in aquifers for European industrial projects: AQUA CO2; the US approach: US standards for the qualification of a CO 2 storage in agreement with federal and state regulations; legal and regulatory aspects; societal acceptation; CO 2 capture, geologic storage and carbon market; economic aspects of CO 2 capture and storage; an experience of implementation of 'clean development mechanisms' in an industrial strategy; closing talk. (J.S.)

  4. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership

    Science.gov (United States)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart

    2016-04-01

    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  5. CO2 separation by calcium looping from full and partial fuel oxidation processes

    International Nuclear Information System (INIS)

    Sivalingam, Senthoorselvan

    2013-01-01

    This thesis work deals with the research and development of calcium looping process for CO 2 separation from full and partial fuel oxidation based power generation systems. CO 2 is the main greenhouse gas and undoubtedly a major contributor to the global warming. It is estimated that more than one third of the total anthropogenic CO 2 emissions come from fossil fuel based heat and power generation. Moreover, fossil fuels are unlikely to be phased out rapidly, since developing alternative energy sources not only take time but also require huge investments and infrastructure. An alternative way to reduce emissions in a medium term is to capture the CO 2 from fossil fueled power plants and store it away from the atmosphere. This process system combining a bunch of technologies is called carbon capture and storage (CCS). CO 2 capture is an important and costly part of CCS and an array of technologies is considered for this. Calcium looping (CaL) is one of such and seems to offer effective and efficient CO 2 separation from fuel oxidation processes. CaL process involves separation of CO 2 at high temperatures (600-700 C) by calcium sorbents (CaO). CO 2 reacts with CaO in a carbonation process and produces CaCO 3 . In a subsequent thermal regeneration (>850 C) called calcination, the CO 2 is released from CaCO 3 . By alternating carbonations and calcinations over multiple cycles, CO 2 is separated from a gas stream. Moreover, the CaL is realised in industrial scale with dual fluidised bed reactors for CO 2 capture (the carbonator) and sorbent regeneration (the calciner). As a process in the development, research is still required in many aspects from thermodynamic modeling to experimental studies. Research works have been carried out in process simulations, sorbent reactivity and optimisation studies in a controlled reactor environment and process parametric studies in a semi-pilot scale CaL test facility. ASPEN Plus power plant simulations integrating the CaL based CO 2

  6. Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants

    International Nuclear Information System (INIS)

    Romeo, Luis M.; Abanades, J. Carlos; Escosa, Jesus M.; Pano, Jara; Gimenez, Antonio; Sanchez-Biezma, Andres; Ballesteros, Juan C.

    2008-01-01

    Postcombustion CO 2 capture is the best suitable capture technology for existing coal power plants. This paper focuses on an emerging technology that involves the separation of CO 2 using the reversible carbonation reaction of CaO to capture CO 2 from the flue gas, and the calcination of CaCO 3 to regenerate the sorbent and produce concentrated CO 2 for storage. We describe the application to this concept to an existing (with today's technology) power plant. The added capture system incorporates a new supercritical steam cycle to take advantage of the large amount of heat coming out from the high temperature capture process (oxyfired combustion of coal is needed in the CaCO 3 calciner). In these conditions, the capture system is able to generate additional power (26.7% efficiency respect to LHV coal input to the calciner after accounting for all the penalties in the overall system), without disturbing the steam cycle of the reference plant (that retains its 44.9 efficiency). A preliminary cost study of the overall system, using well established analogues in the open literature for the main components, yields capture cost around 16 Euro /ton CO 2 avoided and incremental cost of electricity of just over 1 Euro /MW h e

  7. CO 2 Capture from Dilute Gases as a Component of Modern Global Carbon Management

    KAUST Repository

    Jones, Christopher W.

    2011-01-01

    The growing atmospheric CO2 concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO2 from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO 2 capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO2 directly from ambient air (air capture) as a means of reducing the global atmospheric CO2 concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed. © Copyright 2011 by Annual Reviews. All rights reserved.

  8. CO 2 Capture from Dilute Gases as a Component of Modern Global Carbon Management

    KAUST Repository

    Jones, Christopher W.

    2011-07-15

    The growing atmospheric CO2 concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO2 from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO 2 capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO2 directly from ambient air (air capture) as a means of reducing the global atmospheric CO2 concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed. © Copyright 2011 by Annual Reviews. All rights reserved.

  9. Analysis of a New Liquefaction Combined with Desublimation System for CO2 Separation Based on N2/CO2 Phase Equilibrium

    Directory of Open Access Journals (Sweden)

    Wenchao Yang

    2015-09-01

    Full Text Available Cryogenic CO2 capture is considered as a promising CO2 capture method due to its energy saving and environmental friendliness. The phase equilibrium analysis of CO2-mixtures at low temperature is crucial for the design and operation of a cryogenic system because it plays an important role in analysis of recovery and purity of the captured CO2. After removal of water and toxic gas, the main components in typical boiler gases are N2/CO2. Therefore, this paper evaluates the reliabilities of different cubic equations of state (EOS and mixing rules for N2/CO2. The results show that Peng-Robinson (PR and Soave-Redlich-Kwong (SRK fit the experimental data well, PR combined with the van der Waals (vdW mixing rule is more accurate than the other models. With temperature decrease, the accuracy of the model improves and the deviation of the N2 vapor fraction is 0.43% at 220 K. Based on the selected calculation model, the thermodynamic properties of N2/CO2 at low temperature are analyzed. According to the results, a new liquefaction combined with a desublimation system is proposed. The total recovery and purity of CO2 production of the new system are satisfactory enough for engineering applications. Additionally, the total energy required by the new system to capture the CO2 is about 3.108 MJ·kg−1 CO2, which appears to be at least 9% lower than desublimation separation when the initial concentration of CO2 is 40%.

  10. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  11. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia; Mantione, Daniele; El Tall, Omar; Sarwar, Muhammad Ilyas; Ruipé rez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  12. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia

    2016-04-19

    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  13. Effect of amine structure on CO2 capture by polymeric membranes.

    Science.gov (United States)

    Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki

    2017-01-01

    Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO 2 separation properties over H 2 . However, the CO 2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO 2 determining agent in the current CO 2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO 2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO 2 permeability coefficient of MEA containing membrane was 604 barrer with CO 2 selectivity of 58.5 over H 2 , which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO 2 -selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO 2 separation performance.

  14. Techno-economic study of CO{sub 2} capture from an existing coal-fired power plant: MEA scrubbing vs. O{sub 2}/CO{sub 2} recycle combustion

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D; Croiset, E; Douglas, P L [Waterloo Univ., Dept. of Chemical Engineering, Waterloo, ON (Canada); Douglas, M A [Natural Resources Canada, CANMET Energy Technology Centre, Nepean, ON (Canada)

    2003-11-01

    The existing fleet of modern pulverised coal fired power plants represents an opportunity to achieve significant reductions in greenhouse gas emissions in the coming years providing that efficient and economical CO{sub 2} capture technologies are available for retrofit. One option is to separate CO{sub 2} from the products of combustion using conventional approaches such as amine scrubbing. An emerging alternative, commonly known as O{sub 2}/CO{sub 2} recycle combustion, involves burning the coal with oxygen in an atmosphere of recycled flue gas. Both approaches can be retrofitted to existing units, however they consume significant amounts of energy to capture, purify and compress the CO{sub 2} for subsequent sequestration. This paper presents a techno-economic comparison of the performance of the two approaches. The comparison was developed using the commercial process simulation packages, Hysys and Aspen Plus. The results show that both processes are expensive options to capture CO{sub 2} from coal power plants, however O{sub 2}/CO{sub 2} appears to be a more attractive retrofit than MEA scrubbing. The CO{sub 2} capture cost for the MEA case is USD 53/ton of CO{sub 2} avoided, which translates into 3.3 cent/kW h. For the O{sub 2}/CO{sub 2} case the CO{sub 2} capture cost is lower at USD 35/ton of CO{sub 2} avoided, which translates into 2.4 cent/kW h. These capture costs represent an approximate increase of 20-30% in current electricity prices. (Author)

  15. CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Hakuta, Toshikatu [National Inst. of Materials and Chemical Research, Ibaraki (Japan)

    1993-12-31

    The climate change induced by CO{sub 2} and other greenhouse gases is probably the most serious environmental threat that mankind has ever experienced. Nowadays fossil fuels occupy the majority of the world commercial energy supply. Most nations will be dependent on fossil fuels even in the first half of the next century. Around 30 % of CO{sub 2} in the world is emitted from thermal power plants. Recovering CO{sub 2} from energy conversion processes and storing it outside the atmosphere is a promising option for the mitigation of global warming. CO{sub 2} fixation and storage include CO{sub 2} disposal into oceans and underground, and utilization of CO{sub 2}. CO{sub 2} separation process will be used in any CO{sub 2} storage system, and is estimated to consume almost half the energy of the total system. Research and development of highly efficient CO{sub 2} separation process is most important from the viewpoint of practical application of CO{sub 2} fixation system.

  16. Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO2 Separations.

    Science.gov (United States)

    Wang, Shaofei; Xie, Yu; He, Guangwei; Xin, Qingping; Zhang, Jinhui; Yang, Leixin; Li, Yifan; Wu, Hong; Zhang, Yuzhong; Guiver, Michael D; Jiang, Zhongyi

    2017-11-06

    Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO 2 to implement efficient separations, gas separation membranes containing CO 2 -philic and non-CO 2 -philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO 2 -philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non-CO 2 -philic nanodomains, rendering low-friction diffusion. Owing to the orderly stacking of nanochannels through cross-linking and the heterogeneous nanodomains with moderate CO 2 affinity, a GO-PEGDA500 membrane exhibits a high CO 2 permeance of 175.5 GPU and a CO 2 /CH 4 selectivity of 69.5, which is the highest performance reported for dry-state GO-stacking membranes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Recent enlightening strategies for co2 capture: a review

    Science.gov (United States)

    Yuan, Peng; Qiu, Ziyang; Liu, Jia

    2017-05-01

    The global climate change has seriously affected the survival and prosperity of mankind, where greenhouse effect owing to atmospheric carbon dioxide (CO2) enrichment is a great cause. Accordingly, a series of down-to-earth measures need to be implemented urgently to control the output of CO2. As CO2 capture appears as a core issue in developing low-carbon economy, this review provides a comprehensive introduction of recent CO2 capture technologies used in power plants or other industries. Strategies for CO2 capture, e.g. pre-combustion, post-combustion and oxyfuel combustion, are covered in this article. Another enlightening technology for CO2 capture based on fluidized beds is intensively discussed.

  18. An Innovative Configuration for CO2 Capture by High Temperature Fuel Cells

    Directory of Open Access Journals (Sweden)

    Federico Rossi

    2014-09-01

    Full Text Available Many technological solutions have been proposed for CO2 capture in the last few years. Most of them are characterized by high costs in terms of energy consumption and, consequently, higher fossil fuel use and higher economic costs. High temperature fuel cells are technological solutions currently developed for energy production with low environmental impact. In CIRIAF—University of Perugia labs, cylindrical geometry, small-sized molten carbonate fuel cell (MCFC prototypes were built and tested with good energy production and lifetime performances. In the present work, an innovative application for MCFCs is proposed, and an innovative configuration for CO2 capture/separation is investigated. The plant scheme is based on a reformer and a cylindrical MCFC. MCFCs are the most suitable solutions, because CO2 is used in their operating cycle. An analysis in terms of energy consumption/kgCO2 captured is made by coupling the proposed configuration with a gas turbine plant. The proposed configuration is characterized by a theoretical energy consumption of about 500 kJ/kgCO2, which is quite lower than actual sequestration technologies. An experimental campaign will be scheduled to verify the theoretical findings.

  19. Novel process concept for cryogenic CO2 capture

    NARCIS (Netherlands)

    Tuinier, M.J.

    2011-01-01

    Carbon capture and storage (CCS) is generally considered as one of the necessary methods to mitigate anthropogenic CO2 emissions to combat climate change. The costs of CCS can for a large extent be attributed to the capture process. Several post-combustion CO2 capture processes have been developed,

  20. Novel concepts for CO2 capture

    International Nuclear Information System (INIS)

    Dijkstra, J.W.; Jansen, D.

    2004-01-01

    This paper describes the possibilities for power generation with CO 2 capture using envisaged key technologies: gas turbines, membranes and solid oxide fuel cells (SOFCs). First, the underlying programs in the Netherlands and at ECN are introduced. Then the key technologies are introduced, and concepts using these technologies are discussed. A literature overview of systems for power generation with fuel cells in combination with CO 2 capture is presented. Then a novel concept is introduced. This concept uses a water gas shift membrane reactor to convert the CO and H 2 in the SOFC anode off-gas to gain a CO 2 rich stream, which can be used for sequestration without elaborate treatment. Several implementation schemes of the technique are discussed such as atmospheric systems and hybrid SOFC-GT systems

  1. Preparation Methods of Metal Organic Frameworks and Their Capture of CO2

    Science.gov (United States)

    Zhang, Linjian; Liand, Fangqin; Luo, Liangfei

    2018-01-01

    The increasingly serious greenhouse effect makes people pay more attention to the capture and storage technology of CO2. Metal organic frameworks (MOFs) have the advantages of high specific surface area, porous structure and controllable structure, and become the research focus of CO2 emission reduction technology in recent years. In this paper, the characteristics, preparation methods and application of MOFs in the field of CO2 adsorption and separation are discussed, especially the application of flue gas environment in power plants.

  2. Dual Alkali Solvent System for CO2 Capture from Flue Gas.

    Science.gov (United States)

    Li, Yang; Wang, H Paul; Liao, Chang-Yu; Zhao, Xinglei; Hsiung, Tung-Li; Liu, Shou-Heng; Chang, Shih-Ger

    2017-08-01

    A novel two-aqueous-phase CO 2 capture system, namely the dual alkali solvent (DAS) system, has been developed. Unlike traditional solvent-based CO 2 capture systems in which the same solvent is used for both CO 2 absorption and stripping, the solvent of the DAS system consists of two aqueous phases. The upper phase, which contains an organic alkali 1-(2-hydroxyethyl) piperazine (HEP), is used for CO 2 absorption. The lower phase, which consists of a mixture of K 2 CO 3 /KHCO 3 aqueous solution and KHCO 3 precipitate, is used for CO 2 stripping. Only a certain kind of amine (such as HEP) is able to ensure the phase separation, satisfactory absorption efficiency, effective CO 2 transfer from the upper phase to the lower phase, and regeneration of the upper phase. In the meantime, due to the presence of K 2 CO 3 /KHCO 3 in the lower phase, HEP in the upper phase is capable of being regenerated from its sulfite/sulfate heat stable salt, which enables the simultaneous absorption of CO 2 and SO 2 /SO 3 from the flue gas. Preliminary experiments and simulations indicate that the implementation of the DAS system can lead to 24.0% stripping energy savings compared to the Econamine process, without significantly lowering the CO 2 absorption efficiency (∼90%).

  3. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part B: Applications

    Science.gov (United States)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-09-01

    An important advantage of solid oxide fuel cells (SOFC) as future systems for large scale power generation is the possibility of being efficiently integrated with processes for CO2 capture. Focusing on natural gas power generation, Part A of this work assessed the performances of advanced pressurised and atmospheric plant configurations (SOFC + GT and SOFC + ST, with fuel cell integration within a gas turbine or a steam turbine cycle) without CO2 separation. This Part B paper investigates such kind of power cycles when applied to CO2 capture, proposing two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs with internal reforming and low temperature CO2 separation process. The power plants are simulated at the 100 MW scale with a set of realistic assumptions about FC performances, main components and auxiliaries, and show the capability of exceeding 70% LHV efficiency with high CO2 capture (above 80%) and a low specific primary energy consumption for the CO2 avoided (1.1-2.4 MJ kg-1). Detailed results are presented in terms of energy and material balances, and a sensitivity analysis of plant performance is developed vs. FC voltage and fuel utilisation to investigate possible long-term improvements. Options for further improvement of the CO2 capture efficiency are also addressed.

  4. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture

    KAUST Repository

    Zhao, Yunfeng

    2013-01-01

    We designed and synthesized a perfluorinated covalent triazine-based framework (FCTF-1) for selective CO2 capture. The incorporation of fluorine (F) groups played multiple roles in improving the framework\\'s CO 2 adsorption and separation capabilities. Thermodynamically, the strongly polar C-F bonds promoted CO2 adsorption via electrostatic interactions, especially at low pressures. FCTF-1\\'s CO2 uptake was 1.76 mmol g-1 at 273 K and 0.1 bar through equilibrium adsorption, exceeding the CO2 adsorption capacity of any reported porous organic polymers to date. In addition, incorporating F groups produced a significant amount of ultra-micropores (<0.5 nm), which offered not only high gas adsorption potential but also kinetic selectivity for CO2-N 2 separation. In mixed-gas breakthrough experiments, FCTF-1 exhibited an exceptional CO2-N2 selectivity of 77 under kinetic flow conditions, much higher than the selectivity (31) predicted from single-gas equilibrium adsorption data. Moreover, FCTF-1 proved to be tolerant to water and its CO2 capture performance remained excellent when there was moisture in the gas mixture, due to the hydrophobic nature of the C-F bonds. In addition, the moderate adsorbate-adsorbent interaction allowed it to be fully regenerated by pressure swing adsorption processes. These attributes make FCTF-1 a promising sorbent for CO2 capture from flue gas. © 2013 The Royal Society of Chemistry.

  5. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  6. CO2 Capture Rate Sensitivity Versus Purchase of CO2 Quotas. Optimizing Investment Choice for Electricity Sector

    Directory of Open Access Journals (Sweden)

    Coussy Paula

    2014-09-01

    Full Text Available Carbon capture technology (and associated storage, applied to power plants, reduces atmospheric CO2 emissions. This article demonstrates that, in the particular case of the deployment phase of CO2 capture technology during which CO2 quota price may be low, capturing less than 90% of total CO2 emissions from power plants can be economically attractive. Indeed, for an electric power company capture technology is interesting, only if the discounted marginal cost of capture is lower than the discounted marginal cost of purchased quotas. When CO2 price is low, it is interesting to have flexibility and reduce the overall capture rate of the site, by stopping the capture system of one of the combustion trains if the site has multiple ones, or by adopting less than 90% CO2 capture rate.

  7. Novel process concept for cryogenic CO2 capture

    OpenAIRE

    Tuinier, M.J.

    2011-01-01

    Carbon capture and storage (CCS) is generally considered as one of the necessary methods to mitigate anthropogenic CO2 emissions to combat climate change. The costs of CCS can for a large extent be attributed to the capture process. Several post-combustion CO2 capture processes have been developed, such as scrubbing, membrane processes and pressure swing adsorption. Amine scrubbing is currently the state of the art technology, in which CO2 is being removed by contacting the flue gas with a so...

  8. Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO{sub 2} capture and CO{sub 2}/N{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Vilarrasa-García, E., E-mail: enrique@gpsa.ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Cecilia, J.A., E-mail: jacecilia@uma.es [Department of Inorganic Chemistry, Cristallography and Mineralogy, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga (Spain); Bastos-Neto, M., E-mail: mbn@ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Cavalcante, C.L., E-mail: celio@gpsa.ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Azevedo, D.C.S., E-mail: diana@gpsa.ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Rodríguez-Castellón, E., E-mail: castellon@uma.es [Department of Inorganic Chemistry, Cristallography and Mineralogy, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga (Spain)

    2017-07-15

    Highlights: • Textural properties of sepiolite can be enhanced by microwave assisted acid treatment. • CO{sub 2} uptake of sepiolite improved significantly after amine modification. • The highest CO{sub 2}/N{sub 2} selectivity is 440 mol CO{sub 2}/mol N{sub 2} at 338 K and low pressures. - Abstract: Sepiolite was treated in HNO{sub 3} solutions with the assistance of microwave radiation. This treatment caused the progressive depletion of Mg{sup 2+}, the gradual degradation of the sepiolite structure and the formation of an amorphous silica phase, which contributes to a noticeable increase of the surface area. The use of microwaves during acid treatment, after few minutes, led to materials with similar S{sub BET} to those obtained after 48 h with conventional heating methods. The influence of mineralogical impurities, crystallinity and chemical composition in the reactivity of sepiolite to this treatment was also studied. The obtained materials were impregnated with polyethylenimine and assessed for CO{sub 2} capture and CO{sub 2}/N{sub 2} selectivity at different temperatures. Experimental equilibrium data were fitted to Langmuir and Sips models. The adsorption data revealed that sepiolite can be an interesting adsorbent for CO{sub 2} capture, achieving a capacity of 1.70 mmol g{sup −1} at 338 K and 1 bar, providing a high CO{sub 2}/N{sub 2} selectivity (440 mol CO{sub 2}/mol N{sub 2}).

  9. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    Fossil fuels are the backbone of the energy generation in the coming decades for USA, China, India and Europe, hence high greenhouse gas emissions are expected in future. Carbon capture and storage technology (CCS) is the only technology that can mitigate greenhouse gas emissions from fossil fuel...... the mass transfer of CO2 with slow-capturing but energetically favorable solvents can open up a variety of new process options for this technology. The ubiquitous enzyme carbonic anhydrase (CA), which enhances the mass transfer of CO2 in the lungs by catalyzing the reversible hydration of CO2, is one very...... enhanced CO2 capture technology by identifying the potentials and limitations in lab and in pilot scale and benchmarking the process against proven technologies. The main goal was to derive a realistic process model for technical size absorbers with a wide range of validity incorporating a mechanistic...

  10. Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere

    Science.gov (United States)

    Chen, Changwei; Yu, Yanke; He, Chi; Wang, Li; Huang, Huang; Albilali, Reem; Cheng, Jie; Hao, Zhengping

    2018-05-01

    Four kinds of carbon-based adsorbents (micro-mesoporous hybrid carbon nanosphere and N-doped hollow carbon sphere with single-, double- or ruga-shell morphology) with different structural and textural properties were prepared and systematically studied in CO2 capture. All synthesized samples possess high specific surface area (828-910 m2 g-1), large pore volume (0.71-1.81 cm3 g-1), and different micropore contents varied from 2.1% to 46.4%. Amongst, the ordered micro-mesoporous carbon nanosphere (OM-CNS) exhibits the best adsorption performance with CO2 uptake as high as 3.01 mmol g-1 under conditions of 298 K and 1.0 bar, better than most of the reported CO2 adsorbents. The excellent CO2 adsorption capacity of OM-CNS can be reasonably attributed to the synergistic effect of ordered mesopore channels and abundant structural micropores which are beneficial for the diffusion and trapping of CO2 adsorbate. Moreover, the OM-CNS shows excellent CO2 trapping selectivity and superior stability and recyclability, which endow the OM-CNS as a promising and environmental-friendly adsorbent for CO2 capture and separation under practical conditions.

  11. CO{sub 2} separation by calcium looping from full and partial fuel oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Sivalingam, Senthoorselvan

    2013-06-05

    This thesis work deals with the research and development of calcium looping process for CO{sub 2} separation from full and partial fuel oxidation based power generation systems. CO{sub 2} is the main greenhouse gas and undoubtedly a major contributor to the global warming. It is estimated that more than one third of the total anthropogenic CO{sub 2} emissions come from fossil fuel based heat and power generation. Moreover, fossil fuels are unlikely to be phased out rapidly, since developing alternative energy sources not only take time but also require huge investments and infrastructure. An alternative way to reduce emissions in a medium term is to capture the CO{sub 2} from fossil fueled power plants and store it away from the atmosphere. This process system combining a bunch of technologies is called carbon capture and storage (CCS). CO{sub 2} capture is an important and costly part of CCS and an array of technologies is considered for this. Calcium looping (CaL) is one of such and seems to offer effective and efficient CO{sub 2} separation from fuel oxidation processes. CaL process involves separation of CO{sub 2} at high temperatures (600-700 C) by calcium sorbents (CaO). CO{sub 2} reacts with CaO in a carbonation process and produces CaCO{sub 3}. In a subsequent thermal regeneration (>850 C) called calcination, the CO{sub 2} is released from CaCO{sub 3}. By alternating carbonations and calcinations over multiple cycles, CO{sub 2} is separated from a gas stream. Moreover, the CaL is realised in industrial scale with dual fluidised bed reactors for CO{sub 2} capture (the carbonator) and sorbent regeneration (the calciner). As a process in the development, research is still required in many aspects from thermodynamic modeling to experimental studies. Research works have been carried out in process simulations, sorbent reactivity and optimisation studies in a controlled reactor environment and process parametric studies in a semi-pilot scale CaL test facility

  12. Mars Atmospheric Capture and Gas Separation

    Science.gov (United States)

    Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.

  13. EDGAR CO2 purity. Type and quantities of impurities related to CO2 point source and capture technology. A Literature study

    Energy Technology Data Exchange (ETDEWEB)

    Walspurger, S.; Van Dijk, H.A.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-08-15

    Carbon capture and storage (CCS) is an important tool that will contribute significantly to CO2 emissions abatement both in power and industrial sectors. Capture technologies as well as transport and distribution infrastructure development need to be carried out to ensure efficient CO2 separation and safe transport to storage sites. This study aimed at identifying, and when possible quantifying, the impurities present in CO2 streams resulting from various CO2 capture plants, such that challenges in development of appropriate materials and cleaning technologies for future CCS infrastructure may be anticipated. In its first part, the study provides a description of the characteristics of the different CO2 capture technologies with respect to their response to different type and quantity of impurities, striving for describing realistic combinations of point sources and capture technologies. Composition of CO2 gaseous streams was found to be highly dependent upon the type of CO2 point source and the removal technology selected. In most of the capture processes, most impurities concentration may be minimised by fine tuning of process operation. However plant economics eventually govern the impurity level in the CO2 stream. For mature technologies such as absorption by chemical or physical solvents lower impurity levels were found to be theoretically quite low, but when energy spent for regeneration is lowered, or when second generation capture with lower energy requirement are considered, the impurity level in CO2 stream increases. Accordingly, the report also addresses the conditioning technologies that are available or need to be developed for removal of traces elements such as mercury, volatile compounds and other condensable and points at technologies to be developed, especially in the sulphur compounds removal from CO2. In its final part the report addresses the quantification of future specification and concludes based on literature study that pipeline

  14. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  15. Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes

    International Nuclear Information System (INIS)

    Franz, Johannes; Maas, Pascal; Scherer, Viktor

    2014-01-01

    Highlights: • Process simulations of IGCC with pre-combustion capture via membranes were done. • Most promising technology is the water–gas-shift-membrane-reactor (WGSMR). • Energetic evaluations showed minimum efficiency loss of 5.8%-points for WGSMR. • Economic evaluations identified boundary limits of membrane technology. • Cost of electricity for optimum WGSMR-case is 57 €/MW h under made assumptions. - Abstract: Pre-combustion-carbon-capture is one of the three main routes for the mitigation of CO 2 -emissions by fossil fueled power plants. Based on the data of a detailed technical evaluation of CO 2 -capture by porous ceramic membranes (CM) and ceramic membrane reactors (WGSMR) in an Integrated-Gasification-Combined-Cycle (IGCC) power plant this paper focuses on the economic effects of CO 2 -abatement. First the results of the process simulations are presented briefly. The analysis is based on a comparison with a reference IGCC without CO 2 -capture (dry syngas cooling, bituminous coal, efficiency of 47.4%). In addition, as a second reference, an IGCC process with CO 2 removal based on standard Selexol-scrubbing is taken into account. The most promising technology for CO 2 -capture by membranes in IGCC applications is the combination of a water gas shift reactor and a H 2 -selective membrane into one water gas shift membrane reactor. For the WGSRM-case efficiency losses can be limited to about 6%-points (including losses for CO 2 compression) for a CO 2 separation degree of 90%. This is a severe reduction of the efficiency loss compared to Selexol (10.3% points) or IGCC–CM (8.6% points). The economic evaluation is based on a detailed analysis of investment and operational costs. Parameters like membrane costs and lifetime, costs of CO 2 -certificates and annual operating hours are taken into account. The purpose of these evaluations is to identify the minimum cost of electricity for the different capture cases for the variation of the boundary

  16. Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO2 Capture and Separation Performance.

    Science.gov (United States)

    Abdelmoaty, Yomna H; Tessema, Tsemre-Dingel; Norouzi, Nazgol; El-Kadri, Oussama M; Turner, Joseph B McGee; El-Kaderi, Hani M

    2017-10-18

    Development of efficient sorbents for carbon dioxide (CO 2 ) capture from flue gas or its removal from natural gas and landfill gas is very important for environmental protection. A new series of heteroatom-doped porous carbon was synthesized directly from pyrazole/KOH by thermolysis. The resulting pyrazole-derived carbons (PYDCs) are highly doped with nitrogen (14.9-15.5 wt %) as a result of the high nitrogen-to-carbon ratio in pyrazole (43 wt %) and also have a high oxygen content (16.4-18.4 wt %). PYDCs have a high surface area (SA BET = 1266-2013 m 2 g -1 ), high CO 2 Q st (33.2-37.1 kJ mol -1 ), and a combination of mesoporous and microporous pores. PYDCs exhibit significantly high CO 2 uptakes that reach 2.15 and 6.06 mmol g -1 at 0.15 and 1 bar, respectively, at 298 K. At 273 K, the CO 2 uptake improves to 3.7 and 8.59 mmol g -1 at 0.15 and 1 bar, respectively. The reported porous carbons also show significantly high adsorption selectivity for CO 2 /N 2 (128) and CO 2 /CH 4 (13.4) according to ideal adsorbed solution theory calculations at 298 K. Gas breakthrough studies of CO 2 /N 2 (10:90) at 298 K showed that PYDCs display excellent separation properties. The ability to tailor the physical properties of PYDCs as well as their chemical composition provides an effective strategy for designing efficient CO 2 sorbents.

  17. Low energy, low cost, efficient CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; David A. Smith; Remy Dumortier [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2006-07-01

    This paper discusses the development and some characteristics of a new, enzyme-based, contained liquid membrane contactor to capture CO{sub 2}. The enzyme carbonic anhydrase catalyzes the removal of CO{sub 2} while the membrane contactor increases the surface area to allow the reduction of the size of the system. The modular system design is easily scaled to any required size reducing the investment costs. The system captures CO{sub 2} at a low energy and low cost promising to be a cost effective technology for CO{sub 2} capture. 5 refs., 7 figs.

  18. Framing and bias in CO2 capture and storage communication films: Reflections from a CO2 capture and storage research group.

    Science.gov (United States)

    Maynard, Carly M; Shackley, Simon

    2017-03-01

    There has been a growing trend towards incorporating short, educational films as part of research funding and project proposals. Researchers and developers in CO 2 capture and storage are using films to communicate outcomes, but such films can be influenced by experiences and values of the producers. We document the content and presentation of seven online CO 2 capture and storage films to determine how framing occurs and its influence on the tone of films. The core frame presents CO 2 capture and storage as a potential solution to an imminent crisis in climatic warming and lack of a sustainable energy supply. Three subsidiary frames represent CO 2 capture and storage as (1) the only option, (2) a partial option or (3) a scientific curiosity. The results demonstrate that an understanding of the nuanced explicit and implicit messages portrayed by films is essential both for effective framing according to one's intention and for wider public understanding of a field.

  19. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-07-01

    Full Text Available The development of multilayer composite membranes for CO2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including the possibility to optimize membrane materials independently by layers according to their different functions and to reduce the overall transport resistance by using ultrathin selective layers, and less limitations on the material mechanical properties and processability. A comprehensive review is required to capture details of the progresses that have already been achieved in developing multilayer composite membranes with improved CO2 separation performance in the past 15–20 years. In this review, various composite membrane preparation methods were compared, advances in composite membranes for CO2/CH4 separation, CO2/N2 and CO2/H2 separation were summarized with detailed data, and challenges facing for the CO2 separation using composite membranes, such as aging, plasticization and long-term stability, were discussed. Finally the perspectives and future research directions for composite membranes were presented. Keywords: Composite membrane, CO2 separation, Membrane fabrication, Membrane aging, Long-term stability

  20. Hydrate-based technology for CO2 capture from fossil fuel power plants

    International Nuclear Information System (INIS)

    Yang, Mingjun; Song, Yongchen; Jiang, Lanlan; Zhao, Yuechao; Ruan, Xuke; Zhang, Yi; Wang, Shanrong

    2014-01-01

    Graphical abstract: Application of hydrate based technology on carbon dioxide capture and storage (CCS). - Highlights: • Hydrate-based CO 2 –N 2 separation data was obtained for flow in porous media. • Tetrahydrofuran and sodium dodecyl sulphate are used as additives simultaneously. • Solution movement rarely occurs when residual solution saturations are low. • Bothe of pressure and temperature have remarkable impacts on gas compositions. • A suitable operation parameter choice is proposed for hydrate-based CO 2 capture. - Abstract: Hydrate-based CO 2 capture is a promising technology. To obtain fundamental data for a flowing system, we measured the distribution of pore solution to analyse hydrate formation/dissociation and gas separation properties. An orthogonal experiment was carried out to investigate the effects of glass beads, flow rates, pressures and temperatures on it. Magnetic resonance imaging (MRI) images were obtained using a spin echo multi-slice pulse sequence. Hydrate saturations were calculated quantitatively using an MRI mean intensity. The results show that hydrate blockages were frequently present. During the hydrate formation and dissociation process, the movement of the solution occurred in cycles. However, the solution movement rarely occurred for residual solution saturations obtained with a high backpressure. The solution concentrate phenomenon occurred mostly in BZ-04. The highest hydrate saturation was 30.2%, and the lowest was 0.70%. Unlike that in BZ-01, there was no stability present in BZ-02 and BZ-04. The different CO 2 concentrations for the three processes of each cycle verified hydrate formation during the gas flow process. The highest CO 2 concentration was 38.8%, and the lowest one was 11.4%. To obtain high hydrate saturation and good separation effects, the values of 5.00 MPa, 1.0 ml min −1 and 280.00 K were chosen. For the gas flow process, only the pressure had a significant impact on gas composition, and all

  1. Capture and geological storage of CO2

    International Nuclear Information System (INIS)

    2013-03-01

    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  2. CO_2 capture by amine-functionalized nanoporous materials: A review

    International Nuclear Information System (INIS)

    Chen, Chao; Kim, Jun; Ahn, Wha-Seung

    2014-01-01

    Amine-functionalized nanoporous materials can be prepared by the incorporation of diverse organic amine moieties into the pore structures of a range of support materials, such as mesoporous silica and alumina, zeolite, carbon and metal organic frameworks (MOFs), either by direct functionalization or post-synthesis through physical impregnation or grafting. These hybrid materials have great potential for practical applications, such as dry adsorbents for postcombustion CO_2 capture, owing to their high CO_2 capture capacity, high capture selectivity towards CO_2 compared to other gases, and excellent stability. This paper summarizes the preparation methods and CO_2 capture performance based on the equilibrium CO_2 uptake of a range of amine-functionalized nanoporous materials

  3. Capture of atmospheric CO2 into (BiO)2CO3/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Zhang, Wendong; Dong, Fan; Zhang, Wei

    2015-01-01

    Graphical abstract: Self-assembly of (BiO) 2 CO 3 nanoflakes on graphene and graphene oxide nanosheets were realized by a one-pot efficient capture of atmospheric CO 2 at room temperature. - Highlights: • A facile one-step method was developed for graphene-based composites. • The synthesis was conducted by utilization of atmospheric CO 2 . • (BiO) 2 CO 3 -graphene and (BiO) 2 CO 3 -graphene oxide composites were synthesized. • The nanocomposites exhibited enhanced photocatalytic activity. - Abstract: Self-assembly of (BiO) 2 CO 3 nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO 2 at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV–vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO) 2 CO 3 , (BiO) 2 CO 3 /Ge and (BiO) 2 CO 3 /GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO 2 in green synthetic strategy.

  4. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  5. Cellulose-Supported Ionic Liquids for Low-Cost Pressure Swing CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Daniel G.; Dowson, George R. M.; Styring, Peter, E-mail: p.styring@sheffield.ac.uk [UK Centre for Carbon Dioxide Utilisation, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield (United Kingdom)

    2017-07-07

    Reducing the cost of capturing CO{sub 2} from point source emitters is a major challenge facing carbon capture, utilization, and storage. While solid ionic liquids (SoILs) have been shown to allow selective and rapid CO{sub 2} capture by pressure swing separation of flue gases, expectations of their high cost hinders their potential application. Cellulose is found to be a reliable, cheap, and sustainable support for a range of SoILs, reducing the total sorbent cost by improving the efficiency of the ionic liquid (IL) through increased ionic surface area that results from coating. It was also found that cellulose support imparts surface characteristics, which increased total sorbent uptake. Combined, these effects allowed a fourfold to eightfold improvement in uptake per gram of IL for SoILs that have previously shown high uptake and a 9- to 39-fold improvement for those with previously poor uptake. This offers the potential to drastically reduce the amount of IL required to separate a given gas volume. Furthermore, the fast kinetics are retained, with adsorb–desorb cycles taking place over a matter of seconds. This means that rapid cycling can be achieved, which results in high cumulative separation capacity relative to a conventional temperature swing process. The supported materials show an optimum at 75% cellulose:25% IL as a result of even coating of the cellulose surface. The projected reduction in plant size and operational costs represents a potentially ground-breaking step forward in carbon dioxide capture technologies.

  6. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  7. Microporous metal organic framework [M2(hfipbb)2(ted)] (M=Zn, Co; H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine): Synthesis, structure analysis, pore characterization, small gas adsorption and CO2/N2 separation properties

    Science.gov (United States)

    Xu, William W.; Pramanik, Sanhita; Zhang, Zhijuan; Emge, Thomas J.; Li, Jing

    2013-04-01

    Carbon dioxide is a greenhouse gas that is a major contributor to global warming. Developing methods that can effectively capture CO2 is the key to reduce its emission to the atmosphere. Recent research shows that microporous metal organic frameworks (MOFs) are emerging as a promising family of adsorbents that may be promising for use in adsorption based capture and separation of CO2 from power plant waste gases. In this work we report the synthesis, crystal structure analysis and pore characterization of two microporous MOF structures, [M2(hfipbb)2(ted)] (M=Zn (1), Co (2); H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine). The CO2 and N2 adsorption experiments and IAST calculations are carried out on [Zn2(hfipbb)2(ted)] under conditions that mimic post-combustion flue gas mixtures emitted from power plants. The results show that the framework interacts with CO2 strongly, giving rise to relatively high isosteric heats of adsorption (up to 28 kJ/mol), and high adsorption selectivity for CO2 over N2, making it promising for capturing and separating CO2 from CO2/N2 mixtures.

  8. High temperature CO2 capture of hydroxyapatite extracted from tilapia scales

    Directory of Open Access Journals (Sweden)

    Oscar H. Ojeda-Niño

    2017-11-01

    Full Text Available Hydroxyapatite (HAp was obtained from tilapia scales by two extraction methods: direct calcination and acid-base treatment. The physicochemical characteristics of the obtained HAps were evaluated by thermogravimetric analysis, X-ray fluorescence, X-ray diffraction, scanning electron microscopy, surface area, infrared spectroscopy, and basicity measurement at 298 K by CO2-pulse titration. Furthermore, the CO2 capture capacity of the solids at high temperature was also determined. Both methods showed the presence of a HAp phase although significant differences in the properties of the solids were found. The HAp obtained by direct calcination exhibited a lower crystallinity and a greater surface area and basicity than the HAp obtained by the acid-base treatment. These features were correlated with the solid’s CO2 capture capacity. In this work, CO2 capture capacity values for HAp yielded by calcination ranged from 2.5 to 3.2 mg CO2 /g captured at 973 K, and for the acid-base treatment-derived HAp, CO2 capture capacity values between 1.2 to 2.5 mg CO2 /g were recorded. These results reveal the potential of HAps extracted from tilapia scales as solids with high CO2 capture capacity, thermal stability, and capture/release cycles reversibility.

  9. Computational Modeling of Mixed Solids for CO2 CaptureSorbents

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua

    2015-01-01

    Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.

  10. Novel ZIF-300 Mixed-Matrix Membranes for Efficient CO2 Capture.

    Science.gov (United States)

    Yuan, Jianwei; Zhu, Haipeng; Sun, Jiajia; Mao, Yangyang; Liu, Gongping; Jin, Wanqin

    2017-11-08

    Because of the high separation performance and easy preparation, mixed-matrix membranes (MMMs) consisting of metal-organic frameworks have received much attention. In this article, we report a novel ZIF-300/PEBA MMM consisting of zeolite imidazolate framework (ZIF-300) crystals and polyether block amide (PEBA) matrix. The ZIF-300 crystal size was effectively reduced by optimizing the hydrothermal reaction condition from ∼15 to ∼1 μm. The morphology and physicochemical and sorption properties of the synthesized ZIF-300 crystals and as-prepared ZIF-300/PEBA MMMs were systematically studied. The results showed that ZIF-300 crystals with a size of ∼1 μm maintained excellent preferential CO 2 sorption over N 2 without degradation of the crystal structure in the MMMs. As a result, uniformly incorporated ZIF-300 crystals highly enhanced both the CO 2 permeability and the CO 2 /N 2 selectivity of pure PEBA membrane. The optimized ZIF-300-PEBA MMMs with a ZIF-300 loading of 30 wt % exhibited a high and stable CO 2 permeability of 83 Barrer and CO 2 /N 2 selectivity of 84, which are 59.2% and 53.5% higher than pure PEBA membrane, respectively. The obtained performance surpassed the upper bound of state-of-the-art membranes for CO 2 /N 2 separation. This work demonstrated that the proposed ZIF-300/PEBA MMM could be a potential candidate for an efficient CO 2 capture process.

  11. Permeability and Selectivity of PPO/Graphene Composites as Mixed Matrix Membranes for CO2 Capture and Gas Separation

    Directory of Open Access Journals (Sweden)

    Riccardo Rea

    2018-01-01

    Full Text Available We fabricated novel composite (mixed matrix membranes based on a permeable glassy polymer, Poly(2,6-dimethyl-1,4-phenylene oxide (PPO, and variable loadings of few-layer graphene, to test their potential in gas separation and CO2 capture applications. The permeability, selectivity and diffusivity of different gases as a function of graphene loading, from 0.3 to 15 wt %, was measured at 35 and 65 °C. Samples with small loadings of graphene show a higher permeability and He/CO2 selectivity than pure PPO, due to a favorable effect of the nanofillers on the polymer morphology. Higher amounts of graphene lower the permeability of the polymer, due to the prevailing effect of increased tortuosity of the gas molecules in the membrane. Graphene also allows dramatically reducing the increase of permeability with temperature, acting as a “stabilizer” for the polymer matrix. Such effect reduces the temperature-induced loss of size-selectivity for He/N2 and CO2/N2, and enhances the temperature-induced increase of selectivity for He/CO2. The study confirms that, as observed in the case of other graphene-based mixed matrix glassy membranes, the optimal concentration of graphene in the polymer is below 1 wt %. Below such threshold, the morphology of the nanoscopic filler added in solution affects positively the glassy chains packing, enhancing permeability and selectivity, and improving the selectivity of the membrane at increasing temperatures. These results suggest that small additions of graphene to polymers can enhance their permselectivity and stabilize their properties.

  12. Technico-economical assessment of MFI-type zeolite membranes for CO2 capture from post-combustion flue gases

    International Nuclear Information System (INIS)

    Sublet, J.; Pera-Titus, M.; Guilhaume, N.; Farrusseng, D.; Schrive, L.; Chanaud, P.; Siret, B.; Durecu, S.

    2012-01-01

    A detailed survey of the effect of moisture on the CO 2 /N 2 permeation and separation performance of Mobile Five (MFI) zeolite membranes in view of downstream post-combustion CO 2 capture applications in power plants and incinerators is presented. The membranes, displaying a nano-composite architecture, have been prepared on α-alumina tubes by pore-plugging hydrothermal synthesis at 443 K for 89 h using a precursor clear solution with molar composition 1 SiO 2 :0.45 tetrapropylammonium hydroxide:27.8 H 2 O. The synthesized membranes present reasonable permeation and CO 2 /N 2 separation properties even in the presence of high water concentrations in the gas stream. A critical discussion is also provided on the technico-economical feasibility (i.e., CO 2 recovery, CO 2 purity in the permeate, module volume, and energy consumption) of a membrane cascade unit for CO 2 capture and liquefaction/supercritical storage from standard flue gases emitted from an incinerator. Our results suggest that the permeate pressure should be kept under primary vacuum to promote the CO 2 driving force within the membrane. (authors)

  13. Energy and material balance of CO2 capture from ambient air.

    Science.gov (United States)

    Zeman, Frank

    2007-11-01

    Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.

  14. CO2 capture by Li-functionalized silicene

    KAUST Repository

    Zhu, Jiajie; Chroneos, Alexander; Schwingenschlö gl, Udo

    2016-01-01

    CO2 capture and storage technology is of key importance to reduce the greenhouse effect. By its large surface area and sp3 hybridization, Li-functionalized silicene is demonstrated to be a promising CO2 absorbent that is stable up to at least 500 K

  15. Capture and geological storage of CO{sub 2}. Innovation, industrial stakes and realizations; Captage et stockage geologique du CO{sub 2}. Innovation, enjeux industriels et realisations

    Energy Technology Data Exchange (ETDEWEB)

    Lavergne, R.; Podkanski, J.; Rohner, H.; Otter, N.; Swift, J.; Dance, T.; Vesseron, Ph.; Reich, J.P.; Reynen, B.; Wright, L.; Marliave, L. de; Stromberg, L.; Aimard, N.; Wendel, H.; Erdol, E.; Dino, R.; Renzenbrink, W.; Birat, J.P.; Czernichowski-Lauriol, I.; Christensen, N.P.; Le Thiez, P.; Paelinck, Ph.; David, M.; Pappalardo, M.; Moisan, F.; Marston, Ph.; Law, M.; Zakkour, P.; Singer, St.; Philippe, Th.; Philippe, Th

    2007-07-01

    -making industries and their CO{sub 2} capture and storage needs: the ULCOS program; CO{sub 2} capture technologies: road-maps and potential cost abatement; membranes: oxygen production and hydrogen separation; CO2GeoNet: integration of European research for the establishment of confidence in CO{sub 2} geologic storage; CO2SINK, CO{sub 2} geologic storage test at the European pilot site of Ketzin (Germany); storage in aquifers for European industrial projects: AQUA CO2; the US approach: US standards for the qualification of a CO{sub 2} storage in agreement with federal and state regulations; legal and regulatory aspects; societal acceptation; CO{sub 2} capture, geologic storage and carbon market; economic aspects of CO{sub 2} capture and storage; an experience of implementation of 'clean development mechanisms' in an industrial strategy; closing talk. (J.S.)

  16. Capture and geological storage of CO{sub 2}. Innovation, industrial stakes and realizations; Captage et stockage geologique du CO{sub 2}. Innovation, enjeux industriels et realisations

    Energy Technology Data Exchange (ETDEWEB)

    Lavergne, R; Podkanski, J; Rohner, H; Otter, N; Swift, J; Dance, T; Vesseron, Ph; Reich, J P; Reynen, B; Wright, L; Marliave, L de; Stromberg, L; Aimard, N; Wendel, H; Erdol, E; Dino, R; Renzenbrink, W; Birat, J P; Czernichowski-Lauriol, I; Christensen, N P; Le Thiez, P; Paelinck, Ph; David, M; Pappalardo, M; Moisan, F; Marston, Ph; Law, M; Zakkour, P; Singer, St; Philippe, Th; Philippe, Th

    2007-07-01

    and their CO{sub 2} capture and storage needs: the ULCOS program; CO{sub 2} capture technologies: road-maps and potential cost abatement; membranes: oxygen production and hydrogen separation; CO2GeoNet: integration of European research for the establishment of confidence in CO{sub 2} geologic storage; CO2SINK, CO{sub 2} geologic storage test at the European pilot site of Ketzin (Germany); storage in aquifers for European industrial projects: AQUA CO2; the US approach: US standards for the qualification of a CO{sub 2} storage in agreement with federal and state regulations; legal and regulatory aspects; societal acceptation; CO{sub 2} capture, geologic storage and carbon market; economic aspects of CO{sub 2} capture and storage; an experience of implementation of 'clean development mechanisms' in an industrial strategy; closing talk. (J.S.)

  17. Carbon Dioxide Capture and Separation Techniques for Gasification-based Power Generation Point Sources

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, H.W.; Luebke, D.R.; Jones, K.L.; Morsi, B.I. (Univ. of Pittsburgh, PA); Heintz, Y.J. (Univ. of Pittsburgh, PA); Ilconich, J.B. (Parsons)

    2007-06-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

  18. Capture and Geological Storage of CO2

    International Nuclear Information System (INIS)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.

    2009-01-01

    To build on the growing success of the first two international symposia on emission reduction and CO 2 capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO 2 emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO 2 storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO 2 : A global project for carbon management in South-East France (Gilles Munier, Geogreen); Session III

  19. CO2 Capture from the Air: Technology Assessment and Implications for Climate Policy

    Science.gov (United States)

    Keith, D. W.

    2002-05-01

    It is physically possible to capture CO2 directly from the air and immobilize it in geological structures. Today, there are no large-scale technologies that achieve air capture at reasonable cost. Yet, strong arguments suggest that it will comparatively easy to develop practical air capture technologies on the timescales relevant to climate policy [1]. This paper first analyzes the cost of air capture and then assesses the implications for climate policy. We first analyze the lower bound on the cost needed for air capture, describing the thermodynamic and physical limits to the use of energy and land. We then compare the costs of air capture to the cost of capture from combustion exhaust streams. While the intrinsic minimum energy requirement is larger for air capture, we argue that air capture has important structural advantages, such as the reduction of transport costs and the larger potential for economies of scale. These advantages suggest that, in the long-run air capture be competitive with other methods of achieving deep emissions reductions. We provide a preliminary engineering-economic analysis of an air capture system based on CaO to CaCO3 chemical looping [1]. We analyze the possibility of doing the calcination in a modified pressurized fluidized bed combustor (PFBC) burning coal in a CO2 rich atmosphere with oxygen supplied by an air separation unit. The CaCO3-to-coal ratio would be ~2:1 and the system would be nearly thermally neutral. PFBC systems have been demonstrated at capacities of over 100 MW. Such systems already include CaCO3 injection for sulfur control, and operate at suitable temperatures and pressures for calcination. We assess the potential to recover heat from the dissolution of CaO in order to reduce the overall energy requirements. We analyze the possibility of adapting existing large water/air heat exchangers for use as contacting systems to capture CO2 from the air using the calcium hydroxide solution. The implications of air capture

  20. CO2 capture. Two new structures in the 2-amino-2-methyl-1-propanol (AMP) – water – CO2 system

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Neerup, Randi; Fosbøl, Philip Loldrup

    2016-01-01

    Energy production and transportation is responsible for more than 60 % of our CO2 emission. In particular coal-fired power plants are big contributors. However, these large scale facilities offer the possibility to effective CO2 capture through post-combustion processes. There are several options...... studied the 2-amino-2-methyl-1-propanol (AMP) and the AMP-water phase diagramand its ability for CO2 capture. The first crystal structure in the AMP – water system has been solved from powder diffraction data: AMP trihydrate (triclinic, P-1, a = 6.5897(3), b = 6.399 (2), c = 6.3399(2) Å and α = 92.40 (3...... for such CO2 capture. The problem is to make the absorption/desorption processes energetically and thereby economically viable. One process under investigation involves alkanoamines as absorbents in aqueous solutions. In these systems CO2 is captured either by carbonate and/orcarbamate formation. We have...

  1. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation

    KAUST Repository

    Nugent, Patrick S.

    2013-02-27

    The energy costs associated with the separation and purification of industrial commodities, such as gases, fine chemicals and fresh water, currently represent around 15 per cent of global energy production, and the demand for such commodities is projected to triple by 2050 (ref. 1). The challenge of developing effective separation and purification technologies that have much smaller energy footprints is greater for carbon dioxide (CO2) than for other gases; in addition to its involvement in climate change, CO 2 is an impurity in natural gas, biogas (natural gas produced from biomass), syngas (CO/H 2, the main source of hydrogen in refineries) and many other gas streams. In the context of porous crystalline materials that can exploit both equilibrium and kinetic selectivity, size selectivity and targeted molecular recognition are attractive characteristics for CO 2 separation and capture, as exemplified by zeolites 5A and 13X (ref. 2), as well as metal-organic materials (MOMs). Here we report that a crystal engineering or reticular chemistry strategy that controls pore functionality and size in a series of MOMs with coordinately saturated metal centres and periodically arrayed hexafluorosilicate (SiF 6 2-) anions enables a \\'sweet spot\\' of kinetics and thermodynamics that offers high volumetric uptake at low CO2 partial pressure (less than 0.15 bar). Most importantly, such MOMs offer an unprecedented CO 2 sorption selectivity over N2, H 2 and CH 4, even in the presence of moisture. These MOMs are therefore relevant to CO2 separation in the context of post-combustion (flue gas, CO2/N2), pre-combustion (shifted synthesis gas stream, CO 2/H 2) and natural gas upgrading (natural gas clean-up, CO2/CH 4). © 2013 Macmillan Publishers Limited. All rights reserved.

  2. A NOVEL CO2 SEPARATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Copeland; Gokhan Alptekin; Mike Cesario; Steven Gebhard; Yevgenia Gershanovich

    1999-01-01

    Because of concern over global climate change, new systems are needed that produce electricity from fossil fuels and emit less CO{sub 2}. The fundamental problem with current CO{sub 2} separation systems is the need to separate dilute CO{sub 2} and pressurize it for storage or sequestration. This is an energy intensive process that can reduce plant efficiency by 9-37% and double the cost of electricity.

  3. Thermochemistry of a Biomimetic and Rubisco-Inspired CO2 Capture System from Air

    Directory of Open Access Journals (Sweden)

    Andrew Muelleman

    2016-07-01

    Full Text Available In theoretical studies of chemical reactions the reaction thermochemistry is usually reported for the stoichiometric reaction at standard conditions (ΔG°, ΔH°, ΔS°. We describe the computation of the equilibrium concentrations of the CO2-adducts for the general capture reaction CO2 + Capture System ⇆ CO2-adduct (GCR and the rubisco-type capture reaction CO2 + Capture System ⇆ CO2-adduct + H2O (RCR with consideration of the reaction CO2(g ⇆ CO2(aq via Henry’s law. The resulting equations are evaluated and graphically illustrated as a function of atmospheric CO2 concentration and as a function of temperature. The equations were applied to the thermochemistry of small molecule rubisco-model reactions and series of additional model reactions to illustrate the range of the Gibbs free enthalpy for the effective reversible capture and of the reaction entropy for economic CO2 release at elevated temperature. A favorable capture of free enthalpy is of course a design necessity, but not all exergonic reactions are suitable CO2 capture systems. Successful CO2 capture systems must allow for effective release as well, and this feature is controlled by the reaction entropy. The principle of using a two-pronged capture system to ensure a large negative capture entropy is explained and highlighted in the graphical abstract. It is hoped that the presentation of the numerical examples provides useful guidelines for the design of more efficient capture systems.

  4. Mesoporous amine-bridged polysilsesquioxane for CO2 capture

    KAUST Repository

    Qi, Genggeng

    2011-01-01

    A novel class of amine-supported sorbents based on amine-bridged mesoporous polysilsesquioxane was developed via a simple one-pot sol-gel process. The new sorbent allows the incorporation of a large amount of active groups without sacrificing surface area or pore volume available for CO2 capture, leading to a CO2 capture capacity of 3.2 mmol g−1 under simulated flue gas conditions. The sorbent is readily regenerated at 100°C and exhibits good stability over repetitive adsorption-desorption cycling.

  5. TG-FTIR measurement of CO2-H2O co-adsorption for CO2 air capture sorbent screening

    NARCIS (Netherlands)

    Smal, I.M.; Yu, Qian; Veneman, Rens; Fränzel-Luiten, B.; Brilman, Derk Willem Frederik

    2014-01-01

    Capturing atmospheric CO2 using solid sorbents is gaining interest. As ambient air normally contains much more (up to 100 times) water than CO2, a selective sorbent is desirable as co-adsorption will most likely occur. In this study, a convenient method based on an TG-FTIR analysis system is

  6. More Energy-Efficient CO2 Capture from IGCC GE Flue Gases

    Directory of Open Access Journals (Sweden)

    Rakpong Peampermpool

    2017-03-01

    Full Text Available Carbon dioxide (CO2 emissions are one of the main reasons for the increase in greenhouse gasses in the earth’s atmosphere and carbon capture and sequestration (CCS is known as an effective method to reduce CO2 emissions on a larger scale, such as for fossil energy utilization systems. In this paper, the feasibility of capturing CO2 using cryogenic liquefaction and improving the capture rate by expansion will be discussed. The main aim was to design an energy-saving scheme for an IGCC (integrated gasification combined cycle power plant with CO2 cryogenic liquefaction capture. The experimental results provided by the authors, using the feed gas specification of a 740 MW IGCC General Electric (GE combustion power plant, demonstrated that using an orifice for further expanding the vent gas after cryogenic capture from 57 bar to 24 bar gave an experimentally observed capture rate up to 65%. The energy-saving scheme can improve the overall CO2 capture rate, and hence save energy. The capture process has also been simulated using Aspen HYSYS simulation software to evaluate its energy penalty. The results show that a 92% overall capture rate can be achieved by using an orifice.

  7. High-flux MFI-alumina hollow fibres: a membrane-based process for on-board CO2 capture from internal combustion vehicles

    International Nuclear Information System (INIS)

    Nicolas, C.H.

    2011-01-01

    This work focuses on the conception and development of a membrane-based process for an on-board CO 2 capture/storage application. In a first part, we simulate an on-board CO 2 capture unit based on a membrane process for the case study of a heavy vehicle (≥3500 kg). This study includes an energy analysis of the impact of gas separation and compression on the required membrane surface and module volume, as well the autonomy of the storage unit and the energy overconsumption involved in the process. In a second part, we study the influence of the hollow-fibre support quality on the final intergrowth level of nano-composite MFI-alumina membranes. Special attention is devoted to the influence of the isomorphic substitution of silica by boron and germanium, and replacement of the counter-cation (proton) by other elements, on the CO 2 /N 2 separation and permeance properties. Next, a complete chapter has been devoted to the evaluation of the thermodynamic (adsorption) and kinetic (diffusion) parameters in the CO 2 /N 2 separation. Finally, we analyze the influence of standard pollutants (water, NO x , hydrocarbons) on the CO 2 separation properties of the synthesized membranes. (author)

  8. Techno-economic assessment of membrane assisted fluidized bed reactors for pure H_2 production with CO_2 capture

    International Nuclear Information System (INIS)

    Spallina, V.; Pandolfo, D.; Battistella, A.; Romano, M.C.; Van Sint Annaland, M.; Gallucci, F.

    2016-01-01

    Highlights: • Membrane reactors improve the overall efficiency of H_2 production up to 20%. • Respect to conventional reforming, the H_2 yield increases from 12% to 20%. • The COH is reduced of at least 220% using membrane reactors. • FBMR capture 72% of CO_2 with a specific cost of 8 eur/tonn_C_O_2_. • MA-CLR can reach 90% of CO_2 avoided with same cost of FTR. - Abstract: This paper addresses the techno-economic assessment of two membrane-based technologies for H_2 production from natural gas, fully integrated with CO_2 capture. In the first configuration, a fluidized bed membrane reactor (FBMR) is integrated in the H_2 plant: the natural gas reacts with steam in the catalytic bed and H_2 is simultaneously separated using Pd-based membranes, and the heat of reaction is provided to the system by feeding air as reactive sweep gas in part of the membranes and by burning part of the permeated H_2 (in order to avoid CO_2 emissions for heat supply). In the second system, named membrane assisted chemical looping reforming (MA-CLR), natural gas is converted in the fuel rector by reaction with steam and an oxygen carrier (chemical looping reforming), and the produced H_2 permeates through the membranes. The oxygen carrier is re-oxidized in a separate air reactor with air, which also provides the heat required for the endothermic reactions in the fuel reactor. The plants are optimized by varying the operating conditions of the reactors such as temperature, pressures (both at feed and permeate side), steam-to-carbon ratio and the heat recovery configuration. The plant design is carried out using Aspen Simulation, while the novel reactor concepts have been designed and their performance have been studied with a dedicated phenomenological model in Matlab. Both configurations have been designed and compared with reference technologies for H_2 production based on conventional fired tubular reforming (FTR) with and without CO_2 capture. The results of the analysis show

  9. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon

    KAUST Repository

    Zhao, Yunfeng

    2012-12-21

    We designed and prepared a novel microporous carbon material (KNC-A-K) for selective CO2 capture. The combination of a high N-doping concentration (>10 wt %) and extra-framework cations, which were introduced into carbonaceous sorbents for the first time, endowed KNC-A-K with exceptional CO2 adsorption capabilities, especially at low pressures. Specifically, KNC-A-K exhibited CO2 uptake of 1.62 mmol g -1 at 25 C and 0.1 bar, far exceeding the CO2 adsorption capability of most reported carbon material to date. Single component adsorption isotherms indicated that its CO2/N2 selectivity was 48, which also significantly surpasses the selectivity of conventional carbon materials. Furthermore, breakthrough experiments were conducted to evaluate the CO2 separation capability of KNC-A-K on CO2/N2 (10:90 v/v) mixtures under kinetic flow conditions, and the obtained CO 2/N2 selectivity was as high as 44, comparable to that predicted from equilibrium adsorption data. Upon facile regeneration, KNC-A-K showed constant CO2 adsorption capacity and selectivity during multiple mixed-gas separation cycles. Its outstanding low-pressure CO 2 adsorption ability makes KNC-A-K a promising candidate for selective CO2 capture from flue gas. Theoretical calculations indicated that K+ ions play a key role in promoting CO2 adsorption via electrostatic interactions. In addition, we found that HCl molecules anchored in N-doped carbon have a similar promotion effect on CO 2 adsorption, which contradicts the conventional wisdom that the neutralization of basic sites by acids diminishes the adsorption of acidic CO2 gas. © 2012 American Chemical Society.

  10. CO2 Capture by Carbon Aerogel–Potassium Carbonate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2016-01-01

    Full Text Available Recently, various composites for reducing CO2 emissions have been extensively studied. Because of their high sorption capacity and low cost, alkali metal carbonates are recognized as a potential candidate to capture CO2 from flue gas under moist conditions. However, undesirable effects and characteristics such as high regeneration temperatures or the formation of byproducts lead to high energy costs associated with the desorption process and impede the application of these materials. In this study, we focused on the regeneration temperature of carbon aerogel–potassium carbonate (CA–KC nanocomposites, where KC nanocrystals were formed in the mesopores of the CAs. We observed that the nanopore size of the original CA plays an important role in decreasing the regeneration temperature and in enhancing the CO2 capture capacity. In particular, 7CA–KC, which was prepared from a CA with 7 nm pores, exhibited excellent performance, reducing the desorption temperature to 380 K and exhibiting a high CO2 capture capacity of 13.0 mmol/g-K2CO3, which is higher than the theoretical value for K2CO3 under moist conditions.

  11. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air.

    Science.gov (United States)

    Sakwa-Novak, Miles A; Yoo, Chun-Jae; Tan, Shuai; Rashidi, Fereshteh; Jones, Christopher W

    2016-07-21

    The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as postcombustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 molCO2  m-3monolith and an equilibration time of 350 min under a 0.4 m s(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N2 as the adsorption gas at 30 °C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton. © 2016 WILEY-VCH Verlag

  12. Atmospheric CO2 capture for the artificial photosynthetic system

    Science.gov (United States)

    Nogalska, Adrianna; Zukowska, Adrianna; Garcia-Valls, Ricard

    2017-11-01

    The scope of these studies is to evaluate the ambient CO2 capture abilities of the membrane contactor system in the same conditions as leaves works during photosynthesis, such as ambient temperature, pressure and low CO2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane was made by phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of the membrane and absorbent solution was evaluated, in order to exclude wetting issues. The prepared membranes were introduced in a cross flow module and used as contactor between the CO2 and the potassium hydroxide solution, as absorbing media. The influence of the membrane thickness, absorbent stirring rate and absorption time, on CO2 capture were evaluated. The results show that the efficiency of our CO2 capture system is similar to stomatal carbon dioxide assimilation rate.

  13. Study of CO{sub 2} capture processes in power plants; Etude de procedes de captage du CO{sub 2} dans les centrales thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Amann, J.M

    2007-12-15

    The aim of the present study is to assess and compare various processes aiming at recover CO{sub 2} from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post-combustion CO{sub 2} capture using chemical solvents, natural gas reforming for pre-combustion capture by methanol and oxy-fuel combustion with cryogenic recovery of CO{sub 2}. These processes were evaluated using the process software Aspen PlusTM to give some clues for choosing the best option for each type of power plant. With regard to post-combustion, an aqueous solution based on a mixture of amines (N-methyldiethanolamine (MDEA) and triethylene tetramine (TETA)) was developed. Measurements of absorption were carried out between 298 and 333 K in a Lewis cell. CO{sub 2} partial pressure at equilibrium, characteristic of the CO{sub 2} solubility in the solvent, was determined up to 393 K. The solvent performances were compared with respect to more conventional solvents such as MDEA and monoethanolamine (MEA). For oxy-fuel combustion, a recovery process, based on a cryogenic separation of the components of the flue gas, was developed and applied to power plants. The study showed that O{sub 2} purity acts on the CO{sub 2} concentration in the flue gas and thus on the performances of the recovery process. The last option is natural gas reforming with CO{sub 2} pre-combustion capture. Several configurations were assessed: air reforming and oxygen reforming, reforming pressure and dilution of the synthesis gas. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents. (author)

  14. Promoting Ethylene Selectivity from CO2 Electroreduction on CuO Supported onto CO2 Capture Materials.

    Science.gov (United States)

    Yang, Hui-Juan; Yang, Hong; Hong, Yu-Hao; Zhang, Peng-Yang; Wang, Tao; Chen, Li-Na; Zhang, Feng-Yang; Wu, Qi-Hui; Tian, Na; Zhou, Zhi-You; Sun, Shi-Gang

    2018-03-09

    Cu is a unique catalyst for CO 2 electroreduction, since it can catalyze CO 2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO 2 is considered to facilitate the activity and selectivity of CO 2 reduction. Herein, a new strategy is presented for CO 2 reduction with improved C 2 H 4 selectivity on a Cu catalyst by using CO 2 capture materials as the support at ambient pressure. N-doped carbon (N x C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO 2 uptake capacity of N x C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/N x C catalysts exhibit a considerably higher C 2 H 4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C 2 H 4 faradaic efficiency and CO 2 uptake capacity of the supports for CuO. The local high CO 2 concentration near Cu catalysts, created by CO 2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C 2 H 4 . This study demonstrates that pairing Cu catalysts with CO 2 capture supports is a promising approach for designing highly effective CO 2 reduction electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Carbon dioxide capture and separation techniques for advanced power generation point sources

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  16. Capture and geologic storage of carbon dioxide (CO2)

    International Nuclear Information System (INIS)

    2004-11-01

    This dossier about carbon sequestration presents: 1 - the world fossil fuels demand and its environmental impact; 2 - the solutions to answer the climatic change threat: limitation of fossil fuels consumption, development of nuclear and renewable energies, capture and storage of CO 2 (environmental and industrial advantage, cost); 3 - the CO 2 capture: post-combustion smokes treatment, oxi-combustion techniques, pre-combustion techniques; 4 - CO 2 storage: in hydrocarbon deposits (Weyburn site in Canada), in deep saline aquifers (Sleipner and K12B (North Sea)), in non-exploitable coal seams (Recopol European project); 5 - international and national mobilization: IEA R and D program, USA (FutureGen zero-emission coal-fired power plant, Carbon Sequestration Leadership forum), European Union (AZEP, GRACE, GESTCO, CO2STORE, NASCENT, RECOPOL, Castor, ENCAP, CO2sink etc programs), French actions (CO 2 club, network of oil and gas technologies (RTPG)), environmental stake, competitiveness, research stake. (J.S.)

  17. Practical enhancement factor model based on GM for multiple parallel reactions: Piperazine (PZ) CO2 capture

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Fosbøl, Philip Loldrup

    2017-01-01

    Reactive absorption is a key process for gas separation and purification and it is the main technology for CO2 capture. Thus, reliable and simple mathematical models for mass transfer rate calculation are essential. Models which apply to parallel interacting and non-interacting reactions, for all......, desorption and pinch conditions.In this work, we apply the GM model to multiple parallel reactions. We deduce the model for piperazine (PZ) CO2 capture and we validate it against wetted-wall column measurements using 2, 5 and 8 molal PZ for temperatures between 40 °C and 100 °C and CO2 loadings between 0.......23 and 0.41 mol CO2/2 mol PZ. We show that overall second order kinetics describes well the reaction between CO2 and PZ accounting for the carbamate and bicarbamate reactions. Here we prove the GM model for piperazine and MEA but we expect that this practical approach is applicable for various amines...

  18. CO{sub 2} capture and utilization for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Vilhelmsen, P.J.; Well, W. van; Nielsen, Charles [DONG Energy Generation, Fredericia (Denmark); Harrar, W.; Reffstrup, J. [DONG Energy Exploration and Production, Hoersholm (Denmark)

    2007-05-15

    CO{sub 2} is an international theme and the cap-and-trade systems under implementation will lead to significant alterations in the energy market and in the energy system altogether. A possible technical step to reduce atmospheric emissions is CO{sub 2} capture and the utilisation of the CO{sub 2} for Enhanced Oil Recovery (EOR). CO{sub 2} capture is to some extent a know technology but has not yet been optimised and commercialised for power plant utilisation. Correspondingly CO{sub 2} utilisation for EOR is a known method in other areas of the world where the reservoir conditions are different from those of the North Sea. For several years Elsam and Energi E2, part of DONG Energy, have worked on reducing CO{sub 2} emissions through increased efficiency at the coal-fired power plants, and this work has now been extended to also include capture and utilisation of CO{sub 2}. DONG E and P within DONG Energy has started work on the utilisation of CO{sub 2} for EOR at the company's fields in the North Sea. Based on DONG Energy's interest in working through the whole value chain from power plants to EOR utilisation in the North Sea, this paper describes our experience with CO{sub 2} capture at the trial plant CASTOR at Esbjerg power plant and the actual work of investigating and preparing the pilot test of CO{sub 2} for EOR in the North Sea. The paper also illustrates the perspectives of retrofitting the existing fleet of super critical coal-fired power plants close to the North Sea with CO{sub 2} capture and the utilisation of the CO{sub 2} for EOR in the North Sea. DONG Energy's perspective is that CO{sub 2} for EOR can contribute to materialising the vision that the central power plant can be developed into an energy refinery. The development work presented will be carried out in cooperation with leading international players and Danish universities and knowledge centres Technical University of Denmark (DTU), The Danish Geotechnical Institute (GEO) and Geological

  19. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    Science.gov (United States)

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  20. Enhanced CO_2 capture on graphene via N, S dual-doping

    International Nuclear Information System (INIS)

    Li, Jieyuan; Hou, Meiling; Chen, Yanqiu; Cen, Wanglai; Chu, Yinghao; Yin, Shi

    2017-01-01

    Highlights: • Sluggish conjugated π bonds of graphene should be weakened to promote adsorption activity. • A charge delivery channel along S → N → CO_2 path should be prior responsible for the enhancement of CO_2 capture on graphene. • Applicative temperature range of graphene-based adsorbents for CO_2 capture is extend to about 100 °C via N, S dual-doping. - Abstract: N, S doped graphene-based materials have been recently recognized as promising adsorbents for CO_2 capture, but understanding of the adsorption mechanism at the atomic level is still limited. Herein, the local structures and promotion mechanism of CO_2 capture by N, S doped graphene were investigated by combining density functional theory and ab initio thermodynamics. A single vacancy defected graphene involving N, S dual-doping was found to be a superior adsorbent for CO_2 capture under mild conditions (<100 °C, 1 atm). The enhanced CO_2 adsorption performance should be ascribed to a charge delivery channel along the S → N → CO_2 path, leading to extra charge transfer from graphene to CO_2. It is worth mentioning that the extra charge transfer was stimulated by the unique sp"2 hybridization of pyridine N and further enhanced by S in N, S dual-doped graphene. A possible mechanism has been proposed to explain the high adsorption performance of CO_2 by N, S dual-doped graphene, which offers insights for the design of new graphene-based adsorbents.

  1. CO2 capture by Li-functionalized silicene

    KAUST Repository

    Zhu, Jiajie

    2016-05-18

    CO2 capture and storage technology is of key importance to reduce the greenhouse effect. By its large surface area and sp3 hybridization, Li-functionalized silicene is demonstrated to be a promising CO2 absorbent that is stable up to at least 500 K and has a very high storage capacity of 28.6 mol/kg (55.7 wt%). The adsorption energy of CO2 on Li-functionalized silicene is enhanced as compared to pristine silicene, to attain an almost ideal value that still facilitates easy release. In addition, the band gap is found to change sensitively with the CO2 coverage. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  2. Ca-Embedded C2N: an efficient adsorbent for CO2 capture.

    Science.gov (United States)

    Liu, Yuzhen; Meng, Zhaoshun; Guo, Xiaojian; Xu, Genjian; Rao, Dewei; Wang, Yuhui; Deng, Kaiming; Lu, Ruifeng

    2017-10-25

    Carbon dioxide as a greenhouse gas causes severe impacts on the environment, whereas it is also a necessary chemical feedstock that can be converted into carbon-based fuels via electrochemical reduction. To efficiently and reversibly capture CO 2 , it is important to find novel materials for a good balance between adsorption and desorption. In this study, we performed first-principles calculations and grand canonical Monte Carlo (GCMC) simulations, to systematically study metal-embedded carbon nitride (C 2 N) nanosheets for CO 2 capture. Our first-principles results indicated that Ca atoms can be uniformly trapped in the cavity center of C 2 N structure, while the transition metals (Sc, Ti, V, Cr, Mn, Fe, Co) are favorably embedded in the sites off the center of the cavity. The determined maximum number of CO 2 molecules with strong physisorption showed that Ca-embedded C 2 N monolayer is the most promising CO 2 adsorbent among all considered metal-embedded materials. Moreover, GCMC simulations revealed that at room temperature the gravimetric density for CO 2 adsorbed on Ca-embedded C 2 N reached 50 wt% at 30 bar and 23 wt% at 1 bar, higher than other layered materials, thus providing a satisfactory system for the CO 2 capture and utilization.

  3. Continuous CO2 capture and MSWI fly ash stabilization, utilizing novel dynamic equipment

    International Nuclear Information System (INIS)

    Jiang Jianguo; Du Xuejuan; Chen Maozhe; Zhang Chang

    2009-01-01

    Novel dynamic equipment with gas in and out continuously was developed to study the capture capacity of CO 2 . Municipal solid waste incineration (MSWI) fly ash has a high capture rate of CO 2 in CO 2 -rich gas. Fly ash can sequester pure CO 2 rapidly, and its capacity is 16.3 g CO 2 /100 g fly ash with no water added and 21.4 g CO 2 /100 g fly ash with 20% water added. For simulated incineration gas containing 12% CO 2 , the capture rate decreased and the capacity was 13.2 g CO 2 /100 g fly ash with no water added and 18.5 g CO 2 /100 g fly ash with 20% water added. After accelerated carbonation, the C and O contents increased, indicating CO 2 capture in the fly ash; CO 2 combines with Ca(OH) 2 to form CaCO 3 , which increased the CaCO 3 content from 12.5 to 54.3%. The leaching of Pb markedly decreased from 24.48 to 0.111 mg/L. - Novel dynamic equipment designed to capture CO 2 by fly ash is more suitable for engineering application.

  4. Improved Structural Design and CO2 Capture of Porous Hydroxy-Rich Polymeric Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Kidder, Michelle K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Earl, Lyndsey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-16

    Polymeric organic frameworks (POFs) are tunable and robust porous materials with potential applications for gas capture, catalysis, and separations technologies. A series of new porous POFs have been synthesized from the reaction of phloroglucinol or resorcinol derivatives with aryl aldehyde precursors. The monomers have various molecular shapes including linear, bent, trigonal, and tetrahedral geometries. Depending on the size and geometric matching of the monomers, the polymers are dominantly microporous with some mesoporous character or they are non-porous. In addition to standard spectroscopic and surface characterization, the materials were screened as adsorbents for carbon dioxide capture at low pressure (0-1 bar). The best performing material (POF 1D) has a CO2 capture capacity of 9.0 wt. % (2.04 mmol g-1) at 298 K and 1 bar which is comparable to other polymeric organic frameworks. Isosteric heats of adsorption for POF 1A, POF 2A, and POF 2B were found to be dependent on the weight percent of CO2 adsorbed: this suggests there are both chemisorptive and physisorptive components of CO2 capture by the POFs.

  5. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen

    Science.gov (United States)

    2014-01-01

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency. PMID:24578590

  6. Novel CO{sub 2} capture. Final CRADA Report.

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S. W.; Energy Systems

    2009-11-30

    The goal of this work was to use electrochemically driven pH control to develop a second generation, enzyme-based contained liquid membrane (CLM) permeator to extract CO{sub 2} from a variety of coal-based flue gas streams more efficiently than does the CLM current design, while achieving performance coincident with DOE targets of less than 45% Cost of electricity (COE) in 2007 and less than 20% COE in 2012. Central to this goal the CLM would be alkaline (>pH 8) at the feed gas side and acid (CO{sub 2} capture and release using Argonne's resin-wafer electrode ionization (RW-EDI) system integrated with Carbozyme's carbonic anhydrase (CA) enzyme. Argonne developed RW-EDI for pH controlled desalination of process streams (e.g. Patents 7,452,920 & 7,306,934). In the current work, Argonne captured CO{sub 2} as HCO{sub 3}{sup -} and released it as CO{sub 2}. The goal is to both capture CO{sub 2} from a simulated flue gas stream and release it within the DOE targets for increase in COE. Initial performance results indicate that the 2012 COE targets are achievable with the developed technology. The design is subject to patent-hold. This task was funded in an exploratory phase, so no process optimization was attempted. Argonne believes that with optimization this performance could be significantly improved.

  7. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    Science.gov (United States)

    Ochs, Thomas L [Albany, OR; Summers, Cathy A [Albany, OR; Gerdemann, Steve [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul [Independence, OR; Patrick, Brian R [Chicago, IL

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  8. A database for CO2 Separation Performances of MOFs based on Computational Materials Screening.

    Science.gov (United States)

    Altintas, Cigdem; Avci, Gokay; Daglar, Hilal; Nemati Vesali Azar, Ayda; Velioglu, Sadiye; Erucar, Ilknur; Keskin, Seda

    2018-05-03

    Metal organic frameworks (MOFs) have been considered as great candidates for CO2 capture. Considering the very large number of available MOFs, high-throughput computational screening plays a critical role in identifying the top performing materials for target applications in a time-effective manner. In this work, we used molecular simulations to screen the most recent and complete MOF database for identifying the most promising materials for CO2 separation from flue gas (CO2/N2) and landfill gas (CO2/CH4) under realistic operating conditions. We first validated our approach by comparing the results of our molecular simulations for the CO2 uptakes, CO2/N2 and CO2/CH4 selectivities of various types of MOFs with the available experimental data. We then computed binary CO2/N2 and CO2/CH4 mixture adsorption data for the entire MOF database and used these results to calculate several adsorbent selection metrics such as selectivity, working capacity, adsorbent performance score, regenerability, and separation potential. MOFs were ranked based on the combination of these metrics and the top performing MOF adsorbents that can achieve CO2/N2 and CO2/CH4 separations with high performance were identified. Molecular simulations for the adsorption of a ternary CO2/N2/CH4 mixture were performed for these top materials in order to provide a more realistic performance assessment of MOF adsorbents. Structure-performance analysis showed that MOFs with ΔQ>30 kJ/mol, 3.8 A≤PLD≤5 A, 5 A≤LCD≤7.5 A, 0.5≤ϕ≤0.75, SA≤1,000 m2/g, ρ>1 g/cm 3 are the best candidates for selective separation of CO2 from flue gas and landfill gas. This information will be very useful to design novel MOFs with the desired structural features that can lead to high CO2 separation potentials. Finally, an online, freely accessible database https://cosmoserc.ku.edu.tr was established, for the first time in the literature, which reports all computed adsorbent metrics of 3,816 MOFs for CO2/N2, CO2/CH4

  9. Uncertainties in relation to CO2 capture and sequestration. Preliminary results. Working Paper

    International Nuclear Information System (INIS)

    Gielen, D.

    2003-03-01

    This paper has been presented at an expert meeting on CO2 capture technology learning at the IEA headquarters, January 24th, 2003. The electricity sector is a key source of CO2 emissions and a strong increase of emissions is forecast in a business-as-usual scenario. A range of strategies have been proposed to reduce these emissions. This paper focuses on one of the promising strategies, CO2 capture and storage. The future role of CO2 capture in the electricity sector has been assessed, using the Energy Technology Perspectives model (ETP). Technology data have been collected and reviewed in cooperation with the IEA Greenhouse Gas R and D implementing agreement and other expert groups. CO2 capture and sequestration is based on relatively new technology. Therefore, its characteristics and its future role in the energy system is subject to uncertainties, as for any new technology. The analysis suggests that the choice of a reference electricity production technology and the characteristics of the CO2 storage option constitute the two main uncertainties, apart from a large number of other factors of lesser importance. Based on the choices made cost estimates can range from less than zero USD for coal fired power plants to more than 150 USD per ton of CO2 for gas fired power plants. The results suggest that learning effects are important, but they do not affect the CO2 capture costs significantly, other uncertainties dominate the cost estimates. The ETP model analysis, where choices are based on the ideal market hypothesis and rational price based decision making, suggest up to 18% of total global electricity production will be equipped with CO2 capture by 2040, in case of a penalty of 50 US$ per ton of CO2. However this high penetration is only achieved in case coal fired IGCC-SOFC power plants are developed successfully. Without such technology only a limited amount of CO2 is captured from gas fired power plants. Higher penalties may result in a higher share of CO2

  10. Capture of atmospheric CO{sub 2} into (BiO){sub 2}CO{sub 3}/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wendong [Department of Scientific Research Management, Chongqing Normal University, Chongqing, 401331 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 (China); Zhang, Wei, E-mail: andyzhangwei@163.com [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China)

    2015-12-15

    Graphical abstract: Self-assembly of (BiO){sub 2}CO{sub 3} nanoflakes on graphene and graphene oxide nanosheets were realized by a one-pot efficient capture of atmospheric CO{sub 2} at room temperature. - Highlights: • A facile one-step method was developed for graphene-based composites. • The synthesis was conducted by utilization of atmospheric CO{sub 2}. • (BiO){sub 2}CO{sub 3}-graphene and (BiO){sub 2}CO{sub 3}-graphene oxide composites were synthesized. • The nanocomposites exhibited enhanced photocatalytic activity. - Abstract: Self-assembly of (BiO){sub 2}CO{sub 3} nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO{sub 2} at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV–vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO){sub 2}CO{sub 3}, (BiO){sub 2}CO{sub 3}/Ge and (BiO){sub 2}CO{sub 3}/GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO{sub 2} in green synthetic strategy.

  11. Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture

    International Nuclear Information System (INIS)

    Chen, Shiyi; Xiang, Wenguo; Wang, Dong; Xue, Zhipeng

    2012-01-01

    Highlights: ► CaO sorption-enhanced process is incorporated with IGCC for CO 2 capture. ► IGCC–CCS is simplified using CaO sorption-enhanced process. ► The electricity efficiency is around 31–33% and CO 2 capture efficiency exceeds 95%. ► Parameters such as sorption pressure influence the system performance. -- Abstract: Integrated gasification combined cycle (IGCC) is a power generation technology to convert solid fuels into electricity. IGCC with CCS is regarded as a promising option to mitigate CO 2 emission. In this paper, the CaO sorption-enhanced process is incorporated downstream with coal gasification to produce a hydrogen-rich stream for electricity production and CO 2 separation. A WGS-absorber substitutes the high- and low-temperature water–gas shift reactors and desulfurization units in conventional IGCC–CCS to produce a hydrogen-rich stream, which is sent onto a gas turbine. CaO is used as the sorbent to enhance hydrogen production and for CO 2 capture. Regeneration of CaO is completed via calcination in a regenerator vessel. The IGCC with CaO sorption-enhanced process is modeled and simulated using Aspen Plus software. Two commercial available gasification technologies, Shell and Texaco, are integrated with the sorption-enhanced process. The results showed IGCC with CaO sorption-enhanced process has a satisfactory system performance. Even though the net electricity efficiency is not as high as expected, just around 30–33%, the system has a high CO 2 capture efficiency ∼97% and low pollutant emissions. Moreover, compared with conventional IGCC–CCS, the schematic diagram of the IGCC–CCS process is simplified. Parameters that affect the plant performance are analyzed in the sensitive analysis, including WGS-absorber temperature, H 2 O/CO ratio, pressure, etc. Some challenges to the system are also discussed.

  12. CO2 capture by ionic liquids - an answer to anthropogenic CO2 emissions?

    Science.gov (United States)

    Sanglard, Pauline; Vorlet, Olivier; Marti, Roger; Naef, Olivier; Vanoli, Ennio

    2013-01-01

    Ionic liquids (ILs) are efficient solvents for the selective removal of CO2 from flue gas. Conventional, offthe-shelf ILs are limited in use to physisorption, which restricts their absorption capacity. After adding a chemical functionality like amines or alcohols, absorption of CO2 occurs mainly by chemisorption. This greatly enhances CO2 absorption and makes ILs suitable for potential industrial applications. By carefully choosing the anion and the cation of the IL, equimolar absorption of CO2 is possible. This paper reviews the current state of the art of CO2 capture by ILs and presents the current research in this field performed at the ChemTech Institute of the Ecole d'Ingénieurs et d'Architectes de Fribourg.

  13. Heat recovery from sorbent-based CO.sub.2 capture

    Science.gov (United States)

    Jamal, Aqil; Gupta, Raghubir P

    2015-03-10

    The present invention provides a method of increasing the efficiency of exothermic CO.sub.2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO.sub.2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO.sub.2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.

  14. N-doped polypyrrole-based porous carbons for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Sevilla, Marta; Valle-Vigon, Patricia; Fuertes, Antonio B. [Instituto Nacional del Carbon (CSIC), P.O. Box 73, 33080 Oviedo (Spain)

    2011-07-22

    Highly porous N-doped carbons have been successfully prepared by using KOH as activating agent and polypyrrole (PPy) as carbon precursor. These materials were investigated as sorbents for CO{sub 2} capture. The activation process was carried out under severe (KOH/PPy = 4) or mild (KOH/PPy = 2) activation conditions at different temperatures in the 600-800 C range. Mildly activated carbons have two important characteristics: i) they contain a large number of nitrogen functional groups (up to 10.1 wt% N) identified as pyridonic-N with a small proportion of pyridinic-N groups, and ii) they exhibit, in relation to the carbons prepared with KOH/PPy = 4, narrower micropore sizes. The combination of both of these properties explains the large CO{sub 2} adsorption capacities of mildly activated carbon. In particular, a very high CO{sub 2} adsorption uptake of 6.2 mmol.g{sup -1} (0 C) was achieved for porous carbons prepared with KOH/PPy = 2 and 600 C (1700 m{sup 2}.g{sup -1}, pore size {approx} 1 nm and 10.1 wt% N. Furthermore, we observed that these porous carbons exhibit high CO{sub 2} adsorption rates, a good selectivity for CO{sub 2}-N{sub 2} separation and it can be easily regenerated. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Enhanced CO{sub 2} capture on graphene via N, S dual-doping

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jieyuan; Hou, Meiling [College of Architecture and Environment, Sichuan University (China); Chen, Yanqiu [Institute of New Energy and Low Carbon Technology, Sichuan University (China); Cen, Wanglai [Institute of New Energy and Low Carbon Technology, Sichuan University (China); National Engineering Research Center for Flue Gas Desulfurization (China); Chu, Yinghao, E-mail: chuyinghao@scu.edu.cn [College of Architecture and Environment, Sichuan University (China); National Engineering Research Center for Flue Gas Desulfurization (China); Yin, Shi, E-mail: yinshi_scu@foxmail.com [College of Architecture and Environment, Sichuan University (China)

    2017-03-31

    Highlights: • Sluggish conjugated π bonds of graphene should be weakened to promote adsorption activity. • A charge delivery channel along S → N → CO{sub 2} path should be prior responsible for the enhancement of CO{sub 2} capture on graphene. • Applicative temperature range of graphene-based adsorbents for CO{sub 2} capture is extend to about 100 °C via N, S dual-doping. - Abstract: N, S doped graphene-based materials have been recently recognized as promising adsorbents for CO{sub 2} capture, but understanding of the adsorption mechanism at the atomic level is still limited. Herein, the local structures and promotion mechanism of CO{sub 2} capture by N, S doped graphene were investigated by combining density functional theory and ab initio thermodynamics. A single vacancy defected graphene involving N, S dual-doping was found to be a superior adsorbent for CO{sub 2} capture under mild conditions (<100 °C, 1 atm). The enhanced CO{sub 2} adsorption performance should be ascribed to a charge delivery channel along the S → N → CO{sub 2} path, leading to extra charge transfer from graphene to CO{sub 2}. It is worth mentioning that the extra charge transfer was stimulated by the unique sp{sup 2} hybridization of pyridine N and further enhanced by S in N, S dual-doped graphene. A possible mechanism has been proposed to explain the high adsorption performance of CO{sub 2} by N, S dual-doped graphene, which offers insights for the design of new graphene-based adsorbents.

  16. Co-production of hydrogen and electricity with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, S.; Cotone, P.; Davison, J. [Foster Wheeler Italiana (Italy)

    2007-07-01

    This paper summarizes the results of a study carried out by Foster Wheeler for the IEA Greenhouse Gas R & D Programme that focused on different IGCC configurations with CO{sub 2} capture and H{sub 2} production. The three following main cases are compared: production of hydrogen, with minimum amount of electricity for a stand-alone plant production; co-production of the optimum hydrogen/electricity ratio; and co-production of hydrogen and electricity in a flexible plant that varies the hydrogen/electricity ratio. The paper reviews three available gasification technologies and presents the results of a more detailed evaluation of the selected one. The scope of this paper is to underline possible advantages of hydrogen and electricity co-production from coal, that is likely going to replace natural gas and petroleum as a source of hydrogen in the long term. Expected advantage of co-production will be the ability to vary the hydrogen/electricity ratio to meet market demands. A natural gas, diesel and gasoline demand market analysis has been performed for the Netherlands and the USA to determine the expected future hydrogen demand. Plant performance and costs are established and electric power production costs are evaluated. Electricity and hydrogen co-production plants are compared to plants that produce electricity only, with and without CO{sub 2} capture, to evaluate the costs of CO{sub 2} avoidance. 4 refs., 8 figs., 4 tabs.

  17. Integrative CO2 Capture and Hydrogenation to Methanol with Reusable Catalyst and Amine: Toward a Carbon Neutral Methanol Economy.

    Science.gov (United States)

    Kar, Sayan; Sen, Raktim; Goeppert, Alain; Prakash, G K Surya

    2018-02-07

    Herein we report an efficient and recyclable system for tandem CO 2 capture and hydrogenation to methanol. After capture in an aqueous amine solution, CO 2 is hydrogenated in high yield to CH 3 OH (>90%) in a biphasic 2-MTHF/water system, which also allows for easy separation and recycling of the amine and catalyst for multiple reaction cycles. Between cycles, the produced methanol can be conveniently removed in vacuo. Employing this strategy, catalyst Ru-MACHO-BH and polyamine PEHA were recycled three times with 87% of the methanol producibility of the first cycle retained, along with 95% of catalyst activity after four cycles. CO 2 from dilute sources such as air can also be converted to CH 3 OH using this route. We postulate that the CO 2 capture and hydrogenation to methanol system presented here could be an important step toward the implementation of the carbon neutral methanol economy concept.

  18. A Highly Stable Microporous Covalent Imine Network Adsorbent for Natural Gas Upgrading and Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar; Wang, Xinbo; Ostwal, Mayur; Lai, Zhiping

    2016-01-01

    The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff

  19. Supported modified hydrotalcites as sorbent for CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Meis, N.

    2010-02-15

    The average concentration of CO2 in the atmosphere has been increasing since the start of the industrial revolution in the 18th century from 280 ppm to 385 ppm nowadays, and continues to increase because of the enormous human usage of fossil fuels (oil, gas, coal). This can strongly affect the climate, causing the Earth's surface to warm up, the so called 'amplified greenhouse effect'. To alleviate these environmental concerns regarding the current CO2 emissions into the atmosphere, Carbon Capture and Storage (CCS) is investigated as one of the possible routes. Due to the acidic character of CO2, basic oxides are expected to be suitable sorbents. Hydrotalcite, a natural clay, is specifically suitable for pre-combustion capture (250- 400{sup o}C), due to its acceptable sorption capacity and facile regeneration. The influence of lateral platelet size ({+-}40 nm - 2 {mu}m), the use of a support (carbon nanofibers, CNF) and addition of a promoter (alkali carbonate: K{sub 2}CO{sub 3}/Na{sub 2}CO{sub 3}) on the CO2 capture properties of HT was investigated. There was no significant difference in the CO2 sorption capacities at 523K for all unsupported HTs, regardless the platelet size of the HT precursor ({+-}0.1 mmol.g{sup -1}). The use of activated, promoted (alkali carbonate) hydrotalcites showed a much higher capacity ({+-}0.3 mmol.g{sup -1}) at 523K. In addition, the capacities of the activated supported HT at 523K were significantly increased compared to the activated unsupported HT (1.3-2.5 mmol.g{sup -1} HT). The alkali-loaded supported HTs showed capacities slightly higher than the capacity of supported unpromoted HT. The increase in capacity for the promoted and/or supported HTs points to a higher concentration of defects (low-coordination of oxygen sites) on the surface of the activated (alkali-)loaded HTs compared to the unloaded and unsupported HT. The higher concentration of adsorption for the promoted (supported) HTs, might be caused by the

  20. Numerical prediction of CO2 capture process by a single droplet in alkaline spray

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Tsai, Ming-Hang; Hung, Chen-I

    2013-01-01

    Highlights: • CO 2 capture by a single droplet is studied numerically. • Three different initial pH values of 10, 11, and 12 in the droplet are considered. • The initial pH value has a significant influence on the capture process. • The carbon capture rate is raised as the initial pH value rises. • The droplet with the initial pH value of 12 is feasible to perform CO 2 capture. - Abstract: Carbon dioxide captured by single droplets in sprays plays a fundamental role in reducing greenhouse gas emissions. This study focuses on CO 2 capture processes in single droplets in alkaline sprays using a numerical method. Three different initial pH values of 10, 11, and 12 in the droplet are considered. The capture behavior in the absence of chemical dissociation is also investigated for comparison. The predictions suggest that the chemical dissociation in the droplet substantially elongates the CO 2 capture process and the mass diffusion is the controlling mechanism of CO 2 capture process. For the chemical absorption, the final CO 2 capture amount by the droplet is mainly determined by HCO 3 - which is significantly influenced by the initial pH value. An increase in initial pH value raises the carbon capture amount by the droplet. The mean concentration of CO 3 2- is highly related to the variation of mean pH value, but its concentration is by far lower than those of H 2 O⋅CO 2 and HCO 3 - . Corresponding to the initial pH values of 10, 11, and 12, the times required for turning the basic droplet to the acidic one are in the orders of 10, 100, and 1000 ms. On account of larger carbon capture amount and shorter absorption period at a higher initial pH value, the carbon capture rate is lifted as the initial pH value rises, and CO 2 capture by droplets at the initial pH value of 12 is better than those at 10 and 11

  1. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Carl [URS Group, Inc., Austin, TX (United States); Steen, William [URS Group, Inc., Austin, TX (United States); Triana, Eugenio [URS Group, Inc., Austin, TX (United States); Machalek, Thomas [URS Group, Inc., Austin, TX (United States); Davila, Jenny [URS Group, Inc., Austin, TX (United States); Schmit, Claire [URS Group, Inc., Austin, TX (United States); Wang, Andrew [URS Group, Inc., Austin, TX (United States); Temple, Brian [URS Group, Inc., Austin, TX (United States); Lu, Yongqi [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Lu, Hong [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Zhang, Luzheng [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ruhter, David [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Rostam-Abadi, Massoud [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Sayyah, Maryam [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ito, Brandon [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Suslick, Kenneth [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States)

    2013-09-30

    This document summarizes the work performed on Cooperative Agreement DE-FE0000465, “Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture,” during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO{sub 2} from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO{sub 2} capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO{sub 2}) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO{sub 2} from a gas stream containing CO{sub 2}, carbon monoxide (CO), and hydrogen (H{sub 2}) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO{sub 2}, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO{sub 2} capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent

  2. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; A. Frank Seibert

    2002-10-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. A simple thermodynamic model has been developed to represent the CO{sub 2} vapor pressure and speciation of the new solvent. A rate model has been formulated to predict the CO{sub 2} flux with these solutions under absorber conditions. A process and instrumentation diagram and process flow diagram have been prepared for modifications of the existing pilot plant system.

  3. An Overview of CO{sub 2} capture technologies. What are the challenges ahead?

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Stanley (IEA Greenhouse Gas R& amp; D Programme)

    2008-07-15

    In this paper it is described what the program of R&D of the International Energy Agency consists of, for the reduction of greenhouse effect gasses. Some of the factors that have impelled the policy of the development of technologies for the CO{sub 2} capture are synthesized. Also an overview is given of the 3 main technologies for the capture and storage of CO{sub 2} that are the capture post-combustion, the capture oxy-combustion and the capture pre-combustion; finally several aspects related to the capture and sequestration of CO{sub 2} are mentioned. [Spanish] En esta ponencia se describe en que consiste el programa de I&D para la reduccion de gases de efecto invernadero de la Agencia Internacional de Energia. Se sintetizan algunos de los factores que han impulsado a la politica del desarrollo de tecnologias para la captura de CO{sub 2}. Tambien se da un panorama de las 3 principales tecnologias para la captura y almacenamiento de CO{sub 2} que son la captura post-combustion, la captura oxi-combustion y la captura pre-combustion; finalmente se mencionan varios aspectos relacionados con la captura y secuestro de CO{sub 2}.

  4. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J.Tim Cullinane; Marcus Hilliard; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-07-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. CO{sub 2} mass transfer rates are second order in piperazine concentration and increase with ionic strength. Modeling of stripper performance suggests that 5 m K{sup +}/2.5 m PZ will require 25 to 46% less heat than 7 m MEA. The first pilot plant campaign was completed on June 24. The CO{sub 2} penetration through the absorber with 20 feet of Flexipac{trademark} 1Y varied from 0.6 to 16% as the inlet CO{sub 2} varied from 3 to 12% CO{sub 2} and the gas rate varied from 0.5 to 3 kg/m{sup 2}-s.

  5. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Babatunde Oyenekan; Terraun Jones

    2003-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been further developed with a standalone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Gas chromatography has been used to measure the oxidative degradation of piperazine. The heat exchangers for the pilot plant have been received. The modifications are on schedule for start-up in November 2003.

  6. A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture

    OpenAIRE

    Barba, F. C.; Sanchez, Guillermo Martinez-Denegri; Segui, Blanca Soler; Darabkhani, Hamidreza Gohari; Anthony, Edward J.

    2016-01-01

    In recent years there has been growing concern about greenhouse gas emissions (particularly CO2 emissions) and global warming. Oxyfuel combustion is one of the key technologies for tackling CO2 emissions in the power industry and reducing their contribution to global warming. The technology involves burning fuel with high-purity oxygen to generate mainly CO2 and steam, enabling easy CO2 separation from the flue gases by steam condensation. In fact, 100% CO2 capture and near-zero NOx emissions...

  7. Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station.

    Science.gov (United States)

    Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh

    2015-08-18

    Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%.

  8. Research and development of methods and technologies for CO2 capture in fossil fuel power plants and storage in geological formations in the Czech Republic, stage E2: Methods of and technologies for CO2 capture from flue gas and a draft conceptual design of 2 selected variants of a CO2 capture system for a Czech coal fired power plant unit. Final report for Stage 2. Revision 0

    International Nuclear Information System (INIS)

    Ubra, Olga

    2010-12-01

    The following topics are summarised: Aim and scope of Stage 2. List of research reports developed within Stage 2. Stage 2.1: Methods of and technologies for post-combustion CO 2 capture from the flue gas. Status of research and development worldwide. Stage 2.2: Oxyfuel method and technology. Status of research and development worldwide. Stage 2.3: Selection of a chemical absorption based method for post-combustion CO 2 separation; and Stage 2.4: Conceptual proposals for a technological solution for the selected chemical absorption based method and for application of the oxyfuel method. (P.A.)

  9. Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2015-01-01

    Estimating potential of CO 2 emission reduction of non-capture CO 2 utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue gas. For the estimating the CO 2 emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO 2 of 100 tons per day was performed, Also for the estimation of the indirect CO 2 reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO 2 emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO 3 (7.4 GJ/tNaHCO 3 ). While for the NCCU technology, the direct CO 2 reduction through the CO 2 carbonation was estimated as 36,500 ton per year and the indirect CO 2 reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue was energy efficient and could be one of the promising technology for the low CO 2 emission technology.

  10. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than that at 40 °C, and the temperature dependence is significantly weaker for higher surface area carbon cathodes. Ex-situ FTIR and XRD analyses convincingly show that lithium carbonate (Li2CO3) is the main component of the discharge product. The feasibility of similar primary metal-CO2 batteries based on earth abundant metal anodes, such as Al and Mg, is demonstrated. The metal-CO2 battery platform provides a novel approach for simultaneous capturing of CO2 emissions and producing electrical energy. © 2013 The Royal Society of Chemistry.

  11. An intelligent system for monitoring and diagnosis of the CO{sub 2} capture process

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.; Chan, C.W.; Tontiwachwuthikul, P. [University of Regina, Regina, SK (Canada). Faculty of Engineering

    2011-07-15

    Amine-based carbon dioxide capture has been widely considered as a feasible ideal technology for reducing large-scale CO{sub 2} emissions and mitigating global warming. The operation of amine-based CO{sub 2} capture is a complicated task, which involves monitoring over 100 process parameters and careful manipulation of numerous valves and pumps. The current research in the field of CO{sub 2} capture has emphasized the need for improving CO{sub 2} capture efficiency and enhancing plant performance. In the present study, artificial intelligence techniques were applied for developing a knowledge-based expert system that aims at effectively monitoring and controlling the CO{sub 2} capture process and thereby enhancing CO{sub 2} capture efficiency. In developing the system, the inferential modeling technique (IMT) was applied to analyze the domain knowledge and problem-solving techniques, and a knowledge base was developed on DeltaV Simulate. The expert system helps to enhance CO{sub 2} capture system performance and efficiency by reducing the time required for diagnosis and problem solving if abnormal conditions occur. The expert system can be used as a decision-support tool that helps inexperienced operators control the plant: it can be used also for training novice operators.

  12. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Terraun Jones

    2003-04-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been developed with a stand-alone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Parameters have been developed for use of the electrolyte NRTL model in AspenPlus. Analytical methods have been developed using gas chromatography and ion chromatography. The heat exchangers for the pilot plant have been ordered.

  13. Enhanced Selectivity of the Separation of CO2 from N2 during Crystallization of Semi-Clathrates from Quaternary Ammonium Solutions

    International Nuclear Information System (INIS)

    Herri, J.M.; Bouchemoua, A.; Kwaterski, M.; Brantuas, P.; Galfre, A.; Bouillot, B.; Douzet, J.; Ouabbas, Y.; Cameirao, A.

    2014-01-01

    CO 2 mitigation is crucial environmental problem and a societal challenge for this century. CO 2 capture and sequestration is a route to solve a part of the problem, especially for the industries in which the gases to be treated are well localized. CO 2 capture by using hydrate is a process in which the cost of the separation is due to compression of gases to reach the gas hydrate formation conditions. Under pressure, the water and gas forms a solid that encapsulates preferentially CO 2 . The gas hydrate formation requires high pressures and low temperatures, which explains the use of thermodynamic promoters to decrease the operative pressure. Quaternary ammonium salts represent an interesting family of components because of their thermodynamic effect, but also because they can generate crystals that are easily handled. In this work, we have made experiments concerning the equilibrium of (CO 2 , N 2 ) in presence of Tetra-n-Butyl Ammonium Bromide (TBAB) which form a semi-clathrate hydrate. We propose equilibrium data (pressure, temperature) in presence of TBAB at different concentrations and we compare them to the literature. We have also measured the composition of the hydrate phase in equilibrium with the gas phase at different CO 2 concentrations. We observe that the selectivity of the separation is dramatically increased in comparison to the selectivity of the pure water gas clathrate hydrate. We observe also a benefice on the operative pressure which can be dropped down to the atmospheric pressure. (authors)

  14. Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Damen, K.; Gnutek, R.; Kaptein, J.; Nannan, N.R.; Oyarzun, B.; Trapp, C.; Colonna, P.; Van Dijk, E.; Gross, J.; Bardow, A.

    2011-01-01

    N.V. Nuon (part of the Vattenfall Group) operates an IGCC in Buggenum and is developing a multi-fuel IGCC with CO2 capture and storage (Nuon Magnum) in Eemshaven, the Netherlands. In order to prepare for large-scale application of CO2 capture and storage, a CO2 capture pilot plant is constructed at

  15. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amorvadee Veawab

    2006-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.

  16. CO{sub 2} Capture by Sub-ambient Membrane Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, S.; Hasse, D.; Sanders, E.; Chaubey, T.

    2012-11-30

    The main objective of the project was to develop a CO{sub 2} capture process based on sub-ambient temperature operation of a hollow fiber membrane. The program aims to reach the eventual DOE program goal of > 90% CO{sub 2} capture from existing PC fired power plants with < 35% increase in the cost of electricity. The project involves closed-loop testing of commercial fiber bundles under simulated process conditions to test the mechanical integrity and operability of membrane module structural component under sub ambient temperature. A commercial MEDAL 12” bundle exhibited excellent mechanical integrity for 2 months. However, selectivity was ~25% lower than expected at sub-ambient conditions. This could be attributed to a small feed to permeate leak or bundle non-ideality. To investigate further, and due to compressor flow limitations, the 12” bundle was replaced with a 6” bundle to conduct tests with lower permeate/feed ratios, as originally planned. The commercial 6” bundle was used for both parametric testing as well as long-term stability testing at sub-ambient conditions. Parametric studies were carried out both near the start and end of the long-term test. The parametric studies characterized membrane performance over a broad range of feed conditions: temperature (-25°C to -45°C), pressure (160 psig to 200 psig), and CO{sub 2} feed concentration (18% to 12%). Performance of the membrane bundle was markedly better at lower temperature (-45ºC), higher pressure (200 psig) and higher CO{sub 2} feed concentration (18%). The long-term test was conducted at these experimentally determined “optimum” feed conditions. Membrane performance was stable over 8 months at sub-ambient temperature operation. The experimentally measured high performance of the membrane bundle at sub-ambient operating conditions provides justification for interest in sub-ambient membrane processing of flue gas. In a parallel activity, the impact of contaminants (100 ppm SOx and NOx

  17. Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration

    International Nuclear Information System (INIS)

    Lee, Yohan; Lee, Dongyoung; Lee, Jong-Won; Seo, Yongwon

    2016-01-01

    Highlights: • We examine sH hydrates with CO 2 + N 2 + neohexane for CO 2 capture and sequestration. • The structural transition occurs in the CO 2 (40%) + N 2 (60%) + neohexane system. • CO 2 molecules are enclathrated into sH hydrates in the N 2 -rich systems. • CO 2 selectivity in sH hydrates is slightly lower than that in sI hydrates. • ΔH d values provide information on the structural transition of sH to sI hydrates. - Abstract: In this study, the thermodynamic behaviors, cage-specific guest distributions, structural transition, and dissociation enthalpies of sH hydrates with CO 2 + N 2 gas mixtures were investigated for their potential applications to hydrate-based CO 2 capture and sequestration. The stability conditions of the CO 2 + N 2 + water systems and the CO 2 + N 2 + neohexane (2,2-dimethylbutane, NH) + water systems indicated that the gas mixtures in the range of flue gas compositions could form sH hydrates, thereby mitigating the pressure and temperature required for gas hydrate formation. Structure identification using powder X-ray diffraction (PXRD) revealed the coexistence of sI and sH hydrates in the CO 2 (40%) + N 2 (60%) + NH system and the hydrate structure transformed from sH into sI as the CO 2 concentration increased. In addition, the Raman analysis clearly demonstrated that CO 2 molecules were enclathrated into the cages of sH hydrates in the N 2 -rich systems. It was found from direct CO 2 composition measurements that CO 2 selectivity in the sH hydrate phase was slightly lower than that in the corresponding sI hydrate phase. Dissociation enthalpy (ΔH d ) measurements using a high-pressure micro-differential scanning calorimeter (HP μ-DSC) indicated that the ΔH d values could also provide valuable information on the structural transition of sH to sI hydrates with respect to the CO 2 concentration in the feed gas. This study provides a better understanding of the thermodynamic and physicochemical background for CO 2

  18. Balsam-Pear-Skin-Like Porous Polyacrylonitrile Nanofibrous Membranes Grafted with Polyethyleneimine for Postcombustion CO2 Capture.

    Science.gov (United States)

    Zhang, Yufei; Guan, Jiming; Wang, Xianfeng; Yu, Jianyong; Ding, Bin

    2017-11-22

    Amine-containing sorbents have been extensively studied for postcombustion carbon dioxide (CO 2 ) capture because of their ability to chemisorb CO 2 from the flue gas. However, most sorbents are in the form of powders currently, which is not the ideal configuration for the flue gas separation because of the fragile nature and poor mechanical properties, resulting in blocking of the flow pipes and difficult recycling. Herein, we present a novel approach for the facile fabrication of flexible, robust, and polyethyleneimine-grafted (PEI-grafted) hydrolyzed porous PAN nanofibrous membranes (HPPAN-PEI NFMs) through the combination of electrospinning, pore-forming process, hydrolysis reaction, and the subsequent grafting technique. Excitingly, we find that all the resultant porous PAN (PPAN) fibers exhibit a balsam-pear-skin-like porous structure due to the selective removal of poly(vinylpyrrolidone) (PVP) from PAN/PVP fibers by water extraction. Significantly, the HPPAN-PEI NFMs retain their mesoporosity, as well as exhibit good thermal stability and prominent tensile strength (11.1 MPa) after grafting, guaranteeing their application in CO 2 trapping from the flue gas. When exposed to CO 2 at 40 °C, the HPPAN-PEI NFMs show an enhanced CO 2 adsorption capacity of 1.23 mmol g -1 (based on the overall quantity of the sample) or 6.15 mmol g -1 (based on the quantity of grafted PEI). Moreover, the developed HPPAN-PEI NFMs display significantly selective capture for CO 2 over N 2 and excellent recyclability. The CO 2 capacity retains 92% of the initial value after 20 adsorption-desorption cycle tests, indicating that the resultant HPPAN-PEI NFMs have good long-term stability. This work paves the way for fabricating NFM-based solid adsorption materials endowed with a porous structure applied to efficient postcombustion CO 2 capture.

  19. Effect of SO 2 on CO 2 Capture Using Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew

    2013-08-15

    Liquid-like nanoparticle organic hybrid materials (NOHMs), consisting of silica nanoparticles with a grafted polymeric canopy, were synthesized. Previous work on NOHMs has revealed that CO2 capture behaviors in these hybrid materials can be tuned by modifying the structure of the polymeric canopy. Because SO2, which is another acidic gas found in flue gas, would also interact with NOHMs, this study was designed to investigate its effect on CO2 capture in NOHMs. In particular, CO2 capture capacities as well as swelling and CO2 packing behaviors of NOHMs were analyzed using thermogravimetric analyses and Raman and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopies before and after exposure of NOHMs to SO2. It was found that the SO2 absorption in NOHMs was only prominent at high SO2 levels (i.e., 3010 ppm; Ptot = 0.4 MPa) far exceeding the typical SO2 concentration in flue gas. As expected, the competitive absorption between SO2 and CO2 for the same absorption sites (i.e., ether and amine groups) resulted in a decreased CO2 capture capacity of NOHMs. The swelling of NOHMs was not notably affected by the presence of SO 2 within the given concentration range (Ptot = 0-0.68 MPa). On the other hand, SO2, owing to its Lewis acidic nature, interacted with the ether groups of the polymeric canopy and, thus, changed the CO2 packing behaviors in NOHMs. © 2013 American Chemical Society.

  20. Effect of SO 2 on CO 2 Capture Using Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew; Petit, Camille; Park, Ah-Hyung Alissa

    2013-01-01

    Liquid-like nanoparticle organic hybrid materials (NOHMs), consisting of silica nanoparticles with a grafted polymeric canopy, were synthesized. Previous work on NOHMs has revealed that CO2 capture behaviors in these hybrid materials can be tuned by modifying the structure of the polymeric canopy. Because SO2, which is another acidic gas found in flue gas, would also interact with NOHMs, this study was designed to investigate its effect on CO2 capture in NOHMs. In particular, CO2 capture capacities as well as swelling and CO2 packing behaviors of NOHMs were analyzed using thermogravimetric analyses and Raman and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopies before and after exposure of NOHMs to SO2. It was found that the SO2 absorption in NOHMs was only prominent at high SO2 levels (i.e., 3010 ppm; Ptot = 0.4 MPa) far exceeding the typical SO2 concentration in flue gas. As expected, the competitive absorption between SO2 and CO2 for the same absorption sites (i.e., ether and amine groups) resulted in a decreased CO2 capture capacity of NOHMs. The swelling of NOHMs was not notably affected by the presence of SO 2 within the given concentration range (Ptot = 0-0.68 MPa). On the other hand, SO2, owing to its Lewis acidic nature, interacted with the ether groups of the polymeric canopy and, thus, changed the CO2 packing behaviors in NOHMs. © 2013 American Chemical Society.

  1. Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system

    International Nuclear Information System (INIS)

    Li, H.; Yan, J.; Yan, J.; Anheden, M.

    2009-01-01

    Based on the requirements of CO 2 transportation and storage, non-condensable gases, such as O 2 , N 2 and Ar should be removed from the CO 2 -stream captured from an oxy-fuel combustion process. For a purification process, impurities have great impacts on the design, operation and optimization through their impacts on the thermodynamic properties of CO 2 -streams. Study results show that the increments of impurities will make the energy consumption of purification increase; and make CO 2 purity of separation product and CO 2 recovery rate decrease. In addition, under the same operating conditions, energy consumptions have different sensitivities to the variation of the impurity mole fraction of feed fluids. The isothermal compression work is more sensitive to the variation of SO 2 ; while the isentropic compression work is more sensitive to the variation of Ar. In the flash system, the energy consumption of condensation in is more sensitive to the variation of Ar; but in the distillation system, the energy consumption of condensation is more sensitive to the variation of SO 2 , and CO 2 purity of separation is more sensitive to the variation of SO 2 . (author)

  2. Demonstration of CO2 capture for flue gas of a glass factory

    NARCIS (Netherlands)

    Linders, M.J.G.; Huizinga, A.; Goetheer, E.L.V.

    2012-01-01

    In the project "Connecting CO2 the next step - Carbon Capture and Use", two pilot demonstrations with a post-combustion CO2 capture setup of TNO were carried out at Ardagh Glass (Moerdijk) and Zeeland Refinery (Vlissingen). This article describes the demonstration at Ardagh, but the demonstration at

  3. Chemical looping combustion. Fuel conversion with inherent CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Brandvoll, Oeyvind

    2005-07-01

    Chemical looping combustion (CLC) is a new concept for fuel energy conversion with CO2 capture. In CLC, fuel combustion is split into separate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and fuel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a variant of oxy-fuel combustion. In principle, pure CO2 can be obtained from the reduction exhaust by condensation of the produced water vapour. The thermodynamic potential and feasibility of CLC has been studied by means of process simulations and experimental studies of oxygen carriers. Process simulations have focused on parameter sensitivity studies of CLC implemented in 3 power cycles; CLC-Combined Cycle, CLC-Humid Air Turbine and CLC-Integrated Steam Generation. Simulations indicate that overall fuel conversion ratio, oxidation temperature and operating pressure are among the most important process parameters in CLC. A promising thermodynamic potential of CLC has been found, with efficiencies comparable to, - or better than existing technologies for CO2 capture. The proposed oxygen carrier nickel oxide on nickel spinel (NiONiAl) has been studied in reduction with hydrogen, methane and methane/steam as well as oxidation with dry air. It has been found that at atmospheric pressure and temperatures above 600 deg C, solid reduction with dry methane occurs with overall fuel conversion of 92%. Steam methane reforming is observed along with methane cracking as side reactions, yielding an overall selectivity of 90% with regard to solid reduction. If steam is added to the reactant fuel, coking can be avoided. A methodology for long-term investigation of solid chemical activity in a batch reactor is proposed. The method is based on time variables for oxidation. The results for Ni

  4. Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation

    Science.gov (United States)

    Ahmad, A. L.; Salaudeen, Y. O.; Jawad, Z. A.

    2017-06-01

    Large emission of carbon dioxide (CO2) to the environment requires mitigation to avoid unbearable consequences on global climate change. The CO2 emissions generated by fossil fuel combustion within the power and industrial sectors need to be quickly curbed. The gas emission can be abated using membrane technology; this is one of the most promising approaches for selective separation of CO2/N2. The purpose of the study is to synthesis an asymmetric polyetherimide (PEI) membrane and to establish its morphological characteristics for CO2/N2 separation. The PEI flat-sheet asymmetric membrane was fabricated using phase inversion with N-methyl-2-pyrrolidone (NMP) as solvent and water-isopropanol as a coagulant. Particularly, polymer concentration of 20, 25, and 30 wt. % were studied. In addition, the structure and morphology of the produced membrane were observed using scanning electron microscopy (SEM). Importantly, results showed that the membrane with high PEI concentration of 30 wt. % yield an optimal selectivity of 10.7 for CO2/Nitrogen (N2) separation at 1 bar and 25 ºC for pure gas, aided by the membrane surface morphology. The dense skin present was as a result of non-solvent (water) while isopropanol generates a porous sponge structure. This appreciable separation performance makes the PEI asymmetric membrane an attractive alternative for CO2/N2 separation.

  5. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Wei-Heng Shih; Qiang Zhao; Tejas Patil

    2002-01-01

    The authors propose to use microporous silica as a suitable candidate for CO(sub 2)/N(sub 2) separation because the pore size is less than 10(angstrom). If a CO(sub 2)adsorbent is added to the microporous silica, the adsorption of CO(sub 2) can block the passage of N(sub 2) and an effective CO(sub 2)/N(sub 2) separator will be found. It was first demonstrated that microporous silica could be synthesized. The microporous silica was then impregnated with Ba(OH)(sub 2). The results of GC study showed that at temperatures between 50 C and 90 C, Ba-doped microporous silica can separate CO(sub 2) from N(sub 2) and the idea of a microporous membrane for CO(sub 2)/N(sub 2) separation is feasible. The new result gives strong support to the proposed research that was outlined in the Phase II proposal. They hope to be able to continue the research and build an effective CO(sub 2)/N(sub 2) membrane separator in the Phase II of this project

  6. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; A. Frank Seibert; J. Tim Cullinane; Terraun Jones

    2003-01-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. The rigorous Electrolyte Non-Random Two-Liquid (electrolyte-NRTL) model has been regressed to represent CO{sub 2} solubility in potassium carbonate/bicarbonate solutions. An analytical method for piperazine has been developed using a gas chromatograph. Funding has been obtained and equipment has been donated to provide for modifications of the existing pilot plant system with stainless steel materials.

  7. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    Science.gov (United States)

    Silva Mojica, Ernesto

    Porous materials comprising polymeric and inorganic segments have attracted interest from the scientific community due to their unique properties and functionalities. The physical and chemical characteristics of these materials can be effectively exploited for adsorption applications. This dissertation covers the experimental techniques for fabrication of poly(vinyl alcohol) (PVA) and silica (SiO2) porous supports, and their functionalization with polyamines for developing adsorbents with potential applications in separation of CO2 and catalysis of organic reactions. The supports were synthesized by processes involving (i) covalent cross-linking of PVA, (ii) hydrolysis and poly-condensation of silica precursors (i,e,. sol-gel synthesis), and formation of porous structures via (iii) direct templating and (iv) phase inversion techniques. Their physical structure was controlled by the proper combination of the preparation procedures, which resulted in micro-structured porous materials in the form of micro-particles, membranes, and pellets. Their adsorption characteristics were tailored by functionalization with polyethyleneimine (PEI), and their physicochemical properties were characterized by vibrational spectroscopy (FTIR, UV-vis), microscopy (SEM), calorimetry (TGA, DSC), and adsorption techniques (BET, step-switch adsorption). Spectroscopic investigations of the interfacial cross-linking reactions of PEI and PVA with glutaraldehyde (GA) revealed that PEI catalyzes the cross-linking reactions of PVA in absence of external acid catalysts. In-situ IR spectroscopy coupled with a focal plane array (FPA) image detector allowed the characterization of a gradient interface on a PEI/PVA composite membrane and the investigation of the cross-linking reactions as a function of time and position. The results served as a basis to postulate possible intermediates, and propose the reaction mechanisms. The formulation of amine-functionalized CO2 capture sorbents was based on the

  8. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2005-04-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Stripper modeling suggests the energy requirement with a simple stripper will be about the same for 5 m K{sup +}/2.5 m PZ and 7 m MEA. Modeling with a generic solvent shows that the optimum heat of CO{sub 2} desorption to minimize heat duty lies between 15 and 25 kcal/gmol. On-line pH and density measurements are effective indicators of loading and total alkalinity for the K+/PZ solvent. The baseline pilot plant campaign with 30% MEA has been started.

  9. Novel Inorganic/Polymer Composite Membranes for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.S. Winston [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Dutta, Prabir K. [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Schmit, Steve J. [Gradient Technology, Elk River, MN (United States)

    2016-10-01

    The objective of this project is to develop a cost-effective design and manufacturing process for new membrane modules that capture CO2 from flue gas in coal-fired power plants. The membrane consisted of a thin selective layer including inorganic (zeolite) embedded in a polymer structure so that it can be made in a continuous manufacturing process. The membrane was incorporated in spiral-wound modules for the field test with actual flue gas at the National Carbon Capture Center (NCCC) in Wilsonville, AL and bench scale tests with simulated flue gas at the Ohio State University (OSU). Using the modules for post-combustion CO2 capture is expected to achieve the DOE target of $40/tonne CO2 captured (in 2007 dollar) for 2025. Membranes with the amine-containing polymer cover layer on zeolite-Y (ZY) nanoparticles deposited on the polyethersulfone (PES) substrate were successfully synthesized. The membranes showed a high CO2 permeance of about 1100 GPU (gas permeation unit, 1 GPU = 10-6 cm3 (STP)/(cm2 • s • cm Hg), 3000 GPU = 10-6 mol/(m2 • s • Pa)) with a high CO2/N2 selectivity of > 200 at the typical flue gas conditions at 57°C (about 17% water vapor in feed gas) and > 1400 GPU CO2 permeance with > 500 CO2/N2 selectivity at 102°C (~ 80% water vapor). The synthesis of ZY nanoparticles was successfully scaled up, and the pilot-scale membranes were also successfully fabricated using the continuous membrane machine at OSU. The transport performance of the pilot-scale membranes agreed reasonably well with the lab-scale membranes. The results from both the lab-scale and scale-up membranes were used for the techno-economic analysis. The scale-up membranes were fabricated into prototype spiral-wound membrane modules for continuous testing with simulated or real flue gas. For real flue gas testing, we worked with NCCC, in

  10. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  11. A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification.

    Science.gov (United States)

    Nandi, Shyamapada; De Luna, Phil; Daff, Thomas D; Rother, Jens; Liu, Ming; Buchanan, William; Hawari, Ayman I; Woo, Tom K; Vaidhyanathan, Ramanathan

    2015-12-01

    Metal organic frameworks (MOFs) built from a single small ligand typically have high stability, are rigid, and have syntheses that are often simple and easily scalable. However, they are normally ultra-microporous and do not have large surface areas amenable to gas separation applications. We report an ultra-microporous (3.5 and 4.8 Å pores) Ni-(4-pyridylcarboxylate)2 with a cubic framework that exhibits exceptionally high CO2/H2 selectivities (285 for 20:80 and 230 for 40:60 mixtures at 10 bar, 40°C) and working capacities (3.95 mmol/g), making it suitable for hydrogen purification under typical precombustion CO2 capture conditions (1- to 10-bar pressure swing). It exhibits facile CO2 adsorption-desorption cycling and has CO2 self-diffusivities of ~3 × 10(-9) m(2)/s, which is two orders higher than that of zeolite 13X and comparable to other top-performing MOFs for this application. Simulations reveal a high density of binding sites that allow for favorable CO2-CO2 interactions and large cooperative binding energies. Ultra-micropores generated by a small ligand ensures hydrolytic, hydrostatic stabilities, shelf life, and stability toward humid gas streams.

  12. Earth 2075 (CO2) - can Ocean-Amplified Carbon Capture (oacc) Impart Atmospheric CO2-SINKING Ability to CCS Fossil Energy?

    Science.gov (United States)

    Fry, R.; Routh, M.; Chaudhuri, S.; Fry, S.; Ison, M.; Hughes, S.; Komor, C.; Klabunde, K.; Sethi, V.; Collins, D.; Polkinghorn, W.; Wroobel, B.; Hughes, J.; Gower, G.; Shkolnik, J.

    2017-12-01

    Previous attempts to capture atmospheric CO2 by algal blooming were stalled by ocean viruses, zooplankton feeding, and/or bacterial decomposition of surface blooms, re-releasing captured CO2 instead of exporting it to seafloor. CCS fossil energy coupling could bypass algal bloom limits—enabling capture of 10 GtC/yr atmospheric CO2 by selective emiliania huxleyi (EHUX) blooming in mid-latitude open oceans, far from coastal waters and polar seas. This could enable a 500 GtC drawdown, 350 ppm restoration by 2050, 280 ppm CO2 by 2075, and ocean pH 8.2. White EHUX blooms could also reflect sunlight back into outer space and seed extra ocean cloud cover, via DMS release, to raise albedo 1.8%—restoring preindustrial temperature (ΔT = 0°C) by 2030. Open oceans would avoid post-bloom anoxia, exclusively a coastal water phenomenon. The EHUX calcification reaction initially sources CO2, but net sinking prevails in follow-up equilibration reactions. Heavier-than-water EHUX sink captured CO2 to the sea floor before surface decomposition occurs. Seeding EHUX high on their nonlinear growth curve could accelerate short-cycle secondary open-ocean blooming—overwhelming mid-latitude viruses, zooplankton, and competition from other algae. Mid-latitude "ocean deserts" exhibit low viral, zooplankton, and bacterial counts. Thermocline prevents nutrient upwelling that would otherwise promote competing algae. Adding nitrogen nutrient would foster exclusive EHUX blooming. Elevated EHUX seed levels could arise from sealed, pH-buffered, floating, seed-production bioreactors infused with 10% CO2 from carbon feedstock supplied by inland CCS fossil power plants capturing 90% of emissions as liquid CO2. Deep-water SPAR platforms extract natural gas from beneath the sea floor. On-platform Haber and pH processing could convert extracted CH4 to buffered NH4+ nutrient, enabling ≥0.7 GtC/yr of bioreactor seed production and 10 GtC/yr of amplified secondary open-ocean CO2 capture—making CCS

  13. Amino acid salt solutions as solvents in CO2 capture from flue gas

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Thomsen, Kaj; Stenby, Erling Halfdan

    New solvents based on the salts of amino acids have emerged as an alternative to the alkanolamine solutions, for the chemical absorption of CO2 from flue gas. But only few studies on amino acids as CO2 capturing agents have been performed so far. One of the interesting features of amino acid salt...... solutions is their ability to form solid precipitates upon the absorption of CO2. The occurrence of crystallization offers the possibility of increasing the CO2 loading capacity of the solvent. However, precipitation can also have negative effect on the CO2 capture process. The chemical nature of the solid...... of glycine, taurine, and lysine, while in the case of proline, and glutamic acid, the precipitate was found to be bicarbonate. These results give an important contribution to further understanding the potential of amino acid salt solutions in CO2 capture from flue gas....

  14. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Daniel Ellenberger

    2005-10-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Modeling of stripper performance suggests that vacuum stripping may be an attractive configuration for all solvents. Flexipac 1Y structured packing performs in the absorber as expected. It provides twice as much mass transfer area as IMTP No.40 dumped packing. Independent measurements of CO{sub 2} solubility give a CO{sub 2} loading that is 20% lower than that Cullinane's values with 3.6 m PZ at 100-120 C. The effective mass transfer coefficient (K{sub G}) in the absorber with 5 m K/2.5 m PZ appears to be 0 to 30% greater than that of 30 wt% MEA.

  15. Using 13X, LiX, and LiPdAgX zeolites for CO_2 capture from post-combustion flue gas

    International Nuclear Information System (INIS)

    Chen, S.J.; Zhu, M.; Fu, Y.; Huang, Y.X.; Tao, Z.C.; Li, W.L.

    2017-01-01

    Highlights: • We synthesized a novel adsorbent named LiPdAgX zeolite. • CCS was proposed from microstructure, selectivity and separation factor of zeolite. • The static and flowing adsorption using CO_2/N_2 mixture on X zeolites were studied. • LiPdAgX zeolite required less energy for regeneration compared to 13X and MEA. • LiPdAgX zeolite can effectively capture CO_2 from post-combustion flue gas. - Abstract: This work investigates the application of X zeolites for capturing CO_2 from post-combustion flue gas. LiX and LiPdAgX zeolites were prepared by an ion-exchange method using 13X zeolite. X-ray diffraction analysis showed that all samples exhibited characteristic peaks of X zeolites, where the peak intensities increased in the order: LiPdAgX > LiX > 13X. The enhanced intensity of the diffraction peaks can increase the activity of the X zeolites and improve their adsorption performance. Scanning electron microscopy imaging showed that the intergranular pore canals of LiPdAgX zeolite were more concentrated. Pore structure analysis indicated that addition of Li"+ to the 13X zeolite enhanced the specific surface areas and pore volumes of the zeolites. Among the 13X, LiX, and LiPdAgX zeolites, LiPdAgX showed the highest CO_2/N_2selectivity, where the difference in the CO_2 adsorption capacity was due to differences in the number of adsorption sites and thermal conductivities of the X zeolites. The CO_2 breakthrough time increased in succession for the 13X, LiX, and LiPdAgX zeolites. The CO_2/N_2 separation factor of the LiPdAgX zeolite was twice that of the 13X zeolite at a CO_2 concentration of 20 vol.%. The temperature variations during the adsorption process were used to determine the regeneration energy and adsorption capacity of the X zeolites. LiPdAgX zeolite required less energy for regeneration than 13X zeolite and MEA. After regeneration, the separation factor of LiPdAgX zeolite remained at 6.38 for 20 vol.% CO_2 in the flue gas. Therefore, Li

  16. CO{sub 2} capture by adsorption with nitrogen enriched carbons

    Energy Technology Data Exchange (ETDEWEB)

    M.G. Plaza; C. Pevida; A. Arenillas; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2007-09-15

    The success of CO{sub 2} capture with solid sorbents is dependent on the development of a low cost sorbent with high CO{sub 2} selectivity and adsorption capacity. Immobilised amines are expected to offer the benefits of liquid amines in the typical absorption process, with the added advantages that solids are easy to handle and that they do not give rise to corrosion problems. In this work, different alkylamines were evaluated as a potential source of basic sites for CO{sub 2} capture, and a commercial activated carbon was used as a preliminary support in order to study the effect of the impregnation. The amine coating increased the basicity and nitrogen content of the carbon. However, it drastically reduced the microporous volume of the activated carbon, which is chiefly responsible for CO{sub 2} physisorption, thus decreasing the capacity of raw carbon at room temperature. 33 refs., 7 figs., 3 tabs.

  17. MCFC power plant with CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Noboru [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    Fuel cell power plant has been developed for many years with expectation of high system efficiency. In the meantime the gas turbine combined cycle has shown its considerable progress in improving system efficiency. Fuel cell power plant will no longer be attractive unless it exceeds the gas turbine combined cycle at least in the system efficiency. It is said CO{sub 2} separation could improve the efficiency of fuel cell power plant. IHI has developed the CO{sub 2} separator for fuel cell power plant. This study describes that the CO{sub 2} separator can increase the efficiency of the molten carbonate fuel cell (MCFC) power plant by 5% and the expected efficiency reaches 63 % in HHV basis.

  18. Enhanced Oil Recovery with CO2 Capture and Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, Maria; De Simoni, Michela; Delbianco, Alberto; Cazzani, Piero; Zanibelli, Laura

    2010-09-15

    This paper presents the results of a feasibility study aimed at extending the production life of a small oilfield in Italy through EOR, employing the CO2 captured from the flue gas streams of the refinery nearby. The EOR operation allows the recovery of additional reserves while a consistent amount of the CO2 injected remains permanently stored into the reservoir. The screening process selection for EOR-CO2 and the main elements of the pilot project for the proper upstream-downstream integration will be described. Evaluation of EOR-CO2 extension to other oilfields and its effect on oil production and project's economics will be reported.

  19. Impact of CO_2-enriched combustion air on micro-gas turbine performance for carbon capture

    International Nuclear Information System (INIS)

    Best, Thom; Finney, Karen N.; Ingham, Derek B.; Pourkashanian, Mohamed

    2016-01-01

    Power generation is one of the largest anthropogenic greenhouse gas emission sources; although it is now reducing in carbon intensity due to switching from coal to gas, this is only part of a bridging solution that will require the utilization of carbon capture technologies. Gas turbines, such as those at the UK Carbon Capture Storage Research Centre's Pilot-scale Advanced CO_2 Capture Technology (UKCCSRC PACT) National Core Facility, have high exhaust gas mass flow rates with relatively low CO_2 concentrations; therefore solvent-based post-combustion capture is energy intensive. Exhaust gas recirculation (EGR) can increase CO_2 levels, reducing the capture energy penalty. The aim of this paper is to simulate EGR through enrichment of the combustion air with CO_2 to assess changes to turbine performance and potential impacts on complete generation and capture systems. The oxidising air was enhanced with CO_2, up to 6.29%vol dry, impacting mechanical performance, reducing both engine speed by over 400 revolutions per minute and compression temperatures. Furthermore, it affected complete combustion, seen in changes to CO and unburned hydrocarbon emissions. This impacted on turbine efficiency, which increased specific fuel consumption (by 2.9%). CO_2 enhancement could therefore result in significant efficiency gains for the capture plant. - Highlights: • Experimental investigation of the impact of exhaust gas recirculation (EGR) on GT performance. • Combustion air was enhanced with CO_2 to simulate EGR. • EGR impact was ascertained by CO and unburned hydrocarbon changes. • Primary factor influencing performance was found to be oxidiser temperature. • Impact of CO_2 enhancement on post-combustion capture efficiency.

  20. Membrane-assisted CO2 liquefaction: performance modelling of CO2 capture from flue gas in cement production

    NARCIS (Netherlands)

    Bouma, R.H.B.; Vercauteren, F.F.; Os, P.J. van; Goetheer, E.L.V.; Berstad, D.; Anantharaman, R.

    2017-01-01

    CEMCAP is an international R&D project under the Horizon 2020 Programme preparing the ground for the large-scale implementation of CO2 capture in the European cement industry. This paper concerns the performance modeling of membraneassisted CO2 liquefaction as a possible retrofit application for

  1. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng; Wang, Yanbing; Estevez, Luis; Duan, Xiaonan; Anako, Nkechi; Park, Ah-Hyung Alissa; Li, Wen; Jones, Christopher W.; Giannelis, Emmanuel P.

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  2. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.

    Science.gov (United States)

    Bara, Jason E; Camper, Dean E; Gin, Douglas L; Noble, Richard D

    2010-01-19

    Clean energy production has become one of the most prominent global issues of the early 21st century, prompting social, economic, and scientific debates regarding energy usage, energy sources, and sustainable energy strategies. The reduction of greenhouse gas emissions, specifically carbon dioxide (CO(2)), figures prominently in the discussions on the future of global energy policy. Billions of tons of annual CO(2) emissions are the direct result of fossil fuel combustion to generate electricity. Producing clean energy from abundant sources such as coal will require a massive infrastructure and highly efficient capture technologies to curb CO(2) emissions. Current technologies for CO(2) removal from other gases, such as those used in natural gas sweetening, are also capable of capturing CO(2) from power plant emissions. Aqueous amine processes are found in the vast majority of natural gas sweetening operations in the United States. However, conventional aqueous amine processes are highly energy intensive; their implementation for postcombustion CO(2) capture from power plant emissions would drastically cut plant output and efficiency. Membranes, another technology used in natural gas sweetening, have been proposed as an alternative mechanism for CO(2) capture from flue gas. Although membranes offer a potentially less energy-intensive approach, their development and industrial implementation lags far behind that of amine processes. Thus, to minimize the impact of postcombustion CO(2) capture on the economics of energy production, advances are needed in both of these areas. In this Account, we review our recent research devoted to absorptive processes and membranes. Specifically, we have explored the use of room-temperature ionic liquids (RTILs) in absorptive and membrane technologies for CO(2) capture. RTILs present a highly versatile and tunable platform for the development of new processes and materials aimed at the capture of CO(2) from power plant flue gas and

  3. Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants

    International Nuclear Information System (INIS)

    Romeo, Luis M.; Lara, Yolanda; Lisbona, Pilar; Martinez, Ana

    2009-01-01

    CO 2 capture systems based on the carbonation/calcination loop have gained rapid interest due to promising carbonator CO 2 capture efficiency, low sorbent cost and no flue gases treatment is required before entering the system. These features together result in a competitively low cost CO 2 capture system. Among the key variables that influence the performance of these systems and their integration with power plants, the carbonation conversion of the sorbent and the heat requirement at calciner are the most relevant. Both variables are mainly influenced by CaO/CO 2 ratio and make-up flow of solids. New sorbents are under development to reduce the decay of their carbonation conversion with cycles. The aim of this study is to assess the competitiveness of new limestones with enhanced sorption behaviour applied to carbonation/calcination cycle integrated with a power plant, compared to raw limestone. The existence of an upper limit for the maximum average capture capacity of CaO has been considered. Above this limit, improving sorbent capture capacity does not lead to the corresponding increase in capture efficiency and, thus, reduction of CO 2 avoided cost is not observed. Simulations calculate the maximum price for enhanced sorbents to achieve a reduction in CO 2 removal cost under different process conditions (solid circulation and make-up flow). The present study may be used as an assessment tool of new sorbents to understand what prices would be competitive compare with raw limestone in the CO 2 looping capture systems. (author)

  4. Membrane contactors for CO2 capture processes - critical review

    Science.gov (United States)

    Nogalska, Adrianna; Trojanowska, Anna; Garcia-Valls, Ricard

    2017-07-01

    The use of membrane contactor in industrial processes is wide, and lately it started to be used in CO2 capture process mainly for gas purification or to reduce the emission. Use of the membrane contactor provides high contact surface area so the size of the absorber unit significantly decreases, which is an important factor for commercialization. The research has been caried out regarding the use of novel materials for the membrane production and absorbent solution improvements. The present review reveals the progress in membrane contactor systems for CO2 capture processes concerning solution for ceramic membrane wetting, comparison study of different polymers used for fabrication and methods of enzyme immobilization for biocomposite membrane. Also information about variety of absorbent solutions is described.

  5. Mesoporous carbon composite for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chih-Chau; Jin, Zhong; Lu, Wei; Sun, Zhengzong; Alemany, Lawrence; Tour, James M. [Rice University, Houston, TX (United States); Lomeda, Jay R.; Flatt, Austen K. [Nalco Company, Naperville, IL (United States)

    2012-07-01

    Herein we report a carbon based technology that can be used to rapidly adsorb and release CO{sub 2}. CO{sub 2} uptake by the synthesized composites was determined using a gravimetric method at room temperature and atmospheric pressure. 39% polyethylenimine-mesocarbon (PEI-CMK-3) composite had {approx} 12 wt% CO{sub 2} uptake capacity and a 37% polyvinylamine meso-carbon (PVA-CMK-3) composite had {approx} 13 wt% CO{sub 2} uptake capacity. The sorbents were easily regenerated at 75 deg C and exhibit excellent stability over multiple regeneration cycles. CO{sub 2} uptake was equivalent when using 10% CO{sub 2} in 90% CH{sub 4}, C{sub 2}H{sub 6} and C{sub 3}H{sub 9} mixture, underscoring the efficacy for CO{sub 2} separation from natural gas. (author)

  6. Integrated CO{sub 2} Capture and Utilization Using Non-Thermal Plasmolysis

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Matthew, E-mail: mmoss1@sheffield.ac.uk; Reed, Daniel G.; Allen, Ray W. K.; Styring, Peter [UK Centre for Carbon Dioxide Utilisation, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield (United Kingdom)

    2017-08-02

    In this work, two simple processes for carbon dioxide (CO{sub 2}) such as capture and utilization have been combined to form a whole systems approach to carbon capture and utilization (CCU). The first stage utilizes a pressure swing adsorption (PSA) system, which offers many benefits over current amine technologies. It was found that high selectivity can be achieved with rapid adsorption/desorption times while employing a cheap, durable sorbent that exhibits no sorbent losses and is easily regenerated by simple pressure drops. The PSA system is capable of capturing and upgrading the CO{sub 2} concentration of a waste gas stream from 12.5% to a range of higher purities. As many CCU end processes have some tolerance toward impurities in the feed, in the form of nitrogen (N{sub 2}), for example, this is highly advantageous for this PSA system since CO{sub 2} purities in excess of 80% can be achieved with only a few steps and minimal energy input. Non-thermal plasma is one such technology that can tolerate, and even benefit from, small N{sub 2} impurities in the feed, therefore a 100% pure CO{sub 2} stream is not required. The second stage of this process deploys a nanosecond pulsed corona discharge reactor to split the captured CO{sub 2} into carbon monoxide (CO), which can then be used as a chemical feedstock for other syntheses. Corona discharge has proven industrial applications for gas cleaning and the benefit of pulsed power reduces the energy consumption of the system. The wire-in-cylinder geometry concentrates the volume of gas treated into the area of high electric field. Previous work has suggested that moderate conversions can be achieved (9%), compared to other non-thermal plasma methods, but with higher energy efficiencies (>60%).

  7. Proceedings of the 12. meeting of the International Post-Combustion CO{sub 2} Capture Network

    Energy Technology Data Exchange (ETDEWEB)

    Topper, J. [IEA Greenhouse Gas R and D Programme, Cheltenham, Gloucestershire (United Kingdom)] (comp.)

    2009-07-01

    This conference provided a forum to discuss new developments in post combustion capture of carbon dioxide (CO{sub 2}) emissions from fossil-fueled power plants. Since the creation of the Post-Combustion Capture Network in 2000, these conferences have provided exposure to latest research findings, acted as a conduit for trial of latest ideas and served as a means of encouraging trans-national co-operation. As host of the conference, the University of Regina is among the leading institutions in the world with expertise in working on solvent based capture and promoting international activity through the International Test Centre. The topics of discussion ranged from amine based solvent investigations; ammonia as an alternative means of capture; pilot plant progress reports; simulation and modelling studies; latest developments by technology providers; national programs with a special interest in demonstration plant proposals; and more novel techniques such as membranes. The sessions of the conference were entitled: fundamental studies; pilot plant work and scale-up; modelling and plant studies; and commercial and other aspects. This meeting featured 49 presentations, of which 46 have been catalogued separately for inclusion in this database. refs., figs.

  8. CO2 capture from IGCC gas streams using the AC-ABC process

    Energy Technology Data Exchange (ETDEWEB)

    Nagar, Anoop [SRI International, Menlo Park, CA (United States); McLaughlin, Elisabeth [SRI International, Menlo Park, CA (United States); Hornbostel, Marc [SRI International, Menlo Park, CA (United States); Krishnan, Gopala [SRI International, Menlo Park, CA (United States); Jayaweera, Indira [SRI International, Menlo Park, CA (United States)

    2017-02-16

    The objective of this project was to develop a novel, low-cost CO2 capture process from pre-combustion gas streams. The bench-scale work was conducted at the SRI International. A 0.15-MWe integrated pilot plant was constructed and operated for over 700 hours at the National Carbon Capture Center, Wilsonville, AL. The AC-ABC (ammonium carbonate-ammonium bicarbonate) process for capture of CO2 and H2S from the pre-combustion gas stream offers many advantages over Selexol-based technology. The process relies on the simple chemistry of the NH3-CO2-H2O-H2S system and on the ability of the aqueous ammoniated solution to absorb CO2 at near ambient temperatures and to release it as a high-purity, high-pressure gas at a moderately elevated regeneration temperature. It is estimated the increase in cost of electricity (COE) with the AC-ABC process will be ~ 30%, and the cost of CO2 captured is projected to be less than $27/metric ton of CO2 while meeting 90% CO2 capture goal. The Bechtel Pressure Swing Claus (BPSC) is a complementary technology offered by Bechtel Hydrocarbon Technology Solutions, Inc. BPSC is a high-pressure, sub-dew-point Claus process that allows for nearly complete removal of H2S from a gas stream. It operates at gasifier pressures and moderate temperatures and does not affect CO2 content. When coupled with AC-ABC, the combined technologies allow a nearly pure CO2 stream to be captured at high pressure, something which Selexol and other solvent-based technologies cannot achieve.

  9. Ab initio Thermodynamic Approach to Identify Mixed Solid Sorbents for CO2 Capture Technology

    Directory of Open Access Journals (Sweden)

    Yuhua eDuan

    2015-10-01

    Full Text Available Because the current technologies for capturing CO2 are still too energy intensive, new materials must be developed that can capture CO2 reversibly with acceptable energy costs. At a given CO2 pressure, the turnover temperature (Tt of the reaction of an individual solid that can capture CO2 is fixed. Such Tt may be outside the operating temperature range (ΔTo for a practical capture technology. To adjust Tt to fit the practical ΔTo, in this study, three scenarios of mixing schemes are explored by combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations. Our calculated results demonstrate that by mixing different types of solids, it’s possible to shift Tt to the range of practical operating temperature conditions. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the mixed solids of interest, we were able to identify the mixing ratios of two or more solids to form new sorbent materials for which lower capture energy costs are expected at the desired pressure and temperature conditions.

  10. Directed technical change and the adoption of CO2 abatement technology. The case of CO2 capture and storage

    International Nuclear Information System (INIS)

    Otto, Vincent M.; Reilly, John

    2008-01-01

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO 2 -trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO 2 abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO 2 emissions associated with energy use, directed technical change and the economy. We specify CO 2 capture and storage (CCS) as a discrete CO 2 abatement technology. We find that combining CO 2 -trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  11. Ultralow Parasitic Energy for Postcombustion CO 2 Capture Realized in a Nickel Isonicotinate Metal–Organic Framework with Excellent Moisture Stability

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Shyamapada; Collins, Sean [Centre; amp, Department of Chemistry; Chakraborty, Debanjan; Banerjee, Debasis [Physical; Thallapally, Praveen K. [Physical; Woo, Tom K. [Centre; amp, Department of Chemistry; Vaidhyanathan, Ramanathan

    2017-01-25

    Metal-organic frameworks (MOFs) have attracted significant attention as solid sorbents in gas separation processes for low-energy postcombustion CO2 capture. The parasitic energy (PE) has been put forward as a holistic parameter that measures how energy efficient (and therefore cost-effective) the CO2 capture process will be using the material. In this work, we present a nickel isonicotinate based ultramicroporous MOF, 1 [Ni-(4PyC)(2)center dot DMF], that has the lowest PE for postcombustion CO, capture reported to date. We calculate a PE of 655 kJ/kg CO2, which is lower than that of the best performing material previously reported, Mg-MOF-74. Further, 1 exhibits exceptional hydrolytic stability with the CO2 adsorption isotherm being unchanged following 7 days of steam-treatment (>85% RH) or 6 months of exposure to the atmosphere. The diffusion coefficient of CO2 in 1 is also 2 orders of magnitude higher than in zeolites currently used in industrial scrubbers. Breakthrough experiments show that 1 only loses 7% of its maximum CO2 capacity under humid conditions.

  12. Thermodynamic simulation of CO{sub 2} capture for an IGCC power plant using the calcium looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. [National Engineering Laboratory for Coal-Burning Pollutant Emission Reduction, Shandong University, Jinan (China); Zhao, C.; Ren, Q. [School of Energy and Environment, Southeast University, Nanjing (China)

    2011-06-15

    A CO{sub 2} capture process for an integrated gasification combined cycle (IGCC) power plant using the calcium looping cycle was proposed. The CO{sub 2} capture process using natural and modified limestone was simulated and investigated with the software package Aspen Plus. It incorporated a fresh feed of sorbent to compensate for the decay in CO{sub 2} capture activity during long-term cycles. The sorbent flow ratios have significant effect on the CO{sub 2} capture efficiency and net efficiency of the CO{sub 2} capture system. The IGCC power plant, using the modified limestone, exhibits higher CO{sub 2} capture efficiency than that using the natural limestone at the same sorbent flow ratios. The system net efficiency using the natural and modified limestones achieves 41.7% and 43.1%, respectively, at the CO{sub 2} capture efficiency of 90% without the effect of sulfation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Design of Stratified Functional Nanoporous Materials for CO2 Capture and Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J. Karl [Univ. of Pittsburgh, PA (United States); Ye, Jingyun [Univ. of Pittsburgh, PA (United States)

    2017-10-03

    The objective of this project is to develop novel nanoporous materials for CO2 capture and conversion. The motivation of this work is that capture of CO2 from flue gas or the atmosphere coupled with catalytic hydrogenation of CO2 into valuable chemicals and fuels can reduce the net amount of CO2 in the atmosphere while providing liquid transportation fuels and other commodity chemicals. One approach to increasing the economic viability of carbon capture and conversion is to design a single material that can be used for both the capture and catalytic conversion of CO2, because such a material could increase efficiency through process intensification. We have used density functional theory (DFT) methods to design catalytic moieties that can be incorporated into various metal organic framework (MOF) materials. We chose to work with MOFs because they are highly tailorable, can be functionalized, and have been shown to selectively adsorb CO2 over N2, which is a requirement for CO2 capture from flue gas. Moreover, the incorporation of molecular catalytic moieties into MOF, through covalent bonding, produces a heterogeneous catalytic material having activities and selectivities close to those of homogeneous catalysts, but without the draw-backs associated with homogeneous catalysis.

  14. Pilot testing of a membrane system for postcombustion CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim [Membrane Technology And Research, Incorporated, Newark, CA (United States); Kniep, Jay [Membrane Technology And Research, Incorporated, Newark, CA (United States); Wei, Xiaotong [Membrane Technology And Research, Incorporated, Newark, CA (United States); Carlisle, Trevor [Membrane Technology And Research, Incorporated, Newark, CA (United States); White, Steve [Membrane Technology And Research, Incorporated, Newark, CA (United States); Pande, Saurabh [Membrane Technology And Research, Incorporated, Newark, CA (United States); Fulton, Don [Membrane Technology And Research, Incorporated, Newark, CA (United States); Watson, Robert [Membrane Technology And Research, Incorporated, Newark, CA (United States); Hoffman, Thomas [Membrane Technology And Research, Incorporated, Newark, CA (United States); Freeman, Brice [Membrane Technology And Research, Incorporated, Newark, CA (United States); Baker, Richard [Membrane Technology And Research, Incorporated, Newark, CA (United States)

    2015-09-30

    This final report summarizes work conducted for the U.S. Department of Energy, National Energy Technology Laboratory (DOE) to scale up an efficient post-combustion CO2 capture membrane process to the small pilot test stage (award number DE-FE0005795). The primary goal of this research program was to design, fabricate, and operate a membrane CO2 capture system to treat coal-derived flue gas containing 20 tonnes CO2/day (20 TPD). Membrane Technology and Research (MTR) conducted this project in collaboration with Babcock and Wilcox (B&W), the Electric Power Research Institute (EPRI), WorleyParsons (WP), the Illinois Sustainable Technology Center (ISTC), Enerkem (EK), and the National Carbon Capture Center (NCCC). In addition to the small pilot design, build and slipstream testing at NCCC, other project efforts included laboratory membrane and module development at MTR, validation field testing on a 1 TPD membrane system at NCCC, boiler modeling and testing at B&W, a techno-economic analysis (TEA) by EPRI/WP, a case study of the membrane technology applied to a ~20 MWe power plant by ISTC, and an industrial CO2 capture test at an Enerkem waste-to-biofuel facility. The 20 TPD small pilot membrane system built in this project successfully completed over 1,000 hours of operation treating flue gas at NCCC. The Polaris™ membranes used on this system demonstrated stable performance, and when combined with over 10,000 hours of operation at NCCC on a 1 TPD system, the risk associated with uncertainty in the durability of postcombustion capture membranes has been greatly reduced. Moreover, next-generation Polaris membranes with higher performance and lower cost were validation tested on the 1 TPD system. The 20 TPD system also demonstrated successful operation of a new low-pressure-drop sweep module that will reduce parasitic energy losses at full scale by as much as 10 MWe. In modeling and pilot boiler testing, B&W confirmed the

  15. CO{sub 2} capture using zeolite 13X prepared from bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan Province 464000 (China); Park, Dong-Wha [Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Ahn, Wha-Seung, E-mail: whasahn@inha.ac.kr [Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-02-15

    Zeolite 13X was prepared using bentonite as the raw material by alkaline fusion followed by a hydrothermal treatment without adding any extra silica or alumina sources. The prepared zeolite 13X was characterized by X-ray powder diffraction, N{sub 2}-adsorption–desorption measurements, and scanning electron microscopy. The CO{sub 2} capture performance of the prepared zeolite 13X was examined under both static and flow conditions. The prepared zeolite 13X showed a high BET surface area of 688 m{sup 2}/g with a high micropore volume (0.30 cm{sup 3}/g), and exhibited high CO{sub 2} capture capacity (211 mg/g) and selectivity to N{sub 2} (CO{sub 2}/N{sub 2} = 37) at 25 °C and 1 bar. In addition, the material showed fast adsorption kinetics, and stable CO{sub 2} adsorption–desorption recycling performance at both 25 and 200 °C.

  16. Advanced Low Energy Enzyme Catalyzed Solvent for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Zaks, Alex [Akermin Inc., St. Louis, MO (United States); Reardon, John [Akermin Inc., St. Louis, MO (United States)

    2013-09-30

    A proof-of-concept biocatalyst enhanced solvent process was developed and demonstrated in an integrated bench-scale system using coal post combustion flue gas. The biocatalyst was deployed as a coating on M500X structured packing. Rate enhancement was evaluated using a non-volatile and non-toxic 20 wt% potassium carbonate solution. Greater than 500-fold volumetric scale-up from laboratory to bench scale was demonstrated in this project. Key technical achievements included: 10-fold mass transfer enhancement demonstrated in laboratory testing relative to blank potassium carbonate at 45°C; ~ 7-fold enhancement over blank in bench-scale field testing at National Carbon Capture Center; aerosol emissions were below detection limits (< 0.8 ppm); 90% capture was demonstrated at ~19.5 Nm3/hr (dry basis); and ~ 80% CO2 capture was demonstrated at ~ 30 Nm3/hr (dry basis) for more than 2800-hrs on flue gas with minimal detectible decline in activity. The regeneration energy requirement was 3.5 GJ/t CO2 for this solvent, which was below the target of <2.1 GJ/t CO2. Bench unit testing revealed kinetic limitations in the un-catalyzed stripper at around 85°C, but process modeling based on bench unit data showed that equivalent work of less than 300 kWh/t CO2 including all CO2 compression can be achieved at lower temperature stripping conditions. Cost analysis showed that 20% potassium carbonate in a basic solvent flow sheet with biocatalyst coated packing has economic performance comparable to the reference NETL Case-12, 30% MEA. A detailed techno-economic analysis indicated that addition of catalyst in the stripper could reduce the cost of capture by ~6% and cost of avoided CO2 by ~10% below reference NETL Case-12. Based on these results, a directional plan was identified to reduce the cost of CO2 capture in future work.

  17. Lithium-functionalized germanene: A promising media for CO2 capture

    Science.gov (United States)

    Mehdi Aghaei, S.; Monshi, M. M.; Torres, I.; Banakermani, M.; Calizo, I.

    2018-02-01

    Density functional theory (DFT) is employed to investigate the interactions of CO2 gas molecules with pristine and lithium-functionalized germanene. It is discovered that although a single CO2 molecule is weakly physisorbed on pristine germanene, a significant improvement on its adsorption energy is found by utilizing Li-functionalized germanene as the adsorbent. Excitingly, the moderate adsorption energy at high CO2 coverage secures an easy release step. Moreover, the structure of Li-functionalized germanene can be fully recovered after removal of CO2 gas molecules. Our results suggest that Li-functionalized germanene show promise for CO2 sensing and capture with a storage capacity of 12.57 mol/kg.

  18. Thermodynamic modeling of NH_3-CO_2-SO_2-K_2SO_4-H_2O system for combined CO_2 and SO_2 capture using aqueous NH_3

    International Nuclear Information System (INIS)

    Qi, Guojie; Wang, Shujuan

    2017-01-01

    Highlights: • A new application of aqueous NH_3 based combined CO_2 and SO_2 process was proposed. • A thermodynamic model simulated the heat of absorption and the K_2SO_4 precipitation. • The CO_2 content can be regenerated in a stripper with lower heat of desorption. • The SO_2 content can be removed by K_2SO_4 precipitation from the lean NH_3 solvent. - Abstract: A new application of aqueous NH_3 based post-combustion CO_2 and SO_2 combined capture process was proposed to simultaneously capture CO_2 and SO_2, and remove sulfite by solid (K_2SO_4) precipitation method. The thermodynamic model of the NH_3-CO_2-SO_2-K_2SO_4-H_2O system for the combined CO_2 and SO_2 capture process was developed and validated in this work to analyze the heat of CO_2 and SO_2 absorption in the NH_3-CO_2-SO_2-H_2O system, and the K_2SO_4 precipitation characteristics in the NH_3-CO_2-SO_2-K_2SO_4-H_2O system. The average heat of CO_2 absorption in the NH_3-CO_2-H_2O system at 40 °C is around −73 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N. The average heat of SO_2 absorption in the NH_3-SO_2-H_2O system at 40 °C is around −120 kJ/mol SO_2 in 2.5 wt% NH_3 with SO_2 loading between 0 and 0.5 S/N. The average heat of CO_2 absorption in the NH_3-CO_2-SO_2-H_2O system at 40 °C is 77, 68, and 58 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N, when SO_2 loading is 0, 0.1, 0.2 S/N, respectively. The solubility of K_2SO_4 increases with temperature, CO_2 and SO_2 loadings, but decreases with NH_3 concentration in the CO_2 and SO_2 loaded aqueous NH_3. The thermodynamic evaluation indicates that the combined CO_2 and SO_2 capture process could employ the typical absorption/regeneration process to simultaneously capture CO_2 and SO_2 in an absorber, thermally desorb CO_2 in a stripper, and feasibly remove sulfite (oxidized to sulfate) content by precipitating K_2SO_4 from the lean NH_3 solvent after the lean/rich heat exchanger.

  19. Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy

    Energy Technology Data Exchange (ETDEWEB)

    UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions; Aquaflow Bionomics Ltd

    2010-09-30

    For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and

  20. Synthesis, characterization and application of 1-(2-cyanoethyl-3-(3-methoxypropaneimidazolium bromide for CO2 capture

    Directory of Open Access Journals (Sweden)

    Ravichandar Shantini

    2017-01-01

    Full Text Available Amine scrubbing is dominating in carbon dioxide (CO2 capturing technology because of its high affinity towards CO2. However, the drawbacks of amine solvents are its high corrosivity and volatility. Ionic liquids (ILs have gained a lot of attention in recent years for CO2 capturing and have been proposed to be one of the promising alternative to the conventional solvents. The objective of this research is to design a new imidazolium based ether-nitrile functionalized ionic liquid of low viscosity to improve CO2 capturing. The molecular structure of the ionic liquid were confirmed by 1H NMR, 13C NMR and FTIR. The thermal properties; glass transition temperature, thermal decomposition temperature, and their physical properties; water content and density were determined. The solubility of CO2 in the synthesized ionic liquid was measured using pressure drop method. They showed high thermal stability above 200°C and the glass transition temperature was -49.80°C. The CO2 sorption in the newly synthesized IL was 0.08, 0.12, 0.29, 1.01, 2.30 mol of CO2/mol of IL at pressures 1, 5, 10, 15 and 20 bar respectively.

  1. Hydrogen production from coal gasification for effective downstream CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Gnanapragasam, Nirmal V.; Reddy, Bale V.; Rosen, Marc A. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada)

    2010-05-15

    The coal gasification process is used in commercial production of synthetic gas as a means toward clean use of coal. The conversion of solid coal into a gaseous phase creates opportunities to produce more energy forms than electricity (which is the case in coal combustion systems) and to separate CO{sub 2} in an effective manner for sequestration. The current work compares the energy and exergy efficiencies of an integrated coal-gasification combined-cycle power generation system with that of coal gasification-based hydrogen production system which uses water-gas shift and membrane reactors. Results suggest that the syngas-to-hydrogen (H{sub 2}) system offers 35% higher energy and 17% higher exergy efficiencies than the syngas-to-electricity (IGCC) system. The specific CO{sub 2} emission from the hydrogen system was 5% lower than IGCC system. The Brayton cycle in the IGCC system draws much nitrogen after combustion along with CO{sub 2}. Thus CO{sub 2} capture and compression become difficult due to the large volume of gases involved, unlike the hydrogen system which has 80% less nitrogen in its exhaust stream. The extra electrical power consumption for compressing the exhaust gases to store CO{sub 2} is above 70% for the IGCC system but is only 4.5% for the H{sub 2} system. Overall the syngas-to-hydrogen system appears advantageous to the IGCC system based on the current analysis. (author)

  2. BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products.

    Science.gov (United States)

    Skjånes, Kari; Lindblad, Peter; Muller, Jiri

    2007-10-01

    Many areas of algae technology have developed over the last decades, and there is an established market for products derived from algae, dominated by health food and aquaculture. In addition, the interest for active biomolecules from algae is increasing rapidly. The need for CO(2) management, in particular capture and storage is currently an important technological, economical and global political issue and will continue to be so until alternative energy sources and energy carriers diminish the need for fossil fuels. This review summarizes in an integrated manner different technologies for use of algae, demonstrating the possibility of combining different areas of algae technology to capture CO(2) and using the obtained algal biomass for various industrial applications thus bringing added value to the capturing and storage processes. Furthermore, we emphasize the use of algae in a novel biological process which produces H(2) directly from solar energy in contrast to the conventional CO(2) neutral biological methods. This biological process is a part of the proposed integrated CO(2) management scheme.

  3. CO2 capture takes its industrial turn

    International Nuclear Information System (INIS)

    Remoue, A.; Lutzky, A.

    2009-01-01

    The CO 2 capture and sequestration is entering the industrial era. The technologies are ready, the regulation is progressively put into action, the financing of demonstration facilities is unfreezing and companies are on the starting line from Canada to China, including the USA and Europe. The market takeoff is expected for 2015 but the competition is already hard between equipment manufacturers who wish to develop proprietary technologies. (J.S.)

  4. Integration of the steam cycle and CO2 capture process in a decarbonization power plant

    International Nuclear Information System (INIS)

    Xu, Gang; Hu, Yue; Tang, Baoqiang; Yang, Yongping; Zhang, Kai; Liu, Wenyi

    2014-01-01

    A new integrated system with power generation and CO 2 capture to achieve higher techno-economic performance is proposed in this study. In the new system, three measures are adopted to recover the surplus energy from the CO 2 capture process. The three measures are as follows: (1) using a portion of low-pressure steam instead of high-pressure extracted steam by installing the steam ejector, (2) mixing a portion of flash-off water with the extracted steam to utilize the superheat degree of the extracted steam, and (3) recycling the low-temperature waste heat from the CO 2 capture process to heat the condensed water. As a result, the power output of the new integrated system is 107.61 MW higher than that of a decarbonization power plant without integration. The efficiency penalty of CO 2 capture is expected to decrease by 4.91%-points. The increase in investment produced by the new system is 3.25 M$, which is only 0.88% more than the total investment of a decarbonization power plant without integration. Lastly, the cost of electricity and CO 2 avoided is 15.14% and 33.1% lower than that of a decarbonization power generation without integration, respectively. The promising results obtained in this study provide a new approach for large-scale CO 2 removal with low energy penalty and economic cost. - Highlights: • Energy equilibrium in CO 2 capture process is deeply analyzed in this paper. • System integration is conducted in a coal-fired power plant with CO 2 capture. • The steam ejector is introduced to utilize the waste energy from CO 2 capture process. • Thermodynamic, exergy and techno-economic analyses are quantitatively conducted. • Energy-saving effects are found in the new system with minimal investment

  5. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees

    2005-07-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The baseline campaign with 30% MEA has given heat duties from 40 to 70 kcal/gmol CO{sub 2} as predicted by the stripper model. The Flexipak 1Y structured packing gives significantly better performance than IMTP 40 duped packing in the absorber, but in the stripper the performance of the two packings is indistinguishable. The FTIR analyzer measured MEA volatility in the absorber represented by an activity coefficient of 0.7. In the MEA campaign the material balance closed with an average error of 3.5% and the energy balance had an average error of 5.9.

  6. CO{sub 2} capture using some fly ash-derived carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    A. Arenillas; K.M. Smith; T.C. Drage; C.E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-12-01

    Adsorption is considered to be one of the more promising technologies for capturing CO{sub 2} from flue gases. For post-combustion capture, the success of such an approach is however dependent on the development of an adsorbent that can operate competitively at relatively high temperatures. In this work, low cost carbon materials derived from fly ash, are presented as effective CO{sub 2} sorbents through impregnation these with organic bases, for example, polyethylenimine aided by polyethylene glycol. The results show that for samples derived from a fly ash carbon concentrate, the CO{sub 2} adsorption capacities were relatively high (up to 4.5 wt%) especially at high temperatures (75{sup o}C), where commercial active carbons relying on physi-sorption have low capacities. The addition of PEG improves the adsorption capacity and reduces the time taken for the sample to reach the equilibrium. No CO{sub 2} seems to remain after desorption, suggesting that the process is fully reversible. 24 refs., 6 figs., 2 tabs.

  7. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Amorvadee Veawab

    2005-01-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. In Campaign 3 of the pilot plant, the overall mass transfer coefficient for the stripper with 7 m MEA decreased from 0.06 to 0.01 mol/(m{sup 3}.s.kPa) as the rich loading increased from 0.45 to 0.6 mol CO{sub 2}/mol MEA. Anion chromatography has demonstrated that nitrate and nitrite are major degradation products of MEA and PZ with pure oxygen. In measurements with the high temperature FTIR in 7 m MEA the MEA vapor pressure varied from 2 to 20 Pa at 35 to 70 C. In 2.5 m PZ the PZ vapor pressure varied from 0.2 to 1 Pa from 37 to 70 C.

  8. Novel Solvent System for Post Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alfred; Brown, Nathan

    2013-09-30

    The purpose of this project was to evaluate the performance of ION’s lead solvent and determine if ION’s solvent candidate could potentially meet DOE’s target of achieving 90% CO{sub 2} Capture from a 550 MWe Pulverized Coal Plant without resulting in an increase in COE greater than 35%. In this project, ION’s lead solvent demonstrated a 65% reduction in regeneration energy and a simultaneous 35% reduction in liquid to gas ratio (L/G) in comparison to aqMEA at 90% CO{sub 2} capture using actual flue gas at 0.2 MWe. Results have clearly demonstrated that the ION technology is in line with DOE performance expectations and has the potential to meet DOE’s performance targets in larger scale testing environments.

  9. Preparation and characterization of aminated graphite oxide for CO2 capture

    International Nuclear Information System (INIS)

    Zhao Yunxia; Ding Huiling; Zhong Qin

    2012-01-01

    Adsorption with solid sorbents is one of the most promising options for postcombustion carbon dioxide (CO 2 ) capture. In this study, aminated graphite oxide used for CO 2 adsorption was synthesized, based on the intercalation reaction of graphite oxide (GO) with amines, including ethylenediamine (EDA), diethylenetriamine (DETA) and triethylene tetramine (TETA). The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), transmission electron microscope (TEM), elemental analysis, particle size analysis, nitrogen adsorption as well as differential thermal and thermogravimetric analysis (DSC-TGA). CO 2 capture was investigated by dynamic adsorption experiments with N 2 -CO 2 mixed gases at 30 °C. The three kinds of graphite oxide samples modified by excess EDA, DETA and TETA showed similar adsorption behaviors seen from their breakthrough curves. Among them, the sample aminated by EDA exhibited the highest adsorption capacity with the longest breakthrough time of CO 2 . Before saturation, its adsorption capacity was up to 53.62 mg CO 2 /g sample. In addition, graphite oxide samples modified by different amount of EDA (EDA/GO raw ratio 10 wt%, 50 wt% and 100 wt%) were prepared in the ethanol. Their CO 2 adsorption performance was investigated. The experimental results demonstrated that graphite oxide with 50 wt% EDA had the largest adsorption capacity 46.55 mg CO 2 /g sample.

  10. Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2 O3 for Enhanced CO2 Capture Performance.

    Science.gov (United States)

    Armutlulu, Andac; Naeem, Muhammad Awais; Liu, Hsueh-Ju; Kim, Sung Min; Kierzkowska, Agnieszka; Fedorov, Alexey; Müller, Christoph R

    2017-11-01

    CO 2 capture and storage is a promising concept to reduce anthropogenic CO 2 emissions. The most established technology for capturing CO 2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high-temperature CO 2 sorbent can significantly reduce the costs of CO 2 capture. A serious disadvantage of CaO derived from earth-abundant precursors, e.g., limestone, is the rapid, sintering-induced decay of its cyclic CO 2 uptake. Here, a template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO 2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al 2 O 3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO 2 capture and release, and (iii) a minimal quantity of Al 2 O 3 for structural stabilization, thus maximizing the fraction of CO 2 -capture-active CaO. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparison of MEA capture cost for low CO{sub 2} emissions sources in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ho, M.T.; Allinson, G.W.; Wiley, D.E. [University of New South Wales, Sydney, NSW (Australia). School of Chemical Engineering

    2011-01-15

    This paper estimates the cost of CO{sub 2} capture for three Australian industrial emission sources: iron and steel production, oil refineries and cement manufacturing. It also compares the estimated capture costs with those of post-combustion capture from a pulverised black coal power plant. The cost of capture in 2008 using MEA solvent absorption technology ranges from less than A$60 per tonne CO{sub 2} avoided for the iron and steel production to over A$70 per tonne CO{sub 2} avoided for cement manufacture and over A$100 per tonne CO{sub 2} avoided for oil refineries. The costs of capture for the iron and steel and cement industries are comparable to or less than that for post-combustion capture from a pulverised black coal power plant. This paper also investigates costs for converting low partial pressure CO{sub 2} streams from iron and steel production to a more concentrated stream using pressurisation and the water-gas shift reaction. In those cases, the costs were found to be similar to or less than the cost estimates without conversion. The analyses in this paper also show that estimated costs are highly dependent on the characteristics of the industrial emission source, the assumptions related to the type and price of energy used by the capture facilities and the economic parameters of the project such as the discount rate and capital costs.

  12. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    Directory of Open Access Journals (Sweden)

    Ana Arenillas

    2013-10-01

    Full Text Available Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar and capacities (>2 mmol·g−1 at 273 K. Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes.

  13. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    Science.gov (United States)

    Bermúdez, José M.; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael

    2013-01-01

    Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar) and capacities (>2 mmol·g−1 at 273 K). Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes. PMID:28788352

  14. CO_2 capture in Mg oxides doped with Fe and Ni

    International Nuclear Information System (INIS)

    Sanchez S, I. F.

    2016-01-01

    In this work the CO_2 capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe_2O_3 phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO_2 in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO_2 capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO_2 capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO_2 capture. The different stages of mass loss and thermal

  15. Recent Advances in Anhydrous Solvents for CO2 Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    International Nuclear Information System (INIS)

    Park, Youngjune; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa; Petit, Camille

    2015-01-01

    CO 2 capture by amine scrubbing, which has a high CO 2 capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO 2 capture from flue gases. The findings from these demonstrations will significantly advance the field of CO 2 capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO 2 capture solvents including high volatility and corrosiveness of the amine solutions as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO 2 capture solvents, which are often anhydrous, have been developed as the third-generation CO 2 capture solvents. These novel classes of liquid materials include ionic liquids, CO 2 -triggered switchable solvents (i.e., CO 2 -binding organic liquids, reversible ionic liquids), and nanoparticle organic hybrid materials. This paper provides a review of these various anhydrous solvents and their potential for CO 2 capture. Particular attention is given to the mechanisms of CO 2 absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO 2 capture media.

  16. Calculation of the Capture Edge in the OGMS Superconducting Separator

    International Nuclear Information System (INIS)

    Kozak, S.

    1998-01-01

    Many ferromagnetic particles, that should be deflected, are captured on the wall of an OGMS (Open Gradient Magnetic Separation) separator. This ferromagnetic material influences magnetic and hydrodynamic conditions in the separator working area. The problem how to calculate the capture edge can be defined as the search for the geometry of a nonlinear system at known boundary conditions. The boundary conditions on the capture edge are the function of the capture edge geometry. The experimental results of the separation recovery are given. The capture edge calculation has been performed by FLUX 2D and the results are presented. (author)

  17. Modelling of a tubular membrane contactor for pre-combustion CO2 capture using ionic liquids: Influence of the membrane configuration, absorbent properties and operation parameters

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-10-01

    Full Text Available A membrane contactor using ionic liquids (ILs as solvent for pre-combustion capture CO2 at elevated temperature (303–393 K and pressure (20 bar has been studied using mathematic model in the present work. A comprehensive two-dimensional (2D mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO2 removal efficiency were systematically studied. The simulation results show that CO2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range. Keywords: CO2 capture, Pre-combustion, Membrane contactor, Ionic liquids, Modelling

  18. Recent Advances in Anhydrous Solvents for CO2 Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    YOUNGJUNE ePARK

    2015-10-01

    Full Text Available CO2 capture by amine scrubbing, which has a high CO2 capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO2 capture from flue gases. The findings from these demonstrations will significantly advance the field of CO2 capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO2 capture solvents including high volatility and corrosiveness of the amine solutions, as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO2 capture solvents, which are often anhydrous, have been developed as the third-generation CO2 capture solvents. These novel classes of liquid materials include: Ionic Liquids (ILs, CO2-triggered switchable solvents (i.e., CO2 Binding Organic Liquids (CO2BOLs, Reversible Ionic Liquids (RevILs, and Nanoparticle Organic Hybrid Materials (NOHMs. This paper provides a review of these various anhydrous solvents and their potential for CO2 capture. Particular attention is given to the mechanisms of CO2 absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO2 capture media.

  19. Process intensification characteristics of a microreactor absorber for enhanced CO_2 capture

    International Nuclear Information System (INIS)

    Ganapathy, Harish; Steinmayer, Sascha; Shooshtari, Amir; Dessiatoun, Serguei; Ohadi, Michael M.; Alshehhi, Mohamed

    2016-01-01

    Highlights: • Enhanced gas separation/CO_2 capture using aqueous DEA in micro-structured absorber. • 15 straight parallel channels with hydraulic diameter of 456 μm. • Achieved close to 100% absorption efficiency under certain operating conditions. • Mass transfer coefficients 1–3 orders of magnitude higher than conventional absorbers. • Substantial intensification of absorption process achievable using microreactors. - Abstract: Gas separation processes, including post-combustion carbon capture (PCCC) by chemical absorption using liquid solvents can be substantially enhanced using high performance micro-structured surfaces to enhance the surface area available for reaction. The present paper studies the hydrodynamics and mass transfer performance of gas–liquid absorption of CO_2 into aqueous diethanolamine in a micro-structured reactor. The system was designed to comprise 15 straight parallel channels in a cross flow inlet configuration. The hydraulic diameter of each channel was 456 μm. The performance of the reactor was studied with respect to the absorption efficiency, mass transfer coefficient, acid gas loading ratio, and pressure drop. A flow pattern map was developed using available regime transition criteria. Parametric studies varying the gas and liquid flow rates, as well as their respective concentrations at the reactor inlet, were conducted. The two-phase pressure drop was compared against the predictions of a piecewise model and a reasonably good agreement was obtained. Absorption efficiencies close to 100% were observed under certain operating conditions. The presently achieved values of liquid-side volumetric mass transfer coefficients were between 1–3 orders of magnitude higher than those reported for most conventional gas–liquid absorption systems, which can be attributed to the inherent high specific interfacial area provided through micro-structured surfaces. The results reported here indicate the substantial levels of process

  20. CO2/CH4 Separation via Polymeric Blend Membrane

    Directory of Open Access Journals (Sweden)

    H. Sanaeepur

    2013-01-01

    Full Text Available CO2/CH4 gas separation is a very important applicatable process in upgrading the natural gas and landfil gas recovery. In this work, to investigate the membrane separation process performance, the gas permeation results andCO2/CH4 separation characteristics of different prepared membranes (via blending different molecular weights of polyethylene glycol (PEG as a modifier with acrylonitrile-butadiene-styrene (ABS as a backbone structure have been studied. Furthermore, SEM analysis was carried out for morphological investigations. The effect of PEG content on gas transport properties on the selected sample was also studied. The effect of pressure on CO2 permeation was examined and showed that at the pressure beyond 4 bar, permeability is not affected by pressure. The results showed that more or less in all cases, incorporation of PEG molecules without any significant increase in CH4 permeability increases the CO2/CH4 selectivity. From the view point of gas separation applications the resultant data are within commercial attractive range

  1. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.

    Science.gov (United States)

    Wang, Jun; Krishna, Rajamani; Yang, Jiangfeng; Deng, Shuguang

    2015-08-04

    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were characterized with scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. CO2, CH4, and N2 adsorption isotherms were measured and correlated with the Langmuir model. An ideal adsorbed solution theory (IAST) selectivity for the CO2/N2 separation of 26.5 (298 K, 1 atm) was obtained on the hydroquinone-grafted carbon, which is 58.7% higher than that of the pristine porous carbon, and a CO2/CH4 selectivity value of 4.6 (298 K, 1 atm) was obtained on the quinone-grafted carbon (OAC-2), which represents a 28.4% improvement over the pristine porous carbon. The highest CO2 adsorption capacity on the oxygen-doped carbon adsorbents is 3.46 mmol g(-1) at 298 K and 1 atm. In addition, transient breakthrough simulations for CO2/CH4/N2 mixture separation were conducted to demonstrate the good separation performance of the oxygen-doped carbons in fixed bed adsorbers. Combining excellent adsorption separation properties and low heats of adsorption, the oxygen-doped carbons developed in this work appear to be very promising for flue gas treatment and natural gas upgrading.

  2. C2A2 Project - CO2 Capture by Advances Amines process

    International Nuclear Information System (INIS)

    Thybaud, Nathalie

    2014-06-01

    This publication presents the operation principles and the obtained results for a research demonstrator developed in Le Havre by EDF and Alstom for CO 2 capture by post-combustion. The implemented technology, developed by Alstom and DOX Chemical is named Advanced Amines Processes (AAP). This process comprises the use of solvent and a specific process scheme (the Advanced Flow Scheme or AFS). The smoke treatment chain of the installation is described, and the valorisation of combustion by-products and of smoke processing operations is indicated. The capacities of the installation are given. Systems aimed at increasing the solvent lifetime are described, and some operational parameters are indicated. Various aspects related to the demonstrator design, construction and operation are discussed. Results obtained during tests between October 2013 and March 2014 are given and discussed in terms of quantity of captured CO 2 , of energy performance, of solvent management and consumption, of emissions, of corrosion, of exploitation organisation, and of instrumentation verification and data quality

  3. Estimating CO{sub 2} Emission Reduction of Non-capture CO{sub 2} Utilization (NCCU) Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo [KEPCO Research Institute, Daejon (Korea, Republic of); Choi, Jong Shin [Korea East-West Power Co., LTD(ETP), Ulsan (Korea, Republic of)

    2015-10-15

    Estimating potential of CO{sub 2} emission reduction of non-capture CO{sub 2} utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO{sub 2} contained in the flue gas. For the estimating the CO{sub 2} emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO{sub 2} of 100 tons per day was performed, Also for the estimation of the indirect CO{sub 2} reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO{sub 2} emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO{sub 3} (7.4 GJ/tNaHCO{sub 3}). While for the NCCU technology, the direct CO{sub 2} reduction through the CO{sub 2} carbonation was estimated as 36,500 ton per year and the indirect CO{sub 2} reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO{sub 2} contained in the flue was energy efficient and could be one of the promising technology for the low CO{sub 2} emission technology.

  4. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Amorvadee Veawab

    2006-04-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The final campaign of the pilot plant was completed in February 2006 with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ using Flexipac AQ Style 20. The new cross-exchanger reduced the approach temperature to less than 9 C. Stripper modeling has demonstrated that a configuration with a ''Flashing Feed'' requires 6% less work that a simple stripper. The oxidative degradation of piperazine proceeds more slowly than that of monoethanolamine and produces ethylenediamine and other products. Uninhibited 5 m KHCO{sub 3}/2.5 m PZ corrodes 5 to 6 times faster that 30% MEA with 0.2 mol CO{sub 2}/mol MEA.

  5. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part A: Methodology and reference cases

    Science.gov (United States)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-08-01

    Driven by the search for the highest theoretical efficiency, in the latest years several studies investigated the integration of high temperature fuel cells in natural gas fired power plants, where fuel cells are integrated with simple or modified Brayton cycles and/or with additional bottoming cycles, and CO2 can be separated via chemical or physical separation, oxy-combustion and cryogenic methods. Focusing on Solid Oxide Fuel Cells (SOFC) and following a comprehensive review and analysis of possible plant configurations, this work investigates their theoretical potential efficiency and proposes two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs integrated with a steam turbine or gas turbine cycle. The SOFC works at atmospheric or pressurized conditions and the resulting power plant exceeds 78% LHV efficiency without CO2 capture (as discussed in part A of the work) and 70% LHV efficiency with substantial CO2 capture (part B). The power plants are simulated at the 100 MW scale with a complete set of realistic assumptions about fuel cell (FC) performance, plant components and auxiliaries, presenting detailed energy and material balances together with a second law analysis.

  6. Novel Concept For Hydrogen And CO2 Separation

    International Nuclear Information System (INIS)

    Adam Campen; Kanchan Mondal; Tomasz Wiltowski; Tomasz Wiltowski

    2006-01-01

    The process was developed for the separation of hydrogen from coal gasification based syngas components for end uses such as clean energy production. The process is flexible such that it can be used within the gasifier to separate hydrogen or as a separate unit process, depending on the requirements of the process design. The basic idea of the research was to design and apply solids to be used in a fixed bed reactor that will increase the hydrogen yield as well as capture greenhouse gases in its matrix through reaction. The end product envisioned in this process is pure hydrogen. The spent solids were then regenerated thermo neutrally while releasing sequestration-ready carbon dioxide. The research involved the validation of the process along with the evaluation of the process parameters to maximize the hydrogen content in the product stream. The effect of sulfur (present as H 2 S) in the product stream on the process efficiency was also evaluated. Most importantly, the solids were designed such that they have the maximum selectivity to the beneficial reactions while maintaining their structure and activity through the reaction-regeneration cycles. Iron (created by reduction of hematite with syngas) was selected as the Boudouard catalyst and CaO was selected as the carbon dioxide removal material. Thermogravimetric (TG) and Temperature Programmed Reduction (TPR) Analysis were utilized to evaluate the reaction rate parameters, and capacity for CO 2 . Specially synthesized CaO (wherein the surface properties were modified) was found to provide better capacity and reaction rates as compared to commercially available CaO. In addition, these specially synthesized CaO-based sorbent showed lower deactivation over multiple cycles. Experiments were also performed with different compositions of syngas to identify the optimal conditions for pure H 2 production. Finally, simultaneous coal gasification and hydrogen enrichment experiments were conducted. It was found that for a

  7. CO2 emission standards and investment in carbon capture

    International Nuclear Information System (INIS)

    Eide, Jan; Sisternes, Fernando J. de; Herzog, Howard J.; Webster, Mort D.

    2014-01-01

    Policy makers in a number of countries have proposed or are considering proposing CO 2 emission standards for new fossil fuel-fired power plants. The proposed standards require coal-fired power plants to have approximately the same carbon emissions as an uncontrolled natural gas-fired power plant, effectively mandating the adoption of carbon capture and sequestration (CCS) technologies for new coal plants. However, given the uncertainty in the capital and operating costs of a commercial scale coal plant with CCS, the impact of such a standard is not apparent a priori. We apply a stochastic generation expansion model to determine the impact of CO 2 emission standards on generation investment decisions, and in particular for coal plants with CCS. Moreover, we demonstrate how the incentive to invest in coal-CCS from emission standards depends on the natural gas price, the CO 2 price, and the enhanced oil recovery price, as well as on the level of the emission standard. This analysis is the first to consider the entire power system and at the same time allow the capture percentage for CCS plants to be chosen from a continuous range to meet the given standard at minimum cost. Previous system level studies have assumed that CCS plants capture 90% of the carbon, while studies of individual units have demonstrated the costs of carbon capture over a continuous range. We show that 1) currently proposed levels of emission standards are more likely to shift fossil fuel generation from coal to natural gas rather than to incentivize investment in CCS; 2) tighter standards that require some carbon reductions from natural gas-fired power plants are more likely than proposed standards to incentivize investments in CCS, especially on natural gas plants, but also on coal plants at high gas prices; and 3) imposing a less strict emission standard (emission rates higher than natural gas but lower than coal; e.g., 1500 lbs/MWh) is more likely than current proposals to incentivize

  8. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiaoguo

    2015-09-30

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references. In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.

  9. Light-Triggered CO2 Breathing Foam via Nonsurfactant High Internal Phase Emulsion.

    Science.gov (United States)

    Zhang, Shiming; Wang, Dingguan; Pan, Qianhao; Gui, Qinyuan; Liao, Shenglong; Wang, Yapei

    2017-10-04

    Solid materials for CO 2 capture and storage have attracted enormous attention for gaseous separation, environmental protection, and climate governance. However, their preparation and recovery meet the problems of high energy and financial cost. Herein, a controllable CO 2 capture and storage process is accomplished in an emulsion-templated polymer foam, in which CO 2 is breathed-in under dark and breathed-out under light illumination. Such a process is likely to become a relay of natural CO 2 capture by plants that on the contrary breathe out CO 2 at night. Recyclable CO 2 capture at room temperature and release under light irradiation guarantee its convenient and cost-effective regeneration in industry. Furthermore, CO 2 mixed with CH 4 is successfully separated through this reversible breathing in and out system, which offers great promise for CO 2 enrichment and practical methane purification.

  10. Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was

  11. Measurement and Modelling of the Piperazine Potassium Carbonate Solutions for CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Waseem Arshad, Muhammad

    The climate is in a critical state due to the impact of pollution by CO2 and similar greenhouse gasses. Action needs to be taken in order reduce the emission of harmful components. CO2 capture is one process to help the world population back on track in order to return to normal condition...... with the purpose of simulating the CO2 capture process. This involves equilibrium studies on physical properties in the activated carbonate solvent. Energy consumption while applying the promoted carbonate solutions using piperazine is given in overview....

  12. CO2 Fixation by Membrane Separated NaCl Electrolysis

    DEFF Research Database (Denmark)

    Park, Hyun Sic; Lee, Ju Sung; Han, Junyoung

    2015-01-01

    for converting CO2 into CaCO3 requires high temperature and high pressure as reaction conditions. This study proposes a method to fixate CaCO3 stably by using relatively less energy than existing methods. After forming NaOH absorbent solution through electrolysis of NaCl in seawater, CaCO3 was precipitated...... crystal product was high-purity calcite. The study shows a successful method for fixating CO2 by reducing carbon dioxide released into the atmosphere while forming high-purity CaCO3.......Atmospheric concentrations of carbon dioxide (CO2), a major cause of global warming, have been rising due to industrial development. Carbon capture and storage (CCS), which is regarded as the most effective way to reduce such atmospheric CO2 concentrations, has several environmental and technical...

  13. Metal Monolithic Amine-grafted Zeolite for CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven

    2011-03-31

    The solid amine sorbent for CO{sub 2} capture process has advantages of simplicity and low operating cost compared to the MEA (monoethanolamine) process. Solid amine sorbents reported so far suffered from either low CO{sub 2} capture capacity or low stability. The solid amine sorbent developed in this project exhibited more than 3.2 mmol/g and degraded less than 10% even after 500 cycles of heating and cooling in absence of steam. The presence of steam further enhanced CO{sub 2} capture capacity. The cost of the sorbent is estimated to be less than $7.00/lb. This sorbent was developed using the results of in situ infrared spectroscopic study. Infrared results showed that CO{sub 2} adsorbs on TEPA (tetraethylenepentamine)/PEG (polyethylene glycol) as carbamates and bicarbonates. The CO{sub 2} adsorption capacity and oxidation resistance of the amine sorbent can be enhanced by the interactions between NH{sub 2} of TEPA molecules with the OH group of PEG molecules. PEG was also found to be effectively disperse and immobilize the aromatic amines for SO{sub 2} adsorption. The infrared study also showed that SiO{sub 2} is a significantly better support than zeolites due to its proper hydrophobicity. The results of this study led to the development of a high performance solid amine sorbent under simulated gas flow condition in a fixed bed, a fluidized bed, and a metal monolith unit. This study showed heat transfer could become a major technical issue in scaling up a fixed bed adsorber. The use of the fluidized bed and metal monoliths can alleviate the heat transfer issue. The metal monolith could be suitable for small scale applications due to the high cost of manufacturing; the fluidized bed mode would be most suitable for large scale applications. Preliminary economic analysis suggested that the Akron solid amine process would cost 45% less than that of MEA process.

  14. Efficient Regeneration of Physical and Chemical Solvents for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Tande, Brian [Univ. of North Dakota, Grand Forks, ND (United States); Seames, Wayne [Univ. of North Dakota, Grand Forks, ND (United States); Benson, Steve [Univ. of North Dakota, Grand Forks, ND (United States)

    2013-12-01

    The objective of this project was to evaluate the use of composite polymer membranes and porous membrane contactors to regenerate physical and chemical solvents for capture of carbon dioxide (CO2) from synthesis gas or flue gas, with the goal of improving the energy efficiency of carbon capture. Both a chemical solvent (typical for a post-combustion capture of CO2 from flue gas) and a physical solvent (typical for pre- combustion capture of CO2 from syngas) were evaluated using two bench-scale test systems constructed for this project. For chemical solvents, polytetrafluoroethylene and polypropylene membranes were found to be able to strip CO2 from a monoethanolamine (MEA) solution with high selectivity without significant degradation of the material. As expected, the regeneration temperature was the most significant parameter affecting the CO2 flux through the membrane. Pore size was also found to be important, as pores larger than 5 microns lead to excessive pore wetting. For physical solvents, polydimethyl-siloxane (PDMS)-based membranes were found to have a higher CO2 permeability than polyvinylalcohol (PVOH) based membranes, while also minimizing solvent loss. Overall, however, the recovery of CO2 in these systems is low – less than 2% for both chemical and physical solvents – primarily due to the small surface area of the membrane test apparatus. To obtain the higher regeneration rates needed for this application, a much larger surface area would be needed. Further experiments using, for example, a hollow fiber membrane module could determine if this process could be commercially viable.

  15. Assessment of technologies for CO{sub 2} capture and storage. Final report; Verfahren zur CO{sub 2}-Abscheidung und -Speicherung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Radgen, Peter; Cremer, Clemens; Warkentin, Sebastian [Fraunhofer-Inst. fuer Systemtechnik und Innovationsforschung, Karlsruhe (Germany); Gerling, Peter; May, Franz; Knopf, Stephan [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    2006-08-15

    The aim of this study was to summarize the actual status for carbon capture, transport and storage for CO{sub 2} emissions from power stations. Special interest was given to the implications from the introduction of carbon capture and storage in power stations on the efficiency, emissions and cost for electricity generation. In the beginning a detailed analyses of the national, European and international activities in this field have been conducted. The analysis focussed on the identification of main actors and the different co-operation of actors. To do so, the available literature has been studied and analysed with a bibliometric approach, which has taken also presentations at national and international conferences into account. In a second step a technical analysis has been undertaken for the three main routes for carbon capture (pre-combustion capture; post-combustion capture, oxy-fuel combustion) with a special emphasis on the impact to the Environment. Truck, ship and pipeline transport have been analysed as means for transporting the CO{sub 2} from the power station to the storage site. In addition the different storage options for a secure long term storage of the captured CO{sub 2} are studied in the report. Special attention was given to the storage options in gasfields and saline aquifers which will be the most promising options in Germany. The report gives an actual overview on the status of carbon capture and storage in the world. It therefore supports the decision making process when introducing this new technology, taking into account the environmental effects. (orig.)

  16. CO{sub 2} CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; J.Tim Cullinane; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas

    2005-01-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Thermodynamic modeling predicts that the heat of desorption of CO{sub 2} from 5m K+/2.5 PZ from 85 kJ/mole at 40 C to 30 kJ/mole at 120 C. Mass transfer modeling of this solvent suggests that carbonate and general salt concentration play a major role in catalyzing the rate of reaction of CO{sub 2} with piperazine. Stripper modeling suggests that with the multipressure stripper, the energy consumption with a generic solvent decreases by 15% as the heat of desorption is decreased from 23.8 to 18.5 kcal/gmol. A second pilot plant campaign with 5m K+/2.5 PZ was successfully completed.

  17. CO2 Capture from Flue Gas using Amino Acid Salt Solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    2009-01-01

    difficult. Amino acid salt solutions have emerged as an alternative to the alkanolamine solutions. A number of advantages make amino acid salt solutions attractive solvents for CO2 capture from flue gas. In the present study CO2 absorption in aqueous solutions of 0.5 M potassium glycinate and 0.5 M...

  18. Directed technical change and the adoption of CO{sub 2} abatement technology. The case of CO{sub 2} capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Vincent M.; Reilly, John [Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2008-11-15

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO{sub 2}-trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO{sub 2} abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO{sub 2} emissions associated with energy use, directed technical change and the economy. We specify CO{sub 2} capture and storage (CCS) as a discrete CO{sub 2} abatement technology. We find that combining CO{sub 2}-trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  19. Summary report of working group I CO{sub 2} capture, fixation/utilization, and disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The topics of our working group were divided into four key areas: CO{sub 2} Capture, Utilization/Fixation, Ocean Disposal, and Land Disposal. Fourteen presentations were made as follows: CO{sub 2} Capture: Toshikatsu Hakuta (Japan) and Rod Judkins, Bruce St. John, and Alan Wolsky (US). Utilization/Fixation: Hironori Arakawa, Yasuo Asada, and Takashi lbusuki (Japan) and Ed Lipinsky (US). Ocean Disposal: Yuji Shindo (Japan) and Eric Adams, Gerard Nihous, and Wheeler North (US). Land Disposal: Shoichi Tanaka (Japan) and Roger Bailey (US/Canada). Co-chairs for this working group were Toshikatsu Hakuta (Japan) and Howard Herzog (US). This document contains only a summary outline of research needs in the area of CO{sub 2} capture and sequestration. It should be used in conjunction with other assessments made in this area. For the U.S., a DOE report entitled A Research Needs Assessment for the Capture, Utilization and Disposal of Carbon Dioxide from Fossil Fuel-Fired Power Plants will be forthcoming in 1993.

  20. Experimental Studies of CO2 Capturing from the Flue Gases

    Directory of Open Access Journals (Sweden)

    Ehsan Rahmandoost

    2014-10-01

    Full Text Available CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600 for this purpose, a small pilot plant was used. This paper presents the results of studies on chemical methods of absorbing CO2 from flue gases with the new solvent, and evaluates the effects of operating conditions on CO2 absorption efficiency. CO2 removal rate of the AIT600 solvent was higher in comparison to the conventional monoethanolamine (MEA solvent. The optimized temperature of the absorber column was 60 °C for CO2 absorption in this pilot plant. The overall absorption rate (Φ and the volumetric overall mass transfer coefficient (KGaV were also investigated.

  1. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  2. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    , whereas in a normal cement plant, it is 0.9 kg/ kg cl. However the thermal energy demand in the integrated plant increases from 3.9 MJ/ kg cl to 5.6 MJ/ kg cl. But on the other side this additional energy spent can be recovered as a high quality heat to generate electricity. The potential to generate...... electricity depends on the scale of the plant, the bigger the production capacity of cement plant the better, with capacity higher than 3400 tons of clinker/day is required to produce captive electricity to meet the demand both from the cement plant operations and from the CO2 capture system operations....

  3. Hollow fiber membrane contactors for CO2 capture: modeling and up-scaling to CO2 capture for an 800 MWe coal power station

    NARCIS (Netherlands)

    Kimball, E.; Al-Azki, A.; Gomez, A.; Goetheer, E.L.V.; Booth, N.; Adams, D.; Ferre, D.

    2014-01-01

    A techno-economic analysis was completed to compare the use of Hollow Fiber Membrane Modules (HFMM) with the more conventional structured packing columns as the absorber in amine-based CO2capture systems for power plants. In order to simulate the operation of industrial scale HFMMsystems, a

  4. CO2 capture and storage: Another Faustian Bargain?

    International Nuclear Information System (INIS)

    Spreng, Daniel; Marland, Gregg; Weinberg, Alvin M.

    2007-01-01

    A quarter-century ago, one of us termed the use of nuclear energy a Faustian Bargain. In this paper, we discuss what a Faustian Bargain means, how the expression has been used in characterizing other technologies, and in what measure CO 2 capture and storage is a Faustian Bargain. If we are about to enter into another Faustian Bargain, we should understand the contract

  5. Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances

    International Nuclear Information System (INIS)

    Johansson, Daniella; Franck, Per-Åke; Pettersson, Karin; Berntsson, Thore

    2013-01-01

    The impact on CO 2 emissions of integrating new technologies (a biomass-to-Fischer–Tropsch fuel plant and a post-combustion CO 2 capture plant) with a complex refinery has previously been investigated separately by the authors. In the present study these designs are integrated with a refinery and evaluated from the point-of-view of economics and GHG (greenhouse gas emissions) emissions and are compared to a reference refinery. Stand-alone Fischer–Tropsch fuel production is included for comparison. To account for uncertainties in the future energy market, the assessment has been conducted for different future energy market conditions. For the post-combustion CO 2 capture process to be profitable, the present study stresses the importance of a high charge for CO 2 emission. A policy support for biofuels is essential for the biomass-to-Fischer–Tropsch fuel production to be profitable. The level of the support, however, differs depending on scenario. In general, a high charge for CO 2 economically favours Fischer–Tropsch fuel production, while a low charge for CO 2 economically favours Fischer–Tropsch fuel production. Integrated Fischer–Tropsch fuel production is most profitable in scenarios with a low wood fuel price. The stand-alone alternative shows no profitability in any of the studied scenarios. Moreover, the high investment costs make all the studied cases sensitive to variations in capital costs. - Highlights: • Comparison of Fischer–Tropsch (FT) fuel production and CO 2 capture at a refinery. • Subsidies for renewable fuels are essential for FT fuel production to be profitable. • A high charge for CO 2 is essential for post-combustion CO 2 capture to be profitable. • A low charge for CO 2 economically favours FT fuel production. • Of the studied cases, CO 2 capture shows the greatest reduction in GHG emissions

  6. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high-performance adsorbents is one of the most promising solutions to the success of these processes. The present review is focused on the state-of-the-art of carbon-based (carbonaceous) adsorbents, covering microporous inorganic carbons and microporous organic polymers, with emphasis on the correlation between their textural and compositional properties and their CO2 adsorption/separation performance. Special attention is given to the most recently developed materials that were not covered in previous reviews. We summarize various effective strategies (N-doping, surface functionalization, extra-framework ions, molecular design, and pore size engineering) for enhancing the CO2 adsorption capacity and selectivity of carbonaceous adsorbents. Our discussion focuses on CO2/N2 separation and CO2/CH4 separation, while including an introduction to the methods and criteria used for evaluating the performance of the adsorbents. Critical issues and challenges regarding the development of high-performance adsorbents as well as some overlooked facts and misconceptions are also discussed, with the aim of providing important insights into the design of novel carbonaceous porous materials for various selective adsorption based applications. This journal is © The Royal Society of Chemistry.

  7. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization

    KAUST Repository

    Park, Youngjune

    2011-01-01

    Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature of the grafted polymeric canopy allows for enhanced CO 2 capture capacity and selectivity via the enthalpic intermolecular interactions between CO2 and the task-specific functional groups, such as amines. Interestingly, for the same amount of CO2 loading NOHMs have also exhibited significantly different swelling behavior compared to that of the corresponding polymers, indicating a potential structural effect during CO2 capture. If the frustrated canopy species favor spontaneous ordering due to steric and/or entropic effects, the inorganic cores of NOHMs could be organized into unusual structural arrangements. Likewise, the introduction of small gaseous molecules such as CO2 could reduce the free energy of the frustrated canopy. This entropic effect, the result of unique structural nature, could allow NOHMs to capture CO2 more effectively. In order to isolate the entropic effect, NOHMs were synthesized without the task-specific functional groups. The relationship between their structural conformation and the underlying mechanisms for the CO2 absorption behavior were investigated by employing NMR and ATR FT-IR spectroscopies. The results provide fundamental information needed for evaluating and developing novel liquid-like CO2 capture materials and give useful insights for designing and synthesizing NOHMs for more effective CO2 capture. © the Owner Societies 2011.

  8. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization.

    Science.gov (United States)

    Park, Youngjune; Decatur, John; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa

    2011-10-28

    Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature of the grafted polymeric canopy allows for enhanced CO(2) capture capacity and selectivity via the enthalpic intermolecular interactions between CO(2) and the task-specific functional groups, such as amines. Interestingly, for the same amount of CO(2) loading NOHMs have also exhibited significantly different swelling behavior compared to that of the corresponding polymers, indicating a potential structural effect during CO(2) capture. If the frustrated canopy species favor spontaneous ordering due to steric and/or entropic effects, the inorganic cores of NOHMs could be organized into unusual structural arrangements. Likewise, the introduction of small gaseous molecules such as CO(2) could reduce the free energy of the frustrated canopy. This entropic effect, the result of unique structural nature, could allow NOHMs to capture CO(2) more effectively. In order to isolate the entropic effect, NOHMs were synthesized without the task-specific functional groups. The relationship between their structural conformation and the underlying mechanisms for the CO(2) absorption behavior were investigated by employing NMR and ATR FT-IR spectroscopies. The results provide fundamental information needed for evaluating and developing novel liquid-like CO(2) capture materials and give useful insights for designing and synthesizing NOHMs for more effective CO(2) capture. This journal is © the Owner Societies 2011

  9. Developments and innovation in carbon dioxide (CO{sub 2}) capture and storage technology. Volume 1: carbon dioxide (CO{sub 2}) capture, transport and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Mercedes Maroto-Valer, M. (ed.)

    2010-07-01

    This volume initially reviews the economics, regulation and planning of CCS for power plants and industry, and goes on to explore developments and innovation in post- and pre-combustion and advanced combustion processes and technologies for CO{sub 2} capture in power plants. This coverage is extended with sections on CO{sub 2} compression, transport and injection and industrial applications of CCS technology, including in the cement and concrete and iron and steel industries.

  10. Electricity consumption and CO2 capture potential in Spain

    International Nuclear Information System (INIS)

    Romeo, Luis M.; Calvo, Elena; Valero, Antonio; De Vita, Alessia

    2009-01-01

    In this paper, different electricity demand scenarios for Spain are presented. Population, income per capita, energy intensity and the contribution of electricity to the total energy demand have been taken into account in the calculations. Technological role of different generation technologies, i.e. coal, nuclear, renewable, combined cycle (CC), combined heat and power (CHP) and carbon capture and storage (CCS), are examined in the form of scenarios up to 2050. Nine future scenarios corresponding to three electrical demands and three options for new capacity: minimum cost of electricity, minimum CO 2 emissions and a criterion with a compromise between CO 2 and cost (CO 2 -cost criterion) have been proposed. Calculations show reduction in CO 2 emissions from 2020 to 2030, reaching a maximum CO 2 emission reduction of 90% in 2050 in an efficiency scenario with CCS and renewables. The contribution of CCS from 2030 is important with percentage values of electricity production around 22-28% in 2050. The cost of electricity (COE) increases up to 25% in 2030, and then this value remains approximately constant or decreases slightly.

  11. Recent Advances in Anhydrous Solvents for CO{sub 2} Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngjune [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of); Lin, Kun-Yi Andrew [Department of Environmental Engineering, National Chung Hsing University, Taichung City (China); Park, Ah-Hyung Alissa, E-mail: ap2622@columbia.edu [Department of Earth and Environmental Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, NY (United States); Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, NY (United States); Petit, Camille, E-mail: ap2622@columbia.edu [Department of Chemical Engineering, Imperial College London, London (United Kingdom)

    2015-10-01

    CO{sub 2} capture by amine scrubbing, which has a high CO{sub 2} capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO{sub 2} capture from flue gases. The findings from these demonstrations will significantly advance the field of CO{sub 2} capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO{sub 2} capture solvents including high volatility and corrosiveness of the amine solutions as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO{sub 2} capture solvents, which are often anhydrous, have been developed as the third-generation CO{sub 2} capture solvents. These novel classes of liquid materials include ionic liquids, CO{sub 2}-triggered switchable solvents (i.e., CO{sub 2}-binding organic liquids, reversible ionic liquids), and nanoparticle organic hybrid materials. This paper provides a review of these various anhydrous solvents and their potential for CO{sub 2} capture. Particular attention is given to the mechanisms of CO{sub 2} absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO{sub 2} capture media.

  12. A Highly Stable Microporous Covalent Imine Network Adsorbent for Natural Gas Upgrading and Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar

    2016-06-06

    The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70 to 100 nm. This network featured permanent porosity with a high surface area (722 m2g-1) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32 mmol/g and 1.14 mmol/g, respectively, at 273 K and 1 bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298 K and 1 bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61 kJ mol-1 and QstCO2; 42.42 kJ mol-1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/ CH4, CO2/N2 and CH4/N2, has not been extensively explored.

  13. Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, Alexander P; Kitchin, John R

    2013-08-01

    Post combustion CO{sub 2} capture is most commonly carried out using an amine solution that results in a high parasitic energy cost in the stripper unit due to the need to heat the water which comprises a majority of the amine solution. It is also well known that amine solvents suffer from stability issues due to amine leaching and poisoning by flue gas impurities. Solid sorbents provide an alternative to solvent systems that would potentially reduce the energy penalty of carbon capture. However, the cost of using a particular sorbent is greatly affected by the usable lifetime of the sorbent. This work investigated the stability of a primary amine-functionalized ion exchange resin in the presence of O{sub 2} and SO{sub 2}, both of which are constituents of flue gas that have been shown to cause degradation of various amines in solvent processes. The CO{sub 2} capture capacity was measured over multiple capture cycles under continuous exposure to two simulated flue gas streams, one containing 12 vol% CO{sub 2}, 4% O{sub 2}, 84% N{sub 2}, and the other containing 12.5 vol% CO{sub 2}, 4% O{sub 2}, 431 ppm SO{sub 2}, balance N{sub 2} using a custom-built packed bed reactor. The resin maintained its CO{sub 2} capture capacity of 1.31 mol/kg over 17 capture cycles in the presence of O{sub 2} without SO{sub 2}. However, the CO{sub 2} capture capacity of the resin decreased rapidly under exposure to SO{sub 2} by an amount of 1.3 mol/kg over 9 capture cycles. Elemental analysis revealed the resin adsorbed 1.0 mol/kg of SO{sub 2}. Thermal regeneration was determined to not be possible. The poisoned resin was, however, partially regenerated with exposure to 1.5M NaOH for 3 days resulting in a 43% removal of sulfur, determined through elemental analysis, and a 35% recovery of CO{sub 2} capture capacity. Evidence was also found for amine loss upon prolonged (7 days) continuous exposure to high temperatures (120 C) in air. It is concluded that desulfurization of the flue gas

  14. Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO_2 capture

    International Nuclear Information System (INIS)

    Pan, Ming; Aziz, Farah; Li, Baohong; Perry, Simon; Zhang, Nan; Bulatov, Igor; Smith, Robin

    2016-01-01

    Highlights: • A new approach is proposed for retrofitting NGCC power plants with CO2 capture. • HTI techniques are developed for improving heat recovery in NGCC power plants. • EGR techniques are developed to increase the process overall energy efficiency. • The proposed methods are efficient for practical application. - Abstract: Around 21% of the world’s power production is based on natural gas. Energy production is considered to be the significant sources of carbon dioxide (CO_2) emissions. This has a significant effect on the global warming. Improving power plant efficiency and adding a CO_2 capture unit into power plants, have been suggested to be a promising countermeasure against global warming. This paper presents a new insight to the application of energy efficient technologies in retrofitting natural gas combined cycle (NGCC) power plants with CO_2 capture. High fidelity models of a 420 MW NGCC power plant and a CO_2 capture plant with CO_2 compression train have been built and integrated for 90% capture level. These models have been then validated by comparisons with practical operating data and literature results. The novelty of the paper is to propose optimal retrofitting strategies to minimize the efficiency penalty caused by integrating carbon capture units into the power plant, including (1) implementing heat transfer intensification techniques to increase energy saving in the heat recovery steam generator (HRSG) of the power plant; (2) extracting suitable steam from the HRSG to supply the heat required by the capture process, thus on external heat is purchased; (3) employing exhaust gas recirculation (EGR) to increase the overall energy efficiency of the integrated process, which can benefit both power plant (e.g. increasing power plant efficiency) and capture process (e.g. reducing heat demands). Compared with the base case without using any integrating and retrofitting strategies, the optimal solution based on the proposed approaches

  15. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

  16. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO{sub 2} capture from H{sub 2}/CO{sub 2} binary gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Yoon; Park, Myung-June [Ajou University, Suwon (Korea, Republic of); Hwang, Kyung-Ran; Park, Jong-Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-07-15

    A Pd-based membrane module for the capture of CO{sub 2} from a H{sub 2}/CO{sub 2} binary gas mixture was considered, and computational fluid dynamics modeling was used to predict the module performance. Detailed models of momentum and mass balances, including local flux as a function of local linear velocity, satisfactorily described CO{sub 2} fraction in a retentate tube when compared to the experimental data under various feed flow rates. By using the model, several cases having different geometries, including the location and diameter of feed tube and the number and location of the feed and retentate tubes, were considered. Among tested geometries, the case of two feed tubes with each offset by an angle, θ, of 45° from the center line, and a feed tube diameter of 2.45mm showed the increase of the feed flow rate up to 11.80% compared to the reference case while a CO{sub 2} fraction of 90% in the retentate, which was the criterion for effective CO{sub 2} capture in the present study, was guaranteed. This would result in a plausible reduction in capital expenditures for the CO{sub 2} capture process.

  17. A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.

    2006-02-23

    Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture

  18. On the limits of CO2 capture capacity of carbons

    OpenAIRE

    Fernández Martín, Claudia; González Plaza, Marta; Pis Martínez, José Juan; Rubiera González, Fernando; Pevida García, Covadonga; Álvarez Centeno, Teresa

    2010-01-01

    This study shows that standard techniques used for carbons characterization, such as physical adsorption of CO2 at 273 K and N2 at 77 K, can be used to assess, with a good accuracy, the maximum capacity of carbons to capture CO2 under post- and pre-combustion conditions. The analysis of the corresponding adsorption isotherms, within the general theoretical framework of Dubinin's theory, leads to the values of the micropore volume, Wo, and the characteristic energy, Eo, of the carbons, which p...

  19. Assessment of Ademe's R and D actions for the CO2 capture and storage sector

    International Nuclear Information System (INIS)

    2015-05-01

    This publication presents research actions and projects supported by the ADEME in the field of CO 2 capture and storage. This programme aims at promoting the emergence of significant innovations, at developing the national technology portfolio, at identifying and reducing uncertainties related to exploitation, and at developing and strengthening its technological integration in manufacturing industry and energy sectors. While indicating the invested amount, research demonstrator projects are mentioned. Results obtained between 2007 and 2013 in different fields are briefly described: technical-economic studies or pre-feasibility studies, CO 2 capture (capture in post-combustion or in oxy-combustion), CO 2 geological storage (site selection, knowledge development on storage site sustainability, safety of CO 2 storage sites, monitoring of CO 2 storage sites, environmental impacts of storage sites), and issue of social feasibility of CO 2 capture and storage

  20. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks.

    Science.gov (United States)

    Yu, Jiamei; Ma, Yuguang; Balbuena, Perla B

    2012-05-29

    Molecular modeling methods are used to estimate the influence of impurity species: water, O(2), and SO(2) in flue gas mixtures present in postcombustion CO(2) capture using a metal organic framework, HKUST-1, as a model sorbent material. Coordinated and uncoordinated water effects on CO(2) capture are analyzed. Increase of CO(2) adsorption is observed for both cases, which can be attributed to the enhanced binding energy between CO(2) and HKUST-1 due to the introduction of a small amount of water. Density functional theory calculations indicate that the binding energy between CO(2) and HKUST-1 with coordinated water is ~1 kcal/mol higher than that without coordinated water. It is found that the improvement of CO(2)/N(2) selectivity induced by coordinated water may mainly be attributed to the increased CO(2) adsorption on the hydrated HKUST-1. On the other hand, the enhanced selectivity induced by uncoordinated water in the flue gas mixture can be explained on the basis of the competition of adsorption sites between water and CO(2) (N(2)). At low pressures, a significant CO(2)/N(2) selectivity increase is due to the increase of CO(2) adsorption and decrease of N(2) adsorption as a consequence of competition of adsorption sites between water and N(2). However, with more water molecules adsorbed at higher pressures, the competition between water and CO(2) leads to the decrease of CO(2) adsorption capacity. Therefore, high pressure operation should be avoided in HKUST-1 sorbents for CO(2) capture. In addition, the effects of O(2) and SO(2) on CO(2) capture in HKUST-1 are investigated: The CO(2)/N(2) selectivity does not change much even with relatively high concentrations of O(2) in the flue gas (up to 8%). A slightly lower CO(2)/N(2) selectivity of a CO(2)/N(2)/H(2)O/SO(2) mixture is observed compared with that in a CO(2)/N(2)/H(2)O mixture, especially at high pressures, due to the strong SO(2) binding with HKUST-1.

  1. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  2. OCTAVIUS: a FP7 project demonstrating CO2 capture technologies

    NARCIS (Netherlands)

    Broutin, P.; Kvamsdal, H.M.; La Marca, C.; Os, P.J. van; Robinson, L.

    2014-01-01

    The OCTAVIUS project (Optimisation of CO2 Capture Technology Allowing Verification and Implementation at Utility Scale) has started on March 1st 2012 for a period of 5 years, as part of the 7th Framework Programme of the European Commission. Gathering 15 European and 2 South African partners,

  3. CO2 Capture and Storage in Coal Gasification Projects

    Science.gov (United States)

    Rao, Anand B.; Phadke, Pranav C.

    2017-07-01

    In response to the global climate change problem, the world community today is in search for an effective means of carbon mitigation. India is a major developing economy and the economic growth is driven by ever-increasing consumption of energy. Coal is the only fossil fuel that is available in abundance in India and contributes to the major share of the total primary energy supply (TPES) in the country. Owing to the large unmet demand for affordable energy, primarily driven by the need for infrastructure development and increasing incomes and aspirations of people, as well as the energy security concerns, India is expected to have continued dependence on coal. Coal is not only the backbone of the electric power generation, but many major industries like cement, iron and steel, bricks, fertilizers also consume large quantities of coal. India has very low carbon emissions (˜ 1.5 tCO2 per capita) as compared to the world average (4.7 tCO2 per capita) and the developed world (11.2 tCO2 per capita). Although the aggregate emissions of the country are increasing with the rising population and fossil energy use, India has a very little contribution to the historical GHG accumulation in the atmosphere linked to the climate change problem. However, a large fraction of the Indian society is vulnerable to the impacts of climate change - due to its geographical location, large dependence on monsoon-based agriculture and limited technical, financial and institutional capacity. Today, India holds a large potential to offer cost-effective carbon mitigation to tackle the climate change problem. Carbon Capture and Storage (CCS) is the process of extraction of Carbon Dioxide (CO2) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is a technology that has been developed in recent times and is considered as a bridging technology as we move towards carbon-neutral energy sources in response to the growing

  4. Capture and geological sequestration of CO{sub 2}: fighting against global warming; Capture et stockage geologique du CO{sub 2}: lutter contre le rechauffement planetaire

    Energy Technology Data Exchange (ETDEWEB)

    Czernichowski-Lauriol, I

    2006-07-01

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO{sub 2} sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO{sub 2} emissions between today and 2050. The CO{sub 2} capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  5. Computational Screening of MOF-Based Mixed Matrix Membranes for CO2/N2 Separations

    Directory of Open Access Journals (Sweden)

    Zeynep Sumer

    2016-01-01

    Full Text Available Atomically detailed simulations were used to examine CO2/N2 separation potential of metal organic framework- (MOF- based mixed matrix membranes (MMMs in this study. Gas permeability and selectivity of 700 new MMMs composed of 70 different MOFs and 10 different polymers were calculated for CO2/N2 separation. This is the largest number of MOF-based MMMs for which computational screening is done to date. Selecting the appropriate MOFs as filler particles in polymers resulted in MMMs that have higher CO2/N2 selectivities and higher CO2 permeabilities compared to pure polymer membranes. We showed that, for polymers that have low CO2 permeabilities but high CO2 selectivities, the identity of the MOF used as filler is not important. All MOFs enhanced the CO2 permeabilities of this type of polymers without changing their selectivities. Several MOF-based MMMs were identified to exceed the upper bound established for polymers. The methods we introduced in this study will create many opportunities to select the MOF/polymer combinations with useful properties for CO2 separation applications.

  6. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    Science.gov (United States)

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  7. Climate Strategy with CO2 Capture from the Air

    Energy Technology Data Exchange (ETDEWEB)

    Keith, D.W. [Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB (Canada); Ha-Duong, M. [CNRS-CIRED, Campus du Jardin Tropical, 45 bis, av. de la Belle Gabrielle, 94736 Nogent sur Marne CEDEX (France); Stolaroff, J.K. [Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States)

    2006-01-15

    It is physically possible to capture CO2 directly from the air and immobilize it in geological structures. Air capture differs from conventional mitigation in three key aspects. First, it removes emissions from any part of the economy with equal ease or difficulty, so its cost provides an absolute cap on the cost of mitigation. Second, it permits reduction in concentrations faster than the natural carbon cycle: the effects of irreversibility are thus partly alleviated. Third, because it is weakly coupled to existing energy infrastructure, air capture may offer stronger economies of scale and smaller adjustment costs than the more conventional mitigation technologies. We assess the ultimate physical limits on the amount of energy and land required for air capture and describe two systems that might achieve air capture at prices under 200 and 500 $/tC using current technology. Like geoengineering, air capture limits the cost of a worst-case climate scenario. In an optimal sequential decision framework with uncertainty, existence of air capture decreases the need for near-term precautionary abatement. The long-term effect is the opposite; assuming that marginal costs of mitigation decrease with time while marginal climate change damages increase, then air capture increases long-run abatement. Air capture produces an environmental Kuznets curve, in which concentrations are returned to preindustrial levels.

  8. Evaluation of potential cost reductions from improved amine-based CO2 capture systems

    International Nuclear Information System (INIS)

    Rao, Anand B.; Rubin, Edward S.; Keith, David W.; Granger Morgan, M.

    2006-01-01

    Technological innovations in CO 2 capture and storage technologies are being pursued worldwide under a variety of private and government-sponsored R and D programs. While much of this R and D is directed at novel concepts and potential breakthrough technologies, there are also substantial efforts to improve CO 2 capture technologies already in use. In this paper, we focus on amine-based CO 2 capture systems for power plants and other combustion-based applications. The current performance and cost of such systems have been documented in several recent studies. In this paper we examine the potential for future cost reductions that may result from continued process development. We used the formal methods of expert elicitation to understand what experts in this field believe about possible improvements in some of the key underlying parameters that govern the performance and cost of this technology. A dozen leading experts from North America, Europe and Asia participated in this study, providing their probabilistic judgments via a detailed questionnaire coupled with individual interviews. Judgments about detailed technical parameters were then used in an integrated power plant modeling framework (IECM-CS) developed for USDOE to evaluate the performance and costs of alternative carbon capture and sequestration technologies for fossil-fueled power plants. The experts' responses have allowed us to build a picture of how the overall performance and cost of amine-based systems might improve over the next decade or two. Results show how much the cost of CO 2 capture could be reduced via targeted R and D in key areas

  9. Aqueous amine solution characterization for post-combustion CO_2 capture process

    International Nuclear Information System (INIS)

    El Hadri, Nabil; Quang, Dang Viet; Goetheer, Earl L.V.; Abu Zahra, Mohammad R.M.

    2017-01-01

    Highlights: • The CO_2 solubility of 30 aqueous amine solutions was measured at 30 wt% and 313.15 K. • The CO_2 loading of HMD is the highest, and that of TEA is the lowest. • 2DMAE, 3DMA1P, 1DMA2P, MDEA, TMPAD and 2EAE have a low heat of absorption with CO_2. • 2EAE can be used as an alternative to MEA in the CO_2 capture process. - Abstract: This article presents a thermodynamic and kinetic characterization of CO_2 absorption by 30 aqueous amine solutions. A solvent screening setup (S.S.S.) was used to find the CO_2 loading (α) for 30 different aqueous amine solutions (30 wt%) at a pressure of 1 bar with feed gas containing 15 vol% CO_2 and 85 vol% N_2 at 313.15 K to provide reliable absorber parameters. The structures of various amines (linear, non-linear, polyamines, sterically hindered, etc.) were tested and the S.S.S. results showed that hexamethylenediamine (HMD) has higher CO_2 loading at 1.35 moles of CO_2/mole of amine, and triethanolamine (TEA) has the lowest at 0.39 mole of CO_2/mole of amine. The heat of absorption indicates that MDEA has the lowest and HMD has the highest at −52.51 kJ/mole of CO_2 and −98.39 kJ/mole of CO_2, respectively. The combined data for the CO_2 loading and the absorption heat generated 6 amines that have good properties for the post-combustion CO_2 capture process in comparison with that of MEA. These amines are made up of one secondary amine (2-ethylaminoethanol, 2EAE) and 5 tertiary amines (N-methyldiethanolamine, MDEA, 1-dimethylamino-2-propanol, 1DMA2P, 2-dimethylaminoethanol, 2DMAE, 3-dimethylamino-1-propanol, 3DMA1P and N,N,N′,N′-tetramethyl-1,3-propanediamine, TMPDA). In comparison with the amine reference MEA (ΔH = −85.13 kJ/mole of CO_2 and α = 0.58 mole CO_2/mole of amine), the 6 amines have heats of absorption that are between −68.95 kJ/mole of CO_2 and −52.51 kJ/mole of CO_2, and their CO_2 loading is between 0.52 and 1.16 mole of CO_2/mole amine. The third important parameter, namely the

  10. An innovative European integrated project: Castor-CO2 from capture to storage

    NARCIS (Netherlands)

    Thiez, P.L.; Mosditchian, G.; Torp, T.; Feron, P.; Ritsema, I.; Zweigel, P.; Lindeberg, E.

    2005-01-01

    This chapter gives an overview of the CASTOR (CO2, from Capture to Storage) R and D project, funded by the European Union (EU) under the 6th Framework Program. With a partnership involving Industry and Research organizations, CASTOR aims at developing new technologies for post-combustion capture and

  11. The carbon dioxide capture and geological storage; Le captage et le stockage geologique de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO{sub 2} generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO{sub 2} capture from lage fossil-fueled combustion installations, the three capture techniques and the CO{sub 2} transport options, the geological storage of the CO{sub 2} and Total commitments in the domain. (A.L.B.)

  12. Mixed and Doped Solid Sorbents for CO2 Capture Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-06-14

    The objectives of this presentation are to capture CO2 we need materials with optimal performance and low costs; establish a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank; computational synthesis new materials to fit industrial needs; and explore the optimal working conditions for the promised CO2 solid sorbents, especially from room to warm T ranges with optimal energy usage.

  13. Ordered nanoporous carbon for increasing CO2 capture

    International Nuclear Information System (INIS)

    Yoo, Hye-Min; Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    Ordered nanoporous carbons (ONCs) were prepared using a soft-templating method. The prepared ONCs materials were subjected to a controlled carbonization temperature over the temperature range, 700–1000 °C, to increase the specific surface area and total pore volume of ordered nanoporous carbon followed by carbonization of the phenolic resin. ONCs materials synthesized at various carbonization temperatures were used as adsorbents to improve the CO 2 adsorption efficiency. The surface properties of the ONCs materials were examined by X-ray photoelectron spectroscopy. The structural properties of the ONCs materials were analyzed by X-ray diffraction. The textural properties of the ONCs materials were examined using the N 2 /77 K adsorption isotherms according to the Brunauer–Emmett–Teller equation. The CO 2 adsorption capacity was measured by CO 2 isothermal adsorption at 298 K/30 bar and 298 K/1 bar. The carbonization temperature was found to have a major effect on the CO 2 adsorption capacity, resulting from the specific surface area and total pore volumes of the ONCs materials. - Graphical abstract: This schematic diagram described synthesis of ONCs. Highlights: ► ONCs materials can be prepared readily using the direct-triblock-copolymer-templating method. ► The distributions show that prominent development can be observed around the micro-pore region. ► The soft-templating method provides opportunities for controlling the pore structure of ONCs. ► From thermal power plants for CO2 capture by adsorption technology, is a new direction.

  14. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.

    Science.gov (United States)

    Zhang, Jun; Webley, Paul A

    2008-01-15

    CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.

  15. Thermodynamic and kinetic studies on CO2 capture with Poly[VBTMA][Arg

    Science.gov (United States)

    Raja Shahrom, Maisara Shahrom; Wilfred, Cecilia Devi; Chong, Fai Kait

    2018-05-01

    This paper discusses the technologies for capturing CO2 from the natural gas using poly[VBTMA][Arg], a type of poly(ionic liquids) with an amino acid as the anion. The results revealed that the CO2 uptake increased from 3.23 mmol/g to 7.91 mmol/g at 1-10 bar, 298 K due to both chemical absorption and physical adsorption increments. Four adsorption isotherm models were applied to study the interaction between adsorbate and adsorbent to study the physical adsorption i.e. Freundlich, Langmuir, Dubinin Raduschkevich and Temkin isotherms at 298 K, 313 K and 333 K. Promising results were obtained that suggested the Freundlich model and the pseudo-first order model are well fitted with the kinetic data at 298 K with a 0.9943 R2 value. This study has provided empirical evidence to the current body of knowledge pertaining to CO2 capture technologies.

  16. Facilitated transport in hydroxide-exchange membranes for post-combustion CO2 separation.

    Science.gov (United States)

    Xiong, Laj; Gu, Shuang; Jensen, Kurt O; Yan, Yushan S

    2014-01-01

    Hydroxide-exchange membranes are developed for facilitated transport CO2 in post-combustion flue-gas feed. First, a correlation between the basicity of fixed-site functional groups and CO2 -separation performance is discovered. This relationship is used to identify phosphonium as a promising candidate to achieve high CO2 -separation performance. Consequently, quaternary phosphonium-based hydroxide-exchange membranes are demonstrated to have a separation performance that is above the Robeson upper bound. Specifically, a CO2 permeability as high as 1090 Barrer and a CO2 /N2 selectivity as high as 275 is achieved. The high performance observed in the membranes can be attributed to the quaternary phosphonium moiety. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Capturing [11C]CO2 for use in aqueous applications

    International Nuclear Information System (INIS)

    Vandehey, Nicholas T.; O’Neil, James P.

    2014-01-01

    We present a simple method for trapping [ 11 C]CO 2 gas and releasing it into a buffered solution using an ion-exchange cartridge. Sodium hydroxide cartridges captured >99% of [ 11 C]CO 2 following NaOH activation. A sodium bicarbonate solution eluted >99% of trapped radioactivity. Trapping [ 11 C]CO 2 directly in small volumes of several solutions was less effective than cartridge methods. The recommended methods allow for fast and simple production of highly concentrated carbon-11 containing aqueous solutions for use in filling phantoms, calibrating detectors, or (bio)geochemical experiments. - Highlights: • An ion exchange resin can trap [ 11 C]CO 2 gas and release it with saturated bicarbonate. • Elution from cartridge requires as little as 300 µL volume, with eluant at pH=10. • SPE trap-and-release provided better results than trapping in solution

  18. Program Energy of the CNRS. Topic 10 combustion and capture of CO{sub 2}. PRI 10.1. Capture by adsorption of the CO{sub 2} in thermal power plants gas and their injection in petroleum wells. Final report period 2002-2004; Programme energie du CNRS. Theme 10 combustion et capture du CO2. PRI 10.1. Capture par adsorption du CO2 dans des gaz de centrales thermiques et leur injection en puits de petrole. Rapport final periode 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Tondeur, D

    2005-07-01

    In the framework of the global warming resulting of the greenhouse gases emission increase, the carbon dioxide capture and storage in deep underground cavities of old petroleum and gas deposits, are studied. This report presents the researches realized by the CNRS (France) in the domain: technology and knowledge assessment concerning the carbon dioxide capture and storage, active coals for the CO{sub 2} capture, methodology of thermo-economical optimization of the combined cycle, global simulation of an IGCC (Integrated gasification combined cycle) with CO{sub 2} capture and integration in the process scheme, petroleum recovery-aided by CO{sub 2} injection, storage in geological deposits. (A.L.B.)

  19. Synthesis, characterization, and application of Zn(NH 3)(CO3) for selective adsorptive separation of CO2

    Science.gov (United States)

    Khazeni, Naasser

    This study explores the potential of Zn(NH3)(CO3) for selective CO2 separation. It develops a novel, highly controllable, single-pot synthesis approach based on urea hydrolysis and solvothermal aging to increase the feasibility of synthesizing Zn(NH3)(CO3), determines the structure of Zn(NH3)(CO3) in detail through single crystal X-ray diffraction and powder X-ray diffraction analyses, and performs adsorption analyses for the compound using CO2, N 2, H2, O2, and CH4 as adsorptives. Through adsorptive characterization, a systematic adsorbent selection screening is performed to assess the potential application of Zn(NH3)(CO 3) for adsorptive separation of CO2 from an upstream gas mixture of power generation, hydrogen production, and natural gas industries. Structural analysis shows Zn(NH3)(CO3) to have an inorganic helical framework that consists of a small helix of (ZnOCO) 2 and a large helix of (ZnOCO)4 with two ammines (NH 3) pendant from every other zinc. In terms of adsorption capacity and CO2 selectivity, Zn(NH3)(CO3) adsorbed 0.550 mmole/g CO2 at 293 K and 4500 mmHg, but only 0.047 mmole/g N 2, 0.084 mmole/g H2, 0.207 mmole/g 02, and 0.060 mmole/g CH4 at the same temperature and pressure. This behavior demonstrates considerable equilibrium selectivities - 36, 31, 63, and 11 - for separating CO2 from CH4, CO2 from H 2, CO2 from N2, and CO2 from 02, respectively. During adsorption, the pendant ammines act as the gates of check-valves: applied pressure opens the gates for adsorption; and during desorption, the gates are closed, trapping the adsorbates, until a reduction of pressure to near-atmospheric levels. Therefore, Zn(NH3)(CO3) exhibits low-pressure H3 or H4 hysteresis, indicating that the Zn(NH3)(CO3) framework can achieve gas storage at near-atmospheric pressures. Additionally, the compound proves structurally stable, with an adsorption decrease of 0.8% after 20 adsorption/desorption cycles - a factor that, considered with the other characteristics of Zn

  20. Capture and geological sequestration of CO2: fighting against global warming

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2006-01-01

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO 2 sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO 2 emissions between today and 2050. The CO 2 capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  1. CO2 Capture with Ionic Liquids : Experiments and Molecular Simulations

    NARCIS (Netherlands)

    Ramdin, M.

    2015-01-01

    In this thesis, we investigated the potential of physical ILs for CO2 capture at pre-combustion and natural gas sweetening conditions. The performance of ILs with respect to conventional solvents is assessed in terms of gas solubilities and selectivities. The work discussed in this thesis consists

  2. Comparing post-combustion CO2 capture operation at retrofitted coal-fired power plants in the Texas and Great Britain electric grids

    Science.gov (United States)

    Cohen, Stuart M.; Chalmers, Hannah L.; Webber, Michael E.; King, Carey W.

    2011-04-01

    This work analyses the carbon dioxide (CO2) capture system operation within the Electric Reliability Council of Texas (ERCOT) and Great Britain (GB) electric grids using a previously developed first-order hourly electricity dispatch and pricing model. The grids are compared in their 2006 configuration with the addition of coal-based CO2 capture retrofits and emissions penalties from 0 to 100 US dollars per metric ton of CO2 (USD/tCO2). CO2 capture flexibility is investigated by comparing inflexible CO2 capture systems to flexible ones that can choose between full- and zero-load CO2 capture depending on which operating mode has lower costs or higher profits. Comparing these two grids is interesting because they have similar installed capacity and peak demand, and both are isolated electricity systems with competitive wholesale electricity markets. However, differences in capacity mix, demand patterns, and fuel markets produce diverging behaviours of CO2 capture at coal-fired power plants. Coal-fired facilities are primarily base load in ERCOT for a large range of CO2 prices but are comparably later in the dispatch order in GB and consequently often supply intermediate load. As a result, the ability to capture CO2 is more important for ensuring dispatch of coal-fired facilities in GB than in ERCOT when CO2 prices are high. In GB, higher overall coal prices mean that CO2 prices must be slightly higher than in ERCOT before the emissions savings of CO2 capture offset capture energy costs. However, once CO2 capture is economical, operating CO2 capture on half the coal fleet in each grid achieves greater emissions reductions in GB because the total coal-based capacity is 6 GW greater than in ERCOT. The market characteristics studied suggest greater opportunity for flexible CO2 capture to improve operating profits in ERCOT, but profit improvements can be offset by a flexibility cost penalty.

  3. Comparing post-combustion CO2 capture operation at retrofitted coal-fired power plants in the Texas and Great Britain electric grids

    International Nuclear Information System (INIS)

    Cohen, Stuart M; Webber, Michael E; Chalmers, Hannah L; King, Carey W

    2011-01-01

    This work analyses the carbon dioxide (CO 2 ) capture system operation within the Electric Reliability Council of Texas (ERCOT) and Great Britain (GB) electric grids using a previously developed first-order hourly electricity dispatch and pricing model. The grids are compared in their 2006 configuration with the addition of coal-based CO 2 capture retrofits and emissions penalties from 0 to 100 US dollars per metric ton of CO 2 (USD/tCO 2 ). CO 2 capture flexibility is investigated by comparing inflexible CO 2 capture systems to flexible ones that can choose between full- and zero-load CO 2 capture depending on which operating mode has lower costs or higher profits. Comparing these two grids is interesting because they have similar installed capacity and peak demand, and both are isolated electricity systems with competitive wholesale electricity markets. However, differences in capacity mix, demand patterns, and fuel markets produce diverging behaviours of CO 2 capture at coal-fired power plants. Coal-fired facilities are primarily base load in ERCOT for a large range of CO 2 prices but are comparably later in the dispatch order in GB and consequently often supply intermediate load. As a result, the ability to capture CO 2 is more important for ensuring dispatch of coal-fired facilities in GB than in ERCOT when CO 2 prices are high. In GB, higher overall coal prices mean that CO 2 prices must be slightly higher than in ERCOT before the emissions savings of CO 2 capture offset capture energy costs. However, once CO 2 capture is economical, operating CO 2 capture on half the coal fleet in each grid achieves greater emissions reductions in GB because the total coal-based capacity is 6 GW greater than in ERCOT. The market characteristics studied suggest greater opportunity for flexible CO 2 capture to improve operating profits in ERCOT, but profit improvements can be offset by a flexibility cost penalty.

  4. Combined Pressure, Temperature Contrast and Surface-Enhanced Separation of Carbon Dioxide for Post-Combustion Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen [Rice Univ., Houston, TX (United States); Wong, Michael [Rice Univ., Houston, TX (United States); Gupta, Mayank [Rice Univ., Houston, TX (United States); Hirasaki, George [Rice Univ., Houston, TX (United States); Cox, Kenneth [Rice Univ., Houston, TX (United States)

    2016-05-01

    The Rice University research team developed a hybrid carbon dioxide (CO2) absorption process combining absorber and stripper columns using a high surface area ceramic foam gas-liquid contactor for enhanced mass transfer and utilizing waste heat for regeneration. This integrated absorber/desorber arrangement will reduce space requirements, an important factor for retrofitting existing coal-fired power plants with CO2 capture technology. Described in this report, we performed an initial analysis to estimate the technical and economic feasibility of the process. A one-dimensional (1D) CO2 absorption column was fabricated to measure the hydrodynamic and mass transfer characteristics of the ceramic foam. A bench-scale prototype was constructed to implement the complete CO2 separation process and tested to study various aspects of fluid flow in the process. A model was developed to simulate the two-dimensional (2D) fluid flow and optimize the CO2 capture process. Test results were used to develop a final technoeconomic analysis and identify the most appropriate absorbent as well as optimum operating conditions to minimize capital and operating costs. Finally, a technoeconomic study was performed to assess the feasibility of integrating the process into a 600 megawatt electric (MWe) coal-fired power plant. With process optimization, $82/MWh of COE can be achieved using our integrated absorber/desorber CO2 capture technology, which is very close to DOE's target that no more than a 35% increase in COE with CCS. An environmental, health, and safety (EH&S) assessment of the capture process indicated no significant concern in terms of EH&S effects or legislative compliance.

  5. Polyacrylonitrile-Derived Sponge-Like Micro/Macroporous Carbon for Selective CO2 Separation.

    Science.gov (United States)

    Guo, Li-Ping; Hu, Qing-Tao; Zhang, Peng; Li, Wen-Cui; Lu, An-Hui

    2018-03-25

    CO 2 capture under a dynamical flow situation requires adsorbents possessing balanced proportion of macropores as diffusion path and micropores as adsorption reservoir. However, the construction of interconnected micro-/macropores structure coupled with abundant nitrogen species into one carbon skeleton remains a challenge. Here, we report a new approach to prepare sponge-like carbon with a well-developed micro-/macroporous structure and enriched nitrogen species through aqueous phase polymerization of acrylonitrile in the presence of graphene oxide. The tension stress caused by the uniform thermal shrinkage of polyacrylonitrile during the pyrolysis together with the favorable flexibility of graphene oxide sheets are responsible for the formation of the sponge-like morphology. The synergistic effect of micro-/macroporous framework and rich CO 2 -philic site enables such carbon to decrease resistance to mass transfer and show high CO 2 dynamic selectivity over N 2 (454) and CH 4 (11), as well as good CO 2 capacity at 298 K under low CO 2 partial pressure (0.17 bar, a typical CO 2 partial pressure in flue gas). The above attributes make this porous carbon a promising candidate for CO 2 capture from flue gas, methane sources and other relevant applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Performance analysis of K-based KEP-CO2P1 solid sorbents in a bench-scale continuous dry-sorbent CO{sub 2} capture process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Cheol; Jo, Sung-Ho; Lee, Seung-Yong; Moon, Jong-Ho; Yi, Chang-Keun [Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon (Korea, Republic of); Ryu, Chong Kul; Lee, Joong Beom [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2016-01-15

    Korea Institute of Energy Research (KIER) and Korea Electric Power Corporation Research Institute (KEPCORI) have been developing a CO{sub 2} capture technology using dry sorbents. In this study, KEP-CO2P1, a potassium-based dry sorbent manufactured by a spray-drying method, was used. We employed a bench-scale dry-sorbent CO{sub 2} capture fluidized-bed process capable of capturing 0.5 ton CO{sub 2}/day at most. We investigated the sorbent performance in continuous operation mode with solid circulation between a fast fluidized-bed-type carbonator and a bubbling fluidizedbed- type regenerator. We used a slip stream of a real flue gas from 2MWe coal-fired circulating fluidized-bed (CFB) power facilities installed at KIER. Throughout more than 50 hours of continuous operation, the temperature of the carbonator was maintained around 70-80 .deg. C using a jacket-type heat exchanger, while that of the regenerator was kept above 180 .deg. C using an electric furnace. The differential pressure of both the carbonator and regenerator was maintained at a stable level. The maximum CO{sub 2} removal was greater than 90%, and the average CO{sub 2} removal was about 83% during 50 hours of continuous operation.

  7. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Barpaga, Dushyant [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zheng, Jian [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Sabale, Sandip [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Patel, Rajankumar L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; McGrail, B. Peter [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Motkuri, Radha Kishan [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which led to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.

  8. Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2

    Science.gov (United States)

    Dong, Chunyang; Hu, Songchang; Xing, Mingyang; Zhang, Jinlong

    2018-04-01

    A spatially separated, dual co-catalyst photocatalytic system was constructed by the stepwise introduction of RuO2 and Au nanoparticles (NPs) at the internal and external surfaces of a three dimensional, hierarchically ordered TiO2-SiO2 (HTSO) framework (the final photocatalyst was denoted as Au/HRTSO). Characterization by HR-TEM, EDS-mapping, XRD and XPS confirmed the existence and spatially separated locations of Au and RuO2. In CO2 photocatalytic reduction (CO2PR), Au/HRTSO (0.8%) shows the optimal performance in both the activity and selectivity towards CH4; the CH4 yield is almost twice that of the singular Au/HTSO or HRTSO (0.8%, weight percentage of RuO2) counterparts. Generally, Au NPs at the external surface act as electron trapping agents and RuO2 NPs at the inner surface act as hole collectors. This advanced spatial configuration could promote charge separation and transfer efficiency, leading to enhanced CO2PR performance in both the yield and selectivity toward CH4 under simulated solar light irradiation.

  9. CO2 Capture by Cold Membrane Operation with Actual Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Trapti [American Air Liquide Inc., Houston, TX (United States); Kulkarni, Sudhir [American Air Liquide Inc., Houston, TX (United States); Hasse, David [American Air Liquide Inc., Houston, TX (United States); Augustine, Alex [American Air Liquide Inc., Houston, TX (United States)

    2017-07-28

    The main objective of the project was to develop a post-combustion CO2 capture process based on the hybrid cold temperature membrane operation. The CO2 in the flue gas from coal fired power plant is pre-concentrated to >60% CO2 in the first stage membrane operation followed by further liquefaction of permeate stream to achieve >99% CO2 purity. The aim of the project was based on DOE program goal of 90% CO2 capture with >95% CO2 purity from Pulverized Coal (PC) fired power plants with $40/tonne of carbon capture cost by 2025. The project moves the technology from TRL 4 to TRL 5. The project involved optimization of Air Liquide commercial 12” PI-1 bundle to improve the bundle productivity by >30% compared to the previous baseline (DE-FE0004278) using computational fluid dynamics (CFD) modeling and bundle testing with synthetic flue gas at 0.1 MWe bench scale skid located at Delaware Research and Technology Center (DRTC). In parallel, the next generation polyimide based novel PI-2 membrane was developed with 10 times CO2 permeance compared to the commercial PI-1 membrane. The novel PI-2 membrane was scaled from mini-permeator to 1” permeator and 1” bundle for testing. Bundle development was conducted with a Development Spin Unit (DSU) installed at MEDAL. Air Liquide’s cold membrane technology was demonstrated with real coal fired flue gas at the National Carbon Capture Center (NCCC) with a 0.3 MWe field-test unit (FTU). The FTU was designed to incorporate testing of two PI-1 commercial membrane bundles (12” or 6” diameter) in parallel or series. A slip stream was sent to the next generation PI-2 membrane for testing with real flue gas. The system exceeded performance targets with stable PI-1 membrane operation for over 500 hours of single bundle, steady state testing. The 12” PI-1 bundle exceeded the productivity target by achieving ~600 Nm3/hr, where the target was set at ~455

  10. Triazine containing N-rich microporous organic polymers for CO2 capture and unprecedented CO2/N2 selectivity

    International Nuclear Information System (INIS)

    Bhunia, Subhajit; Bhanja, Piyali; Das, Sabuj Kanti; Sen, Tapas; Bhaumik, Asim

    2017-01-01

    Targeted synthesis of microporous adsorbents for CO 2 capture and storage is very challenging in the context of remediation from green house gases. Herein we report two novel N-rich microporous networks SB-TRZ-CRZ and SB-TRZ-TPA by extensive incorporation of triazine containing tripodal moiety in the porous polymer framework. These materials showed excellent CO 2 storage capacities: SB-TRZ-CRZ displayed the CO 2 uptake capacity of 25.5 wt% upto 1 bar at 273 K and SB-TRZ-TPA gave that of 16 wt% under identical conditions. The substantial dipole quadruple interaction between network (polar triazine) and CO 2 boosts the selectivity for CO 2 /N 2 . SB-TRZ-CRZ has this CO 2 /N 2 selectivity ratio of 377, whereas for SB-TRZ-TPA it was 97. Compared to other porous polymers, these materials are very cost effective, scalable and very promising material for clean energy application and environmental issues. - Graphical abstract: We report two novel N-rich microporous polymeric materials by doping of triazine containing tripodal dopant in the organic framework. These materials showed excellent CO 2 storage capacities as high as 25.5 wt% under 1 bar pressure with exceptional CO 2 /N 2 selectivity of 377. - Highlights: • Triazine containing trimodal moiety incorporated in polycarbazolic and poly triphenylamine networks. • N-rich crosslinked polymers with high BET surface area and 1.5–1.7 nm size large micropores. • CO 2 uptake capacity of 25.5 wt% upto 1 bar at 273 K. • These crosslinked porous polymers showed exceptional CO 2 /N 2 selectivity.

  11. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes

    International Nuclear Information System (INIS)

    Jindaratsamee, Pinyarat; Shimoyama, Yusuke; Morizaki, Hironobu; Ito, Akira

    2011-01-01

    The permeability of carbon dioxide (CO 2 ) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF 4 ], [bmim][BF 4 ], [bmim][PF 6 ], [bmim][Tf 2 N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO 2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO 2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf 2 N] membrane. The membrane of [bmim][PF 6 ] presents the lowest permeability. The separation coefficient between CO 2 and N 2 through the ionic liquid membranes was also investigated at the volume fraction of CO 2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF 4 ] and [bmim][BF 4 ] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf 2 N] membrane which presents the highest permeability of CO 2 .

  12. Investigations of 1-(4-propylamino-3-ethyl imidazolium tetrafluoroborate ionic liquid capturing CO2

    Directory of Open Access Journals (Sweden)

    Yang Lijuan

    2013-01-01

    Full Text Available 1-(4-propylamino-3-ethyl imidazolium ([Paeim]+ Tetrafluoroborate([BF4]- Ionic liquid (IL, capturing CO2, was explored systematically at B3LYP/6-311++G** and mp2/6-311++G** level. The stable geometries of ILs and capture products were optimized, the energies of these geometries were obtained and corrected by Zero-point-vibration-energy and basis set superposition error correction. The results show that the interactions between [Paeim]+and [BF4]-are mainly displayed as hydrogen bonds, but the interaction energies exceeds -328 kJ/mol. Further analysis found that the interactions are reinforced by charge dispersion and charge redistribution of ion-pair, and that electrostatic attraction contributes much to the interaction energies. This IL system capturing CO2belongs to the class of physical sorption with 1:1 molar absorption ratio, the absorption energy is nearly -18kJ/moland thus this IL may have low energy consumption when regenerated from IL-CO2.

  13. Carbon dioxide (CO2) capture and storage : Canadian market development

    International Nuclear Information System (INIS)

    Hendriks, A.

    2006-01-01

    Carbon dioxide (CO 2 ) enhanced oil recovery (EOR) is used to extend the life of light oil reservoirs in Canada. An additional 13 per cent of original oil in place is typically recovered using CO 2 flooding processes. However, a carbon capture and storage (CCS) market is needed in order to commercialize CO 2 flooding technologies. CO 2 can be obtained from naturally-occurring accumulations in underground reservoirs, electrical and coal-fired generation plants, petrochemical facilities, and upstream oil and gas processing facilities. CO 2 is sequestered in EOR processes, in sour gas disposal processes, solvent recovery processes, and in coalbed methane (CBM) extraction. It is also disposed in depleted fields and aquifers. While CCS technologies are mature, project economics remain marginal. However, CCS in EOR is commercially feasible at current high oil prices. No transportation infrastructure is in place to transport sources of CO 2 in the high volumes needed to establish a market. While governments have created a favourable public policy environment for CCS, governments will need to address issues related to infrastructure, public perception of CCS, and stakeholder engagement with CCS projects. It was concluded that CCS and CO 2 flooding techniques have the capacity to reduce greenhouse gas (GHG) emissions while helping to sustain light oil production. tabs., figs

  14. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander; Saih, Youssef; Gimenez, Michel; Pelletier, Jeremie; Kü hn, Fritz Elmar; D´ Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  15. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  16. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  17. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng; Liu, Xin; Han, Yu

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high

  18. Program Energy of the CNRS. Topic 10 combustion and capture of CO2. PRI 10.1. Capture by adsorption of the CO2 in thermal power plants gas and their injection in petroleum wells. Final report period 2002-2004

    International Nuclear Information System (INIS)

    Tondeur, D.

    2005-01-01

    In the framework of the global warming resulting of the greenhouse gases emission increase, the carbon dioxide capture and storage in deep underground cavities of old petroleum and gas deposits, are studied. This report presents the researches realized by the CNRS (France) in the domain: technology and knowledge assessment concerning the carbon dioxide capture and storage, active coals for the CO 2 capture, methodology of thermo-economical optimization of the combined cycle, global simulation of an IGCC (Integrated gasification combined cycle) with CO 2 capture and integration in the process scheme, petroleum recovery-aided by CO 2 injection, storage in geological deposits. (A.L.B.)

  19. OCTAVIUS: a new FP7 project demonstrating CO2 capture technologies

    NARCIS (Netherlands)

    Broutin, P.; Kvamsdal, H.M.; Marca, C. la; Os, P.J. van; Booth, N.

    2013-01-01

    The OCTAVIUS project (Optimisation of CO2 Capture Technology Allowing Verification and Implementation at Utility Scale) has started on March 1st 2012 for a period of 5 years, as part of the 7th Framework Programme of the European Commission. Gathering 15 European and 2 South African partners,

  20. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  1. CO_2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters

    International Nuclear Information System (INIS)

    Kim, Soyoung; Choi, Sung-Deuk; Seo, Yongwon

    2017-01-01

    Tetrahydrofuran (THF) as a water-soluble sII clathrate former, cyclopentane (CP) as a water-insoluble sII clathrate former, and tetra n-butyl ammonium chloride (TBAC) as a water-soluble semiclathrate former were used to investigate their thermodynamic promotion effects on clathrate-based CO_2 capture from simulated flue gas. The phase equilibria of CO_2 (20%) + N_2 (80%) + promoter clathrates at different promoter concentrations revealed that the presence of THF, CP, and TBAC could significantly reduce the clathrate formation pressure. THF solutions provided the highest gas uptake and steepest CO_2 concentration changes in the vapor phase, whereas TBAC solutions showed the highest CO_2 selectivity (∼61%) in the clathrate phase. CP solutions exhibited a slower formation rate, but their final gas uptake and CO_2 selectivity in the clathrate phase were comparable to the THF solutions. Raman spectroscopy confirmed the enclathration of both CO_2 and N_2 in the clathrate cages and a structural transition due to the inclusion of promoters in the clathrate phase. The overall experimental results indicate that TBAC is a viable thermodynamic promoter for clathrate-based CO_2 capture from simulated flue gas, considering the lower pressure requirement for clathrate formation, higher CO_2 enrichment in the clathrate phase, non-toxicity, and non-volatility. - Highlights: • Clathrate-based CO_2 capture was investigated in the presence of thermodynamic promoters. • THF, CP, and TBAC demonstrated a significant thermodynamic promotion for CO_2 (20%) + N_2 (80%) clathrates. • The highest gas uptake was observed for the THF (5.6 mol%) solution. • TBAC solutions showed the highest CO_2 selectivity in the clathrate phase (∼61%). • Raman spectroscopy confirmed the guest gas enclathration and clathrate structure.

  2. Electron Capture in Proton Collisions with CO.

    Science.gov (United States)

    Stancil, P. C.; Schultz, D. R.; Kimura, M.; Gu, J.-P.; Hirsch, G.; Buenker, R. J.; Li, Y.

    1999-10-01

    Electron capture by protons following collisions with carbon monoxide is studied with a variety of theoretical approaches including quantal and semiclassical molecular-orbital close-coupling (MOCC) and classical trajectory Monte Carlo (CTMC) techniques. The MOCC treatments utilize potential surfaces and couplings computed for a range of H^+-CO orientation angles and C-O separations. Results including integral, differential, electronic state-selective, and vibrational state-selective cross sections will be presented for low- to intermediate-energies. Comparison with experiment will be made where possible and the relevance of the reaction in astrophysics and atmospheric physics will be discussed.

  3. Effect of fossil fuels on the parameters of CO2 capture.

    Science.gov (United States)

    Nagy, Tibor; Mizsey, Peter

    2013-08-06

    The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.

  4. Review, modeling, Heat Integration, and improved schemes of Rectisol®-based processes for CO2 capture

    International Nuclear Information System (INIS)

    Gatti, Manuele; Martelli, Emanuele; Marechal, François; Consonni, Stefano

    2014-01-01

    The paper evaluates the thermodynamic performances and the energy integration of alternative schemes of a methanol absorption based acid gas removal process designed for CO 2 Capture and Storage. More precisely, this work focuses the attention on the Rectisol ® process specifically designed for the selective removal of H 2 S and CO 2 from syngas produced by coal gasification. The study addresses the following issues: (i) perform a review of the Rectisol ® schemes proposed by engineers and researchers with the purpose of determining the best one for CO 2 capture and storage; (ii) calibrate the PC-SAFT equation of state for CH 3 OH–CO 2 –H 2 S–H 2CO mixtures at conditions relevant to the Rectisol ® process; (iii) evaluate the thermodynamic performances and optimize the energy integration of a “Reference” scheme derived from those available in the literature; (iv) identify and assess alternative Rectisol ® schemes with optimized performance for CO 2 Capture and Storage and Heat Integration with utilities. On the basis of the analysis of the Composite Curves of the integrated process, we propose some possible improvements at the level of the process configuration, like the introduction of mechanical vapor recompression and the development of a two stage regeneration arrangement. - Highlights: • Comprehensive review of the Rectisol ® process configurations and applications. • Calibration of PC-SAFT equation of state for Rectisol ® -relevant mixtures. • Detailed process simulation and optimized Heat Integration, and utility design. • Development of alternative Rectisol ® schemes optimized for CO 2 Capture

  5. CO2 capture using aqueous ammonia: kinetic study and process simulation

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; van Well, Willy J.M.; Stenby, Erling Halfdan

    2011-01-01

    to 0.6. The results were compared with those found for 30 wt% mono-ethanolamine (MEA) solutions.The capture process was simulated successfully using the simulator Aspen Plus coupled with the extended UNIQUAC thermodynamic model available for the NH3–CO2–H2O system. For this purpose, a user model......Carbon dioxide capture using aqueous ammonia is a post-combustion technology that has shown a good potential. Therefore this process is studied by measuring the rate of absorption of carbon dioxide by aqueous ammonia and by performing process simulation. The rate of absorption of carbon dioxide...

  6. Acidic gases (CO_2, NO_2 and SO_2) capture and dissociation on metal decorated phosphorene

    International Nuclear Information System (INIS)

    Kuang, Anlong; Kuang, Minquan; Yuan, Hongkuan; Wang, Guangzhao; Chen, Hong; Yang, Xiaolan

    2017-01-01

    Highlights: • The light metal decorated phosphorene sheets are very effective for capture of CO_2, NO_2 and SO_2 because of large adsorption energies. • The adsorption energy is obviously dependent on the amount of electrons transferred between acidic gases and metal decorated phosphorene. • Pt-decorated phosphorene can effectively catalyze the dissociation of acidic gas. - Abstract: Density functional theory is employed to investigate the adsorption and dissociation of several acidic gases (CO_2, NO_2 and SO_2) on metal (Li, Al, Ni and Pt) decorated phosphorene. The results show that light metal (Li, Al) decorated phosphorene exhibits a strong adsorption of acidic gases, i.e., the adsorption energy of CO_2 on Li decorated phosphorene is 0.376 eV which is the largest in all adsorption of CO_2 on metal decorated phosphorene and Al decorated phosphorene is most effective for capture of NO_2 and SO_2 due to large adsorption energies of 3.951 and 3.608 eV, respectively. Moreover, Li and Al light metals have stronger economic effectiveness and more friendly environment compared with the transition metals, the strong adsorption ability of acidic gases and low price suggest that Li, Al decorated phosphorene may be useful and promising for collection and filtration of exhaust gases. The reaction energy barriers of acidic gases dissociated process on Pt decorated phosphorene are relatively low and the reaction processes are significantly exothermic, indicating that the dissociation process is favorable.

  7. Capturing and storing CO2 to combat the greenhouse effect. What IFP is doing

    International Nuclear Information System (INIS)

    2009-01-01

    The growing awareness of the international community and the convergence of the scientific data concerning climate change make it urgent to deploy, throughout the world, technologies to reduce emissions of greenhouse gases. Indeed, the growth of the world energy demand will prevent any rapid reduction of the use of fossil fuels - oil, natural gas, and coal - that are the main sources of greenhouse gas emissions. To reconcile the use of these resources with control of the emissions responsible for global warming, the capture and storage of CO 2 are a very promising approach; the economic and industrial stakes are high. To meet the objective of reducing CO 2 emissions, IFP is exploring three approaches: The first approach is to reduce energy consumption by improving the efficiency of energy converters, in particular internal combustion engines. A second approach is to reduce the carbon content of energy by favoring the use of natural gas or by incorporating in the fuel recycled carbon (biofuels and synfuels) and by developing hydrogen as an energy carrier. The third approach is to capture the CO 2 from industrial processes used for electricity, steel, and cement production, which emit it in large quantities, then store it underground so as to keep it out of the atmosphere. This approach for reducing the CO 2 emissions consists in capturing the CO 2 (Post-combustion, oxy-combustion), transporting it to the place of storage, then injecting it underground to store it. Storage sites are selected and evaluated prior to injection in order to estimate the injectivity, the propagation of CO 2 in the subsoil and the impact of geochemical and geomechanical transformations on the tightness of the overburden and of the injection well. The injection phase is followed by a phase of monitoring to ensure the safety and long-term viability of CO 2 storage facilities. IFP, through the research it is conducting either alone or in partnership with universities, research centers, and the

  8. The Calcium-Looping technology for CO_2 capture: On the important roles of energy integration and sorbent behavior

    International Nuclear Information System (INIS)

    Perejón, Antonio; Romeo, Luis M.; Lara, Yolanda; Lisbona, Pilar; Martínez, Ana; Valverde, Jose Manuel

    2016-01-01

    Highlights: • The Calcium Looping (CaL) technology is a potentially low cost and highly efficient postcombustion CO_2 capture technology. • Energy integration and sorbent behavior play a relevant role on the process. • The industrial competitiveness of the process depends critically on the minimization of energy penalties. • It may be used in precombustion capture systems and other industrial processes such as cement production. • Sorbent deactivation must be assessed under realistic conditions involving high CO_2 concentration in the calciner. - Abstract: The Calcium Looping (CaL) technology, based on the multicyclic carbonation/calcination of CaO in gas–solid fluidized bed reactors at high temperature, has emerged in the last years as a potentially low cost technology for CO_2 capture. In this manuscript a critical review is made on the important roles of energy integration and sorbent behavior in the process efficiency. Firstly, the strategies proposed to reduce the energy demand by internal integration are discussed as well as process modifications aimed at optimizing the overall efficiency by means of external integration. The most important benefit of the high temperature CaL cycles is the possibility of using high temperature streams that could reduce significantly the energy penalty associated to CO_2 capture. The application of the CaL technology in precombustion capture systems and energy integration, and the coupling of the CaL technology with other industrial processes are also described. In particular, the CaL technology has a significant potential to be a feasible CO_2 capture system for cement plants. A precise knowledge of the multicyclic CO_2 capture behavior of the sorbent at the CaL conditions to be expected in practice is of great relevance in order to predict a realistic capture efficiency and energy penalty from process simulations. The second part of this manuscript will be devoted to this issue. Particular emphasis is put on the

  9. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.

    Science.gov (United States)

    Hafeez, Sarah; Fan, X; Hussain, Arshad; Martín, C F

    2015-09-01

    CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R(2), the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. Copyright © 2015. Published by Elsevier B.V.

  10. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor

    International Nuclear Information System (INIS)

    Dou Binlin; Song Yongchen; Liu Yingguang; Feng Cong

    2010-01-01

    The gas-solid reaction and breakthrough curve of CO 2 capture using calcium oxide sorbent at high temperature in a fixed-bed reactor are of great importance, and being influenced by a number of factors makes the characterization and prediction of these a difficult problem. In this study, the operating parameters on reaction between solid sorbent and CO 2 gas at high temperature were investigated. The results of the breakthrough curves showed that calcium oxide sorbent in the fixed-bed reactor was capable of reducing the CO 2 level to near zero level with the steam of 10 vol%, and the sorbent in CaO mixed with MgO of 40 wt% had extremely low capacity for CO 2 capture at 550 deg. C. Calcium oxide sorbent after reaction can be easily regenerated at 900 deg. C by pure N 2 flow. The experimental data were analyzed by shrinking core model, and the results showed reaction rates of both fresh and regeneration sorbents with CO 2 were controlled by a combination of the surface chemical reaction and diffusion of product layer.

  11. Oxyfuel technologies for CO{sub 2} capture : a techno-economic overview

    Energy Technology Data Exchange (ETDEWEB)

    Simmonds, M. [BP Exploration, Sunbury on Thames (United Kingdom); Miracca, I. [Snamprogetti SPA, San Donato Milanese (Italy); Gerdes, K. [ChevronTexaco, Richmond, CA (United States)

    2005-07-01

    This paper reviewed various oxyfuel combustion technologies developed by the CO{sub 2} Capture Project (CCP), a joint partnership of 8 major energy companies. Over the last 3 years, the CCP has conducted several studies focusing on oxyfuel combustion in order to assess the potential application of oxyfuel combustion technologies for heat and power production systems. Studies on oxyfuel firing using cryogenically supplied oxygen and flue gas recycle as a means of moderating combustion temperature have been proven, and are now being used as a baseline case for the retrofitting of process heaters and boilers. The cost of CO{sub 2} capture using cryogenically supplied oxygen is expected to range between $35 to $45 per tonne. Studies examining the application of pure oxygen firing to gas turbines have suggested that significant development is needed by turbine manufacturers to incorporate the use of new materials capable of operating at the high temperatures needed to avoid unacceptable reductions in energy efficiency. A new generation of oxygen production techniques using ceramic membrane technologies may significantly reduce the unit cost of oxygen production, which will in turn have an impact on the cost of CO{sub 2} capture. An additional CCP study suggested that significant markets for exported power are needed to ensure the commercialization of ion transport membranes in the retrofitting of existing heaters and boilers. The most significant research and development effort in oxyfuel technologies to date has centred on the development of a chemical looping combustion (CLC) concept. The CLC technology is based on using mixed metal oxide pellets as a carrier for transferring oxygen from combustion air to the fuel. The technology uses 2 fluidized bed reactors for a continuous circulation of solids. Key risks associated with the technology centre on the production of mixed metal oxide materials which are capable of withstanding repeated oxidation and reduction cycles

  12. Techno-economic analysis of lignite fuelled IGCC with CO{sub 2} capture. Comparing fluidized bed and entrained flow gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guangjian; Wu, Zhen; Zhang, Haiying [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Integrated coal gasification combined cycle (IGCC) plants with pre-combustion capture of CO{sub 2} represent one of the most promising options for generating low-cost decarbonized power using bituminous coals. This work systematically quantify the effect of coal rank on the efficiency and economics of IGCC systems with CO2 capture and storage (CCS), with a special focus on comparison of systems using fluidized-bed gasifier (U-GAS) and entrained flow gasifier (Shell). It was found that the Shell IGCCs are little affect by low rank coal after pre-drying in terms of thermal efficiency and the levelized cost of electricity (LCOE) is only increase by 2-6% for lignite cases with and without CCS compared with bituminous coal cases. The specific CO{sub 2} emissions of U-GAS gasifier based lignite fuelled IGCC with CCS is 198 g/kWhe, almost two times of shell gasifier cases, mainly due to lower carbon conversion in the gasifier and the higher methane in the raw gas of gasifier. However, the total capital cost and COE of U-Gas IGCCs are 15-20% less than that of Shell IGCCs because of lower capital cost of gasifier, coal drying units and air separate units per kWe.

  13. Techno-economic study of CO2 capture process for cement plants. Paper no. IGEC-1-107

    International Nuclear Information System (INIS)

    Nazmul Hassan, S.M.; Douglas, P.L.; Croiset, E.

    2005-01-01

    Carbon dioxide is considered to be the major source of GHG responsible for global warming; man-made CO 2 contributes approximately 63.5% to all greenhouse gases. The cement industry is responsible for approximately 5% of global anthropogenic carbon dioxide emissions emitting nearly 900 kg of CO 2 for every 1000 kg of cement produced. Amine absorption processes, in particular the monoethanolamine (MEA) based process, is considered to be a viable technology for capturing CO 2 from low-pressure flue gas streams because of its fast reaction rate with CO 2 and low cost of raw materials compared to other amines. However, the MEA absorption process is associated with high capital and operating costs because a significant amount of energy is required for solvent regeneration and because of severe operating problems such as corrosion, solvent loss and solvent degradation. This research was motivated by the need to design, size and cost a CO 2 capture process from the cement industry. The MEA based absorption process was used as a potential technique to model CO 2 capture from cement plants. In this research four cases were considered all to reach a CO 2 purity of 98%: i) the plant operates at the highest capacity; ii) the plant operates at average load; iii) the plant operates at minimum operating capacity; and iv) switching to a lower carbon content fuel at average plant load. A comparison among the four cases were performed to determine the best operating conditions for capturing CO 2 from cement plants. A sensitivity analysis of the economics to the lean loading and percent recovery were carried out as well as the different absorber and striper tray combinations. (author)

  14. Electron capture into the n = 3 states of hydrogen by proton impact on CO, CO2, and N2O

    International Nuclear Information System (INIS)

    Loyd, D.H.; Dawson, H.R.

    1979-01-01

    Absolute cross sections for electron capture into the 3s, 3p, and 3d states of hydrogen have been measured for 2.2--8.2-keV proton impact on CO, CO 2 , and N 2 O. The relative magnitudes of the 3s, 3p, and 3d cross sections for CO are very similar to cross sections previously measured for elemental gases. The CO 2 and N 2 O cross sections have a very different relative distribution among the 3s, 3p, and 3d states compared to all other gases studied in this laboratory, with the 3p cross section being so small that only an estimate of the upper limit to the cross section was possible

  15. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas

    International Nuclear Information System (INIS)

    Zhang, Jun; Webley, Paul A.; Xiao, Penny

    2008-01-01

    This study focuses on the effects of process and operating parameters - feed gas temperature, evacuation pressure and feed concentration - on the performance of carbon dioxide vacuum swing adsorption (CO 2 VSA) processes for CO 2 capture from gas, especially as it affects power consumption. To obtain reliable data on the VSA process, experimental work was conducted on a purposely built three bed CO 2 VSA pilot plant using commercial 13X zeolite. Both 6 step and 9 step cycles were used to determine the influences of temperature, evacuation pressure and feed concentration on process performance (recovery, purity, power and corresponding capture cost). A simple economic model for CO 2 capture was developed and employed herein. Through experiments and analysis, it is found that the feed gas temperature, evacuation pressure and feed concentration have significant effects on power consumption and CO 2 capture cost. Our data demonstrate that the CO 2 VSA process has good recovery (>70%), purity (>90%) and low power cost (4-10 kW/TPDc) when operating with 40 C feed gas provided relatively deep vacuum is used. Enhanced performance is obtained when higher feed gas concentration is fed to the plant, as expected. Our data indicates large potential for application of CO 2 VSA to CO 2 capture from flue gas. (author)

  16. Calcium looping technology using improved stability nanostructured sorbent for cyclic CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cong; Zheng, Ying; Ding, Ning; Zheng, Chu-guang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    One of the post-combustion CO{sub 2} capture technologies that have sufficiently been proved to be the best candidates for practical large scale post-combustion application is the calcium looping cycle. However, the CO{sub 2} capture capacity of a calcium-based sorbent derived from natural limestone decays through long-term cyclic utilization; thus, the development of novel sorbents to achieve a high CO{sub 2} capture capacity is an critical challenge for the calcium looping cycle technology. In this paper, we report the preparation and character of a new calcium-based sorbent produced via the combustion of a dry gel. The results show that the novel calcium-based sorbent has a much higher residual carbonation conversion as well as a better performance of anti-sintering when compared with the calcium-based sorbent derived from commercial micrometer grade CaCO{sub 3} and nanometer grade CaCO{sub 3}. It is reasonable to propose that the different final carbonation performances are induced by their different pore structures and BET surface areas rather than by different particle sizes. Compared with the commercial nano CaO, the morphology of the new sorbent shows a more rough porous appearance with hollow nanostructure. During carbonation, CO{sub 2} diffused more easily through the hollow structure than through a solid structure to reach the unreacted CaO. Besides, there is less chance for the hollow nanostructured particles to be merged together during the high temperature reactions.

  17. Feasibility Assessment of CO2 Capture Retrofitted to an Existing Cement Plant : Post-combustion vs. Oxy-fuel Combustion Technology

    NARCIS (Netherlands)

    Gerbelová, Hana; Van Der Spek, Mijndert; Schakel, Wouter

    2017-01-01

    This research presents a preliminary techno-economic evaluation of CO2 capture integrated with a cement plant. Two capture technologies are evaluated, monoethanolamine (MEA) post-combustion CO2 capture and oxy-fuel combustion. Both are considered potential technologies that could contribute to

  18. Workshop on capture and sequestration of CO{sub 2} (CCS); Taller sobre captura y secuestro de CO{sub 2} (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    In this workshop diverse communications related to the capture and sequestration of CO{sub 2} are presented. This workshop was realized in the Technological Museum of the Comision Federal de Electricidad (CFE), in Mexico City on the ninth and tenth of July, 2008, and it had the objective of reflecting the necessity of considering in Mexico the application of the capture and sequestration technologies of CO{sub 2} (CCS), as well as to put in touch the technicians and managers of the Mexican institutions with the world-wide leaders in these technologies and with the managers of companies that are successfully applying CCS technologies. [Spanish] En este taller se presentan diversas ponencias relacionadas con la captura y secuestro de CO{sub 2}. Este taller se realizo en el Museo Tecnologico de la Comision Federal de Electricidad (CFE), en la Ciudad de Mexico, los dias 9 y 10 de julio de 2008 y tuvo como objetivo reflexionar sobre la necesidad de considerar en Mexico, la aplicacion de las tecnologias de captura y secuestro de CO{sub 2} (CCS), asi como poner en contacto a los tecnicos y directivos de las instituciones mexicanas con los lideres mundiales en estas tecnologias y con los directivos de empresas que estan aplicando con exito tecnologias de CCS.

  19. CO2 capture in a continuous gas–solid trickle flow reactor

    NARCIS (Netherlands)

    Veneman, Rens; Hilbers, T.J.; Brilman, Derk Willem Frederik; Kersten, Sascha R.A.

    2016-01-01

    This paper describes the selection, design and experimental validation of a gas–solid trickle flow adsorber for post-combustion CO2 capture using a supported amine sorbents (Lewatit® VP OC 1065). The experimental work presented here summarizes over 300 h of operating experience, which is equivalent

  20. CAPTURING EXHAUST CO2 GAS USING MOLTEN CARBONATE FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Prateek Dhawan

    2016-03-01

    Full Text Available Carbon dioxide is considered as one of the major contenders when the question of greenhouse effect arises. So for any industry or power plant it is of utmost importance to follow certain increasingly stringent environment protection rules and laws. So it is significant to keep eye on any possible methods to reduce carbon dioxide emissions in an efficient way. This paper reviews the available literature so as to try to provide an insight of the possibility of using Molten Carbonate Fuel Cells (MCFCs as the carbon capturing and segregating devices and the various factors that affect the performance of MCFCs during the process of CO2 capture.

  1. Hollow fiber adsorbents for CO2 capture: Kinetic sorption performance

    KAUST Repository

    Lively, Ryan P.

    2011-07-01

    We describe a CO 2 capture platform based on hollow polymeric fibers with sorbent particles embedded in the porous fiber wall for post-combustion CO 2 capture. These fibers are intended for use in a rapid temperature swing adsorption (RTSA) process. The RTSA system utilizes the hollow fiber morphology by flowing cooling water on the bore-side of the fibers during sorption to prevent temperature rise associated with the sorption enthalpy. Steam or hot water is flowed through the bores during desorption to desorb CO 2 rapidly. To minimize material transfer between the bore and the fiber wall, a dense Neoprene ® lumen layer is cast on the bore-side of the fiber wall. In this paper, the key sorption step and associated kinetic resistances for the uncooled fibers are examined and evaluated for this portion of the RTSA process. Chopped fibers in a packed bed, as well as fibers assembled into a parallel flow module, have been tested in a simulated flue gas stream. Kinetic limitations in the hollow fiber modules are largely overcome by increasing the superficial gas velocity and the fiber packing in the module-indicating that film diffusion is the controlling mass transfer limitation in the fiber system. The un-cooled fiber modules lose apparent capacity as superficial velocities are increased, likely indicating non-isothermal operation, whereas the actively-cooled fibers in the packed bed maintain apparent capacity at all flowrates studied. © 2011 Elsevier B.V.

  2. Novel CO2 Separation and Methanation for Oxygen and Fuel Production, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes a novel efficient, compact, and lightweight MicrolithREG-based CO2 separator and methanation reactor to separate CO2 from...

  3. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet; Zulfiqar, Sonia; Edhaim, Fatimah; Ruiperez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  4. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet

    2016-10-05

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  5. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  6. Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station

    International Nuclear Information System (INIS)

    Huang, Bin; Xu, Shisen; Gao, Shiwang; Liu, Lianbo; Tao, Jiye; Niu, Hongwei; Cai, Ming; Cheng, Jian

    2010-01-01

    The first industrial-scale CO 2 capture plant in China has been demonstrated at Huaneng Beijing power plant has shown that this technology is a good option for the capture of CO 2 produced by commercial coal-fired power plants. The commissioning and industrial tests are introduced in this paper. The tests show that in the early stages of the passivation phase, the concentration variations of amine, anti-oxidant and Fe 3+ are in the normal range, and the main parameters achieve the design value. The efficiency of the CO 2 capture was about 80-85%, and by the end of January 2009 about 900 tons of CO 2 (99.7%) have been captured. The equipment investment and consumptive costs, including steam, power, solution and others, have been analyzed. The results show: the cost of the absorber and the stripper account for about 50% of main equipment; the consumptive cost is about 25.3 US$ per metric tons of CO 2 , of which the steam requirement accounts for about 55%; the COE increased by 0.02 US$/kW h and the electricity purchase price increased by 29%. (author)

  7. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO 2 capture with excellent stability and regenerability

    KAUST Repository

    Patil, Umesh

    2012-01-01

    We report the use of silicon oxynitrides as novel adsorbents for CO 2 capture. Three series of functionalized materials based on KCC-1, SBA-15 and MCM-41 with Si-NH 2 groups were prepared using a simple one-step process via thermal ammonolysis using ammonia gas, and they demonstrated excellent CO 2 capture capabilities. These materials overcome several limitations of conventional amine-grafted mesoporous silica. They offer good CO 2 capture capacity, faster adsorption-desorption kinetics, efficient regeneration and reuse, more crucially excellent thermal and mechanical stability even in oxidative environments, and a clean and green synthesis route, which allows the overall CO 2 capture process to be practical and sustainable. This journal is © The Royal Society of Chemistry 2012.

  8. Flue gas CO{sub 2} capture by a green liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; Stefanie L. Goldman; David A. Smith; Xiaoqiu Wu [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2005-07-01

    We have designed, developed, modeled and tested several different membrane-based, facilitated transport carbonate / bicarbonate reactors (conjoint absorber-strippers) for the post-combustion extraction of CO{sub 2} from both air and flue gas. We have assessed separately the reactive chemistry, the reactor design and the process engineering. Facilitation is achieved by means of the most efficient CO{sub 2} conversion catalyst, the enzyme carbonic anhydrase. Experimental data mirror model predictions very closely. CO{sub 2} permeance value for 10% feed stream (balanced dry air) is 3.35E-8 mole/m{sup 2} s Pa, and the selectivity vs. N{sub 2} and vs. O{sub 2} were 250 and 150. The only moving elements in this design are the feed gas and the sweep gas streams. Gas separation is driven by partial pressure difference alone. As a consequence, this design is extremely energy efficient. 10 refs., 4 figs., 1 tab.

  9. CO2 capture in industries and distributed systems: possibilities and limitations

    NARCIS (Netherlands)

    Kuramochi, T.|info:eu-repo/dai/nl/304838683

    2011-01-01

    CO2 capture and storage (CCS) is considered an important option to reduce greenhouse gas emissions. Large scale centralized power plants have been the main research focus of CCS, but the potential of CCS in the industry and petroleum refineries is also significant. Moreover, a large transition from

  10. European CO2 prices and carbon capture investments

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2008-01-01

    We assess the option to install a carbon capture and storage (CCS) unit in a coal-fired power plant operating in a carbon-constrained environment. We consider two sources of risk, namely the price of emission allowance and the price of the electricity output. First we analyse the performance of the EU market for CO 2 emission allowances. Specifically, we focus on the contracts maturing in the Kyoto Protocol's first commitment period (2008 to 2012) and calibrate the underlying parameters of the allowance price process. Then we refer to the Spanish wholesale electricity market and calibrate the parameters of the electricity price process. We use a two-dimensional binomial lattice to derive the optimal investment rule. In particular, we obtain the trigger allowance prices above which it is optimal to install the capture unit immediately. We further analyse the effect of changes in several variables on these critical prices, among them allowance price volatility and a hypothetical government subsidy. We conclude that, at current permit prices, immediate installation does not seem justified from a financial point of view. This need not be the case, though, if carbon market parameters change dramatically, carbon capture technology undergoes significant improvements, and/or a specific governmental policy to promote these units is adopted. (author)

  11. Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation.

    Science.gov (United States)

    Song, Zhuonan; Qiu, Fen; Zaia, Edmond W; Wang, Zhongying; Kunz, Martin; Guo, Jinghua; Brady, Michael; Mi, Baoxia; Urban, Jeffrey J

    2017-11-08

    A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH 2 , pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO 2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH 2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N 2 molecules (kinetic diameter, 0.364 nm) from smaller CO 2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO 2 separation performance by simultaneously increasing CO 2 permeability (CO 2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO 2 /N 2 selectivity (CO 2 /N 2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using

  12. Thermal effects of CO2 capture by solid adsorbents: some approaches by IR image processing

    International Nuclear Information System (INIS)

    Benevides Ferreira, J.F.; Pradere, C.; Batsale, J.C.; Jolly, J.; Pavageau, B.; Le Bourdon, G.; Mascetti, J.; Servant, L.

    2013-01-01

    Thanks to infrared thermography, we have studied the mechanisms of CO 2 capture by solid adsorbents (CO 2 capture via gas adsorption on various types of porous substrates) to better understand the physico-chemical mechanisms that control CO 2 -surface interactions. In order to develop in the future an efficient process for post-combustion CO 2 capture, it is necessary to quantify the energy of adsorption of the gas on the adsorbent (exothermic process). The released heat (heat of adsorption) is a key parameter for the choice of materials and for the design of capture processes. Infrared thermography is used, at first approach, to detect the temperature fields on a thin-layer of adsorbent during CO 2 adsorption. An analytical heat transfer model was developed to evaluate the adsorption heat flux and to estimate, via an inverse technique, the heat of adsorption. The main originality of our method is to estimate heat losses directly from the heat generated during the adsorption process. Then, the estimated heat loss is taken for an a posteriori calculation of the adsorption heat flux. Finally, the heat of adsorption may be estimated. The interest in using infrared thermography is also its ability to quickly change the experimental setup, for example, to switch from the adsorbent thin-layer to the adsorbent bed configuration. We present the first results tempting to link the thin-layer data to the propagation speed of the thermal front in a milli-fluidics adsorption bed, also observed by IR thermography. (authors)

  13. Separation of CO{sub 2}/N{sub 2} by means of a carbon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Y.; Braun, G. [Cologne University of Applied Sciences, Cologne (Germany); Kaltenborn, N.; Voigt, I. [Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Hermsdorf (Germany); Brunner, G. [Hamburg University of Technology (TUHH), Hamburg (Germany)

    2012-03-15

    The permeation and separation performance of an ultramicroporous carbon membrane for separation of CO{sub 2}/N{sub 2} mixtures were investigated. The experiments were conducted using the steady-state measurement method with pure gases (dead-end mode) and a CO{sub 2}/N{sub 2} gas mixture (20/80 mol.-%) (cross-flow mode) in the temperature range from 293 K to 363 K and at feed pressures of up to 1.4 MPa and atmospheric pressure on the permeate side. The membrane exhibited a selectivity of about 25 and permeability of about 500 Barrer for CO{sub 2} in the mixture with N{sub 2}. The single-gas measurements do not reflect the membrane performance correctly. An adsorption-selective effect is assumed to be the main separation mechanism. Moreover, membrane-aging effects causing blocking due to pore constrictions through adsorption were observed. These pore constrictions lower the permeability, but they raise the selectivity. Operation at high temperatures leads to a reduction of aging effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Thermal design of heat-exchangeable reactors using a dry-sorbent CO2 capture multi-step process

    International Nuclear Information System (INIS)

    Moon, Hokyu; Yoo, Hoanju; Seo, Hwimin; Park, Yong-Ki; Cho, Hyung Hee

    2015-01-01

    The present study proposes a multi-stage CO 2 capture process that incorporates heat-exchangeable fluidized-bed reactors. For continuous multi-stage heat exchange, three dry regenerable sorbents: K 2 CO 3 , MgO, and CaO, were used to create a three-stage temperature-dependent reaction chain for CO 2 capture, corresponding to low (50–150 °C), middle (350–650 °C), and high (750–900 °C) temperature stages, respectively. Heat from carbonation in the high and middle temperature stages was used for regeneration for the middle and low temperature stages. The feasibility of this process is depending on the heat-transfer performance of the heat-exchangeable fluidized bed reactors as the focus of this study. The three-stage CO 2 capture process for a 60 Nm 3 /h CO 2 flow rate required a reactor area of 0.129 and 0.130 m 2 for heat exchange between the mid-temperature carbonation and low-temperature regeneration stages and between the high-temperature carbonation and mid-temperature regeneration stages, respectively. The reactor diameter was selected to provide dense fluidization conditions for each bed with respect to the desired flow rate. The flow characteristics and energy balance of the reactors were confirmed using computational fluid dynamics and thermodynamic analysis, respectively. - Highlights: • CO 2 capture process is proposed using a multi-stage process. • Reactor design is conducted considering heat exchangeable scheme. • Reactor surface is designed by heat transfer characteristics of fluidized bed

  15. Bench Scale Process for Low Cost CO2 Capture Using a PhaseChanging Absorbent: Techno-Economic Analysis Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Miebach, Barbara [GE Global Research, Niskayuna, New York (United States); McDuffie, Dwayne [GE Global Research, Niskayuna, New York (United States); Spiry, Irina [GE Global Research, Niskayuna, New York (United States); Westendorf, Tiffany [GE Global Research, Niskayuna, New York (United States)

    2017-01-27

    The objective of this project is to design and build a bench-scale process for a novel phase-changing CO2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2 capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove CO2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO2 removal cost for the phase-changing CO2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced

  16. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host.

    Science.gov (United States)

    Morris, Christopher G; Jacques, Nicholas M; Godfrey, Harry G W; Mitra, Tamoghna; Fritsch, Detlev; Lu, Zhenzhong; Murray, Claire A; Potter, Jonathan; Cobb, Tom M; Yuan, Fajin; Tang, Chiu C; Yang, Sihai; Schröder, Martin

    2017-04-01

    The identification of preferred binding domains within a host structure provides important insights into the function of materials. State-of-the-art reports mostly focus on crystallographic studies of empty and single component guest-loaded host structures to determine the location of guests. However, measurements of material properties ( e.g. , adsorption and breakthrough of substrates) are usually performed for a wide range of pressure (guest coverage) and/or using multi-component gas mixtures. Here we report the development of a multifunctional gas dosing system for use in X-ray powder diffraction studies on Beamline I11 at Diamond Light Source. This facility is fully automated and enables in situ crystallographic studies of host structures under (i) unlimited target gas loadings and (ii) loading of multi-component gas mixtures. A proof-of-concept study was conducted on a hydroxyl-decorated porous material MFM-300(V III ) under (i) five different CO 2 pressures covering the isotherm range and (ii) the loading of equimolar mixtures of CO 2 /N 2 . The study has successfully captured the structural dynamics underpinning CO 2 uptake as a function of surface coverage. Moreover, MFM-300(V III ) was incorporated in a mixed matrix membrane (MMM) with PIM-1 in order to evaluate the CO 2 /N 2 separation potential of this material. Gas permeation measurements on the MMM show a great improvement over the bare PIM-1 polymer for CO 2 /N 2 separation based on the ideal selectivity.

  17. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment

    International Nuclear Information System (INIS)

    Pérez-Fortes, Mar; Schöneberger, Jan C.; Boulamanti, Aikaterini; Tzimas, Evangelos

    2016-01-01

    Highlights: • A carbon utilisation plant that synthesise methanol is simulated in CHEMCAD. • The total amount of CO 2 demand is 1.46 t/t methanol . • The CO 2 not-produced compared to a conventional plant is 0.54 t/t methanol . • Production costs results too high for a financially attractive project. • There is a net potential for CO 2 emissions reduction of 2.71 MtCO 2 /yr in Europe. - Abstract: The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H 2 and captured CO 2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO 2 emissions and (ii) the cost of production, in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD, and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO 2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr, and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However, raw materials prices, i.e. H 2 and captured CO 2 , do not allow such a project to be financially viable. In order to make the CCU plant financially attractive, the price of MeOH should increase in a factor of almost 2, or H 2 costs should decrease almost 2.5 times, or CO 2 should have a value of around 222 €/t, under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO 2 emissions of a pulverised coal (PC) power plant that produces 550 MW net of electricity. The net CO 2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional Me

  18. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control.

    Science.gov (United States)

    Rao, Anand B; Rubin, Edward S

    2002-10-15

    Capture and sequestration of CO2 from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO2 absorption system for postcombustion flue gas applications have been developed and integrated with an existing power plant modeling framework that includes multipollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO2 capture system design, interactions with other pollution control systems, and method of CO2 storage. The CO2 avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO2 capture cost was afforded by the SO2 emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multipollutant environmental management.

  19. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO2 versus MEA-Based Postcombustion Capture.

    Science.gov (United States)

    van der Giesen, Coen; Meinrenken, Christoph J; Kleijn, René; Sprecher, Benjamin; Lackner, Klaus S; Kramer, Gert Jan

    2017-01-17

    Most carbon capture and storage (CCS) envisions capturing CO 2 from flue gas. Direct air capture (DAC) of CO 2 has hitherto been deemed unviable because of the higher energy associated with capture at low atmospheric concentrations. We present a Life Cycle Assessment of coal-fired electricity generation that compares monoethanolamine (MEA)-based postcombustion capture (PCC) of CO 2 with distributed, humidity-swing-based direct air capture (HS-DAC). Given suitable temperature, humidity, wind, and water availability, HS-DAC can be largely passive. Comparing energy requirements of HS-DAC and MEA-PCC, we find that the parasitic load of HS-DAC is less than twice that of MEA-PCC (60-72 kJ/mol versus 33-46 kJ/mol, respectively). We also compare other environmental impacts as a function of net greenhouse gas (GHG) mitigation: To achieve the same 73% mitigation as MEA-PCC, HS-DAC would increase nine other environmental impacts by on average 38%, whereas MEA-PCC would increase them by 31%. Powering distributed HS-DAC with photovoltaics (instead of coal) while including recapture of all background GHG, reduces this increase to 18%, hypothetically enabling coal-based electricity with net-zero life-cycle GHG. We conclude that, in suitable geographies, HS-DAC can complement MEA-PCC to enable CO 2 capture independent of time and location of emissions and recapture background GHG from fossil-based electricity beyond flue stack emissions.

  20. Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, John [Southern Company Services, Inc., Wilsonville, AL (United States)

    2017-10-01

    This document summarizes the activities of Cooperative Agreement DE-FE0026590, “Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas” during the performance period of October 1, 2015 through May 31, 2017. This project was funded by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). Southern Company Services, Inc. (SCS) was the prime contractor and co-funder of the project. Mitsubishi Heavy Industries America (MHIA) and AECOM were project team members. The overall project objective was to improve costs, energy requirements, and performance of an existing amine-based CO2 capture process. This will occur via improvements in three areas: 1. Reboiler design – The first objective of the program was to demonstrate performance of an integrated stripper/reboiler (termed Built-in Reboiler, or BIR) to reduce footprint, capital costs, and integration issues of the current technology. 2. Particulate management – The second objective was to carry out a Particulate Matter Management (PMM) test. This has the potential to reduce operating costs and capital costs due to the reduced or eliminated need for mechanical filtration. 3. Solvent – The third objective was to carry out a new solvent test plan (referred to as NSL) to demonstrate a new solvent (termed New Solvent A), which is expected to reduce regeneration steam. The bulk price is also expected to be lower than KS-1, which is the current solvent used in this process. NSL testing would include baseline testing, optimization, long term testing, solvent reclamation testing, and final inspection. These combine to form the Advanced Carbon Capture (ACC) technology. Much of this work will be applicable to generic solvent processes, especially in regards to improved reboiler design, and focused to meet or exceed the DOE’s overall carbon capture performance goals of 90% CO2 capture rate with 95% CO2 purity at a cost of

  1. Bench Scale Development and Testing of Aerogel Sorbents for CO2 Capture Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Begag, Redouane [Aspen Aerogels, Northborough, MA (United States)

    2017-03-30

    The primary objective of this project was scaling up and evaluating a novel Amine Functionalized Aerogel (AFA) sorbent in a bench scale fluidized bed reactor. The project team (Aspen Aerogels, University of Akron, ADA-ES, and Longtail Consulting) has carried out numerous tests and optimization studies to demonstrate the CO2 capture performance of the AFA sorbent in all its forms: powder, pellet, and bead. The CO2 capture target performance of the AFA sorbent (all forms) were set at > 12 wt.% and > 6 wt.% for total and working CO2 capacity, respectively (@ 40 °C adsorption / 100 – 120 °C desorption). The optimized AFA powders outperformed the performance targets by more than 30%, for the total CO2 capacity (14 - 20 wt.%), and an average of 10 % more for working CO2 capacity (6.6 – 7.0 wt.%, and could be as high as 9.6 wt. % when desorbed at 120 °C). The University of Akron developed binder formulations, pellet production methods, and post treatment technology for increased resistance to attrition and flue gas contaminants. In pellet form the AFA total CO2 capacity was ~ 12 wt.% (over 85% capacity retention of that of the powder), and there was less than 13% degradation in CO2 capture capacity after 20 cycles in the presence of 40 ppm SO2. ADA-ES assessed the performance of the AFA powder, pellet, and bead by analyzing sorption isotherms, water uptake analysis, cycling stability, jet cup attrition and crush tests. At bench scale, the hydrodynamic and heat transfer properties of the AFA sorbent pellet in fluidized bed conditions were evaluated at Particulate Solid Research, Inc. (PSRI). After the process design requirements were completed, by Longtail Consulting LLC, a techno-economic analysis was achieved using guidance from The National Energy Technology Laboratory (NETL) report. This report provides the necessary framework to estimate costs for a temperature swing post

  2. Mass Spectrum Analysis of CO2 and N2 Using Ion Beam Separator System

    International Nuclear Information System (INIS)

    Tjipto-Sujitno, BA; Darsono; Agus-Santoso

    2000-01-01

    The main purpose of this research is to study investigate the massspectrum profile of CO 2 and N 2 emitted from Penning ion source using ionbeam separator. Besides that, it is also identified the compositions of CO 2 and N 2 ion gas and their abundances through their mass spectrum profile,because as we know that these ions are consist of ion of atom or molecule aswell as the their abundances. To get these profiles, the ion beam acceleratedin accelerating tube are passed through magnet separator. After passing themagnet separator, the ion current beam was detected using microampere meter.By scanning the strength of magnetic field, it will be found the currentspectrum profile as a function of magnetic field. From this current spectrum,we can make a mass spectrum profile. From experiment done, it was found thatthe mass spectrum peak of CO 2 and N 2 were C + with m/z = (12.00 ± 0.10)amu, O 2 + = (31.96 ± 0.29) amu, CO 2 + = (43.93 ± 0.31) amu, N + (13.97 ± 0.33) amu, and N 2 + = (28.05 ± 0.18) amu. (author)

  3. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Thomas [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Soukri, Mustapha [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Farmer, Justin [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Mobley, Paul [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Tanthana, Jak [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Dongxiang [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Xiaoxing [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Song, Chunshan [Research Triangle Institute (RTI), Research Triangle Park, NC (United States)

    2015-12-31

    It is increasingly clear that CO2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO2 capture processes – such as RTI’s Advanced Solid Sorbent CO2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO2 capture. The overall objective

  4. Development of New Potassium Carbonate Sorbent for CO2 Capture under Real Flue Gas Conditions

    Directory of Open Access Journals (Sweden)

    Javad Esmaili

    2014-07-01

    Full Text Available In this paper, the development of a new potassium carbonateon alumina support sorbent prepared by impregnating K2CO3 with an industrial grade of Al2O3 support was investigated. The CO2 capture capacity was measured using real flue gas with 8% CO2 and 12% H2O in a fixed-bed reactor at a temperature of 65 °C using breakthrough curves. The developed sorbent showed an adsorption capacity of 66.2 mgCO2/(gr sorbent. The stability of sorbent capture capacity was higher than the reference sorbent. The SO2 impurity decreased sorbent capacity about 10%. The free carbon had a small effect on sorbent capacity after 5 cycles. After 5 cycles of adsorption and regeneration, the changes in the pore volume and surface area were 0.020 cm3/gr and 5.5 m2/gr respectively. Small changes occurred in the pore size distribution and surface area of sorbent after 5 cycles.

  5. Different sorbents in calcium looping cycle for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cong; Zheng, Ying; Ding, Ning [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    Cyclic CO{sub 2} capture using commercial pure micro CaCO{sub 3} and nano CaCO{sub 3} is investigated in this paper which focuses on the different characteristics two different sorbents during high temperature reactions. The results indicate that the nano CaCO{sub 3} sorbent has higher carbonation conversions and carbonation rates than the micro CaCO{sub 3} sorbent in the cyclic reactions. Furthermore, nano sorbent can retain its fast carbonation rates at the beginning dozens of seconds during each cycle. In contrast, the carbonation rates of micro sorbent diminish with the increase of cycle number. But, unfortunately, CaO derived from nano CaCO3 sorbent sinter much easily. Its grains, which are composed of numerous spherical nanocrystallites, experience dramatic morphological changes during high temperature reactions.

  6. Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

    2012-05-02

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  7. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO 2 capture with excellent stability and regenerability

    KAUST Repository

    Patil, Umesh; Fihri, Aziz; Emwas, Abdul-Hamid M.; Polshettiwar, Vivek

    2012-01-01

    ammonia gas, and they demonstrated excellent CO 2 capture capabilities. These materials overcome several limitations of conventional amine-grafted mesoporous silica. They offer good CO 2 capture capacity, faster adsorption-desorption kinetics, efficient

  8. Flue gas carbon capture using hollow fiber membrane diffuser-separator

    Science.gov (United States)

    Ariono, D.; Chandranegara, A. S.; Widodo, S.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, CO2 removal from flue gas using membrane diffuser-separator was investigated. Hollow fiber polypropylene membrane was used as the diffuser while pure water was used as the absorbent. Separation performance of the membrane diffuser-separator as a function of CO2 concentration (6-28%-vol.) and flow rate (gas: 0.8-1.55 L.min-1 and liquid: 0.2-0.7 L.min-1) was investigated and optimized. It was found that CO2 removal was significantly affected by CO2 concentration in the feed gas. On the other hand, CO2 flux was more influenced by flow rates of liquid and gas rather than concentration. The optimized CO2 removal (64%) and flux (1 x 10-4 mol.m-2.s-1) were obtained at the highest gas flow rate (1.55 L.min-1), the lowest liquid flow rate (0.2 L.min-1), and 6.2%-vol. of CO2 concentration. Outlet gas of the membrane diffuser system tends to carry some water vapor, which is affected by gas and liquid flow rate. Meanwhile, in the steady-state operation of the separator, the gas bubbles generated by the membrane diffuser take a long time to be completely degassed from the liquid phase, thus a portion of gas stream was exiting separator through liquid outlet.

  9. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles

    Science.gov (United States)

    Ghalei, Behnam; Sakurai, Kento; Kinoshita, Yosuke; Wakimoto, Kazuki; Isfahani, Ali Pournaghshband; Song, Qilei; Doitomi, Kazuki; Furukawa, Shuhei; Hirao, Hajime; Kusuda, Hiromu; Kitagawa, Susumu; Sivaniah, Easan

    2017-07-01

    Mixed matrix membranes (MMMs) for gas separation applications have enhanced selectivity when compared with the pure polymer matrix, but are commonly reported with low intrinsic permeability, which has major cost implications for implementation of membrane technologies in large-scale carbon capture projects. High-permeability polymers rarely generate sufficient selectivity for energy-efficient CO2 capture. Here we report substantial selectivity enhancements within high-permeability polymers as a result of the efficient dispersion of amine-functionalized, nanosized metal-organic framework (MOF) additives. The enhancement effects under optimal mixing conditions occur with minimal loss in overall permeability. Nanosizing of the MOF enhances its dispersion within the polymer matrix to minimize non-selective microvoid formation around the particles. Amination of such MOFs increases their interaction with thepolymer matrix, resulting in a measured rigidification and enhanced selectivity of the overall composite. The optimal MOF MMM performance was verified in three different polymer systems, and also over pressure and temperature ranges suitable for carbon capture.

  10. Preliminary results of a techno-economic assessment of CO2 capture-network configurations in the industry

    NARCIS (Netherlands)

    Berghout, N.A.; Kuramochi, T.; van den Broek, M.A.; Ramirez, C.A.; Faaij, A.P.C.

    2013-01-01

    This paper evaluated the techno economic performance of several CO2 capture-network configurations for a cluster of sixteen industrial plants in the Netherlands using bottom up analysis. Preliminary findings indicate that centralizing capture equipment instead of capture equipment at plant sites

  11. Technical study of the CO{sub 2} capture process with monoethanolamine for a thermoelectric plant; Estudio tecnico del proceso de captura de CO{sub 2} con monoetanolamina para una planta termoelectrica

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Diaz, Abigail; Franco Nava, Jose Manuel; Peralta Martinez, Maria Vita; Gonzalez Santalo, Jose Miguel [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Franco Lopez, Rogelio; Carreon Silva, Ramon [Comision Federal de Electricidad (Mexico)

    2010-07-01

    Within the frame of the Special Program of Climatic Change (PECC) emitted by the Federal Government, the study of the process of CO{sub 2} capture is carried out post-combustion for application in generating power stations, as a possible alternative to reduce the CO{sub 2} emissions in Mexico. The simulation of the process of CO{sub 2} capture of gases generated by a thermoelectric power plant of 350 MW was carried out, that would use coal as fuel, in the processes simulator ASPEN HYSYS. For this process two columns are required: one of absorption, in which the gases and the solvent enter, that in this case were a solution of monoethanolamine (MEA) at 30%. MEA reacts with the CO{sub 2} contained in gases, retaining it, so that the remaining gases that are emitted to the atmosphere contain no longer MEA and the captured CO{sub 2} passes to the second column where these two components are separated, using thermal energy to regenerate the MEA releasing the CO{sub 2}. The released CO{sub 2} leaves though the upper part of the column and the MEA recovered that is reused in the absorption column, through the bottom. The CO{sub 2} concentration in gases of the combustion is of 14.54% by volume. The simulation was realized defining a capture efficiency of 90%, which threw a thermal power consumption to regenerate MEA of 4.75 GJt/ton CO{sub 2} that would be provided by the thermoelectric power station. Considering a capacity of 280 ton/h (by train) of the gas to be treated the height of the desertion and absorption columns was determined, as well as the MEA solution flow. [Spanish] Dentro del marco del Programa Especial de Cambio Climatico (PECC) emitido por el Gobierno Federal, se lleva a cabo el estudio del proceso de captura de CO{sub 2} poscombustion para aplicacion en centrales generadoras, como una posible alternativa para reducir las emisiones de CO{sub 2} en Mexico. Se llevo a cabo la simulacion del proceso de captura de CO{sub 2} de los gases generados por una

  12. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  13. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  14. OCTAVIUS: evaluation of flexibility and operability of amine based post combustion CO2 capture at the Brindisi Pilot Plant

    NARCIS (Netherlands)

    Mangiaracina, A.; Zangrilli, L.; Robinson, L.; Kvamsdal, H.M.; Os, P.J. van

    2014-01-01

    Solvent storage is an option for amine based post combustion capture that can be used to de-couple the capture of CO2 and the energy demand of the process. In this process, electricity output of a power station is temporarily increased by diverting steam from the CO2 capture plant back to the steam

  15. The Ca-looping process for CO2 capture and energy storage: role of nanoparticle technology

    Science.gov (United States)

    Valverde, Jose Manuel

    2018-02-01

    The calcium looping (CaL) process, based on the cyclic carbonation/calcination of CaO, has come into scene in the last years with a high potential to be used in large-scale technologies aimed at mitigating global warming. In the CaL process for CO2 capture, the CO2-loaded flue gas is used to fluidize a bed of CaO particles at temperatures around 650 °C. The carbonated particles are then circulated into a calciner reactor wherein the CaO solids are regenerated at temperatures near 950 °C under high CO2 concentration. Calcination at such harsh conditions causes a marked sintering and loss of reactivity of the regenerated CaO. This main drawback could be however compensated from the very low cost of natural CaO precursors such as limestone or dolomite. Another emerging application of the CaL process is thermochemical energy storage (TCES) in concentrated solar power (CSP) plants. Importantly, carbonation/calcination conditions to maximize the global CaL-CSP plant efficiency could differ radically from those used for CO2 capture. Thus, carbonation could be carried out at high temperatures under high CO2 partial pressure for maximum efficiency, whereas the solids could be calcined at relatively low temperatures in the absence of CO2 to promote calcination. Our work highlights the critical role of carbonation/calcination conditions on the performance of CaO derived from natural precursors. While conditions in the CaL process for CO2 capture lead to a severe CaO deactivation with the number of cycles, the same material may exhibit a high and stable conversion at optimum CaL-CSP conditions. Moreover, the type of CaL conditions influences critically the reaction kinetics, which plays a main role on the optimization of relevant operation parameters such as the residence time in the reactors. This paper is devoted to a brief review on the latest research activity in our group concerning these issues as well as the possible role of nanoparticle technology to enhance the

  16. Amine-modified ordered mesoporous silica: The effect of pore size on CO{sub 2} capture performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin; Yao, Manli [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Hu, Xin [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Hu, Gengshen, E-mail: gshu@zjnu.edu.cn [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Lu, Jiqing; Luo, Mengfei [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Fan, Maohong, E-mail: mfan@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2015-01-01

    Highlights: • Larger pore size could decrease the mass transfer resistance and increase the interaction between CO{sub 2} and TEPA. • The CO{sub 2} uptakes of sorbents were enhanced in the presence of moisture. • The sorbents are stable and regenerable under test conditions. - Abstract: The objective of current research is to investigate the effect of pore size of mesoporous silica supports on the CO{sub 2} capture performance of solid amine sorbents. Two ordered mesoporous silicas (OMS) with different pore sizes (5.6 nm and 7.6 nm) were synthesized as tetraethylenepentamine (TEPA) supports. A serious of techniques, such as physical adsorption, infrared spectroscopy and thermal gravimetric analysis were used to characterize the solid amine sorbents. The CO{sub 2} capture performances of the sorbents were evaluated using breakthrough method with a fixed-bed reactor equipped with an online mass spectrometer. The experimental results indicate that the pore size has significant influence on CO{sub 2} capture performance. Larger pore size could decrease the mass transfer resistance and increase the interaction between CO{sub 2} and TEPA. Therefore, OMS-7.6 is better than OMS-5.6 as amine support. The highest CO{sub 2} sorption capacities achieved with OMS-7.6 with 50 wt% TEPA loading (OMS-7.6-50) in the absence and presence of moisture are 3.45 mmol/g and 4.28 mmol/g, respectively, under the conditions of 10.0% CO{sub 2}/N{sub 2} mixture at 75 °C. Cyclic CO{sub 2} adsorption–desorption experiments indicate that the solid amine sorbents are fairly stable and regenerable.

  17. The role of ceramic materials in the production of hydrogen with simultaneous CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Barros, B.S. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    Full text: Hydrogen is considered one of the most promising alternatives to fossil fuels. However, it is mainly obtained from syngas resulting from natural gas steam reforming (SMR), producing a significant amount of carbon dioxide as a side product. Carbon dioxide emission (CO2) is a major contributor to global warming, and one-third of those emissions come from fuel combustion for power generation. A new interesting process has been described to control CO2 emission: the reforming optimized by CO2 sorption, which associates conventional methane reforming and in situ capture of CO2 via absorption in a solid oxide. Furthermore, this strategy can increase the H2 production and concentrate CO2 for the eventual use as chemicals or energy vectors. Alkaline and alkaline-earth ceramics have been proposed for CO2 capture through adsorption and chemisorption processes. These materials can be classified into two large groups: dense and porous ceramics. Dense ceramics mainly trap CO2 chemically: the CO2 is chemisorbed. Among these ceramics, CaO is the most studied one. CaO-based materials have been highlighted as the solid sorbents in the capture of CO2 because of their favorable thermodynamic and chemical properties. The main problem with CaO is the strong decrease in the sorption capacity after multiple carbonation–calcination cycles. This talk will cover some strategies to improve this sorption capacity, such as the deposition of calcium oxide on an inert support, Ca12Al14O33 (mayenite). This oxide has no sorption properties but presents a large surface area, and provides stable network inhibiting deactivation of CaO by sintering. (author)

  18. CO2 capture technologies: current status and new directions using supported ionic liquid phase (SILP) absorbers

    DEFF Research Database (Denmark)

    Kolding, Helene; Fehrmann, Rasmus; Riisager, Anders

    2012-01-01

    Current state-of-the-art techniques for CO2 capture are presented and discussed. Post-combustion capture of CO2 by absorption is the technology most easily retrofitted to existing installations, but at present this is not economically viable to install and run. Using ionic liquids instead...... of aqueous amine solutions overcomes the major thermodynamic issues. By applying SILP technology further advances, in terms of ease of handling and sorption dynamics, are obtained. Initial experimental studies showed that ionic liquids such as tetrahexylammonium prolinate, [N6666][Pro], provide a good...... candidate for CO2 absorption using SILP technology. Thus a solid SILP absorber comprised of 40 wt% [N6666][Pro] loaded on precalcined silica quantitatively takes up about 1.2 mole CO2 per mole of ionic liquid in consecutive absorption-desorption cycles in a flow-experiment performed with 0.09 bar of CO2 (9...

  19. Simulation of a bubbling fluidized bed process for capturing CO2 from flue gas

    International Nuclear Information System (INIS)

    Choi, Jeong-Hoo; Yi, Chang-Keun; Jo, Sung-Ho; Ryu, Ho-Jung; Park, Young-Cheol

    2014-01-01

    We simulated a bubbling bed process capturing CO 2 from flue gas. It applied for a laboratory scale process to investigate effects of operating parameters on capture efficiency. The adsorber temperature had a stronger effect than the regenerator temperature. The effect of regenerator temperature was minor for high adsorber temperature. The effect of regenerator temperature decreased to level off for the temperature >250 .deg. C. The capture efficiency was rather dominated by the adsorption reaction than the regeneration reaction. The effect of gas velocity was as appreciable as that of adsorber temperature. The capture efficiency increased with the solids circulation rate since it was ruled by the molar ratio of K to CO 2 for solids circulation smaller than the minimum required one (G s, min ). However, it leveled off for solids circulation rate >G s, min . As the ratio of adsorber solids inventory to the total solids inventory (x w1 ) increased, the capture efficiency increased until x w1 =0.705, but decreased for x w1 >0.705 because the regeneration time decreased too small. It revealed that the regeneration reaction was faster than the adsorption reaction. Increase of total solids inventory is a good way to get further increase in capture efficiency

  20. CO2-capture and air quality. Synergy or conflict? A study of possible impacts

    International Nuclear Information System (INIS)

    Koornneef, J.M.; Ramirez Ramirez, C.A.; Van Harmelen, A.K.; Van Horssen, A.; Van Gijlswijk, R.N.

    2008-01-01

    Does CO2 capture and storage conflict with the objectives for air quality in the Netherlands? Or are win-win situations conceivable? These are important questions for policy makers today. It is expected that both conflicts and synergies will occur in the large scale implementation of CO2 capture in the Dutch electricity sector. This article provides a brief summary of part of the research program that was set up to unravel synergies and conflicts in policy for climate and air quality: the Dutch Policy Research Program on Air and Climate (BOLK) of the ministry of Housing, Spatial Planning and the Environment. [mk] [nl

  1. Preparation of a Facilitated Transport Membrane Composed of Carboxymethyl Chitosan and Polyethylenimine for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Jiang-Nan Shen

    2013-02-01

    Full Text Available The miscibility of carboxymethyl chitosan/polyethylenimine (CMCS/PEI blends was analyzed by FT-IR, TGA and SEM. Defect-free CMCS/PEI blend membranes were prepared with polysulfone (PSf ultrafiltration membranes as support layer for the separation of CO2/N2 mixtures. The results demonstrate that the CMCS/PEI blend is miscible, due to the hydrogen bonding interaction between the two targeted polymers. For the blended membrane without water, the permeability of CO2 gas is 3.6 × 10−7 cm3 cm−2 s−1 cmHg−1 and the corresponding separation factor for CO2 and N2 gas is about 33 at the pressure of 15.2 cmHg. Meanwhile, the blended membrane with water has the better permselectivity. The blended membrane containing water with PEI content of 30 wt% has the permeance of 6.3 × 10−4 cm3 cm−2 s−1 cmHg−1 for CO2 gas and a separation factor of 325 for CO2/N2 mixtures at the same feed pressure. This indicates that the CO2 separation performance of the CMCS/PEI blend membrane is higher than that of other facilitated transport membranes reported for CO2/N2 mixture separation.

  2. Hexagonal boron nitride and graphene in-plane heterostructures: An experimentally feasible approach to charge-induced switchable CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xin; Tahini, Hassan A.; Smith, Sean C., E-mail: sean.smith@unsw.edu.au

    2016-10-20

    Hexagonal boron nitride (h-BN) has been proposed as a sorbent material for charge-induced switchable CO{sub 2} capture. However, h-BN is a wide-gap semiconductor, hindering injection of the requisite charge. Here, we employ first-principle calculations to support the proposal that in-plane h-BN/graphene (P-BN/G) heterostructures, consisting of alternating strips of h-BN and graphene, may provide an experimentally feasible material platform for voltage-induced charging of h-BN strips to realize switchable CO{sub 2} capture. Our results show that a significant amount of injected negative charges are distributed onto h-BN strips of P-BN/G, such that CO{sub 2} capture/release can be simply controlled by switching on/off the charge states of P-BN/G system. At saturation CO{sub 2} capture coverage, the negatively charged P-BN/G heterostructures achieve CO{sub 2} capture capacities up to 2.27 × 10{sup 14} cm{sup −2}, which is twice that which can be achieved on stacked h-BN/graphene (S-BN/G) nanosheets.

  3. Application of oxy-fuel CO2 capture for In-situ bitumen extraction from Canada's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, Mark; Goold, Scott; Laux, Stefan; Sharma, Apoorva; Aasen, Knut; Neu, Ben

    2010-09-15

    The CO2 Capture Project, along with Praxair, Devon Canada, Cenovus Energy and Statoil are executing a project to demonstrate oxy-fuel combustion as a practical and economic method for CO2 capture from once-through steam generators used in the in-situ production of bitumen in the Canadian Oil Sands. The goal of the project is to develop a reliable, lower cost solution for capturing CO2 that will eliminate up to 90% of the GHG emissions from in-situ operations. The participants will present results of Phase I of this project, and will also outline the future Phases to pilot this technology.

  4. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  5. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and

  6. The international race for CO2 capture and storage. And the winner is ...?

    International Nuclear Information System (INIS)

    De Coninck, H.C.

    2008-06-01

    Ever since CO2 capture and storage (CCS) has gained prominence among greenhouse gas reduction alternatives, researchers, policymakers, and industry have speculated about who would become the technology leader in this field. Will it be a technology that follows in the footsteps of solar and wind energy and sees European companies as market leaders benefiting from an early mover advantage, strengthened by a favorable internal market? Will the enormous investments of the U.S. government in R and D combined with its greater entrepreneurial power and better investment climate pay off? Or will other countries - like Australia which is very active in this area, or maybe China - become the world's market leader in CO2 capture installations, a highly capital-intensive technology? Given exploding world energy demand, climate-friendly technologies will be indispensable for stabilizing greenhouse gas concentrations. Thus, countries being able to develop and maintain themselves as technology leaders are likely to benefit from the deep reductions in CO2 emissions that we will need to achieve in the near future

  7. Hollow Fiber Membrane Contactors for CO2 Capture: Modeling and Up-Scaling to CO2 Capture for an 800 MWe Coal Power Station

    Directory of Open Access Journals (Sweden)

    Kimball Erin

    2014-11-01

    Full Text Available A techno-economic analysis was completed to compare the use of Hollow Fiber Membrane Modules (HFMM with the more conventional structured packing columns as the absorber in amine-based CO2 capture systems for power plants. In order to simulate the operation of industrial scale HFMM systems, a two-dimensional model was developed and validated based on results of a laboratory scale HFMM. After successful experiments and validation of the model, a pilot scale HFMM was constructed and simulated with the same model. The results of the simulations, from both sizes of HFMM, were used to assess the feasibility of further up-scaling to a HFMM system to capture the CO2 from an 800 MWe power plant. The system requirements – membrane fiber length, total contact surface area, and module volume – were determined from simulations and used for an economic comparison with structured packing columns. Results showed that a significant cost reduction of at least 50% is required to make HFMM competitive with structured packing columns. Several factors for the design of industrial scale HFMM require further investigation, such as the optimal aspect ratio (module length/diameter, membrane lifetime, and casing material and shape, in addition to the need to reduce the overall cost. However, HFMM were also shown to have the advantages of having a higher contact surface area per unit volume and modular scale-up, key factors for applications requiring limited footprints or flexibility in configuration.

  8. CO2 capture from power plants. Part I : A parametric study of the technical performance based on monoethanolamine

    NARCIS (Netherlands)

    Abu-Zahra, M. R. M.; Schneiders, L. H. J.; Niederer, J. P. M.; Feron, P. H. M.; Versteeg, G. F.

    Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based

  9. CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine

    NARCIS (Netherlands)

    Abu-Zahra, Mohammad R.M.; Schneiders, Léon H.J.; Niederer, John; Feron, Paul H.M.; Versteeg, Geert

    2007-01-01

    Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based

  10. Zeolitic Imidazolate Framework-8 Membrane for H2/CO2 Separation: Experimental and Modeling

    Science.gov (United States)

    Lai, L. S.; Yeong, Y. F.; Lau, K. K.; Azmi, M. S.; Chew, T. L.

    2018-03-01

    In this work, ZIF-8 membrane synthesized through solvent evaporation secondary seeded growth was tested for single gas permeation and binary gases separation of H2 and CO2. Subsequently, a modified mathematical modeling combining the effects of membrane and support layers was applied to represent the gas transport properties of ZIF-8 membrane. Results showed that, the membrane has exhibited H2/CO2 ideal selectivity of 5.83 and separation factor of 3.28 at 100 kPa and 303 K. Besides, the experimental results were fitted well with the simulated results by demonstrating means absolute error (MAE) values ranged from 1.13 % to 3.88 % for single gas permeation and 10.81 % to 21.22 % for binary gases separation. Based on the simulated data, most of the H2 and CO2 gas molecules have transported through the molecular pores of membrane layer, which was up to 70 %. Thus, the gas transport of the gases is mainly dominated by adsorption and diffusion across the membrane.

  11. Microbial electrochemical separation of CO2 for biogas upgrading

    DEFF Research Database (Denmark)

    Kokkoli, Argyro; Zhang, Yifeng; Angelidaki, Irini

    2018-01-01

    was obtained at 1.2 V, inlet biogas rate of 0.088 mL/h/mL reactor and NaCl concentration of 100 mM at a 5-day operation. Meanwhile, the organic matter of the domestic wastewater in the anode was almost completely removed at the end. The study demonstrated a new sustainable way to simultaneously upgrade biogas......Biogas upgrading to natural gas quality has been under focus the recent years for increasing the utilization potential of biogas. Conventional methods for CO2 removal are expensive and have environmental challenges, such as increased emissions of methane in the atmosphere with serious greenhouse...... impact. In this study, an innovative microbial electrochemical separation cell (MESC) was developed to in-situ separate and regenerate CO2 via alkali and acid regeneration. The MESC was tested under different applied voltages, inlet biogas rates and electrolyte concentrations. Pure biomethane...

  12. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture

    KAUST Repository

    Liu, Yunyang

    2010-05-01

    Continuous and c-oriented ZIF-69 membranes were successfully synthesized on porous alpha-alumina substrates by an in situ solvothermal method. The membranes were characterized by XRD, SEM and single-gas permeation tests. The BET measurements on crystals taken from the same mother liquor that was used for membrane synthesis yield a Langmuir surface area of 1138 m(2)/g. The stability of the membrane towards heat and different solvents were studied. Single-gas permeation experiments through ZIF-69 membranes were carried out by a vacuum method at room temperature using H-2, CH4, CO, CO2 and SF6, respectively. The permeances were in the order of H-2 > CO2 > CH4 > CO > SF6. The separation of CO2/CO gas mixture was investigated by gas chromatograph (GC) and the permselectivity of CO2/CO was 3.5 +/- 0.1 with CO2 permeance of 3.6 +/- 0.3 x 10(-8) mol m(-2) s(-1) Pa-1 at room temperature. (C) 2010 Elsevier B.V. All rights reserved.

  13. Effects of Bonding Types and Functional Groups on CO 2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew

    2011-08-01

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) which possess unique features including negligible vapor pressure and a high degree of tunability were synthesized and their physical and chemical properties as well as CO 2 capture capacities were investigated. NOHMs can be classified based on the synthesis methods involving different bonding types, the existence of linkers, and the addition of task-specific functional groups including amines for CO 2 capture. As a canopy of polymeric chains was grafted onto the nanoparticle cores, the thermal stability of the resulting NOHMs was improved. In order to isolate the entropy effect during CO 2 capture, NOHMs were first prepared using polymers that do not contain functional groups with strong chemical affinity toward CO 2. However, it was found that even ether groups on the polymeric canopy contributed to CO 2 capture in NOHMs via Lewis acid-base interactions, although this effect was insignificant compared to the effect of task-specific functional groups such as amine. In all cases, a higher partial pressure of CO 2 was more favorable for CO 2 capture, while a higher temperature caused an adverse effect. Multicyclic CO 2 capture tests confirmed superior recyclability of NOHMs and NOHMs also showed a higher selectivity toward CO 2 over N 2O, O 2 and N 2. © 2011 American Chemical Society.

  14. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Rochelle, Gary T; Seibert, Frank; Closmann, Fred; Cullinane, Tim; Davis, Jason; Goff, George; Hilliard, Marcus; McLees, John; Plaza, Jorge M; Sexton, Andrew; Wagener, David Van; Zu, Qing; Veawab, Amornvadee; Nainar, Manjula

    2007-08-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO3 promoted by piperazine (PZ). Pilot plant testing was performed in a 16.8-inch ID absorber and stripper with recirculation of air and CO{sub 2}. Three solvents (7 m MEA, 5 m K{sup +}/2.5 m PZ, and 6.4 m K{sup +}/1.6 m PZ) were tested in four campaigns with three different absorber packings. Pilot plant testing established that 5 m K{sup +}/2.5 m PZ requires two times less packing than 7 m MEA and three times less packing than 6.4 m K{sup +}/1.6 m PZ. A rigorous model of the thermodynamics and mass transfer was developed in the RateSep{trademark} block of AspenPlus{reg_sign}. The double matrix stripper reduces energy consumption by 5 to 15%. The best K{sup +}/PZ solvent, 4 m K{sup +}/4 m PZ, and the best process configuration, double matrix stripper with a double intercooled absorber, requires equivalent work of 40 kJ/mole CO{sub 2} to produce CO{sub 2} at 10 MPa. Inhibitor A is effective at reducing oxidative degradation over a wide range of metal concentrations and solvent types. Piperazine is resistant to oxidative degradation catalyzed by dissolved iron, but it oxidizes at rates comparable to monoethanolamine (MEA) in the presence of dissolved copper. The thermal degradation of MEA becomes significant at 120 C, but loaded piperazine solutions appear to be resistant to thermal degradation up to 135 C. The vapor pressure of PZ over typical lean solution at 40 C will be less than 25 ppm, which is less than the 40 ppm expected for MEA. Significant problems with foaming were encountered and alleviated by antifoamants in the pilot plant campaigns with K{sup +}/PZ. Potassium sulfate is not very soluble in 4 m K{sup +}/4 m PZ, so SO{sub 2} absorption and oxidation to sulfate in the bottom of the absorber may require operation with a slurry of potassium sulfate solids.

  15. Demonstration of advanced APBS solvent at TNO's CO2 capture pilot plant

    NARCIS (Netherlands)

    Bumb, P.; Kumar, R.; Khakharia, P.M.; Goetheer, E.L.V.

    2014-01-01

    The company Carbon Clean Solutions (CCS) has developed a variety of energy efficient solvents and processes such as PCCMax, which aim to reduce the overall operating and capital cost of CO2 capture. Highly successful R&D in collaboration with TNO, considering aspects from fundamental properties such

  16. How the oil companies look at CO2 separation and disposal

    International Nuclear Information System (INIS)

    Kaarstad, O.

    2001-01-01

    Separation and disposal of CO 2 is a new complex problem, and we should not be surprised that the technology available today does not solve all our problems. Neither should we be surprised that politicians, environmentalists, industry leaders and the general public have problems to digest the idea of underground disposal of CO 2 . The main challenges we are facing are: Reducing the investment and operational costs for CO 2 -separation; Finding solutions that do not create new environmental problems; Finding cheaper methods for transport of medium volumes of C= 2 over long distances; Keep informing the public of the pros and cons of underground disposal; Finding good transition strategies; Look for ways of cooperation between industry, authorities and research organizations to manage the transition period, including adaption of legislation to the new situation

  17. Dynamic simulation and optimization of an industrial-scale absorption tower for CO2 capturing from ethane gas

    Directory of Open Access Journals (Sweden)

    Babak Pouladi

    2016-11-01

    Full Text Available This article considers a process technology based on absorption for CO2 capturing of ethane gas in phase 9 and 10 of south pars in Iran using diethanolamine (DEA as absorbent solvent. This CO2 capture plant was designed to achieve 85% CO2 recovery and obtain 19 ppm the CO2 concentration in the outlet of absorber. ASPEN–HYSYS software was used for the dynamic simulation of a commercial-scale CO2 capture plant and amine Pkg equation was chosen from the fluid property package for calculating the thermodynamic properties of the process. A static approach for optimization was used to evaluate the optimum conditions. This research revealed that pressure variation does not have any considerable changes in the absorption process, while both amine inlet temperature and volumetric flow rate increment enhance the absorption tower efficiency. The effect of temperature was very significant as shown in the dynamic study plots. The optimum condition for CO2 absorption from a stream of ethane gas with molar flow rate of 2118 kg mol h−1 was obtained 75 m3  h−1 of amine at 53 °C and 24 bar. This optimized condition is acceptable from economical, safe as well as feasible point of view.

  18. Study of Adsorbents for the Capture of CO2 in Post-combustion. Contribution of CIEMAT to Module 4 of the CENITCO2 Project

    International Nuclear Information System (INIS)

    Ruiz, E.; Marono, M.; Sanchez-Hervas, J. M.

    2010-01-01

    The main goal of CIEMAT within the CENIT-CO 2 project has been the development of a process for CO 2 capture from combustion flue gases by physical adsorption. In the first stage, screening studies to select promising adsorbents were carried out at laboratory scale, using simplified gas compositions. After that, pilot plant studies were performed using appropriate configurations of promising adsorbents under realistic conditions. CO 2 adsorption cyclic capacity of different adsorbents has been studied. Lastly, for the adsorbent selected as most promising, its cyclic efficiency and selectivity for CO 2 adsorption in the presence of other gaseous components (SO 2 , H 2 O, NO) of the combustion gas has been determined, as well as its performance along multiple sorption-desorption cycles in the presence of simulated combustion gas. None of the studied adsorbents, though being promising since they all have a capture efficiency of about 90%, seem to be susceptible of direct application to CO 2 capture by physical adsorption under conditions representative of gases exiting the desulphurization tower of conventional pulverized coal combustion plants. As an alternative, the development of hybrid and regenerable solid sorbents (physical-chemical adsorption) is proposed or the application of new technologies under development such as the electrochemical promotion in capturing CO 2 . (Author) 33 refs.

  19. The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints

    NARCIS (Netherlands)

    Van Den Broek, Machteld; Berghout, Niels; Rubin, Edward S.

    2015-01-01

    The costs of intermittent renewable energy systems (IRES) and power storage technologies are compared on a level playing field to those of natural gas combined cycle power plants with CO2 capture and storage (NGCC-CCS). To account for technological progress over time, an "experience

  20. Triazine containing N-rich microporous organic polymers for CO{sub 2} capture and unprecedented CO{sub 2}/N{sub 2} selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Subhajit; Bhanja, Piyali; Das, Sabuj Kanti [Department of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Sen, Tapas [Nanobiomaterials Research Group, Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bhaumik, Asim, E-mail: msab@iacs.res.in [Department of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2017-03-15

    Targeted synthesis of microporous adsorbents for CO{sub 2} capture and storage is very challenging in the context of remediation from green house gases. Herein we report two novel N-rich microporous networks SB-TRZ-CRZ and SB-TRZ-TPA by extensive incorporation of triazine containing tripodal moiety in the porous polymer framework. These materials showed excellent CO{sub 2} storage capacities: SB-TRZ-CRZ displayed the CO{sub 2} uptake capacity of 25.5 wt% upto 1 bar at 273 K and SB-TRZ-TPA gave that of 16 wt% under identical conditions. The substantial dipole quadruple interaction between network (polar triazine) and CO{sub 2} boosts the selectivity for CO{sub 2}/N{sub 2}. SB-TRZ-CRZ has this CO{sub 2}/N{sub 2} selectivity ratio of 377, whereas for SB-TRZ-TPA it was 97. Compared to other porous polymers, these materials are very cost effective, scalable and very promising material for clean energy application and environmental issues. - Graphical abstract: We report two novel N-rich microporous polymeric materials by doping of triazine containing tripodal dopant in the organic framework. These materials showed excellent CO{sub 2} storage capacities as high as 25.5 wt% under 1 bar pressure with exceptional CO{sub 2}/N{sub 2} selectivity of 377. - Highlights: • Triazine containing trimodal moiety incorporated in polycarbazolic and poly triphenylamine networks. • N-rich crosslinked polymers with high BET surface area and 1.5–1.7 nm size large micropores. • CO{sub 2} uptake capacity of 25.5 wt% upto 1 bar at 273 K. • These crosslinked porous polymers showed exceptional CO{sub 2}/N{sub 2} selectivity.

  1. Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, John; Shaffer, Alex; Vaysman, Vladimir

    2015-02-01

    This report documents a preliminary Techno-Economic Assessment (TEA) for processes utilizing Akermin’s second generation biocatalyst delivery system to enhance AKM24, a non- volatile salt solution for CO2 capture. Biocatalyst enhanced AKM24 offers the potential to reduce the cost of CO2 capture in flue gas applications due to its improved equilibrium and stoichiometric properties that result in double the absorption capacity relative to previously demonstrated biocatalyst enhanced solvents. The study assumes a new supercritical pulverized coal fired power plant with a net output of 550 MWe after 90% CO2 capture and uses the June 2011 cost basis (August 2012 update of Bituminous Baseline Study, or BBS). Power plant modeling, capital cost review, and economic calculations were provided by WorleyParsons. Rate-based CO2 capture process modeling and equipment sizing was performed by Akermin using AspenPlus® V8.4, customized to accurately predict thermodynamics, kinetics, and physical properties of the AKM-24 solvent based on available laboratory data. Equipment capital costs were estimated using Aspen Process Economic Analyzer™ which compared well with published baseline cost estimates. Quotes of equipment costs and power consumption for vacuum blower and CO2 compression equipment were also provided by Man Diesel & Turbo. Three process scenarios were examined for Akermin biocatalyst enhanced solvent systems including: Case-1A: an absorption-desorption system operated with a reboiler pressure of 0.16 bara (60°C); Case-2A: an absorption-desorption system with moderate vacuum assisted regeneration at 0.40 bara (80°C); and finally, Case-2B: a conventional absorption-desorption system with near atmospheric pressure regeneration at 1.07 bara (105°C). The estimated increases in cost of electricity (ICOE) for these cases were $58.1/MWh, $47.3/MWh and $46.4/MWh, respectively. Case 2B had the best results for this analysis

  2. Nitrosamine degradation by UV light in post-combustion CO2 capture: effect of solvent matrix

    NARCIS (Netherlands)

    Miguel Mercader, F. de; Voice, A.K.; Trap, H.C.; Goetheer, E.L.V.

    2013-01-01

    Potential production and emission of nitrosamines during post-combustion CO2 capture has drawn some attention due to their toxicity and potential carcinogenicity. One of the possible ways to reduce the concentration of nitrosamines is irradiation of the liquid streams of the capture plant with UV

  3. Sequential SO{sub 2}/CO{sub 2} capture enhanced by steam reactivation of a CaO-based sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Edward J. Anthony [CANMET Energy Technology Centre-Ottawa, Ottawa, ON (Canada). Natural Resources Canada

    2008-07-15

    The steam hydration reactivation characteristics of three limestone samples after multiple CO{sub 2} looping cycles are presented here. The CO{sub 2} cycles were performed in a tube furnace (TF) and the resulting samples were hydrated by steam in a pressure reactor (PR). The reactivation was performed with spent samples after carbonation and calcination stages. The reactivation tests were done with a saturated steam pressure at 200{sup o}C and also at atmospheric pressure and 100 {sup o}C. The characteristics of the reactivation samples were examined using BET and BJH pore characterization (for the original and spent samples, and samples reactivated under different conditions) and also by means of a thermogravimetric analyzer (TGA). The levels of hydration achieved by the reactivated samples were determined as well as the conversions during sulphation and multiple carbonation cycles. It was found that the presence of a CaCO{sub 3} layer strongly hinders sorbent hydration and adversely affects the properties of the reactivated sorbent with regard to its behavior in sulphation and multiple carbonation cycles. Here, hydration of calcined samples under pressure is the most effective method to produce superior sulphur sorbents. However, reactivation of calcined samples under atmospheric conditions also produces sorbents with significantly better properties in comparison to those of the original sorbents. These results show that separate CO{sub 2} capture and SO{sub 2} retention in fluidized bed systems enhanced by steam reactivation is promising even for atmospheric conditions if the material for hydration is taken from the calciner. 49 refs., 5 figs., 3 tabs.

  4. Microporosity and CO2 Capture Properties of Amorphous Silicon Oxynitride Derived from Novel Polyalkoxysilsesquiazanes

    Science.gov (United States)

    Iwase, Yoshiaki; Horie, Yoji; Honda, Sawao; Daiko, Yusuke

    2018-01-01

    Polyalkoxysilsesquiazanes ([ROSi(NH)1.5]n, ROSZ, R = Et, nPr, iPr, nBu, sBu, nHex, sHex, cHex, decahydronaphthyl (DHNp)) were synthesized by ammonolysis at −78 °C of alkoxytrichlorosilane (ROSiCl3), which was isolated by distillation as a reaction product of SiCl4 and ROH. The simultaneous thermogravimetric and mass spectrometry analyses of the ROSZs under helium revealed a common decomposition reaction, the cleavage of the oxygen–carbon bond of the RO group to evolve alkene as a main gaseous species formed in-situ, leading to the formation of microporous amorphous Si–O–N at 550 °C to 800 °C. The microporosity in terms of the peak of the pore size distribution curve located within the micropore size range (micropore volume, as well as the specific surface area (SSA) of the Si–O–N, increased consistently with the molecular size estimated for the alkene formed in-situ during the pyrolysis. The CO2 capture capacity at 0 °C of the Si–O–N material increased consistently with its SSA, and an excellent CO2 capture capacity of 3.9 mmol·g−1 at 0 °C and CO2 1 atm was achieved for the Si–O–N derived from DHNpOSZ having an SSA of 750 m2·g−1. The CO2 capture properties were further discussed based on their temperature dependency, and a surface functional group of the Si–O–N formed in-situ during the polymer/ceramics thermal conversion. PMID:29534056

  5. Polyethyleneimine-Functionalized Polyamide Imide (Torlon) Hollow-Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie

    2013-05-24

    Carbon dioxide emitted from existing coal-fired power plants is a major environmental concern due to possible links to global climate change. In this study, we expand upon previous work focused on aminosilane-functionalized polymeric hollow-fiber sorbents by introducing a new class of polyethyleneimine (PEI)-functionalized polymeric hollow-fiber sorbents for post-combustion carbon dioxide capture. Different molecular weight PEIs (Mn≈600, 1800, 10 000, and 60 000) were studied as functional groups on polyamide imide (PAI, Torlon) hollow fibers. This imide ring-opening modification introduces two amide functional groups and was confirmed by FTIR attenuated total reflectance spectroscopy. The carbon dioxide equilibrium sorption capacities of PEI-functionalized Torlon materials were characterized by using both pressure decay and gravimetric sorption methods. For equivalent PEI concentrations, PAI functionalized with lower molecular weight PEI exhibited higher carbon dioxide capacities. The effect of water in the ring-opening reaction was also studied. Up to a critical value, water in the reaction mixture enhanced the degree of functionalization of PEI to Torlon and resulted in higher carbon dioxide uptake within the functionalized material. Above the critical value, roughly 15 % w/w water, the fiber morphology was lost and the fiber was soluble in the solvent. PEI-functionalized (Mn≈600) PAI under optimal reaction conditions was observed to have the highest CO2 uptake: 4.9 g CO2 per 100 g of polymer (1.1 mmol g-1) at 0.1 bar and 35°C with dry 10 % CO2/90 % N2 feed for thermogravimetric analysis. By using water-saturated feeds (10 % CO2/90 % N2 dry basis), CO2 sorption was observed to increase to 6.0 g CO2 per 100 g of sorbent (1.4 mmol g-1). This material also demonstrated stability in cyclic adsorption-desorption operations, even under wet conditions at which some highly effective sorbents tend to lose performance. Thus, PEI-functionalized PAI fibers can be

  6. A new integration model of the calcium looping technology into coal fired power plants for CO_2 capture

    International Nuclear Information System (INIS)

    Ortiz, C.; Chacartegui, R.; Valverde, J.M.; Becerra, J.A.

    2016-01-01

    Highlights: • A CaL-CFPP (coal fired power plant) integration model is proposed and efficiency penalty is estimated. • Carbonation in the diffusion stage is considered to predict the capture efficiency. • Low efficiency penalty may be achieved by operating with longer particles’ residence time. • Simulation results show that the energy penalty ranges between 4% and 7% points. - Abstract: The Ca-Looping (CaL) process is at the root of a promising 2nd generation technology for post-combustion CO_2 capture at coal fired power plants. The process is based on the reversible and quick carbonation/calcination reaction of CaO/CaCO_​_3 at high temperatures and allows using low cost, widely available and non toxic CaO precursors such as natural limestone. In this work, the efficiency penalty caused by the integration of the Ca-looping technology into a coal fired power plant is analyzed. The results of the simulations based on the proposed integration model show that efficiency penalty varies between 4% and 7% points, which yields lower energy costs than other more mature post-combustion CO_2 capture technologies such as the currently commercial amine scrubbing technology. A principal feature of the CaL process at CO_2 capture conditions is that it produces a large amount of energy and therefore an optimized integration of the systems energy flows is essential for the feasibility of the integration at the commercial level. As a main novel contribution, CO_2 capture efficiency is calculated in our work by considering the important role of the solid-state diffusion controlled carbonation phase, which becomes relevant when CaO regeneration is carried out under high CO_2 partial pressure as is the case with the CaL process for CO_2 capture. The results obtained based on the new model suggest that integration energy efficiency would be significantly improved as the solids residence time in the carbonator reactor is increased.

  7. Pressure Swing Absorption Device and Process for Separating CO{sub 2} from Shifted Syngas and its Capture for Subsequent Storage

    Energy Technology Data Exchange (ETDEWEB)

    Sirkar, Kamalesh; Jie, Xingming; Chau, John; Obuskovic, Gordana

    2013-03-31

    Using the ionic liquid (IL) 1-butyl-3-methylimidazolium dicyanamide ([bmim][DCA]) as the absorbent on the shell side of a membrane module containing either a porous hydrophobized ceramic tubule or porous hydrophobized polyether ether ketone (PEEK) hollow fiber membranes, studies for CO{sub 2} removal from hot simulated pre-combustion shifted syngas were carried out by a novel pressure swing membrane absorption (PSMAB) process. Helium was used as a surrogate for H{sub 2} in a simulated shifted syngas with CO{sub 2} around 40% (dry gas basis). In this cyclic separation process, the membrane module was used to achieve non-dispersive gas absorption from a high-pressure feed gas (689-1724 kPag; 100-250 psig) at temperatures between 25-1000C into a stationary absorbent liquid on the module shell side during a certain part of the cycle followed by among other cycle steps controlled desorption of the absorbed gases from the liquid in the rest of the cycle. Two product streams were obtained, one He-rich and the other CO{sub 2}-rich. Addition of polyamidoamine (PAMAM) dendrimer of generation 0 to IL [bmim][DCA] improved the system performance at higher temperatures. The solubilities of CO{sub 2} and He were determined in the ionic liquid with or without the dendrimer in solution as well as in the presence or absence of moisture; polyethylene glycol (PEG) 400 was also studied as a replacement for the IL. The solubility selectivity of the ionic liquid containing the dendrimer for CO{sub 2} over helium was considerably larger than that for the pure ionic liquid. The solubility of CO{sub 2} and CO{sub 2}-He solubility selectivity of PEG 400 and a solution of the dendrimer in PEG 400 were higher than the corresponding ones in the IL, [bmim][DCA]. A mathematical model was developed to describe the PSMAB process; a numerical solution of the governing equations described successfully the observed performance of the PSMAB process for the pure ionic liquid-based system.

  8. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David J

    2014-08-31

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was

  9. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2).

    Science.gov (United States)

    Chew, Thiam-Leng; Ahmad, Abdul L; Bhatia, Subhash

    2010-01-15

    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Thermodynamic analysis of CO2 capture processes for power plants

    OpenAIRE

    Biyouki, Zeinab Amrollahi

    2014-01-01

    This thesis work presents an evaluation of various processes for reducing CO2 emissions from natural-gas-fired combined cycle (NGCC) power plants. The scope of the thesis is to focus mainly on post-combustion chemical absorption for NGCC. For the post-combustion capture plant, an important interface is the steam extraction from the steam turbine in order to supply the heat for solvent regeneration. The steam extraction imposes a power production penalty. The thesis includes analysis and compa...

  11. Process and Material Design for Micro-Encapsulated Ionic Liquids in Post-Combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bo [Univ. of Notre Dame, IN (United States); Brennecke, Joan F [Univ. of Notre Dame, IN (United States); McCready, Mark [Univ. of Notre Dame, IN (United States); Stadtherr, Mark [Univ. of Notre Dame, IN (United States)

    2016-11-18

    Aprotic Heterocyclic Anion (AHA) Ionic Liquids (ILs) have been identified as promising new solvents for post-combustion carbon capture due to their high CO2 uptake and the high tenability 1,2 of their binding energy with CO2. Some of these compounds change phase (solid to liquid) on absorption of CO2; these Phase Change ILs (PCILs)3 offer the additional advantage that part of the heat needed to desorb the CO2 from the absorbent is provided by the heat of fusion as the PCIL solidifies upon release of CO2. However, the relatively high viscosity of AHA ILs and the occurrence of a phase change in PCILs present challenges for conventional absorption equipment. To overcome these challenges we are pursuing the use of new technology to micro-encapsulate the AHA ILs and PCILs. Our partners at Lawrence Livermore National Laboratory have successfully demonstrated this technology in the application of post-combustion carbon capture with sodium and potassium carbonate solutions,4 and have recently shown the feasibility of micro-encapsulation of an AHA IL for carbon capture.5 The large effective surface area and high CO2 permeability of the micro-capsules is expected to offset the drawback of the high IL viscosity and to provide for a more efficient and cost-effective mass transfer operation involving AHA ILs and PCILs. These opportunities, however, present us with both process and materials design questions. For example, what is the target CO2 absorption strength (enthalpy of chemical absorption) for the tunable AHA IL? What is the target for micro-capsule diameter in order to obtain a high mass transfer rate and good fluidization performance? What are the appropriate temperatures and pressures for the absorber and stripper? In order to address these and other questions, we have developed a rate-based model of a post-combustion CO2 capture process using micro-encapsulated ILs. As a performance baseline

  12. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons.

    Science.gov (United States)

    Sevilla, Marta; Parra, Jose B; Fuertes, Antonio B

    2013-07-10

    The role of micropore size and N-doping in CO2 capture by microporous carbons has been investigated by analyzing the CO2 adsorption properties of two types of activated carbons with analogous textural properties: (a) N-free carbon microspheres and (b) N-doped carbon microspheres. Both materials exhibit a porosity made up exclusively of micropores ranging in size between micropores with a size below 0.8 nm. It was also observed that the CO2 capture capacities of undoped and N-doped carbons are analogous which shows that the nitrogen functionalities present in these N-doped samples do not influence CO2 adsorption. Taking into account the temperature invariance of the characteristic curve postulated by the Dubinin theory, we show that CO2 uptakes can be accurately predicted by using the adsorption data measured at just one temperature.

  13. Development and Study of Electrochemical Promotion Systems for CO2 Capture and Valorization in Combustion Gases. PROMOCAP Project Final Report

    International Nuclear Information System (INIS)

    Ruiz, E.; Cillero, D.; Martinez, P. J.; Morales, A.; San Vicente, G.; Diego, G. de; Sanchez, J. M.

    2014-01-01

    The ultimate goal of the project PROMOCAP was the development and study of electrochemical promotion systems for the capture and valorization of CO 2 in combustion flue gases. To achieve this objective, electrocatalysts consisting of tubes or monoliths of solid electrolyte (K-βAl 2 O 3 or YSZ), coated by the corresponding active metal (Pt, Pd, Ni, Cu, Fe-TiO 2 , Pt-Ru - C, Pt-C, etc.), were prepared using both conventional (painting) and improved (dip-coating, electroless or spray-coating) procedures. Both physico-chemical and volt amperometric characterization of the electrocatalysts was carried out both as prepared and after use in electro promoted CO 2 capture and valorization processes (study of chemisorption, reaction, inhibition, deactivation phenomena, etc.). Pilot plant studies were carried out under realistic conditions for identifying the best electro catalyst and the operating conditions more suitable for CO 2 electro promoted capture and valorization. Finally, the electrocatalysts identified as the most promising for electro promoted CO 2 capture (Pt/K-βAl 2 O 3 ) and valorization (Cu/K-βAl 2 O 3 ) were prepared using the developed optimized procedures and their behavior over multiple cycles of electro promoted CO 2 capture and in long term operation against electro promoted CO 2 hydrogenation, respectively, was studied under real or realistic conditions. (Author)

  14. Optimization of the process loop for CO{sub 2} capture by solvents

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, Thorsten; Camy-Portenabe, Julien; Fradet, Aude; Tobiesen, Andrew; Svendsen, Hallvard F [Institut Francais du Petrole, Vernaison (France)

    2006-07-01

    A plant for the CO{sub 2} capture of a coal fired power plant is simulated by three commercial simulation tools (i.e. Aspen Plus, Hysys and Protreat). The results are generally in reasonable agreement. However, the CO{sub 2} removal is significantly higher in the Aspen Plus simulation, most probably due to the used 'Radfrac' column model which does not account for the mass transfer resistance and the chemical kinetics, thus overestimating the CO{sub 2} absorption. An optimization is carried out with respect to lean loading level and circulation rate for a given base case. A lean loading of 0.24 molCO{sub 2}/molMEA represents the best compromise at the chosen conditions between sufficient stripping and a limited amine flow rate. A temperature approach of the rich lean cross exchanger is investigated and a decrease in the temperature approach from 10 to 5{sup o}C results in a decrease in the reboiler heat duty of 2%. 8 refs., 4 figs.

  15. Characterization of Qatar's surface carbonates for CO2 capture and thermochemical energy storage

    Science.gov (United States)

    Kakosimos, Konstantinos E.; Al-Haddad, Ghadeer; Sakellariou, Kyriaki G.; Pagkoura, Chrysa; Konstandopoulos, Athanasios G.

    2017-06-01

    Samples of surface carbonates were collected from three different areas of the Qatar peninsula. We employed material characterization techniques to examine the morphology and composition of the samples, while their CO2 capture capacity was assessed via multiple successive calcination-carbonation cycles. Our samples were mainly calcite and dolomite based. Calcite samples showed higher initial capacity of around 11 mmol CO2 g-1 which decayed rapidly to less than 2 mmol CO2 g-1. On the other hand, dolomite samples showed an excellent stability (˜15 cycles) with a capacity of 6 mmol CO2 g-1. The performance of the dolomite samples is better compared to other similar natural samples, from literature. A promising result for future studies towards improving their performance by physical and chemical modification.

  16. Comparisons of amine solvents for post-combustion CO{sub 2} capture: A multi-objective analysis approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Anita S; Eslick, John C; Miller, David C; Kitchin, John R

    2013-10-01

    Amine solvents are of great interest for post-combustion CO{sub 2} capture applications. Although the development of new solvents is predominantly conducted at the laboratory scale, the ability to assess the performance of newly developed solvents at the process scale is crucial to identifying the best solvents for CO{sub 2} capture. In this work we present a methodology to evaluate and objectively compare the process performance of different solvents. We use Aspen Plus, with the electrolyte-NRTL thermodynamic model for the solvent CO{sub 2} interactions, coupled with a multi-objective genetic algorithm optimization to determine the best process design and operating conditions for each solvent. This ensures that the processes utilized for the comparison are those which are best suited for the specific solvent. We evaluate and compare the process performance of monoethanolamine (MEA), diethanolamine (DEA), and 2-amino-2-methyl-1-propanol (AMP) in a 90% CO{sub 2} capture process from a 550 MW coal fired power plant. From our analysis the best process specifications are amine specific and with those specific, optimized specifications DEA has the potential to be a better performing solvent than MEA, with a lower energy penalty and lower capital cost investment.

  17. Gas-fired power plants: Investment timing, operating flexibility and CO2 capture

    International Nuclear Information System (INIS)

    Fleten, Stein-Erik; Naesaekkaelae, Erkka

    2010-01-01

    We analyze investments in gas-fired power plants based on stochastic electricity and natural gas prices. A simple but realistic two-factor model is used for price processes, enabling analysis of the value of operating flexibility, the opportunity to abandon the capital equipment, as well as finding thresholds for energy prices for which it is optimal to enter into the investment. We develop a method to compute upper and lower bounds on plant values and investment threshold levels. Our case study uses representative power plant investment and operations data, and historical forward prices from well-functioning energy markets. We find that when the decision to build is considered, the abandonment option does not have significant value, whereas the operating flexibility and time-to-build option have significant effect on the building threshold. Furthermore, the joint value of the operating flexibility and the abandonment option is much smaller than the sum of their separate values, because both are options to shut down. The effects of emission costs on the value of installing CO 2 capture technology are also analyzed.

  18. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption.

    KAUST Repository

    Bhatt, Prashant; Belmabkhout, Youssef; Cadiau, Amandine; Adil, Karim; Shekhah, Osama; Shkurenko, Aleksander; Barbour, Leonard J.; Eddaoudi, Mohamed

    2016-01-01

    The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, from con-fined spaces (<0.5 %) and particularly from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the proper pore system (size, shape and functionality), ideal for efficient and effective traces carbon dioxide removal. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 cm3.cm-3) for physical adsorbents at 400 ppm CO2 and 298 K. Practically, the NbOFFIVE-1-Ni affords the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in reference physical adsorbents but considerably lower than the conventional chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2-selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on the NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2-selectivity under practical carbon capture conditions. Pertinently, the no-table hydrolytic stability positions the NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.

  19. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption.

    KAUST Repository

    Bhatt, Prashant

    2016-07-08

    The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, from con-fined spaces (<0.5 %) and particularly from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the proper pore system (size, shape and functionality), ideal for efficient and effective traces carbon dioxide removal. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 cm3.cm-3) for physical adsorbents at 400 ppm CO2 and 298 K. Practically, the NbOFFIVE-1-Ni affords the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in reference physical adsorbents but considerably lower than the conventional chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2-selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on the NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2-selectivity under practical carbon capture conditions. Pertinently, the no-table hydrolytic stability positions the NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.

  20. A single IGCC design for variable CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, L.F.; Griffiths, J.; Wainwright, J.M. [Chevron Texaco Worldwide Power and Gasification, Houston, TX (United States)

    2002-07-01

    Global warming and the production of greenhouse gases (GHG) have become an important issue in many countries around the world. While there has been a heightened sense of awareness that the combustion of fossil fuels produces the majority of the controllable carbon dioxide released to the atmosphere, there have been few substantive solutions that produce economically realistic solutions. Moreover, some fossil fuels, like coal, are viewed negatively due to their relatively high carbon content per Btu. Integrated Gasification Combined Cycle (IGCC) offers the option of a realistic, economically viable solution for reducing, by pre-combustion capture, significant amounts of CO{sub 2} while using existing commercially proven technologies. The novel IGCC flowscheme is designed so that the power plant can be built and operated without CO{sub 2} removal and later upgraded to low CO{sub 2} emissions at minimal additional cost. The novel flowscheme is based on commercially proven technology using processes that are in operation today. Overall performance and capital cost estimates are presented and two other possible applications of the novel flowscheme are discussed in this paper. 17 refs., 3 figs., 2 tabs.

  1. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity

    KAUST Repository

    Sarawade, Pradip; Tan, Hua; Polshettiwar, Vivek

    2012-01-01

    We studied the effects of various surfactants on the shape and morphology of three metal organic frameworks (MOFs), i.e., Co-MOF, Cu-MOF, and In-MOF, which were synthesized under microwave irradiation. The as-synthesized materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen sorption. The effects of microwave irradiation time, temperature, and surfactant template were investigated. The synthetic parameters, including the type of surfactant template and the reaction temperature, played crucial roles in the size, shape, and morphology of the MOF microcrystals. We also evaluated these MOFs as sorbents for capturing CO2. Of the synthesized materials, Cu-MOF demonstrated the highest CO2 capture capacity, even at atmospheric pressure and ambient temperature. © 2012 American Chemical Society.

  2. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity

    KAUST Repository

    Sarawade, Pradip

    2012-11-06

    We studied the effects of various surfactants on the shape and morphology of three metal organic frameworks (MOFs), i.e., Co-MOF, Cu-MOF, and In-MOF, which were synthesized under microwave irradiation. The as-synthesized materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen sorption. The effects of microwave irradiation time, temperature, and surfactant template were investigated. The synthetic parameters, including the type of surfactant template and the reaction temperature, played crucial roles in the size, shape, and morphology of the MOF microcrystals. We also evaluated these MOFs as sorbents for capturing CO2. Of the synthesized materials, Cu-MOF demonstrated the highest CO2 capture capacity, even at atmospheric pressure and ambient temperature. © 2012 American Chemical Society.

  3. Environmental impact of atmospheric fugitive emissions from amine based post combustion CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Attalla, M.I.; Azzi, M.; Jackson, P.; Angove, D. [CSIRO, Newcastle, NSW (Australia). Energy Technology Div

    2009-07-01

    Amine solvent-based chemical absorption of CO{sub 2} is the most mature technology for post combustion capture (PCC) and will likely to be the first to reach commercial scale application. As such, potentially millions of tonnes of solvent will be used per year. In order to ensure the viability of PCC, the potential environmental impacts of fugitive emissions on terrestrial, aquatic and atmospheric environments must be investigated. This study used controlled laboratory/ pilot scale experiments to determine the major chemical components emitted under different operating conditions. As well, the atmospheric photo-oxidation products of amines were studied in a smog chamber under ambient conditions. The environmental concerns associated with these emissions include entrainment of the amine/ammonia with the treated flue gas and their associated atmospheric chemical reaction pathways; formation of ammonia and other amine degradation products can be entrained with the flue gas to the atmosphere; nitrosamines may form as a result of the reaction between an amine and nitrogen oxide; and the mounting evidence of the presence of amines in particulate phase. The chemical compositions of potential fugitive emissions in the flue gases from the CO{sub 2} capture system were estimated. The CSIRO smog chamber was then used to assess the potential environmental impact of selected relevant compounds in terms of their reactivities to produce secondary products. These secondary products were then characterized to determine their potential health risk factors. An air quality model was used to evaluate the potential impact of using amine solutions for CO{sub 2} capture and to determine the trade-off between CO{sub 2} capture and local and regional air quality.

  4. C3 and C4 biomass allocation responses to elevated CO2 and nitrogen: contrasting resource capture strategies

    Science.gov (United States)

    White, K.P.; Langley, J.A.; Cahoon, D.R.; Megonigal, J.P.

    2012-01-01

    Plants alter biomass allocation to optimize resource capture. Plant strategy for resource capture may have important implications in intertidal marshes, where soil nitrogen (N) levels and atmospheric carbon dioxide (CO2) are changing. We conducted a factorial manipulation of atmospheric CO2 (ambient and ambient + 340 ppm) and soil N (ambient and ambient + 25 g m-2 year-1) in an intertidal marsh composed of common North Atlantic C3 and C4 species. Estimation of C3 stem turnover was used to adjust aboveground C3 productivity, and fine root productivity was partitioned into C3-C4 functional groups by isotopic analysis. The results suggest that the plants follow resource capture theory. The C3 species increased aboveground productivity under the added N and elevated CO2 treatment (P 2 alone. C3 fine root production decreased with added N (P 2 (P = 0.0481). The C4 species increased growth under high N availability both above- and belowground, but that stimulation was diminished under elevated CO2. The results suggest that the marsh vegetation allocates biomass according to resource capture at the individual plant level rather than for optimal ecosystem viability in regards to biomass influence over the processes that maintain soil surface elevation in equilibrium with sea level.

  5. The system-wide economics of a carbon dioxide capture, utilization, and storage network: Texas Gulf Coast with pure CO2-EOR flood

    Science.gov (United States)

    King, Carey W.; Gülen, Gürcan; Cohen, Stuart M.; Nuñez-Lopez, Vanessa

    2013-09-01

    This letter compares several bounding cases for understanding the economic viability of capturing large quantities of anthropogenic CO2 from coal-fired power generators within the Electric Reliability Council of Texas electric grid and using it for pure CO2 enhanced oil recovery (EOR) in the onshore coastal region of Texas along the Gulf of Mexico. All captured CO2 in excess of that needed for EOR is sequestered in saline formations at the same geographic locations as the oil reservoirs but at a different depth. We analyze the extraction of oil from the same set of ten reservoirs within 20- and five-year time frames to describe how the scale of the carbon dioxide capture, utilization, and storage (CCUS) network changes to meet the rate of CO2 demand for oil recovery. Our analysis shows that there is a negative system-wide net present value (NPV) for all modeled scenarios. The system comes close to breakeven economics when capturing CO2 from three coal-fired power plants to produce oil via CO2-EOR over 20 years and assuming no CO2 emissions penalty. The NPV drops when we consider a larger network to produce oil more quickly (21 coal-fired generators with CO2 capture to produce 80% of the oil within five years). Upon applying a CO2 emissions penalty of 602009/tCO2 to fossil fuel emissions to ensure that coal-fired power plants with CO2 capture remain in baseload operation, the system economics drop significantly. We show near profitability for the cash flow of the EOR operations only; however, this situation requires relatively cheap electricity prices during operation.

  6. CO{sub 2} control technologies: ALSTOM Power approach

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelopoulos, G.N.; Marion, J.L.; Nsakala, N.; Griffin, T.; Bill, A. [ALSTOM Power Boiler GmbH, Stuttgart (Germany)

    2002-07-01

    ALSTOM Power is one of the largest providers of power generation equipment, turnkey power plants and services in the world. The Company is aware of the present scientific concerns regarding greenhouse gas emissions and the role of fossil fuels used in power generation. ALSTOM Power R&D laboratories run various programs aiming to find options that reduce greenhouse gas emissions through: Increasing the efficiency of power generation equipment by implementing the most modern technologies. Application of technologies to remove and sequester carbon dioxide created in power plants in an environmentally and economically favorable manner. In this paper an overview of ALSTOM's on-going CO{sub 2} mitigation development activities will be presented. First, energy efficiency improvements for both new and existing fossil fuel power plants are reviewed for both coal and natural gas fuels. Second, the development of novel power generation processes, including those involving combustion in O{sub 2}/CO{sub 2} atmospheres using pure or enriched oxygen for the purpose of CO{sub 2} capture is discussed. And finally, novel chemical-looping CO{sub 2} capture process technologies are introduced. The major challenge in CO{sub 2} capture techniques is the efficient separation and capture of CO{sub 2}. Conclusions are drawn herein regarding the technical feasibility, the resultant efficiency penalties, and the CO{sub 2} mitigation costs for the various options under study and development within ALSTOM Power. 7 refs., 8 figs.

  7. Ultrathin Composite Polymeric Membranes for CO2 /N2 Separation with Minimum Thickness and High CO2 Permeance.

    Science.gov (United States)

    Benito, Javier; Sánchez-Laínez, Javier; Zornoza, Beatriz; Martín, Santiago; Carta, Mariolino; Malpass-Evans, Richard; Téllez, Carlos; McKeown, Neil B; Coronas, Joaquín; Gascón, Ignacio

    2017-10-23

    The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO 2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO 2 /N 2 selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Study of the degradation mechanisms of amines used for the capture of CO2 in industrial fumes

    International Nuclear Information System (INIS)

    Lepaumier, H.

    2008-10-01

    Global warming leads to reduce greenhouse gas emissions. Post combustion CO 2 capture with solvent is the most advanced technology to reduce CO 2 emissions in industrial fumes. A major problem associated with chemical absorption of CO 2 using the benchmark ethanolamine (MEA) is solvent degradation through irreversible side reactions with CO 2 and O 2 which leads to numerous harmful impacts to the process: corrosion, solvent loss, foaming, fouling, and viscosity increase. So, developing new amines with higher chemical stability is essential. This work is based on the chemical stability study of 17 different molecules. Their structures have been chosen in order to establish structure-property relationships: alkanolamines, known for gas treatment application (MEA, DEA, MDEA, AMP...), di-amines, and tri-amines without alcohol function. Impact of temperature, CO 2 , and O 2 on degradation has been studied. Strong experimental conditions have been used to observe significant degradation after a 15 days experiment. Separation, identification and quantification of degradation products have been performed by using different testing instructions such as gas chromatography, mass spectrometry, ionic chromatography and NMR. Different mechanisms are proposed to explain most of degradation compounds. Radical reactions (dealkylation, alkylation, ring-closure reactions and piperazinones formation) are involved under O 2 pressure whereas CO 2 induces ionic reactions (dealkylation, alkylation, addition, ring-closure reactions and oxazolidinones or imidazolidinones formation). Large discrepancies of stability are noticed among the different amines. Knowledge of degradation products and reaction mechanisms has thus permitted to establish some relationships between structure and chemical stability: for example, role of the amine function (primary, secondary, tertiary), impact of alkyl chain length between the two amino groups and steric hindrance. (author)

  9. CO2 capture from power plants. Part II : A parametric study of the economical performance based on mono-ethanolamine

    NARCIS (Netherlands)

    Abu-Zahra, M. R. M.; Niederer, J. P. M.; Feron, P. H. M.; Versteeg, G. F.

    While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in

  10. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    International Nuclear Information System (INIS)

    Monroe, Morgan M; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W

    2017-01-01

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2 ) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved. (paper)

  11. The CO{sub 2} capture performance of a high-intensity vortex spray scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Javed, K.H.; Mahmud, T.; Purba, E. [University of Leeds, Leeds (United Kingdom)

    2010-08-15

    The present study focuses on the enhancement of CO{sub 2} capture efficiency using a high-intensity vortex spray scrubber by imparting swirl to the gas flow, which has the ability to augment the rates of heat and mass transfer. Experimental investigations into the reactive absorption of CO{sub 2} from a mixture of air-CO{sub 2} into an aqueous solution of NaOH in a laboratory-scale counter-current spray scrubber have been carried out. The mass transfer characteristics, in terms of the overall gas phase mass transfer coefficient (K{sub g}a) were investigated for both the swirling and the non-swirling (axial) gas flows through the scrubber in order to quantify the effect of swirl. The effects of the gas/liquid flow rates, flow arrangements, scrubber height and spray nozzle type on the CO{sub 2} capture performance were examined. For both the axial and the swirling flows, the K{sub g}a increases initially with increasing gas flow rate up to a certain limit, beyond which it becomes essentially constant, whereas the K{sub g}a increases continuously with the liquid flow rate within the measured range. The counter-current gas-droplets flow provides higher mass transfer rates compared with those in co-current flow. The K{sub g}a deceases with the increase in the tower height. The spray nozzle producing finer droplets provides enhanced mass transfer rates. It is found that imparting swirl in the gas flow enhances the K(g)a up to around 49% compared with that in axial flows.

  12. Process design analyses of co/sub 2/ capture from natural gas by polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.; Nasir, H.; Ahsan, M. [National Univ. of Science and Technology, Islamabad (Pakistan). Dept. of Chemical Engineering

    2014-06-15

    Membrane-based natural gas separation has become one of the promising technologies due to its compactness, energy efficiency, environment friendliness and economic advantages. In this work, a three stage membrane process for the separation of CO/sub 2//CH/sub 4/ is proposed based on a novel fixed site carrier membrane which has the potential to meet the CO/sub 2//CH/sub 4/ separation and durability requirement. A simulation analysis, which utilizes the Aspen Hysys capabilities to calculate and couple energy balances in the process model, has been conducted to investigate the effect of process parameters on the gas processing cost. Two different natural gas mixtures containing 9.5% and 2.9% CO/sub 2/ have been simulated for various process conditions. This fixed site carrier membrane performs well when wetted with water. Therefore, natural gas feed streams are saturated with water. It is evident from the analysis that it is possible to maintain 2% CO/sub 2/ in retentate and methane loss in permeate below 2% by optimizing the process conditions. The analysis shows that fixed site carrier membrane offers a viable solution for natural gas sweetening. (author)

  13. Process design analyses of co/sub 2/ capture from natural gas by polymer membrane

    International Nuclear Information System (INIS)

    Hussain, A.; Nasir, H.; Ahsan, M.

    2014-01-01

    Membrane-based natural gas separation has become one of the promising technologies due to its compactness, energy efficiency, environment friendliness and economic advantages. In this work, a three stage membrane process for the separation of CO/sub 2//CH/sub 4/ is proposed based on a novel fixed site carrier membrane which has the potential to meet the CO/sub 2//CH/sub 4/ separation and durability requirement. A simulation analysis, which utilizes the Aspen Hysys capabilities to calculate and couple energy balances in the process model, has been conducted to investigate the effect of process parameters on the gas processing cost. Two different natural gas mixtures containing 9.5% and 2.9% CO/sub 2/ have been simulated for various process conditions. This fixed site carrier membrane performs well when wetted with water. Therefore, natural gas feed streams are saturated with water. It is evident from the analysis that it is possible to maintain 2% CO/sub 2/ in retentate and methane loss in permeate below 2% by optimizing the process conditions. The analysis shows that fixed site carrier membrane offers a viable solution for natural gas sweetening. (author)

  14. The impacts of CO2 capture on transboundary air pollution in the Netherlands

    NARCIS (Netherlands)

    Koornneef, J.M.; van Harmelen, T.; van Horssen, A.; van Gijlswijk, R.; Ramirez-Ramirez, A.; Faaij, A.P.C.; Turkenburg, W.C.

    2009-01-01

    The focus of this research is to develop a first assessment of the impacts of the implementation of CO2 capture technologies in the Dutch power sector on the transboundary air pollution (SO2,NOX,NH3,NMV OC,PM10 and PM2.5) levels in 2020. Results show that for the power sector SO2 emissions will be

  15. CO2 capture on micro/meso-porous composites of (zeolite A)/(MCM-41) with Ca2+ located: Computer simulation and experimental studies

    International Nuclear Information System (INIS)

    Jianhai Zhou; Huiling Zhao; Jinxia Li; Yujun Zhu; Jun Hu; Honglai Liu; Ying Hu

    2013-01-01

    Composing of both zeolite and meso-porous structures, micro/meso-porous composites exhibit promising CO 2 capture capabilities. In this work, a full-atomic mimetic 5A-MCM-41 structure with bimodal pores has been constructed, in which the microporous structure of 5A zeolite is constructed and optimized based on zeolite A with Ca and Na cations introduced; whereas the meso-porous MCM-41 structure is produced by caving the cylindrical pores in the obtained 5A zeolite matrix. CO 2 adsorption on 5A-MCM- 41 has been simulated by the grand canonical Monte Carlo (GCMC). The simulation results demonstrated that CO 2 is preferentially adsorbed in micropores, and the CO 2 adsorption capacity and its isosteric heat on 5A-MCM-41 are much larger than those of N 2 . The CO 2 selectivity of 5A-MCM-41 results from the electrostatic interaction of the quadrupole CO 2 molecule with Ca 2+ cations of the zeolite. Furthermore, the hierarchical micro/meso-porous composites are synthesized to verify the simulated predictions. By the hydrothermal reaction using 5A zeolite 'seeds' as the silicon source and hexadecyl trimethylammonium bromide (CTAB) as the meso-porous template, 5A-MCM-41 composites are obtained, the characteristic results show that typical 5A microporous structure is remained and disordered meso-porous networks are produced in the composites.Moreover, the CO 2 adsorption capacity of the 5A-MCM- 41 composites can reach as high as 4.08 mmol/g at 100 kPa and 298 K. These observations have been strongly supported that micro/meso-porous composites with metal ions located would be promising adsorbents for CO 2 separation. (authors)

  16. CO{sub 2} capture in Mg oxides doped with Fe and Ni; Captura de CO{sub 2} en oxidos de Mg dopados con Fe y Ni

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, I. F.

    2016-07-01

    In this work the CO{sub 2} capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe{sub 2}O{sub 3} phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO{sub 2} in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO{sub 2} capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO{sub 2} capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO{sub 2} capture. The different stages

  17. CO2 capture and storage in the subsurface - A technological pathway for combating climate change

    International Nuclear Information System (INIS)

    2007-10-01

    The Earth is warning abnormally. The guilty parties are so-called 'greenhouse gases' (GHG), the main one being carbon dioxide (CO 2 ). Produced in large quantities by human activities such as transportation, domestic uses and industry, this gas is essentially given off when fossil fuels - coal, oil or gas - are burned. In addition to efforts to reduce energy consumption and develop renewable energy sources, CO 2 capture and storage emerges as an option insofar as fossil fuels will continue to be exploited. Since release of the IPCC special report in 2005, mobilization has flourished worldwide for the development of this technological pathway enabling the use of fossil fuels without CO 2 emissions, thus biding time until the arrival of alternate energy resources. This brochure goes back over the context of greenhouse gas emissions reductions and addresses at length the achievements and projects in the field of CO 2 capture and storage. It also provides a detailed description of on-going technological research and development programmes, highlighting both accomplishments and orientations where progress is expected. It takes stock of recent progress, particularly in France and Europe: - the consideration by political bodies of this option that contributes to reducing greenhouse gas emissions, - the first industrial operations worldwide, - the new European demonstration projects in Europe to generate electricity and produce hydrogen or steam, - the mounting interest amongst France's industry outside the energy sector: steel sector, cement production, waste processing, bio-fuel production, - the most pertinent achievements and new research initiatives in Europe for CO 2 capture, transport and storage, - the appropriate regulations and legal framework as well as economic incentives for cutting the costs and increasing the commitments of States

  18. High-throughput Molecular Simulations of MOFs for CO2 Separation: Opportunities and Challenges

    Science.gov (United States)

    Erucar, Ilknur; Keskin, Seda

    2018-02-01

    Metal organic frameworks (MOFs) have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and chemical functionalities by changing the combination of metal centers and organic linkers during the synthesis. This leads to a large diversity of materials with various pore sizes and shapes that can be efficiently used for CO2 separations. Since the number of synthesized MOFs has already reached to several thousand, experimental investigation of each MOF at the lab-scale is not practical. High-throughput computational screening of MOFs is a great opportunity to identify the best materials for CO2 separation and to gain molecular-level insights into the structure-performance relationships. This type of knowledge can be used to design new materials with the desired structural features that can lead to extraordinarily high CO2 selectivities. In this mini-review, we focused on developments in high-throughput molecular simulations of MOFs for CO2 separations. After reviewing the current studies on this topic, we discussed the opportunities and challenges in the field and addressed the potential future developments.

  19. Process simulation of CO2 capture with aqueous ammonia using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Maribo-Mogensen, Bjørn; van Well, Willy J.M.

    2012-01-01

    of the process is necessary.In this work, the performance of the carbon dioxide capture process using aqueous ammonia has been analyzed by process simulation. The Extended UNIQUAC thermodynamic model available for the CO2–NH3–H2O system has been implemented in the commercial simulator Aspen Plus®1 by using...... dioxide at low temperature (2–10°C). The low temperature limits the vaporization of ammonia in the absorber and entails precipitation of ammonium carbonate compounds, thereby allowing high loadings of CO2. The process has thereby good perspectives. However, a scientific understanding and evaluation......The use of aqueous ammonia is a promising option to capture carbon dioxide from power plants thanks to the potential low heat requirement during the carbon dioxide desorption compared to monoethanolamine (MEA) based process. The patented Chilled Ammonia Process developed by Alstom absorbs carbon...

  20. A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry

    International Nuclear Information System (INIS)

    Park, Sangwon; Jo, Hoyong; Kang, Dongwoo; Park, Jinwon

    2014-01-01

    CCS (carbon capture and storage) is the most popular technology used for the reduction of CO 2 in the post-combustion stage. However, the CCS process has some disadvantages including uncertainty about the stability of the land that is used to store the separated CO 2 . Consequently, CCU (carbon capture and utilization) technologies have recently received increased attention as a possible replacement for CCS. In this study, we utilized CO 2 fixation methods by using the metal carbonate mechanism. We selected 5 and 30 wt% MEA (mono-ethanolamine) solutions to rapidly make a carbonate and Ca(OH) 2 slurry. In all of the experiments, normal temperature and pressure conditions were maintained (except during desorption to check for residual CO 2 in the MEA solution). Consequently, most of the CO 2 was converted to carbonate. The MEA converted CO 2 to ionic CO 2 and rapidly created calcium carbonate. Also the formed solids that were observed were determined to be CaCO 3 and Ca(OH) 2 by X-ray diffractometry. Also, the MEA solution could be reused to absorb CO 2 . Therefore, we have confirmed the development of our suggested CCS process. This process has the ability not only to reuse emitted CO 2 , but it can also be employed to reuse construction wastes that include heavy metals. - Highlights: • We propose novel CO 2 conversion technology by utilizing an amine solution. • In this study, alkaline solutions were used to produce CO 2 precipitate. • The MEA (mono-ethanolamine) solution has a sufficient potential to fix CO 2 with metal sources under moderate condition. • Also, the Ca(OH) 2 slurry yielded enough Ca 2+ ions to make carbonate

  1. Microbial electrochemical separation of CO2 for biogas upgrading.

    Science.gov (United States)

    Kokkoli, Argyro; Zhang, Yifeng; Angelidaki, Irini

    2018-01-01

    Biogas upgrading to natural gas quality has been under focus the recent years for increasing the utilization potential of biogas. Conventional methods for CO 2 removal are expensive and have environmental challenges, such as increased emissions of methane in the atmosphere with serious greenhouse impact. In this study, an innovative microbial electrochemical separation cell (MESC) was developed to in-situ separate and regenerate CO 2 via alkali and acid regeneration. The MESC was tested under different applied voltages, inlet biogas rates and electrolyte concentrations. Pure biomethane was obtained at 1.2V, inlet biogas rate of 0.088mL/h/mL reactor and NaCl concentration of 100mM at a 5-day operation. Meanwhile, the organic matter of the domestic wastewater in the anode was almost completely removed at the end. The study demonstrated a new sustainable way to simultaneously upgrade biogas and treat wastewater which can be used as proof of concept for further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Techno-economic prospects for CO2 capture from distributed energy systems, , 19(March 2013), 2013, pp. 328-347

    NARCIS (Netherlands)

    Kuramochi, T.; Ramirez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2013-01-01

    CO2 emissions from distributed energy systems are expected to become increasingly significant, accounting for about 20% for current global energy-related CO2 emissions in 2030. This article reviews, assesses and compares the techno-economic performance of CO2 capture from distributed energy systems

  3. Post-combustion CO2 capture with activated carbons using fixed bed adsorption

    Science.gov (United States)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon

    2018-03-01

    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  4. Bench Scale Process for Low Cost CO2 Capture Using a Phase-Changing Absorbent: Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, Tiffany [GE Global Research, Niskayuna, New York (United States); Buddle, Stanlee [GE Global Research, Niskayuna, New York (United States); Caraher, Joel [GE Global Research, Niskayuna, New York (United States); Chen, Wei [GE Global Research, Niskayuna, New York (United States); Doherty, Mark [GE Global Research, Niskayuna, New York (United States); Farnum, Rachel [GE Global Research, Niskayuna, New York (United States); Giammattei, Mark [GE Global Research, Niskayuna, New York (United States); Hancu, Dan [GE Global Research, Niskayuna, New York (United States); Miebach, Barbara [GE Global Research, Niskayuna, New York (United States); Perry, Robert [GE Global Research, Niskayuna, New York (United States); Rubinsztajn, Gosia; Spiry, Irina; Wilson, Paul; Wood, Benjamin

    2017-05-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants. The U.S. Department of Energy’s goal for Transformational Carbon Capture Technologies is the development of technologies available for demonstration by 2025 that can capture 90% of emitted CO2 with at least 95% CO2 purity for less than $40/tonne of CO2 captured. In the first budget period of the project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance. In the second budget period of the project, individual bench-scale unit operations were tested to determine the performance of each of each unit. Solids production was demonstrated in dry simulated flue gas across a wide range of absorber operating conditions, with single stage CO2 conversion rates up to 75mol%. Desorber operation was demonstrated in batch mode, resulting in desorption performance consistent with the equilibrium isotherms for GAP-0/CO2 reaction. Important risks associated with gas humidity impact on solids consistency and desorber temperature impact on thermal degradation were explored, and adjustments to the bench-scale process were made to address those effects. Corrosion experiments were conducted to support selection of suitable materials of construction for the major

  5. CO2 Capture Dynamic and Steady-State Model Development, Optimization and Control: Applied to Piperazine and Enzyme Promoted MEA/MDEA

    DEFF Research Database (Denmark)

    Gaspar, Jozsef

    the market in the coming decades. However, the growing focus on mitigation of anthropogenic CO2 requires integration of fossil-fuel fired power plant with CO2 capture units. Post-combustion capture is the most mature capture technology and it is suitable for various processes in power plants, steel industry......, cement production, and bio-chemical industry. However, to make CO2 capture economically attractive, design of innovative solvents, optimization of operation conditions/process configuration and operational flexibility are of crucial importance. This thesis aims to contribute to the development...

  6. Clean coal technologies. The capture and geological storage of CO2 - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    There is no longer any doubt about the connection between carbon dioxide emissions of human origin and global warming. Nearly 40% of world CO 2 emissions are generated by the electricity production sector, in which the combustion of coal - developing at a roaring pace, especially in China - accounts for a good proportion of the total. At a time when the reduction of greenhouse gases has become an international priority, this growth is a problem. Unless CO 2 capture and storage technologies are implemented, it will be very difficult to contain global warming

  7. Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures

    Directory of Open Access Journals (Sweden)

    F. Falbo

    2014-12-01

    Full Text Available Matrimid®5218 hollow fiber membranes were prepared using the dry-wet spinning process. The transport properties were measured with pure gases (H2, CO2, N2, CH4 and O2 and with a mixture (30% CO2 and 70% N2 in dry and wet conditions at 25 ºC, 50 ºC, 60 ºC and 75 ºC and up to 600 kPa. Interesting values of single gas selectivity up to 60 ºC (between 31 and 28 for CO2/N2 and between 33 and 30 for CO2/CH4 in dry condition were obtained. The separation factor measured for the mixture was 20% lower compared to the single gas selectivity, in the whole temperature range analyzed. In saturation conditions the data showed that water influences the performance of the membranes, inducing a reduction of the permeance of all gases. Moreover, the presence of water caused a decrease of single gas selectivity and separation factor, although not so significant, highlighting the very high water resistance of hollow fiber membrane modules.

  8. CO{sub 2} capture from oil refinery process heaters through oxyfuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    M.B. Wilkinson; J.C. Boden; T. Gilmartin; C. Ward; D.A. Cross; R.J. Allam; N.W.Ivens [BP, Sunbury-on-Thames (United Kingdom)

    2003-07-01

    BP has a programme to develop technologies that could reduce greenhouse gas emissions, by the capture and storage of CO{sub 2} from existing industrial boilers and process heaters. One generic technology under development is oxyfuel combustion, with flue gas recycle. Previous studies, by three of the authors, have concluded that refinery steam boilers could be successfully converted to oxyfuel firing. Fired heaters, however, differ from boilers in several respects and so it was decided to study the feasibility of converting process heaters. Three heaters, located on BP s Grangemouth refinery, were chosen as examples, as they are typical of large numbers of heaters worldwide. In establishing the parameters of the study, it was decided that the heat fluxes to the process tubes should not be increased, compared to conventional air firing. For two of the heaters this was achieved by proposing a slightly higher recycle rate than for the boiler conversion studied earlier - the heater duty would be retained with no changes to the tubes. For the third heater, where the process duty uses only the radiant section, the CO{sub 2} capture cost and the firing rate could be reduced by lowering the recycle rate. Some air in leakage to these heaters was considered inevitable, despite measures to control it, and therefore plant to remove residual inerts from the CO{sub 2} product was designed. Cryogenic oxygen production was selected for two heaters, but for the smallest heater vacuum swing adsorption was more economic. 3 refs., 2 figs., 2 tabs.

  9. Performance Analysis of Cold Energy Recovery from CO2 Injection in Ship-Based Carbon Capture and Storage (CCS

    Directory of Open Access Journals (Sweden)

    Hwalong You

    2014-11-01

    Full Text Available Carbon capture and storage (CCS technology is one of the practical solutions for mitigating the effects of global warming. When captured CO2 is injected into storage sites, the CO2 is subjected to a heating process. In a conventional CO2 injection system, CO2 cold energy is wasted during this heating process. This study proposes a new CO2 injection system that takes advantage of the cold energy using the Rankine cycle. The study compared the conventional system with the new CO2 injection system in terms of specific net power consumption, exergy efficiency, and life-cycle cost (LCC to estimate the economic effects. The results showed that the new system reduced specific net power consumption and yielded higher exergy efficiency. The LCC of the new system was more economical. Several cases were examined corresponding to different conditions, specifically, discharge pressure and seawater temperature. This information may affect decision-making when CCS projects are implemented.

  10. Evaluation and Modeling of Vapor-Liquid Equilibrium and CO2 Absorption Enthalpies of Aqueous Designer Diamines for Post Combustion Capture Processes.

    Science.gov (United States)

    Luo, Weiliang; Yang, Qi; Conway, William; Puxty, Graeme; Feron, Paul; Chen, Jian

    2017-06-20

    Novel absorbents with improved characteristics are required to reduce the existing cost and environmental barriers to deployment of large scale CO 2 capture. Recently, bespoke absorbent molecules have been specifically designed for CO 2 capture applications, and their fundamental properties and suitability for CO 2 capture processes evaluated. From the study, two unique diamine molecules, 4-(2-hydroxyethylamino)piperidine (A4) and 1-(2-hydroxyethyl)-4-aminopiperidine (C4), were selected for further evaluation including thermodynamic characterization. The solubilities of CO 2 in two diamine solutions with a mass fraction of 15% and 30% were measured at different temperatures (313.15-393.15 K) and CO 2 partial pressures (up to 400 kPa) by thermostatic vapor-liquid equilibrium (VLE) stirred cell. The absorption enthalpies of reactions between diamines and CO 2 were evaluated at different temperatures (313.15 and 333.15 K) using a CPA201 reaction calorimeter. The amine protonation constants and associated protonation enthalpies were determined by potentiometric titration. The interaction of CO 2 with the diamine solutions was summarized and a simple mathematical model established that could make a preliminary but good prediction of the VLE and thermodynamic properties. Based on the analyses in this work, the two designer diamines A4 and C4 showed superior performance compared to amines typically used for CO 2 capture and further research will be completed at larger scale.

  11. CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods

    Directory of Open Access Journals (Sweden)

    Elena Torralba-Calleja

    2013-01-01

    Full Text Available The growing concern of climate change and global warming has in turn given rise to a thriving research field dedicated to finding solutions. One particular area which has received considerable attention is the lowering of carbon dioxide emissions from large-scale sources, that is, fossil fuel power. This paper focuses on ionic liquids being used as novel media for CO2 capture. In particular, solubility data and experimental techniques are used at a laboratory scale. Cited CO2 absorption data for imidazolium-, pyrrolidinium-, pyridinium-, quaternary-ammonium-, and tetra-alkyl-phosphonium-based ionic liquids is reviewed, expressed as mole fractions (X of CO2 to ionic liquid. The following experimental techniques are featured: gravimetric analysis, the pressure drop method, and the view-cell method.

  12. Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO 2 Capture

    KAUST Repository

    Bollini, Praveen

    2011-05-19

    Coal-fired power plant flue gas exhaust typically contains 3-10% oxygen. While it is known that the monoethanolamine (MEA) oxidative degradation rate is a critical parameter affecting liquid amine absorption processes, the effect of oxygen on the stability of solid amine adsorbents remains unexplored. Here, oxidative degradation of aminosilica materials is studied under accelerated oxidizing conditions to assess the stability of different supported amine structures to oxidizing conditions. Adsorbents constructed using four different silane coupling agents are evaluated, three with a single primary, secondary, or tertiary amine at the end of a propyl surface linker, with the fourth having one secondary propylamine separated from a primary amine by an ethyl linker. Under the experimental conditions used in this study, it was found that both amine type and proximity had a significant effect on oxidative degradation rates. In particular, the supported primary and tertiary amines proved to be stable to the oxidizing conditions used, whereas the secondary amines degraded at elevated treatment temperatures. Because secondary amines are important components of many supported amine adsorbents, it is suggested that the oxidative stability of such species needs to be carefully considered in assessments of postcombustion CO2 capture processes based on supported amines. © 2011 American Chemical Society.

  13. Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO 2 Capture

    KAUST Repository

    Bollini, Praveen; Choi, Sunho; Drese, Jeffrey H.; Jones, Christopher W.

    2011-01-01

    Coal-fired power plant flue gas exhaust typically contains 3-10% oxygen. While it is known that the monoethanolamine (MEA) oxidative degradation rate is a critical parameter affecting liquid amine absorption processes, the effect of oxygen on the stability of solid amine adsorbents remains unexplored. Here, oxidative degradation of aminosilica materials is studied under accelerated oxidizing conditions to assess the stability of different supported amine structures to oxidizing conditions. Adsorbents constructed using four different silane coupling agents are evaluated, three with a single primary, secondary, or tertiary amine at the end of a propyl surface linker, with the fourth having one secondary propylamine separated from a primary amine by an ethyl linker. Under the experimental conditions used in this study, it was found that both amine type and proximity had a significant effect on oxidative degradation rates. In particular, the supported primary and tertiary amines proved to be stable to the oxidizing conditions used, whereas the secondary amines degraded at elevated treatment temperatures. Because secondary amines are important components of many supported amine adsorbents, it is suggested that the oxidative stability of such species needs to be carefully considered in assessments of postcombustion CO2 capture processes based on supported amines. © 2011 American Chemical Society.

  14. Research and development of methods and technologies for CO2 capture in fossil fuel power plants and storage in geological formations in the Czech Republic. Substage E2.1: Methods of and technologies for post-combustion CO2 capture from the flue gas. Substage E2.3: Selection of a chemical absorption based method for post-combustion CO2 capture. Revision 0

    International Nuclear Information System (INIS)

    Vavrova, Jana

    2010-12-01

    The following topics are described: Overview of CO 2 capture methods; Overview of absorption technologies (Amine technologies; Ammonia technologies); and the Research & Development stage (Absorption processes, chemical/carbonate loop; Membranes). (P.A.)

  15. Radiative nucleon capture with quasi-separable potentials

    International Nuclear Information System (INIS)

    Shubhchintak; Bertulani, C A; Mukhamedzhanov, A M; Kruppa, A T

    2016-01-01

    We study radiative capture reactions using quasi-separable potentials. This procedure allows an easier treatment of non-local effects that can be extended to three-body problems. Using this technique, we calculate the neutron and proton radiative capture cross sections on 12 C. The results obtained are shown to be in good agreement with the available experimental data. (paper)

  16. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO2-capture

    International Nuclear Information System (INIS)

    Rieger, Mathias

    2014-01-01

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  17. Rational design of temperature swing adsorption cycles for post-combustion CO2 capture

    NARCIS (Netherlands)

    Joss, Lisa; Gazzani, Matteo; Mazzotti, Marco

    2017-01-01

    The design of temperature swing adsorption (TSA) cycles aimed at recovering the heavy product at high purity is investigated by model-based design and applied to the capture of CO2 from flue gases. This model based design strategy and an extensive parametric analysis enables gaining an understanding

  18. Benchmarking and comparing first and second generation post combustion CO2 capture technologies

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gaspar, Jozsef; Ehlers, Sören

    2014-01-01

    The Octavius FP7 project focuses on demonstration of CO2 capture for zero emission power generation. As part of this work many partners are involved using different rate based simulation tools to develop tomorrow’s new power plants. A benchmarking is performed, in order to synchronize accuracy...

  19. Scrubbing system design for CO2 capture in coal-fired power plants

    International Nuclear Information System (INIS)

    Heischkamp, Elizabeth

    2017-01-01

    Within the last decades a continuous tightening of environmental regulations has been observed in several countries around the world. These include restriction of anthropogenic CO 2 emissions, since they are considered responsible for intensifying global warming. Coal-fired power plants represent a good possibility for capturing CO 2 before it is emitted in the atmosphere, thereby contributing to combat global warming. This work focuses on reducing the CO 2 emissions of such a power plant by 90 %. For this purpose a hard coal power plant is retrofitted with a chemical absorption using different solutions of piperazine promoted potassium carbonate. The resulting power plant's efficiency losses have been accounted for. A comparison of different scenarios such as the variation of operating parameters offer an insight in detecting suitable operating conditions that will allow to minimize efficiency penalties. Simulation details are provided along with a technical and an economic analysis.

  20. Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane.

    Science.gov (United States)

    Chen, Danke; Ying, Wen; Guo, Yi; Ying, Yulong; Peng, Xinsheng

    2017-12-20

    Two-dimensional (2D) materials-based membranes show great potential for gas separation. Herein an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), was confined in the 2D channels of MoS 2 -laminated membranes via an infiltration process. Compared with the corresponding bulk [BMIM][BF 4 ], nanoconfined [BMIM][BF 4 ] shows an obvious incremental increase in freezing point and a shift of vibration bands. The resulting MoS 2 -supported ionic liquid membrane (MoS 2 SILM) exhibits excellent CO 2 separation performance with high CO 2 permeance (47.88 GPU) and superb selectivity for CO 2 /N 2 (131.42), CO 2 /CH 4 (43.52), and CO 2 /H 2 (14.95), which is much better than that of neat [BMIM][BF 4 ] and [BMIM][BF 4 ]-based membranes. The outstanding performance of MoS 2 SILMs is attributed to the nanoconfined [BMIM][BF 4 ], which enables fast transport of CO 2 . Long-term operation also reveals the durability and stability of the prepared MoS 2 SILMs. The method of confining ILs in the 2D nanochannels of 2D materials may pave a new way for CO 2 capture and separation.

  1. Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor

    International Nuclear Information System (INIS)

    Ma, Shuangchen; Chen, Gongda; Zhu, Sijie; Han, Tingting; Yu, Weijing

    2016-01-01

    Highlights: • Mass transfer coefficient models of ammonia escape were built. • Influences of temperature, inlet CO 2 and ammonia concentration were studied. • Mass transfer coefficients of ammonia escape and CO 2 absorption were obtained. • Studies can provide the basic data as a reference guideline for process application. - Abstract: The mass transfer of CO 2 capture using ammonia solution in the bubbling reactor was studied; according to double film theory, the mass transfer coefficient models and interface area model were built. Through our experiments, the overall volumetric mass transfer coefficients were obtained, while the interface areas in unit volume were estimated. The volumetric mass transfer coefficients of ammonia escaping during the experiment were 1.39 × 10 −5 –4.34 × 10 −5 mol/(m 3 s Pa), and the volumetric mass transfer coefficients of CO 2 absorption were 2.86 × 10 −5 –17.9 × 10 −5 mol/(m 3 s Pa). The estimated interface area of unit volume in the bubbling reactor ranged from 75.19 to 256.41 m 2 /m 3 , making the bubbling reactor a viable choice to obtain higher mass transfer performance than the packed tower or spraying tower.

  2. Controllability and flexibility analysis of CO2 post-combustion capture using piperazine and MEA

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Ricardez-Sandoval, Luis; Jørgensen, John Bagterp

    2016-01-01

    In this study, we developed a decentralized control scheme and investigate the performance of the piperazine (PZ) and monoethanolamine (MEA) CO2 capture process for industrially-relevant operation scenarios. The base for the design of the control schemes is Relative Gain Array (RGA) analysis...... indicates that the proposed PI-based control structure can handle large changes in the load provided that the manipulated variables, i.e. lean solvent flow or reboiler duty, do not reach their saturation limit. Additionally, we observed that shortage in the steam supply (reboiler duty) may represent...... a critical operational bottleneck, especially when PZ is being used. The MEA plant controllers drive the system towards drying out/flooding while the CO2 capture rate performance of the PZ plant reduces drastically in the presence of constraints in the availability of steam. These findings suggest the need...

  3. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  4. Tail gas treatment of sour-SEWGS CO2 product. Public version

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, H.A.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-06-15

    This literature review covers the technologies suitable for the CO2-H2S separation within the context of CO2 purification of a pre-combustion captured stream intended for storage or reuse. The technologies considered cover existing industrially applied processes, emerging processes as well as processes in development. Several technologies capable of achieving the desired CO2-H2S separation were identified. Among them are liquid scrubbing processes Thiopaq and CrystaSulf producing elemental sulphur, selective oxidation to elemental sulphur such as MODOP or based on novel catalysts and sorbent-based (reactive) separations using low-, medium- or high-temperature (reactive) sorbents. SEWGS stands for Sorption Enhanced Water Gas Shift process.

  5. Recent advances on mixed matrix membranes for CO2 separation

    Institute of Scientific and Technical Information of China (English)

    Ming Wang; Zhi Wang; Song Zhao; Jixiao Wang; Shichang Wang

    2017-01-01

    Recent advances on mixed matrix membrane for CO2 separation are reviewed in this paper. To improve CO2 separation performance of polymer membranes, mixedmatrixmembranes (MMMs) are developed. The concept of MMM is illustrated distinctly. Suitable polymer and inorganic or organic fillers for MMMs are summarized.Possible interface morphologies between polymer and filler, and the effect of interface morphologies on gas transport properties of MMMs are summarized. The methods to improve compatibility between polymer and filler are introduced. There are eightmethods including silane coupling, Grignard treatment, incorporation of additive,grafting, in situ polymerization, polydopamine coating, particle fusion approach and polymer functionalization. To achieve higher productivity for industrial application,mixed matrix composite membranes are developed. The recent development on hollow fiber and flat mixedmatrix composite membrane is reviewed in detail. Last, the future trend of MMM is forecasted.

  6. Acidic gases (CO{sub 2}, NO{sub 2} and SO{sub 2}) capture and dissociation on metal decorated phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Anlong, E-mail: alkuang@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Kuang, Minquan; Yuan, Hongkuan; Wang, Guangzhao; Chen, Hong [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Yang, Xiaolan [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-07-15

    Highlights: • The light metal decorated phosphorene sheets are very effective for capture of CO{sub 2}, NO{sub 2} and SO{sub 2} because of large adsorption energies. • The adsorption energy is obviously dependent on the amount of electrons transferred between acidic gases and metal decorated phosphorene. • Pt-decorated phosphorene can effectively catalyze the dissociation of acidic gas. - Abstract: Density functional theory is employed to investigate the adsorption and dissociation of several acidic gases (CO{sub 2}, NO{sub 2} and SO{sub 2}) on metal (Li, Al, Ni and Pt) decorated phosphorene. The results show that light metal (Li, Al) decorated phosphorene exhibits a strong adsorption of acidic gases, i.e., the adsorption energy of CO{sub 2} on Li decorated phosphorene is 0.376 eV which is the largest in all adsorption of CO{sub 2} on metal decorated phosphorene and Al decorated phosphorene is most effective for capture of NO{sub 2} and SO{sub 2} due to large adsorption energies of 3.951 and 3.608 eV, respectively. Moreover, Li and Al light metals have stronger economic effectiveness and more friendly environment compared with the transition metals, the strong adsorption ability of acidic gases and low price suggest that Li, Al decorated phosphorene may be useful and promising for collection and filtration of exhaust gases. The reaction energy barriers of acidic gases dissociated process on Pt decorated phosphorene are relatively low and the reaction processes are significantly exothermic, indicating that the dissociation process is favorable.

  7. Aerosol-based emission, solvent degradation, and corrosion in post combustion CO2 capture

    NARCIS (Netherlands)

    Khakharia, P.

    2015-01-01

    Global greenhouse gas emissions, especially of CO2, have been increasing tremendously over the past century. This is known to cause not only an increase of temperature, but also a change in our climate. Along with a shift to renewable sources of energy, Carbon Capture and Storage is necessary to

  8. Sulfation of CaO particles in a carbonation/calcination loop to capture CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Grasa, G.S.; Alonso, M.; Abanades, J.C. [CSIC, Zaragoza (Spain)

    2008-03-15

    CaO is being proposed as a regenerable sorbent of CO{sub 2} via a carbonation/calcination loop. It is well known that natural sorbents lose their capacity to capture CO{sub 2} with the number of cycles due to textural degradation. In coal combustion systems, reaction with the SO{sub 2} present in flue gases also causes sorbent deactivation. This work investigates the effect of partial sorbent sulfation on the amount of CaO used in systems where both carbonation and sulfation reactions are competing. We have found that SO{sub 2} reacts with the deactivated CaO resulting from repetitive calcination/carbonation reactions. Therefore, the deactivation of CaO as a result of the presence of SO{sub 2} is lower than one would expect if one assumes that SO{sub 2} reacts only with active CaO. This work shows that changes in the texture of the sorbent due to repetitive carbonation/calcination cycles tend to increase the sulfation capacity of the sorbents tested. This suggests that the purge of deactivated CaO obtained from a CO{sub 2} capture loop could be a more effective sorbent of SO{sub 2} than fresh CaO.

  9. Improvement of CO2/N2 separation performance by polymer matrix cellulose acetate butyrate

    Science.gov (United States)

    Lee, R. J.; Jawad, Z. A.; Ahmad, A. L.; Ngo, J. Q.; Chua, H. B.

    2017-06-01

    With the rapid development of modern civilization, carbon dioxide (CO2) is produced in large quantities and mainly generated from industrial sectors. The gas emission is the major contributor to global warming. To address this issue, the membrane technology is implemented for the CO2 removal, due to the energy efficiency and economic advantages presented. Cellulose acetate butyrate (CAB) is selected as the polymeric material, due to the excellent film-forming properties and capable of developing a defect-free layer of neat membrane. This study described the fabrication development of CAB using a wet phase inversion method with different casting conditions. Where the composition of the casting solutions (3-5 wt %) and solvent evaporation time (4-6 min) were determined. The outcomes of these dominant parameters were then used to determine the best CAB membrane for CO2/Nitrogen (N2) separation and supported by the characterization i.e. scanning electron micrograph. Gas permeation measurements showed satisfactory performance for CAB membrane fabricated with 5 min evaporation time and 4 wt% polymer composition (M2). Where, its permeance and selectivity are 120.19 GPU and 3.17, respectively. In summary, this study showed a brief outlined of the future direction and perspective of CAB membrane for CO2/N2 separation.

  10. Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO_2 capture

    International Nuclear Information System (INIS)

    Romero Gómez, Manuel; Romero Gómez, Javier; López-González, Luis M.; López-Ochoa, Luis M.

    2016-01-01

    The LNG (liquefied natural gas) regasification process is a source of cold exergy that is suitable to be recovered to improve the efficiency of thermal power plants. In this paper, an innovative power plant with LNG (liquefied natural gas) exergy utilisation and the capture of CO_2 proceeding from the flue gases is presented. It is characterised by the recovery of LNG cold exergy in a closed Brayton cycle and through direct expansion in an expander coupled to an electrical generator. Moreover, this novel power plant configuration allows CO_2 capture, through an oxy-fuel combustion system and a Rankine cycle that operates with the flue gases themselves and in quasi-critical conditions. The greatest advantage of this plant is that all the recoverable LNG exergy is used to increase the efficiency of the CBC (closed Brayton cycle) and in direct expansion whereas, in other power cycles found in literature that associate LNG regasification and CO_2 capture, part of the LNG exergy is used for condensing flue gas CO_2 for its subsequent capture. As a result, a high efficiency power plant is achieved, exceeding 65%, with almost zero greenhouse gas emissions. - Highlights: • LNG cold exergy can be recovered to improve the efficiency of power plants. • High efficiency power plant with almost zero greenhouse gas emissions. • CO_2 capture through an oxy-fuel combustion system and a Rankine cycle. • Sensitivity analysis of key parameters to evaluate the effect on the efficiency. • The exergy available in the LNG represents 34.79% of the fuel exergy.

  11. Colloidal processing and CO_2-capture performance Al_2O_3-zeolite 13X composites

    International Nuclear Information System (INIS)

    Andersson, L.; Akhtar, F.; Ojuva, A.; Bergstroem, L.

    2012-01-01

    Hierarchically porous composites for CO_2-capture have been produced by coating the inner walls of foam-like macroporous alumina monoliths, produced by templated synthesis, with microporous zeolite 13X particles. Homogeneous and dense coatings of the particulate adsorbent were obtained when the impregnation process was performed at a pH above 9. At this pH-level the colloidally stable suspensions of the negatively charged zeolite 13X particles could fill all the voids of the highly connected pore space of the alumina supports and attach to the monolith walls, which had been pre-coated with poly(ethylene imine). A CO_2-uptake as high as 5 mmol CO_2/g zeolite 13X was achieved for alumina-zeolite 13X composites through minimisation of the added inorganic binder, kaolin, to only 3.0 wt% with respect to zeolite content, and through optimisation of the thermal treatment.

  12. Comparison of volatiles and mosquito capture efficacy for three carbohydrate sources in a yeast-fermentation CO2 generator

    Science.gov (United States)

    Mosquito surveillance in remote areas with limited access to canisters of CO2 or dry ice will benefit from an effective alternative CO2 source. In this study, we document the differences in mosquito and non-mosquito capture rates from CO2 baited (dry ice or yeast fermentation of carbohydrates) CDC t...

  13. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Holly Krutka; Sharon Sjostrom

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  14. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO 2 capture

    KAUST Repository

    Zhao, Yunfeng; Zhao, Lan; Yao, Kexin; Yang, Yang; Zhang, Qiang; Han, Yu

    2012-01-01

    Nitrogen-doped carbon materials were prepared by a nanocasting route using tri-continuous mesoporous silica IBN-9 as a hard template. Rationally choosing carbon precursors and carefully controlling activation conditions result in an optimized material denoted as IBN9-NC1-A, which possesses a very high nitrogen doping concentration (∼13 wt%) and a large surface area of 890 m 2 g -1 arising from micropores (<1 nm). It exhibits an excellent performance for CO 2 adsorption over a wide range of CO 2 pressures. Specifically, its equilibrium CO 2 adsorption capacity at 25 °C reaches up to 4.50 mmol g -1 at 1 bar and 10.53 mmol g -1 at 8 bar. In particular, it shows a much higher CO 2 uptake at low pressure (e.g. 1.75 mmol g -1 at 25 °C and 0.2 bar) than any reported carbon-based materials, owing to its unprecedented nitrogen doping level. The high nitrogen contents also give rise to significantly enhanced CO 2/N 2 selectivities (up to 42), which combined with the high adsorption capacities, make these new carbon materials promising sorbents for selective CO 2 capture from power plant flue gas and other relevant applications. © 2012 The Royal Society of Chemistry.

  15. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); King, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xiaohong S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xing, Rong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spies, Kurt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rainbolt, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Liyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Braunberger, B. [Western Research Inst., Laramie, WY (United States)

    2014-10-01

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330°C when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted Mg

  16. Use of reverse osmosis membranes for the separation of lemongrass essential oil and supercritical CO2

    Directory of Open Access Journals (Sweden)

    L.A.V. Sarmento

    2004-06-01

    Full Text Available Although it is still used very little by industry, the process of essential oil extraction from vegetable matrices with supercritical CO2 is regarded as a potentially viable technique. The operation of separating the extract from the solvent is carried out by reducing the pressure in the system. Separation by membranes is an alternative that offers lower energy consumption and easier operation than traditional methods of separation. Combining the processes essential oil extraction with supercritical CO2 and separation by membranes permits the separation of solvent and oil without the need for large variations in extraction conditions. This results in a large energy savings in the case of solvent repressurisation and reuse. In this study, the effectiveness of reverse osmosis membranes in separating lemongrass essential oil from mixtures with supercritical CO2 was tested. The effects of feed oil concentration and transmembrane pressure on CO2 permeate flux and oil retention were studied for three membrane models.

  17. Preparation of a carbon molecular sieve and application to separation of N2, O2 and CO2 in a fixed bed

    Directory of Open Access Journals (Sweden)

    Soares J.L.

    2003-01-01

    Full Text Available The emission of CO2 from power plants that burn fossil fuels is the major cause of the accumulation of CO2 in the atmosphere. The separation of CO2 from CO2/air mixtures can play a key role in alleviating this problem. This separation can be carried out by using suitable adsorbents, such as carbon molecular sieves. In this work, a CMS was prepared by deposition of polyfurfuryl alcohol polymer on activated carbon. After deposition of the polymer, the material was carbonized at 800masculineC for 2 hours. This material was used to separate O2/N2 mixtures and CO2 in a fixed bed at room temperature. Experimental breakthrough curves obtained were fitted to theoretical models in order to establish the main mechanisms of mass transfer. The breakthrough curves showed that it is possible to separate O2, N2 and CO2. The shape of the breakthrough curves was not influenced by the total flow, indicating that the gas contact for the gas mixture was good. The experimental data were fitted to theoretical models and it was established that the main mechanism of mass transfer was intraparticle diffusion.

  18. Gas hydrate formation process for pre-combustion capture of carbon dioxide

    International Nuclear Information System (INIS)

    Lee, Hyun Ju; Lee, Ju Dong; Linga, Praveen; Englezos, Peter; Kim, Young Seok; Lee, Man Sig; Kim, Yang Do

    2010-01-01

    In this study, gas hydrate from CO 2 /H 2 gas mixtures with the addition of tetrahydrofuran (THF) was formed in a semi-batch stirred vessel at various pressures and temperatures to investigate the CO 2 separation/recovery properties. This mixture is of interest to CO 2 separation and recovery from Integrated Gasification Combine Cycle (IGCC) power plants. During hydrate formation the gas uptake was determined and composition changes in the gas phase were obtained by gas chromatography. The impact of THF on hydrate formation from the CO 2 /H 2 was observed. The addition of THF significantly reduced the equilibrium formation conditions. 1.0 mol% THF was found to be the optimum concentration for CO 2 capture based on kinetic experiments. The present study illustrates the concept and provides thermodynamic and kinetic data for the separation/recovery of CO 2 (pre-combustion capture) from a fuel gas (CO 2 /H 2 ) mixture.

  19. Modeling and assessment of future IGCC plant concepts with CO{sub 2} capture; Simulation und Bewertung zukuenftiger IGCC-Kraftwerkskonzepte mit CO{sub 2}-Abtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, Christian A.

    2012-07-13

    The thesis focuses on the assessment of efficiency potential of future IGCC plants with CO{sub 2} capture. Starting point is a comprehensive analysis (thermodynamic, economic and exergy) of a state of the art IGCC. Additionally, five future IGCC concepts are proposed and evaluated for their efficiency potential in the mid- and long-term. The concepts showed significantly higher efficiencies up to approximately 60% and enable an almost CO{sub 2}-free operation.

  20. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements.

    Science.gov (United States)

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun

    2013-03-01

    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparative evaluation of power plants with CO2 capture. Thermodynamic, economic and environmental performance

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina

    2011-01-01

    CCS (Carbon Capture and Sequestration) in the energy sector is seen as a bridge technology for CO 2 mitigation, due to the ever-growing environmental impact of anthropogenic-emitted greenhouse gases. In this work, eight power plant concepts using CO 2 capture technologies are assessed based on their efficiency, economic feasibility and environmental footprint. Exergy-based analyses are used for evaluating the considered power plants through comparison with a reference plant without CO 2 capture. While conventional exergy-based analyses provide important information that can lead to improvements in plant performance, additional insight about individual components and the interactions among equipment can aid further assessment. This led to the development of advanced exergy-based analyses, in which the exergy destruction, as well as the associated costs and environmental impacts are split into avoidable/unavoidable and endogenous/exogenous parts. Based on the avoidable parts, the potential for improvement is revealed, while based on the endogenous/exogenous parts, the component interactions are obtained. Among the examined plants with CO 2 capture, the most efficient are those working with oxy-fuel technology. An exergoeconomic analysis shows a minimum increase in the relative investment cost (in Euro/kW) of 80% for the conventional approach (chemical absorption) and an increase of 86% for the oxy-fuel plant with chemical looping combustion. The latter shows a somewhat decreased environmental impact when compared to that of the reference plant. On the contrary, the plant with chemical absorption results in a higher environmental penalty due to its high efficiency penalty. Therefore, accepting that all assumptions and data related to the calculations of the environmental impacts are reliable, efficiency improvement seems to be a more significant factor in potentially decreasing a plant's environmental impact. With advanced exergy-based analyses, interdependencies

  2. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Benjamin; Genovese, Sarah; Perry, Robert; Spiry, Irina; Farnum, Rachael; Sing, Surinder; Wilson, Paul; Buckley, Paul; Acharya, Harish; Chen, Wei; McDermott, John; Vipperia, Ravikumar; Yee, Michael; Steele, Ray; Fresia, Megan; Vogt, Kirk

    2013-12-31

    A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.

  3. Determination of cost-effective operating condition for CO{sub 2} capturing using 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Emad; Alnashef, Inas; Ajbar, Abdelhamid; Mulyono, Sarwono; Hadj-Kali, Mohamed Kamel [King Saud University, Riyadh (Saudi Arabia); Hizaddin, Hanee Farzana [University of Malaya, Kuala Lumpur (Malaysia)

    2013-11-15

    1-Butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) ionic liquid (IL) is considered for CO{sub 2} capturing in a typical absorption/stripper process. The use of ionic liquids is considered to be cost-effective because it requires less energy for solvent recovery compared to other conventional processes. A mathematical model was developed for the process based on Peng-Robinson (PR) equation of state (EoS). The model was validated with experimental data for CO{sub 2} solubility in [BMIM][BF4]. The model is utilized to study the sorbent effect and energy demand for selected operating pressure at specific CO{sub 2} capturing rates. The energy demand is expressed by the vapor-liquid equilibrium temperature necessary to remove the captured CO{sub 2} from the spent solvent in the regeneration step. It is found that low recovery temperature can be achieved at specific pressure combination for the absorber/stripper units. In fact, the temperature requirement is less than that required by the typical monoethanolamine (MEA) solvent. The effect of the CO{sub 2} loading in the sorbent stream on the process performance is also examined.

  4. SEM-EDS Observation of Structure Changes in Synthetic Zeolites Modified for CO2 Capture Needs

    Science.gov (United States)

    Wdowin, Magdalena; Panek, Rafal; Franus, Wojciech

    Carbon dioxide is the main greenhouse gas and its amount still increase in the atmosphere. Air pollution and greenhouse effect caused by CO2 emission have become a major threat to the environment on a global scale. Carbon dioxide sequestration (i.e. capture and consequently geological storage) is the key strategy within the portfolio of actions to reduce CO2 emission to the atmosphere. The most costly stage is capture of CO2, therefore there is a need to search new solutions of this technology. For this purpose it was examined Na-X synthetic zeolites, that were silver and PEI (polyethyleneimine) activated. SEM-EDS investigation enable to find a changes in structure of this materials after treatment. Where, as a result of silver activation from EDS analysis it is seen that Ag occur in Na-X structure, what indicate a substitution of Ag2+ for Na+ ions in crystal lattice. Analysing wt% the EDS analysis has shown that zeolite Na-X after silver impregnation becomes Ag-X zeolite. For Na-X-PEI activated it is observed a distinct organic compound in the form of coatings on Na-X crystals causing a sealing of pores in tested zeolite. Further examination of these materials concern determination of surface properties and experiments of CO2 sorption. But SEM-EDS analysis enable to determine the extent of activation, what is very important in determination of optimal conditions for such treatment in order to obtain better sorbent of CO2.

  5. Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation

    International Nuclear Information System (INIS)

    Rochedo, Pedro R.R.; Szklo, Alexandre

    2013-01-01

    Highlights: • This work defines the minimum work of separation (MWS) for a capture process. • Findings of the analysis indicated a MWS of 0.158 GJ/t for post-combustion. • A review of commercially available processes based on chemical absorption was made. • A review of learning models was conducted, with the addition on a novel model. • A learning curve for post-combustion carbon capture was successfully designed. - Abstract: Carbon capture is one of the most important alternatives for mitigating greenhouse gas emissions in energy facilities. The post-combustion route based on chemical absorption with amine solvents is the most feasible alternative for the short term. However, this route implies in huge energy penalties, mainly related to the solvent regeneration. By defining the minimum work of separation (MWS), this study estimated the minimum energy required to capture the CO 2 emitted by coal-fired thermal power plants. Then, by evaluating solvents and processes and comparing it to the MWS, it proposes the learning model with the best fit for the post-combustion chemical absorption of CO 2 . Learning models are based on earnings from experience, which can include the intensity of research and development. In this study, three models are tested: Wright, DeJong and D and L. Findings of the thermochemical analysis indicated a MWS of 0.158 GJ/t for post-combustion. Conventional solvents currently present an energy penalty eight times the MWS. By using the MWS as a constraint, this study found that the D and L provided the best fit to the available data of chemical solvents and absorption plants. The learning rate determined through this model is very similar to the ones found in the literature

  6. Experimental investigation of CO_2 separation by adsorption methods in natural gas purification

    International Nuclear Information System (INIS)

    Chen, S.J.; Fu, Y.; Huang, Y.X.; Tao, Z.C.; Zhu, M.

    2016-01-01

    Highlights: • The ideal swing adsorption tank can improve the adsorption performance. • Pure CO_2 adsorption experimental data agrees well with extended Langmuir model. • Langmuir-Freundlich model correlates CO_2/CH_4 mixture adsorption data fairly well. • The temperature increases in the order swing 2 > swing1 > static for pure CO_2 adsorption. • Swinging the adsorption tank can improve the separation efficiency. - Abstract: CO_2 separation for natural gas purification by the adsorption method was studied in detail using volumetric adsorption apparatus. The crystalline phase and microstructure of the experimental sample were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Micromeritics ASAP 2020 instrument. The XRD pattern proves that the experimental sample consists of 13X zeolites. The SEM images show that the 13X zeolites expose a large number of micro-channels on the surface of the particles. The microporous volume is 0.22 cm"3 (STP)/g. The ideal swing frequency for the adsorption tank can improve the adsorption performance of an adsorbent compared with a static adsorption tank. The pure CO_2 adsorption experimental data agrees well with the extended Langmuir model. The Langmuir-Freundlich model correlates the CO_2/CH_4 mixture adsorption experimental data fairly well. The relative errors between the simulated results and the experimental data are very little, which indicates that these fitted models are correct. The average selectivity of CO_2/CH_4 in a static and swing adsorption tank are, respectively, 3.57 and 3.93, considerably higher than 1, indicating preferential CO_2 adsorption over CH_4 in CO_2/CH_4 mixtures. This also shows that the swing can improve CO_2 separation for natural gas purification. For the three types of motion status, the temperature of the adsorption tank increased in the order swing 2 > swing1 > static state for pure CO_2 adsorption in 13X zeolites. The temperature variation decreased as the

  7. CO_2 capture with solid sorbent: CFD model of an innovative reactor concept

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.

    2016-01-01

    Highlights: • A new reactor solution based on rotating fixed beds was presented. • The preliminary design of the reactor was approached. • A CFD model of the reactor, including CO_2 capture kinetic, was developed. • The CFD model is validated with experimental results. • Sorbent exploitation increasing is possible thanks to the new reactor. - Abstract: In future decarbonization scenarios, CCS with particular reference to post-combustion technologies will be an important option also for energy intensive industries. Nevertheless, today CCS systems are rarely installed due to high energy and cost penalties of current technology based on chemical scrubbing with amine solvent. Therefore, innovative solutions based on new/optimized solvents, sorbents, membranes and new process designs, are R&D priorities. Regarding the CO_2 capture through solid sorbents, a new reactor solution based on rotating fixed beds is presented in this paper. In order to design the innovative system, a suitable CFD model was developed considering also the kinetic capture process. The model was validated with experimental results obtained by the authors in previous research activities, showing a potential reduction of energy penalties respect to current technologies. In the future, the model will be used to identify the control logic of the innovative reactor in order to verify improvements in terms of sorbent exploitation and reduction of system energy consumption.

  8. Sequestering CO2 in the Ocean: Options and Consequences

    Science.gov (United States)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood

  9. Structures for capturing CO.sub.2, methods of making the structures, and methods of capturing CO.sub.2

    Science.gov (United States)

    Jones, Christopher W; Hicks, Jason C; Fauth, Daniel J; McMahan, Gray

    2012-10-30

    Briefly described, embodiments of this disclosure, among others, include carbon dioxide (CO.sub.2) sorption structures, methods of making CO.sub.2 sorption structures, and methods of using CO.sub.2 sorption structures.

  10. Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, A.; Bonalumi, D.; Lozza, G.

    2013-01-01

    Highlights: • Hot fuel gas clean-up is a very favorable technology for IGCC concepts. • IGCC net efficiency reduces to 41.5% when realizing post-combustion CO 2 capture. • Complex IGCC layouts are necessary if exhaust gas recirculation is realized. • IGCC performance does not significantly vary with exhaust gas recirculation. - Abstract: This paper focuses on the thermodynamic performance of air-blown IGCC systems with post-combustion CO 2 capture by chemical absorption. Two IGCC technologies are investigated in order to evaluate two different strategies of coal-derived gas clean-up. After outlining the layouts of two power plants, the first with conventional cold gas clean-up and the second with hot gas clean-up, attention is paid to the CO 2 capture station and to issues related to exhaust gas recirculation in combined cycles. The results highlight that significant improvements in IGCC performance are possible if hot coal-derived gas clean-up is realized before the syngas fuels the combustion turbine, so the energy cost of CO 2 removal in an amine-based post-combustion mode is less strong. In particular, IGCC net efficiency as high as 41.5% is calculated, showing an interesting potential if compared to the one of IGCC systems with pre-combustion CO 2 capture. Thermodynamic effects of exhaust gas recirculation are investigated as well, even though IGCC performance does not significantly vary against a more complicated plant layout

  11. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

    2001-06-30

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

  12. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes

    Science.gov (United States)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa

    2017-07-01

    Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).

  13. Co-firing coal and biomass blends and their influence on the post-combustion CO2 capture installation

    Directory of Open Access Journals (Sweden)

    Więckol-Ryk Angelika

    2017-01-01

    Research proved that co-firing of biomass in fossil fuel power plants is beneficial for PCC process. It may also reduce the corrosion of CO2 capture installation. The oxygen concentration in the flue gases from hard coal combustion was comparable with the respective value for a fuel blend of biomass content of 20% w/w. It was also noted that an increase in biomass content in a sample from 20 to 40 % w/w increased the concentration of oxygen in the flue gas streams. However, this concentration should not have a significant impact on the rate of amine oxidative degradation.

  14. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    Science.gov (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    -films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.

  15. W.A. Parish Post-Combustion CO{sub 2} Capture and Sequestration Project Phase 1 Definition

    Energy Technology Data Exchange (ETDEWEB)

    Armpriester, Anthony; Smith, Roger; Scheriffius, Jeff; Smyth, Rebecca; Istre, Michael

    2014-02-01

    For a secure and sustainable energy future, the United States (U.S.) must reduce its dependence on imported oil and reduce its emissions of carbon dioxide (CO{sub 2}) and other greenhouse gases (GHGs). To meet these strategic challenges, the U.S. wiU have to create fundamentally new technologies with performance levels far beyond what is now possible. Developing advanced post-combustion clean coal technologies for capturing CO{sub 2} from existing coal-fired power plants can play a major role in the country's transition to a sustainable energy future, especially when coupled with CO{sub 2}-enhanced oil recovery (CO{sub 2}-EOR). Pursuant to these goals, NRG Energy, Inc. (NRG) submitted an application and entered into a cost-shared collaboration with the U.S. Department of Energy (DOE) under Round 3 of the Clean Coal Power Initiative (CCPI) to advance low-emission coal technologies. The objective of the NRG W A Parish Post-Combustion CO{sub 2} Capture and Sequestration Demonstration Project is to establish the technical feasibility and economic viability of post-combustion CO{sub 2} capture using flue gas from an existing pulverized coal-fired boiler integrated with geologic sequestration via an enhanced oil recovery (EOR) process. To achieve these objectives, the project will be executed in three phases. Each phase represents a distinct aspect of the project execution. The project phases are: • Phase I. Project Definition/Front-End Engineering Design (FEED) • Phase ll. Detailed Engineering, Procurement & Construction • Phase III. Demonstration and Monitoring The purpose of Phase I is to develop the project in sufficient detail to facilitate the decision-making process in progressing to the next stage of project delivery. Phase n. This report provides a complete summary of the FEED study effort, including pertinent project background information, the scope of facilities covered, decisions, challenges, and considerations made regarding configuration and

  16. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO{sub 2}-capture

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, Mathias

    2014-04-17

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  17. Development and characterization of polyethersulfone/TiO2 mixed matrix membranes for CO2/CH4 separation

    Science.gov (United States)

    Galaleldin, S.; Mannan, H. A.; Mukhtar, H.

    2017-12-01

    In this study, mixed matrix membranes comprised of polyethersulfone as the bulk polymer phase and titanium dioxide (TiO2) nanoparticles as the inorganic discontinuous phase were prepared for CO2/CH4 separation. Membranes were synthesized at filler loading of 0, 5, 10 and 15 wt % via dry phase inversion method. Morphology, chemical bonding and thermal characteristics of membranes were scrutinized utilizing different techniques, namely: Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform InfraRed (FTIR) spectra and Thermogravimetric analysis (TGA) respectively. Membranes gas separation performance was evaluated for CO2 and CH4 gases at 4 bar feed pressure. The highest separation performance was achieved by mixed matrix membrane (MMM) at 5 % loading of TiO2.

  18. ACACIA Project - Development of a Post-Combustion CO2 Capture Process. Case of the DMXTM Process

    International Nuclear Information System (INIS)

    Gomez, A.; Briot, P.; Raynal, L.; Broutin, P.; Gimenez, M.; Soazic, M.; Cessat, P.; Saysset, S.

    2014-01-01

    The objective of the ACACIA project was to develop processes for post-combustion CO 2 capture at a lower cost and with a higher energetic efficiency than first generation processes using amines such as Monoethanolamine (MEA) which are now considered for the first Carbon Capture and Storage (CCS) demonstrators. The partners involved in this project were: Rhodia (Solvay since then), Arkema, Lafarge, GDF SUEZ, Veolia Environnement, IFP Energies nouvelles, IRCE Lyon, LMOPS, LTIM, LSA Armines. To validate the relevance of the breakthrough processes studied in this project, techno-economic evaluations were carried out with comparison to the reference process using a 30 wt% MEA solvent. These evaluation studies involved all the industrial partners of the project, each partner bringing specific cases of CO 2 capture on their industrial facilities. From these studies, only the process using de-mixing solvent, DMX TM , developed by IFPEN appears as an alternative solution to the MEA process. (authors)

  19. Spectroscopic Investigation of the Canopy Configurations in Nanoparticle Organic Hybrid Materials of Various Grafting Densities during CO 2 Capture

    KAUST Repository

    Petit, Camille; Park, Youngjune; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa

    2012-01-01

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) made of polyetheramine chains tethered onto functionalized silica nanoparticles were synthesized and characterized before and after exposure to CO 2 using NMR, Raman, and ATR FT-IR spectroscopies in order to investigate the effect of the grafting densities on the NOHM canopy structure. Considering the promising tunable properties for CO 2 capture of NOHMs, this study was conducted to provide important structural information to better design NOHMs for CO 2 capture. In order to minimize the CO 2 absorption via enthalpic effect and provide a more accurate assessment of the structural effects, the NOHMs were synthesized without task-specific groups. A greater chain ordering and decreased intermolecular interactions were observed in NOHMs compared to the unbound polymer. This was attributed to the specific structural arrangement of the frustrated canopy. The distinct configuration of grafted polymer chains caused different CO 2 packing and CO 2-induced swelling behaviors between the NOHMs and the unbound polymer. The grafting density influenced the ordering and coupling of the polymer chains and CO 2-induced swelling. Its effect on the CO 2 packing behavior was less pronounced. © 2011 American Chemical Society.

  20. Spectroscopic Investigation of the Canopy Configurations in Nanoparticle Organic Hybrid Materials of Various Grafting Densities during CO 2 Capture

    KAUST Repository

    Petit, Camille

    2012-01-12

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) made of polyetheramine chains tethered onto functionalized silica nanoparticles were synthesized and characterized before and after exposure to CO 2 using NMR, Raman, and ATR FT-IR spectroscopies in order to investigate the effect of the grafting densities on the NOHM canopy structure. Considering the promising tunable properties for CO 2 capture of NOHMs, this study was conducted to provide important structural information to better design NOHMs for CO 2 capture. In order to minimize the CO 2 absorption via enthalpic effect and provide a more accurate assessment of the structural effects, the NOHMs were synthesized without task-specific groups. A greater chain ordering and decreased intermolecular interactions were observed in NOHMs compared to the unbound polymer. This was attributed to the specific structural arrangement of the frustrated canopy. The distinct configuration of grafted polymer chains caused different CO 2 packing and CO 2-induced swelling behaviors between the NOHMs and the unbound polymer. The grafting density influenced the ordering and coupling of the polymer chains and CO 2-induced swelling. Its effect on the CO 2 packing behavior was less pronounced. © 2011 American Chemical Society.

  1. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Witoon, Thongthai, E-mail: fengttwi@ku.ac.th [National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand)

    2012-11-15

    In this work, bimodal (meso-macro) porous silicas with different mesopore diameters synthesized by using rice husk ash as a low-cost silica source and chitosan as a natural template were used as a polyethyleneimine (PEI) support for CO{sub 2} capture. Unimodal porous silica supports with equivalent mesopore diameters to bimodal porous silica supports have been prepared for purpose of comparison. Effects of different PEI contents (10, 20, 30, 40 and 50 wt%) on CO{sub 2} sorption capacity have been systematically investigated. The porous silica supports and the PEI-loaded porous silica supports were characterized by N{sub 2}-sorption analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. CO{sub 2} sorption measurements of all PEI-loaded porous silica supports were performed at different adsorption temperatures (60, 75, 85, 90, 95 and 105 Degree-Sign C). At low PEI contents (10-20 wt%), the CO{sub 2} sorption of all adsorbents was found to decrease as a function of adsorption temperature, which was a characteristic of a thermodynamically-controlled regime. A transition from the thermodynamically-controlled regime to a kinetically-controlled regime was found when the PEI content was increased up to 30 wt% for PEI-loaded unimodal porous silicas and 40 wt% for PEI-loaded bimodal porous silicas. At high PEI contents (40-50 wt%), the CO{sub 2} capturing efficiency of the PEI-loaded bimodal porous silicas was found to be considerably greater than that of the PEI-loaded unimodal porous silicas, indicating that most of the amine groups of PEI molecules loaded on the unimodal porous silica supports was useless, and thus the appeared macroporosity of the bimodal porous silica supports could provide a higher effective amine density to adsorb CO{sub 2}. Highlights: Black-Right-Pointing-Pointer PEI-impregnated bimodal porous silica as low-cost sorbent for CO{sub 2} capture. Black-Right-Pointing-Pointer Macropores enhances

  2. Solid amine sorbents for CO2 capture by chemical adsorption: A review

    Directory of Open Access Journals (Sweden)

    Elif Erdal Ünveren

    2017-03-01

    Full Text Available Amines are well-known for their reversible reactions with CO2, which make them ideal for CO2 capture from several gas streams, including flue gas. In this respect, selective CO2 absorption by aqueous alkanolamines is the most mature technology but the process is energy intensive and has also corrosion problems. Both disadvantages can be diminished to a certain extent by chemical adsorption of CO2 selectively. The most important element of the chemical adsorption of CO2 involves the design and development of a suitable adsorbent which consist of a porous support onto which an amine is attached or immobilized. Such an adsorbent is often called as solid amine sorbent. This review covers solid amine-based studies which are developed and published in recent years. First, the review examines several different types of porous support materials, namely, three mesoporous silica (MCM-41, SBA-15 and KIT-6 and two polymeric supports (PMMA and PS for CO2 adsorption. Emphasis is given to the synthesis, modifications and characterizations -such as BET and PXRD data-of them. Amination of these supports to obtain a solid amine sorbent through impregnation or grafting is reviewed comparatively. Focus is given to the adsorption mechanisms, material characteristics, and synthesis methods which are discussed in detail. Significant amount of original data are also presented which makes this review unique. Finally, relevant CO2 adsorption (or equilibrium capacity data, and cyclic adsorption/desorption performance and stability of important classes of solid amine sorbents are critically reviewed. These include severa PEI or TEPA impregnated adsorbents and APTES-grafted systems.

  3. Integrated Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T. Alan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jamison, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology (MIT) and Siemens Corporations (SCR) are developing new chemical synthesis processes for commodity chemicals from CO2. The process is assessed as a novel chemical sequestration technology that utilizes CO2 from dilute gas streams generated at industrial carbon emitters as a raw material to produce useful commodity chemicals. Work at Massachusetts Institute of Technology (MIT) commenced on October 1st, 2010, and finished on September 30th, 2013. During this period, we have investigated and accomplished five objectives that mainly focused on converting CO2 into high-value chemicals: 1) Electrochemical assessment of catalytic transformation of CO2 and epoxides to cyclic carbonates; 2) Investigation of organocatalytic routes to convert CO2 and epoxide to cyclic carbonates; 3) Investigation of CO2 Capture and conversion using simple olefins under continuous flow; 4) Microwave assisted synthesis of cyclic carbonates from olefins using sodium bicarbonates in a green pathway; 5) Life cycle analyses of integrated chemical sequestration process. In this final report, we will describe the detailed study performed during the three year period and findings and conclusions drawn from our research.

  4. Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery

    International Nuclear Information System (INIS)

    Hwang, Kyung-Ran; Park, Jin-Woo; Lee, Sung-Wook; Hong, Sungkook; Lee, Chun-Boo; Oh, Duck-Kyu; Jin, Min-Ho; Lee, Dong-Wook; Park, Jong-Soo

    2015-01-01

    The CCR (catalytic combustion reaction) of the retentate gas, consisting of 90% CO 2 and 10% H 2 obtained from a CO 2 /H 2 separation membrane reactor, was investigated using a porous Ni metal catalyst in order to recover energy and further enrich CO 2 . A disc-shaped porous Ni metal catalyst, namely Al[0.1]/Ni, was prepared by a simple method and a compact MCR (micro-channel reactor) equipped with a catalyst plate was designed for the CCR. CO 2 and H 2 concentrations of 98.68% and 0.46%, respectively, were achieved at an operating temperature of 400 °C, GHSV (gas-hourly space velocity) of 50,000 h −1 and a H 2 /O 2 ratio (R/O) of 2 in the unit module. In the case of the MCR, a sheet of the Ni metal catalyst was easily installed along with the other metal plates and the concentration of CO 2 in the retentate gas increased up to 96.7%. The differences in temperatures measured before and after the CCR were 31 °C at the product outlet and 19 °C at the N 2 outlet in the MCR. The disc-shaped porous metal catalyst and MCR configuration used in this study exhibit potential advantages, such as high thermal transfer resulting in improved energy recovery rate, simple catalyst preparation, and easy installation of the catalyst in the MCR. - Highlights: • The catalytic combustion of a retentate gas obtained from the H 2 /CO 2 separation membrane. • A disc-shaped porous nickel metal catalyst and a micro-channel reactor for catalytic hydrogen combustion. • CO 2 enrichment up to 98.68% at 400 °C, 50,000 h −1 and H 2 /O 2 ratio of 2.

  5. Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for CO 2 separation

    KAUST Repository

    Wu, Yingzhen

    2018-06-01

    Water-swollen hydrogel membranes are good candidates for CO2 separations due to the favorable solubility of CO2 in water. However, the excessive amount of water often causes the poor mechanical property and low selectivity. Herein, we propose a bioadhesion-inspired method to construct robust and high-performance CO2 separation membranes via in situ generation of polydopamine (PDA) nanoaggregates within poly (vinyl alcohol) (PVA) matrix. PDA nanoaggregates entangled with PVA chains and formed hydrogen bonding with hydroxyl groups from PVA chains. Physical cross-linking occurred between PVA chains and PDA nanoaggregates. Compared with the PVA membrane, the PVA-PDA hybrid membrane with the dopamine content of 0.5mol% exhibited a 1.7-fold increase in tensile strength and a 2.2-fold increase in the tensile modulus. The membranes were used for CO2/CH4 separation. The physical cross-linking resulted in a PVA chain rigidification region around PDA nanoaggregates, which hindered the penetration of larger-size gas molecules and thus enhancing the CO2/CH4 selectivity. Moreover, the abundant amine groups from PDA nanoaggregates could facilitate CO2 transport. The optimized hybrid hydrogel membrane exhibited CO2/CH4 selectivity of 43.2, which was 43.85% higher than that of the PVA membrane. The bioadhesion-inspired method opens up new opportunities to exploit the potential application of hydrogel membranes.

  6. Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis

    NARCIS (Netherlands)

    Fernández-Dacosta, Cora; Van Der Spek, Mijndert; Hung, Christine Roxanne; Oregionni, Gabriel David; Skagestad, Ragnhild; Parihar, Prashant; Gokak, D. T.; Strømman, Anders Hammer; Ramirez, Andrea

    2017-01-01

    CO2 utilisation is gaining interest as a potential element towards a sustainable economy. CO2 can be used as feedstock in the synthesis of fuels, chemicals and polymers. This study presents a prospective assessment of carbon capture from a hydrogen unit at a refinery, where the CO2 is either stored,

  7. Performance assessment of CO2 capture with calcination carbonation reaction process driven by coal and concentrated solar power

    International Nuclear Information System (INIS)

    Zhang, Xuelei; Liu, Yingguang

    2014-01-01

    Calcination carbonation reaction (CCR) process is regarded as a promising option for pulverized coal power plant to mitigate CO 2 emission. In this paper, concentrated solar power (CSP) substitutes for coal to supply part of the calcination energy in order to reduce the fossil fuel consumption associated with the calciner. A CCR process driven by coal and CSP is examined from the perspective of energy efficiency. This paper focuses on the parameters of heat recovery efficiency, CSP capacity, compression energy, air separation energy and recycled energy to determine the contribution of each to the overall energy penalty. In addition, the effects of heat recovery efficiency, CSP capacity, purge percentage and CO 2 capture efficiency on the co-driven case are analyzed through a sensitivity analysis. The results indicate that the thermal efficiency of integrating CCR co-driven process into an ultra-supercritical 1019 MW power plant is 35.37%, which means that the overall efficiency penalty is 9.63 percentage points. Moreover, the co-driven case reduces the fossil fuel consumption and the mass flow rate of fresh sorbent and circulation solids compared with coal-driven case. Increasing heat recovery efficiency and CSP efficiency can improve the co-driven case performance. - Highlights: • We examine a CCR process driven by coal and concentrated solar power simultaneously. • The contributors to the overall energy penalty are quantitatively identified. • Obvious coal-saving effect has been found in the co-driven system. • A sensitivity analysis is conducted to find the impact of key parameters

  8. Reducing the CO2 emissions from fossil fuel power plans by exhaust gas treatment

    International Nuclear Information System (INIS)

    David, Elena

    2007-01-01

    The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the short term, at least for the next 10-20 years, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil the fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove the other pollutants such as SO x and NO x which are released into the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this type of plants. Hence, efficient, cost-effective capture/separation technologies need to be developed to allow their large-scale use. (author)

  9. Remarks on CO{sub 2} capture from electric power plants and recommendations for future investigations

    Energy Technology Data Exchange (ETDEWEB)

    Wolsky, A.M. [Argonne National Laboratory, IL (United States)

    1993-12-31

    This paper recommends investigation of several topics that have not yet received sustained attention. Each bears directly on the cost and funding of CO{sub 2} capture and sequestration. The reasons why each topic deserves attention are briefly sketched.

  10. Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Ming Tan

    2017-09-01

    Full Text Available Supported ionic liquid membranes (SILMs have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4] was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2 at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped.

  11. The effect of humidity on the CO2/N2 separation performance of copolymers based on hard polyimide segments and soft polyether chains: Experimental and modeling

    Directory of Open Access Journals (Sweden)

    Luca Olivieri

    2016-10-01

    Full Text Available In this work, we studied two copolymers formed by segments of a rubbery polyether (PPO or PEO and of a glassy polyimide (BPDA-ODA or BKDA-ODA suitable for gas separation and CO2 capture. Firstly, we assessed the absorption of water vapor in the materials, as a function of relative humidity (R.H., finding that the humidity uptake of the copolymers lies between that of the corresponding pure homopolymers values. Furthermore, we studied the effect of humidity on CO2 and N2 permeability, as well as on CO2/N2 selectivity, up to R.H. of 75%. The permeability decreases with increasing humidity, while the ideal selectivity remains approximately constant in the entire range of water activity investigated. The humidity-induced decrease of permeability in the copolymers is much smaller than the one observed in polyimides such as Matrimid® confirming the positive effect of the polyether phase on the membrane performance.Finally, we modeled the humidity-induced decrease of gas solubility, diffusivity and, consequently, permeability, using a suitable approach that considers the free volume theory for diffusion and LF model for solubility. Such model allows estimating the extent of competition that the gases undergo with water during sorption in the membranes, as a function of the relative humidity, as well as the expected reduction of free volume by means of water molecules occupation and consequent reduction of diffusivity. Keywords: CO2 capture, Humid gas permeation, Transport properties in polymeric membranes, Water vapor sorption, Modeling

  12. PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models

    International Nuclear Information System (INIS)

    Li, Hailong; Jakobsen, Jana P.; Wilhelmsen, Oivind; Yan, Jinyue

    2011-01-01

    Highlights: → Accurate knowledge about the thermodynamic properties of CO 2 is essential in the design and operation of CCS systems. → Experimental data about the phase equilibrium and density of CO 2 -mixtures have been reviewed. → Equations of state have been reviewed too regarding CO 2 -mixtures. None has shown any clear advantage in CCS applications. → Identified knowledge gaps suggest to conducting more experiments and developing novel models. -- Abstract: The knowledge about pressure-volume-temperature-composition (PVTxy) properties plays an important role in the design and operation of many processes involved in CO 2 capture and storage (CCS) systems. A literature survey was conducted on both the available experimental data and the theoretical models associated with the thermodynamic properties of CO 2 mixtures within the operation window of CCS. Some gaps were identified between available experimental data and requirements of the system design and operation. The major concerns are: for the vapour-liquid equilibrium, there are no data about CO 2 /COS and few data about the CO 2 /N 2 O 4 mixture. For the volume property, there are no published experimental data for CO 2 /O 2 , CO 2 /CO, CO 2 /N 2 O 4 , CO 2 /COS and CO 2 /NH 3 and the liquid volume of CO 2 /H 2 . The experimental data available for multi-component CO 2 mixtures are also scarce. Many equations of state are available for thermodynamic calculations of CO 2 mixtures. The cubic equations of state have the simplest structure and are capable of giving reasonable results for the PVTxy properties. More complex equations of state such as Lee-Kesler, SAFT and GERG typically give better results for the volume property, but not necessarily for the vapour-liquid equilibrium. None of the equations of state evaluated in the literature show any clear advantage in CCS applications for the calculation of all PVTxy properties. A reference equation of state for CCS should, thus, be a future goal.

  13. Solid Adsorbents for Low-Temperature CO{sub 2} Capture with Low-Energy Penalties Leading to More Effective Integrated Solutions for Power Generation and Industrial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Nannan [Chinese Academy of Sciences Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai (China); Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham (United Kingdom); Tang, Zhiyong; Wei, Wei [Chinese Academy of Sciences Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai (China); Snape, Colin Edward [Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham (United Kingdom); Sun, Yuhan, E-mail: sunyh@sari.ac.cn [Chinese Academy of Sciences Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai (China)

    2015-03-09

    CO{sub 2} capture represents the key technology for CO{sub 2} reduction within the framework of CO{sub 2} capture, utilization, and storage (CCUS). In fact, the implementation of CO{sub 2} capture extends far beyond CCUS since it will link the CO{sub 2} emission and recycling sectors, and when renewables are used to provide necessary energy input, CO{sub 2} capture would enable a profitable zero- or even negative-emitting and integrated energy–chemical solution. To this end, highly efficient CO{sub 2} capture technologies are needed, and adsorption using solid adsorbents has the potential to be one of the ideal options. Currently, the greatest challenge in this area is the development of adsorbents with high performance that balances a range of optimization-needed factors, those including costs, efficiency, and engineering feasibility. In this review, recent advances on the development of carbon-based and immobilized organic amines-based CO{sub 2} adsorbents are summarized, the selection of these particular categories of materials is because they are among the most developed low-temperature (<100°C) CO{sub 2} adsorbents up to date, which showed important potential for practical deployment at pilot-scale in the near future. Preparation protocols, adsorption behaviors as well as pros and cons of each type of the adsorbents are presented, it was concluded that encouraging results have been achieved already, however, the development of more effective adsorbents for CO{sub 2} capture remains challenging and further innovations in the design and synthesis of adsorbents are needed.

  14. The impacts of CO2 capture technologies on transboundary air pollution in the Netherlands

    International Nuclear Information System (INIS)

    Van Harmelen, T.; Van Horssen, A.; Van Gijlswijk, R.; Koornneef, J.; Ramirez Ramirez, A.

    2008-05-01

    The objective of the inventory phase 1 of the project on the title subject is two-fold: (1) to assess the impacts of different CO2 capture technologies on transboundary air pollution in the Netherlands in 2020. Other possible environmental impacts such as toxic emissions and safety are considered qualitatively; and (2) to provide recommendations for further research in the in-depth phase 2 in order to address the current knowledge gaps found in this area. The inventory summarises all (public) available information that is relevant for transboundary air pollution and presents it in understandable terms for environmental experts and policymakers who are not CCS (carbon dioxide capture and storage) experts. The project surveys the present scientific literature and interviews key players in the carbon capture community in the Netherlands to present the current insights and state of capture technology, particularly with respect to transboundary air pollution. This has been done taking into account the angles of both research and policy needs. The information gathered is combined with scenario information for the year 2020 on carbon capture technology and transboundary air pollution in order to sketch ranges of possible impacts of carbon capture technologies in the Netherlands in this year. Chapter 2 explains the methodology and the research process taken in the project. Chapter 3 introduces the different capture technologies in the form a structured description. Chapter 4 describes the results of the assessment of capture technologies in terms of a comparative analysis and a what-if emission scenario analysis for the Netherlands. Chapter 5 closes the report with conclusions and recommendations for further research

  15. Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture

    International Nuclear Information System (INIS)

    Chen, Shiyi; Lior, Noam; Xiang, Wenguo

    2015-01-01

    Highlights: • A novel power system integrating coal gasification with SOFC and chemical looping combustion. • The plant net power efficiency reaches 49.8% with complete CO 2 separation. • Energy and exergy analysis of the entire plant is conducted. • Sensitivity analysis shows a nearly constant power output when SOFC temperature and pressure vary. • NiO oxygen carrier shows higher plant efficiency than using Fe 2 O 3 and CuO. - Abstract: Since solid oxide fuel cells (SOFC) produce electricity with high energy conversion efficiency, and chemical looping combustion (CLC) is a process for fuel conversion with inherent CO 2 separation, a novel combined cycle integrating coal gasification, solid oxide fuel cell, and chemical looping combustion was configured and analyzed. A thermodynamic analysis based on energy and exergy was performed to investigate the performance of the integrated system and its sensitivity to major operating parameters. The major findings include that (1) the plant net power efficiency reaches 49.8% with ∼100% CO 2 capture for SOFC at 900 °C, 15 bar, fuel utilization factor = 0.85, fuel reactor temperature = 900 °C and air reactor temperature = 950 °C, using NiO as the oxygen carrier in the CLC unit. (2) In this parameter neighborhood the fuel utilization factor, the SOFC temperature and SOFC pressure have small effects on the plant net power efficiency because changes in pressure and temperature that increase the power generation by the SOFC tend to decrease the power generation by the gas turbine and steam cycle, and v.v.; an advantage of this system characteristic is that it maintains a nearly constant power output even when the temperature and pressure vary. (3) The largest exergy loss is in the gasification process, followed by those in the CO 2 compression and the SOFC. (4) Compared with the CLC Fe 2 O 3 and CuO oxygen carriers, NiO results in higher plant net power efficiency. To the authors’ knowledge, this is the first

  16. Development of Membrane Contactors Using Phase Change Solvents for CO2 Capture: Material Compatibility Study

    OpenAIRE

    Ansaloni, Luca; Asad, Arif; Çiftja, Arlinda; Knuutila, Hanna K; Deng, Liyuan

    2016-01-01

    Phase change solvents represent a new class of CO2 absorbents with a promising potential to reduce the energy penalty associated with CO2 capture. However, their high volatility is a major concern for their use at the industrial scale. It is believed that membrane absorption offers a solution to overcome this issue, particularly if the membrane can prevent amine evaporation. In the present work a compatibility study is carried out in order to identify suitable membranes in a membrane contacto...

  17. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    Science.gov (United States)

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process

    International Nuclear Information System (INIS)

    Li, Kangkang; Yu, Hai; Qi, Guojie; Feron, Paul; Tade, Moses; Yu, Jingwen; Wang, Shujuan

    2015-01-01

    Highlights: • A rigorous, rate-based model for an NH 3 –CO 2 –SO 2 –H 2 O system was developed. • Model predictions are in good agreement with pilot plant results. • >99.9% of SO 2 was captured and >99.9% of slipped ammonia was reused. • The process is highly adaptable to the variations of SO 2 /NH 3 level, temperatures. - Abstract: To reduce the costs of controlling emissions from coal-fired power stations, we propose an advanced and effective process of combined SO 2 removal and NH 3 recycling, which can be integrated with the aqueous NH 3 -based CO 2 capture process to simultaneously achieve SO 2 and CO 2 removal, NH 3 recycling and flue gas cooling in one process. A rigorous, rate-based model for an NH 3 –CO 2 –SO 2 –H 2 O system was developed and used to simulate the proposed process. The model was thermodynamically and kinetically validated by experimental results from the open literature and pilot-plant trials, respectively. Under typical flue gas conditions, the proposed process has SO 2 removal and NH 3 reuse efficiencies of >99.9%. The process is strongly adaptable to different scenarios such as high SO 2 levels in flue gas, high NH 3 levels from the CO 2 absorber and high flue gas temperatures, and has a low energy requirement. Because the process simplifies flue gas desulphurisation and resolves the problems of NH 3 loss and SO 2 removal, it could significantly reduce the cost of CO 2 and SO 2 capture by aqueous NH 3

  19. Effect of Gas Recycling on the Performance of a Moving Bed Temperature-Swing (MBTSA Process for CO2 Capture in a Coal Fired Power Plant Context

    Directory of Open Access Journals (Sweden)

    Giorgia Mondino

    2017-05-01

    Full Text Available A mathematical model of a continuous moving-bed temperature-swing adsorption (MBTSA process for post-combustion CO2 capture in a coal-fired power plant context has been developed. Process simulations have been done using single component isotherms and measured gas diffusion parameters of an activated carbon adsorbent. While a simple process configuration with no gas re-circulation gives quite low capture rate and CO2 purity, 86% and 65%, respectively, more advanced process configurations where some of the captured gas is recirculated to the incoming flue gas drastically increase both the capture rate and CO2 purity, the best configuration reaching capture rate of 86% and CO2 purity of 98%. Further improvements can be achieved by using adsorbents with higher CO2/N2 selectivity and/or higher temperature of the regeneration section.

  20. Matrimid-JUC-62 and Matrimid-PCN-250 mixed matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for CO2/N2 separation.

    Science.gov (United States)

    Prasetya, Nicholaus; Teck, Anastasia A; Ladewig, Bradley P

    2018-02-13

    The performance of two generation-3 light-responsive metal-organic framework (MOF), namely JUC-62 and PCN-250, was investigated in a mixed matrix membrane (MMM) form. Both of them were incorporated inside the matrimid as the polymer matrix. Using our custom-designed membrane testing cell, it was observed that the MMMs showed up to 9% difference in CO 2 permeability between its pristine and UV-irradiated condition. This shows that the light-responsive ability of the light-responsive MOFs could still be maintained. Thus, this finding is applicable in designing a smart material. Apart from that, the MMMs also has the potential to be applied for post-combustion carbon capture. At loadings up to 15 wt%, both CO 2 permeability and CO 2 /N 2 ideal selectivity could be significantly improved and surpassed the value exhibited by most of the MOF-matrimid MMM. Lastly the long term performance of the MMM was also evaluated and it was observed that both MMM could maintain their performance up to 1 month with only a slight decrease in CO 2 permeability observed for 10 wt% PCN-250-matrimid. This study then opens up the possibility to fabricate a novel anti-aging multifunctional membrane material that is applicable as a smart material and also in post combustion carbon capture applications.