WorldWideScience

Sample records for co2 mitigation scenarios

  1. CO2 mitigation scenarios in China's road transport sector

    International Nuclear Information System (INIS)

    Wang, Can; Cai, Wenjia; Lu, Xuedu; Chen, Jining

    2007-01-01

    China is the world's second largest greenhouse gas emitter, and emissions from the road transport sector represent one of the fastest growing GHG sources in China. Taking previous research on China's projected future vehicle ownership and future CO 2 emissions in the transport sector as a starting point, this paper reviews all recent environmental policies relating to the automobile industry and employs a scenario analysis to estimate different emissions inventories for different development strategies. The new policy scenario considers all possible mitigation options available to the road transport sector from a bottom up perspective and examines the effects for fuel efficiency improvement and the cost of these mitigation options - vehicle technology improvement, bus rapid transit system and fuel switching, through which the carbon dioxide emissions reduction potential is estimated. Not only does this paper indicate that a large emissions reduction potential exists in China's road transport sector, but it implies that vehicle technology improvement, especially engine technology is likely to be the most effective means to meet emissions reduction targets. This paper concludes by identifying key barriers to implementing those options in China and deduces the technical, financial and institutional aspects of the demand in China for national capacity building and international aid in order to achieve the emissions reduction goals

  2. Thailand's Low-Carbon Scenario 2050: The AIM/CGE analyses of CO2 mitigation measures

    International Nuclear Information System (INIS)

    Thepkhun, Panida; Limmeechokchai, Bundit; Fujimori, Shinichiro; Masui, Toshihiko; Shrestha, Ram M.

    2013-01-01

    Climate change and CO 2 mitigation have become increasingly important environmental issues. Recently Thailand has proposed policies on GHG mitigation such as Thailand’s Nationally Appropriate Mitigation Action (NAMA), which aims at GHG mitigation in the energy sector. This study used the computable general equilibrium (CGE) model, called “AIM/CGE” model, to analyse GHG mitigation measures under emission trading and carbon capture and storage (CCS) technology in Thailand. Results show that the international free emission trading policy can drive more GHG reduction by decreasing energy supply and demand, and increasing prices of emissions. The CCS technologies would balance emission reduction but they would reduce energy efficiency improvement and renewable energy utilization. In the energy security aspect, the policy options in this study would improve energy security, energy import dependency, and co-benefits of GHG mitigation in forms of improving local air quality. Results are also helpful to GHG mitigation policy in developing countries. -- Highlights: •A Computable General Equilibrium (CGE) model was used to analyze GHG mitigation policies in Thailand. •The CCS and emission trading will increase GHG mitigation in Thailand. •The 30% GHG mitigation target with 50% emission trading will give the best result in GDP. •The share of biomass resource and energy efficiency will decrease with CCS. •The emission trading will play an important role in decreasing fossil consumption and increasing renewable energy utilization

  3. Energy saving and CO2 mitigation through restructuring Jordan's transportation sector: The diesel passenger cars scenario

    International Nuclear Information System (INIS)

    Al-Hinti, I.; Al-Ghandoor, A.; Akash, B.; Abu-Nada, E.

    2007-01-01

    The transportation sector is responsible for 37% of the total final energy consumption in Jordan, with passenger cars taking a share of 57% in this sector. Improvement of the energy efficiency of the transportation sector can help in alleviating socio-economic pressures resulting from the inflating fuel bill and in lowering the relatively high CO 2 emission intensity. Current legislations mandate that all passenger cars operating in Jordan are to be powered with spark ignition engines using gasoline fuel. This paper examines potential benefits that can be achieved through the introduction of diesel cars to the passenger cars market in Jordan. Three scenarios are suggested for implementation and investigated with a forecasting model on the basis of local and global trends over the period 2007-2027. It is demonstrated that introducing diesel passenger cars can slow down the growth of energy consumption in the transportation sector resulting in significant savings in the national fuel bill. It is also shown that this is an effective and feasible option for cutting down CO 2 emissions

  4. Scenario analysis of energy saving and CO_2 emissions reduction potentials to ratchet up Japanese mitigation target in 2030 in the residential sector

    International Nuclear Information System (INIS)

    Wakiyama, Takako; Kuramochi, Takeshi

    2017-01-01

    This paper assesses to what extent CO_2 emissions from electricity in the residential sector can be further reduced in Japan beyond its post-2020 mitigation target (known as “Intended Nationally Determined Contribution (INDC)”). The paper examines the reduction potential of electricity demand and CO_2 emissions in the residential sector by conducting a scenario analysis. Electricity consumption scenarios are set up using a time-series regression model, and used to forecast the electricity consumption patterns to 2030. The scenario analysis also includes scenarios that reduce electricity consumption through enhanced energy efficiency and energy saving measures. The obtained results show that Japan can reduce electricity consumption and CO_2 emissions in the residential sector in 2030 more than the Japanese post-2020 mitigation target indicates. At the maximum, the electricity consumption could be reduced by 35 TWh, which contributes to 55.4 MtCO_2 of emissions reduction in 2030 compared to 2013 if the voluntarily targeted CO_2 intensity of electricity is achieved. The result implies that Japan has the potential to ratchet up post-2020 mitigation targets discussed under the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). - Highlights: • Further reduction of electricity consumption is possible beyond Japan's post-2020 mitigation target. • Energy saving efforts by households and incentives to reduce electricity demands are required. • Improvement of CO_2 intensity from electricity is a key factor in the reduction of CO_2 emissions.

  5. China’s Low-Carbon Scenario Analysis of CO2 Mitigation Measures towards 2050 Using a Hybrid AIM/CGE Model

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-04-01

    Full Text Available China’s emissions continue to rise rapidly in line with its mounting energy consumption, which puts considerable pressure on China to meet its emission reduction commitments. This paper assesses the impacts of CO2 mitigation measures in China during the period from 2010 to 2050 by using a computable general equilibrium method, called AIM/CGE. Results show that renewable energy makes a critical difference in abating emissions during the period from 2010 to 2020. The scenarios with emission trading would drive more emission reductions, whereby the emission-cutting commitment for 2020 would be achieved and emission reductions in 2050 would be more than 57.90%. Meanwhile, the share of non-fossil energy increases significantly and would be more than doubled in 2050 compared with the BAU scenario. A carbon tax would result in a significant decline in emissions in the short term, but would have an adverse effect on economic growth and energy structure improvements. It is also observed that the integrated measures would not only substantially decrease the total emissions, but also improve the energy structure.

  6. Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND

    International Nuclear Information System (INIS)

    Zhang, Shuwei; Bauer, Nico; Luderer, Gunnar; Kriegler, Elmar

    2014-01-01

    Highlights: • The augmented REMIND model is used to study the role of energy technologies under a carbon tax. • The scale and timing of fossil fuels with CCS, nuclear, and renewables are examined. • CCS is important but the window of opportunity for its deployment is limited. • The effectiveness of nuclear is strongly linked to its cost performance. • Renewable energy is a long-term mitigation option. - Abstract: In a world with the need of climate protection through emission reduction, China’s domestic mitigation will be put on the national agenda. The large-scale deployment of innovative technologies induced by climate policies is a key determinant for reducing emissions in an effective and efficient manner. A distinguishing feature of the Chinese energy sector (especially electricity generation), is that investment costs are significantly lower than in other world regions. Represented in the methodological framework of the augmented REMIND model, three promising mitigation technologies (also known as technology clusters) in the electricity sector: CCS with advanced coal-generation technologies, nuclear, and renewables are the focus of this study. The scenarios are designed to analyze the roles of these technologies and their associated economic impacts under a climate policy (i.e., a carbon tax). Our results indicate that: (1)Technology policies improving the techno-economic features of low-carbon technologies are insufficient to restrain China’s increasing emissions. (2)Carbon-pricing policies can effectively reduce emissions by making low-carbon options more competitive than conventional fossil fuel alternatives. In the global carbon tax regime framed in this paper, China’s mitigation potential is larger than that of any of other region and the peak of emissions occurs earlier (by 2020) and is 50% lower than in the BASE scenario. (3)CCS is important, but the window of opportunity for its deployment is limited to the near- to mid-term future. It

  7. Fuel demand projections and comparison of CO2 mitigation scenarios for Brazil until 2035; Projecoes de demanda de combustiveis e comparacao entre cenarios de mitigacao das emissoes de CO2 para o Brasil ate 2035

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, Rodrigo Pacheco; Araujo, Maria Silvia Muylaert de; Freitas, Marcos Aurelio Vasconcelo de; Rosa, Luiz Pinguelli; Silva, Neilton Fidelis da; Campos, Antonio F. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil); Campos, Christiano Pires de; Gutierres, Ricardo [Petroleo Brasileiro S.A (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento; Lampreia, Joao [Agencia Internacional de Energia (IEA), Paris (France)

    2012-07-01

    This article results from work undertaken by the technical cooperation between the Leopoldo Americo Miguez de Mello Research and Development Center of PETROBRAS (CENPES/PETROBRAS) and the International Virtual Institute of Global Change (IVIG/Coppe/UFRJ), evaluates how the Oil Sector and the fuels demand (petroleum and natural gas) from Brazil will be impacted in the short, medium and long term for current climate change mitigation policies, as for possible proposals to the second period of the Kyoto Protocol (post-2012). Thus, emission scenarios were developed by 2035 as among the main greenhouse gases (GHG), carbon dioxide (CO{sub 2}), considering data from the World Energy Outlook 2010 / International Energy Agency (IEA), the Second National Inventory of Anthropogenic Greenhouse Gas Emissions, from the Ministry of Science, Technology and Innovation (MCTI) and the Ten Year Plan for Energy Expansion (PDE), from the Energy Research Company (EPE) / Ministry of Mines and Energy (MME). (author)

  8. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  9. Japan’s Long-term Energy Demand and Supply Scenario to 2050 – Estimation for the Potential of Massive CO2 Mitigation

    OpenAIRE

    Ryoichi Komiyama; Chris Marnay; Michael Stadler; Judy Lai; Sam Borgeson; Brian Coffey; Inês Lima Azevedo

    2009-01-01

    In this analysis, we projected Japans energy demand/supply and energy-related CO2 emissions to 2050. Our analysis of various scenarios indicated that Japans CO2 emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005) (Figure 1). These results suggest that Japan could set a CO2 emission reduction target for 2050 at between 30% and 60%. In order to reduce CO2 emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservatio...

  10. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  11. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  12. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-04-16

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/03/2001 through 4/02/2001. Many of the activities and accomplishments are continuations of work initiated and reported in last quarter's status report. Major activities and accomplishments for this quarter include: Three sites in Yellowstone National Park have been identified that may contain suitable organisms for use in a bioreactor; Full-scale culturing of one thermophilic organism from Yellowstone has progressed to the point that there is a sufficient quantity to test this organism in the model-scale bioreactor; The effects of the additive monoethanolamine on the growth of one thermophilic organism from Yellowstone has been tested; Testing of growth surface adhesion and properties is continuing; Construction of a larger model-scale bioreactor to improve and expand testing capabilities is completed and the facility is undergoing proof tests; Model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on organism growth rates are continuing; Alternative fiber optic based deep-penetration light delivery systems for use in the pilot-scale bioreactor have been designed, constructed and tested; An existing slug flow reactor system has been modified for use in this project, and a proof-of-concept test plan has been developed for the slug flow reactor; Research and testing of water-jet harvesting techniques is continuing, and a harvesting system has been designed for use in the model-scale bioreactor; and The investigation of comparative digital image analysis as a means for determining the ''density'' of algae on a growth surface is continuing Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  13. The potential role of nuclear energy in mitigating CO2 emissions in the United Arab Emirates

    International Nuclear Information System (INIS)

    AlFarra, Hasan Jamil; Abu-Hijleh, Bassam

    2012-01-01

    The annual CO 2 emissions have more than doubled in the UAE since 1990. Electricity generated by fossil fuels is responsible for almost half of the country's emissions. Keeping with the Kyoto Protocol, the UAE decided to integrate nuclear energy into the electricity scheme to mitigate CO 2 emissions as declared by the government. This paper evaluates the effectiveness of the UAE's proposed nuclear energy strategy in mitigating CO 2 emissions from the built environment up to year 2050. The IAEA's simulation model “MESSAGE” is used to estimate the energy demand and CO 2 emissions in the UAE up to year 2050. Several energy supply/fuels scenarios are modeled and simulated including the following: Business as Usual (BaU), the UAE proposed nuclear strategy (APR1400) as well as 12 more aggressive Clean Energy Era (CEE) proposed scenarios. Nuclear energy, especially in its extreme CEE scenario (8NPPs), was found to be more practical option in mitigating CO 2 than renewable energy and carbon capture and sequestration among the simulated scenarios. Nuclear energy also demonstrated an economic viability. The cost of electricity produced from nuclear energy was calculated to be 3.2 cents/kWh, significantly less than the current cost of 8.15 cents/kWh for electricity generation from fossil fuels in the UAE. - Highlights: ► Effectiveness of the UAE's proposed nuclear energy strategy in mitigating CO 2 emissions. ► Simulation is used to estimate the energy demand and CO 2 emissions in the UAE. ► Tested several energy supply/fuels scenarios on mitigating CO 2 .

  14. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-07-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2001 through 7/01/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives, and we are currently on schedule to complete Phase I activities by 10/2002, the milestone date from the original project timeline. As indicated in the list of accomplishments below, our efforts are focused on improving the design of the bioreactor test system, evaluating candidate organisms and growth surfaces, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the second quarter of 2002 include: Organisms and Growth Surfaces: (1) Our collection of cyanobacteria, isolated in YNP was increased to 15 unialgal cultures. (2) Illumination rate about 50 {micro}E/m{sup 2}/sec is not saturated for the growth of 1.2 s.c. (2) isolate. The decrease of illumination rate led to the decrease of doubling time of this isolate. (3) The positive effect of Ca{sup 2+} on the growth of isolate 1.2 s.c. (2) without Omnisil was revealed, though Ca{sup 2+} addition was indifferent for the growth of this isolate at the presence of Omnisil. (4) Calcium addition had a positive effect on the generation of cyanobacterial biofilm on Omnisil surface. (5) The survivability problems with the Tr9.4 organism on Omnisil screens in the CRF2 model-scale bioreactor have been solved. The problems were related to the method used to populate the growth surfaces. When pre-populated screens were placed in the bioreactor the microalgae died within 72 hours, but when the microalgae were cultured while in place in the bioreactor using a continuous-population method they grew well inside of the CRF2 test system and survived for the full 7-day test duration. CRF2 tests will continue as soon as the new combined drip system/harvesting system header pipe

  15. Enhanced Practical Photosynthetic CO2 Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2006-01-15

    This final report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the period from 10/1/2001 through 01/02/2006. As indicated in the list of accomplishments below, our efforts during this project were focused on the selection of candidate organisms and growth surfaces and initiating long-term tests in the bench-scale and pilot-scale bioreactor test systems. Specific results and accomplishments for the program include: (1) CRF-2 test system: (a) Sampling test results have shown that the initial mass of algae loaded into the Carbon Recycling Facility Version 2 (CRF-2) system can be estimated with about 3% uncertainty using a statistical sampling procedure. (b) The pressure shim header pipe insert design was shown to have better flow for harvesting than the drilled-hole design. (c) The CRF-2 test system has undergone major improvements to produce the high flow rates needed for harvesting (as determined by previous experiments). The main changes to the system are new stainless steel header/frame units, with increased flow capacity and a modified pipe-end-sealing method to improve flow uniformity, and installation and plumbing for a new high flow harvesting pump. Qualitative system tests showed that the harvesting system performed wonderfully, cleaning the growth surfaces within a matter of seconds. (d) Qualitative tests have shown that organisms can be repopulated on a harvested section of a bioreactor screen, demonstrating that continuous bioreactor operation is feasible, with continuous cycles of harvesting and repopulating screens. (e) Final preparations are underway for quantitative, long-term tests in the CRF-2 with weekly harvesting. (2) Pilot-scale test system: (a) The construction of the pilot-scale bioreactor was completed, including the solar collector and light distribution system. Over the course of the project, the solar collector used in the light delivery system showed some degradation, but

  16. CO2 emissions and mitigation potential in China's ammonia industry

    International Nuclear Information System (INIS)

    Zhou Wenji; Zhu Bing; Li Qiang; Ma Tieju; Hu Shanying; Griffy-Brown, Charla

    2010-01-01

    Significant pressure from increasing CO 2 emissions and energy consumption in China's industrialization process has highlighted a need to understand and mitigate the sources of these emissions. Ammonia production, as one of the most important fundamental industries in China, represents those heavy industries that contribute largely to this sharp increasing trend. In the country with the largest population in the world, ammonia output has undergone fast growth spurred by increasing demand for fertilizer of food production since 1950s. However, various types of technologies implemented in the industry make ammonia plants in China operate with huge differences in both energy consumption and CO 2 emissions. With consideration of these unique features, this paper attempts to estimate the amount of CO 2 emission from China's ammonia production, and analyze the potential for carbon mitigation in the industry. Based on the estimation, related policy implications and measures required to realize the potential for mitigation are also discussed.

  17. Social Learning and the Mitigation of Transport CO2 Emissions

    OpenAIRE

    Maha Al Sabbagh

    2017-01-01

    Social learning, a key factor in fostering behavioural change and improving decision making, is considered necessary for achieving substantial CO2 emission reductions. However, no empirical evidence exists on how it contributes to mitigation of transport CO2 emissions, or the extent of its influence on decision making. This paper presents evidence addressing these knowledge gaps. Social learning-oriented workshops were conducted to gather the views and preferences of participants from the gen...

  18. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  19. Spatiotemporal Characteristics, Determinants and Scenario Analysis of CO2 Emissions in China Using Provincial Panel Data.

    Science.gov (United States)

    Wang, Shaojian; Fang, Chuanglin; Li, Guangdong

    2015-01-01

    This paper empirically investigated the spatiotemporal variations, influencing factors and future emission trends of China's CO2 emissions based on a provincial panel data set. A series of panel econometric models were used taking the period 1995-2011 into consideration. The results indicated that CO2 emissions in China increased over time, and were characterized by noticeable regional discrepancies; in addition, CO2 emissions also exhibited properties of spatial dependence and convergence. Factors such as population scale, economic level and urbanization level exerted a positive influence on CO2 emissions. Conversely, energy intensity was identified as having a negative influence on CO2 emissions. In addition, the significance of the relationship between CO2 emissions and the four variables varied across the provinces based on their scale of economic development. Scenario simulations further showed that the scenario of middle economic growth, middle population increase, low urbanization growth, and high technology improvement (here referred to as Scenario BTU), constitutes the best development model for China to realize the future sustainable development. Based on these empirical findings, we also provide a number of policy recommendations with respect to the future mitigation of CO2 emissions.

  20. CO_2 emission trends of China's primary aluminum industry: A scenario analysis using system dynamics model

    International Nuclear Information System (INIS)

    Li, Qiang; Zhang, Wenjuan; Li, Huiquan; He, Peng

    2017-01-01

    China announced its promise on CO_2 emission peak. When and what level of CO_2 emission peak China's primary aluminum industry will reach is in suspense. In this paper, a system dynamic model is established, with five subsystems of economy development, primary aluminum production, secondary aluminum production, CO_2 emission intensity and policies making involved. The model is applied to examine potential CO_2 emission trends of China's primary aluminum industry in next fifteen years with three scenarios of “no new policies”, “13th five-year plan” and “additional policies”. Simulation results imply that: merely relying on rapid expansion of domestic scarps recycling and reuse could not mitigate CO_2 emission continuously. Combination of energy-saving technology application and electrolytic technology innovation, as well as promoting hydropower utilization in primary aluminum industry are necessary for long term low-carbon development. From a global prospective, enhancing international cooperation on new primary aluminum capacity construction in other countries, especially with rich low-carbon energy, could bring about essential CO_2 emission for both China's and global primary aluminum industry. - Highlights: • A system dynamic model is established for future CO_2 emission trend of China's primary aluminum industry. • Three potential policy scenarios are simulated. • The impacts of potential policies implication on the CO_2 emission trend are discussed.

  1. Enhanced Practical Photosynthetic CO2 Mitigation. Quarterly Technical Report

    International Nuclear Information System (INIS)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2005-01-01

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO 2 Mitigation Project during the ending 12/31/2004. Specific results and accomplishments for the program include review of pilot scale testing and design of a new bioreactor. Testing confirmed that algae can be grown in a sustainable fashion in the pilot bioreactor, even with intermittent availability of sunlight. The pilot-scale tests indicated that algal growth rate followed photon delivery during productivity testing

  2. Costs of mitigating CO2 emissions from passenger aircraft

    Science.gov (United States)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  3. Social Learning and the Mitigation of Transport CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Maha Al Sabbagh

    2017-01-01

    Full Text Available Social learning, a key factor in fostering behavioural change and improving decision making, is considered necessary for achieving substantial CO2 emission reductions. However, no empirical evidence exists on how it contributes to mitigation of transport CO2 emissions, or the extent of its influence on decision making. This paper presents evidence addressing these knowledge gaps. Social learning-oriented workshops were conducted to gather the views and preferences of participants from the general public in Bahrain on selected transport CO2 mitigation measures. Social preferences were inputted into a deliberative decision-making model and then compared to a previously prepared participative model. An analysis of the results revealed that social learning could contribute to changes in views, preferences and acceptance regarding mitigation measures, and these changes were statistically significant at an alpha level of 0.1. Thus, while social learning evidently plays an important role in the decision-making process, the impacts of using other participatory techniques should also be explored.

  4. Economical analysis of an alternative strategy for CO2 mitigation based on nuclear power

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Valle, Edmundo del

    2013-01-01

    Many countries are pursuing greenhouse gas (GHG) mitigation policies resulting in the increase of use of renewable sources in the electricity sector to mitigate CO 2 emissions. Nuclear energy is a non-emitting CO 2 source that could be used as part of that policy. However, its main drawback is the high investment required for its deployment. On the other hand, wind power is the clean source preferred option to mitigate CO 2 emissions. However, due to its intermittence backup power is needed, in most of the cases it must be provided with combined cycle thermal plants using natural gas. This study performs an economical comparison of a hypothetical implementation of a nuclear strategy to meet the same CO 2 emissions reduction goal that has been obtained by the actual Spaniard strategy (2005–2010) based on wind power. The investment required in both strategies is assessed under different investment scenarios and electricity production conditions for nuclear power. Also, the cost of electricity generation is compared for both strategies. - Highlights: ► Wind power electricity cost including its backup in Spain is assessed. ► Nuclear power is proposed as an alternative to produce the same CO 2 reduction. ► Nuclear power requires less installed capacity deployment. ► Investment to produce the same CO 2 reduction is smaller using nuclear power. ► Electricity generating cost is less expensive using the nuclear option

  5. The role of non-CO2 mitigation within the dairy sector in pursuing climate goals

    Science.gov (United States)

    Rolph, K.; Forest, C. E.

    2017-12-01

    Mitigation of non-CO2 climate forcing agents must complement the mitigation of carbon dioxide (CO2) to achieve long-term temperature and climate policy goals. By using multi-gas mitigation strategies, society can limit the rate of temperature change on decadal timescales and reduce the cost of implementing policies that only consider CO2 mitigation. The largest share of global non-CO2 greenhouse gas emissions is attributed to agriculture, with activities related to dairy production contributing the most in this sector. Approximately 4% of global anthropogenic greenhouse gas emissions is released from the dairy sub-sector, primarily through enteric fermentation, feed production, and manure management. Dairy farmers can significantly reduce their emissions by implementing better management practices. This study assesses the potential mitigation of projected climate change if greenhouse gases associated with the dairy sector were reduced. To compare the performance of several mitigation measures under future climate change, we employ a fully coupled earth system model of intermediate complexity, the MIT Integrated Global System Model (IGSM). The model includes an interactive carbon-cycle capable of addressing important feedbacks between the climate and terrestrial biosphere. Mitigation scenarios are developed using estimated emission reductions of implemented management practices studied by the USDA-funded Sustainable Dairy Project (Dairy-CAP). We examine pathways to reach the US dairy industry's voluntary goal of reducing dairy emissions 25% by 2020. We illustrate the importance of ongoing mitigation efforts in the agricultural industry to reduce non-CO2 greenhouse gas emissions towards established climate goals.

  6. Evaluating Potential for Large Releases from CO2 Storage Reservoirs: Analogs, Scenarios, and Modeling Needs

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Tsang, Chin-Fu; Karimjee, Anhar

    2005-01-01

    While the purpose of geologic storage of CO 2 in deep saline formations is to trap greenhouse gases underground, the potential exists for CO 2 to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO 2 is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO 2 were to occur at the land surface, especially where CO 2 could accumulate. In this paper, we develop possible scenarios for large CO 2 fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies

  7. Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry

    International Nuclear Information System (INIS)

    Wang Ke; Wang Can; Lu Xuedu; Chen Jining

    2007-01-01

    The international climate community has begun to assess a range of possible options for strengthening the international climate change effort after 2012. Analysis of the potential for sector-based emissions reduction and relevant mitigation options will provide the necessary background information for the debate. In order to assess the CO 2 abatement potential of China's steel industry, a model was developed using LEAP software to generate 3 different CO 2 emission scenarios for the industry from 2000 to 2030. The abatement potentials of different scenarios were compared, and their respective feasibilities were assessed according to the cost information. High priority abatement measures were then identified. The results show that the average CO 2 abatement per year in the Recent Policy scenario and in the New Policy scenario, compared with the reference scenario, are 51 and 107 million tons, respectively. The corresponding total incremental costs are 9.34 and 80.95 billion dollars. It is concluded that there is great potential for CO 2 abatement in China's steel industry. Adjusting the structure of the industry and technological advancement will play an important role in emissions reduction. Successful implementation of current sustainable development policies and measures will result in CO 2 abatement at a low cost. However, to achieve higher levels of abatement, the cost will increase dramatically. In the near future, specific energy conservation technologies such as dry coke quenching, exhaust gas and heat recovery equipment will be of great significance. However, taking a long term perspective, emissions reduction will rely more on the adjustment of production processes and the application of more modern large scale plants. Advanced blast furnace technology will inevitably play an important role

  8. Future reef decalcification under a business-as-usual CO2 emission scenario.

    Science.gov (United States)

    Dove, Sophie G; Kline, David I; Pantos, Olga; Angly, Florent E; Tyson, Gene W; Hoegh-Guldberg, Ove

    2013-09-17

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century.

  9. Optimal CO2 mitigation under damage risk valuation

    Science.gov (United States)

    Crost, Benjamin; Traeger, Christian P.

    2014-07-01

    The current generation has to set mitigation policy under uncertainty about the economic consequences of climate change. This uncertainty governs both the level of damages for a given level of warming, and the steepness of the increase in damage per warming degree. Our model of climate and the economy is a stochastic version of a model employed in assessing the US Social Cost of Carbon (DICE). We compute the optimal carbon taxes and CO2 abatement levels that maximize welfare from economic consumption over time under different risk states. In accordance with recent developments in finance, we separate preferences about time and risk to improve the model's calibration of welfare to observed market interest. We show that introducing the modern asset pricing framework doubles optimal abatement and carbon taxation. Uncertainty over the level of damages at a given temperature increase can result in a slight increase of optimal emissions as compared to using expected damages. In contrast, uncertainty governing the steepness of the damage increase in temperature results in a substantially higher level of optimal mitigation.

  10. Strategies for implementation of CO2-mitigation options in Nigeria's energy sector

    International Nuclear Information System (INIS)

    Ibitoye, F.I.; Akinbami, J.-F.K.

    1999-01-01

    Recent studies indicate that Nigeria's CO 2 budget was about 164 million tonnes (MTons) in 1990, of which the energy sector contributed close to 55%. It is expected that CO 2 emissions emanating from the energy sector will increase from 90 MTons in 1990 to about 3 times this value in another 30 years, assuming a least-cost moderate development scenario. A number of viable CO 2 -mitigation options have already been identified in the energy sector, some of them the so-called 'win-win' options. As attractive as some of these options might appear, their implementation will depend on the removal of certain barriers. These barriers include a lack of legislative framework, a lack of awareness, a lack of access to appropriate technology, as well as inappropriate energy-pricing policies, among others. The paper presents an overview of Nigeria's energy-sector, the CO 2 mitigation-options, the factors militating against implementation of the options, and some policy recommendations for removal of the barriers. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Climate mitigation scenarios of drained peat soils

    Science.gov (United States)

    Kasimir Klemedtsson, Åsa; Coria, Jessica; He, Hongxing; Liu, Xiangping; Nordén, Anna

    2014-05-01

    The national inventory reports (NIR) submitted to the UNFCCC show Sweden - which as many other countries has wetlands where parts have been drained for agriculture and forestry purposes, - to annually emit 12 million tonnes carbon dioxide equivalents, which is more GHG'es than industrial energy use release in Sweden. Similar conditions can be found in other northern countries, having cool and wet conditions, naturally promoting peat accumulation, and where land use management over the last centuries have promoted draining activities. These drained peatland, though covering only 2% of the land area, have emissions corresponding to 20% of the total reported NIR emissions. This substantial emission contribution, however, is hidden within the Land Use Land Use Change and Forestry sector (LULUCF) where the forest Carbon uptake is even larger, which causes the peat soil emissions become invisible. The only drained soil emission accounted in the Swedish Kyoto reporting is the N2O emission from agricultural drained organic soils of the size 0.5 million tonnes CO2e yr-1. This lack of visibility has made incentives for land use change and management neither implemented nor suggested, however with large potential. Rewetting has the potential to decrease soil mineralization, why CO2 and N2O emissions are mitigated. However if the soil becomes very wet CH4 emission will increase together with hampered plant growth. By ecological modeling, using the CoupModel the climate change mitigation potential have been estimated for four different land use scenarios; 1, Drained peat soil with Spruce (business as usual scenario), 2, raised ground water level to 20 cm depth and Willow plantation, 3, raised ground water level to 10 cm depth and Reed Canary Grass, and 4, rewetting to an average water level in the soil surface with recolonizing wetland plants and mosses. We calculate the volume of biomass production per year, peat decomposition, N2O emission together with nitrate and DOC

  12. Nuclear Power Generation and CO2 Abatement Scenarios in Taiwan

    OpenAIRE

    Chang-Bin Huang; Fu-Kuang Ko

    2009-01-01

    Taiwan was the first country in Asia to announce "Nuclear-Free Homeland" in 2002. In 2008, the new government released the Sustainable Energy Policy Guidelines to lower the nationwide CO2 emissions some time between 2016 and 2020 back to the level of year 2008, further abatement of CO2 emissions is planed in year 2025 when CO2 emissions will decrease to the level of year 2000. Besides, under consideration of the issues of energy, environment and economics (3E), the new go...

  13. Japan's long-term energy outlook to 2050: Estimation for the potential of massive CO2 mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, Ryoichi

    2010-09-15

    This paper analyzes Japan's energy outlook and CO2 emissions to 2050. Scenario analysis reveals that Japan's CO2 emissions in 2050 could be potentially reduced by 58% from the emissions in 2005. For achieving this massive mitigation, it is required to reduce primary energy supply per GDP by 60% in 2050 from the 2005 level and to expand the share of non-fossil fuel in total supply to 50% by 2050. Concerning power generation mix, nuclear will account for 60%, renewable for 30% in 2050. For massive CO2 abatement, Japan should tackle technological and economic challenges for large-scale deployment of advanced technologies.

  14. From carbonization to decarbonization?-Past trends and future scenarios for China's CO2 emissions

    International Nuclear Information System (INIS)

    Steckel, Jan Christoph; Jakob, Michael; Marschinski, Robert; Luderer, Gunnar

    2011-01-01

    Along the lines of the Kaya identity, we perform a decomposition analysis of historical and projected emissions data for China. We compare the results with reduction requirements implied by globally cost-effective mitigation scenarios and official Chinese policy targets. For the years 1971-2000 we find that the impact of high economic growth on emissions was partially compensated by a steady fall in energy intensity. However, the end - and even reversal - of this downward trend, along with a rising carbon intensity of energy, resulted in rapid emission growth during 2000-2007. By applying an innovative enhanced Kaya-decomposition method, we also show how the persistent increase in the use of coal has caused carbon intensity to rise throughout the entire time-horizon of the analysis. These insights are then compared to model scenarios for future energy system developments generated by the ReMIND-R model. The analysis reaffirms China's indispensable role in global efforts to implement any of three exemplary stabilization targets (400, 450, or 500 ppm CO 2 -only), and underscore the increasing importance of carbon intensity for the more ambitious targets. Finally, we compare China's official targets for energy intensity and carbon intensity of GDP to projections for global cost-effective stabilization scenarios, finding them to be roughly compatible in the short-to-mid-term. - Highlights: → An extended Kaya-decomposition is applied to historical data and ReMIND-R scenario results for China. → Reversing a historic trend, energy intensity has increased in recent years. → The contribution of coal in increasing carbon intensity and emissions has been constant in the past. → Decarbonization becomes increasingly important with increasingly ambitious climate targets. → Chinese targets for carbon intensity of GDP are in line with a 450 ppm CO 2 -only stabilization scenario.

  15. Some scenarios of CO2 emission from the energy system

    International Nuclear Information System (INIS)

    Liik, O.; Landsberg, M.

    1996-01-01

    After Estonia regained its independence, planning of energy policy became topical. Since 1989, several expert groups have worked on the urgent problems and developments of Estonia's power engineering. Comprehensive energy system planning by mathematical modeling was accomplished in 1994. Then Tallinn Technical University acquired the MARKAL model from the Swedish National Board for Industrial and Technical Development (NUTEK). The influence of air pollution constraints on energy system development was first investigated in 1995. At the end of 1995, under the U.S. Country Studies Program, a detailed analysis of future CO 2 emissions and their reduction options began. During 1990-1993, energy demand lowered due to economic decline and sharp rise in the fuel and energy prices as well as a decrease in electricity exports, has resulting in 50% reduction of CO 2 emissions. For the same reasons, Estonia has been able to meet the requirements set in the agreements on SO 2 and NO x emissions with no special measures or costs. To meet the rigid ing SO 2 restrictions and growing energy consumption in the future, Estonia must invest in abatement and in new clean and efficient oil-shale combustion technology. Along with the old oil-shale plants closing and electricity consumption growing, other fuels will be used. The increase in energy demand then should not be fast due to constantly rising prices and efficient energy use. Measures to reduce SO 2 , and NO x emissions will also reduce CO 2 . In MARKAL runs the 1990 level of CO 2 emissions will be exceeded only along with high demand growth and absence of emissions control. Restricted availability of imported fuels and nuclear power or enabling electricity import can change the results significantly. The results discussed here can also change because the data base is being improved (such as detailed description of energy networks, description of demand-side technologies, accounting of energy conservation measures, addition of

  16. Ambitious mitigation scenarios for Germany: A participatory approach

    International Nuclear Information System (INIS)

    Schmid, Eva; Knopf, Brigitte

    2012-01-01

    This paper addresses the challenge of engaging civil society stakeholders in the development process of ambitious mitigation scenarios that are based on formal energy system modeling, allowing for the explicit attachment of normative considerations to technology-focused mitigation options. It presents the definition and model results for a set of mitigation scenarios for Germany that achieve 85% CO 2 emission reduction in 2050 relative to 1990. During consecutive dialogues, civil society stakeholders from the transport and electricity sector framed the definition of boundary conditions for the energy-economy model REMIND-D and evaluated the scenarios with regard to plausibility and social acceptance implications. Even though the limited scope of this research impedes inferential conclusions on the German energy transition as a whole, it demonstrates that the technological solutions to the mitigation problem proposed by the model give rise to significant societal and political implications that deem at least as challenging as the mere engineering aspects of innovative technologies. These insights underline the importance of comprehending mitigation of energy-related CO 2 emissions as a socio-technical transition embedded in a political context. - Highlights: ► Preferences of German civil society stakeholders are elicited in dialogues. ► Three scenarios represent likely, desirable and controversial key developments. ► A carbon lock-in from freight transport and coal electrification is deemed likely. ► Stakeholders advocate major paradigm shifts for resolving the carbon lock-in. ► Institutional and societal factors are decisive for achieving ambitious mitigation.

  17. Pursuing air pollutant co-benefits of CO2 mitigation in China: A provincial leveled analysis

    International Nuclear Information System (INIS)

    Dong, Huijuan; Dai, Hancheng; Dong, Liang; Fujita, Tsuyoshi; Geng, Yong; Klimont, Zbigniew; Inoue, Tsuyoshi; Bunya, Shintaro; Fujii, Minoru; Masui, Toshihiko

    2015-01-01

    Highlights: • China’s future CO 2 reduction and its co-benefits on air pollutants were projected. • GAINS-China and AIM/CGE models were combined for emission and cost estimation. • High GDP regions tended to have higher emission, reduction potential and co-benefit. • Coal ratio and coal quality were also key factors to affect reduction and co-benefit. • Mitigation investment to less developed western regions was more effective. - Abstract: With fast economic development, industrialization and urbanization, China faces increasing pressures on carbon emission reduction, and especially on air pollutants (SO 2 , NOx, PM) reduction, particularly the notorious haze issue caused by air pollution in recent years. Pursuing co-benefits is an effective approach to simultaneously respond to both carbon and air pollutant problems. In this paper, the AIM/CGE (Asia–Pacific Integrated Assessment Model/Computational General Equilibrium) model and GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies)-China model are combined together to project future CO 2 and air pollutants emissions in China, as well as reduction costs and co-benefit effects. Considering implementation of carbon mitigation policy and air pollutant mitigation technologies, four scenarios (S1, S2, S3 and S4) are analyzed. Results indicate that by implementing both carbon and air pollutant mitigation (S4), CO 2 emission per GDP can be reduced by 41% by 2020, compared with the 2005 level, and SO 2 , NOx and PM2.5 emissions would change by a factor 0.8, 1.26 and 1.0 of the 2005 level, respectively in 2030. The real co-benefits of emission reductions (S2 minus S4) for SO 2 , NOx and PM2.5 are 2.4 Mt, 2.1 Mt and 0.3 Mt in 2020, and the corresponding cost reduction co-benefits are 4, 0.11, and 0.8 billion €, respectively. Provincial disparity analysis reveals that regions with higher co-benefits are those with higher GDP such as Guangdong, Shandong and Jiangsu, energy production bases such as

  18. Possible use of Fe/CO2 fuel cells for CO2 mitigation plus H2 and electricity production

    International Nuclear Information System (INIS)

    Rau, Greg H.

    2004-01-01

    The continuous oxidation of scrap iron in the presence of a constant CO 2 -rich waste gas stream and water is evaluated as a means of sequestering anthropogenic CO 2 as well as generating hydrogen gas and electricity. The stoichiometry of the net reaction, Fe 0 + CO 2 + H 2 O → FeCO 3 + H 2 , and assumptions about reaction rates, reactant and product prices/values and overhead costs suggest that CO 2 might be mitigated at a net profit in excess of $30/tonne CO 2 . The principle profit center of the process would be hydrogen production, alone providing a gross income of >$160/tonne CO 2 reacted. However, the realization of such fuel cell economics depends on a number of parameters including: (1) the rate at which the reaction can be sustained, (2) the areal and volumetric density with which H 2 and electricity can be produced, (3) the purity of the H 2 produced, (4) the transportation costs of the reactants (Fe, CO 2 and H 2 O) and products (FeCO 3 or Fe(HCO 3 ) 2 ) to/from the cells and (5) the cost/benefit trade-offs of optimizing the preceding variables in a given market and regulatory environment. Because of the carbon intensity of conventional iron metal production, a net carbon sequestration benefit for the process can be realized only when waste (rather than new) iron and steel are used as electrodes and/or when Fe(HCO 3 ) 2 is the end product. The used electrolyte could also provide a free source of Fe 2+ ions for enhancing iron-limited marine photosynthesis and, thus, greatly increasing the CO 2 sequestration potential of the process. Alternatively, the reaction of naturally occurring iron oxides (iron ore) with CO 2 can be considered for FeCO 3 formation and sequestration, but this foregoes the benefits of hydrogen and electricity production. Use of Fe/CO 2 fuel cells would appear to be particularly relevant for fossil fuel gasification/steam reforming systems given the highly concentrated CO 2 they generate and given the existing infrastructure they

  19. Using performance indicators to reduce cost uncertainty of China's CO2 mitigation goals

    International Nuclear Information System (INIS)

    Xu, Yuan

    2013-01-01

    Goals on absolute emissions and intensity play key roles in CO 2 mitigation. However, like cap-and-trade policies with price uncertainty, they suffer from significant uncertainty in abatement costs. This article examines whether an indicator could be established to complement CO 2 mitigation goals and help reduce cost uncertainty with a particular focus on China. Performance indicators on CO 2 emissions per unit of energy consumption could satisfy three criteria: compared with the mitigation goals, (i) they are more closely associated with active mitigation efforts and (ii) their baselines have more stable projections from historical trajectories. (iii) Their abatement costs are generally higher than other mitigation methods, particularly energy efficiency and conservation. Performance indicators could be used in the following way: if a CO 2 goal on absolute emissions or intensity is attained, the performance indicator should still reach a lower threshold as a cost floor. If the goal cannot be attained, an upper performance threshold should be achieved as a cost ceiling. The narrower cost uncertainty may encourage wider and greater mitigation efforts. - Highlights: ► CO 2 emissions per unit of energy consumption could act as performance indicators. ► Performance indicators are more closely related to active mitigation activities. ► Performance indicators have more stable historical trajectories. ► Abatement costs are higher for performance indicators than for other activities. ► Performance thresholds could reduce the cost uncertainty of CO 2 mitigation goals.

  20. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    Science.gov (United States)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios

  1. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  2. Assessment of Alternative Scenarios for CO2 Reduction Potential in the Residential Building Sector

    Directory of Open Access Journals (Sweden)

    Young-Sun Jeong

    2017-03-01

    Full Text Available The South Korean government announced its goals of reducing the country’s CO2 emissions by up to 30% below the business as usual (BAU projections by 2020 in 2009 and 37% below BAU projections by 2030 in 2015. This paper explores the potential energy savings and reduction in CO2 emissions offered by residential building energy efficiency policies and plans in South Korea. The current and future energy consumption and CO2 emissions in the residential building were estimated using an energy–environment model from 2010 to 2030. The business as usual scenario is based on the energy consumption characteristic of residential buildings using the trends related to socio-economic prospects and the number of dwellings. The alternative scenarios took into account energy efficiency for new residential buildings (scenario I, refurbishment of existing residential buildings (scenario II, use of highly efficient boilers (scenario III, and use of a solar thermal energy system (scenario IV. The results show that energy consumption in the residential building sector will increase by 33% between 2007 and 2030 in the BAU scenario. Maximum reduction in CO2 emissions in the residential building sector of South Korea was observed by 2030 in scenario I. In each alternative scenario analysis, CO2 emissions were 12.9% lower than in the business as usual scenario by the year 2030.

  3. Assessing CO2 Mitigation Options Utilizing Detailed Electricity Characteristics and Including Renewable Generation

    Science.gov (United States)

    Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.

    2017-08-01

    This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.

  4. Global Mitigation of Non-CO2 Greenhouse Gases - Data Annexes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Marginal abatement curves (MAC) can be downloaded as data annexes to the Global Mitigation of Non-CO2 Greenhouse Gases report. This data allows for improved...

  5. The influence of risk mitigation measures on the risks, costs and routing of CO2 pipelines

    NARCIS (Netherlands)

    Knoope, M. M J|info:eu-repo/dai/nl/364248149; Raben, I. M E; Ramírez, A.|info:eu-repo/dai/nl/284852414; Spruijt, M. P N; Faaij, A. P C|info:eu-repo/dai/nl/10685903X

    2014-01-01

    The aim of this study was to analyze whether, and if so, in what way risks would influence the design, costs and routing of CO2 pipelines. This article assesses locational and societal risks of CO2 pipeline transport and analyses whether rerouting or implementing additional risk mitigation measures

  6. The influence of risk mitigation measures on the risks, costs and routing of CO 2pipelines

    NARCIS (Netherlands)

    Knoope, M.M.J.; Raben. I.M.E.; Ramírez, A.; Spruijt, M.P.N.; Faaij, A.P.C.

    2014-01-01

    The aim of this study was to analyze whether, and if so, in what way risks would influence the design,costs and routing of CO2pipelines. This article assesses locational and societal risks of CO2pipelinetransport and analyses whether rerouting or implementing additional risk mitigation measures is

  7. Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe

    International Nuclear Information System (INIS)

    Pasaoglu, Guzay; Honselaar, Michel; Thiel, Christian

    2012-01-01

    The continuous rise in demand for road transportation has a significant effect on Europe's oil dependency and emissions of greenhouse gases. Alternative fuels and vehicle technology can mitigate these effects. This study analyses power-train deployment scenarios for passenger cars and light commercial vehicles in EU-27 until 2050. It considers European policy developments on vehicle CO 2 emissions, bio-energy mandates and reductions in the CO 2 footprint of the European energy mix and translates these into comprehensive scenarios for the road transport sector. It quantifies and assesses the potential impact of these scenarios on well-to-wheel (WtW) CO 2 emission reductions primary energy demand evolution, and cost aspects for the prospective vehicle owners. The study reveals that, under the deployed scenarios, the use of bio-fuel blends, technological learning and the deployment of hybrids, battery electric, plug-in hybrid and fuel cell vehicles can decrease WtW CO 2 emissions in EU-27 passenger road transport by 35–57% (compared to 2010 levels) and primary energy demand by 29–51 Mtoe as they would benefit from a future assumed decarbonised electricity and hydrogen mix in Europe. Learning effects can lead to acceptable payback periods for vehicle owners of electric drive vehicles. - Highlights: ► Power-train penetration scenarios for 2010–2050 passenger road transport in Europe. ► A dedicated tool is developed to analyse H 2 production and distribution mix till 2050. ► Alternative vehicles can drastically reduce CO 2 emissions and energy demand. ► Electric vehicles could become cost competitive to conventional vehicles by 2030. ► Policies needed to create adequate momentum and guarantee decarbonised transport.

  8. Renewable energy utilization and CO2 mitigation in the power sector: A case study in selected GMS countries

    Directory of Open Access Journals (Sweden)

    Kong Pagnarith

    2011-06-01

    Full Text Available Renewable energy is an alternative resource to substitute fossil fuels. Currently, the share of renewable energy inpower generation is very low. The selected Greater Mekong Sub-region (GMS, namely, Cambodia, Laos, Thailand andVietnam is a region having abundant of renewable energy resources. Though these countries have a high potential of renewableenergy utilization, they are still highly dependent on the imported fossil fuels for electricity generation. The less contributionof renewable energy in the power sector in the region is due to the high cost of technologies. Renewable energytechnology cannot compete with the conventional power plant. However, in order to promote renewable energy utilizationand reduce dependency on imported fossil fuel as well as to mitigate CO2 emissions from the power sector, this study introducesfour renewable energy technologies, namely, biomass, wind, solar PV, and geothermal power, for substitution of conventionaltechnologies. To make the renewable energy competitive to the fossil fuels, incentives in terms of carbon credit of20$/ton-ne CO2 are taken into account. Results are analyzed by using the Long-Range Energy Alternative Planning System(LEAP modeling. Results of analyses reveal that in the renewable energy (RE scenario the biomass power, wind, solarphotovoltaics, and geothermal would contribute in electricity supply for 5.47 GW in the region, accounted for 3.5% in 2030.The RE scenario with carbon credits could mitigate CO2 emissions at about 36.0 million tonne at lower system cost whencompared to the business-as-usual scenario.

  9. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  10. Liberalised electricity markets, new bioenergy technologies, and GHG emission reductions: interactions and CO2 mitigation costs

    International Nuclear Information System (INIS)

    Gustavsson, L.; Madlener, R.

    1999-01-01

    We contrast recent developments in power and heat production with bioenergy, and natural-gas-fired condensing plants with and without decarbonisation, in the light of electricity market liberalisation. Our main focus is on CO 2 mitigation costs and carbon tax sensitivity of production costs. We find that CO 2 mitigation costs are lower for biomass systems using IGCC technology than for natural gas system using decarbonisation. However, based on current fuel prices natural-gas fired co-generation plants have the lowest production costs. Hence energy policy measures will be needed to promote biomass technologies and decarbonisation options on a liberalised market. (author)

  11. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    Science.gov (United States)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  12. Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea

    International Nuclear Information System (INIS)

    Oh, Ilyoung; Wehrmeyer, Walter; Mulugetta, Yacob

    2010-01-01

    Energy-related CO 2 emissions in South Korea have increased substantially, outpacing those of Organisation for Economic Co-operation and Development (OECD) countries since 1990. To mitigate CO 2 emissions in South Korea, we need to understand the main contributing factors to rising CO 2 levels as part of the effort toward developing targeted policies. This paper aims to analyze the specific trends and influencing factors that have caused changes in emissions patterns in South Korea over a 15-year period. To this end, we employed the Log Mean Divisia index method with five energy consumption sectors and seven sub-sectors in terms of fuel mix (FM), energy intensity (EI), structural change (SC) and economic growth (EG). The results showed that EG was a dominant explanation for the increase in CO 2 emissions in all of the sectors. The results also demonstrated that FM causes CO 2 reduction across the array of sectors with the exception of the energy supply sector. CO 2 reduction as a function of SC was also observed in manufacturing, services and residential sectors. Furthermore, EI was an important driver of CO 2 reduction in most sectors except for several manufacturing sub-sectors. Based on these findings, it appears that South Korea should implement climate change policies that consider the specific influential factors associated with increasing CO 2 emissions in each sector.

  13. The Effects of Coal Switching and Improvements in Electricity Production Efficiency and Consumption on CO2 Mitigation Goals in China

    Directory of Open Access Journals (Sweden)

    Li Li

    2015-07-01

    Full Text Available Although the average CO2 emission for a person in China is only about 1/4 that of a person in the US, the government of China still made a commitment to ensure that CO2 emissions will reach their peak in 2030 because of the ever-increasing pressure of global warming. In this work, we examined the effects of coal switching, efficiency improvements in thermal power generation and the electricity consumption of economic activities on realizing this goal. An improved STIRPAT model was developed to create the scenarios. In order to make the estimated elasticities more consistent with different variables selected to construct the formulation, a double-layer STIRPAT model was constructed, and by integrating the two equations obtained by regressing the series in each layer, we finally got the equation to describe the long-run relationship among CO2 emissions (Ic, the share of coal in overall energy consumption (FMC, coal intensity of thermal power generation (CIp and electricity intensity of GDP (EIelec. The long term elasticities represented by the equation show that the growth of CO2 emissions in China is quite sensitive to FMC, CIp and EIelec. After that, five scenarios were developed in order to examine the effects of China’s possible different CO2 emission reduction policies, focusing on improving FMC, CIp and EIelec respectively. Through a rigorous analysis, we found that in order to realize the committed CO2 emissions mitigating goal, China should obviously accelerate the pace in switching from coal to low carbon fuels, coupled with a consistent improvement in electricity efficiency of economic activities and a slightly slower improvement in the coal efficiency of thermal power generation.

  14. Analyses on Cost Reduction and CO2 Mitigation by Penetration of Fuel Cells to Residential Houses

    Science.gov (United States)

    Aki, Hirohisa; Yamamoto, Shigeo; Kondoh, Junji; Murata, Akinobu; Ishii, Itaru; Maeda, Tetsuhiko

    This paper presents analyses on the penetration of polymer electrolyte fuel cells (PEFC) into a group of 10 residential houses and its effects of CO2 emission mitigation and consumers’ cost reduction in next 30 years. The price is considered to be reduced as the penetration progress which is expected to begin in near future. An experimental curve is assumed to express the decrease of the price. Installation of energy interchange systems which involve electricity, gas and hydrogen between a house which has a FC and contiguous houses is assumed to utilize both electricity and heat more efficiently, and to avoid start-stop operation of fuel processor (reformer) as much as possible. A multi-objective model which considers CO2 mitigation and consumers’ cost reduction is constructed and provided a Pareto optimum solution. A solution which simultaneously realizes both CO2 mitigation and consumers’ cost reduction appeared in the Pareto optimum solution. Strategies to reduce CO2 emission and consumers’ cost are suggested from the results of the analyses. The analyses also revealed that the energy interchange systems are effective especially in the early stage of the penetration.

  15. Electric Vehicle Scenarios for India: Implications for mitigation and development

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Bhaskar, Kalyan

    2014-01-01

    to infrastructure and policies. While the literature on EVs has focused more on the role of electric cars, it could be electric two-wheelers which could make early headway, as is the case in China where nearly 120 million such vehicles had been sold by the end of 2012. Three scenarios (Business as Usual (BAU......The transport sector globally is overly dependent on liquid fossil fuels. Electric vehicles (EVs) are touted as a way of diversifying the fuel mix and helping to reduce dependence on fossil fuels. There could also be other co-benefits of EVs, such as improved energy security, decarbonising...... of the electricity sector, CO2 mitigation and reduction in local air pollution. The Indian government has recently launched a national electricity mobility mission to promote EVs. There is, however, much uncertainty in terms of the penetration of EVs in the transport sector, particularly those related...

  16. On the Assessment of the CO2 Mitigation Potential of Woody Biomass

    Directory of Open Access Journals (Sweden)

    Víctor Codina Gironès

    2018-01-01

    Full Text Available Woody biomass, a renewable energy resource, accumulates solar energy in form of carbon hydrates produced from atmospheric CO2 and H2O. It is, therefore, a means of CO2 mitigation for society as long as the biogenic carbon released to the atmosphere when delivering its energy content by oxidation can be accumulated again during growth of new woody biomass. Even when considering the complete life cycle, usually, only a small amount of fossil CO2 is emitted. However, woody biomass availability is limited by land requirement and, therefore, it is important to maximize its CO2 mitigation potential in the energy system. In this study, we consider woody biomass not only as a source of renewable energy but also as a source of carbon for seasonal storage of solar electricity. A first analysis is carried out based on the mitigation effect of woody biomass usage pathways, which is the avoided fossil CO2 emissions obtained by using one unit of woody biomass to provide energy services, as alternative to fossil fuels. Results show that woody biomass usage pathways can achieve up to 9.55 times the mitigation effect obtained through combustion of woody biomass, which is taken as a reference. Applying energy system modeling and multi-objective optimization techniques, the role of woody biomass technological choices in the energy transition is then analyzed at a country scale. The analysis is applied to Switzerland, demonstrating that the use of woody biomass in gasification–methanation systems, coupled with electrolysers and combined with an intensive deployment of PV panels and efficient technologies, could reduce the natural gas imports to zero. Electrolysers are used to boost synthetic natural gas production by hydrogen injection into the methanation reaction. The hydrogen used is produced when there is excess of solar electricity. The efficient technologies, such as heat pumps and battery electric vehicles, allow increasing the overall efficiency of the

  17. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    Science.gov (United States)

    Ramalho, José C.; Pais, Isabel P.; Leitão, António E.; Guerra, Mauro; Reboredo, Fernando H.; Máguas, Cristina M.; Carvalho, Maria L.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact

  18. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    Directory of Open Access Journals (Sweden)

    José C. Ramalho

    2018-03-01

    Full Text Available Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality, and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids, thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index, and increasing desirable features (acidity. Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating

  19. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    Science.gov (United States)

    Ramalho, José C; Pais, Isabel P; Leitão, António E; Guerra, Mauro; Reboredo, Fernando H; Máguas, Cristina M; Carvalho, Maria L; Scotti-Campos, Paula; Ribeiro-Barros, Ana I; Lidon, Fernando J C; DaMatta, Fábio M

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO 2 ] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO 2 ] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO 2 ] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO 2 L -1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30-35 or 36-40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p -coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO 2 ]. However, the [CO 2 ] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p -coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO 2 ] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO 2 ] contributed to preserve bean quality by modifying and mitigating

  20. Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp.

    Science.gov (United States)

    Duarte, Jessica Hartwig; de Morais, Etiele Greque; Radmann, Elisângela Martha; Costa, Jorge Alberto Vieira

    2017-06-01

    CO 2 biofixation by microalgae and cyanobacteria is an environmentally sustainable way to mitigate coal burn gas emissions. In this work the microalga Chlorella fusca LEB 111 and the cyanobacteria Spirulina sp. LEB 18 were cultivated using CO 2 from coal flue gas as a carbon source. The intermittent flue gas injection in the cultures enable the cells growth and CO 2 biofixation by these microorganisms. The Chlorella fusca isolated from a coal power plant could fix 2.6 times more CO 2 than Spirulina sp. The maximum daily CO 2 from coal flue gas biofixation was obtained with Chlorella fusca (360.12±0.27mgL -1 d -1 ), showing a specific growth rate of 0.17±<0.01d -1 . The results demonstrated the Chlorella fusca LEB 111 and Spirulina sp. LEB 18 potential to fix CO 2 from coal flue gas, and sequential biomass production with different biotechnological destinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. ASSESSMENT OF CO2 EMISSION MITIGATION FOR A BRAZILIAN OIL REFINERY

    Directory of Open Access Journals (Sweden)

    W. N. Chan

    Full Text Available Abstract Currently the oil refining sector is responsible for approximately 5% of the total Brazilian energy related CO2 emissions. Possibilities to reduce CO2 emissions and related costs at the largest Brazilian refinery have been estimated. The abatement costs related to energy saving options are negative, meaning that feasibility exists without specific income due to emission reductions. The assessment shows that short-term mitigation options, i.e., fuel substitution and energy efficiency measures, could reduce CO2 emissions by 6% of the total current refinery emissions. It is further shown that carbon capture and storage offers the greatest potential for more significant emission reductions in the longer term (up to 43%, but costs in the range of 64 to162 US$/t CO2, depending on the CO2 emission source (regenerators of FCC units or hydrogen production units and the CO2 capture technology considered (oxyfuel combustion or post-combustion. Effects of uncertainties in key parameters on abatement costs are also evaluated via sensitivity analysis.

  2. Scenarios in decision-making. An application to CO2 emission reduction strategies in passenger transport

    Energy Technology Data Exchange (ETDEWEB)

    Rienstra, S.A.; Vleugel, J.M; Nijkamp, P. [Department of Social Economics, Vrije Universiteit, Amsterdam (Netherlands)] Smokers, R.T.M. [ECN Policy Studies, Petten (Netherlands)

    1995-12-01

    The usefulness of scenarios for decision-makers is analyzed. First, a theoretical introduction to the scenario methodology is presented. Next, four energy scenarios for West-European passenger transport are developed. To start with, the present transport system as a baseline case is described and analysed. For each scenario it is outlined how the passenger transport system may look like in terms of the use of various existing and future transport technologies and the corresponding modal split. Expected energy consumption features of the various transport modes are described, data on the present fuel supply and electricity generation system are presented, as well as estimations of the future energy system. The energy consumption and CO2 emissions associated with the future passenger transport systems are assessed and these impacts are compared with the current system. The conclusion is that these scenarios provide interesting policy options for decision-makers. A large-scale reduction of CO2 emissions is possible in several ways, but each way will cause many problems, since drastic policy measures will have to be introduced, which may affect economic growth and the lifestyles of individuals. 5 figs., 11 tabs., 24 refs.

  3. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming

    International Nuclear Information System (INIS)

    Rogelj, Joeri; Riahi, Keywan; Meinshausen, Malte; Schaeffer, Michiel; Knutti, Reto

    2015-01-01

    Limiting global warming to any level requires limiting the total amount of CO 2 emissions, or staying within a CO 2 budget. Here we assess how emissions from short-lived non-CO 2 species like methane, hydrofluorocarbons (HFCs), black-carbon, and sulphates influence these CO 2 budgets. Our default case, which assumes mitigation in all sectors and of all gases, results in a CO 2 budget between 2011–2100 of 340 PgC for a >66% chance of staying below 2°C, consistent with the assessment of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Extreme variations of air-pollutant emissions from black-carbon and sulphates influence this budget by about ±5%. In the hypothetical case of no methane or HFCs mitigation—which is unlikely when CO 2 is stringently reduced—the budgets would be much smaller (40% or up to 60%, respectively). However, assuming very stringent CH 4 mitigation as a sensitivity case, CO 2 budgets could be 25% higher. A limit on cumulative CO 2 emissions remains critical for temperature targets. Even a 25% higher CO 2 budget still means peaking global emissions in the next two decades, and achieving net zero CO 2 emissions during the third quarter of the 21st century. The leverage we have to affect the CO 2 budget by targeting non-CO 2 diminishes strongly along with CO 2 mitigation, because these are partly linked through economic and technological factors. (letter)

  4. Representative concentration pathways and mitigation scenarios for nitrous oxide

    International Nuclear Information System (INIS)

    Davidson, Eric A

    2012-01-01

    The challenges of mitigating nitrous oxide (N 2 O) emissions are substantially different from those for carbon dioxide (CO 2 ) and methane (CH 4 ), because nitrogen (N) is essential for food production, and over 80% of anthropogenic N 2 O emissions are from the agricultural sector. Here I use a model of emission factors of N 2 O to demonstrate the magnitude of improvements in agriculture and industrial sectors and changes in dietary habits that would be necessary to match the four representative concentration pathways (RCPs) now being considered in the fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Stabilizing atmospheric N 2 O by 2050, consistent with the most aggressive of the RCP mitigation scenarios, would require about 50% reductions in emission factors in all sectors and about a 50% reduction in mean per capita meat consumption in the developed world. Technologies exist to achieve such improved efficiencies, but overcoming social, economic, and political impediments for their adoption and for changes in dietary habits will present large challenges. (letter)

  5. Mobile source CO2 mitigation through smart growth development and vehicle fleet hybridization.

    Science.gov (United States)

    Stone, Brian; Mednick, Adam C; Holloway, Tracey; Spak, Scott N

    2009-03-15

    This paper presents the results of a study on the effectiveness of smart growth development patterns and vehicle fleet hybridization in reducing mobile source emissions of carbon dioxide (CO2) across 11 major metropolitan regions of the Midwestern U.S. over a 50-year period. Through the integration of a vehicle travel activity modeling framework developed by researchers atthe Oak Ridge National Laboratory with small area population projections, we model mobile source emissions of CO2 associated with alternative land development and technology change scenarios between 2000 and 2050. Our findings suggest that under an aggressive smart growth scenario, growth in emissions expected to occur under a business as usual scenario is reduced by 34%, while the full dissemination of hybrid-electric vehicles throughout the light vehicle fleet is found to offset the expected growth in emissions by 97%. Our results further suggest that high levels of urban densification could achieve reductions in 2050 CO2 emissions equivalent to those attainable through the full dissemination of hybrid-electric vehicle technologies.

  6. Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios

    International Nuclear Information System (INIS)

    Thiel, Christian; Perujo, Adolfo; Mercier, Arnaud

    2010-01-01

    New electrified vehicle concepts are about to enter the market in Europe. The expected gains in environmental performance for these new vehicle types are associated with higher technology costs. In parallel, the fuel efficiency of internal combustion engine vehicles and hybrids is continuously improved, which in turn advances their environmental performance but also leads to additional technology costs versus today's vehicles. The present study compares the well-to-wheel CO 2 emissions, costs and CO 2 abatement costs of generic European cars, including a gasoline vehicle, diesel vehicle, gasoline hybrid, diesel hybrid, plug in hybrid and battery electric vehicle. The predictive comparison is done for the snapshots 2010, 2020 and 2030 under a new energy policy scenario for Europe. The results of the study show clearly that the electrification of vehicles offer significant possibilities to reduce specific CO 2 emissions in road transport, when supported by adequate policies to decarbonise the electricity generation. Additional technology costs for electrified vehicle types are an issue in the beginning, but can go down to enable payback periods of less than 5 years and very competitive CO 2 abatement costs, provided that market barriers can be overcome through targeted policy support that mainly addresses their initial cost penalty. (author)

  7. CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected.

    Science.gov (United States)

    Plötz, P; Funke, S A; Jochem, P; Wietschel, M

    2017-11-28

    The actual contribution of plug-in hybrid and battery electric vehicles (PHEV and BEV) to greenhouse gas mitigation depends on their real-world usage. Often BEV are seen as superior as they drive only electrically and do not have any direct emissions during driving. However, empirical evidence on which vehicle electrifies more mileage with a given battery capacity is lacking. Here, we present the first systematic overview of empirical findings on actual PHEV and BEV usage for the US and Germany. Contrary to common belief, PHEV with about 60 km of real-world range currently electrify as many annual vehicles kilometres as BEV with a much smaller battery. Accordingly, PHEV recharged from renewable electricity can highly contribute to green house gas mitigation in car transport. Including the higher CO 2eq emissions during the production phase of BEV compared to PHEV, PHEV show today higher CO 2eq savings then BEVs compared to conventional vehicles. However, for significant CO 2eq improvements of PHEV and particularly of BEVs the decarbonisation of the electricity system should go on.

  8. Scenarios for regional passenger car fleets and their CO2 emissions

    International Nuclear Information System (INIS)

    Meyer, Ina; Kaniovski, Serguei; Scheffran, Jürgen

    2012-01-01

    Passenger car traffic is among the main contributors to anthropogenic greenhouse gas (GHG) emissions, which are responsible for climate change. It is also an important indicator used to forecast these emissions in integrated climate-economic models. This paper develops scenarios for global passenger car stock until 2050. The study adopts a global regionalized approach, encompassing 11 world regions. Car stock projections are obtained using a multi-model approach, which includes a consumer demand model based on utility maximization, a non-linear Gompertz model and a panel estimate of the income elasticity of demand for cars. The main hypothesis underlying these projections is that preferences for purchasing cars are similar across cultures and nations and that the demand for cars is largely determined by disposable income. We apply scenarios for the average traffic volume and fuel efficiency developed in previous work together with the average carbon content of fuels to obtain the CO 2 emissions. - Research highlights: ► This study develops scenarios for global passenger car stock, CO 2 emissions and fuel efficiency until 2050. ► In a global regionalized approach car stock projections are obtained using a multi-model approach. ► Compared are utility maximization, a non-linear Gompertz model and a panel estimate. ► Preferences for purchasing cars are similar across cultures and nations. ► The demand for cars is largely determined by disposable income.

  9. Peaking China’s CO2 Emissions: Trends to 2030 and Mitigation Potential

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2017-02-01

    Full Text Available China has submitted its nationally determined contribution to peak its energy-related emissions around 2030. To understand how China might develop its economy while controlling CO2 emissions, this study surveys a number of recent modeling scenarios that project the country’s economic growth, energy mix, and associated emissions until 2050. Our analysis suggests that China’s CO2 emissions will continue to grow until 2040 or 2050 and will approximately double their 2010 level without additional policy intervention. The alternative scenario, however, suggests that peaking CO2 emissions around 2030 requires the emission growth rate to be reduced by 2% below the reference level. This step would result in a plateau in China’s emissions from 2020 to 2030. This paper also proposed a deep de-carbonization pathway for China that is consistent with China’s goal of peaking emissions by around 2030, which can best be achieved through a combination of improvements in energy and carbon intensities. Our analysis also indicated that the potential for energy intensity decline will be limited over time. Thus, the peaking will be largely dependent on the share of non-fossil fuel energy in primary energy consumption.

  10. Co2 emission scenarios for next centuries to obtain more complete simulations of the global warming

    International Nuclear Information System (INIS)

    Michelini, M.

    2001-01-01

    In the framework of a punctual Modeling of the Greenhouse Effect (report RT/ERG/2001/1) it is necessary to set CO2 Emission Scenarios for the next Centuries in order to obtain the complete evolution of the global warming. Some methodologies are described to approach such long term previsions. From the demand side, the growth of the consumes (which are affected by population and development) is correlated (supply side) with the technical-economic-environmental Evaluation of the future diffusion of classic sources (experienced in the past centuries) and of new Technologies and renewable sources. The previsions of the world population Growth are derived from the UNFPA publications. The degree of economic Development of the world Population in the very long term is obtained by simulating the Evolution of the Population across four main Areas characterized by different pro-capita consumes. Using these criteria two different Scenarios have been set-up and put into comparison with the SRES Scenarios published in the Third Assessment Report-WG1 of the IPCC. The cut at the year 2100 of the SRES Scenarios is also discussed. Simulations of the Global Warming in the long term have been performed with the two scenarios. These results are discussed together with the results of the Simulations reported by IPCC [it

  11. Investigation into solar drying of potato: effect of sample geometry on drying kinetics and CO2 emissions mitigation.

    Science.gov (United States)

    Tripathy, P P

    2015-03-01

    Drying experiments have been performed with potato cylinders and slices using a laboratory scale designed natural convection mixed-mode solar dryer. The drying data were fitted to eight different mathematical models to predict the drying kinetics, and the validity of these models were evaluated statistically through coefficient of determination (R(2)), root mean square error (RMSE) and reduced chi-square (χ (2)). The present investigation showed that amongst all the mathematical models studied, the Modified Page model was in good agreement with the experimental drying data for both potato cylinders and slices. A mathematical framework has been proposed to estimate the performance of the food dryer in terms of net CO2 emissions mitigation potential along with unit cost of CO2 mitigation arising because of replacement of different fossil fuels by renewable solar energy. For each fossil fuel replaced, the gross annual amount of CO2 as well as net amount of annual CO2 emissions mitigation potential considering CO2 emissions embodied in the manufacture of mixed-mode solar dryer has been estimated. The CO2 mitigation potential and amount of fossil fuels saved while drying potato samples were found to be the maximum for coal followed by light diesel oil and natural gas. It was inferred from the present study that by the year 2020, 23 % of CO2 emissions can be mitigated by the use of mixed-mode solar dryer for drying of agricultural products.

  12. Assessments of long-term effects of CO2 and 14C: Various energy scenarios

    International Nuclear Information System (INIS)

    Matthies, M.; Paretzke, H.G.

    1982-01-01

    A non-linear model for the global carbon cycle has been developed and applied for prognostic assessment of concentrations of CO 2 from the combustion of fossil fuel and of radiocarbon released from facilities of the nuclear fuel cycle. The model is built up from two boxes for the atmosphere (stratosphere, troposphere), three boxes for the ocean (mixed surface layer, deep sea and sediments), and two boxes for the biosphere (short-and long-lived biota) with non-linear troposphere-biota and troposphere-ocean surface layer exchange rates and linear fluxes between the other reservoirs. Two different models are used for the man-made reduction of the biomass: (a) no deforestation function, and (b) slightly growing deforestation function. The three scenarios considered are: (I) annual energy growth rates of 2% and 4%, no nuclear power; (II) an upper, lower and medium estimate of replacement of fossil fuels by nuclear power. In addition, two assumptions concerning the decontamination of 14 C in the nuclear power plant effluents were made: one in which 14 C is released completely, and one with a decontamination factor of 4. Assuming logistic source functions for the increase of fossil-fuel combustion and an exponential growth of nuclear power until the year 2020, by around 2100 the CO 2 concentration of the troposphere will reach concentrations twice to five times as high as the pre-industrial level. Various environmental effects of this increasing CO 2 level are briefly discussed. The specific 14 C activity of the atmosphere is decreased. Up to the year 2200, the specific activity will be lower than the pre-industrial level. The individual lifetime dose commitments (70 years) are found between 0.85 and 0.45 mSv (pre-industrial value: 0.73 mSv)

  13. Exploring the macro-scale CO_2 mitigation potential of photovoltaics and wind energy in Europe's energy transition

    International Nuclear Information System (INIS)

    Usubiaga, Arkaitz; Acosta-Fernández, José; McDowall, Will; Li, Francis G.N.

    2017-01-01

    Replacing traditional technologies by renewables can lead to an increase of emissions during early diffusion stages if the emissions avoided during the use phase are exceeded by those associated with the deployment of new units. Based on historical developments and on counterfactual scenarios in which we assume that selected renewable technologies did not diffuse, we conclude that onshore and offshore wind energy have had a positive contribution to climate change mitigation since the beginning of their diffusion in EU27. In contrast, photovoltaic panels did not pay off from an environmental standpoint until very recently, since the benefits expected at the individual plant level were offset until 2013 by the CO_2 emissions related to the construction and deployment of the next generation of panels. Considering the varied energy mixes and penetration rates of renewable energies in different areas, several countries can experience similar time gaps between the installation of the first renewable power plants and the moment in which the emissions from their infrastructure are offset. The analysis demonstrates that the time-profile of renewable energy emissions can be relevant for target-setting and detailed policy design, particularly when renewable energy strategies are pursued in concert with carbon pricing through cap-and-trade systems. - Highlights: • There is a time gap between the deployment of renewables and net CO2 mitigation. • Offshore wind energy contributes to net emission reductions in the EU27 since 2004. • PV panels contribute to net emission reductions in the EU27 since 2013. • The time-profile of renewable energy emissions is not usually considered in policy-design. • But it is important when renewable energy strategies are combined with carbon pricing.

  14. CO2 emissions mitigation potential of solar home systems under clean development mechanism in India

    International Nuclear Information System (INIS)

    Purohit, Pallav

    2009-01-01

    The Government of India has taken several initiatives for promotion of solar energy systems in the country during the last two decades. A variety of policy measures have been adopted which include provision of financial and fiscal incentives to the potential users of solar energy systems however, only 0.4 million solar home systems (SHSs) have been installed so far that is far below their respective potential. One of the major barriers is the high costs of investments in these systems. The clean development mechanism (CDM) of the Kyoto Protocol provides industrialized (Annex-I) countries with an incentive to invest in emission reduction projects in developing (non-Annex-I) countries to achieve a reduction in carbon dioxide (CO 2 ) emissions at lowest cost that also promotes sustainable development in the host country. SHSs could be of interest under the CDM because they directly displace greenhouse gas (GHG) emissions while contributing to sustainable rural development, if developed correctly. In this study an attempt has been made to estimate the CO 2 mitigation potential of SHSs under CDM in India.

  15. Environment and mobility 2050: scenarios for a 75% reduction in CO2 emissions

    International Nuclear Information System (INIS)

    Lopez-Ruiz, H.G.

    2009-10-01

    In France an objective of dividing greenhouse gas emissions by four, from the 1990 level, by 2050 has been set. Are these ambitions out of our reach? What will the price to pay for this objective be? We have built a long-term back-casting transport demand model (TILT, Transport Issues in the Long Term) . This model is centered on defined behavior types - in which the speed-GDP elasticity plays a key role - in order to determine demand estimations. This model lets us understand past tendencies - the coupling between growth and personal and freight mobility and adapt behavioral hypothesis - linked to the evolution of public policies - in order to show how a 75% reduction objective can be attained. The main results are an estimation of CO 2 emissions for the transport sector taking into account technical progress and demand. These results are presented as three scenario families named: Pegasus, Chronos and Hestia. Each family corresponds to a growing degree of constraint on mobility. It is possible to divide greenhouse gas emissions in the transport sector by four. Technical progress is able to lead to more than half of these reductions. The interest of these scenarios is to show that there exist different paths - through organizational change - to getting the other half of the reductions. (author)

  16. Potential reduction of CO2 emissions and low carbon scenario for the Brazilian industrial sector for 2030; Potencial de reducao de emissoes de Co2 e cenario de baixo carbono para o setor industrial brasileiro para 2030

    Energy Technology Data Exchange (ETDEWEB)

    Henriques Junior, Mauricio F. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil)], email: mauricio.henriques@int.gov.br; Schaeffer, Roberto [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil)], email: roberto@ppe.ufrj.br

    2010-07-01

    This study discusses the potential for reducing carbon dioxide (CO2) emissions from energy use by the Brazilian industrial sector in a low-carbon scenario over a horizon until 2030. It evaluates the main mitigation measures, the quantities of this gas avoided and the respective abatement costs. In relation to a benchmark scenario projected for 2030, the reduction of CO2 emissions estimated here can reach 40% by adopting energy efficiency measures, materials recycling, cogeneration, shifting from fossil fuels to renewable or less carbon content sources, and eliminating the use of biomass from deforestation. The set of measures studied here would bring cumulative emissions reductions of nearly 1.5 billion tCO2 over a period of 20 years (2010-2030). This would require huge investments, but the majority of them would have significant economic return and negative abatement costs. However, in the cases there would be low economic attractiveness and higher abatement costs, thus requiring more effective incentives and a collective effort, from both the public and private sectors. (author)

  17. An interdisciplinary, outcome-based approach to astmospheric CO2 mitigation with planted southern pine forests

    Science.gov (United States)

    Martin, T.; Fox, T.; Peter, G.; Monroe, M.

    2012-12-01

    The Pine Integrated Network: Education, Mitigation and Adaptation Project ("PINEMAP") was funded by National Institute of Food and Agriculture to produce outcomes of enhanced climate change mitigation and adaptation in planted southern pine ecosystems. The PINEMAP project leverages a strong group of existing networks to produce synergy and cooperation on applied forestry research in the region. Over the last 50 years, cooperative research on planted southern pine management among southeastern U.S. universities, government agencies, and corporate forest landowners has developed and facilitated the widespread implementation of improved genetic and silvicultural technology. The impact of these regional research cooperatives is difficult to overstate, with current members managing 55% of the privately owned planted pine forestland, and producing 95% of the pine seedlings planted each year. The PINEMAP team includes the eight major forestry cooperative research programs, scientists from eleven land grant institutions, the US Forest Service, and climate modeling and adaptation specialists associated with the multi-state SE Climate Consortium and state climate offices. Our goal is to create and disseminate the knowledge that enables landowners to: harness planted pine forest productivity to mitigate atmospheric CO2; more efficiently use nitrogen and other fertilizer inputs; and adapt their forest management to increase resilience in the face of changing climate. We integrate our team's infrastructure and expertise to: 1) develop breeding, genetic deployment and innovative management systems to increase C sequestration and resilience to changing climate of planted southern pine forests ; 2) understand interactive effects of policy, biology, and climate change on sustainable management; 3) transfer new management and genetic technologies to private industrial and non-industrial landowners; and 4) educate a diverse cross-section of the public about the relevance of forests

  18. Energy efficiency and CO_2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system

    International Nuclear Information System (INIS)

    Ates, Seyithan A.

    2015-01-01

    With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO_2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO_2 in BAU (business-as-usual scenario), 32.5 MtCO_2 in SEI, 24.6 MtCO_2 in AEI and 14.5 MtCO_2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation. - Highlights: • This paper explores energy efficiency potential of iron and Steel industry in Turkey. • We applied the LEAP modeling to forecast future developments. • Four different scenarios have been developed for the LEAP modeling. • There is a huge potential for energy efficiency and mitigation of GHG emissions.

  19. Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria

    International Nuclear Information System (INIS)

    Madlener, Reinhard; Koller, Martin

    2007-01-01

    This paper reports on an empirical investigation about the economic and CO 2 mitigation impacts of bioenergy promotion in the Austrian federal province of Vorarlberg. We study domestic value-added, employment, and fiscal effects by means of a static input-output analysis. The bioenergy systems analysed comprise biomass district heating, pellet heating, and automated wood chip heating systems, as well as logwood stoves and boilers, ceramic stoves, and buffer storage systems. The results indicate that gross economic effects are significant, regarding both investment and operation of the systems, and that the negative economic effects caused by the displacement of conventional decentralised heating systems might be in the order of 20-40%. Finally, CO 2 mitigation effects are substantial, contributing already in 2004 around 35% of the 2010 CO 2 mitigation target of the Land Vorarlberg for all renewable energy sources

  20. Public willingness to pay for CO2 mitigation and the determinants under climate change: a case study of Suzhou, China.

    Science.gov (United States)

    Yang, Jie; Zou, Liping; Lin, Tiansheng; Wu, Ying; Wang, Haikun

    2014-12-15

    This study explored the factors that influence respondents' willingness to pay (WTP) for CO2 mitigation under climate change. A questionnaire survey combined with contingent valuation and psychometric paradigm methods were conducted in the city of Suzhou, Jiangsu Province in China. Respondents' traditional demographic attributes, risk perception of greenhouse gas (GHG), and attitude toward the government's risk management practices were established using a Tobit model to analyze the determinants. The results showed that about 55% of the respondents refused to pay for CO2 mitigation, respondent's WTP increased with increasing CO2 mitigation percentage. Important factors influencing WTP include people's feeling of dread of GHGs, confidence in policy, the timeliness of governmental information disclosure, age, education and income level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario.

    Science.gov (United States)

    Ma, Jing; Zhang, Wangyuan; Zhang, Shaoliang; Zhu, Qianlin; Feng, Qiyan; Chen, Fu

    2017-01-01

    The technology of carbon dioxide (CO 2 ) capture and storage (CCS) has provided a new option for mitigating global anthropogenic emissions with unique advantages. However, the potential risk of gas leakage from CO 2 sequestration and utilization processes has attracted considerable attention. Moreover, leakage might threaten soil ecosystems and thus cannot be ignored. In this study, a simulation experiment of leakage from CO 2 geological storage was designed to investigate the short-term effects of different CO 2 leakage concentration (from 400 g m -2 day -1 to 2,000 g m -2 day -1 ) on soil bacterial communities. A shunt device and adjustable flow meter were used to control the amount of CO 2 injected into the soil. Comparisons were made between soil physicochemical properties, soil enzyme activities, and microbial community diversity before and after injecting different CO 2 concentrations. Increasing CO 2 concentration decreased the soil pH, and the largest variation ranged from 8.15 to 7.29 ( p soil CO 2 concentration increased. The dominant phylum in the soil samples was Proteobacteria , whose proportion rose rapidly from 28.85% to 67.93%. In addition, the proportion of Acidobacteria decreased from 19.64% to 9.29% ( p soil ecosystems.

  2. Dividing by four CO2 releases due to energy: the Negatep scenario

    International Nuclear Information System (INIS)

    Acket, C.; Bacher, P.

    2011-01-01

    The Negatep scenario aims at dividing CO 2 releases by 4, which means, more or less, dividing the consumption of fossil energies by the same factor, in order to comply with the French 2005 energy act. After a description of the situation in 2006, of trends, and a recall of the objectives defined by the 'Grenelle de l'Environnement' regarding energy savings and renewable energies, the authors show that reaching such a reduction requires to: decrease to nearly zero oil and gas in the residential and tertiary sectors, reduce significantly the use of oil in the transport sector, reduce significantly the use of fossil fuels in industry, increase massively the share of electricity in the energy mix, maintain the share of nuclear in the electricity generation and, as long as the storage of electricity is not developed, limit the share of intermittent energies to a level compatible with that of gas turbines. The study shows that the proposed measures can fulfill the objectives for 2020 proposed by the 'Grenelle de l'Environnement'

  3. Exploring the scope for complementary sub-global policy to mitigate CO2 from shipping

    International Nuclear Information System (INIS)

    Gilbert, Paul; Bows, Alice

    2012-01-01

    For a high probability of avoiding dangerous interference with the climate system, all sectors must decarbonise over coming decades. Although shipping is an energy efficient transport mode, its emissions continue to grow. Compounding this, the sector's complexity, exclusion from emission inventories and slow progress towards a mitigation strategy, limit drivers towards meaningful change. Whilst there remains a preference within the industry for global mitigation policies, the urgency of required emission cuts necessitates exploration of complimentary sub-global measures. The debate surrounding such measures tends to focus on apportioning global shipping emissions to nations. To explore the policy implications of apportionment, the UK is used in this paper to illustrate how available apportionment regimes produce a wide range of emission estimates. Moreover, in the absence of transparent fuel consumption and freight data, they have limited sensitivity, rendering them currently obsolete for monitoring purposes. Nations, regions and organisations influence shipping, particularly in relation to operations, yet debate surrounding apportionment has arguably delayed consideration of sub-global polices and indicators. This paper makes a case for putting the apportionment debate aside in the short-term to open out the full span of options, consider influence over aspects of the shipping system, and how to monitor success. - Highlights: ► Debate on sub-global CO 2 policies for shipping focuses on emission apportionment. ► Data limitations prevent apportionment regimes from monitoring policy success. ► Nations, regions and organisations directly influence shipping at sub-global levels. ► Sub-global policies influence demand and operations in ports/waters. ► Policy should focus on what can be influenced and consider how to monitor progress.

  4. Risk assessment of mitigated domino scenarios in process facilities

    International Nuclear Information System (INIS)

    Landucci, Gabriele; Necci, Amos; Antonioni, Giacomo; Argenti, Francesca; Cozzani, Valerio

    2017-01-01

    The propagation of accidents among process units may lead to severe cascading events or domino effects with catastrophic consequences. Prevention, mitigation and management of domino scenarios is of utmost importance and may be achieved in industrial facilities through the adoption of multiple safety layers. The present study was aimed at developing an innovative methodology to address the quantitative risk assessment (QRA) of domino scenarios accounting for the presence and role of safety barriers. Based on the expected performance of safety barriers, a dedicated event tree analysis allowed the identification and the assessment of the frequencies of the different end-point events deriving from unmitigated and partially mitigated domino chains. Specific criteria were introduced in consequence analysis to consider the mitigation effects of end-point scenarios deriving from safety barriers. Individual and societal risk indexes were calculated accounting for safety barriers and the mitigated scenarios that may result from their actions. The application of the methodology to case-studies of industrial interest proved the importance of introducing a specific systematic and quantitative analysis of safety barrier performance when addressing escalation leading to domino effect. - Highlights: • A methodology was developed to account for safety barrier performance in escalation prevention. • The methodology allows quantitative assessment accounting for safety barrier performance. • A detailed analysis of transient mitigated scenarios is allowed by the developed procedure. • The procedure allows accounting for safety barrier performance in QRA of domino scenarios. • An important reduction in the risk due to domino scenarios is evidenced when considering safety barriers.

  5. Consumer cost effectiveness of CO2 mitigation policies in restructured electricity markets

    International Nuclear Information System (INIS)

    Moore, Jared; Apt, Jay

    2014-01-01

    We examine the cost of carbon dioxide mitigation to consumers in restructured USA markets under two policy instruments, a carbon price and a renewable portfolio standard (RPS). To estimate the effect of policies on market clearing prices, we constructed hourly economic dispatch models of the generators in PJM and in ERCOT. We find that the cost effectiveness of policies for consumers is strongly dependent on the price of natural gas and on the characteristics of the generators in the dispatch stack. If gas prices are low (∼$4/MMBTU), a technology-agnostic, rational consumer seeking to minimize costs would prefer a carbon price over an RPS in both regions. Expensive gas (∼$7/MMBTU) requires a high carbon price to induce fuel switching and this leads to wealth transfers from consumers to low carbon producers. The RPS may be more cost effective for consumers because the added energy supply lowers market clearing prices and reduces CO 2 emissions. We find that both policies have consequences in capacity markets and that the RPS can be more cost effective than a carbon price under certain circumstances: continued excess supply of capacity, retention of nuclear generators, and high natural gas prices. (letter)

  6. Power DRAC for rapid LMFBR deployment and consequent CO2 mitigation

    International Nuclear Information System (INIS)

    Schenewerk, W.E.

    2006-01-01

    A metallic-sodium LMFBR (Liquid Metal Fast Breeder Reactor) can control fuel temperature after a full power SCRAM using natural convection. A 3 percent nominal DRAC (Direct Reactor Auxiliary Cooling) does this without moving parts. DRAC is promoted from tertiary to primary decay heat removal, resulting in what is referred to as a Power DRAC. Power DRAC operates continuously before and after SCRAM, rejecting 3 per cent pile power. Power DRAC operability is validated by having it reject 75 MWt from a 2500 MWt pile at all times. IHX (Intermediate Heat Exchanger) is not required to be operable for primary, secondary, or tertiary core over temperature protection. Original DRAC concept (venturi DRAC) was a 1 per cent nominal tertiary decay heat removal system. Tertiary DRAC patent has expired. Power DRAC rejects 75 MWt through its own secondary sodium heat transfer loop to power a 25 MWe air Brayton cycle. Power DRAC eliminates requiring steam plant operability for decay heat removal. Intermediate sodium heat transfer system and steam plant can be optimized for maximum thermal efficiency. 2.5 GWt pile makes 1.0 GWe net power. Power DRAC maintains pile inlet and outlet temperatures while going from power to post-SCRAM conditions. Steam pressure is maintained post-SCRAM to mitigate SCRAM thermal transient. Not requiring steam plant operability for decay heat removal eases licensing and allows early LMFBR deployment. Each GWe atomic power delays Co2 doubling one week. (author)

  7. The economics of greenhouse gas mitigation: Insights from illustrative global abatement scenarios modelling

    International Nuclear Information System (INIS)

    Gurney, Andrew; Ahammad, Helal; Ford, Melanie

    2009-01-01

    In this paper the Global Trade and Environment Model (GTEM) and MAGICC are used to simulate a number of global emission mitigation scenarios devised by the EMF 22 Transition Scenarios group in which radiative forcing goals and the architecture of developing economies' participation in hypothetical mitigation actions are varied. This paper presents a reference case of the world economy to 2100 and analyses some key regional and global results for the various global mitigation scenarios, including emission prices, emission levels, primary energy consumption and economic growth. Modelling results suggest that a transition to a low-carbon world would require a significant decarbonisation of electricity generation without necessarily cutting the electricity output in the long run. With the uptake of hybrids and non-fossil-fuel technologies, the transport sector could make an important contribution to global abatement of greenhouse gases. Furthermore, with substantial international mitigation efforts and uptake of low- and/or zero-emission technologies, the achievement of 3.7 W/m 2 and 4.5 W/m 2 radiative forcing targets by the end of the century could occur at emission prices of up to $550/t CO 2 -e. However, achieving the 2.6 W/m 2 (overshoot) radiative forcing target would require considerably higher emission prices and an immediate global mitigation action.

  8. Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios

    International Nuclear Information System (INIS)

    Winkler, Harald; Hughes, Alison; Haw, Mary

    2009-01-01

    Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO 2 -eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa.

  9. Estimating the CO2 mitigation potential of horizontal Ground Source Heat Pumps in the UK

    Science.gov (United States)

    Garcia-Gonzalez, R.; Verhoef, A.; Vidale, P. L.; Gan, G.; Chong, A.; Clark, D.

    2012-04-01

    By 2020, the UK will need to generate 15% of its energy from renewables to meet our contribution to the EU renewable energy target. Heating and cooling systems of buildings account for 30%-50% of the global energy consumption; thus, alternative low-carbon technologies such as horizontal Ground Couple Heat Pumps (GCHPs) can contribute to the reduction of anthropogenic CO2 emissions. Horizontal GCHPs currently represent a small fraction of the total energy generation in the UK. However, the fact that semi-detached and detached dwellings represent approximately 40% of the total housing stocks in the UK could make the widespread implementation of this technology particularly attractive in the UK and so could significantly increase its renewable energy generation potential. Using a simulation model, we analysed the dynamic interactions between the environment, the horizontal GCHP heat exchanger and typical UK dwellings, as well as their combined effect on heat pump performance and CO2 mitigation potential. For this purpose, a land surface model (JULES, Joint UK Land Environment Simulator), which calculates coupled soil heat and water fluxes, was combined with a heat extraction model. The analyses took into account the spatio-temporal variability of soil properties (thermal and hydraulic) and meteorological variables, as well as different horizontal GCHP configurations and a variety of building loads and heat demands. Sensitivity tests were performed for four sites in the UK with different climate and soil properties. Our results show that an installation depth of 1.0m would give us higher heat extractions rates, however it would be preferable to install the pipes slightly deeper to avoid the seasonal influence of variable meteorological conditions. A value of 1.5m for the spacing between coils (S) for a slinky configuration type is recommended to avoid thermal disturbances between neighbouring coils. We also found that for larger values of the spacing between the coils

  10. Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning.

    Science.gov (United States)

    Vilén, Terhi; Fernandes, Paulo M

    2011-09-01

    Forest fires are an integral part of the ecology of the Mediterranean Basin; however, fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recently published data to calculate the average annual wildfire CO(2) emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of prescribed burning on emissions was calculated for four scenarios of prescribed burning effectiveness based on data from Portugal. Results show that prescribed burning could have a considerable effect on the carbon balance of the land use, land-use change and forestry (LULUCF) sector in Mediterranean countries. However, uncertainty in emission estimates remains large, and more accurate data is needed, especially regarding fuel load and fuel consumption in different vegetation types and fuel layers and the total area protected from wildfire per unit area treated by prescribed burning, i.e. the leverage of prescribed burning.

  11. Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence

    International Nuclear Information System (INIS)

    Jaforullah, Mohammad; King, Alan

    2015-01-01

    Previous research on the determinants of CO 2 emissions has concluded that, although increasing nuclear energy consumption can help to mitigate emissions, increasing use of renewable energy sources is not effective in this regard. These studies, however, do not consider energy prices as a possible driver of energy demand (and hence of emissions) and we find that this omission and the choice of functional form materially alters the outcome in the US case. Specifically, our cointegration and Granger-causality test results indicate that CO 2 emission levels are negatively related to the use of renewable energy, but are unrelated to nuclear energy consumption. - Highlights: • We model CO 2 emissions for the US within a VECM framework. • We find that increasing renewable energy consumption is effective at mitigating emissions. • However, increasing nuclear energy consumption is ineffective in this respect. • Both results contradict the findings of previous studies

  12. Second Generation CO2 FEP Analysis: CASSIF - Carbon Storage Scenario Identification Framework

    NARCIS (Netherlands)

    Yavuz, F.; Tilburg, T. van; David, P.; Spruijt, M.; Wildenborg, T.

    2009-01-01

    Carbon dioxide Capture and Storage (CCS) is a promising contribution to reduce further increase of atmospheric CO2 emissions from fossil fuels. The CCS concept anticipates that large amounts of CO2 are going to be stored in the subsurface for the long term. Since CCS is a rather new technology,

  13. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    International Nuclear Information System (INIS)

    Ruijven, Bas J. van; Vuuren, Detlef P. van; Vliet, Jasper van; Mendoza Beltran, Angelica; Deetman, Sebastiaan; Elzen, Michel G.J. den

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE modelling framework. Energy use in regions and economic sectors is affected differently by ambitious climate policies. We find that the potential for emission reduction varies widely between regions. With respect to technology choices in the power sector, we find major application of CO 2 storage in Indonesia and India, whereas Korea and India apply more solar and wind. Projections for Japan include a (debatable) large share of nuclear power. China and, India, and South-East Asia, show a diverse technology choice in the power sector. For the industry sector, we find that the recent rapid growth in China limits the potential for emission reduction in the next decades, assuming that recently built coal-based industry facilities are in use for the next decades. For the residential sector, the model results show that fewer households switch from traditional fuels to modern fuels in GHG mitigation scenarios. With respect to co-benefits, we find lower imports of fossil energy in mitigation scenarios and a clear reduction of air pollutant emissions. - Highlights: ► The potential for emission reduction varies widely between regions. ► Some regions have attractive CO 2 storage capacity; others have low-cost solar/wind potential. ► The recent rapid growth of Chinese industry may limit emission reduction potential for decades. ► Fewer households switch from traditional fuels to modern fuels in mitigation scenarios. ► Mitigation scenarios show less fossil energy import and reduction of air pollutant emission.

  14. Accelerated weathering of limestone for CO2 mitigation: Opportunities for the stone and cement industries

    Science.gov (United States)

    Langer, William H.; San, Juan A.; Rau, Greg H.; Caldeira, Ken

    2009-01-01

    Large amounts of limestone fines co-produced during the processing of crushed limestone may be useful in the sequestration of carbon dioxide (CO2). Accelerated weathering of limestone (AWL) is proposed as a low-tech method to capture and sequester CO2 from fossil fuel-fired power plants and other point sources such as cement manufacturing. AWL reactants are readily available, inexpensive and environmentally benign. Waste CO2 is hydrated with water to produce carbonic acid. This reacts with and is neutralized by limestone fines, thus converting CO2 gas to dissolved calcium bicarbonate.

  15. CO_2-mitigation options for the offshore oil and gas sector

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter; Maréchal, François; Elmegaard, Brian

    2016-01-01

    Highlights: • The possibilities for reducing offshore CO_2-emissions, by CO_2-capture, waste heat recovery and electrification are assessed. • Multi-objective optimisation, process modelling, economic and environmental analyses are used for evaluating system designs. • A reduction of more than 15% of the total CO_2-emissions can be achieved for the present case study. • High sensitivity of the avoidance costs to the natural gas price and CO_2-tax. - Abstract: The offshore extraction of oil and gas is an energy-intensive process leading to the production of CO_2 and methane, discharged into the atmosphere, and of chemicals, rejected into the sea. The taxation of these emissions, in Norway, has encouraged the development of more energy-efficient and environmental-friendly solutions, of which three are assessed in this paper: (i) the implementation of waste heat recovery, (ii) the installation of a CO_2-capture unit and (iii) the platform electrification. A North Sea platform is taken as case study, and these three options are modelled, analysed and compared, using thermodynamic, economic and environmental indicators. The results indicate the benefits of all these options, as the total CO_2-emissions can be reduced by more than 15% in all cases, while the avoidance costs vary widely and are highly sensitive to the natural gas price and CO_2-tax.

  16. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts

    Science.gov (United States)

    Wertin, Timothy M.; Phillips, Susan L.; Reed, Sasha C.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment.

  17. Potential for iron oxides to control metal releases in CO2 sequestration scenarios

    Science.gov (United States)

    Berger, P.M.; Roy, W.R.

    2011-01-01

    The potential for the release of metals into groundwater following the injection of carbon dioxide (CO2) into the subsurface during carbon sequestration projects remains an open research question. Changing the chemical composition of even the relatively deep formation brines during CO2 injection and storage may be of concern because of the recognized risks associated with the limited potential for leakage of CO2-impacted brine to the surface. Geochemical modeling allows for proactive evaluation of site geochemistry before CO2 injection takes place to predict whether the release of metals from iron oxides may occur in the reservoir. Geochemical modeling can also help evaluate potential changes in shallow aquifers were CO2 leakage to occur near the surface. In this study, we created three batch-reaction models that simulate chemical changes in groundwater resulting from the introduction of CO2 at two carbon sequestration sites operated by the Midwest Geological Sequestration Consortium (MGSC). In each of these models, we input the chemical composition of groundwater samples into React??, and equilibrated them with selected mineral phases and CO 2 at reservoir pressure and temperature. The model then simulated the kinetic reactions with other mineral phases over a period of up to 100 years. For two of the simulations, the water was also at equilibrium with iron oxide surface complexes. The first model simulated a recently completed enhanced oil recovery (EOR) project in south-central Illinois in which the MGSC injected into, and then produced CO2, from a sandstone oil reservoir. The MGSC afterwards periodically measured the brine chemistry from several wells in the reservoir for approximately two years. The sandstone contains a relatively small amount of iron oxide, and the batch simulation for the injection process showed detectable changes in several aqueous species that were attributable to changes in surface complexation sites. After using the batch reaction

  18. Second generation CO2 FEP analysis: Cassifcarbon sequestration scenario identification framework

    NARCIS (Netherlands)

    Yavuz, F.T.; Tilburg, T. van; Pagnier, H.

    2008-01-01

    A novel scenario analysis framework has been created, called Carbon Sequestration Scenario Identification Framework (CASSIF). This framework addresses containment performance defined by the three major categories: well, fault and seal integrity. The relevant factors that influence the integrity are

  19. Electrolysis byproduct D2O provides a third way to mitigate CO2

    International Nuclear Information System (INIS)

    Schenewerk, William Ernest

    2009-01-01

    Rapid atomic power deployment may be possible without using fast breeder reactors or making undue demands on uranium resource. Using by-product D2O and thorium-U233 in CANDU and RBMK piles may circumvent need for either fast breeder reactors or seawater uranium. Atmospheric CO2 is presently increasing 2.25%/year in proportion to 2.25%/year exponential fossil fuel consumption increase. Roughly 1/3 anthropologic CO2 is removed by various CO2 sinks. CO2 removal is modelled as being proportional to 45-year-earlier CO2 amount above 280 ppm-C Water electrolysis produces roughly 0.1 kg-D20/kWe-y. Material balance assumes each electrolysis stage increases D2O bottoms concentration times 3. Except for first two electrolysis stages, all water from hydrogen consumption is returned to electrolysis. The unique characteristic of this process is the ability to economically burn all deuterium-enriched H2 in vehicles. Condensate from vehicles returns to appropriate electrolysis stage. Fuel cell condensate originally from reformed natural gas may augment second-sage feed. Atomic power expansion is 5%/year, giving 55000 GWe by 2100. World primary energy increases 2.25%/y, exceeding 4000 EJ/y by 2100. CO2 maximum is roughly 600 ppm-C around year 2085. CO2 declines back below 300 ppm-C by 2145 if the 45-year-delay seawater sink remains effective

  20. Analysis on long-term perspective of nuclear energy in the global energy system in terms of CO2 mitigation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Uotani, M.

    2001-01-01

    The value of nuclear energy is analyzed for prevention of global warming and climate change by means of a global energy model, which finds the cost minimum energy system over the time range of 2000 - 2100. Six scenarios are examined in this analysis, considering two scenarios of economic growth rate, two scenarios of electrification rate, and FBR introduction or not. The results indicate that progress of electricity generation is the key to reduce the global CO 2 emission, and the role of FBRs with its nuclear fuel cycle is very robust against any economic conditions. (author)

  1. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  2. Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario

    Directory of Open Access Journals (Sweden)

    Jing Ma

    2017-11-01

    Full Text Available The technology of carbon dioxide (CO2 capture and storage (CCS has provided a new option for mitigating global anthropogenic emissions with unique advantages. However, the potential risk of gas leakage from CO2 sequestration and utilization processes has attracted considerable attention. Moreover, leakage might threaten soil ecosystems and thus cannot be ignored. In this study, a simulation experiment of leakage from CO2 geological storage was designed to investigate the short-term effects of different CO2 leakage concentration (from 400 g m−2 day−1 to 2,000 g m−2 day−1 on soil bacterial communities. A shunt device and adjustable flow meter were used to control the amount of CO2 injected into the soil. Comparisons were made between soil physicochemical properties, soil enzyme activities, and microbial community diversity before and after injecting different CO2 concentrations. Increasing CO2 concentration decreased the soil pH, and the largest variation ranged from 8.15 to 7.29 (p < 0.05. Nitrate nitrogen content varied from 1.01 to 4.03 mg/Kg, while Olsen-phosphorus and total phosphorus demonstrated less regular downtrends. The fluorescein diacetate (FDA hydrolytic enzyme activity was inhibited by the increasing CO2 flux, with the average content varying from 22.69 to 11.25 mg/(Kg h (p < 0.05. However, the increasing activity amplitude of the polyphenol oxidase enzyme approached 230%, while the urease activity presented a similar rising trend. Alpha diversity results showed that the Shannon index decreased from 7.66 ± 0.13 to 5.23 ± 0.35 as the soil CO2 concentration increased. The dominant phylum in the soil samples was Proteobacteria, whose proportion rose rapidly from 28.85% to 67.93%. In addition, the proportion of Acidobacteria decreased from 19.64% to 9.29% (p < 0.01. Moreover, the abundances of genera Methylophilus, Methylobacillus, and Methylovorus increased, while GP4, GP6 and GP7 decreased. Canonical correlation analysis

  3. Coal utilization in industrial boilers in China - a prospect for mitigating CO2 emissions

    International Nuclear Information System (INIS)

    Fang, J.; Zeng, T.; Yang, L.I.S.; Oye, K.A.; Sarofim, A.F.; Beer, J.M.

    1999-01-01

    It is estimated from GEF statistical data for 1991 that more than 500,000 industrial boilers (mostly stoker-fired) in China consume over 400 million tons of coal per year. Each year, because of low boiler efficiency, 75 million tons of coal is wasted and 130 million tons of excess CO 2 are emitted. An analysis of 250 boiler thermal-balance test certificates and 6 field visits in three provinces have shown that: (1) boilers with efficiencies of less than 70% account for 75% of the total boiler-population; (2) the main causes of the low efficiencies are high excess air and unburned carbon in the slag and fly ash. The effect of unburned carbon on CO 2 emission is a balance of positive and negative contributions: while the unburned carbon does not produce CO 2 emissions, its replacement carbon, burned at a low efficiency, contributes to a net increase in CO 2 emissions. It seems from the analysis that the average boiler efficiency can be raised to 73% by relatively simple means, such as the size grading of the coal, improved boiler operating practice and some inexpensive equipment modifications. This could then result in savings each year of 34 million tons of coal and a reduction in CO 2 emissions of 63 million tons at an estimated cost of $10 per ton of CO 2 . (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. High plant species diversity indirectly mitigates CO 2- and N-induced effects on grasshopper growth

    Science.gov (United States)

    Strengbom, Joachim; Reich, Peter B.; Ritchie, Mark E.

    2008-09-01

    We examined how elevated atmospheric [CO 2] and higher rate of nitrogen (N) input may influence grasshopper growth by changing food plant quality and how such effects may be modified by species diversity of the plant community. We reared grasshopper nymphs ( Melanoplus femurrubrum) on Poa pratensis from field-grown monocultures or polycultures (16 species) that were subjected to either ambient or elevated levels of CO 2 and N. Grasshopper growth rate was higher on P. pratensis leaves grown in monocultures than in polycultures, higher on P. pratensis grown under elevated than under ambient [CO 2], and higher on P. pratensis grown under elevated than under ambient [N]. The higher growth rate observed on P. pratensis exposed to elevated [CO 2] was, however, less pronounced for polyculture- than monoculture-grown P. pratensis. Growth rate of the grasshoppers was positively correlated with leaf [N], [C], and concentration of soluble carbohydrates + lipids. Concentration of non-structural carbohydrates + lipids was higher in leaves grown under elevated than under ambient [CO 2], and the difference between P. pratensis grown under ambient and elevated [CO 2] was greater for monoculture- than polyculture-grown P. pratensis. In addition, leaf N concentration was higher in P. pratensis grown in monocultures than in polycultures, suggesting that plant species richness, indirectly, may influence insect performance by changed nutritional value of the plants. Because we found interactive effects between all factors included ([CO 2], [N], and plant species diversity), our results suggest that these parameters may influence plant-insect interactions in a complex way that is not predictable from the sum of single factor manipulations.

  5. A breakthrough in flue gas cleanup, CO2 mitigation and H2S removal

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Wolf; Wasas, James; Stenger, Raymond; Howell, Evan

    2010-09-15

    SWAPSOL Corp. is developing commercial processes around a newly discovered reaction that reduces H2S below detectable levels while reacting with CO2 to form water, sulfur and carsuls, a carbon-sulfur polymer. The Stenger-Wasas Process (SWAP) stands to simplify sulfur removal technology as it consumes CO2 in an exothermic reaction. The SWAP has applications in landfill, sour, flue and Claus tail gas cleanup and may replace Claus technology. Destruction of waste hydrocarbons provides a source of H2S. The primary reactions and variants have been independently verified and the chemical kinetics determined by a third party laboratory.

  6. Accelerated weathering of limestone for CO2 mitigation opportunities for the stone and cement industries

    Science.gov (United States)

    Langer, W.H.; Juan, C.A.S.; Rau, G.H.; Caldeira, K.

    2009-01-01

    Large amounts of limestone fines coproduced during the processing of crushed limestone may be useful in the sequestration of carbon dioxide (CO 2). Accelerated weathering of limestone (AWL) is proposed as a low-tech method to capture and sequester CO2 from fossil fuel-fired power plants and other point-sources such as cement manufacturing. AWL reactants are readily available, inexpensive, and environmentally benign. Waste CO 2 is hydrated with water to produce carbonic acid, which then reacts with and is neutralized by limestone fines, thus converting CO2 gas to dissolved calcium bicarbonate. AWL waste products can be disposed of in the ocean. Feasibility requires access to an inexpensive source of limestone and to seawater, thus limiting AWL facilities within about 10 km of the coastline. The majority of U.S. coastal power generating facilities are within economical transport distance of limestone resources. AWL presents opportunities for collaborative efforts among the crushed stone industry, electrical utilities, cement manufactures, and research scientists.

  7. Disentangling the effects of CO2 and short-lived climate forcer mitigation

    NARCIS (Netherlands)

    Rogelj, J.; Schaeffer, M.; Meinshausen, M.; Shindell, D.T.; Hare, W.; Klimont, Z.; Velders, G.J.M.; Amann, M.; Schellnhuber, H.J.

    2014-01-01

    Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for

  8. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    Science.gov (United States)

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  9. Effort sharing in ambitious, global climate change mitigation scenarios

    International Nuclear Information System (INIS)

    Ekholm, Tommi; Soimakallio, Sampo; Moltmann, Sara; Hoehne, Niklas; Syri, Sanna; Savolainen, Ilkka

    2010-01-01

    The post-2012 climate policy framework needs a global commitment to deep greenhouse gas emission cuts. This paper analyzes reaching ambitious emission targets up to 2050, either -10% or -50% from 1990 levels, and how the economic burden from mitigation efforts could be equitably shared between countries. The scenarios indicate a large low-cost mitigation potential in electricity and industry, while reaching low emission levels in international transportation and agricultural emissions might prove difficult. The two effort sharing approaches, Triptych and Multistage, were compared in terms of equitability and coherence. Both approaches produced an equitable cost distribution between countries, with least developed countries having negative or low costs and more developed countries having higher costs. There is, however, no definitive solution on how the costs should be balanced equitably between countries. Triptych seems to be yet more coherent than other approaches, as it can better accommodate national circumstances. Last, challenges and possible hindrances to effective mitigation and equitable effort sharing are presented. The findings underline the significance of assumptions behind effort sharing on mitigation potentials and current emissions, the challenge of sharing the effort with uncertain future allowance prices and how inefficient markets might undermine the efficiency of a cap-and-trade system.

  10. Effort sharing in ambitious, global climate change mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ekholm, Tommi [TKK Helsinki University of Technology, Espoo (Finland); Soimakallio, Sampo; Syri, Sanna; Savolainen, Ilkka [VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT (Finland); Moltmann, Sara; Hoehne, Niklas [Ecofys Germany GmbH, Cologne (Germany)

    2010-04-15

    The post-2012 climate policy framework needs a global commitment to deep greenhouse gas emission cuts. This paper analyzes reaching ambitious emission targets up to 2050, either or from 1990 levels, and how the economic burden from mitigation efforts could be equitably shared between countries. The scenarios indicate a large low-cost mitigation potential in electricity and industry, while reaching low emission levels in international transportation and agricultural emissions might prove difficult. The two effort sharing approaches, Triptych and Multistage, were compared in terms of equitability and coherence. Both approaches produced an equitable cost distribution between countries, with least developed countries having negative or low costs and more developed countries having higher costs. There is, however, no definitive solution on how the costs should be balanced equitably between countries. Triptych seems to be yet more coherent than other approaches, as it can better accommodate national circumstances. Last, challenges and possible hindrances to effective mitigation and equitable effort sharing are presented. The findings underline the significance of assumptions behind effort sharing on mitigation potentials and current emissions, the challenge of sharing the effort with uncertain future allowance prices and how inefficient markets might undermine the efficiency of a cap-and-trade system. (author)

  11. Global climate change mitigation scenarios for solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Monni, S. [Benviroc Ltd, Espoo (Finland); Pipatti, R. [Statistics Finland, Helsinki (Finland); Lehtilae, A.; Savolainen, I.; Syri, S. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2006-07-15

    The waste sector is an important contributor to climate change. CH{sub 4} produced at solid waste disposal sites contributes approximately 3.4 percent to the annual global anthropogenic greenhouse gas emissions. Emissions from solid waste disposal are expected to increase with increasing global population and GDP. On the other hand, many cost-efficient emission reduction options are available. The rate of waste degradation in landfills depends on waste composition, climate and conditions in the landfill. Because the duration of CH{sub 4} generation is several decades, estimation of emissions from landfills requires modelling of waste disposal prior to the year whose emissions are of interest. In this study, country- or region-specific first-order decay (FOD) models based on the 2006 IPCC Guidelines are used to estimate emissions from municipal solid waste disposal in landfills. In addition, IPCC methodology is used to estimate emissions from waste incineration. Five global scenarios are compiled from 1990 to 2050. These scenarios take into account political decision making and changes in the waste management system. In the Baseline scenario, waste generation is assumed to follow past and current trends using population and GDP as drivers. In the other scenarios, effects of increased incineration, increased recycling and increased landfill gas recovery on greenhouse gas (GHG) emissions are assessed. Economic maximum emission reduction potentials for these waste management options are estimated at different marginal cost levels for the year 2030 by using the Global TIMES model. Global emissions from landfills are projected to increase from 340 Tg CO{sub 2} eq in 1990 to 1500 Tg CO{sub 2} eq by 2030 and 2900 Tg CO{sub 2} eq by 2050 in the Baseline scenario. The emission reduction scenarios give emissions reductions from 5% (9%) to 21% (27%) compared to the Baseline in 2030 (2050). As each scenario considered one mitigation option, the results are largely additive, and

  12. Multi-objective and multi-criteria optimization for power generation expansion planning with CO2 mitigation in Thailand

    Directory of Open Access Journals (Sweden)

    Kamphol Promjiraprawat

    2013-06-01

    Full Text Available In power generation expansion planning, electric utilities have encountered the major challenge of environmental awareness whilst being concerned with budgetary burdens. The approach for selecting generating technologies should depend on economic and environmental constraint as well as externalities. Thus, the multi-objective optimization becomes a more attractive approach. This paper presents a hybrid framework of multi-objective optimization and multi-criteria decision making to solve power generation expansion planning problems in Thailand. In this paper, CO2 emissions and external cost are modeled as a multi-objective optimization problem. Then the analytic hierarchy process is utilized to determine thecompromised solution. For carbon capture and storage technology, CO2 emissions can be mitigated by 74.7% from the least cost plan and leads to the reduction of the external cost of around 500 billion US dollars over the planning horizon. Results indicate that the proposed approach provides optimum cost-related CO2 mitigation plan as well as external cost.

  13. Use of MgO to mitigate the effect of microbial CO2 production in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Wang, Y.; Brush, L.H.

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP), located in a salt bed in southern New Mexico, is designed by US Department of Energy to demonstrate the safe and permanent disposal of design-basis transuranic waste. WIPP performance assessment requires consideration of radionuclide release in brines in the event of inadvertent human intrusion. The mobility of radionuclides depends on chemical factors such as brine pmH (-log molality of H + ) and CO 2 fugacity. According to current waste inventory estimates, a large quantity (∼ 10 9 moles C) of organic materials will be emplaced in the WIPP. Those organic material will potentially be degraded by halophilic or halotolerant microorganisms in the presence of liquid water in the repository, especially if a large volume of brine is introduced into the repository by human intrusions. Organic material biodegradation will produce a large amount of CO 2 , which will acidify the WIPP brine and thus significantly increase the mobility of actinides. This communication addresses (1) the rate of organic material biodegradation and the quantity of CO 2 to be possibly generated, (2) the effect of microbial CO 2 production on overall WIPP performance, and (3) the mechanism of using MgO to mitigate this effect

  14. Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning

    OpenAIRE

    Fernandes, Paulo; Terhi, Vilén

    2011-01-01

    Forest fires are integral to the Mediterranean Basin but fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recent published data to calculate the average annual wildfire CO2 emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of...

  15. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    Fujimori, S.; Kainuma, M.; Masui, T.; Hasegawa, T.; Dai, H.

    2014-01-01

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO 2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector

  16. The environmental tax reforms in Europe: mitigation, compensation, and CO2-stabilization

    DEFF Research Database (Denmark)

    Andersen, M. S.; Speck, S.

    2009-01-01

    It has been suggested that carbon-energy taxes would need to be increased to a level of 20-30 ?/tonne CO2 in 2020 in order to accomplish a stabilisation target for greenhouse gas concentrations. While increases of carbon-energy taxes inevitably raise questions about the negative impacts on economic...... growth and competitiveness, the European experience shows that governments as part of already agreed environmental tax reforms (ETR) have in fact implicit carbon-energy taxes with a nominal level that in many cases exceeds this level. Still, European governments have exempt especially the energy...

  17. Revisiting CO2 mitigation potential and costs in China's electricity sector

    International Nuclear Information System (INIS)

    Cai Wenjia; Wang Can; Chen Jining

    2010-01-01

    To improve the reliability of sectoral mitigation potential and cost analysis, this paper made an in-depth exploration into China's electricity sector's thermal efficiency and inner structure. It is found that unlike what many literatures portray, China is actually among the world's leaders in coal-fired power plants' generating efficiencies; besides, although there are still numerous small and inefficient generating units in the current generation fleet, many of them are in fact playing important roles in supporting local economic development, meeting peak load needs, balancing heat and electricity supply and providing job opportunities to the local economy, therefore their existence does not necessarily mean low-cost mitigation potential. Given the efficiency and structural characteristics of China's electricity sector, it is pointed out that some other mitigation options, such as demand side management, IGCC and renewable energy as well as the break-through of CCS technology may play an even more important role in emission reduction. Considering the significant lock-in effects in electricity sector, it is warned that China, if continues putting majority investment in large and advanced coal-fired generating units, will face another round of chasing-after for the new and advanced renewable generation technologies. Therefore China should put more efforts in renewable generation technologies now.

  18. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson

    2017-04-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.

  19. The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation

    NARCIS (Netherlands)

    van Vuuren, D.P.; Isaac, M.; Kundzewicz, Z.W.; Arnell, N.; Barker, T.; Criqui, P.; Berkhout, F.; Hilderink, H.; Hinkel, J.; Hof, Andries; Kitous, A.; Kram, T.; Mechler, R.; Scrieciu, S.

    2011-01-01

    Scenarios are used to explore the consequences of different adaptation and mitigation strategies under uncertainty. In this paper, two scenarios are used to explore developments with (1) no mitigation leading to an increase of global mean temperature of 4 °C by 2100 and (2) an ambitious mitigation

  20. Feasible study of international cooperation on the long-term scenario for reducing CO2. DNE-21 simulation database; CO2 sakugen ni kakawaru choki scenario ni kansuru kokusai kyoryoku kanosei chosa. DNE21 simulation database

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes calculation codes of DNE-21 which can simulate the optimization model for reducing CO2. The DNE-21 was modified from the former NE-21. The term was set between 2000 and 2100. Optimization can be conducted across the different time. Non-conventional petroleum was removed from the primary energy. Capacity of nuclear power generation facilities was taken in the model for the optimization. Decision making analysis can be done by considering the uncertainty. The DNE-21 has eleven input files including the model operation, technical property related data, cost related data, data of tax, subsidy and customs, and scenario data of future energy demand and supply, GNP, population and nuclear power. The DNE-21 has fifteen output files including the optimization calculation results for the world, Oceania, the Middle East, North Africa, Central America, South America, former USSR, and OECD countries. 2 figs.

  1. Future production and utilisation of biomass in Sweden: potentials and CO2 mitigation

    International Nuclear Information System (INIS)

    Boerjesson, P.; Gustavsson, L.; Christersson, L.; Linder, S.

    1997-01-01

    Swedish biomass production potential could be increased significantly if new production methods, such as optimised fertilisation, were to be used. Optimised fertilisation on 25% of Swedish forest land and the use of stem wood could almost double the biomass potential from forestry compared with no fertilisation, as both logging residues and large quantities of excess stem wood not needed for industrial purposes could be used for energy purposes. Together with energy crops and straw from agriculture, the total Swedish biomass potential would be about 230 TWh/yr or half the current Swedish energy supply if the demand for stem wood for building and industrial purposes were the same as today. The new production methods are assumed not to cause any significant negative impact on the local environment. The cost of utilising stem wood produced with optimised fertilisation for energy purposes has not been analysed and needs further investigation. Besides replacing fossil fuels and, thus, reducing current Swedish CO 2 emissions by about 65%, this amount of biomass is enough to produce electricity equivalent to 20% of current power production. Biomass-based electricity is produced preferably through co-generation using district heating systems in densely populated regions, and pulp industries in forest regions. Alcohols for transportation and stand-alone power production are preferably produced in less densely populated regions with excess biomass. A high intensity in biomass production would reduce biomass transportation demands. There are uncertainties regarding the future demand for stem wood for building and industrial purposes, the amount of arable land available for energy crop production and future yields. These factors will influence Swedish biomass potential and earlier estimates of the potential vary from 15 to 125 TWh/yr. (author)

  2. Allowable carbon emissions for medium-to-high mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tachiiri, Kaoru; Hargreaves, Julia C.; Annan, James D.; Kawamiya, Michio [Research Inst. for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, (Japan)], e-mail: tachiiri@jamstec.go.jp; Huntingford, Chris [Centre for Ecology and Hydrology, Wallingford (United Kingdom)

    2013-11-15

    Using an ensemble of simulations with an intermediate complexity climate model and in a probabilistic framework, we estimate future ranges of carbon dioxide (CO{sub 2}) emissions in order to follow three medium-high mitigation concentration pathways: RCP2.6, RCP4.5 and SCP4.5 to 2.6. Uncertainty is first estimated by allowing modelled equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within widely accepted ranges. Results are then constrained by comparison against contemporary measurements. For both constrained and unconstrained projections, our calculated allowable emissions are close to the standard (harmonised) emission scenarios associated with these pathways. For RCP4.5, which is the most moderate scenario considered in terms of required emission abatement, then after year 2100 very low net emissions are needed to maintain prescribed year 2100 CO{sub 2} concentrations. As expected, RCP2.6 and SCP4.5 to 2.6 require more strict emission reductions. The implication of this is that direct sequestration of carbon dioxide is likely to be required for RCP4.5 or higher mitigation scenarios, to offset any minimum emissions for society to function (the 'emissions floor'). Despite large uncertainties in the physical and biogeochemical processes, constraints from model-observational comparisons support a high degree of confidence in predicting the allowable emissions consistent with a particular concentration pathway. In contrast the uncertainty in the resulting temperature range remains large. For many parameter sets, and especially for RCP2.6, the land will turn into a carbon source within the twenty first century, but the ocean will remain as a carbon sink. For land carbon storage and our modelling framework, major reductions are seen in northern high latitudes and the Amazon basin even after atmospheric CO{sub 2} is stabilised, while for ocean carbon uptake, the tropical ocean regions will be a

  3. Towards greener data centres, 2012-2015. Trends in energy consumptions, renewable energy and CO2 emissions in various scenarios; Vergroenen datacenters 2012-2015. Ontwikkeling van energiegebruik, hiernieuwbare energie en CO2-emissies bij verschillende scenario's

    Energy Technology Data Exchange (ETDEWEB)

    Afman, M.R.; Wielders, L.M.L.; De Buck, A.

    2012-03-15

    CE Delft has conducted a study on the potential for reducing the CO2 emissions of Dutch data centres. It was carried out for the development organisation Hivos, which is appealing to these centres to make an active effort to reduce their energy consumption and CO2 emissions. The study estimates the total power consumption of Dutch data centres at 1.6 TWh, equivalent to the consumption of 450,000 households. In a business-as-usual scenario consumption is predicted to rise substantially, to 2.1 TWh in 2015, equivalent to the consumption of 600,000 households and 2% of aggregate Dutch consumption. There is plenty of scope for the data centre industry to operate more sustainably and reduce its CO2 emissions: (1) a pivotal first step is to reduce energy consumption by improving energy efficiency. The City of Amsterdam now has energy efficiency standards in place for data centres, and if these were to hold for centres outside Amsterdam, too, a 20% reduction is energy consumption could be achieved, equivalent to the consumption of 85,000 households. Since many of the measures concerned are already cost-effective, numerous steps are already being taken in this direction; (2) the most effective way to improve the sustainability profile with respect to energy use is for data centres to invest in more renewable energy capacity, either themselves or in collaboration with other parties, passing on additional costs to customers. This will not only lead to a real decline in CO2 emissions, but also send out a clear signal. Simply purchasing 'green power' on the market, while being a far cheaper option, does not lead to cuts in carbon emissions. There is less green power available with an environmental 'Milieukeur' certificate and besides helping make consumers more environmentally aware it can also have an indirect political effect. A quite different option that does lead to carbon cuts is to offset emissions by funding renewable energy projects, in the

  4. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  5. Cocoa Intensification Scenarios and Their Predicted Impact on CO2 Emissions, Biodiversity Conservation, and Rural Livelihoods in the Guinea Rain Forest of West Africa

    Science.gov (United States)

    Gockowski, Jim; Sonwa, Denis

    2011-08-01

    The Guinean rain forest (GRF) of West Africa, identified over 20 years ago as a global biodiversity hotspot, had reduced to 113,000 km2 at the start of the new millennium which was 18% of its original area. The principal driver of this environmental change has been the expansion of extensive smallholder agriculture. From 1988 to 2007, the area harvested in the GRF by smallholders of cocoa, cassava, and oil palm increased by 68,000 km2. Field results suggest a high potential for significantly increasing crop yields through increased application of seed-fertilizer technologies. Analyzing land-use change scenarios, it was estimated that had intensified cocoa technology, already developed in the 1960s, been pursued in Cote d'Ivoire, Ghana, Nigeria and Cameroon that over 21,000 km2 of deforestation and forest degradation could have been avoided along with the emission of nearly 1.4 billion t of CO2. Addressing the low productivity of agriculture in the GRF should be one of the principal objectives of REDD climate mitigation programs.

  6. Fiscal 1996 survey of potential international cooperation for a long-term scenario on CO2 reduction; 1996 nendo CO2 sakugen ni kakawaru choki shinario ni kansuru kokusai kyoryoku kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the purpose of working out a CO2 reduction scenario and a CO2 policy introduction scenario, a survey was conducted of comparisons between ten and several models which are world-known and models of the New Earth 21, potential international cooperation to be carried out in the future, etc. The survey included organizations which are developing CO2 policy evaluation models, survey reports made in the past, details of literature for the analysis and arrangement. From the result, details of the questionnaire survey and organizations to be surveyed were decided on for the questionnaire survey. Objects for the survey were 7 countries and 22 organizations, and survey items were places for information exchange, sending/receiving of researchers, exchange of input data, comparative calculation based on the common database, joint research work, economy, the carbon tax, impact, renewable energy, how to handle and think of the carbon isolation, etc. As a result of the survey, proposed were a workshop on CO2 reduction, a comparative study of simulation models, etc. 25 refs., 50 figs., 12 tabs.

  7. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    Science.gov (United States)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1

  8. Arbuscular Mycorrhizal Fungi May Mitigate the Influence of a Joint Rise of Temperature and Atmospheric CO2 on Soil Respiration in Grasslands

    Directory of Open Access Journals (Sweden)

    S. Vicca

    2009-01-01

    Full Text Available We investigated the effects of mycorrhizal colonization and future climate on roots and soil respiration (Rsoil in model grassland ecosystems. We exposed artificial grassland communities on pasteurized soil (no living arbuscular mycorrhizal fungi (AMF present and on pasteurized soil subsequently inoculated with AMF to ambient conditions and to a combination of elevated CO2 and temperature (future climate scenario. After one growing season, the inoculated soil revealed a positive climate effect on AMF root colonization and this elicited a significant AMF x climate scenario interaction on root biomass. Whereas the future climate scenario tended to increase root biomass in the noninoculated soil, the inoculated soil revealed a 30% reduction of root biomass under warming at elevated CO2 (albeit not significant. This resulted in a diminished response of Rsoil to simulated climatic change, suggesting that AMF may contribute to an attenuated stimulation of Rsoil in a warmer, high CO2 world.

  9. Arbuscular Mycorrhizal Fungi May Mitigate the Influence of a Joint Rise of Temperature and Atmospheric CO2 on Soil Respiration in Grasslands

    International Nuclear Information System (INIS)

    Vicca, S.; Zavalloni, C.; Fu, Y.S.H.; Ceulemans, R.; Nijs, I.; Janssens, I.A.; Voets, L.; Boulois, H.D.D.; Declerck, S.

    2009-01-01

    We investigated the effects of mycorrhizal colonization and future climate on roots and soil respiration (R soil) in model grassland ecosystems. We exposed artificial grassland communities on pasteurized soil (no living arbuscular mycorrhizal fungi (AMF) present) and on pasteurized soil subsequently inoculated with AMF to ambient conditions and to a combination of elevated CO 2 and temperature (future climate scenario). After one growing season, the inoculated soil revealed a positive climate effect on AMF root colonization and this elicited a significant AMF x climate scenario interaction on root biomass. Whereas the future climate scenario tended to increase root biomass in the non inoculated soil, the inoculated soil revealed a 30% reduction of root biomass under warming at elevated CO 2 (albeit not significant). This resulted in a diminished response of R soil to simulated climatic change, suggesting that AMF may contribute to an attenuated stimulation of R soil in a warmer, high CO 2 world.

  10. Elevated CO2-mitigation of high temperature stress associated with maintenance of positive carbon balance and carbohydrate accumulation in Kentucky bluegrass.

    Science.gov (United States)

    Song, Yali; Yu, Jingjin; Huang, Bingru

    2014-01-01

    Elevated CO2 concentration may promote plant growth while high temperature is inhibitory for C3 plant species. The interactive effects of elevated CO2 and high temperatures on C3 perennial grass growth and carbon metabolism are not well documented. Kentucky bluegrass (Poa pratensis) plants were exposed to two CO2 levels (400 and 800 μmol mol-1) and five temperatures (15/12, 20/17, 25/22, 30/27, 35/32°C, day/night) in growth chambers. Increasing temperatures to 25°C and above inhibited leaf photosynthetic rate (Pn) and shoot and root growth, but increased leaf respiration rate (R), leading to a negative carbon balance and a decline in soluble sugar content under ambient CO2. Elevated CO2 did not cause shift of optimal temperatures in Kentucky bluegrass, but promoted Pn, shoot and root growth under all levels of temperature (15, 20, 25, 30, and 35°C) and mitigated the adverse effects of severe high temperatures (30 and 35°C). Elevated CO2-mitigation of adverse effects of high temperatures on Kentucky bluegrass growth could be associated with the maintenance of a positive carbon balance and the accumulation of soluble sugars and total nonstructural carbohydrates through stimulation of Pn and suppression of R and respiratory organic acid metabolism.

  11. Informed public opinion in the Netherlands. Evaluation of CO2 capture and storage technologies in comparison with other CO2 mitigation options

    Energy Technology Data Exchange (ETDEWEB)

    De Best-Waldhober, M. [Energy Research of the Netherlands ECN, Unit Policy Studies, Radarweg 60, 1043 NT Amsterdam (Netherlands); Daamen, D.D.L. [Centre for Energy and Environmental Studies, Dept. of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden (Netherlands); Ramirez-Ramirez, A.; Faaij, A. [Copernicus Institute, Faculty of Geosciences, Utrecht University, Budapestlaat 6, 3584 CD Utrecht (Netherlands); Hendriks, C.; De Visser, E. [Ecofys Netherlands, Kanaalweg 16-a, 3526 KL Utrecht (Netherlands)

    2012-09-15

    In this study, 995 respondents in a representative sample of the Dutch general population are set in the situation of policymakers: they are faced with the issue of fulfilling the Dutch demand for energy in 2030 in such a way that emissions of carbon dioxide will be reduced by 50%. In the Information-Choice Questionnaire (ICQ) that was developed for this, respondents evaluated information from experts on seven options for CO2 emission reduction and their consequences. Two CCS options were compared to two energy efficiency options, a wind energy option, a biomass energy option, and a nuclear energy option. Results show that people are not that enthusiastic regarding the two CCS options. These are evaluated 5.3 and 5.9 on average on a scale of 1-10 and not often chosen as one of the three preferred options, but they are also rarely rejected. Most of the other options in the questionnaire were evaluated rather positively, except nuclear energy and the more ambitious efficiency option. Analysis shows that the evaluation of the information regarding consequences moderately influences how options are evaluated overall. The results further indicate that the CCS options are evaluated less positively due to the comparison with other options.

  12. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH physiology under different CO2 scenarios

    Directory of Open Access Journals (Sweden)

    Mónica eRouco

    2013-06-01

    Full Text Available Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 µatm under three nutrient conditions [nutrient replete (R, nitrate limited (-N and phosphate limited (-P]. We focused on calcite and organic carbon quotas and on nitrate and phosphate utilization by analyzing the activity of nitrate reductase (NRase and alkaline phosphatase (APase, respectively. Particulate inorganic (PIC and organic (POC carbon quotas increased with increasing CO2 under R conditions but a different pattern was observed under nutrient limitation. The PIC:POC ratio decreased with increasing CO2 in nutrient limited cultures. Coccolith length increased with CO2 under all nutrient conditions but the coccosphere volume varied depending on the nutrient treatment. Maximum APase activity was found at 561 µatm of CO2 (pH 7.92 in -P cultures and in R conditions, NRase activity increased linearly with CO2. These results suggest that E. huxleyi’s competitive ability for nutrient uptake might be altered in future high-CO2 oceans. The combined dataset will be useful in model parameterizations of the carbon cycle and ocean acidification.

  13. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios.

    Science.gov (United States)

    Rouco, Mónica; Branson, Oscar; Lebrato, Mario; Iglesias-Rodríguez, M Débora

    2013-01-01

    Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 μatm) under three nutrient conditions [nutrient replete (R), nitrate limited (-N), and phosphate limited (-P)]. We focused on calcite and organic carbon quotas and on nitrate and phosphate utilization by analyzing the activity of nitrate reductase (NRase) and alkaline phosphatase (APase), respectively. Particulate inorganic (PIC) and organic (POC) carbon quotas increased with increasing CO2 under R conditions but a different pattern was observed under nutrient limitation. The PIC:POC ratio decreased with increasing CO2 in nutrient limited cultures. Coccolith length increased with CO2 under all nutrient conditions but the coccosphere volume varied depending on the nutrient treatment. Maximum APase activity was found at 561 μatm of CO2 (pH 7.92) in -P cultures and in R conditions, NRase activity increased linearly with CO2. These results suggest that E. huxleyi's competitive ability for nutrient uptake might be altered in future high-CO2 oceans. The combined dataset will be useful in model parameterizations of the carbon cycle and ocean acidification.

  14. U.S. regional greenhouse gas emissions analysis comparing highly resolved vehicle miles traveled and CO2 emissions: mitigation implications and their effect on atmospheric measurements

    Science.gov (United States)

    Mendoza, D. L.; Gurney, K. R.

    2010-12-01

    Carbon dioxide (CO2) is the most abundant anthropogenic greenhouse gas and projections of fossil fuel energy demand show CO2 concentrations increasing indefinitely into the future. After electricity production, the transportation sector is the second largest CO2 emitting economic sector in the United States, accounting for 32.3% of the total U.S. emissions in 2002. Over 80% of the transport sector is composed of onroad emissions, with the remainder shared by the nonroad, aircraft, railroad, and commercial marine vessel transportation. In order to construct effective mitigation policy for the onroad transportation sector and more accurately predict CO2 emissions for use in transport models and atmospheric measurements, analysis must incorporate the three components that determine the CO2 onroad transport emissions: vehicle fleet composition, average speed of travel, and emissions regulation strategies. Studies to date, however, have either focused on one of these three components, have been only completed at the national scale, or have not explicitly represented CO2 emissions instead relying on the use of vehicle miles traveled (VMT) as an emissions proxy. National-level projections of VMT growth is not sufficient to highlight regional differences in CO2 emissions growth due to the heterogeneity of vehicle fleet and each state’s road network which determines the speed of travel of vehicles. We examine how an analysis based on direct CO2 emissions and an analysis based on VMT differ in terms of their emissions and mitigation implications highlighting potential biases introduced by the VMT-based approach. This analysis is performed at the US state level and results are disaggregated by road and vehicle classification. We utilize the results of the Vulcan fossil fuel CO2 emissions inventory which quantified emissions for the year 2002 across all economic sectors in the US at high resolution. We perform this comparison by fuel type,12 road types, and 12 vehicle types

  15. Evaluation of lifecycle CO2 emissions from the Japanese electric power sector in the 21st century under various nuclear scenarios

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Kosugi, Takanobu; Asami, Takayoshi; Williams, Eric; Kaya, Yoichi

    2006-01-01

    The status and prospects of the development of Japanese nuclear power are controversial and uncertain. Many deem that nuclear power can play key roles in both supplying energy and abating CO 2 emissions; however, due to severe nuclear accidents, public acceptance of nuclear power in Japan has not been fully obtained. Moreover, deregulation and liberalization of the electricity market impose pressure on large Japanese electric power companies with regard to both the operation of nuclear power plants and the development of the nuclear fuel cycle. Long-term Japanese CO 2 reduction strategies up to 2100 are of environmental concern and are socially demanded under the circumstances described above. Taking these factors into account, we set the following two objectives for this study. One is to estimate lifecycle CO 2 (LCCO 2 ) emissions from Japanese nuclear power, and the other is to evaluate CO 2 emissions from the Japanese electric power sector in the 21st century by quantifying the relationship between LCCO 2 emissions and scenarios for the adoption of nuclear power. In the pursuit of the above objectives, we first create four scenarios of Japanese adoption of nuclear power, that range from nuclear power promotion to phase-out. Next, we formulate four scenarios describing the mix of the total electricity supply in Japan till the year 2100 corresponding to each of these nuclear power scenarios. CO 2 emissions from the electric power sector in Japan till the year 2100 are estimated by summing those generated by each respective electric power technology and LCCO 2 emission intensity. The LCCO 2 emission intensity of nuclear power for both light water reactors (LWR) and fast breeder reactors (FBR) includes the uranium fuel production chain, facility construction/operation/decommission, and spent fuel processing/disposal. From our investigations, we conclude that the promotion of nuclear power is clearly a strong option for reducing CO 2 emissions by the electric power

  16. An approach to mitigating soil CO2 emission by biochemically inhibiting cellulolytic microbial populations through mediation via the medicinal herb Isatis indigotica

    Science.gov (United States)

    Wu, Hong-Sheng; Chen, Su-Yun; Li, Ji; Liu, Dong-Yang; Zhou, Ji; Xu, Ya; Shang, Xiao-Xia; Wei, Dong-yang; Yu, Lu-ji; Fang, Xiao-hang; Li, Shun-yi; Wang, Ke-ke

    2017-06-01

    Greenhouse gases (GHGs, particularly carbon dioxide (CO2)) emissions from soil under wheat production are a significant source of agricultural carbon emissions that have not been mitigated effectively. A field experiment and a static incubation study in a lab were conducted to stimulate wheat growth and investigate its potential to reduce CO2 emissions from soil through intercropping with a traditional Chinese medicinal herb called Isatis indigotica. This work was conducted by adding I. indigotica root exudates based on the quantitative real-time PCR (qPCR) analysis of the DNA copy number of the rhizosphere or bulk soil microbial populations. This addition was performed in relation to the CO2 formation by cellulolytic microorganisms (Penicillium oxalicum, fungi and Ruminococcus albus) to elucidate the microbial ecological basis for the molecular mechanism that decreases CO2 emissions from wheat fields using I. indigotica. The results showed that the panicle weight and full grains per panicle measured through intercropping with I. indigotica (NPKWR) increased by 39% and 28.6%, respectively, compared to that of the CK (NPKW). Intercropping with I. indigotica significantly decreased the CO2 emissions from soil under wheat cultivation. Compared with CK, the total CO2 emission flux during the wheat growth period in the I. indigotica (NPKWR) intercropping treatment decreased by 29.26%. The intensity of CO2 emissions per kg of harvested wheat grain declined from 7.53 kg CO2/kg grain in the NPKW (CK) treatment to 5.55 kg CO2/kg grain in the NPKWR treatment. The qPCR analysis showed that the DNA copy number of the microbial populations of cellulolytic microorganisms (P. oxalicum, fungi and R. albus) in the field rhizosphere around I. indigotica or in the bulk soil under laboratory incubation was significantly lower than that of CK. This finding indicated that root exudates from I. indigotica inhibited the activity and number of cellulolytic microbial populations, which led

  17. Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?

    Science.gov (United States)

    Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa

    2015-04-01

    Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual

  18. Climate Change Mitigation Pathways for Southeast Asia: CO2 Emissions Reduction Policies for the Energy and Transport Sectors

    Directory of Open Access Journals (Sweden)

    Lew Fulton

    2017-07-01

    Full Text Available As of June 2017, 150 countries have ratified the Paris Climate Agreement. This agreement calls for, among other things, strong reductions in CO2 emissions by 2030 and beyond. This paper reviews the Nationally Determined Contribution (NDCs plans of six Association of Southeast Asian Nations (ASEAN countries and compares their current and projected future CO2 levels across sectors, and their stated targets in the context of their economic and demographic situations. This comparison reveals wide variations in the types of targets, with the “ambition” level changing as the perspective changes from total CO2 to CO2/capita and per unit gross domestic product (GDP. We also review national plans as stated in NDCs and find that while there are many types of policies listed, few are quantified and no attempts are made to score individual or groups of policies for their likelihood in achieving stated targets. We conclude that more analysis is needed to better understand the possible impacts of current policies and plans on CO2 emissions, and whether current plans are adequate to hit targets. Considerations on better aligning targets are also provided.

  19. Thermo-Economic Modelling and Process Integration of CO2-Mitigation Options on Oil and Gas Platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter

    2014-01-01

    recovering CO2 that can be used for enhanced oil recovery. In this paper, a North Sea platform is considered as case study, and the site-scale retrofit integration of these three options is analysed, considering thermodynamic, economic and environmental performance indicators. The results illustrate......The offshore extraction of oil and gas is an energy-intensive process associated with large CO2 and CH4 emissions to the atmosphere and chemicals to the sea. The taxation of these emissions has encouraged the development of more energy-efficient and environmental-friendly solutions, of which three...

  20. The current biodiversity extinction event: scenarios for mitigation and recovery.

    Science.gov (United States)

    Novacek, M J; Cleland, E E

    2001-05-08

    The current massive degradation of habitat and extinction of species is taking place on a catastrophically short timescale, and their effects will fundamentally reset the future evolution of the planet's biota. The fossil record suggests that recovery of global ecosystems has required millions or even tens of millions of years. Thus, intervention by humans, the very agents of the current environmental crisis, is required for any possibility of short-term recovery or maintenance of the biota. Many current recovery efforts have deficiencies, including insufficient information on the diversity and distribution of species, ecological processes, and magnitude and interaction of threats to biodiversity (pollution, overharvesting, climate change, disruption of biogeochemical cycles, introduced or invasive species, habitat loss and fragmentation through land use, disruption of community structure in habitats, and others). A much greater and more urgently applied investment to address these deficiencies is obviously warranted. Conservation and restoration in human-dominated ecosystems must strengthen connections between human activities, such as agricultural or harvesting practices, and relevant research generated in the biological, earth, and atmospheric sciences. Certain threats to biodiversity require intensive international cooperation and input from the scientific community to mitigate their harmful effects, including climate change and alteration of global biogeochemical cycles. In a world already transformed by human activity, the connection between humans and the ecosystems they depend on must frame any strategy for the recovery of the biota.

  1. Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production.

    Science.gov (United States)

    Lanzafame, Paola; Centi, Gabriele; Perathoner, Siglinda

    2014-11-21

    The use of biomass, bio-waste and CO2 derived raw materials, the latter synthesized using H2 produced using renewable energy sources, opens new scenarios to develop a sustainable and low carbon chemical production, particularly in regions such as Europe lacking in other resources. This tutorial review discusses first this new scenario with the aim to point out, between the different possible options, those more relevant to enable this new future scenario for the chemical production, commenting in particular the different drivers (economic, technological and strategic, environmental and sustainability and socio-political) which guide the selection. The case of the use of non-fossil fuel based raw materials for the sustainable production of light olefins is discussed in more detail, but the production of other olefins and polyolefins, of drop-in intermediates and other platform molecules are also analysed. The final part discusses the role of catalysis in establishing this new scenario, summarizing the development of catalysts with respect to industrial targets, for (i) the production of light olefins by catalytic dehydration of ethanol and by CO2 conversion via FTO process, (ii) the catalytic synthesis of butadiene from ethanol, butanol and butanediols, and (iii) the catalytic synthesis of HMF and its conversion to 2,5-FDCA, adipic acid, caprolactam and 1,6-hexanediol.

  2. Evaluation of mitigation scenarios of climate change in the electric sector

    International Nuclear Information System (INIS)

    Perez Martin, David; Lopez Lopez, I.

    1999-01-01

    The electricity generation contributes to development and to improve the quality of life, But it is ones of the most important contributors to the Greenhouse Gas and particle emissions particularly in Cuba where 99.4% of electricity in the National Electric System is generated from fossil fuels. In the paper from mitigation measures three mitigation scenarios are evaluated for the Expansion of the Cuban electric system using DECADES Tools. Evaluated scenarios include the Use of 60% of the biomass potential, the combinations of this with nuclear power reactors, Hydraulic energy and combined cycle power plants. Finally in the paper the Greenhouse Gas level reduction, investment, fuel, operation and Maintenance costs and Carbon Intensity in generation are analyzed for evaluated mitigation Scenarios and conclusions are offered

  3. Sustainable Complex Triangular Cells for the Evaluation of CO2 Emissions by Individuals instead of Nations in a Scenario for 2030

    Directory of Open Access Journals (Sweden)

    Marcelo Sthel

    2013-05-01

    Full Text Available The concept of sustainable complex triangular cells may be applied to an individual of any human society. This concept was introduced in two recent articles. A case study was proposed to show the applicability of this new concept to Indian populations without contact with civilization and with a low environmental impact. Here we propose to apply this concept to a recent study, which claims that the concept of “common but differentiated responsibilities” refers to the emissions of individuals instead of nations. The income distribution of a country was used to estimate how its fossil fuel CO2 emissions are distributed among its citizens and, from that a global CO2 distribution was constructed. We propose the extension of the concept of complex triangular cells where its area would be equivalent to the CO2 emission per individual. In addition, a new three-dimensional geometric model for the regular hexagonal structure is offered in which the sharing of natural resources (human cooperation is employed to reduce CO2 emissions in two scenarios by 2030.

  4. Low-temperature upgrading of low-calorific biogas for CO2 mitigation using DBD-catalyst hybrid reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Tsukijihara, Hiroyuki; Fukui, Wataru; Okazaki, Ken

    2006-10-01

    Although huge amounts of biogas, which consists of 20-60% of CH4 in CO2/N2, can be obtained from landfills, coal mines, and agricultural residues, most of them are simply flared and wasted: because global warming potential of biogas is 5-15 times as potent as CO2. Poor combustibility of such biogas makes it difficult to utilize in conventional energy system. The purpose of this project is to promote the profitable recovery of methane from poor biogas via non-thermal plasma technology. We propose low-temperature steam reforming of biogas using DBD generated in catalyst beds. Methane is partially converted into hydrogen, and then fed into internal combustion engines for improved ignition stability as well as efficient operation. Low-temperature steam reforming is beneficial because exhaust gas from an engine can be used to activate catalyst beds. Space velocity (3600-15000 hr-1), reaction temperature (300-650^oC), and energy cost (30-150 kJ per mol CH4) have been investigated with simulated biogas (20-60% CH4 in mixtures of CO2/N2). The DBD enhances reaction rate of CH4 by a factor of ten at given catalyst temperatures, which is a rate-determining step of methane steam reforming, while species concentration of upgraded biogas was governed by thermodynamic equilibrium in the presence of catalyst.

  5. An Improved Method of Mitigating Laser Induced Surface Damage Growth in Fused Silica Using a Rastered, Pulsed CO2 Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bass, I L; Guss, G M; Nostrand, M J; Wegner, P L

    2010-10-21

    A new method of mitigating (arresting) the growth of large (>200 m diameter and depth) laser induced surface damage on fused silica has been developed that successfully addresses several issues encountered with our previously-reported large site mitigation technique. As in the previous work, a tightly-focused 10.6 {micro}m CO{sub 2} laser spot is scanned over the damage site by galvanometer steering mirrors. In contrast to the previous work, the laser is pulsed instead of CW, with the pulse length and repetition frequency chosen to allow substantial cooling between pulses. This cooling has the important effect of reducing the heat-affected zone capable of supporting thermo-capillary flow from scale lengths on the order of the overall scan pattern to scale lengths on the order of the focused laser spot, thus preventing the formation of a raised rim around the final mitigation site and its consequent down-stream intensification. Other advantages of the new method include lower residual stresses, and improved damage threshold associated with reduced amounts of redeposited material. The raster patterns can be designed to produce specific shapes of the mitigation pit including cones and pyramids. Details of the new technique and its comparison with the previous technique will be presented.

  6. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    International Nuclear Information System (INIS)

    Soerensen, B.; Meibom, P.; Kuemmel, B.

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  7. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B; Meibom, P [Technical Univ. of Denmark, Lyngby (Denmark); Kuemmel, B [Royal Agricultural and Veterinary Univ., Tastrup (Denmark)

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  8. The implications of carbon dioxide and methane exchange for the heavy mitigation RCP2.6 scenario under two metrics

    International Nuclear Information System (INIS)

    Huntingford, Chris; Lowe, Jason A.; Howarth, Nicholas; Bowerman, Niel H.A.; Gohar, Laila K.; Otto, Alexander; Lee, David S.; Smith, Stephen M.; Elzen, Michel G.J. den; Vuuren, Detlef P. van; Millar, Richard J.; Allen, Myles R.

    2015-01-01

    Highlights: • Exchanging methane for carbon dioxide emissions affects peak global warming. • Economic constraints severely affects exchange possibilities. • Chosen metric determines if economic to eliminate all removable methane emissions. • If all methane emissions could be removed, this could aid meeting two-degrees warming target. - Abstract: Greenhouse gas emissions associated with Representative Concentration Pathway RCP2.6 could limit global warming to around or below a 2 °C increase since pre-industrial times. However this scenario implies very large and rapid reductions in both carbon dioxide (CO 2 ) and non-CO 2 emissions, and suggests a need to understand available flexibility between how different greenhouse gases might be abated. There is a growing interest in developing a greater understanding of the particular role of shorter lived non-CO 2 gases as abatement options. We address this here through a sensitivity study of different methane (CH 4 ) emissions pathways to year 2100 and beyond, by including exchanges with CO 2 emissions, and with a focus on related climate and economic advantages and disadvantages. Metrics exist that characterise gas equivalence in terms of climate change effect per tonne emitted. We analyse the implications of CO 2 and CH 4 emission exchanges under two commonly considered metrics: the 100-yr Global Warming Potential (GWP-100) and Global Temperature Potential (GTP-100). This is whilst keeping CO 2 -equivalent emissions pathways fixed, based on the standard set of emissions usually associated with RCP2.6. An idealised situation of anthropogenic CH 4 emissions being reduced to zero across a period of two decades and with the implementation of such cuts starting almost immediately gives lower warming than for standard RCP2.6 emissions during the 21st and 22nd Century. This is despite exchanging for higher CO 2 emissions. Introducing Marginal Abatement Cost (MAC) curves provides an economic assessment of alternative gas

  9. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers.

    Science.gov (United States)

    Tribouillois, Hélène; Constantin, Julie; Justes, Eric

    2018-02-14

    Cover crops provide ecosystem services such as storing atmospheric carbon in soils after incorporation of their residues. Cover crops also influence soil water balance, which can be an issue in temperate climates with dry summers as for example in southern France and Europe. As a consequence, it is necessary to understand cover crops' long-term influence on greenhouse gases (GHG) and water balances to assess their potential to mitigate climate change in arable cropping systems. We used the previously calibrated and validated soil-crop model STICS to simulate scenarios of cover crop introduction to assess their influence on rainfed and irrigated cropping systems and crop rotations distributed among five contrasted sites in southern France from 2007 to 2052. Our results showed that cover crops can improve mean direct GHG balance by 315 kg CO 2 e ha -1  year -1 in the long term compared to that of bare soil. This was due mainly to an increase in carbon storage in the soil despite a slight increase in N 2 O emissions which can be compensated by adapting fertilization. Cover crops also influence the water balance by reducing mean annual drainage by 20 mm/year but increasing mean annual evapotranspiration by 20 mm/year compared to those of bare soil. Using cover crops to improve the GHG balance may help to mitigate climate change by decreasing CO 2 e emitted in cropping systems which can represent a decrease from 4.5% to 9% of annual GHG emissions of the French agriculture and forestry sector. However, if not well managed, they also could create water management issues in watersheds with shallow groundwater. Relationships between cover crop biomass and its influence on several variables such as drainage, carbon sequestration, and GHG emissions could be used to extend our results to other conditions to assess the cover crops' influence in a wider range of areas. © 2018 John Wiley & Sons Ltd.

  10. CO2 emission scenarios for next centuries to obtain more complete simulations of the global warming; Scenari globali di emissione a lungo termine di CO2 per una simulazione piu' completa dell'effetto serra

    Energy Technology Data Exchange (ETDEWEB)

    Michelini, M. [ENEA, Divisione Sistemi Energetici per la Mobilita' e l' Habitat, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    In the framework of a punctual Modeling of the Greenhouse Effect (report RT/ERG/2001/1) it is necessary to set CO2 Emission Scenarios for the next Centuries in order to obtain the complete evolution of the global warming. Some methodologies are described to approach such long term previsions. From the demand side, the growth of the consumes (which are affected by population and development) is correlated (supply side) with the technical-economic-environmental Evaluation of the future diffusion of classic sources (experienced in the past centuries) and of new Technologies and renewable sources. The previsions of the world population Growth are derived from the UNFPA publications. The degree of economic Development of the world Population in the very long term is obtained by simulating the Evolution of the Population across four main Areas characterized by different pro-capita consumes. Using these criteria two different Scenarios have been set-up and put into comparison with the SRES Scenarios published in the Third Assessment Report-WG1 of the IPCC. The cut at the year 2100 of the SRES Scenarios is also discussed. Simulations of the Global Warming in the long term have been performed with the two scenarios. These results are discussed together with the results of the Simulations reported by IPCC. [Italian] Nell'ambito della elaborazione di un modello puntuale per la simulazione del riscaldamento globale conseguente all'effetto serra, (rapporto tecnico RT/ERG/2001/1), viene ripresa la problematica degli scenari di emissione di CO2 per alcuni secoli al fine di poter studiare l'intera evoluzione del fenomeno. Per superare le difficolta' insite nelle previsioni riferite a un futuro tanto lontano, vengono indicate alcune metodologie. Dal lato domanda i principali fattori di crescita dei consumi (cioe' popolazione e sviluppo economico) vengono posti a confronto (lato offerta) con le modalita' di diffusione delle singole fonti desunte dai

  11. An assessment of the potentials of nuclear power and carbon capture and storage in the long-term global warming mitigation options based on Asian Modeling Exercise scenarios

    International Nuclear Information System (INIS)

    Mori, Shunsuke

    2012-01-01

    This paper presents an evaluation of global warming mitigation options based on scenarios from the Asian Modeling Exercise. Using an extended version of the integrated assessment model MARIA-23 (Multiregional Approach for Resource and Industry Allocation), we analyze nuclear fuel recycling options, carbon capture and storage technologies (CCS), and biomass utilization. To assess the potential implications of decreased social acceptance of nuclear power in the wake of the Fukushima nuclear accident, additional scenarios including a nuclear power expansion limitation, are analyzed. We also evaluate MARIA-23 model simulation estimates of long-term contributions and interrelationships among nuclear power, biomass, and CCS. Finally, potential costs of nuclear limitation under carbon control policies are assessed. The simulation results in this paper suggest the following: (1) under the reference scenario, global GDP losses in climate limitation scenarios range from 1.3% per year to 3.9% per year in 2060, rising to between 3.5% per year and 4.5% per year in 2100; (2) the use of nuclear fuel reprocessing technologies increase rapidly in all carbon control policy scenarios; (3) under a scenario where the price of CO 2 is $30 and nuclear power expansion is strictly limited, GDP losses increase significantly—from 4.5% per year to 6.4% per year by 2100; (4) nuclear power and CCS are substitute mitigation technologies. With nuclear power technology available CCS deployment reaches approximately 15,000 Mt-CO 2 per year by 2010; without a nuclear power option, CCS deployment rises to more than 80,000 Mt-CO 2 per year; and (5) biomass utilization cannot fully compensate for limitations to nuclear power expansion in policy scenarios. In addition to examining the role of these three technologies on global scales, we report results for several major Asian regions, namely Japan, China, and India. China tends to deploy nuclear power (if available) in response to rapidly growing

  12. The implications of carbon dioxide and methane exchange for the heavy mitigation RCP2.6 scenario under two metrics

    NARCIS (Netherlands)

    Huntingford, Chris; Lowe, Jason A.; Howarth, Nicholas; Bowerman, Niel H.A.; Gohar, Laila K.; Otto, Alexander; Lee, David S.; Smith, Stephen M.; den Elzen, Michel G.J.; van Vuuren, Detlef P.; Millar, Richard J.; Allen, Myles R.

    2015-01-01

    Greenhouse gas emissions associated with Representative Concentration Pathway RCP2.6 could limit global warming to around or below a 2°C increase since pre-industrial times. However this scenario implies very large and rapid reductions in both carbon dioxide (CO2) and non-CO2 emissions, and suggests

  13. Rolling stones. Fast weathering of olivine in shallow seas for cost-effective CO2 capture and mitigation of global warming and ocean acidification

    Energy Technology Data Exchange (ETDEWEB)

    Schuiling, R.D.; De Boer, P.L. [Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508TA Utrecht (Netherlands)

    2011-07-01

    Human CO2 emissions may drive the Earth into a next greenhouse state. They can be mitigated by accelerating weathering of natural rock under the uptake of CO2. We disprove the paradigm that olivine weathering in nature would be a slow process, and show that it is not needed to mill olivine to very fine, 10 {mu}m-size grains in order to arrive at a complete dissolution within 1-2 year. In high-energy shallow marine environments olivine grains and reaction products on the grain surfaces, that otherwise would greatly retard the reaction, are abraded so that the chemical reaction is much accelerated. When kept in motion even large olivine grains rubbing and bumping against each other quickly produce fine clay- and silt-sized olivine particles that show a fast chemical reaction. Spreading of olivine in the world's 2% most energetic shelf seas can compensate a year's global CO2 emissions and counteract ocean acidification against a price well below that of carbon credits.

  14. Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO2 mitigation: from an agar plate to 100-m3 industrial photobioreactors.

    Science.gov (United States)

    Pereira, Hugo; Páramo, Jaime; Silva, Joana; Marques, Ana; Barros, Ana; Maurício, Dinis; Santos, Tamára; Schulze, Peter; Barros, Raúl; Gouveia, Luísa; Barreira, Luísa; Varela, João

    2018-03-23

    Industrial production of novel microalgal isolates is key to improving the current portfolio of available strains that are able to grow in large-scale production systems for different biotechnological applications, including carbon mitigation. In this context, Tetraselmis sp. CTP4 was successfully scaled up from an agar plate to 35- and 100-m 3 industrial scale tubular photobioreactors (PBR). Growth was performed semi-continuously for 60 days in the autumn-winter season (17 th October - 14 th December). Optimisation of tubular PBR operations showed that improved productivities were obtained at a culture velocity of 0.65-1.35 m s -1 and a pH set-point for CO 2 injection of 8.0. Highest volumetric (0.08 ± 0.01 g L -1 d -1 ) and areal (20.3 ± 3.2 g m -2 d -1 ) biomass productivities were attained in the 100-m 3 PBR compared to those of the 35-m 3 PBR (0.05 ± 0.02 g L -1 d -1 and 13.5 ± 4.3 g m -2 d -1 , respectively). Lipid contents were similar in both PBRs (9-10% of ash free dry weight). CO 2 sequestration was followed in the 100-m 3 PBR, revealing a mean CO 2 mitigation efficiency of 65% and a biomass to carbon ratio of 1.80. Tetraselmis sp. CTP4 is thus a robust candidate for industrial-scale production with promising biomass productivities and photosynthetic efficiencies up to 3.5% of total solar irradiance.

  15. Forestry for mitigating the greenhouse effect : an ecological and economic assessment of the potential of land use to mitigate CO2 emissions in the Highlands of Chiapas, Mexico

    NARCIS (Netherlands)

    Jong, de B.H.J.

    2000-01-01

    The present study intends to answer some of the important questions that arise when translating projects that have an ecological potential to mitigate carbon excesses, into actual implementation of these projects in a farmer-dominated landscape. Farm and community forestry projects for

  16. Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet

    International Nuclear Information System (INIS)

    Hao, Han; Wang, Hewu; Ouyang, Minggao

    2011-01-01

    Passenger vehicles are the main consumers of gasoline in China. We established a bottom-up model which focuses on the simulation of energy consumptions and greenhouse gas (GHG) emissions growth by China’s passenger vehicle fleet. The fuel conservation and GHG emissions mitigation effects of five measures including constraining vehicle registration, reducing vehicle travel, strengthening fuel consumption rate (FCR) limits, vehicle downsizing and promoting electric vehicle (EV) penetration were evaluated. Based on the combination of these measures, the fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were analyzed. Under reference scenario with no measures implemented, the fuel consumptions and life cycle GHG emissions will reach 520 million tons of oil equivalent (Mtoe) and 2.15 billion tons in 2050, about 8.1 times the level in 2010. However, substantial fuel conservation can be achieved by implementing the measures. By implementing all five measures together, the fuel consumption will reach 138 Mtoe in 2030 and decrease to 126 Mtoe in 2050, which is only 37.1% and 24.3% of the consumption under reference scenario. Similar potential lies in GHG mitigation. The results and scenarios provided references for the Chinese government’s policy-making. -- Highlights: ► We established a bottom-up model to simulate the fuel consumptions and GHG (Greenhouse gas) emissions growth by China’s passenger vehicle fleet. ► Five measures including constraining vehicle registration, reducing vehicle travel, improving fuel efficiency, vehicle downsizing and promoting EV penetration were evaluated. ► The fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were provided as references for policy-making.

  17. Simulation analysis of the possibility of introducing massive renewable energy and nuclear fuel cycle in the scenario to halve global CO2 emissions by the year 2050

    International Nuclear Information System (INIS)

    Hosoya, Yoshifumi; Komiyama, Ryoichi; Fujii, Yasumasa

    2011-01-01

    There is growing attention to the regulation of greenhouse gas (GHG) emissions to mitigate the global warming. Hence, the target of 50% reduction of global GHG emissions by the year 2050 has been investigated in this paper. The authors have been revising the regionally disaggregated world energy model which is formulated as a large scale linear optimization model from the aspect of nuclear and photovoltaic power generation technologies. This paper explains the structure of the revised world energy model considering the intermittent characteristics of photovoltaic power generation derived from the changes in weather conditions. And also this paper shows the simulation results to halve global CO 2 emissions by the year 2050 and evaluates the long-term technological options such as nuclear fuel cycle and renewable energies. Finally the authors discuss the future step for extensive revision of the energy model. (author)

  18. Contrasting Impact of Future CO2 Emission Scenarios on the Extent of CaCO3 Mineral Undersaturation in the Humboldt Current System

    Science.gov (United States)

    Franco, A. C.; Gruber, N.; Frölicher, T. L.; Kropuenske Artman, L.

    2018-03-01

    The eastern boundary upwelling systems are among those regions that are most vulnerable to an ocean acidification-induced transition toward undersaturated conditions with respect to mineral CaCO3, but no assessment exists yet for the Humboldt Current System. Here we use a high-resolution (˜7.5 km) regional ocean model to investigate past and future changes in ocean pH and CaCO3 saturation state in this system. We find that within the next few decades, the nearshore waters off Peru are projected to become corrosive year round with regard to aragonite, the more soluble form of CaCO3. The volume of aragonite undersaturated water off Peru will continue to increase in the future irrespective of the amount of CO2 emitted to the atmosphere. In contrast, the development of the saturation state with regard to calcite, a less soluble form of carbonate, depends strongly on the scenario followed. By 2050, calcite undersaturation appears in the nearshore waters off Peru occasionally, but by 2090 in a high-emission scenario (RCP8.5), ˜60% of the water in the euphotic zone will become permanently calcite undersaturated. Most of this calcite undersaturation off Peru can likely be avoided if a low emission scenario (RCP2.6) consistent with the Paris Agreement is followed. The progression of ocean acidification off Chile follows a similar pattern, except that the saturation states are overall higher. But also here, calcite undersaturated waters will become common in the subsurface waters under the RCP8.5 scenario by the end of this century, while this can be avoided under the RCP2.6 scenario.

  19. NEOTEC: Negative-CO2-Emissions Marine Energy With Direct Mitigation of Global Warming, Sea-Level Rise and Ocean Acidification

    Science.gov (United States)

    Rau, G. H.; Baird, J.; Noland, G.

    2016-12-01

    The vertical thermal energy potential in the ocean is a massive renewable energy resource that is growing due to anthropogenic warming of the surface and near-surface ocean. The conversion of this thermal energy to useful forms via Ocean Thermal Energy Conversion (OTEC) has been demonstrated over the past century, albeit at small scales. Because OTEC removes heat from the surface ocean, this could help directly counter ongoing, deleterious ocean/atmosphere warming. The only other climate intervention that could do this is solar radiation "geoengineering". Conventional OTEC requires energy intensive, vertical movement of seawater resulting in ocean and atmospheric chemistry alteration, but this can be avoided via more energy efficient, vertical closed-cycle heating and cooling of working fluid like CO2 or NH3. An energy carrier such as H2 is required to transport energy optimally extracted far offshore, and methods of electrochemically generating H2 while also consuming CO2 and converting it to ocean alkalinity have been demonstrated. The addition of such alkalinity to the ocean would provide vast, stable, carbon storage, while also helping chemically counter the effects of ocean acidification. The process might currently be profitable given the >$100/tonne CO2 credit offered by California's Low Carbon Fuel Standard for transportation fuels like H2. Negative-Emissions OTEC, NEOTEC, thus can potentially provide constant, cost effective, high capacity, negative-emissions energy while: a) reducing surface ocean heat load, b) reducing thermal ocean expansion and sea-level rise, c) utilizing a very large, natural marine carbon storage reservoir, and d) helping mitigate ocean acidification. The technology also avoids the biophysical and land use limitations posed by negative emissions methods that rely on terrestrial biology, such as afforestation and BECCS. NEOTEC and other marine-based, renewable energy and CO2 removal approaches could therefore greatly increase the

  20. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  1. Potentiel des méthodes de séparation et stockage du CO2 dans la lutte contre l'effet de serreThe role of CO2 capture and sequestration in mitigation of climate change

    Science.gov (United States)

    Jean-Baptiste, Philippe; Ducroux, René

    2003-06-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2. Technical solutions exist to reduce CO 2 emission and stabilise atmospheric CO 2 concentration, including energy saving and energy efficiency, switch to lower carbon content fuels like natural gas and to energy sources that operate with zero CO 2 emissions such as renewable or nuclear energy, enhance the natural sinks for CO 2 (forests, soils, etc.), and last but not least, sequester CO 2 from fossil fuels combustion. The purpose of this paper is to provide an overview of the technology and cost for capture and storage of CO 2. Some of the factors that will influence application, including environmental impact, cost and efficiency, are also discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology; however, substantial R&D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to more than 30% of the global anthropogenic CO 2 emission, it represents a valuable tool in the battle against global warming. To cite this article: P. Jean-Baptiste, R. Ducroux, C. R. Geoscience 335 (2003).

  2. Greenhouse gas energy scenarios for Mexico in year 2020, and mitigation potential of renewable technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum, Claudia; Robles, Guillermo; Rodriguez V, Luis [Instituto de Ingenieria de la UNAM, Mexico, D.F. (Mexico); Massera, Omar [UNAM, Michoacan (Mexico)

    2000-07-01

    This paper presents the structure of the Mexican Energy-Emission Scenario Model (MEESM). In explains the importance of developing a bottom-up model for GHG mitigation assessment in Mexico. Also, the paper presents results of CO{sub 2} mitigation scenarios for year 2020 for five renewable energy technologies: solar water heaters, geothermal, biomass, mini/micro hydro and wind power generation. The paper concludes by discussing the importance of simulation accounting bottom-up models as tools for GHG mitigation policies. [Spanish] Este articulo presenta la estructura del Modelo de Escenario de Emision de Energia Mexicano (MEESM). En el se explica la importancia de desarrollar un modelo organizacional de abajo hacia arriba para la evaluacion de la mitigacion del efecto invernadero en Mexico. El articulo presenta tambien los resultados de los escenarios de mitigacion de CO{sub 2} para el ano 2020 utilizando cinco tecnologias de energia renovable: calentadores solares de agua, geotermia, biomasa, y mini/micro generacion de energia por agua y viento. El articulo concluye con el analisis de la importancia de la simulacion tomando en cuenta modelos organizacionales de abajo hacia arriba como herramientas para las politicas de mitigacion del efecto invernadero.

  3. MITIGATION SCENARIOS FOR RESIDENTIAL FIRES IN DENSELY POPULATED URBAN SETTLEMENTS IN SUKAHAJI VILLAGE, BANDUNG CITY

    Directory of Open Access Journals (Sweden)

    Saut Aritua Hasiholan Sagala

    2016-10-01

    Full Text Available Residential fires are a form of disaster that often occurs in urban areas especially in densely populated settlements. This study looks at possible mitigation scenarios for this kind of disaster. A case study was conducted in Babakan Ciparay Sub-District in Bandung City, among the densely populated settlements, and was focused especially on Sukahaji Village, a sub-unit of Babakan Ciparay, which is the most densely populated village in Bandung City with up to 234.14 people/ha. There have been six structural fires recorded from 2007 until 2010 occurring in Sukahaji. This study applied stratified random sampling as the preferred sampling technique and data collection method from a total population of 3,227 buildings. The data was then examined using risk analysis. The results have led to two intervention measures suggested as mitigation scenarios for residential fires that can be applied within the Sukahaji Village. The study concludes that mitigation measures through strengthening community capacity can be the principal option in reducing risk to fires in densely populated urban settlements.

  4. Mitigating CO2 Leakage by Immobilizing CO2 into Solid Reaction Products: 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016. 14 November 2016 through 18 November 2016

    NARCIS (Netherlands)

    Wasch, L.J.; Wollenweber, J.; Neele, F.; Fleury, M.

    2017-01-01

    In the unlikely case of CO2 leakage from a storage reservoir, it is desirable to close the leak efficiently and permanently. This could be done by injecting a reactive solution into the leak path, thereby immobilizing migrating CO2 by consuming the gas and forming solid reactants. With regard to

  5. Fairness and cost-effectiveness of CO2 emission reduction targets in the European Union member states. An analysis based on scenario studies

    International Nuclear Information System (INIS)

    Kram, T.; Ybema, J.R.; Vos, D.

    1997-06-01

    The Member States of the European Union (EU) have agreed upon a common position in the international negotiations on the limitation of greenhouse gas emissions. The total commitment of the EU is the result of differentiated emission targets for the individual Member States. In this study the results of 4 recent scenario studies on CO2 emission reduction are used to assess the fairness and the cost-effectiveness of the differentiated targets. Here, fairness is measured by the average cost per capita in a country to reach the emission target. Cost-effectiveness is based on the marginal cost of emission reduction. It is noted that there are limitations in the comparability of the country results. Further, the coverage of the EU Member States is not complete in all 4 studies. Robust conclusions could thus not be drawn for all countries. Nonetheless, there are strong indications that the efforts to achieve the emission reduction targets are not evenly distributed. Based on the results the countries can be divided into four groups with different burdens to achieve reduction of CO2 emissions: (a) countries that will probably be faced with above average burdens: Sweden, Italy and the Netherlands; (b) countries that will presumably be faced with above average burdens but for which limited information is available: Austria and Denmark; (c) countries that will probably be faced with average burdens or for which the relative efforts are indistinct: Germany, Portugal, Belgium, Finland and Luxembourg; and (d) countries that will probably be faced with below average burdens: United Kingdom, France, Spain, Ireland and Greece. 1 fig., 12 tabs., 6 refs

  6. Developing high-risk scenarios and countermeasure ideas for mitigation of hazardous materials incidents

    International Nuclear Information System (INIS)

    Russell, E.R. Sr.

    1991-01-01

    Kansas State University (KSU) conducted a comprehensive study of the development of a set of prioritized, extreme-risk scenarios, the development of a set of feasible, practical and implementable protective systems, and a report to summarize guidelines on the use of these protective systems to mitigate potential, extreme-risk situations that could occur during the transport of hazardous materials (Hazmat) on our highway system. This paper covers the methodology used to compete the first tow objectives with use of a state's panel. The research study was limited to materials (such as LNG, propane, gasoline, etc.) spilled within the highway system. It focused on potential risks which would result in severe, long-term, permanent, irreparable or catastrophic consequences, and existing technology and state-of-the-art knowledge for development of protective systems to mitigate these consequences. The protective systems within the scope of this study were systems constructed or physically incorporated into the highway system or modifications thereto

  7. Sustainable treatment of different high-strength cheese whey wastewaters: an innovative approach for atmospheric CO2 mitigation and fertilizer production.

    Science.gov (United States)

    Prazeres, Ana R; Rivas, Javier; Paulo, Úrsula; Ruas, Filipa; Carvalho, Fátima

    2016-07-01

    Raw cheese whey wastewater (CWW) has been treated by means of FeCl3 coagulation-flocculation, NaOH precipitation, and Ca(OH)2 precipitation. Three different types of CWW were considered: without cheese whey recovery (CWW0), 60 % cheese whey recovery (CWW60), and 80 % cheese whey recovery (CWW80). Cheese whey recovery significantly influenced the characteristics of the wastewater to be treated: organic matter, solids, turbidity, conductivity, sodium, chloride, calcium, nitrogen, potassium, and phosphorus. Initial organic load was reduced to values in the interval of 60-70 %. Application of FeCl3, NaOH, or Ca(OH)2 involved additional chemical oxygen demand (COD) depletions regardless of the CWW used. Under optimum conditions, the combination of 80 % cheese whey recovery and lime application led to 90 % reduction in COD. Turbidity (99.8%), total suspended solids (TSS) (98-99 %), oils and fats (82-96 %), phosphorus (98-99 %), potassium (96-97 %), and total coliforms (100 %) were also reduced. Sludge generated in the latter process showed excellent settling properties. This solid after filtration and natural evaporation can be used as fertilizer with limitations due to its saline nature. In an innovative, low-cost, and environmentally friendly technology, supernatant coming from the Ca(OH)2 addition was naturally neutralized in 4-6 days by atmospheric CO2 absorption without reagent addition. Consequently, a final aerobic biodegradation step can be applied for effluent polishing. This technology also allows for some atmospheric CO2 mitigation. Time requirement for the natural carbonation depends on the effluent characteristics. A precipitate rich in organic matter and nutrients and depletions of solids, sodium, phosphorus, magnesium, Kjeldahl, and ammoniacal nitrogen were also achieved during the natural carbonation.

  8. Economic modelling of the capture-transport-sink scenario of industrial CO2 emissions: The Estonian-Latvian cross-border case study

    NARCIS (Netherlands)

    Shogenova, A.; Shogenov, K.; Pomeranceva, R.; Nulle, I.; Neele, F.; Hendriks, C.

    2011-01-01

    Industrial CO2 emissions and opportunities for CO2 geological storage in the Baltic Region were studied within the EU GeoCapacity project supported by the European Union Framework Programme 6. Estonia produces the largest amounts of CO2 emissions in the region, due to the combustion of Estonian oil

  9. Study on CO2 emission reduction using ENPEP in Korea

    International Nuclear Information System (INIS)

    Moon, K. H.; Kim, S. S.; Song, K. D.; Im, C. Y.

    2003-01-01

    ENPEP was used to analyze the role of nuclear power in mitigating carbon emission in power generation sector. In this study, base scenario reflects business as usual case in Korea. Additional two scenarios were established. One stands for fuel switch scenario, where nuclear power plants scheduled to be introduced after 2008 were assumed to be replaced by Coal Power Plant, the other one is established to see the impact of carbon tax. In this scenario carbon tax(50$/ton-C0 2 ) is imposed on coal power plants from 2008. It is resulted that fuel switch from nuclear to coal in power generation sector has a great effect on CO 2 emission, while carbon tax imposition makes a slight contribution to the reduction of CO 2 emission. These findings mean that the role of nuclear power in Korea is important in view of the GHG mitigation

  10. A wedge strategy for mitigation of urban warming in future climate scenarios

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2017-07-01

    Full Text Available Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs. Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases – cold islands caused by cool roofs at midday, with an average oasis effect of −3.4 K in the summer for the period 2071–2100, which offsets approximately 80 % of the greenhouse gas (GHG warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.

  11. A wedge strategy for mitigation of urban warming in future climate scenarios

    Science.gov (United States)

    Zhao, Lei; Lee, Xuhui; Schultz, Natalie M.

    2017-07-01

    Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs). Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases - cold islands caused by cool roofs at midday, with an average oasis effect of -3.4 K in the summer for the period 2071-2100, which offsets approximately 80 % of the greenhouse gas (GHG) warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.

  12. The potential for greenhouse gases mitigation in household sector of Iran: cases of price reform/efficiency improvement and scenario for 2000-2010

    International Nuclear Information System (INIS)

    Davoudpour, Hamid; Ahadi, Mohammad Sadegh

    2006-01-01

    Iran's demographic profile is sharply youth oriented and this upcoming generation's needs for employment and housing, coupled with low-energy efficiency vectors and consumption patterns, has created a constant rise in energy demand and greenhouse gas (GHGs) emissions in the residential sector. Improved energy efficiency as a national policy lynchpin for demand reduction and GHGs mitigation, has become commonplace. OPEC countries however, Iran included, suffer an obvious lack of consumer incentive because of low fuel prices. This study evaluates the twin impacts of price reform and efficiency programs on energy carriers' consumption and GHGs mitigation in the Iranian housing sector. For this purpose, the demand functions for energy carriers, has been developed by econometrics process models. The results reveal that price elasticity for electricity demand in the Constant Elasticity Model for the short-run while the long-run is -0.142 and -0.901, respectively. In the Variable Elasticity Model the 250% increase in electricity rates in the short-run resulted in a price elasticity change from -0.02 to -0.475, hence the 250% increase in electricity pricing for the long-run resulted in the price elasticity change from -0.15 to -2.0. Finally, aided by a Scenario-Based Approach the impact of fuel pricing and efficiency improvement in trends of energy demand and GHGs emission were assessed in a Scenarios Base, developed on two different cases of Business-as-Usual (BAU) and Management. The results indicate that in the BAU case between 2000 and 2011, the energy demand and CO 2 emission increases with an annual growth rate of 7.5% and 6.8%, respectively. Comparatively, if the energy carriers' price is increased to border price and energy efficiency programs are implemented, they will stimulate carriers' demand and CO 2 emissions growth rate decreases to 4.94% and 3.1%, respectively

  13. Scenario analysis of fertilizer management practices for N2O mitigation from corn systems in Canada.

    Science.gov (United States)

    Abalos, Diego; Smith, Ward N; Grant, Brian B; Drury, Craig F; MacKell, Sarah; Wagner-Riddle, Claudia

    2016-12-15

    Effective management of nitrogen (N) fertilizer application by farmers provides great potential for reducing emissions of the potent greenhouse gas nitrous oxide (N 2 O). However, such potential is rarely achieved because our understanding of what practices (or combination of practices) lead to N 2 O reductions without compromising crop yields remains far from complete. Using scenario analysis with the process-based model DNDC, this study explored the effects of nine fertilizer practices on N 2 O emissions and crop yields from two corn production systems in Canada. The scenarios differed in: timing of fertilizer application, fertilizer rate, number of applications, fertilizer type, method of application and use of nitrification/urease inhibitors. Statistical analysis showed that during the initial calibration and validation stages the simulated results had no significant total error or bias compared to measured values, yet grain yield estimations warrant further model improvement. Sidedress fertilizer applications reduced yield-scaled N 2 O emissions by c. 60% compared to fall fertilization. Nitrification inhibitors further reduced yield-scaled N 2 O emissions by c. 10%; urease inhibitors had no effect on either N 2 O emissions or crop productivity. The combined adoption of split fertilizer application with inhibitors at a rate 10% lower than the conventional application rate (i.e. 150kgNha -1 ) was successful, but the benefits were lower than those achieved with single fertilization at sidedress. Our study provides a comprehensive assessment of fertilizer management practices that enables policy development regarding N 2 O mitigation from agricultural soils in Canada. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Synechococcus nidulans from a thermoelectric coal power plant as a potential CO2 mitigation in culture medium containing flue gas wastes.

    Science.gov (United States)

    Duarte, Jessica Hartwig; Costa, Jorge Alberto Vieira

    2017-10-01

    This study evaluated the intermittent addition of coal flue gas wastes (CO 2 , SO 2 , NO and ash) into a Synechococcus nidulans LEB 115 cultivation in terms of growth parameters, CO 2 biofixation and biomass characterization. The microalga from a coal thermoelectric plant showed tolerance up to 200ppm SO 2 and NO, with a maximum specific growth rate of 0.18±0.03d - 1 . The addition of thermal coal ash to the cultivation increased the Synechococcus nidulans LEB 115 maximum cell growth by approximately 1.3 times. The best CO 2 biofixation efficiency was obtained with 10% CO 2 , 60ppm SO 2 , 100ppm NO and 40ppm ash (55.0±3.1%). The biomass compositions in the assays were similar, with approximately 9.8% carbohydrates, 13.5% lipids and 62.7% proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  16. Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Harald, E-mail: Harald.Winkler@uct.ac.z [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Hughes, Alison [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Haw, Mary [PJ Carew Consulting, 103 Hout Street, Cape Town 8001 (South Africa)

    2009-11-15

    Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO{sub 2}-eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa.

  17. Technology learning for renewable energy. Implications for South Africa's long-term mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Harald; Hughes, Alison [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Haw, Mary [PJ Carew Consulting, 103 Hout Street, Cape Town 8001 (South Africa)

    2009-11-15

    Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO{sub 2}-eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa. (author)

  18. Energy and emission scenarios for China in the 21st century - exploration of baseline development and mitigation options

    International Nuclear Information System (INIS)

    Vuuren, Detlef van; Zhou Fengqi; Vries, Bert de; Jiang Kejun; Graveland, Cor; Li Yun

    2003-01-01

    In this paper, we have used the simulation model IMAGE/TIMER to develop a set of energy and emission scenarios for China between 1995 and 2100, based on the global baseline scenarios published by IPCC. The purpose of the study was to explore possible baseline developments and available options to mitigate emissions. The two main baseline scenarios of the study differ, among others, in the openness of the Chinese economy and in economic growth, but both indicate a rapid growth in carbon emissions (2.0% and 2.6% per year in the 2000-2050 period). The baseline scenario analysis also shows that an orientation on environmental sustainability can not only reduce other environmental pressures but also lower carbon emissions. In the mitigation analysis, a large number of options has been evaluated in terms of impacts on investments, user costs, fuel imports costs and emissions. It is found that a large potential exists to mitigate carbon emissions in China, among others in the form of energy efficiency improvement (with large co-benefits) and measures in the electricity sector. Combining all options considered, it appears to be possible to reduce emissions compared to the baseline scenarios by 50%

  19. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    Directory of Open Access Journals (Sweden)

    M. R. Raupach

    2014-07-01

    Full Text Available Through 1959–2012, an airborne fraction (AF of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS, the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1 / 3, implying that CO2 sinks increased more slowly than excess CO2. Using a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (~ 35% of the trend, volcanic eruptions (~ 25%, sink responses to climate change (~ 20%, and nonlinear responses to increasing CO2, mainly oceanic (~ 20%. The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non-intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

  20. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    International Nuclear Information System (INIS)

    Raupach, M.R.; Gloor, M.; Sarmiento, J.L.; Gasser, T.

    2014-01-01

    Through 1959-2012, an airborne fraction (AF) of 0.44 of total anthropogenic CO 2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO 2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO 2 sink rate (k S ), the combined land-ocean CO 2 sink flux per unit excess atmospheric CO 2 above pre industrial levels. Here we show from observations that k S declined over 1959-2012 by a factor of about 1/3, implying that CO 2 sinks increased more slowly than excess CO 2 . Using a carbon-climate model, we attribute the decline in k S to four mechanisms: slower-than-exponential CO 2 emissions growth (35% of the trend), volcanic eruptions (25 %), sink responses to climate change (20 %), and nonlinear responses to increasing CO 2 , mainly oceanic (20 %). The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO 2 . Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in k S will occur under all plausible CO 2 emission scenarios, the rate of decline varies between scenarios in non intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause k S to decline more strongly with increasing mitigation, while intrinsic mechanisms cause k S to decline more strongly under high-emission, low-mitigation scenarios as the carbon-climate system is perturbed further from a near-linear regime. (authors)

  1. Leakage of CO2 from geologic storage: Role of secondaryaccumulation at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2007-05-31

    Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."

  2. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere

    Science.gov (United States)

    Heather R. McCarthy; Ram Oren; Hyun-Seok Kim; Kurt H. Johnsen; Chris Maier; Seth G. Pritchard; Michael A. Davis

    2006-01-01

    Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here...

  3. Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective

    International Nuclear Information System (INIS)

    Gunter, W.D.; Wong, S.; Cheel, D.B.; Sjostrom, G.

    1998-01-01

    Significant reduction of CO 2 emissions on a global scale may be achieved by reduction of energy intensity, by reduction of carbon intensity or by capture and storage of CO 2 . A portfolio of these methods is required to achieve the large reductions required; of which utilization of carbon sinks (i.e. material, geosphere and biosphere) will be an important player. Material sinks will probably only play a minor role as compared to biosphere and geosphere sinks in storage of CO 2 . Biosphere sinks are attractive because they can sequester CO 2 from a diffuse source whereas geosphere sinks require a pure waste stream of CO 2 (obtained by using expensive separation methods). On the other hand, environmental factors and storage time favor geosphere sinks. It is expected that a combination of the two will be used in order to meet emission reduction targets over the next 100 yr.A critical look is taken at capacities, retention/residence times, rates of uptake and relative cost of utilization of biosphere and geosphere sinks at three scales - global, national (Canada) and provincial (Alberta). Biosphere sinks considered are oceans, forests and soils. Geosphere sinks considered are enhanced oil recovery, coal beds, depleted oil and gas reservoirs and deep aquifers. The largest sinks are oceans and deep aquifers. The other biosphere and geosphere sinks have total capacities approximately of an order of lower magnitude. The sinks that will probably be used first are those that are economically viable such as enhanced oil-recovery, agriculture, forestry and possibly enhanced coalbed methane-recovery. The other sinks will be used when these options have been exhausted or are not available or a penalty (e.g. carbon tax) exists. Although the data tabulated for these sinks is only regarded as preliminary, it provides a starting point for assessment of the role of large sinks in meeting greenhouse gas emission reduction targets. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam

  4. Integrated modelling of economic-energy-environment scenarios - The impact of China and India's economic growth on energy use and CO2 emissions

    International Nuclear Information System (INIS)

    Roques, F.; Sassi, O.; Guivarch, C.; Waisman, H.; Crassous, R.; Hourcade, J.Ch.

    2009-03-01

    A hybrid framework coupling the bottom-up energy sector WEM model with the top-down general equilibrium model IMACLIM-R is implemented to capture the macro-economic feedbacks of Chinese and Indian economic growth on energy and emissions scenarios. The iterative coupling procedure captures the detailed representation of energy use and supply while ensuring the micro-economic and macro-economic consistency of the different scenarios studied. The dual representation of the hybrid model facilitates the incorporation of energy sector expertise in internally consistent scenarios. The paper describes how the hybrid model was used to assess the effect of uncertainty on economic growth in China and India in the energy and emissions scenarios of the International Energy Agency. (authors)

  5. The cost of pipelining climate change mitigation. An overview of the economics of CH4, CO2 and H2 transportation

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zwaan, B.C.C.; Schoots, K.; Rivera-Tinoco, R. [Energy research Center of the Netherlands (ECN), Policy Studies Department, Amsterdam (Netherlands); Verbong, G.P.J. [Eindhoven University of Technology, Department of Industrial Engineering and Innovation Sciences, Eindhoven (Netherlands)

    2011-11-15

    Gases like CH4, CO2 and H2 may play a key role in establishing a sustainable energy system: CH4 is the least carbon-intensive fossil energy resource; CO2 capture and storage can significantly reduce the climate footprint of especially fossil-based electricity generation; and the use of H2 as energy carrier could enable carbon-free automotive transportation. Yet the construction of large pipeline infrastructures usually constitutes a major and time-consuming undertaking, because of safety and environmental issues, legal and (geo)political siting arguments, technically untrivial installation processes, and/or high investment cost requirements. In this article we focus on the latter and present an overview of both the total costs and cost components of the distribution of these three gases via pipelines. Possible intricacies and external factors that strongly influence these costs, like the choice of location and terrain, are also included in our analysis. Our distribution cost breakdown estimates are based on transportation data for CH4, which we adjust for CO2 and H2 in order to account for the specific additional characteristics of these two gases. The overall trend is that pipeline construction is no longer subject to significant cost reductions. For the purpose of designing energy and climate policy we therefore know in principle with reasonable certainty what the minimum distribution cost components of future energy systems are that rely on pipelining these gases. We describe the reasons why we observe limited learning-by-doing and explain why negligible construction cost reductions for future CH4, CO2 and H2 pipeline projects can be expected. Cost data of individual pipeline projects may strongly deviate from the global average because of national or regional effects related to the type of terrain, but also to varying costs of labor and fluctuating market prices of components like steel.

  6. Scenario-Based Case Study Analysis of Asteroid Mitigation in the Short Response Time Regime

    Science.gov (United States)

    Seery, B.; Greenaugh, K. C.

    2017-12-01

    Asteroid impact on Earth is a rare but inevitable occurrence, with potentially cataclysmic consequences. If a pending impact is discovered, mitigation options include civil-defense preparations as well as missions to deflect the asteroid and/or robustly disrupt and disperse it to an extent that only a negligible fraction remains on a threatening path (National Research Council's "Defending the Planet," 2010). If discovered with sufficient warning time, a kinetic impactor can deflect smaller objects, but response delays can rule out the option. If a body is too large to deflect by kinetic impactor, or the time for response is insufficient, deflection or disruption can be achieved with a nuclear device. The use of nuclear ablation is considered within the context of current capabilities, requiring no need for nuclear testing. Existing, well-understood devices are sufficient for the largest known Potentially Hazardous Objects (PHOs). The National Aeronautics and Space Administration/Goddard Space Flight Center and the Department of Energy/National Nuclear Security Administration are collaborating to determine the critical characterization issues that define the boundaries for the asteroid-deflection options. Drawing from such work, we examine the timeline for a deflection mission, and how to provide the best opportunity for an impactor to suffice by minimizing the response time. This integrated problem considers the physical process of the deflection method (impact or ablation), along with the spacecraft, launch capability, risk analysis, and the available intercept flight trajectories. Our joint DOE/NASA team has conducted case study analysis of three distinctly different PHOs, on a hypothetical earth impacting trajectory. The size of the design reference bodies ranges from 100 - 500 meters in diameter, with varying physical parameters such as composition, spin state, and metallicity, to name a few. We assemble the design reference of the small body in question using

  7. Impact of CO_2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO_2 Leakage

    International Nuclear Information System (INIS)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    2016-01-01

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO_2) emissions to the atmosphere. During this process, CO_2 is injected as super critical carbon dioxide (SC-CO_2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO_2 in subsurface geologic formations could unintentionally lead to CO_2 leakage into overlying freshwater aquifers. Introduction of CO_2 into these subsurface environments will greatly increase the CO_2 concentration and will create CO_2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO_2 gradients will impact these communities. The overarching goal of this project is to understand how CO_2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO_2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO_2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO_2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO_2 injection/leakage plume where CO_2 concentrations are highest. At CO_2 exposures expected downgradient from the CO_2 plume, selected microorganisms emerged as dominant in the CO_2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site

  8. Trends in CO2 Emissions from China-Oriented International Marine Transportation Activities and Policy Implications

    Directory of Open Access Journals (Sweden)

    Hualong Yang

    2017-07-01

    Full Text Available The demand for marine transportation and its associated CO2 emissions are growing rapidly as a result of increasing international trade and economic growth. An activity-based approach is developed for forecasting CO2 emissions from the China-oriented international seaborne trade sector. To accurately estimate the aggregated emissions, CO2 emissions are calculated individually for five categories of vessels: crude oil tanker, product tanker, chemical tanker, bulk carrier, and container. A business-as-usual (BAU scenario was developed to describe the current situation without additional mitigation policies, whilst three alternative scenarios were developed to describe scenarios with various accelerated improvements of the key factors. The aggregated CO2 emissions are predicted to reach 419.97 Mt under the BAU scenario, and 258.47 Mt under the optimal case, AD3. These predictions are 4.5 times and 2.8 times that of the aggregated emissions in 2007. Our analysis suggests that regulations for monitoring, reporting, and verifying the activities of vessels should be proposed, in order to quantify the CO2 emissions of marine transportation activities in Chinese territorial waters. In the long-term future, mitigation policies should be employed to reduce CO2 emissions from the marine trade sector and to address the climatic impact of shipping.

  9. The cost of pipelining climate change mitigation: An overview of the economics of CH4, CO2 and H2 transportation

    International Nuclear Information System (INIS)

    Zwaan, B.C.C. van der; Schoots, K.; Rivera-Tinoco, R.; Verbong, G.P.J.

    2011-01-01

    Highlights: → Learning for pipeline construction, if available, is outshadowed by cost variability. → Pipelining is a mature technology, for which much experience has been gained. → Pipeline projects are heterogeneous with widely varying technical and cost specifics. → Pipeline cost components tend to reflect (commodity) market price developments. → Pipeline costs are strongly determined by the properties of the transported gas. -- Abstract: Gases like CH 4 , CO 2 and H 2 may play a key role in establishing a sustainable energy system: CH 4 is the least carbon-intensive fossil energy resource; CO 2 capture and storage can significantly reduce the climate footprint of especially fossil-based electricity generation; and the use of H 2 as energy carrier could enable carbon-free automotive transportation. Yet the construction of large pipeline infrastructures usually constitutes a major and time-consuming undertaking, because of safety and environmental issues, legal and (geo)political siting arguments, technically un-trivial installation processes, and/or high investment cost requirements. In this article we focus on the latter and present an overview of both the total costs and cost components of the distribution of these three gases via pipelines. Possible intricacies and external factors that strongly influence these costs, like the choice of location and terrain, are also included in our analysis. Our distribution cost breakdown estimates are based on transportation data for CH 4 , which we adjust for CO 2 and H 2 in order to account for the specific additional characteristics of these two gases. The overall trend is that pipeline construction is no longer subject to significant cost reductions. For the purpose of designing energy and climate policy we therefore know in principle with reasonable certainty what the minimum distribution cost components of future energy systems are that rely on pipelining these gases. We describe the reasons why we observe

  10. Global observation of EKC hypothesis for CO2, SOx and NOx emission: A policy understanding for climate change mitigation in Bangladesh

    International Nuclear Information System (INIS)

    Danesh Miah, Md.; Farhad Hossain Masum, Md.; Koike, Masao

    2010-01-01

    Environmental Kuznets Curve (EKC) hypothesis is critical to understanding the developmental path of a nation in relation to its environment. How the effects of economic development processes dictate environmental changes can be found through the study of EKC. To understand the EKC phenomena for climate change, this study was undertaken by reviewing the available literature. As CO 2 , SO x and NO x are the significant greenhouse gases (GHG) responsible for global warming, thus leading to climate change, the study focused on those GHGs for EKC consideration. With an understanding of the different EKC trajectories, an attempt was made to determine the implications for the economic development of Bangladesh in regards to the EKC. It was shown that EKC for CO 2 was following a monotonous straight line in most cases. SO x were shown to follow the full trajectory of the EKC in most situations and NO x was shown the hope only for the developed countries getting the low-income turning point. The type of economic policy that Bangladesh should follow in regards to the discussed pollutants and sources is also revealed. From these discussions, contributions to policy stimulation in Bangladesh are likely to be made.

  11. Scenarios

    NARCIS (Netherlands)

    Pérez-Soba, Marta; Maas, Rob

    2015-01-01

    We cannot predict the future with certainty, but we know that it is influenced by our current actions, and that these in turn are influenced by our expectations. This is why future scenarios have existed from the dawn of civilization and have been used for developing military, political and economic

  12. Planning ahead for asteroid and comet hazard mitigation, phase 1: parameter space exploration and scenario modeling

    Energy Technology Data Exchange (ETDEWEB)

    Plesko, Catherine S [Los Alamos National Laboratory; Clement, R Ryan [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

    2009-01-01

    The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of a comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.

  13. The emergence of climate change mitigation action by society : An agent-based scenario discovery study

    NARCIS (Netherlands)

    Greeven, Sebastiaan; Kraan, O.D.E.; Chappin, E.J.L.; Kwakkel, J.H.

    2016-01-01

    Developing model-based narratives of society’s response to climate change is challenged by two factors. First, society’s response to possible future climate change is subject to many uncertainties. Second, we argue that society’s mitigation action emerge out of the actions and interactions of the

  14. Norwegian Arctic climate. Climate influencing emissions, scenarios and mitigation options at Svalbard

    Energy Technology Data Exchange (ETDEWEB)

    Vestreng, Vigdis; Kallenborn, Roland; Oekstad, Elin

    2010-07-01

    The goal of this study was to establish an emission inventory and emission scenarios for climate influencing compounds at Svalbard, as a basis to develop strategies for emission reduction measures and policies. Emissions for the years 2000-2007 have been estimated for the Svalbard Zone. This area, covering about 173 000 km{sub 2}, ranges from 10 E to 35 E longitude and 74 N to 81 N latitude (Figure 1). In addition, air and ship transport between Tromsoe at the Norwegian mainland and Svalbard has been included. Pollutants considered in our inventory are carbon dioxide (CO{sub 2}), methane (CH{sub 4}), Sulphur dioxide (SO{sub 2}), Nitrogen oxides (NO{sub x} as NO{sub 2}), and for the first time also estimates of black carbon (BC, soot) and organic carbon (OC) have been included. Our results show that emissions of all pollutants have increased over the time span 2000-2007 (Figure 2), and are expected to increase also in the future if additional measures are not implemented (Figure 12). The emissions from Svalbard are minuscule compared to emission released from the Norwegian mainland and waters (1% in the case of CO{sub 2}). Even so, local releases of climate influencing compounds in the vulnerable Arctic may turn out to make a difference both with respect to adverse environmental effects and to climate change. Emissions have been estimated for all activities of any significance taking place at and around Svalbard. Combustion sources as well as fugitive emissions of methane are included. The main sectors are coal mining, energy production and transportation. Pollution from 28 sub sectors related to these activities has been estimated. The scope of this work differs from that covered by national inventories since emission estimates are based on the fuel consumed and include emissions from international shipping and aviation. Fuel consumption data were collected from local authorities, institutions and industry. Emission factors have been selected from relevant

  15. Do forests best mitigate CO2 emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?

    Science.gov (United States)

    Taeroe, Anders; Mustapha, Walid Fayez; Stupak, Inge; Raulund-Rasmussen, Karsten

    2017-07-15

    Forests' potential to mitigate carbon emissions to the atmosphere is heavily debated and a key question is if forests left unmanaged to store carbon in biomass and soil provide larger carbon emission reductions than forests kept under forest management for production of wood that can substitute fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest, as a business-as-usual case, 2) an energy poplar plantation, and 3) a set-aside forest left unmanaged for long-term storage of carbon. We calculated the cumulative net carbon emissions (CCE) and carbon parity times (CPT) of the managed forests relative to the unmanaged forest. Energy poplar generally had the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE after 200 years. Analyses also showed that CPT was not a robust measure for ranking of carbon mitigation benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts.

    Directory of Open Access Journals (Sweden)

    Karine Princé

    Full Text Available Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform

  17. Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland

    International Nuclear Information System (INIS)

    Alam, Md. Saniul; Hyde, Bernard; Duffy, Paul; McNabola, Aonghus

    2017-01-01

    Highlights: • Integration of models provides a robust estimation of tailpipe CO 2 emissions. • Taxation impact of vehicle fleet dieselisation was modelled. • A scenario development approach was proposed for policy analysis. • EV provided the largest cost saving option than that of the other fuel technologies. - Abstract: This study modelled the Passenger (PC) fleet and other categories of road transport in Ireland from 2015 to 2035 to assess the impact of current and potential greenhouse gas mitigation policies on CO 2 emissions. Scenarios included the shift of purchasing towards diesel PCs over gasoline PCs. Scrappage rates were also calculated and applied to the fleet to predict future sales of PCs. Seven future policy scenarios were examined using different penetrations of PC sales for different vehicle technologies under current and alternative bio-fuel obligations. Tank to Wheel (T2W) tailpipe and Well to Wheel (W2W) CO 2 emissions, and energy demand were modelled using COPERT 4v11.3 and a recently published W2W CO 2 emissions model. A percentage reduction of conventional diesel and petrol vehicles, in different scenarios compared to a baseline scenario in the W2W model was applied to estimate the likely changes in T2W emissions at the tailpipe up to 2035. The results revealed that the biofuel policy scenario was insufficient in achieving a significant reduction of CO 2 emissions. However, without a fixed reduction target for CO 2 from the road transport sector, the success of policy scenarios in the long run is difficult to compare. The current Electric vehicle (EV) policy in Ireland is required to be implemented to reduce CO 2 emissions by a significant level. Results also show that a similar achievement of CO 2 emission reduction could be possible by using alternative vehicle technologies with higher abatement cost. However, as EV based policies have not been successful so far, Ireland may need to search for alternative pathways.

  18. Narrative scenario development based on cross-impact analysis for the evaluation of global-warming mitigation options

    International Nuclear Information System (INIS)

    Hayashi, Ayami; Tokimatsu, Koji; Yamamoto, Hiromi; Mori, Shunsuke

    2006-01-01

    Social, technological, economic and environmental issues should be considered comprehensively for the evaluation of global-warming mitigation options. Existing integrated assessment models include assessment of quantitative factors; however, these models do not explicitly consider interactions among qualitative factors in the background - for example, introductions of nuclear power stations interact with social acceptability. In this paper, we applied a technological forecasting method - the cross-impact method - which explicitly deals with the relationships among relevant factors, and we then developed narrative scenarios having consistency with qualitative social contexts. An example of developed scenarios in 2050, assuming the global population and the gross domestic product are the same as those of the A1 scenario of the IPCC Special Report on Emissions Scenarios, tells us that: (1) the Internet will be extensively used in all regions; (2) the global unified market will appear; (3) regional cultures will tend to converge; (4) long-term investments (of more than 30 years) will become difficult and therefore nuclear-power stations will not increase so remarkably; (5) the self-sufficient supply and diversification of primary energy sources will not progress so rapidly; and (6) due to the widespread use of the Internet, people will be more educated in global environmental issues and environmental costs will be more socially acceptable

  19. Carbon Emission Mitigation Potentials of Different Policy Scenarios and Their Effects on International Aviation in the Korean Context

    Directory of Open Access Journals (Sweden)

    Sungwook Yoon

    2016-11-01

    Full Text Available The objective of this study is to seek better policy options for greenhouse gas (GHG emission reduction in Korea’s international aviation industry by analyzing economic efficiency and environmental effectiveness with a system dynamics (SD model. Accordingly, we measured airlines sales and CO2 emission reductions to evaluate economic efficiency and environmental effectiveness, respectively, for various policies. The results show that the average carbon emission reduction rates of four policies compared to the business-as-usual (BAU scenario between 2015 and 2030 are 4.00% (Voluntary Agreement, 7.25% (Emission Trading System or ETS-30,000, 8.33% (Carbon Tax or CT-37,500, and 8.48% (Emission Charge System or EC-30,000. The average rate of decrease in airline sales compared to BAU for the ETS policy is 0.1% at 2030. Our results show that the ETS approach is the most efficient of all the analyzed CO2 reduction policies in economic terms, while the EC approach is the best policy to reduce GHG emissions. This study provides a foundation for devising effective response measures pertaining to GHG reduction and supports decision making on carbon tax and carbon credit pricing.

  20. Environmental potential of the use of CO_2 from alcoholic fermentation processes. The CO_2-AFP strategy

    International Nuclear Information System (INIS)

    Alonso-Moreno, Carlos; García-Yuste, Santiago

    2016-01-01

    A novel Carbon Dioxide Utilization (CDU) approach from a relatively minor CO_2 emission source, i.e., alcoholic fermentation processes (AFP), is presented. The CO_2 produced as a by-product from the AFP is estimated by examining the EtOH consumed per year reported by the World Health Organization in 2014. It is proposed that the extremely pure CO_2 from the AFP is captured in NaOH solutions to produce one of the Top 10 commodities in the chemical industry, Na_2CO_3, as a good example of an atomic economy process. The novel CDU strategy could yield over 30.6 Mt of Na_2CO_3 in oversaturated aqueous solution on using ca. 12.7 Mt of captured CO_2 and this process would consume less energy than the synthetic methodology (Solvay ammonia soda process) and would not produce low-value by-products. The quantity of Na_2CO_3 obtained by this strategy could represent ca. 50% of the world Na_2CO_3 production in one year. In terms of the green economy, the viability of the strategy is discussed according to the recommendations of the CO_2Chem network, and an estimation of the CO_2negative emission achieved suggests a capture of around 280.0 Mt of CO_2 from now to 2020 or ca. 1.9 Gt from now to 2050. Finally, the results obtained for this new CDU proposal are discussed by considering different scenarios; the CO_2 production in a typical winemaking corporation, the CO_2 released in the most relevant wine-producing countries, and the use of CO_2 from AFP as an alternative for the top Na_2CO_3-producing countries. - Highlights: • A new CDU strategy to mitigate the CO_2 in the atmosphere is assessed. • An environmental action towards negligible emission sources such as AFP. • The waste CO_2 from AFP could be converted into Na_2CO_3. • Capture 12.7 Mt yr"–"1 of CO_2 to generate ca. 1.9 Gt of CO_2negative emissions by 2050.

  1. New power generation technology options under the greenhouse gases mitigation scenario in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qiang [Graduate University of Chinese Academy of Science, 19A Yu Quan Road, Beijing 100049 (China); Energy Research Institute, Guohong Mansion, Xicheng District, Beijing 100038 (China); Shi, Minjun [Graduate University of Chinese Academy of Science, 19A Yu Quan Road, Beijing 100049 (China); Jiang, Kejun [Energy Research Institute, Guohong Mansion, Xicheng District, Beijing 100038 (China)

    2009-06-15

    Climate change has become a global issue. Almost all countries, including China, are now considering adopting policies and measures to reduce greenhouse gas (GHG) emissions. The power generation sector, as a key source of GHG emissions, will also have significant potential for GHG mitigation. One of the key options is to use new energy technologies with higher energy efficiencies and lower carbon emissions. In this article, we use an energy technology model, MESSAGE-China, to analyze the trend of key new power generation technologies and their contributions to GHG mitigation in China. We expect that the traditional renewable technologies, high-efficiency coal power generation and nuclear power will contribute substantially to GHG mitigation in the short term, and that solar power, biomass energy and carbon capture and storage (CCS) will become more important in the middle and long term. In the meantime, in order to fully bring the role of technology progress into play, China needs to enhance the transfer and absorption of international advanced technologies and independently strengthen her ability in research, demonstration and application of new power generation technologies. (author)

  2. New power generation technology options under the greenhouse gases mitigation scenario in China

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Liu [Graduate University of Chinese Academy of Science, 19A Yu Quan Road, Beijing 100049 (China); Energy Research Institute, Guohong Mansion, Xicheng District, Beijing 100038 (China)], E-mail: liuqiang@eri.org.cn; Minjun, Shi [Graduate University of Chinese Academy of Science, 19A Yu Quan Road, Beijing 100049 (China); Kejun, Jiang [Energy Research Institute, Guohong Mansion, Xicheng District, Beijing 100038 (China)

    2009-06-15

    Climate change has become a global issue. Almost all countries, including China, are now considering adopting policies and measures to reduce greenhouse gas (GHG) emissions. The power generation sector, as a key source of GHG emissions, will also have significant potential for GHG mitigation. One of the key options is to use new energy technologies with higher energy efficiencies and lower carbon emissions. In this article, we use an energy technology model, MESSAGE-China, to analyze the trend of key new power generation technologies and their contributions to GHG mitigation in China. We expect that the traditional renewable technologies, high-efficiency coal power generation and nuclear power will contribute substantially to GHG mitigation in the short term, and that solar power, biomass energy and carbon capture and storage (CCS) will become more important in the middle and long term. In the meantime, in order to fully bring the role of technology progress into play, China needs to enhance the transfer and absorption of international advanced technologies and independently strengthen her ability in research, demonstration and application of new power generation technologies.

  3. Short-term global warming mitigation costs of fischer-tropsch diesel production and policy scenarios in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Bright, Ryan M.; Stroemman, Anders Hammer

    2010-07-01

    Full text: Increasing the supply of advanced biofuels like synthetic diesel produced from woody biomass require attractive investment environments so that novel technologies are deployed and technological learning can lead to reduced production costs and accelerated market diffusion. Technology-specific biofuel policy designed to minimize perceived risk may encourage shortterm investment into those biofuels offering superior environmental benefits - particularly climate mitigation benefits - thereby leading to steeper learning curves and deeper greenhouse gas (GHG) emission cuts over the medium- and long-term horizon. We perform both a Life Cycle Assessment (LCA) and an economic analysis of Fischer-Tropsch diesel (FTD) produced from Norwegian forest biomass at an 'nth' commercial plant (a plant with the same technologies that have been employed in previous commercial plants). This is followed with a cost growth analysis in order to derive production costs likely to be borne by pioneer commercial plants in Norway in the short-term (2016). LCA results are used to calculate shortterm GHG mitigation costs. We then assess, through scenarios, how various policy measures and financial support mechanisms would reduce production costs for incentivizing short-term investment and expediting commercial deployment in Norway. Because 'top-down' or 'market pull' biofuel support policy like excise tax exemptions or carbon taxes do not directly encourage investment into specific biofuel technologies like wood-FTD in the short term, we choose to analyze three 'bottom-up' or 'market push' policy scenarios to assess their effects on reducing levelized unit production costs. These include a Capital Grant, a low-interest Loan Guarantee, a Corporate Tax Credit, and a Feedstock Credit scenario. Under the Capital Grant scenario, we assess the change in levelized production and thus GHG abatement costs when a 50% capital grant (TCI) is

  4. Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?

    Science.gov (United States)

    Wallington, T J; Grahn, M; Anderson, J E; Mueller, S A; Williander, M I; Lindgren, K

    2010-04-01

    The title question was addressed using an energy model that accounts for projected global energy use in all sectors (transportation, heat, and power) of the global economy. Global CO(2) emissions were constrained to achieve stabilization at 400-550 ppm by 2100 at the lowest total system cost (equivalent to perfect CO(2) cap-and-trade regime). For future scenarios where vehicle technology costs were sufficiently competitive to advantage either hydrogen or electric vehicles, increased availability of low-cost, low-CO(2) electricity/hydrogen delayed (but did not prevent) the use of electric/hydrogen-powered vehicles in the model. This occurs when low-CO(2) electricity/hydrogen provides more cost-effective CO(2) mitigation opportunities in the heat and power energy sectors than in transportation. Connections between the sectors leading to this counterintuitive result need consideration in policy and technology planning.

  5. Foraminiferal calcification and CO2

    Science.gov (United States)

    Nooijer, L. D.; Toyofuku, T.; Reichart, G. J.

    2017-12-01

    Ongoing burning of fossil fuels increases atmospheric CO2, elevates marine dissolved CO2 and decreases pH and the saturation state with respect to calcium carbonate. Intuitively this should decrease the ability of CaCO3-producing organisms to build their skeletons and shells. Whereas on geological time scales weathering and carbonate deposition removes carbon from the geo-biosphere, on time scales up to thousands of years, carbonate precipitation increases pCO2 because of the associated shift in seawater carbon speciation. Hence reduced calcification provides a potentially important negative feedback on increased pCO2 levels. Here we show that foraminifera form their calcium carbonate by active proton pumping. This elevates the internal pH and acidifies the direct foraminiferal surrounding. This also creates a strong pCO2 gradient and facilitates the uptake of DIC in the form of carbon dioxide. This finding uncouples saturation state from calcification and predicts that the added carbon due to ocean acidification will promote calcification by these organisms. This unknown effect could add substantially to atmospheric pCO2 levels, and might need to be accounted for in future mitigation strategies.

  6. Assessment of the water supply:demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives.

    Science.gov (United States)

    Boithias, Laurie; Acuña, Vicenç; Vergoñós, Laura; Ziv, Guy; Marcé, Rafael; Sabater, Sergi

    2014-02-01

    Spatial differences in the supply and demand of ecosystem services such as water provisioning often imply that the demand for ecosystem services cannot be fulfilled at the local scale, but it can be fulfilled at larger scales (regional, continental). Differences in the supply:demand (S:D) ratio for a given service result in different values, and these differences might be assessed with monetary or non-monetary metrics. Water scarcity occurs where and when water resources are not enough to meet all the demands, and this affects equally the service of water provisioning and the ecosystem needs. In this study we assess the value of water in a Mediterranean basin under different global change (i.e. both climate and anthropogenic changes) and mitigation scenarios, with a non-monetary metric: the S:D ratio. We computed water balances across the Ebro basin (North-East Spain) with the spatially explicit InVEST model. We highlight the spatial and temporal mismatches existing across a single hydrological basin regarding water provisioning and its consumption, considering or not, the environmental demand (environmental flow). The study shows that water scarcity is commonly a local issue (sub-basin to region), but that all demands are met at the largest considered spatial scale (basin). This was not the case in the worst-case scenario (increasing demands and decreasing supply), as the S:D ratio at the basin scale was near 1, indicating that serious problems of water scarcity might occur in the near future even at the basin scale. The analysis of possible mitigation scenarios reveals that the impact of global change may be counteracted by the decrease of irrigated areas. Furthermore, the comparison between a non-monetary (S:D ratio) and a monetary (water price) valuation metrics reveals that the S:D ratio provides similar values and might be therefore used as a spatially explicit metric to valuate the ecosystem service water provisioning. © 2013.

  7. CO2 blood test

    Science.gov (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...

  8. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  9. Behavioural Climate Change Mitigation Options and Their Appropriate Inclusion in Quantitative Longer Term Policy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Schroten, A.; Bles, M.; Sevenster, M.; Markowska, A.; Smit, M. [CE Delft, Delft (Netherlands); Rohde, C.; Duetschke, E.; Koehler, J.; Gigli, M. [Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe (Germany); Zimmermann, K.; Soboh, R.; Van ' t Riet, J. [Landbouw Economisch Instituut LEI, Wageningen (Netherlands)

    2012-01-15

    Changes in consumer behaviour can lead to major reductions in greenhouse gas emissions in the European Union, particularly in the areas of transport, housing and food. Behavioural changes can complement technological changes and can allow emission reduction targets to be achieved more cost-effectively overall. The study identifies 36 options for behavioural change that would cut greenhouse gas emissions. Of these, 11 particularly relevant options have been studied in detail. They include shifting to a more healthy and balanced diet, eating less meat and dairy products, buying and using a smaller car or an electric car, teleworking, adjusting room temperature and optimising ventilation. For each of the behavioural changes studied in depth, emission reduction potentials have been quantified for 2020, 2030 and 2050. The study identifies barriers to implementing the changes, and quantifies the likely effects of policy packages which could overcome these barriers. The results show that the behavioural changes that could take place simultaneously have the potential to save emissions totalling up to about 600 million tonnes of CO2-equivalent a year in 2020. This is about one-quarter of the projected annual emissions from sectors not covered by the EU emissions trading system. The savings potential is particularly high in the area of food.

  10. Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios.

    Science.gov (United States)

    Xu, Peng; Koloutsou-Vakakis, Sotiria; Rood, Mark J; Luan, Shengji

    2017-12-31

    China's rapid urbanization, large population, and increasing consumption of calorie-and meat-intensive diets, have resulted in China becoming the world's largest source of ammonia (NH 3 ) emissions from livestock production. This is the first study to use provincial, condition-specific emission factors based on most recently available studies on Chinese manure management and environmental conditions. The estimated NH 3 emission temporal trends and spatial patterns are interpreted in relation to government policies affecting livestock production. Scenario analysis is used to project emissions and estimate mitigation potential of NH 3 emissions, to year 2030. We produce a 1km×1km gridded NH 3 emission inventory for 2008 based on county-level activity data, which can help identify locations of highest NH 3 emissions. The total NH 3 emissions from manure generated by livestock production in 2008 were 7.3TgNH 3 ·yr -1 (interquartile range from 6.1 to 8.6TgNH 3 ·yr -1 ), and the major sources were poultry (29.9%), pigs (28.4%), other cattle (27.9%), and dairy cattle (7.0%), while sheep and goats (3.6%), donkeys (1.3%), horses (1.2%), and mules (0.7%) had smaller contributions. From 1978 to 2008, annual NH 3 emissions fluctuated with two peaks (1996 and 2006), and total emissions increased from 2.2 to 7.3Tg·yr -1 increasing on average 4.4%·yr -1 . Under a business-as-usual (BAU) scenario, NH 3 emissions in 2030 are expected to be 13.9TgNH 3 ·yr -1 (11.5-16.3TgNH 3 ·yr -1 ). Under mitigation scenarios, the projected emissions could be reduced by 18.9-37.3% compared to 2030 BAU emissions. This study improves our understanding of NH 3 emissions from livestock production, which is needed to guide stakeholders and policymakers to make well informed mitigation decisions for NH 3 emissions from livestock production at the country and regional levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modeling of CO2 migration injected in Weyburn oil reservoir

    International Nuclear Information System (INIS)

    Zhou Wei; Stenhouse, M.J.; Arthur, R.

    2008-01-01

    Injecting CO 2 into oil and gas field is a way to enhance oil recovery (EOR) as well as mitigate global warming effect by permanently storing the greenhouse gas into underground. This paper details the models and results of simulating the long-term migration of CO 2 injected into the Weyburn field for both Enhanced Oil Recovery operations and CO 2 sequestration. A System Model was established to define the spatial and temporal extents of the analysis. The Base Scenario was developed to identify key processes, features, and events (FEPs) for the expected evolution of the storage system. A compositional reservoir simulator with equations-of-states (EOS) was used as the modeling tool in order to simulate multiphase, multi-component flow and transport coupled with CO 2 mass partitioning into oil, gas, and water phases. We apply a deterministic treatment to CO 2 migration in the geosphere (natural pathways), whereas the variability of abandoned wells (man-made pathways) necessitates a stochastic treatment. The simulation result was then used to carry out consequence analysis to the local environment. (authors)

  12. U.S. climate mitigation pathways post-2012: Transition scenarios in ADAGE

    International Nuclear Information System (INIS)

    Ross, Martin T.; Fawcett, Allen A.; Clapp, Christa S.

    2009-01-01

    The transition from the greenhouse gas (GHG) emission levels currently allowed under the Kyoto Protocol climate agreement to more ambitious, and internationally comprehensive, GHG reduction goals will have important implications for the global economic system. Given the major role that the United States plays in the global economy, and also as a major GHG emitter, this paper examines a range of climate policy pathways for the country in the context of international actions. The ADAGE model is used to examine policy impacts for climate scenarios, focusing on key factors such as emissions, technology deployment, macroeconomic indicators and international trade. In general, the simulations indicate that reductions in GHG emissions can be accomplished with limited economic adjustments, although impacts depend on the future availability of new low-carbon technologies.

  13. Report on a survey in fiscal 1999. Survey on electric power systems for reducing CO2 emission (an approach to scenario analyses); 1999 nendo CO{sub 2} sakugen no tame no denryoku system ni kansuru chosa hokokusho. Scenario kaiseki no approach

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The purpose of this survey is to extract by using scenario analyses the unreliable factors having great influence on change in the Japanese power supply configurations, and verify how the unreliability of these factors would affect the future structures and what the resultant ratio of the power mixes would be in the future. The survey is also intended to verify, through a series of work of calculating how much CO2 emission quantity would be changed in the stage of the year 2012 in each power supply configuration, whether or not the approach by using the scenario analyses will provide information sufficiently reasonable to judge policies to realize reduction in CO2 emission around the electric power business. Although including many hypotheses and vagueness, the trial calculation subjected to each scenario prepared presently suggested that it is not possible to accomplish the target of reducing 9% from the 1990 emission level only by the single efforts inside Japan. This result shows the same contents and directionality that are shown by the results of a large number of surveys. However, the result has created a common recognition among the participants that {sup t}here is a possibility that some kind of effective countermeasures could be discovered{sup .} (NEDO)

  14. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Zhonglong [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat, and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was

  15. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Johansson, Maria T.

    2014-01-01

    Highlights: • Technologies for recovery and use of industrial excess heat were investigated. • Heat harvesting, heat storage, heat utilization, and heat conversion technologies. • Heat recovery potential for Gävleborg County in Sweden was calculated. • Effects on global CO 2 emissions were calculated for future energy market scenarios. - Abstract: Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO 2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO 2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO 2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gävleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO 2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO 2 emissions when the CO 2 emission charge is low

  16. The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios

    International Nuclear Information System (INIS)

    Barron, Robert; McJeon, Haewon

    2015-01-01

    This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO 2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO 2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any. Sensitivity analysis of the results with respect to population, GDP, and CO 2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive. - Highlights: • The impact of low carbon energy technology on abatement cost is considered. • Nuclear has the largest impact among technologies considered. • Cost has higher impact than efficiency for biomass technologies. • Biomass technologies generally have larger impacts than carbon capture. • Biomass technologies are more valuable in low GDP, high population scenarios

  17. Modeling of CO2 storage in aquifers

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Santos, Juan E

    2011-01-01

    Storage of CO 2 in geological formations is a means of mitigating the greenhouse effect. Saline aquifers are a good alternative as storage sites due to their large volume and their common occurrence in nature. The first commercial CO 2 injection project is that of the Sleipner field in the Utsira Sand aquifer (North Sea). Nevertheless, very little was known about the effectiveness of CO 2 sequestration over very long periods of time. In this way, numerical modeling of CO 2 injection and seismic monitoring is an important tool to understand the behavior of CO 2 after injection and to make long term predictions in order to prevent CO 2 leaks from the storage into the atmosphere. The description of CO 2 injection into subsurface formations requires an accurate fluid-flow model. To simulate the simultaneous flow of brine and CO 2 we apply the Black-Oil formulation for two phase flow in porous media, which uses the PVT data as a simplified thermodynamic model. Seismic monitoring is modeled using Biot's equations of motion describing wave propagation in fluid-saturated poroviscoelastic solids. Numerical examples of CO 2 injection and time-lapse seismics using data of the Utsira formation show the capability of this methodology to monitor the migration and dispersal of CO 2 after injection.

  18. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  19. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    Science.gov (United States)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    ) within the program SWAT-CUP (SWAT Calibration and Uncertainty Programs). Model performance is assessed against a variety of statistical measures including the Nash-Sutcliffe efficiency coefficient (NSE) and percentage bias (PBIAS). Various mitigation scenarios are modelled within the catchment, including changes in fertiliser application rates and timing and the introduction of different tillage techniques and cover-crop regimes. The effects of the applied measures on water quality are examined and recommendations made on which measures have the greatest potential to be applied within the catchment to improve water quality. This study reports the findings of that analysis and presents techniques by which diffuse agricultural pollution can be reduced within catchments through the implementation of multiple on-farm measures. The methodology presented has the potential to be applied within other catchments, allowing tailored mitigation strategies to be developed. Ultimately, this research provides 'tested' mitigation options that can be applied within the Wensum and similar catchments to improve water quality and to ensure that certain obligatory water quality standards are achieved.

  20. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  1. Regional allocation of CO2 emissions allowance over provinces in China by 2020

    International Nuclear Information System (INIS)

    Wang, Ke; Zhang, Xian; Wei, Yi-Ming; Yu, Shiwei

    2013-01-01

    The mitigation efforts of China are increasingly important for meeting global climate target since the rapid economic growth of China has led to an increasing share in the world's total CO 2 emissions. This paper sets out to explore the approach for realizing China's national mitigation targets submitted to the UNFCCC as part of the Copenhagen Accord; that is, to reduce the intensity of CO 2 emissions per unit of GDP by 40–45% by 2020, as well as reducing the energy intensity and increasing the share of non-fossil fuel consumption, through regional allocation of emission allowance over China's provinces. Since the realization of China's mitigation target essentially represents a total amount emission allowance allocation problem, an improved zero sum gains data envelopment analysis optimization model, which could deal with the constant total amount resources allocation, is proposed in this study. By utilizing this model and based on several scenarios of China's economic growth, CO 2 emissions, and energy consumption, a new efficient emission allowance allocation scheme on provincial level for China by 2020 is proposed. The allocation results indicate that different provinces have to shoulder different mitigation burdens in terms of emission intensity reduction, energy intensity reduction, and share of non-fossil fuels increase. - Highlights: ► We explore the approach to realize national CO 2 emissions reduction target of China by 2020. ► The CO 2 emissions allowance is allocated over China's 30 administrative regions. ► Several scenarios of China's regional economy, emission, energy consumption are given. ► The zero sum gains data envelopment analysis model is applied in emission allowance allocation. ► An efficient emission allowance allocation scheme on provincial level is proposed

  2. The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Barron, Robert W.; McJeon, Haewon C.

    2015-05-01

    This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any. Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive.

  3. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  4. Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies

    Science.gov (United States)

    Chang, Kelly M.; Hess, Jeremy J.; Balbus, John M.; Buonocore, Jonathan J.; Cleveland, David A.; Grabow, Maggie L.; Neff, Roni; Saari, Rebecca K.; Tessum, Christopher W.; Wilkinson, Paul; Woodward, Alistair; Ebi, Kristie L.

    2017-11-01

    Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission ‘Managing the health effects of climate change’ through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling

  5. ''No smoking''. CO2-low power generation in a sustainable German energy system. A comparison of CO2 abatement costs of renewable energy sources and carbon capture and storage

    International Nuclear Information System (INIS)

    Trittin, Tom

    2012-05-01

    Significant reduction of CO 2 -emissions is essential in order to prevent a worsening of ongoing climate change. This thesis analyses two different pathways for the mitigation of CO 2 -emissions in electricity generation. It focuses on the calculation of CO 2 -mitigation costs of renewable energy sources (RES) as well as of power plants with carbon capture and storage (CCS). Under the frame of long-term CO 2 reductions targets for the German electricity sector future CO 2 -mitigation costs are calculated on a system-based and a technology-based approach. The calculations show that RES have lower system-based mitigation costs in all scenarios compared to a system based on CCS. If the retrofit of power plants is taken into consideration, the results are even more clearly in favour of RES. Further, the thesis investigates whether CCS can serve as a bridge towards a sustainable energy system based on RES. Findings of different scientific disciplines suggest that CCS is not the optimal choice. These findings lead to the conclusion that CCS cannot support an easier integration of RES. CCS rather has the potential to further strengthen the fossil pathway and delaying the large-scale integration of RES. Hence, CCS is rather unsuited as a bridging technology towards a system mainly based on RES.

  6. South Africa's greenhouse gas emissions under business-as-usual: The technical basis of 'Growth without Constraints' in the Long-Term Mitigation Scenarios

    International Nuclear Information System (INIS)

    Winkler, Harald; Hughes, Alison; Marquard, Andrew; Haw, Mary; Merven, Bruno

    2011-01-01

    This article describes the methodology for projecting business-as-usual GHG trajectory developed in technical work for South Africa's Long-Term Mitigation Scenarios (LTMSs), in particular the 'Growth without Constraints' (GWCs) scenario. Technically rigorous projections are important as developing countries define their commitment to act on mitigation relative to business-as-usual (BAU). The key drivers for the GWC scenario include GDP (both growth rate and composition), population, discount rate and technological change. GDP emerged as an important driver in the research for LTMS and further analysis. If South Africa's economy grows without constraints over the next few decades, GHG emissions will continue to escalate, multiplying more than four-fold by mid-century. There is little gain in energy efficiency, and emissions continue to be dominated by energy use and supply, the latter remaining coal-based in GWC. We analyse the projections (not predictions) in relation to various measures. The LTMS GWC scenario is compared to other projections, nationally and internationally. A broadly comparable projection is being used at national level, for electricity planning. When compared to projections from international models, we find that the assumptions about GDP growth rates are a key factor, and suggest that comparisons of global data-sets against national analyses is important. - Highlights: → Specifies business-as-usual GHG trajectory for South Africa's Long-Term Mitigation Scenarios. → Provides details on methodology, drivers of emissions and key parameters. → In a scenario of Growth without Constraints, emissions would quadruple by 2050. → Analysis of resulting emission projection, not a prediction. → Compares projections from other national and international models.

  7. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Science.gov (United States)

    Morales, Sergio E; Holben, William E

    2013-01-01

    Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2) emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA) and activity (mRNA) of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface) CO2 using FACE (Free-Air CO2 Enrichment) systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  8. Coral energy reserves and calcification in a high-CO2 world at two temperatures.

    Directory of Open Access Journals (Sweden)

    Verena Schoepf

    Full Text Available Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm, and two temperature regimes (26.5, 29.0 °C within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53% in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

  9. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  10. Climate Strategy with CO2 Capture from the Air

    Energy Technology Data Exchange (ETDEWEB)

    Keith, D.W. [Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB (Canada); Ha-Duong, M. [CNRS-CIRED, Campus du Jardin Tropical, 45 bis, av. de la Belle Gabrielle, 94736 Nogent sur Marne CEDEX (France); Stolaroff, J.K. [Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States)

    2006-01-15

    It is physically possible to capture CO2 directly from the air and immobilize it in geological structures. Air capture differs from conventional mitigation in three key aspects. First, it removes emissions from any part of the economy with equal ease or difficulty, so its cost provides an absolute cap on the cost of mitigation. Second, it permits reduction in concentrations faster than the natural carbon cycle: the effects of irreversibility are thus partly alleviated. Third, because it is weakly coupled to existing energy infrastructure, air capture may offer stronger economies of scale and smaller adjustment costs than the more conventional mitigation technologies. We assess the ultimate physical limits on the amount of energy and land required for air capture and describe two systems that might achieve air capture at prices under 200 and 500 $/tC using current technology. Like geoengineering, air capture limits the cost of a worst-case climate scenario. In an optimal sequential decision framework with uncertainty, existence of air capture decreases the need for near-term precautionary abatement. The long-term effect is the opposite; assuming that marginal costs of mitigation decrease with time while marginal climate change damages increase, then air capture increases long-run abatement. Air capture produces an environmental Kuznets curve, in which concentrations are returned to preindustrial levels.

  11. Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)

    International Nuclear Information System (INIS)

    Garg, Amit; Shukla, P.R.

    2009-01-01

    Coal is the abundant domestic energy resource in India and is projected to remain so in future under a business-as-usual scenario. Using domestic coal mitigates national energy security risks. However coal use exacerbates global climate change. Under a strict climate change regime, coal use is projected to decline in future. However this would increase imports of energy sources like natural gas (NG) and nuclear and consequent energy security risks for India. The paper shows that carbon dioxide (CO 2 ) capture and storage (CCS) can mitigate CO 2 emissions from coal-based large point source (LPS) clusters and therefore would play a key role in mitigating both energy security risks for India and global climate change risks. This paper estimates future CO 2 emission projections from LPS in India, identifies the potential CO 2 storage types at aggregate level and matches the two into the future using Asia-Pacific Integrated Model (AIM/Local model) with a Geographical Information System (GIS) interface. The paper argues that clustering LPS that are close to potential storage sites could provide reasonable economic opportunities for CCS in future if storage sites of different types are further explored and found to have adequate capacity. The paper also indicates possible LPS locations to utilize CCS opportunities economically in future, especially since India is projected to add over 220,000 MW of thermal power generation capacity by 2030.

  12. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets

    International Nuclear Information System (INIS)

    Calderón, Silvia; Alvarez, Andrés Camilo; Loboguerrero, Ana María; Arango, Santiago; Calvin, Katherine; Kober, Tom; Daenzer, Kathryn; Fisher-Vanden, Karen

    2016-01-01

    In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increase in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. An assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper. - Highlights: • Four energy and economy-wide models under carbon mitigation scenarios are compared. • Baseline results show that CO

  13. Potential hazards of CO2 leakage in storage systems : learning from natural systems

    International Nuclear Information System (INIS)

    Beaubien, S.E.; Lombardi, S.; Ciotoli, G.; Annunziatellis, A.; Hatziyannis, G.; Metaxas, A.; Pearce, J.M.

    2005-01-01

    reservoir by two-phase flow restrictions. Also, most of the studied sites are related to dormant volcanic complexes which are highly faulted, and one site is actually located within a city. Both these issues would clearly be avoided in constructing a CO 2 disposal reservoir. The observed results outlined worst case scenarios, making it possible to predict near surface effects and mitigate possible risks. It was concluded that the negative effects can be spatially restricted and that health risks can be minimized with simple approaches and regulations. 20 refs., 4 figs

  14. CO2 chemical valorization

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Rakotojaona, Loic; Bucy, Jacques de; Clodic, Denis; Roger, Anne-Cecile; El Khamlichi, Aicha; Thybaud, Nathalie; Oeser, Christian; Forti, Laurent; Gimenez, Michel; Savary, David; Amouroux, Jacques

    2014-07-01

    Facing global warming, different technological solutions exist to tackle carbon dioxide (CO 2 ) emissions. Some inevitable short term emissions can be captured so as to avoid direct emissions into the atmosphere. This CO 2 must then be managed and geological storage seems to currently be the only way of dealing with the large volumes involved. However, this solution faces major economic profitability and societal acceptance challenges. In this context, alternative pathways consisting in using CO 2 instead of storing it do exist and are generating growing interest. This study ordered by the French Environment and Energy Management Agency (ADEME), aims at taking stock of the different technologies used for the chemical conversion of CO 2 in order to have a better understanding of their development potential by 2030, of the conditions in which they could be competitive and of the main actions to be implemented in France to foster their emergence. To do this, the study was broken down into two main areas of focus: The review and characterization of the main CO 2 chemical conversion routes for the synthesis of basic chemical products, energy products and inert materials. This review includes a presentation of the main principles underpinning the studied routes, a preliminary assessment of their performances, advantages and drawbacks, a list of the main R and D projects underway, a focus on emblematic projects as well as a brief analysis of the markets for the main products produced. Based on these elements, 3 routes were selected from among the most promising by 2030 for an in-depth modelling and assessment of their energy, environmental and economic performances. The study shows that the processes modelled do have favorable CO 2 balances (from 1 to 4 t-CO 2 /t-product) and effectively constitute solutions to reduce CO 2 emissions, despite limited volumes of CO 2 in question. Moreover, the profitability of certain solutions will remain difficult to reach, even with an

  15. CO2 cycle

    Science.gov (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.

    2017-01-01

    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.

  16. Analysis of Transport Policy Effect on CO2 Emissions Based on System Dynamics

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    2015-01-01

    Full Text Available CO2 emission from the transport sector attracts the attention of both transport and climate change policymakers because of its share in total green house gas emissions and the forecast of continuous growth reported in many countries. This paper takes the urban transport in Beijing as a case and builds a system dynamics model for analysis of the motorization trend and the assessment of CO2 emissions mitigation policy. It is found that the urban transport condition and CO2 emissions would be more serious with the growth of vehicle ownership and travel demand. Compared with the baseline do-nothing scenario, the CO2 emissions could be reduced from 3.8% to 24.3% in 2020 by various transport policies. And the policy of controlling the number of passenger cars which has been carried out in Beijing and followed by some cities could achieve good results, which may help to increase the proportion of public transit to 55.6% and reduce the CO2 emission by 18.3% compared with the baseline scenario in 2020.

  17. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    Fossil fuels are the backbone of the energy generation in the coming decades for USA, China, India and Europe, hence high greenhouse gas emissions are expected in future. Carbon capture and storage technology (CCS) is the only technology that can mitigate greenhouse gas emissions from fossil fuel...... the mass transfer of CO2 with slow-capturing but energetically favorable solvents can open up a variety of new process options for this technology. The ubiquitous enzyme carbonic anhydrase (CA), which enhances the mass transfer of CO2 in the lungs by catalyzing the reversible hydration of CO2, is one very...... enhanced CO2 capture technology by identifying the potentials and limitations in lab and in pilot scale and benchmarking the process against proven technologies. The main goal was to derive a realistic process model for technical size absorbers with a wide range of validity incorporating a mechanistic...

  18. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?

    Science.gov (United States)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György

    2017-04-01

    Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an

  19. CO2-strategier

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2008-01-01

    I 2007 henvendte Lyngby-Taarbæk kommunens Agenda 21 koordinator sig til Videnskabsbutikken og spurgte om der var interesse for at samarbejde om CO2-strategier. Da Videnskabsbutikken DTU er en åben dør til DTU for borgerne og deres organisationer, foreslog Videnskabsbutikken DTU at Danmarks...

  20. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  1. Carbonation and CO2 uptake of concrete

    International Nuclear Information System (INIS)

    Yang, Keun-Hyeok; Seo, Eun-A; Tae, Sung-Ho

    2014-01-01

    This study developed a reliable procedure to assess the carbon dioxide (CO 2 ) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO 2 per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, and the substitution level of supplementary cementitious materials to the CO 2 diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO 2 diffusion coefficient and increased CO 2 concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO 2 uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO 2 uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO 2 emissions from concrete production, which roughly corresponds to 18%–21% of the CO 2 emissions from the production of ordinary Portland cement. - Highlights: • CO 2 uptake assessment approach owing to the

  2. CO2 flowrate calculator

    International Nuclear Information System (INIS)

    Carossi, Jean-Claude

    1969-02-01

    A CO 2 flowrate calculator has been designed for measuring and recording the gas flow in the loops of Pegase reactor. The analog calculator applies, at every moment, Bernoulli's formula to the values that characterize the carbon dioxide flow through a nozzle. The calculator electronics is described (it includes a sampling calculator and a two-variable function generator), with its amplifiers, triggers, interpolator, multiplier, etc. Calculator operation and setting are presented

  3. Carbon sequestration by afforestation and revegetation as a means of limiting net-CO2 emissions in Iceland. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Sigurdsson B.D.

    2000-01-01

    Full Text Available Iceland has lost about 95/ of its woodlands and 50/ of its vegetative cover during the 1,100 years of human settlement. Efforts to reclaim lost woodlands and herbaceous ecosystems have been continuing since the early 20th century. It is emphasised that for Icelandic conditions, effective carbon sequestration can be achieved by restoring (reclaiming herbaceous ecosystems on carbon-poor soils. Since 1990, about 4,000 ha per year have been afforested or revegetated. In 1995, the estimated C-sequestration of those areas was 65,100 t CO2, or 2.9/ of the national emissions for that year. In 1999, the estimated sequestration was up in 127,600 t CO2, or 4.7/ of the predicted CO2 emissions for the year 2000.

  4. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.

    2001-01-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  5. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  6. Energy and emission scenarios for China in the 21st century. Exploration of baseline development and mitigation options

    NARCIS (Netherlands)

    Vuuren DP van; Fengqi Zhou; Vries HJM de; Kejun Jiang; Graveland C; Yun Li; Energy Research Institute,; MNV

    2001-01-01

    The purpose of the study reported here was to explore possible baseline developments and available options for mitigating emissions in China. The first part of the report deals with an analysis and overview of available data on historic energy production and consumption trends and current energy

  7. The Emergence of Climate Change and Mitigation Action by Society: An Agent-Based Scenario Discovery Study

    NARCIS (Netherlands)

    Greeven, Sebastiaan; Kraan, O.D.E.; Chappin, E.J.L.

    2016-01-01

    Developing model-based narratives of society’s response to climate change is challenged by two factors. First, society’s response to possible future climate change is subject to many uncertainties. Second, we argue that society’s mitigation action emerge out of the actions and interactions of the

  8. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  9. A Comparison of national CCS strategies for Northwest Europe, with a focus on the potential of common CO2 storage at the Utsira formation

    DEFF Research Database (Denmark)

    Ramirez, Andrea; Hoefnagels, Ric; van den Broek, Machteld

    2011-01-01

    Mega structures for CO2 storage, such as the Utsira formation in the North Sea, could theoretically supply CO2 storage capacity for several countries for a period of several decades. Their use could increase the cost-effectiveness of CCS in a region while minimizing opposition from the public to CO...... region Pan European TIMES model (PET). In the models scenarios, assumptions and parameters that are not country dependent (e.g. costs related with CO2 capture technology development) have been harmonized. The results indicate that with stringent climate targets, CCS appears as a key mitigation option...... in the national portfolio of measures. Within the CCS portfolio, storage of CO2 in the Utsira formation can indeed be a cost effective option for North Europe and it represents a valuable CO2 storage option at the regional level. For instance, the United Kingdom will profit from the comparably short transport...

  10. Evasion of CO2 injected into the ocean in the context of CO2 stabilization

    International Nuclear Information System (INIS)

    Kheshgi, Haroon S.

    2004-01-01

    The eventual evasion of injected CO 2 to the atmosphere is one consideration when assessing deep-sea disposal of CO 2 as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO 2 emissions, including illustrative cases leading to stabilization of CO 2 concentration at various levels. Modeled residence time for CO 2 injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO 2 concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO 2 emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO 2 concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO 2 concentration, with less effect on concentration later on in time

  11. Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach

    International Nuclear Information System (INIS)

    Selvakkumaran, Sujeetha; Limmeechokchai, Bundit

    2015-01-01

    The transport sector of a country is the backbone driving the economy forward. Thailand’s land transport sector is modelled using the AIM/Enduse, which is a recursive dynamic optimization model, based on bottom-up modelling principle. The travel demand is divided into two major categories which are passenger travel and freight travel. The objective of this paper is to analyse the mitigation possible through low carbon society (LCS) measures and emission tax (ET). Two scenario clusters are devised along with the BAU case. The LCS scenario cluster has three designed scenarios which are LCS-L, LCS-M and LCS-H. The emission tax (ET) cluster has four scenarios, where the taxes of 50, 100, 200 and 500 USD/t-CO 2 are implemented. Along with this the marginal abatement costs (MAC) of the counter-measures (CMs) and the co-benefits in terms of energy security, productivity and air pollutant mitigation are also assessed. Results show that LCS scenarios are possible of mitigating up to 1230 Mt-CO 2 cumulatively, from 2010 to 2050. In terms of MACs, new vehicles play a pivotal role, along with hybrid vehicles. The Average Abatement Cost (AAC) assessment shows that the AAC of LCS-H scenario is in the order of 100 USD/t-CO 2 . All the LCS and ET scenarios show an enhancement in energy security and also a threefold increase in productivity. There is distinct mitigation in terms of air pollutants from the transport sector as well. -- Highlights: •Thailand transport sector has been modelled using AIM/Enduse model. •Potential cumulative mitigation of CO 2 during 2010–2050 is approximately 30% when compared the BAU scenario. •Abatement cost curves show that various counter measures are practical in the transport sector. •Energy security is enhanced due to CO 2 mitigation in the LCS scenario

  12. [Research on soil bacteria under the impact of sealed CO2 leakage by high-throughput sequencing technology].

    Science.gov (United States)

    Tian, Di; Ma, Xin; Li, Yu-E; Zha, Liang-Song; Wu, Yang; Zou, Xiao-Xia; Liu, Shuang

    2013-10-01

    Carbon dioxide Capture and Storage has provided a new option for mitigating global anthropogenic CO2 emission with its unique advantages. However, there is a risk of the sealed CO2 leakage, bringing a serious threat to the ecology system. It is widely known that soil microorganisms are closely related to soil health, while the study on the impact of sequestered CO2 leakage on soil microorganisms is quite deficient. In this study, the leakage scenarios of sealed CO2 were constructed and the 16S rRNA genes of soil bacteria were sequenced by Illumina high-throughput sequencing technology on Miseq platform, and related biological analysis was conducted to explore the changes of soil bacterial abundance, diversity and structure. There were 486,645 reads for 43,017 OTUs of 15 soil samples and the results of biological analysis showed that there were differences in the abundance, diversity and community structure of soil bacterial community under different CO, leakage scenarios while the abundance and diversity of the bacterial community declined with the amplification of CO2 leakage quantity and leakage time, and some bacteria species became the dominant bacteria species in the bacteria community, therefore the increase of Acidobacteria species would be a biological indicator for the impact of sealed CO2 leakage on soil ecology system.

  13. Public Acceptance for Geological CO2-Storage

    Science.gov (United States)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team

    2009-04-01

    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  14. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    International Nuclear Information System (INIS)

    Powell, Thomas W R; Lenton, Timothy M

    2013-01-01

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species–energy and species–area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect. (letter)

  15. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  16. Novel process concept for cryogenic CO2 capture

    NARCIS (Netherlands)

    Tuinier, M.J.

    2011-01-01

    Carbon capture and storage (CCS) is generally considered as one of the necessary methods to mitigate anthropogenic CO2 emissions to combat climate change. The costs of CCS can for a large extent be attributed to the capture process. Several post-combustion CO2 capture processes have been developed,

  17. Influence of travel behavior on global CO2 emissions

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Vries, B. de

    2013-01-01

    Travel demand is rising steeply and its contribution to global CO2 emissions is increasing. Different studies have shown possible mitigation through technological options, but so far few studies have evaluated the implications of changing travel behavior on global travel demand, energy use and CO2

  18. Comparison of CO2 Photoreduction Systems: A Review

    Science.gov (United States)

    Carbon dioxide (CO2) emissions are a major contributor to the climate change equation. To alleviate concerns of global warming, strategies to mitigate increase of CO2 levels in the atmosphere have to be developed. The most desirable approach is to convert the carbon dioxide to us...

  19. Study on CO2 global recycling system

    International Nuclear Information System (INIS)

    Takeuchi, M.; Sakamoto, Y.; Niwa, S.

    2001-01-01

    In order to assist in finding ways to mitigate CO 2 emission and to slow the depletion of fossil fuels we have established and evaluated a representative system, which consists of three technologies developed in our laboratory. These technologies were in CO 2 recovery, hydrogen production and methanol synthesis and in addition we established the necessary supporting systems. Analysis of outline designs of the large scale renewable energy power generation system and this system and energy input for building plant, energy input for running plant has been conducted based on a case using this system for a 1000-MW coal fired power plant, followed by an evaluation of the material balance and energy balance. The results are as follows. Energy efficiency is 34%, the CO 2 reduction rate is 41%, the balance ratio of the energy and CO 2 of the system is 2.2 and 1.8, respectively, on the assumption that the primary renewable energy is solar thermal power generation, the stationary CO 2 emission source is a coal-fired power plant and the generation efficiency of the methanol power plant is 60%. By adopting the system, 3.7 million tons of CO 2 can be recovered, approximately 2.7 million tons of methanol can be produced, and 15.4 billion kWh of electricity can be generated per year. Compared to generating all electrical power using only coal, approximately 2.6 million tons of coal per year can be saved and approximately 2.15 million tons of CO 2 emission can be reduced. Therefore, it is clearly revealed that this system would be effective to reduce CO 2 emissions and to utilize renewable energy

  20. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole

    2016-01-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...

  1. CO2 laser development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research and development programs on high-energy, short-pulse CO 2 lasers were begun at LASL in 1969. Three large systems are now either operating or are being installed. The Single-Beam System (SBS), a four-stage prototype, was designed in 1971 and has been in operation since 1973 with an output energy of 250 J in a 1-ns pulse with an on-target intensity of 3.5 x 10 14 W/cm 2 . The Dual-Beam System (DBS), now in the final stages of electrical and optical checkout, will provide about ten times more power for two-beam target irradiation experiments. Four such dual-beam modules are being installed in the Laser-Fusion Laboratory to provide an Eight-Beam System (EBS) scheduled for operation at the 5- to 10-TW level in 1977. A fourth system, a 100- to 200-TW CO 2 laser, is being designed for the High-Energy Gas Laser Facility (HEGLF) program

  2. Co-benefits? Not always: Quantifying the negative effect of a CO2-reducing car taxation policy on NOx emissions

    International Nuclear Information System (INIS)

    Leinert, Stephan; Daly, Hannah; Hyde, Bernard; Gallachóir, Brian Ó

    2013-01-01

    With the current focus of policy action on climate change mitigation, it is important to investigate possible negative side effects of climate change policies on air pollutants. A 34% increase in CO 2 emissions from private cars in Ireland over the period 2000–2008 prompted a change in private car taxation in 2008 to incentivise the purchase of lower CO 2 emitting cars. The impact has been successful and the measure has accelerated the dieselisation of the car fleet. This however, raises an important question, namely how does the dieselisation of the car fleet affect NO x emissions? This paper combines two models to address this question, a car stock model to generate activity data (future composition and activity of Ireland's car stock) and the COPERT model to quantify the NO x emissions generated in the period 2008–2020. Previous analysis shows that the CO 2 taxation policy measure is anticipated to deliver a 7% reduction in private car related CO 2 emissions in 2020 compared with a baseline pre-tax scenario. The results here show that NO x emissions decrease in all scenarios, but a lesser degree of reduction is achieved due to dieselisation, with NO x emissions in the post-tax scenario 28% higher than the pre-tax scenario in 2020. - Highlights: • Irish car tax changed in 2008 to a CO 2 -graduated system. • Change successfully reduced the CO 2 intensity of new cars through dieselization. • However, this has negative consequences for air pollution. • Bottom-up model analyses pre-tax and post-tax NO x to 2020 using COPERT. • NO x projected to be 28% higher in 2020 compared with pre-tax scenario

  3. CO2 footprint 2008 District Oud-Zuid, Amsterdam, Netherlands; CO2-voetafdruk 2008 Stadsdeel Oud-Zuid [Amsterdam

    Energy Technology Data Exchange (ETDEWEB)

    Hanekamp, E; Van Merksteijn, C [Partners for Innovation, Amsterdam (Netherlands)

    2009-06-15

    The district 'Oud-Zuid' in Amsterdam, Netherlands, plans to become CO2 neutral in 2015. For this purpose, the CO2 footprint of the district is determined and a plan of action developed. By means of scenarios, the district council can make choices for climate investments [Dutch] Stadsdeel Oud-Zuid van de gemeente Amsterdam wil CO2-neutraal zijn in 2015. Daartoe is de CO2-voetafdruk van Oud-Zuid bepaald en een plan van aanpak uitgewerkt. Met behulp van scenario's zal de stadsdeelraad keuzes kunnen maken over haar klimaatinvesteringen.

  4. Uncertainties in relation to CO2 capture and sequestration. Preliminary results. Working Paper

    International Nuclear Information System (INIS)

    Gielen, D.

    2003-03-01

    This paper has been presented at an expert meeting on CO2 capture technology learning at the IEA headquarters, January 24th, 2003. The electricity sector is a key source of CO2 emissions and a strong increase of emissions is forecast in a business-as-usual scenario. A range of strategies have been proposed to reduce these emissions. This paper focuses on one of the promising strategies, CO2 capture and storage. The future role of CO2 capture in the electricity sector has been assessed, using the Energy Technology Perspectives model (ETP). Technology data have been collected and reviewed in cooperation with the IEA Greenhouse Gas R and D implementing agreement and other expert groups. CO2 capture and sequestration is based on relatively new technology. Therefore, its characteristics and its future role in the energy system is subject to uncertainties, as for any new technology. The analysis suggests that the choice of a reference electricity production technology and the characteristics of the CO2 storage option constitute the two main uncertainties, apart from a large number of other factors of lesser importance. Based on the choices made cost estimates can range from less than zero USD for coal fired power plants to more than 150 USD per ton of CO2 for gas fired power plants. The results suggest that learning effects are important, but they do not affect the CO2 capture costs significantly, other uncertainties dominate the cost estimates. The ETP model analysis, where choices are based on the ideal market hypothesis and rational price based decision making, suggest up to 18% of total global electricity production will be equipped with CO2 capture by 2040, in case of a penalty of 50 US$ per ton of CO2. However this high penetration is only achieved in case coal fired IGCC-SOFC power plants are developed successfully. Without such technology only a limited amount of CO2 is captured from gas fired power plants. Higher penalties may result in a higher share of CO2

  5. CO2 emission from China's energy sector and strategy for its control

    International Nuclear Information System (INIS)

    He, Jiankun; Deng, Jing; Su, Mingshan

    2010-01-01

    This paper identifies the main features of CO 2 emission from fossil energy combustion in China. Then it estimates China's future energy requirements and projects its CO 2 emission from 2010 to 2020 based on the scenario analysis approach. China's rate of carbon productivity growth is estimated to be 5.4% in the period 2005-2020, while the CO 2 intensity of GDP will reduce by about 50% but CO 2 emission in 2020 will still be about 40% higher than prevailing in 2005 because of rapid growth of GDP. This estimation is based on the assumption that China will implement a sustainable development strategy in consideration of climate change issues. The main objectives of the strategy are to implement an 'energy conservation first' strategy, to develop renewable energy and advanced nuclear technology actively, to readjust the country's economic structure, and to formulate and legislate laws and regulations, and to build institutions for energy conservation and development of renewable energy. It concludes that international measures to mitigate CO 2 emission will limit world fossil fuel consumption. China is not placed to replicate the modernization model adopted by developed countries and has to coordinate economic development and carbon dioxide emission control while still in the process of industrialization and modernization. China has to evolve a low carbon industrialization model. This is the key to the success of sustainable development initiatives in China.

  6. Natural Analogues of CO2 Geological Storage

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-01-01

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  7. What does CO2 geological storage really mean?

    International Nuclear Information System (INIS)

    2008-01-01

    It is now accepted that human activities are disturbing the carbon cycle of the planet. CO 2 , a greenhouse gas, has accumulated in the atmosphere where it contributes to climate change. Amongst the spectrum of short term measures that need to be urgently implemented to mitigate climate change, CO 2 capture and storage can play a decisive role as it could contribute 33% of the CO 2 reduction needed by 2050. This document aims to explain this solution by answering the following questions: where and how much CO 2 can we store underground, How can we transport and inject large quantities of CO 2 , What happens to the CO 2 once in the storage reservoir? Could CO 2 leak from the reservoir and if so, what might be the consequences? How can we monitor the storage site at depth and at the surface? What safety criteria need to be imposed and respected? (A.L.B.)

  8. CO2 Laser Market

    Science.gov (United States)

    Simonsson, Samuel

    1989-03-01

    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  9. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima

    2016-12-01

    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  10. Assessment of CO2 free energy options

    International Nuclear Information System (INIS)

    Cavlina, N.; Raseta, D.; Matutinovic, I.

    2014-01-01

    One of the European Union climate and energy targets is to significantly reduce CO 2 emissions, at least 20% by 2020, compared to 1990. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. This article compared predicted cost of energy production for newly built nuclear power plant and newly built combination of wind or solar and gas-fired power plant. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarios. Power plants were compared based on their economic lifetime. (authors)

  11. CO2 reduction strategies for the Northern Netherlands

    NARCIS (Netherlands)

    Benders, Rene; Moll, Henk; Noorman, Klaas Jan; Wiersma, Gerwin

    2011-01-01

    The concern about global warming initiated ambitious CO2 reduction goals in cities and regions in the Netherlands. This article describes a study of such a local initiative for the Northern Netherlands. The research aimed to develop CO2 reduction scenarios for 2035 with national and international

  12. The influence of non-CO2 forcings on cumulative carbon emissions budgets

    Science.gov (United States)

    Tokarska, Katarzyna B.; Gillett, Nathan P.; Arora, Vivek K.; Lee, Warren G.; Zickfeld, Kirsten

    2018-03-01

    Carbon budgets provide a useful tool for policymakers to help meet the global climate targets, as they specify total allowable carbon emissions consistent with limiting warming to a given temperature threshold. Non-CO2 forcings have a net warming effect in the Representative Concentration Pathways (RCP) scenarios, leading to reductions in remaining carbon budgets based on CO2 forcing alone. Carbon budgets consistent with limiting warming to below 2.0 °C, with and without accounting for the effects of non-CO2 forcings, were assessed in inconsistent ways by the Intergovernmental Panel on Climate Change (IPCC), making the effects of non-CO2 forcings hard to identify. Here we use a consistent approach to compare 1.5 °C and 2.0 °C carbon budgets with and without accounting for the effects of non-CO2 forcings, using CO2-only and RCP8.5 simulations. The median allowable carbon budgets for 1.5 °C and 2.0 °C warming are reduced by 257 PgC and 418 PgC, respectively, and the uncertainty ranges on the budgets are reduced by more than a factor of two when accounting for the net warming effects of non-CO2 forcings. While our overall results are consistent with IPCC, we use a more robust methodology, and explain the narrower uncertainty ranges of carbon budgets when non-CO2 forcings are included. We demonstrate that most of the reduction in carbon budgets is a result of the direct warming effect of the non-CO2 forcings, with a secondary contribution from the influence of the non-CO2 forcings on the carbon cycle. Such carbon budgets are expected to play an increasingly important role in climate change mitigation, thus understanding the influence of non-CO2 forcings on these budgets and their uncertainties is critical.

  13. Economics show CO2 EOR potential in central Kansas

    Science.gov (United States)

    Dubois, M.K.; Byrnes, A.P.; Pancake, R.E.; Willhite, G.P.; Schoeling, L.G.

    2000-01-01

    Carbon dioxide (CO2) enhanced oil recovery (EOR) may be the key to recovering hundreds of millions of bbl of trapped oil from the mature fields in central Kansas. Preliminary economic analysis indicates that CO2 EOR should provide an internal rate of return (IRR) greater than 20%, before income tax, assuming oil sells for \\$20/bbl, CO2 costs \\$1/Mcf, and gross utilization is 10 Mcf of CO2/bbl of oil recovered. If the CO2 cost is reduced to \\$0.75/Mcf, an oil price of $17/bbl yields an IRR of 20%. Reservoir and economic modeling indicates that IRR is most sensitive to oil price and CO2 cost. A project requires a minimum recovery of 1,500 net bbl/acre (about 1 million net bbl/1-mile section) under a best-case scenario. Less important variables to the economics are capital costs and non-CO2 related lease operating expenses.

  14. Electricity system planning under the CO2 emission restriction

    International Nuclear Information System (INIS)

    Lim, Chae Young; Lee, Man Ki; Roh, Jae Hyung; Kim, Eun Hwan

    2004-01-01

    Objective of this study is to analyze how the restriction of CO 2 emission from power generation will affect the national electricity supply system. The role of nuclear power is investigated under the restriction of CO 2 emission in Korea. A simplified electricity system was modeled for the analysis. To analyze the impact of CO 2 emission restriction, 2 different scenarios were established and compared with the base scenario. The first scenario was 'CO 2 emission restriction with new nuclear power installation'. In this scenario, a CO 2 emission restriction of 0.11kg-C/kWh was imposed and there was no restriction on the nuclear power construction. While, in the second scenario, 'CO 2 emission restriction without new nuclear power installation' the same amount of CO 2 restriction was imposed with no consideration of nuclear power installation. It is found out that the current national emission target(0.11kg- C/kWh) in the electricity sector can not be achieved without nuclear and renewable(wind power) options considered

  15. A cost effective CO2 strategy

    DEFF Research Database (Denmark)

    , a scenario-part and a cost-benefit part. Air and sea modes are not analyzed. The model adopts a bottom-up approach to allow a detailed assessment of transport policy measures. Four generic areas of intervention were identified and the likely effect on CO2 emissions, socioeconomic efficiency and other...... are evaluated according to CO2 reduction potential and according to the ‘shadow price’ on a reduction of one ton CO2. The shadow price reflects the costs (and benefits) of the different measures. Comparing the measures it is possible to identify cost effective measures, but these measures are not necessarily...... by the Ministry of Transport, with the Technical University of Denmark as one of the main contributors. The CO2-strategy was to be based on the principle of cost-effectiveness. A model was set up to assist in the assessment. The model consists of a projection of CO2-emissions from road and rail modes from 2020...

  16. Economic efficiency of CO2 reduction programs

    International Nuclear Information System (INIS)

    Tahvonen, O.; Storch, H. von; Storch, J. von

    1993-01-01

    A highly simplified time-dependent low-dimensional system has been designed to describe conceptually the interaction of climate and economy. Enhanced emission of carbon dioxide (CO 2 ) is understood as the agent that not only favors instantaneous consumption but also causes unfavorable climate changes at a later time. The problem of balancing these two counterproductive effects of CO 2 emissions on a finite time horizon is considered. The climate system is represented by just two parameters, namely a globally averaged near-surface air-temperature and a globally averaged troposheric CO 2 concentration. The costs of abating CO 2 emissions are monitored by a function which depends quadratically on the percentage reduction of emission compared to an 'uncontrolled emission' scenario. Parameters are fitted to historical climate data and to estimates from studies of CO 2 abatement costs. Two optimization approaches, which differ from earlier attempts to describe the interaction of economy and climate, are discussed. In the 'cost oriented' strategy an optimal emission path is identified which balances the abatement costs and explicitly formulated damage costs. These damage costs, whose estimates are very uncertain, are hypothesized to be a linear function of the time-derivative of temperature. In the 'target oriented' strategy an emission path is chosen so that the abatement costs are minimal while certain restrictions on the terminal temperature and concentration change are met. (orig.)

  17. Subsurface impact of CO2: Response of carbonate rocks and wellbore cement to supercritical CO2 injection and long-term storage. Geologica Ultraiectina (310)

    NARCIS (Netherlands)

    Liteanu, E.

    2009-01-01

    Capture of CO2 at fossil fuel power station coupled with geological storage in empty oil and gas reservoirs is widely viewed as the most promising option for reducing CO2 emissions to the atmosphere, i.e. for climate change mitigation. Injection of CO2 into such reservoirs will change their chemical

  18. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  19. Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis

    International Nuclear Information System (INIS)

    Xu Jinhua; Fleiter, Tobias; Eichhammer, Wolfgang; Fan Ying

    2012-01-01

    We analyze the change of energy consumption and CO 2 emissions in China's cement industry and its driving factors over the period 1990–2009 by applying a log-mean Divisia index (LMDI) method. It is based on the typical production process for clinker manufacturing and differentiates among four determining factors: cement output, clinker share, process structure and specific energy consumption per kiln type. The results show that the growth of cement output is the most important factor driving energy consumption up, while clinker share decline, structural shifts mainly drive energy consumption down (similar for CO 2 emissions). These efficiency improvements result from a number of policies which are transforming the entire cement industry towards international best practice including shutting down many older plants and raising the efficiency standards of cement plants. Still, the efficiency gains cannot compensate for the huge increase in cement production resulting from economic growth particularly in the infrastructure and construction sectors. Finally, scenario analysis shows that applying best available technology would result in an additional energy saving potential of 26% and a CO 2 mitigation potential of 33% compared to 2009. - Highlights: ► We analyze the energy consumption and CO 2 emissions in China's cement industry. ► The growth of cement output is the most important driving factor. ► The efficiency policies and industrial standards significantly narrowed the gap. ► Efficiency gains cannot compensate for the huge increase in cement production. ► The potentials of energy-saving of 26% and CO 2 mitigation of 33% exist based on BAT.

  20. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    Science.gov (United States)

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  1. CO2 as a refrigerant

    CERN Document Server

    2014-01-01

    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  2. Sequestering CO2 in the Ocean: Options and Consequences

    Science.gov (United States)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood

  3. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2

    Science.gov (United States)

    Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.

    2013-01-01

    Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).

  4. Natural Analogues of CO2 Geological Storage; Analogos Naturales del Almacenamiento Geologico de CO2

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L; Pelayo, M; Recreo, F

    2007-07-20

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  5. Managing CO2 emissions in Nigeria

    International Nuclear Information System (INIS)

    Obioh, I.B.; Oluwole, A.F.; Akeredolu, F.A.

    1994-01-01

    The energy resources in Nigeria are nearly equally divided between fossil fuels and biofuels. The increasing pressure on them, following expected increased population growth, may lead to substantial emissions of carbon into the atmosphere. Additionally agricultural and forestry management practices in vogue are those related to savannah burning and rotational bush fallow systems, which have been clearly implicated as important sources of CO 2 and trace gases. An integrated model for the prediction of future CO 2 emissions based on fossil fuels and biomass fuels requirements, rates of deforestation and other land-use indices is presented. This is further based on trends in population and economic growth up to the year 2025, with a base year in 1988. A coupled carbon cycle-climate model based on the contribution of CO 2 and other trace gases is established from the proportions of integrated global warming effects for a 20-year averaging time using the product of global warming potential (GWP) and total emissions. An energy-technology inventory approach to optimal resources management is used as a tool for establishing the future scope of reducing the CO 2 emissions through improved fossil fuel energy efficiencies. Scenarios for reduction based on gradual to swift shifts from biomass to fossil and renewable fuels are presented together with expected policy options required to effect them

  6. City density and CO_2 efficiency

    International Nuclear Information System (INIS)

    Gudipudi, Ramana; Fluschnik, Till; Ros, Anselmo García Cantú; Walther, Carsten; Kropp, Jürgen P.

    2016-01-01

    Cities play a vital role in the global climate change mitigation agenda. City population density is one of the key factors that influence urban energy consumption and the subsequent GHG emissions. However, previous research on the relationship between population density and GHG emissions led to contradictory results due to urban/rural definition conundrum and the varying methodologies for estimating GHG emissions. This work addresses these ambiguities by employing the City Clustering Algorithm (CCA) and utilizing the gridded CO_2 emissions data. Our results, derived from the analysis of all inhabited areas in the US, show a sub-linear relationship between population density and the total emissions (i.e. the sum of on-road and building emissions) on a per capita basis. Accordingly, we find that doubling the population density would entail a reduction in the total CO_2 emissions in buildings and on-road sectors typically by at least 42%. Moreover, we find that population density exerts a higher influence on on-road emissions than buildings emissions. From an energy consumption point of view, our results suggest that on-going urban sprawl will lead to an increase in on-road energy consumption in cities and therefore stresses the importance of developing adequate local policy measures to limit urban sprawl. - Highlights: •We use gridded population, land use and CO_2 emissions data. •We attribute building and on-road sectoral emissions to populated settlements. •We apply CCA to identify unique city extents and population densities. •Doubling the population density increases CO_2 efficiency typically by 42%. •Population density has more influence on-road CO_2 efficiency than buildings sector.

  7. Economic evaluation of CO2 pipeline transport in China

    International Nuclear Information System (INIS)

    Zhang Dongjie; Wang Zhe; Sun Jining; Zhang Lili; Li Zheng

    2012-01-01

    Highlights: ► We build a static hydrodynamic model of CO 2 pipeline for CCS application. ► We study the impact on pressure drop of pipeline by viscosity, density and elevation. ► We point out that density has a bigger impact on pressure drop than viscosity. ► We suggest dense phase transport is preferred than supercritical state. ► We present cost-optimal pipeline diameters for different flowrates and distances. - Abstract: Carbon capture and sequestration (CCS) is an important option for CO 2 mitigation and an optimized CO 2 pipeline transport system is necessary for large scale CCS implementation. In the present work, a hydrodynamic model for CO 2 pipeline transport was built up and the hydrodynamic performances of CO 2 pipeline as well as the impacts of multiple factors on pressure drop behavior along the pipeline were studied. Based on the model, an economic model was established to optimize the CO 2 pipeline transport system economically and to evaluate the unit transport cost of CO 2 pipeline in China. The hydrodynamic model results show that pipe diameter, soil temperature, and pipeline elevation change have significant influence on the pressure drop behavior of CO 2 in the pipeline. The design of pipeline system, including pipeline diameter and number of boosters etc., was optimized to achieve a lowest unit CO 2 transport cost. In regarding to the unit cost, when the transport flow rate and distance are between 1–5 MtCO 2 /year and 100–500 km, respectively, the unit CO 2 transport cost mainly lies between 0.1–0.6 RMB/(tCO 2 km) and electricity consumption cost of the pipeline inlet compressor was found to take more than 60% of the total cost. The present work provides reference for CO 2 transport pipeline design and for feasibility evaluation of potential CCS projects in China.

  8. The sequestration of CO2

    International Nuclear Information System (INIS)

    Le Thiez, P.

    2004-01-01

    The reduction of greenhouse gas emissions, especially CO 2 , represents a major technological and societal challenge in the fight against climate change. Among the measures likely to reduce anthropic CO 2 emissions, capture and geological storage holds out promise for the future. (author)

  9. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  10. Geological storage of CO2 : Mechanical and chemical effects on host and seal formations

    NARCIS (Netherlands)

    Hangx, Suzanne

    2009-01-01

    The socio-economic impact of global warming resulting from anthropogenic CO2 emissions has lead to much attention for carbon mitigation strategies in recent years. One of the most promising ways of disposing of CO2 is through Carbon Capture and Storage (CCS), entailing CO2 capture at source,

  11. Intentional salt clogging: A novel concept for long-term CO2 sealing

    NARCIS (Netherlands)

    Wasch, L.J.; Wollenweber, J.; Tambach, T.J.

    2013-01-01

    Well abandonment in the context of CO2 storage operations demands a mitigation strategy for CO2 leakage along the wellbore. To prevent possible CO2 transport toward the surface and to protect the wellbore material from contact with acid brine, we propose forming a salt seal around the wellbore at

  12. Emissions reduction scenarios in the Argentinean Energy Sector

    International Nuclear Information System (INIS)

    Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco; Falzon, James; Calvin, Katherine

    2016-01-01

    In this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO_2 emission savings of the energy sector in Argentina over the 2010–2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic cost of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO_2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO_2 price leverages additional investments in hydropower. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO_2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts an 11.3% reduction. The main reasons for this difference include varying assumptions about technology cost and availability, CO_2 storage capacity, and the ability to import bioenergy. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. In terms of technology

  13. Assessment of the potential of state-of-the-art biomass technologies in contributing to a sustainable SADC regional mitigation energy scenario[Southern African Development Community

    Energy Technology Data Exchange (ETDEWEB)

    Yamba, F.D.; Matsika, E. [Centre for Energy, Environment and Engineering Zambia, Lusaka (Zambia)

    2003-09-01

    Southern Africa's energy supply is based on power sector collaboration - the Southern African Power Pool (SAPP). SAPP was created in 1995 through an inter-utility memorandum of understanding among 12 of the Southern African Development Community (SADC) utilities including Congo DR. The aims of SAPP are: To increase regional security of supply; To smoothen load curves; To engender economies of scale in the supply base; To increase revenue for exporting countries by opening up a ready market; To share power to meet national shortfalls and to off set temporary deficits in the medium term, and in the long term to adopt and implement power sharing as an operational strategy aimed at maximising financial and environmental benefits. Currently, SAPP has an operational installed capacity of 45.000 MW, of which 84% is thermal, predominantly coal based, which represents 79% of the total supply. 16% of the total SAPP interconnected supply is hydro, while the contribution from biomass is currently non-existent. The sugar industry in Southern Africa can significantly alter this picture. Increased competitive pressures serve as economic incentives for the sugar industry to diversify their product portfolio by investing in renewable energy applications. Of the new state-of-the-art biomass based technologies available Condensing Extraction Steam Turbine (CEST) is the most promising. Application of CEST technologies in Southern Africa will modestly contribute towards a sustainable energy supply mitigation scenario. If implemented, the contribution of bioenergy will increase from 0.5% for the baseline situation, to 2.5% in 2030 and 3.0% in 2050. This scenario will also yield global environmental benefits potential through saving of GHG reductions to 14 million tonnes CO{sub 2} in 2030 and 20 million tonnes CO{sub 2} in 2050. Furthermore, this paper produces a monogram which will assist investors in making decisions whether to invest in the Kyoto Protocols Clean Development

  14. Novel process concept for cryogenic CO2 capture

    OpenAIRE

    Tuinier, M.J.

    2011-01-01

    Carbon capture and storage (CCS) is generally considered as one of the necessary methods to mitigate anthropogenic CO2 emissions to combat climate change. The costs of CCS can for a large extent be attributed to the capture process. Several post-combustion CO2 capture processes have been developed, such as scrubbing, membrane processes and pressure swing adsorption. Amine scrubbing is currently the state of the art technology, in which CO2 is being removed by contacting the flue gas with a so...

  15. Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland.

    Science.gov (United States)

    Lai, Liming; Kumar, Sandeep; Chintala, Rajesh; Owens, Vance N; Clay, David; Schumacher, Joseph; Nizami, Abdul-Sattar; Lee, Sang Soo; Rafique, Rashad

    2016-05-01

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America and successfully adapted to diverse environmental conditions. It offers the potential to reduce soil surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information on how these CO2 fluxes respond to changing climate is still lacking. In this study, CO2 fluxes were monitored continuously from 2011 through 2014 using high frequency measurements from Switchgrass land seeded in 2008 on an experimental site that has been previously used for soybean (Glycine max L.) in South Dakota, USA. DAYCENT, a process-based model, was used to simulate CO2 fluxes. An improved methodology CPTE [Combining Parameter estimation (PEST) with "Trial and Error" method] was used to calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO2 emissions based on different climate change scenarios. This study showed that: (i) the measured soil CO2 fluxes from Switchgrass land were higher for 2012 which was a drought year, and these fluxes when simulated using DAYCENT for long-term (2015-2070) provided a pattern of polynomial curve; (ii) the simulated CO2 fluxes provided different patterns with temperature and precipitation changes in a long-term, (iii) the future CO2 fluxes from Switchgrass land under different changing climate scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown for longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and precipitation changes to some extent. Copyright © 2015. Published by Elsevier B.V.

  16. Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region

    Science.gov (United States)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

    2012-12-01

    US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some

  17. CO2 pellet blasting studies

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1997-01-01

    Initial tests with CO 2 pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO 2 pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO 2 blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report

  18. Mitigation assessment results and priorities in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zongxin; Wei Zhihong [Tsinghua Univ., Beijing (China)

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  19. Capture and Geological Storage of CO2

    International Nuclear Information System (INIS)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.

    2009-01-01

    To build on the growing success of the first two international symposia on emission reduction and CO 2 capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO 2 emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO 2 storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO 2 : A global project for carbon management in South-East France (Gilles Munier, Geogreen); Session III

  20. Potential impacts on groundwater resources of deep CO2 storage: natural analogues for assessing potential chemical effects

    Science.gov (United States)

    Lions, J.; Gale, I.; May, F.; Nygaard, E.; Ruetters, H.; Beaubien, S.; Sohrabi, M.; Hatzignatiou, D. G.; CO2GeoNet Members involved in the present study Team

    2011-12-01

    Carbon dioxide Capture and Storage (CCS) is considered as one of the promising options for reducing atmospheric emissions of CO2 related to human activities. One of the main concerns associated with the geological storage of CO2 is that the CO2 may leak from the intended storage formation, migrate to the near-surface environment and, eventually, escape from the ground. This is a concern because such leakage may affect aquifers overlying the storage site and containing freshwater that may be used for drinking, industry and agriculture. The IEA Greenhouse Gas R&D Programme (IEAGHG) recently commissioned the CO2GeoNet Association to undertake a review of published and unpublished literature on this topic with the aim of summarizing 'state of the art' knowledge and identifying knowledge gaps and research priorities in this field. Work carried out by various CO2GeoNet members was also used in this study. This study identifies possible areas of conflict by combining available datasets to map the global and regional superposition of deep saline formations (DSF) suitable for CO2 storage and overlying fresh groundwater resources. A scenario classification is developed for the various geological settings where conflict could occur. The study proposes two approaches to address the potential impact mechanisms of CO2 storage projects on the hydrodynamics and chemistry of shallow groundwater. The first classifies and synthesizes changes of water quality observed in natural/industrial analogues and in laboratory experiments. The second reviews hydrodynamic and geochemical models, including coupled multiphase flow and reactive transport. Various models are discussed in terms of their advantages and limitations, with conclusions on possible impacts on groundwater resources. Possible mitigation options to stop or control CO2 leakage are assessed. The effect of CO2 pressure in the host DSF and the potential effects on shallow aquifers are also examined. The study provides a review of

  1. Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields

    International Nuclear Information System (INIS)

    Ferronato, Massimiliano; Gambolati, Giuseppe; Janna, Carlo; Teatini, Pietro

    2010-01-01

    Anthropogenic CO 2 sequestration in deep geological formations may represent a viable option to fulfil the requirements of the 1997 Kyoto protocol on the reduction of greenhouse gas emissions. Scenarios of CO 2 sequestration through three injection wells in an exploited gas field located in the Po sedimentary basin (Italy) are simulated with the final target to understand the geomechanical consequences of the injection of carbon dioxide. Investigated scenarios include, as a hypothetical case, the long-term injection of CO 2 until the initial reservoir pressure is exceeded by as much as 40% over a period of about 100 years. The process is analyzed from the geomechanical point of view using a finite element-interface element (FE-IE) model with the following main issues addressed: (1) prediction of the possible land vertical uplift and corresponding impact on the ground infrastructures; (2) evaluation of the stress state induced in the reservoir formation with the possible generation of fractures and (3) a risk analysis for the activation of existing faults. The geomechanical constitutive law of the Northern Adriatic basin relying on the radioactive marker interpretation is implemented into the FE model, while an elasto-plastic relationship based on the Mohr-Coulomb criterion is used for the IE reproducing the fault behaviour. The in situ stress prior to the gas field exploitation is compressive with the principal horizontal stress in the direction perpendicular to the major faults equal to the vertical stress. The results show that the ground surface rebound due to the overpressure generated by the CO 2 sequestration partially mitigates the land subsidence experienced by the area because of the previous gas field depletion with differential displacements that are confined within the safety bounds suggested in the literature for the surface infrastructures. Activation of a few faults lying close to the northern reservoir boundary points to a slip of a couple of

  2. CO2: a worldwide myth

    International Nuclear Information System (INIS)

    Gerondeau, Ch.

    2009-01-01

    In this book, the author demonstrates the paradox that reducing CO 2 emissions leads to no CO 2 abatement at all. This assertion is based on an obvious statement. Everybody knows that oil resources are going to be exhausted in few decades. The oil that industrialized countries will not use will be consumed by emerging countries and the CO 2 emissions will remain the same. Who would believe that the oil, gas or coal still available will remain unused? The Kyoto protocol, the national policies, the European agreements of emissions abatement, the carbon taxes, the emissions abatement requests sent to the rest of the world, all these actions cost a lot and are useless. CO 2 concentration in the atmosphere will inescapably double during the 21. century but, according to the author, without any catastrophic consequence for the Earth. (J.S.)

  3. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.

    2009-06-10

    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  4. Nuclear power and its role in limiting CO2 emissions

    International Nuclear Information System (INIS)

    Suparman

    2012-01-01

    The objective of this study is to analyze the proper role of nuclear power in the long term energy planning by comparing different type of scenarios in terms of CO2 emission reduction, based on the Business-as-Usual (BAU) scenario. For this purpose, a MESSAGE (Model of Energy Supply Systems and their General Environmental impacts) was used to develop energy planning as well as CO2 emission projection. A sensitivity analysis for CO2 reduction rates of 2.%, 3%, 4% and 5% have been done. From this sensitivity analysis, it can be concluded that nuclear will be a part of optimum solution under CO2 limitation of at least 3% from BAU condition. The more the environmental standards are tightened and enforced the more and the earlier nuclear power becomes part of the optimum generation mix. (author)

  5. Exploring the limits for CO2 emission abatement in the EU power and industry sectors—Awaiting a breakthrough

    International Nuclear Information System (INIS)

    Rootzén, Johan; Johnsson, Filip

    2013-01-01

    This study assesses the prospects for presently available abatement technologies to achieve significant reductions in CO 2 emissions from large stationary sources of CO 2 in the EU up to year 2050. The study covers power generation, petroleum refining, iron and steel, and cement production. By simulating capital stock turnover, scenarios that assume future developments in the technology stock, energy intensities, fuel and production mixes, and the resulting CO 2 emissions were generated for each sector. The results confirm that the EU goal for reductions in Greenhouse Gas Emission in the sectors covered by the EU Emission Trading System, i.e., 21% reduction by 2020 as compared to the levels in 2005, is attainable with the abatement measures that are already available. However, despite the optimism regarding the potential for, and implementation of, available abatement strategies within current production processes, our results indicate that the power and industrial sectors will fail to comply with more stringent reduction targets in both the medium term (2030) and long term (2050). Deliberate exclusion from the analysis of mitigation technologies that are still in the early phases of development (e.g., CO 2 capture and storage) provides an indirect measure of the requirements for novel low-carbon technologies and production processes. - Highlights: • Explore the limits for CO 2 emission abatement within current production processes. • Analysis of scenarios for CO 2 emissions from EU power and industrial sectors 2010–2050. • Short-term (2020) emission targets are attainable with available abatement measures. • Fail to comply with more stringent reduction targets in the long term (2050). • Efforts to develop new low-carbon production processes need to be accelerated

  6. Energy Technology Roll-Out for Climate Change Mitigation: A Multi-Model Study for Latin America

    NARCIS (Netherlands)

    van der Zwaan, B.; Kober, T.; Calderon, S.; Clarke, L.; Daenzer, K.; Kitous, A.; Labriet, M.; Lucena, A.F.P.; Octaviano, C.; Di Sbroiavacca, N.

    In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be

  7. Macro economic analysis of CO2 emission limits for China

    International Nuclear Information System (INIS)

    Zhang, Z.X.; Folmer, H.; Van Beek, P.

    1995-01-01

    Using a newly developed time-recursive dynamic CGE model for energy and environmental policy analysis of the Chinese economy, a business-as-usual scenario is first developed assuming no specific policy intervention to limit the growth rate of CO2 emissions. Counter factual policy simulation is then carried out to compute the macroeconomic implications of a carbon tax to limit the Chinese energy-related CO2 emissions. 2 tabs., 5 refs

  8. MODEL SIMULASI EMISI DAN PENYERAPAN CO2 DI KOTA BOGOR

    Directory of Open Access Journals (Sweden)

    Rizka Permatayakti Rasyidta Nur

    2015-04-01

    Full Text Available Most of the urban pollution is the result of carbon dioxide (CO2 emission from human activities. This research identified CO2 emission and absorption in Bogor, and also the alternatives to solve the emission problem by system model and simulation. CO2 emission and absorption system model was created using software Stella 9.0.2 based on loss-gain emission concept for 30 years prediction. Human activities that contribute to CO2 emission are transportation, industries, energy consumption such as fuel or electricity, house hold waste, and farms, while the decrease factor is green open spaces as CO2 sequester. The alternatives to solve emission problem in Bogor is created based on green city concept by including the environmental aspects in every urban activity. The result of this research, the CO2 emission of Bogor reached 20.027.878 tons and the absorption reached 93.843 tons in 2042. Combined mitigation alternatives in several sectors could reduce CO2 emission by 2.797.667 tons in 2042 and CO2 emission could be neutralized by reforestation in 2036.

  9. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    CO2 capture and storage including its utilization or reuse presents an opportunity to achieve deep reductions in greenhouse gas emissions from fossil energy use. The development and deployment of this option could significantly assist in meeting a future goal of achieving stabilization of the presently rising atmospheric concentration of greenhouse gases. CO2 capture from process streams is an established concept that has achieved industrial practice. Examples of current applications include the use of primarily, solvent based capture technologies for the recovery of pure CO2 streams for chemical synthesis, for utilization as a food additive, for use as a miscible agent in enhanced oil recovery operations and removal of CO2 as an undesired contaminant from gaseous process streams for the production of fuel gases such as hydrogen and methane. In these applications, the technologies deployed for CO2 capture have focused on gas separation from high purity, high pressure streams and in reducing (or oxygen deficient) environments, where the energy penalties and cost for capture are moderately low. However, application of the same capture technologies for large scale abatement of greenhouse gas emissions from fossil fuel use poses significant challenges in achieving (at comparably low energy penalty and cost) gas separation in large volume, dilute concentration and/or low pressure flue gas streams. This paper will focus on a review of existing commercial methods of CO2 capture and the technology stretch, process integration and energy system pathways needed for their large scale deployment in fossil fueled processes. The assessment of potential capture technologies for the latter purpose will also be based on published literature data that are both 'transparent' and 'systematic' in their evaluation of the overall cost and energy penalties of CO2 capture. In view of the of the fact that many of the existing commercial processes for CO2 capture have seen applications in

  10. Efficient electrochemical CO2 conversion powered by renewable energy.

    Science.gov (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  11. Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach

    International Nuclear Information System (INIS)

    Mustapa, Siti Indati; Bekhet, Hussain Ali

    2016-01-01

    The demand for transport services is expected to rise, causing the CO 2 emissions level to increase as well. In Malaysia, the transportation sector accounts for 28% of total CO 2 emissions, of which 85% comes from road transport. By 2020, Malaysia is targeting a reduction in CO 2 emissions intensity by up to 40% and in this effort the role of road transport is paramount. This paper attempts to investigate effective policy options that can assist Malaysia in reducing the CO 2 emissions level. An Optimisation model is developed to estimate the potential CO 2 emissions mitigation strategies for road transport by minimising the CO 2 emissions under the constraint of fuel cost and demand travel. Several mitigation strategies have been applied to analyse the effect of CO 2 emissions reduction potential. The results demonstrate that removal of fuel price subsidies can result in reductions of up to 652 ktonnes of fuel consumption and CO 2 emissions can be decreased by 6.55%, which would enable Malaysia to hit its target by 2020. CO 2 emissions can be reduced significantly, up to 20%, by employing a combination of mitigation policies in Malaysia. This suggests that appropriate mitigation policies can assist the country in its quest to achieve the CO 2 emissions reduction target. - Highlights: • An optimisation model for CO 2 emissions reduction in Malaysia's road transport is formulated. • Sensible policy options to achieve the CO 2 emissions reduction target are provided. • Increase in fuel price has induced shift towards fuel efficient vehicles. • The CO 2 emissions can be reduced up to 5.7 MtCO 2 with combination of mitigation policies.

  12. Energy consumption and CO2 emissions in Iran, 2025

    International Nuclear Information System (INIS)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-01-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO 2 emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  13. Peak energy consumption and CO2 emissions in China

    International Nuclear Information System (INIS)

    Yuan, Jiahai; Xu, Yan; Hu, Zheng; Zhao, Changhong; Xiong, Minpeng; Guo, Jingsheng

    2014-01-01

    China is in the processes of rapid industrialization and urbanization. Based on the Kaya identity, this paper proposes an analytical framework for various energy scenarios that explicitly simulates China's economic development, with a prospective consideration on the impacts of urbanization and income distribution. With the framework, China's 2050 energy consumption and associated CO 2 reduction scenarios are constructed. Main findings are: (1) energy consumption will peak at 5200–5400 million tons coal equivalent (Mtce) in 2035–2040; (2) CO 2 emissions will peak at 9200–9400 million tons (Mt) in 2030–2035, whilst it can be potentially reduced by 200–300 Mt; (3) China's per capita energy consumption and per capita CO 2 emission are projected to peak at 4 tce and 6.8 t respectively in 2020–2030, soon after China steps into the high income group. - Highlights: • A framework for modeling China's energy and CO 2 emissions is proposed. • Scenarios are constructed based on various assumptions on the driving forces. • Energy consumption will peak in 2035–2040 at 5200–5400 Mtce. • CO 2 emissions will peak in 2030–2035 at about 9300 Mt and be cut by 300 Mt in a cleaner energy path. • Energy consumption and CO 2 emissions per capita will peak soon after China steps into the high income group

  14. EU mitigation potential of harvested wood products.

    Science.gov (United States)

    Pilli, Roberto; Fiorese, Giulia; Grassi, Giacomo

    2015-12-01

    The new rules for the Land Use, Land Use Change and Forestry sector under the Kyoto Protocol recognized the importance of Harvested Wood Products (HWP) in climate change mitigation. We used the Tier 2 method proposed in the 2013 IPCC KP Supplement to estimate emissions and removals from HWP from 1990 to 2030 in EU-28 countries with three future harvest scenarios (constant historical average, and +/-20% in 2030). For the historical period (2000-2012) our results are consistent with other studies, indicating a HWP sink equal on average to -44.0 Mt CO 2 yr -1 (about 10% of the sink by forest pools). Assuming a constant historical harvest scenario and future distribution of the total harvest among each commodity, the HWP sink decreases to -22.9 Mt CO 2 yr -1 in 2030. The increasing and decreasing harvest scenarios produced a HWP sink of -43.2 and -9.0 Mt CO 2 yr -1 in 2030, respectively. Other factors may play an important role on HWP sink, including: (i) the relative share of different wood products, and (ii) the combined effect of production, import and export on the domestic production of each commodity. Maintaining a constant historical harvest, the HWP sink will slowly tend to saturate, i.e. to approach zero in the long term. The current HWP sink will be maintained only by further increasing the current harvest; however, this will tend to reduce the current sink in forest biomass, at least in the short term. Overall, our results suggest that: (i) there is limited potential for additional HWP sink in the EU; (ii) the HWP mitigation potential should be analyzed in conjunction with other mitigation components (e.g. sink in forest biomass, energy and material substitution by wood).

  15. DEPLETED HYDROCARBON RESERVOIRS AND CO2 INJECTION WELLS –CO2 LEAKAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2017-03-01

    Full Text Available Migration risk assessment of the injected CO2 is one of the fi rst and indispensable steps in determining locations for the implementation of projects for carbon dioxide permanent disposal in depleted hydrocarbon reservoirs. Within the phase of potential storage characterization and assessment, it is necessary to conduct a quantitative risk assessment, based on dynamic reservoir models that predict the behaviour of the injected CO2, which requires good knowledge of the reservoir conditions. A preliminary risk assessment proposed in this paper can be used to identify risks of CO2 leakage from the injection zone and through wells by quantifying hazard probability (likelihood and severity, in order to establish a risk-mitigation plan and to engage prevention programs. Here, the proposed risk assessment for the injection well is based on a quantitative risk matrix. The proposed assessment for the injection zone is based on methodology used to determine a reservoir probability in exploration and development of oil and gas (Probability of Success, abbr. POS, and modifi ed by taking into account hazards that may lead to CO2 leakage through the cap rock in the atmosphere or groundwater. Such an assessment can eliminate locations that do not meet the basic criteria in regard to short-term and long-term safety and the integrity of the site

  16. Interfacial Interactions and Wettability Evaluation of Rock Surfaces for CO2 Storage

    NARCIS (Netherlands)

    Shojai Kaveh, N.

    2014-01-01

    To reduce CO2 emissions into the atmosphere, different scenarios are proposed to capture and store carbon dioxide (CO2) in geological formations (CCS). Storage strategies include CO2 injection into deep saline aquifers, depleted gas and oil reservoirs, and unmineable coal seams. To identify a secure

  17. National energy policies: Obstructing the reduction of global CO2 emissions? An analysis of Swedish energy policies for the district heating sector

    International Nuclear Information System (INIS)

    Difs, Kristina

    2010-01-01

    The effect of national energy policies on a local Swedish district heating (DH) system has been studied, regarding the profitability of new investments and the potential for climate change mitigation. The DH system has been optimised regarding three investments: biomass-fuelled CHP (bio CHP), natural gas-fuelled combined cycle CHP (NGCC CHP) and biomass-fuelled heat-only boiler (bio HOB) in two scenarios (with or without national taxes and policy instruments). In both scenarios EU's tradable CO 2 emission permits are included. Results from the study show that when national policies are included, the most cost-effective investment option is the bio CHP technology. However, when national taxes and policy instruments are excluded, the DH system containing the NGCC CHP plant has 30% lower system cost than the bio CHP system. Regardless of the scenario and when coal condensing is considered as marginal electricity production, the NGCC CHP has the largest global CO 2 reduction potential, about 300 ktonne CO 2 . However, the CO 2 reduction potential is highly dependent on the marginal electricity production. Demonstrated here is that national policies such as tradable green certificates can, when applied to DH systems, contribute to investments that will not fully utilise the DH systems' potential for global CO 2 emissions reductions. - Research highlights: →Swedish energy policies are promoting biomass fuelled electricity generating technologies over efficient fossil fuel electricity generating technologies. →An efficient fossil fuel technology like the natural gas combine cycle CHP technology with high power-to-heat ratio has potential to reduce the global CO 2 emissions more than a biomass fuelled electricity generating technology. →Swedish energy policies such as tradable green certificates for renewable electricity can, when applied to district heating systems, contribute to investments that will not fully utilise the district heating systems potential for

  18. Electricity consumption and CO2 capture potential in Spain

    International Nuclear Information System (INIS)

    Romeo, Luis M.; Calvo, Elena; Valero, Antonio; De Vita, Alessia

    2009-01-01

    In this paper, different electricity demand scenarios for Spain are presented. Population, income per capita, energy intensity and the contribution of electricity to the total energy demand have been taken into account in the calculations. Technological role of different generation technologies, i.e. coal, nuclear, renewable, combined cycle (CC), combined heat and power (CHP) and carbon capture and storage (CCS), are examined in the form of scenarios up to 2050. Nine future scenarios corresponding to three electrical demands and three options for new capacity: minimum cost of electricity, minimum CO 2 emissions and a criterion with a compromise between CO 2 and cost (CO 2 -cost criterion) have been proposed. Calculations show reduction in CO 2 emissions from 2020 to 2030, reaching a maximum CO 2 emission reduction of 90% in 2050 in an efficiency scenario with CCS and renewables. The contribution of CCS from 2030 is important with percentage values of electricity production around 22-28% in 2050. The cost of electricity (COE) increases up to 25% in 2030, and then this value remains approximately constant or decreases slightly.

  19. An ensemble approach to simulate CO2 emissions from natural fires

    Science.gov (United States)

    Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.

    2014-06-01

    1998-2011 to 2091-2100, the ensemble mean global burnt area is increased by 13% (28%, 36%, 51%) under scenario RCP 2.6 (RCP 4.5, RCP 6.0, RCP 8.5). The corresponding global emissions increase is 14% (29%, 37%, 42%). From 2091-2100 to 2291-2300, under the mitigation scenario RCP 2.6 the ensemble mean global burnt area and the respective CO2 emissions slightly decrease, both by 5% relative to their values in the period 2091-2100. In turn, under scenario RCP 4.5 (RCP 6.0, RCP 8.5) the ensemble mean burnt area in the period 2291-2100 is higher by 15% (44%, 83%) than its mean value, and the ensemble mean CO2 emissions are correspondingly higher by 9% (19%, 31%). The simulated changes of natural fire characteristics in the 21st-23rd centuries are associated mostly with the corresponding changes in boreal regions of Eurasia and North America. However, under the RCP 8.5 scenario, the increase of the burnt area and CO2 emissions in boreal regions during the 22nd and 23rd centuries is accompanied by the respective decreases in the tropics and subtropics.

  20. CO2 supply from an integrated network : the opportunities and challenges

    International Nuclear Information System (INIS)

    Heath, M.

    2006-01-01

    Strategies for using carbon dioxide (CO 2 ) from an integrated network were discussed. The oil and gas industry is currently considering carbon capture and storage (CCS) scenarios for Alberta. Integrated scenarios are aimed at providing business solution for CO 2 currently being produced in the province as well as optimizing the amounts of CO 2 that can be stored in geologic sinks. The scenarios hope to transform CCS into a value-added market capable of providing optimal returns to stakeholders along the CO 2 supply chain through the creation of an infrastructure designed to transport CO 2 in sufficient volumes. The storage of CO 2 in geologic sinks is expected to remove optimal amounts of anthropogenic CO 2 from larger stationary point sources. Interest in an integrated CO 2 market in Alberta has arisen from both economic and environmental concerns. The most effective CO 2 sources are fertilizer, gas processing, and hydrogen plants. Petrochemical facilities also produce high purity CO 2 . CO 2 capture approaches include post- and pre-combustion capture technologies as well as oxyfuel conversion. It was concluded that the cost of capturing CO 2 depends on concentration and purity levels obtained at the point of capture. Major CO 2 sources in the Western Canadian Sedimentary Basin (WCSB) were provided. tabs., figs

  1. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    Science.gov (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  2. The CO2nnect activities

    Science.gov (United States)

    Eugenia, Marcu

    2014-05-01

    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  3. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael

    2004-07-01

    This study considers options, that could be feasible for Sweden, to transport and geologically store CO 2 , providing that technology for electricity production with CO 2 capture will be available in the future and also acceptable from cost- and reliability point of view. As a starting point, it is assumed that a new 600-1000 MW power plant, fired with coal or natural gas, will be constructed with CO 2 capture and localised to the Stockholm, Malmoe or Goeteborg areas. Of vital importance for storage of carbon dioxide in a reservoir is the possibility to monitor its distribution, i.e. its migration within the reservoir. It has been shown in the SACS-project that the distribution of carbon dioxide within the reservoir can be monitored successfully, mainly by seismic methods. Suitable geologic conditions and a large storage potential seems to exist mainly in South West Scania, where additional knowledge on geology/hydrogeology has been obtained since the year 2000 in connection to geothermal energy projects, and in the Eastern part of Denmark, bordering on South West Scania. Storage of carbon dioxide from the Stockholm area should not be excluded, but more studies are needed to clarify the storage options within this area. The possibilities to use CO 2 for enhanced oil recovery, EOR, in i.a. the North Sea should be investigated, in order to receive incomes from the CO 2 and shared costs for infrastructure, and by this also make the CO 2 regarded as a trading commodity, and thereby achieving a more favourable position concerning acceptance, legal issues and regulations. The dimensions of CO 2 -pipelines should be similar to those for natural natural gas, although regarding some aspects they have different design and construction prerequisites. To obtain cost efficiency, the transport distances should be kept short, and possibilities for co-ordinated networks with short distribution pipelines connected to common main pipelines, should be searched for. Also, synergies

  4. South Africa's greenhouse gas emissions under business-as-usual: The technical basis of 'Growth without Constraints' in the Long-Term Mitigation Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Harald, E-mail: Harald.WInkler@uct.ac.za [University of Cape Town, Energy Research Centre, Upper Campus, Rondebosch, W Cape 7701 (South Africa); Hughes, Alison; Marquard, Andrew [University of Cape Town, Energy Research Centre, Upper Campus, Rondebosch, W Cape 7701 (South Africa); Haw, Mary [PJCarew Consulting, 103 Hout Street, Cape Town 8001 (South Africa); Merven, Bruno [University of Cape Town, Energy Research Centre, Upper Campus, Rondebosch, W Cape 7701 (South Africa)

    2011-10-15

    This article describes the methodology for projecting business-as-usual GHG trajectory developed in technical work for South Africa's Long-Term Mitigation Scenarios (LTMSs), in particular the 'Growth without Constraints' (GWCs) scenario. Technically rigorous projections are important as developing countries define their commitment to act on mitigation relative to business-as-usual (BAU). The key drivers for the GWC scenario include GDP (both growth rate and composition), population, discount rate and technological change. GDP emerged as an important driver in the research for LTMS and further analysis. If South Africa's economy grows without constraints over the next few decades, GHG emissions will continue to escalate, multiplying more than four-fold by mid-century. There is little gain in energy efficiency, and emissions continue to be dominated by energy use and supply, the latter remaining coal-based in GWC. We analyse the projections (not predictions) in relation to various measures. The LTMS GWC scenario is compared to other projections, nationally and internationally. A broadly comparable projection is being used at national level, for electricity planning. When compared to projections from international models, we find that the assumptions about GDP growth rates are a key factor, and suggest that comparisons of global data-sets against national analyses is important. - Highlights: > Specifies business-as-usual GHG trajectory for South Africa's Long-Term Mitigation Scenarios. > Provides details on methodology, drivers of emissions and key parameters. > In a scenario of Growth without Constraints, emissions would quadruple by 2050. > Analysis of resulting emission projection, not a prediction. > Compares projections from other national and international models.

  5. Changes in CO2 emission intensities in the Mexican industry

    International Nuclear Information System (INIS)

    González, Domingo; Martínez, Manuel

    2012-01-01

    A CO 2 emission intensity analysis in the Mexican industry from 1965 to 2010 is carried out by taking into consideration four stages: 1965–1982, 1982–1994, 1994–2003, and 2004–2010. Based on the LMDI decomposition methodology, three influencing factors are analyzed: energy intensity, CO 2 coefficient, and structure in terms of their contributions of each individual attributes to the overall percent change of them as it was proposed in Choi and Ang (2011). The energy intensity effect was the driving factor behind the main decreases of CO 2 intensity, the CO 2 coefficient effect contributed to less extent to mitigate it, and the structure effect tended to increased it. It is observed that CO 2 intensity declined by 26.2% from 1965 to 2003, but it increased by 10.1% from 2004 to 2010. In addition, the move of Mexico from an economic model based on import-substitution to an export-oriented economy brought more importance to the Mexican industry intended to export, thus maintaining high levels of activity of industries such as cement, iron and steel, chemical, and petrochemical, while industries such as automotive, and ‘other’ industries grown significantly not only as far their energy consumptions and related CO 2 emissions but they also increased their contributions to the national economy. - Highlights: ► Industrial CO 2 emission intensity was reduced by 26.2% from 1965 to 2003. ► Industrial CO 2 emission intensity was increased by 10.1% from 2003 to 2010. ► 1965–2003: Intensity effect took down CO 2 emission intensity. ► 2003–2010: Export-oriented industries raised CO 2 emission intensity.

  6. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs

  7. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref

  8. Catholyte-Free Electrocatalytic CO2 Reduction to Formate.

    Science.gov (United States)

    Lee, Wonhee; Kim, Young Eun; Youn, Min Hye; Jeong, Soon Kwan; Park, Ki Tae

    2018-04-16

    Electrochemical reduction of carbon dioxide (CO 2 ) into value-added chemicals is a promising strategy to reduce CO 2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO 2 reduction (CO 2 R) is the low solubility of CO 2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte-free electrocatalytic CO 2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm -2 , despite the decrease in CO 2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L -1 is obtained as a one-path product at 343 K with high PCD (51.7 mA cm -2 ) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. On a CO2 ration

    International Nuclear Information System (INIS)

    De Wit, P.

    2003-01-01

    In 2 years all the large energy companies in the European Union will have a CO2 ration, including a system to trade a shortage or surplus of emission rights. A cost effective system to reduce emission, provided that the government does not auction the emission rights [nl

  10. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  11. Trends in global CO2 emissions. 2013 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy); Muntean, M. [Institute for Environment and Sustainability IES, Joint Research Centre JRC, Ispra (Italy)

    2013-10-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2012 and updates last year's assessment. This assessment focuses on the changes in annual CO2 emissions from 2011 to 2012, and includes not only fossil-fuel combustion on which the BP reports are based, but also incorporates other relevant CO2 emissions sources including flaring of waste gas during gas and oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. The report clarifies the CO2 emission sources covered, and describes the methodology and data sources. More details are provided in Annex 1 over the 2010-2012 period, including a discussion of the degree of uncertainty in national and global CO2 emission estimates. Chapter 2 presents a summary of recent CO2 emission trends, per main country or region, including a comparison between emissions per capita and per unit of Gross Domestic Product (GDP), and of the underlying trend in fossil-fuel production and use, non-fossil energy and other CO2 sources. Specific attention is given to developments in shale gas and oil production and oil sands production and their impact on CO2 emissions. To provide a broader context of global emissions trends, international greenhouse gas mitigation targets and agreements are also presented, including different perspectives of emission accounting per country. In particular, annual trends with respect to the Kyoto Protocol target and Cancun agreements and cumulative global CO2 emissions of the last decade are compared with scientific literature that analyses global emissions in relation to the target of 2{sup 0}C maximum global warming in the 21st century, which was adopted in the UN climate negotiations. In addition, we briefly discuss the rapid development and implementation of various emission trading schemes, because of their increasing importance as a cross-cutting policy instrument for mitigating

  12. Energy consumption and CO2 emissions in Iran, 2025.

    Science.gov (United States)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-04-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Energy development and CO2 emissions in China

    International Nuclear Information System (INIS)

    Xiaolin Xi

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO 2 emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO 2 emissions from burning fossil fuels and projects future energy use and resulting CO 2 emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO 2 emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO 2 emissions reduction in China during the 1985-2020 period are examined

  14. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Selecci0n de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Martinez, R; Recreo, F; Prado, P; Campos, R; Pelayo, M; Losa, A de la; Hurtado, A; Lomba, L; Perez del Villar, L; Ortiz, G; Sastre, J; Zapatero, M A; Suarez, I; Arenillas, A

    2007-09-18

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs.

  15. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Seleccion de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Martinez, R; Recreo, F; Prado, P; Campos, R; Pelayo, M; Losa, A de la; Hurtado, A; Lomba, L; Perez del Villar, L; Ortiz, G; Sastre, J

    2006-07-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref.

  16. Energy use and CO2 emissions of China's industrial sector from a global perspective

    International Nuclear Information System (INIS)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-01-01

    The industrial sector has accounted for more than 50% of China's final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China's per-capita demands of basic industrial goods, industrial energy demand and CO 2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO 2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095. - Highlights: • Eleven industrial subsectors in China are detail analyzed from a global perspective. • Industrial energy use and CO 2 emissions will approach a plateau between 2030 and 2040. • Industrial CHP and CCS are truly encouraged by carbon tax. • Some degree of industrial sector electrification are observed by carbon tax

  17. Allowable CO2 emissions based on regional and impact-related climate targets: The role of land processes

    Science.gov (United States)

    Seneviratne, S. I.; Donat, M.; Pitman, A.; Knutti, R.; Wilby, R.; Vogel, M.; Orth, R.

    2016-12-01

    Global temperature targets, such as the widely accepted "2° and 1.5° targets", may fail to communicate the urgency of reducing CO2 emissions because they are disconnected from their implications. The translation of CO2 emissions into regional- and impact-related climate targets is more powerful because such targets are more directly aligned with individual national interests. A recent publication (Seneviratne et al. 2016, Nature) reveals that regional changes in extreme temperatures and precipitation scale robustly with global temperature across scenarios, and thus with cumulative CO2 emissions. They thus allow a better communication of implied regional impacts associated with global targets for CO2 emissions. However, the regional responses are very varied and display strong differences in regional temperature and hydrological sensitivity. Process-based based analyses explain these divergences and highlight avenues for reducing uncertainties in regional projections of extremes, in particular related to the role of land-atmosphere feedbacks. These results have important implications for the design of regional mitigation and climate adaptation policies, for instance related to land use changes. Reference: Seneviratne, S.I., M.G. Donat, A.J. Pitman, R. Knutti, and R. Wilby, 2016, Nature, 529, 477-483, doi:10.1038/nature16542

  18. Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions

    Science.gov (United States)

    Jenkins, S.; Millar, R. J.; Leach, N.; Allen, M. R.

    2018-03-01

    The relationship between cumulative CO2 emissions and CO2-induced warming is determined by the Transient Climate Response to Emissions (TCRE), but total anthropogenic warming also depends on non-CO2 forcing, complicating the interpretation of emissions budgets based on CO2 alone. An alternative is to frame emissions budgets in terms of CO2-forcing-equivalent (CO2-fe) emissions—the CO2 emissions that would yield a given total anthropogenic radiative forcing pathway. Unlike conventional "CO2-equivalent" emissions, these are directly related to warming by the TCRE and need to fall to zero to stabilize warming: hence, CO2-fe emissions generalize the concept of a cumulative carbon budget to multigas scenarios. Cumulative CO2-fe emissions from 1870 to 2015 inclusive are found to be 2,900 ± 600 GtCO2-fe, increasing at a rate of 67 ± 9.5 GtCO2-fe/yr. A TCRE range of 0.8-2.5°C per 1,000 GtC implies a total budget for 0.6°C of additional warming above the present decade of 880-2,750 GtCO2-fe, with 1,290 GtCO2-fe implied by the Coupled Model Intercomparison Project Phase 5 median response, corresponding to 19 years' CO2-fe emissions at the current rate.

  19. Unprecedented rates of land-use transformation in modeled climate change mitigation pathways

    Science.gov (United States)

    Turner, P. A.; Field, C. B.; Lobell, D. B.; Sanchez, D.; Mach, K. J.

    2017-12-01

    Integrated assessment models (IAMs) generate climate change mitigation scenarios consistent with global temperature targets. To limit warming to 2°, stylized cost-effective mitigation pathways rely on extensive deployments of carbon dioxide (CO2) removal (CDR) technologies, including multi-gigatonne yearly carbon removal from the atmosphere through bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation. These assumed CDR deployments keep ambitious temperature limits in reach, but associated rates of land-use transformation have not been evaluated. For IAM scenarios from the IPCC Fifth Assessment Report, we compare rates of modeled land-use conversion to recent observed commodity crop expansions. In scenarios with a likely chance of limiting warming to 2° in 2100, the rate of energy cropland expansion supporting BECCS exceeds past commodity crop rates by several fold. In some cases, mitigation scenarios include abrupt reversal of deforestation, paired with massive afforestation/reforestation. Specifically, energy cropland in crop. If energy cropland instead increases at rates equal to recent soybean and oil palm expansions, the scale of CO2 removal possible with BECCS is 2.6 to 10-times lower, respectively, than the deployments <2° IAM scenarios rely upon in 2100. IAM mitigation pathways may favor multi-gigatonne biomass-based CDR given undervalued sociopolitical and techno-economic deployment barriers. Heroic modeled rates for land-use transformation imply that large-scale biomass-based CDR is not an easy solution to the climate challenge.

  20. Low carbon society scenario 2050 in Thai industrial sector

    International Nuclear Information System (INIS)

    Selvakkumaran, Sujeetha; Limmeechokchai, Bundit; Masui, Toshihiko; Hanaoka, Tatsuya; Matsuoka, Yuzuru

    2014-01-01

    Highlights: • Thai industrial sector has been modelled using AIM/Enduse model. • Potential mitigation of CO 2 for 2050 is approximately 20% from Baseline scenario. • Abatement cost curves show that varied counter measures are practical in the industrial sector. • Energy security is enhanced due to CO 2 mitigation in the LCS scenario. - Abstract: Energy plays a dominant role in determining the individual competitiveness of a country and this is more relevant to emerging economies. That being said, energy also plays an important and ever expanding role in carbon emissions and sustainability of the country. As a developing country Thailand’s industrial sector is vibrant and robust and consumes majority of the energy. In addition, it also has the highest CO 2 emissions, provided the emissions of power generation are taken into account. Industry also accounts for the highest consumption of electricity in Thailand. The objective of this study is to model the Thai industrial energy sector and estimate the mitigation potential for the timeframe of 2010–2050 using the principles of Low Carbon Society (LCS). In addition, the paper would also evaluate emission tax as a key driver of Greenhouse Gas (GHG) mitigation along with Marginal Abatement Cost (MAC) analysis. Another secondary objective is to analyse the impact of mitigation on energy security of the industrial sector. The Thai industrial sector was modelled using AIM/Enduse model, which is a recursive dynamic optimisation model belonging to the Asia–Pacific Integrated Model (AIM) family. Thai industrial sector was divided into nine sub-sectors based on national economic reporting procedures. Results suggest that the mitigation potential in 2050, compared to the Baseline scenario, is around 20% with positive impacts on energy security. The Baseline emission will approximately be 377 Mt-CO 2 in the industrial sector. All four indicators of energy security, Primary Energy Intensity, Carbon Intensity, Oil

  1. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  2. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  3. Fang CO2 med Aminosyrer

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    2010-01-01

    Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer.......Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer....

  4. CO2 reduction by dematerialization

    Energy Technology Data Exchange (ETDEWEB)

    Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute, Utrecht University, Utrecht (Netherlands)

    2002-04-01

    Current policy for the reduction of greenhouse gases is mainly concerned with a number of types of solutions: energy saving, shifting to the use of low-carbon fuels and the implementation of sustainable energy technologies. Recent research has shown that a strategy directed at a more efficient use of materials could make a considerable contribution to reducing CO2 emissions. Moreover, the costs to society as a whole of such a measure appear to be very low.

  5. Outsourcing CO2 within China.

    Science.gov (United States)

    Feng, Kuishuang; Davis, Steven J; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-07-09

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country's borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world's largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China's emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low-value-added but high-carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China.

  6. The effects of adaptation and mitigation on coastal flood impacts during the 21st century. An application of the DIVA and IMAGE models

    NARCIS (Netherlands)

    Hinkel, J.; Vuuren, D.P. van; Nicholls, R.J.; Klein, R.J.T.

    2012-01-01

    This paper studies the effects of mitigation and adaptation on coastal flood impacts. We focus on a scenario that stabilizes concentrations at 450 ppm-CO 2-eq leading to 42 cm of global mean sea-level rise in 1995-2100 (GMSLR) and an unmitigated one leading to 63 cm of GMSLR. We also consider

  7. Climate adaptation as mitigation: the case of agricultural investments

    International Nuclear Information System (INIS)

    Lobell, David B; Baldos, Uris Lantz C; Hertel, Thomas W

    2013-01-01

    Successful adaptation of agriculture to ongoing climate changes would help to maintain productivity growth and thereby reduce pressure to bring new lands into agriculture. In this paper we investigate the potential co-benefits of adaptation in terms of the avoided emissions from land use change. A model of global agricultural trade and land use, called SIMPLE, is utilized to link adaptation investments, yield growth rates, land conversion rates, and land use emissions. A scenario of global adaptation to offset negative yield impacts of temperature and precipitation changes to 2050, which requires a cumulative 225 billion USD of additional investment, results in 61 Mha less conversion of cropland and 15 Gt carbon dioxide equivalent (CO 2 e) fewer emissions by 2050. Thus our estimates imply an annual mitigation co-benefit of 0.35 GtCO 2 e yr −1 while spending $15 per tonne CO 2 e of avoided emissions. Uncertainty analysis is used to estimate a 5–95% confidence interval around these numbers of 0.25–0.43 Gt and $11–$22 per tonne CO 2 e. A scenario of adaptation focused only on Sub-Saharan Africa and Latin America, while less costly in aggregate, results in much smaller mitigation potentials and higher per tonne costs. These results indicate that although investing in the least developed areas may be most desirable for the main objectives of adaptation, it has little net effect on mitigation because production gains are offset by greater rates of land clearing in the benefited regions, which are relatively low yielding and land abundant. Adaptation investments in high yielding, land scarce regions such as Asia and North America are more effective for mitigation. To identify data needs, we conduct a sensitivity analysis using the Morris method (Morris 1991 Technometrics 33 161–74). The three most critical parameters for improving estimates of mitigation potential are (in descending order) the emissions factors for converting land to agriculture, the price

  8. Climate adaptation as mitigation: the case of agricultural investments

    Science.gov (United States)

    Lobell, David B.; Baldos, Uris Lantz C.; Hertel, Thomas W.

    2013-03-01

    Successful adaptation of agriculture to ongoing climate changes would help to maintain productivity growth and thereby reduce pressure to bring new lands into agriculture. In this paper we investigate the potential co-benefits of adaptation in terms of the avoided emissions from land use change. A model of global agricultural trade and land use, called SIMPLE, is utilized to link adaptation investments, yield growth rates, land conversion rates, and land use emissions. A scenario of global adaptation to offset negative yield impacts of temperature and precipitation changes to 2050, which requires a cumulative 225 billion USD of additional investment, results in 61 Mha less conversion of cropland and 15 Gt carbon dioxide equivalent (CO2e) fewer emissions by 2050. Thus our estimates imply an annual mitigation co-benefit of 0.35 GtCO2e yr-1 while spending 15 per tonne CO2e of avoided emissions. Uncertainty analysis is used to estimate a 5-95% confidence interval around these numbers of 0.25-0.43 Gt and 11-22 per tonne CO2e. A scenario of adaptation focused only on Sub-Saharan Africa and Latin America, while less costly in aggregate, results in much smaller mitigation potentials and higher per tonne costs. These results indicate that although investing in the least developed areas may be most desirable for the main objectives of adaptation, it has little net effect on mitigation because production gains are offset by greater rates of land clearing in the benefited regions, which are relatively low yielding and land abundant. Adaptation investments in high yielding, land scarce regions such as Asia and North America are more effective for mitigation. To identify data needs, we conduct a sensitivity analysis using the Morris method (Morris 1991 Technometrics 33 161-74). The three most critical parameters for improving estimates of mitigation potential are (in descending order) the emissions factors for converting land to agriculture, the price elasticity of land supply

  9. ADAM adaptation and mitigation strategies: supporting European climate policy. Deliverable D3 of work package M1 (code D-M1.3). ADAM 2-degree scenario for Europe - policies and impacts

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Wolfgang; Jochem, Eberhard; Barker, Terry [and others

    2009-07-31

    ADAM research identifies and appraises existing and new policy options that can contribute to different combinations of adaptation and mitigation strategies. These options address the demands a changing climate will place on protecting citizens and valuable ecosystems - i.e., adaptation - as well as addressing the necessity to restrain/control humankind's perturbation to global climate to a desirable level - i.e., mitigation. The work package Mitigation 1 (Ml) has the core objective to simulate mitigation options and their related costs for Europe until 2050 and 2100 respectively. The focus of this deliverable is on the period 2005 to 2050. The long-term period until 2100 is covered in the previous deliverable D2, applying the POLES model for this time horizon. The analysis constitutes basically a techno-economic analysis. Depending on the sector analyzed it is either directly combined with a policy analysis (e.g. in the transport sector, renewables sector) or the policy analysis is performed qualitatively as a subsequent and independent step after the techno-economic analysis is completed (e.g. in the residential and service sectors). The book includes the following chapters: scenarios and macroeconomic assumptions; methodological issues analyzing mitigation options; the integrated global energy model POLES and its projections for the reference and 2 deg C scenarios; forest and basic materials sector; residential sector in Europe; the service (tertiary) and the primary sectors in Europe; basic products and other manufacturing industry sectors; transport sectors in Europe; renewable sector in Europe; conversion sector in Europe; syntheses and sectoral analysis in Europe; macroeconomic impacts of climate policy in the EU; the effects of the financial crisis on baseline simulations with implications for climate policy modeling: an analysis using the global model E3MG 2008-2012; conclusions and policy recommendations.

  10. ADAM adaptation and mitigation strategies: supporting European climate policy. Deliverable D3 of work package M1 (code D-M1.3). ADAM 2-degree scenario for Europe - policies and impacts

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Wolfgang; Jochem, Eberhard; Barker, Terry (and others)

    2009-07-31

    ADAM research identifies and appraises existing and new policy options that can contribute to different combinations of adaptation and mitigation strategies. These options address the demands a changing climate will place on protecting citizens and valuable ecosystems - i.e., adaptation - as well as addressing the necessity to restrain/control humankind's perturbation to global climate to a desirable level - i.e., mitigation. The work package Mitigation 1 (Ml) has the core objective to simulate mitigation options and their related costs for Europe until 2050 and 2100 respectively. The focus of this deliverable is on the period 2005 to 2050. The long-term period until 2100 is covered in the previous deliverable D2, applying the POLES model for this time horizon. The analysis constitutes basically a techno-economic analysis. Depending on the sector analyzed it is either directly combined with a policy analysis (e.g. in the transport sector, renewables sector) or the policy analysis is performed qualitatively as a subsequent and independent step after the techno-economic analysis is completed (e.g. in the residential and service sectors). The book includes the following chapters: scenarios and macroeconomic assumptions; methodological issues analyzing mitigation options; the integrated global energy model POLES and its projections for the reference and 2 deg C scenarios; forest and basic materials sector; residential sector in Europe; the service (tertiary) and the primary sectors in Europe; basic products and other manufacturing industry sectors; transport sectors in Europe; renewable sector in Europe; conversion sector in Europe; syntheses and sectoral analysis in Europe; macroeconomic impacts of climate policy in the EU; the effects of the financial crisis on baseline simulations with implications for climate policy modeling: an analysis using the global model E3MG 2008-2012; conclusions and policy recommendations.

  11. Capture, transport and storage of CO2

    International Nuclear Information System (INIS)

    De Boer, B.

    2008-01-01

    The emission of greenhouse gas CO2 in industrial processes and electricity production can be reduced on a large scale. Available techniques include post-combustion, pre-combustion, the oxy-fuel process, CO2 fixation in industrial processes and CO2 mineralization. In the Netherlands, plans for CO2 capture are not developing rapidly (CCS - carbon capture and storage). [mk] [nl

  12. Impact of the Kyoto Protocol on the Iberian Electricity Market: A scenario analysis

    International Nuclear Information System (INIS)

    Reneses, Javier; Centeno, Efraim

    2008-01-01

    This paper presents an assessment of the impact of the Kyoto Protocol on the Iberian Electricity Market during two periods: the first phase (2005-2007) and the second phase (2008-2012). A market-equilibrium model is used in order to analyze different conditions faced by generation companies. Scenarios involving CO 2 -emission prices, hydro conditions, demand, fuel prices and renewable generation are considered. This valuation will show the significance of CO 2 -emission prices as regards Spanish and Portuguese electricity prices, generation mix, utilities profits and the total CO 2 emissions. Furthermore, the results will illustrate how energy policies implemented by regulators are critical for Spain and Portugal in order to mitigate the negative impact of the Kyoto Protocol. In conclusion, the Iberian electricity system will not be able to reach the Kyoto targets, except in very favorable conditions (CO 2 -emission prices over Euro 15/ton and the implementation of very efficient energy policies)

  13. Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment

    NARCIS (Netherlands)

    Kessel, van C.; Boots, B.; Graaff, de M.A.; Harris, D.; Blum, H.; Six, J.

    2006-01-01

    Soil C sequestration may mitigate rising levels of atmospheric CO2. However, it has yet to be determined whether net soil C sequestration occurs in N-rich grasslands exposed to long-term elevated CO2. This study examined whether N-fertilized grasslands exposed to elevated CO2 sequestered additional

  14. RODZAJE METOD SEKWESTRACJI CO2

    Directory of Open Access Journals (Sweden)

    Zofia LUBAŃSKA

    Full Text Available Z pojęciem ochrony środowiska wiąże się bardzo szeroko w ostatnim czasie omawiane zagadnienie dotyczące ograniczenia emisji CO2. Konsekwencją globalnych zmian klimatu wywołanego przez ludzi jest wzrost stężenia atmosferycznego gazów cieplarnianych, które powodują nasilający się efekt cieplarniany. Wzrasta na świecie liczba ludności, a co za tym idzie wzrasta konsumpcja na jednego mieszkańca, szczególnie w krajach szeroko rozwiniętych gospodarczo. Protokół z Kioto ściśle określa działania jakie należy podjąć w celu zmniejszenia stężenia dwutlenku węgla w atmosferze. Pomimo maksymalnej optymalizacji procesu spalania paliw kopalnianych wykorzystywanych do produkcji energii, zastosowania odnawialnych źródeł energii zmiana klimatu jest nieunikniona i konsekwentnie będzie postępować przez kolejne dekady. Prognozuje się, że duże znaczenie odegra nowoczesna technologia, która ma za zadanie wychwycenie CO2 a następnie składowanie go w odpowiednio wybranych formacjach geologicznych (CCS- Carbon Capture and Storage. Eksperci są zgodni, że ta technologia w niedalekiej przyszłości stanie się rozwiązaniem pozwalającym ograniczyć ogromną ilość emisji CO2 pochodzącą z procesów wytwarzania energii z paliw kopalnych. Z analiz Raportu IPCC wynika, iż technologia CSS może się przyczynić do ok. 20% redukcji emisji dwutlenku węgla przewidzianej do 2050 roku [3]. Zastosowanie jej napotyka na wiele barier, nie tylko technologicznych i ekonomicznych, ale także społecznych. Inną metodą dającą ujemne źródło emisji CO2 jest możliwość wykorzystania obszarów leśnych o odpowiedniej strukturze drzewostanu. Środkiem do tego celu, oprócz ograniczenia zużycia emisjogennych paliw kopalnych (przy zachowaniu zasad zrównoważonego rozwoju może być intensyfikacja zalesień. Zwiększanie lesistości i prawidłowa gospodarka leśna należy do najbardziej efektywnych sposobów kompensowania

  15. An analysis of Chinas CO2 emission peaking target and pathways

    OpenAIRE

    He, Jian-Kun

    2017-01-01

    China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for Chinas resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the ...

  16. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    OpenAIRE

    Qiao Hu; Sen-Xiang Zhang; Zhong-Hua Yang; Hao Huang; Rong Zeng

    2014-01-01

    The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accum...

  17. Dolomite decomposition under CO2

    International Nuclear Information System (INIS)

    Guerfa, F.; Bensouici, F.; Barama, S.E.; Harabi, A.; Achour, S.

    2004-01-01

    Full text.Dolomite (MgCa (CO 3 ) 2 is one of the most abundant mineral species on the surface of the planet, it occurs in sedimentary rocks. MgO, CaO and Doloma (Phase mixture of MgO and CaO, obtained from the mineral dolomite) based materials are attractive steel-making refractories because of their potential cost effectiveness and world wide abundance more recently, MgO is also used as protective layers in plasma screen manufacture ceel. The crystal structure of dolomite was determined as rhombohedral carbonates, they are layers of Mg +2 and layers of Ca +2 ions. It dissociates depending on the temperature variations according to the following reactions: MgCa (CO 3 ) 2 → MgO + CaO + 2CO 2 .....MgCa (CO 3 ) 2 → MgO + Ca + CaCO 3 + CO 2 .....This latter reaction may be considered as a first step for MgO production. Differential thermal analysis (DTA) are used to control dolomite decomposition and the X-Ray Diffraction (XRD) was used to elucidate thermal decomposition of dolomite according to the reaction. That required samples were heated to specific temperature and holding times. The average particle size of used dolomite powders is 0.3 mm, as where, the heating temperature was 700 degree celsius, using various holding times (90 and 120 minutes). Under CO 2 dolomite decomposed directly to CaCO 3 accompanied by the formation of MgO, no evidence was offered for the MgO formation of either CaO or MgCO 3 , under air, simultaneous formation of CaCO 3 , CaO and accompanied dolomite decomposition

  18. Outsourcing CO2 within China

    Science.gov (United States)

    Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-01-01

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country’s borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world’s largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China’s emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low–value-added but high–carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China. PMID:23754377

  19. A STELLA model to estimate soil CO2 emissions from a short-rotation woody crop

    Science.gov (United States)

    Ying Ouyang; Theodor D. Leininger; Jeff Hatten; Prem B. Parajuli

    2012-01-01

    The potential for climatic factors as well as soil–plant–climate interactions to change as a result of rising levels of atmospheric CO2 concentration is an issue of increasing international environmental concern. Agricultural and forest practices and managements may be important contributors to mitigating elevated atmospheric CO2...

  20. Hierarchical saturation of soil carbon pools near a natural CO2 spring

    NARCIS (Netherlands)

    Kool, D.M.; Chung, H.; Tate, K.R.; Ross, D.J.; Newton, P.C.D.; Six, J.

    2007-01-01

    Soil has been identified as a possible carbon (C) sink to mitigate increasing atmospheric CO2 concentration. However, several recent studies have suggested that the potential of soil to sequester C is limited and that soil may become saturated with C under increasing CO2 levels. To test this concept

  1. Trading CO2 emission; Verhandelbaarheid van CO2-emissies

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.F.; Looijenga, A.; Moor, R.; Wissema, E.W.J. [Afdeling Energie, Ministerie van VROM, The Hague (Netherlands)

    2000-06-01

    Systems for CO2-emission trading can take many shapes as developments in Europe show. European developments for emission trading tend to comprehend cap and-trade systems for large emission sources. In the Netherlands a different policy is in preparation. A trading system for sheltered sectors with an option to buy reductions from exposed sectors will be further developed by a Commission, appointed by the minister of environment. Exposed sectors are committed to belong to the top of the world on the area of energy-efficiency. The authors point out that a cap on the distribution of energy carriers natural gas, electricity and fuel seems to be an interesting option to shape the trade scheme. A cap on the distribution of electricity is desirable, but not easy to implement. The possible success of the system depends partly on an experiment with emission reductions. 10 refs.

  2. The greenhouse effect and the amount of CO2 emissions in Romania

    International Nuclear Information System (INIS)

    Manea, Gh.

    1992-01-01

    In order to reduce the CO 2 emissions, responsible by the greenhouse effect on Terra, an international control for monitoring them is to be instated. The development of methods for reducing the CO 2 emissions, implies the identification and evaluation of the CO 2 sources, the forecasting of probable evolution of the CO 2 emissions, and also the assessment of the economic impact. This paper tries to accomplish such an evaluation and to draft several scenarios for reduction of the CO 2 emissions. Also considerations about the suitability of the Romanian adhesion to the international treaties regarding the greenhouse effect monitoring are presented. (author). 7 tabs

  3. Geological storage of CO2

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2005-01-01

    The industrial storage of CO 2 is comprised of three steps: - capture of CO 2 where it is produced (power plants, cement plants, etc.); - transport (pipe lines or boats); - storage, mainly underground, called geological sequestration... Three types of reservoirs are considered: - salted deep aquifers - they offer the biggest storage capacity; - exhausted oil and gas fields; - non-exploited deep coal mine streams. The two latter storage types may allow the recovery of sellable products, which partially or totally offsets the storage costs. This process is largely used in the petroleum industry to improve the productivity of an oil field, and is called FOR (Enhanced Oil Recovery). A similar process is applied in the coal mining industry to recover the imprisoned gas, and is called ECBM (Enhanced Coal Bed methane). Two storage operations have been initiated in Norway and in Canada, as well as research programmes in Europe, North America, Australia and Japan. International organisations to stimulate this technology have been created such as the 'Carbon Sequestration Leadership Forum' and 'the Intergovernmental Group for Climate Change'. This technology will be taken into account in the instruments provided by the Tokyo Protocol. (author)

  4. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  5. Strategic research on CO2 emission reduction for China. Application of MARKAL to China energy system

    International Nuclear Information System (INIS)

    Wang Yongping

    1995-09-01

    MARKAL was applied to the energy system for analyzing the CO 2 emission reduction in China over the time period from 1990 to 2050. First the Chinese Reference Energy System (CRES) was established based on the framework of MARKAL model. The following conclusions can be drawn from this study. When shifting from scenario LH (low useful energy demand and high import fuel prices) to HL (high demand and low prices), another 33 EJ of primary energy will be consumed and another 2.31 billion tons of CO 2 will be emitted in 2050. Detailed analyses on the disaggregation of CO 2 emissions by Kaya Formula show. The energy intensity (primary energy/GDP) decreases much faster in scenario HL, but the higher growth rate of GDP per capita is the overwhelming factor that results in higher CO 2 emission per capita in the baseline case of scenario HL in comparison with LH. When the carbon taxes are imposed on CO 2 emissions, the residential sector will make the biggest contribution to CO 2 emission abatement from a long-term point of view. However, it's difficult to stabilize CO 2 emission per capita before 2030 in both scenarios even with heavy carbon taxes. When nuclear moratorium occurs, more 560 million tons of CO 2 will be emitted to the atmosphere in 2050 under the same CO 2 tax regime. From the analysis of value flow, CO 2 emission reduction depends largely on new or advanced technologies particularly in the field of electricity generation. The competent technologies switch to those CO 2 less-emitting technologies when surcharging CO 2 emissions. Nuclear power shows significant potential in saving fossil energy resources and reducing CO 2 emissions. (J.P.N.)

  6. Alberta industrial synergy CO2 programs initiative

    International Nuclear Information System (INIS)

    Yildirim, E.

    1998-01-01

    The various industrial sectors within Alberta produce about 350,000 tonnes of CO 2 per day. This presentation was concerned with how this large volume and high concentration of CO 2 can be used in industrial and agricultural applications, because every tonne of CO 2 used for such purposes is a tonne that does not end up in the atmosphere. There is a good potential for an industrial synergy between the producers and users of CO 2 . The Alberta Industrial Synergy CO 2 Programs Initiative was established to ultimately achieve a balance between the producers of CO 2 and the users of CO 2 by creating ways to use the massive quantities of CO 2 produced by Alberta's hydrocarbon-based economy. The Alberta CO 2 Research Steering Committee was created to initiate and support CO 2 programs such as: (1) CO 2 use in enhanced oil recovery, (2) creation of a CO 2 production inventory, (3) survey of CO 2 users and potential users, (4) investigation of process issues such as power generation, oil sands and cement manufacturing, and (5) biofixation by plants, (6) other disposal options (e.g. in depleted oil and gas reservoirs, in aquifers, in tailings ponds, in coal beds). The single most important challenge was identified as 'rationalizing the formation of the necessary infrastructure'. Failing to do that will greatly impede efforts directed towards CO 2 utilization

  7. Bridging gaps in bioenergy: Deploying system analysis to investigate potential biomass supply, demand and greenhouse gas mitigation scenarios from a national, European and global perspective

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.|info:eu-repo/dai/nl/313935998

    2014-01-01

    In transition towards a sustainable energy system with deep reductions in greenhouse gas (GHG) emissions and reduced consumption of fossil fuels, substitution of fossil energy carriers with biomass is considered one of the most important options. In the last decade, fossil energy and GHG mitigation

  8. CO2, GDP and RET: An aggregate economic equilibrium analysis for Turkey

    International Nuclear Information System (INIS)

    Kumbaroglu, Guerkan; Karali, Nihan; Arikan, Yildiz

    2008-01-01

    There is a worldwide interest in renewable electricity technologies (RETs) due to growing concerns about global warming and climate change. As an EU candidate country whose energy demand increases exponentially, Turkey inevitably shares this common interest on RET. This study, using an aggregate economic equilibrium model, explores the economic costs of different policy measures to mitigate CO 2 emissions in Turkey. The model combines energy demands, capital requirements and labor inputs at a constant elasticity of substitution under an economy-wide nested production function. Growing energy demand, triggered by economic growth, is met by increased supply and initiates new capacity additions. Investment into RET is encouraged via the incorporation of (a) endogenous technological learning through which the RET cost declines as a function of cumulative capacity, and (b) a willingness to pay (WTP) function which imposes the WTP of consumers as a lower bound on RET installation. The WTP equation is obtained as a function of consumer income categories, based on data gathered from a pilot survey in which the contingent valuation methodology was employed. The impacts of various emission reduction scenarios on GDP growth and RET diffusion are explored. As expected, RET penetration is accelerated under faster technological learning and higher WTP conditions. It is found that stabilizing CO 2 emissions to year 2005 levels causes economic losses amounting to 17% and 23% of GDP in the years 2020 and 2030, respectively

  9. Estimation of CO2 Transport Costs in South Korea Using a Techno-Economic Model

    Directory of Open Access Journals (Sweden)

    Kwangu Kang

    2015-03-01

    Full Text Available In this study, a techno–economic model was used to calculate the costs of CO2 transport and specify the major equipment required for transport in order to demonstrate and implement CO2 sequestration in the offshore sediments of South Korea. First, three different carbon capture and storage demonstration scenarios were set up involving the use of three CO2 capture plants and one offshore storage site. Each transport scenario considered both the pipeline transport and ship transport options. The temperature and pressure conditions of CO2 in each transport stage were determined from engineering and economic viewpoints, and the corresponding specifications and equipment costs were calculated. The transport costs for a 1 MtCO2/year transport rate were estimated to be US$33/tCO2 and US$28/tCO2 for a pipeline transport of ~530 km and ship transport of ~724 km, respectively. Through the economies of scale effect, the pipeline and ship transport costs for a transport rate of 3 MtCO2/year were reduced to approximately US$21/tCO2 and US$23/tCO2, respectively. A CO2 hub terminal did not significantly reduce the cost because of the short distance from the hub to the storage site and the small number of captured sources.

  10. Opportunities for low-cost CO2 storage demonstration projects in China

    International Nuclear Information System (INIS)

    Meng, Kyle C.; Williams, Robert H.; Celia, Michael A.

    2007-01-01

    Several CO 2 storage demonstration projects are needed in a variety of geological formations worldwide to prove the viability of CO 2 capture and storage as a major option for climate change mitigation. China has several low-cost CO 2 sources at sites that produce NH 3 from coal via gasification. At these plants, CO 2 generated in excess of the amount needed for other purposes (e.g., urea synthesis) is vented as a relatively pure stream. These CO 2 sources would potentially be economically interesting candidates for storage demonstration projects if there are suitable storage sites nearby. In this study a survey was conducted to estimate CO 2 availability at modern Chinese coal-fed ammonia plants. Results indicate that annual quantities of available, relatively pure CO 2 per site range from 0.6 to 1.1 million tonnes. The CO 2 source assessment was complemented by analysis of possible nearby opportunities for CO 2 storage. CO 2 sources were mapped in relation to China's petroliferous sedimentary basins where prospective CO 2 storage reservoirs possibly exist. Four promising pairs of sources and sinks were identified. Project costs for storage in deep saline aquifers were estimated for each pairing ranging from $15-21/t of CO 2 . Potential enhanced oil recovery and enhanced coal bed methane recovery opportunities near each prospective source were also considered

  11. Characterization of a microalgal mutant for CO_2 biofixation and biofuel production

    International Nuclear Information System (INIS)

    Qi, Feng; Pei, Haiyan; Hu, Wenrong; Mu, Ruimin; Zhang, Shuo

    2016-01-01

    Highlights: • Combination of the isolation using 96-well microplates and traditional UV mutagenesis for screening HCT mutant. • Microalgal mutant Chlorella vulgaris SDEC-3M was screened out by modified UV mutagenesis. • SDEC-3M showed high CO_2 tolerance, high CO_2 requiring and relevant genetic stability. • LCE and carbohydrate content of SDEC-3M were significantly elevated. • SDEC-3M offers a strong candidature as CO_2 biofixation and biofuel production. - Abstract: In the present work, a Chlorella vulgaris mutant, named as SDEC-3M, was screened out through the combination of the isolation using 96-well microplates and traditional UV mutagenesis. Compared with its parent (wild type), the growth of SDEC-3M preferred higher CO_2 (15% v/v) environment to ambient air (0.038% CO_2 (v/v)), indicating that the mutant qualified with good tolerance and growth potential under high level CO_2 (high CO_2 tolerance) but was defective in directly utilizing the low level CO_2 (high CO_2 requiring). The genetic stability under ambient air and high level CO_2 was confirmed by a continuous cultivation for five generations. Higher light conversion efficiency (14.52%) and richer total carbohydrate content (42.48%) demonstrated that both solar energy and CO_2 were more effectively productively fixed into carbohydrates for bioethanol production than the parent strain. The mutant would benefit CO_2 biofixation from industrial exhaust gas to mitigate of global warming and promote biofuel production to relieve energy shortage.

  12. Have We Overestimated Saline Aquifer CO2 Storage Capacities?

    International Nuclear Information System (INIS)

    Thibeau, S.; Mucha, V.

    2011-01-01

    During future, large scale CO 2 geological storage in saline aquifers, fluid pressure is expected to rise as a consequence of CO 2 injection, but the pressure build up will have to stay below specified values to ensure a safe and long term containment of the CO 2 in the storage site. The pressure build up is the result of two different effects. The first effect is a local overpressure around the injectors, which is due to the high CO 2 velocities around the injectors, and which can be mitigated by adding CO 2 injectors. The second effect is a regional scale pressure build up that will take place if the storage aquifer is closed or if the formation water that flows away from the pressurised area is not large enough to compensate volumetrically the CO 2 injection. This second effect cannot be mitigated by adding additional injectors. In the first section of this paper, we review some major global and regional assessments of CO 2 storage capacities in deep saline aquifers, in term of mass and storage efficiency. These storage capacities are primarily based on a volumetric approach: storage capacity is the volumetric sum of the CO 2 that can be stored through various trapping mechanisms. We then discuss in Section 2 storage efficiencies derived from a pressure build up approach, as stated in the CO2STORE final report (Chadwick A. et al. (eds) (2008) Best Practice for the Storage of CO 2 in Saline Aquifers, Observations and Guidelines from the SACS and CO2STORE Projects, Keyworth, Nottingham, BGS Occasional Publication No. 14) and detailed by Van der Meer and Egberts (van der Meer L.G.H., Egberts P.J.P. (2008) A General Method for Calculating Subsurface CO 2 Storage Capacity, OTC Paper 19309, presented at the OTC Conference held in Houston, Texas, USA, 5-8 May). A quantitative range of such storage efficiency is presented, based on a review of orders of magnitudes of pore and water compressibilities and allowable pressure increase. To illustrate the relevance of this

  13. Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

    Science.gov (United States)

    Carlson, Henrik; Caballero, Rodrigo

    2017-08-01

    Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2-thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has ˜ 11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

  14. Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

    Directory of Open Access Journals (Sweden)

    H. Carlson

    2017-08-01

    Full Text Available Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG scenario and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2–thin clouds or LCTC scenario . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has  ∼  11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

  15. CO2 Emission Reduction in Energy Sector

    International Nuclear Information System (INIS)

    Bole, A.; Sustersic, A.; Voncina, R.

    2013-01-01

    Due to human activities, concentrations of the greenhouse gases increase in the atmosphere much quicker than they naturally would. Today it is clear that climate change is the result of human activities. With the purpose of preventing, reducing and mitigating of climate change, the EU, whose member is also Slovenia, set ambitious goals. In order to keep rise of the global atmosphere temperature below 2 degrees of C, the European Council set an objective of reducing greenhouse gas emissions by 80 - 95 % by 2050 compared to 1990. It is important that every single individual is included in achieving of these goals. Certainly, the most important role is assumed by individual sectors especially Public Electricity and Heat Production sector as one of the greatest emitters of the greenhouse gases. As a possible solution of radical reduction of the greenhouse gases emission from mentioned sector Carbon Capture and Storage (CCS) technology is implemented. In the article the range of CO 2 reduction possibilities, technology demands and environmental side effects of CCS technology are described. Evaluation of CCS implementation possibilities in Slovenia is also included.(author)

  16. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  17. CO2 exsolution - challenges and opportunities in subsurface flow management

    Science.gov (United States)

    Zuo, Lin; Benson, Sally

    2014-05-01

    In geological carbon sequestration, a large amount of injected CO2 will dissolve in brine over time. Exsolution occurs when pore pressures decline and CO2 solubility in brine decreases, resulting in the formation of a separate CO2 phase. This scenario occurs in storage reservoirs by upward migration of carbonated brine, through faults, leaking boreholes or even seals, driven by a reverse pressure gradient from CO2 injection or ground water extraction. In this way, dissolved CO2 could migrate out of storage reservoirs and form a gas phase at shallower depths. This paper summarizes the results of a 4-year study regarding the implications of exsolution on storage security, including core-flood experiments, micromodel studies, and numerical simulation. Micromodel studies have shown that, different from an injected CO2 phase, where the gas remains interconnected, exsolved CO2 nucleates in various locations of a porous medium, forms disconnected bubbles and propagates by a repeated process of bubble expansion and snap-off [Zuo et al., 2013]. A good correlation between bubble size distribution and pore size distribution is observed, indicating that geometry of the pore space plays an important role in controlling the mobility of brine and exsolved CO2. Core-scale experiments demonstrate that as the exsolved gas saturation increases, the water relative permeability drops significantly and is disproportionately reduced compared to drainage relative permeability [Zuo et al., 2012]. The CO2 relative permeability remains very low, 10-5~10-3, even when the exsolved CO2 saturation increases to over 40%. Furthermore, during imbibition with CO2 saturated brines, CO2 remains trapped even under relatively high capillary numbers (uv/σ~10-6) [Zuo et al., submitted]. The water relative permeability at the imbibition endpoint is 1/3~1/2 of that with carbonated water displacing injected CO2. Based on the experimental evidence, CO2 exsolution does not appear to create significant risks

  18. Uncovering China’s transport CO2 emission patterns at the regional level

    International Nuclear Information System (INIS)

    Guo, Bin; Geng, Yong; Franke, Bernd; Hao, Han; Liu, Yaxuan; Chiu, Anthony

    2014-01-01

    With China’s rapid economic development, its transport sector has experienced a dramatic growth, leading to a large amount of related CO 2 emission. This paper aims to uncover China’s transport CO 2 emission patterns at the regional and provincial level. We first present the CO 2 emission features from transport sector in 30 Chinese provinces, including per capita emissions, emission intensities, and historical evolution of annual CO 2 emission. We then quantify the related driving forces by adopting both period-wise and time-series LMDI analysis. Results indicate that significant regional CO 2 emission disparities exist in China’s transport sector. The eastern region had higher total CO 2 emissions and per capita CO 2 emissions, but lower CO 2 emission intensities in its transport sector. The western region had higher CO 2 emission intensities and experienced a rapid CO 2 emission increase. The CO 2 emission increments in the eastern provinces were mainly contributed by both economic activity effect and population effect, while energy intensity partially offset the emission growth and energy structure had a marginal effect. However, in the central and western provinces, both economic activity effect and energy intensity effect induced the CO 2 emission increases, while the effects from population and energy structure change were limited. - Highlights: • The CO 2 emission features from transport sector in 30 Chinese provinces were presented. • The driving forces of CO 2 emissions from transport sector were quantified. • Regional disparities on China’s transport sector CO 2 emission exist. • Region-specific mitigation policies on transport sector CO 2 emission are needed

  19. PERSPECTIVE: Keeping a closer eye on fossil fuel CO2

    Science.gov (United States)

    Nelson, Peter F.

    2009-12-01

    important for a range of reasons. It allows comparison with the scenarios developed by the IPCC; uncertainties in emission scenarios are one of the major sources of uncertainties in temperature projections, particularly at longer time scales, where temperature projections are increasingly dependent on specific emission scenarios (IPCC 2007). There have also been recent suggestions (Le Quere et al 2007) of a weakening of the oceanic sink for CO2, and earlier information on emission pathways will be important for testing this hypothesis. Some observers (Levi 2009) believe that the best outcome from COP15 may be an agreement on measurement, reporting and verification. While this may seem like a modest ambition, progress in this area is essential to a successful climate change measure and to compliance with any international agreement. As Levi (2009) points out, `such verification will help make it more politically feasible to undertake similar emissions-cutting actions elsewhere, including in the United States'. The approach of Myhre et al is a very useful tool in such independent verification. References Arneth A, Unger N, Kulmala M and Andreae M O 2009 Clean the air, heat the planet? Science 326 672-3 Barnett A 2009 No easy way out Nature Reports Climate Change 3 128-9 Canadell J G, Le Quere C, Raupach M R, Field C B, Buitenhuis, E T, Ciais P, Conway T J, Gillett N P, Houghton R A and Marland G 2007 Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks Proc. Natl Acad. Sci. USA 104 18866-70 Inman M 2009 The climate change game Nature Reports Climate Change 3 130-3 IPCC 2007 Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Report on Climate Change (Geneva: IPCC) 104pp Le Quere C, Rodenbeck C, Buitenhuis E T, Conway T J, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N and Heimann M

  20. CO2 geological sequestration: state of art in Italy and abroad

    International Nuclear Information System (INIS)

    Quattrocchi, Fedora; Bencini, Roberto

    2005-01-01

    This paper proposes a wide scenario on the state of art in Italy and abroad of industrial CO 2 geological sequestration, with particular attention to Weyburn Project. Geochemical monitoring techniques are described, mentioning also geophysical monitoring techniques for CO 2 injected into the soil. Critical choices and objections in Italy to a complete use of clean fossil fuels, hydrogen carrier, clean coal technologies: all of these approaches require geological sequestration of CO 2 [it

  1. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    Science.gov (United States)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-07-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products (HWP) model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. There was a trade-off between short-term and long-term goals, in that maximizing short-term emissions reduction could reduce the forest sector's ability to contribute to longer-term objectives. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of

  2. Does the oil fortune vanish with Kyoto. The effects on energy consumption and emissions from stabilising the CO2 concentration

    International Nuclear Information System (INIS)

    Lindholt, Lars; Rosendahl, Knut Einar

    2000-01-01

    The article discusses measures for and the consequences of stabilising the CO 2 concentration at various levels on the oil industry, the environment and the energy policies. The structure of an international taxation scenario will depend on which CO 2 level and forecasting model are selected as well as the time profiles and levels of CO 2 emissions in the various countries

  3. CO2 emissions, nuclear energy, renewable energy and economic growth in the US

    International Nuclear Information System (INIS)

    Menyah, Kojo; Wolde-Rufael, Yemane

    2010-01-01

    This study explores the causal relationship between carbon dioxide (CO 2 ) emissions, renewable and nuclear energy consumption and real GDP for the US for the period 1960-2007. Using a modified version of the Granger causality test, we found a unidirectional causality running from nuclear energy consumption to CO 2 emissions without feedback but no causality running from renewable energy to CO 2 emissions. The econometric evidence seems to suggest that nuclear energy consumption can help to mitigate CO 2 emissions, but so far, renewable energy consumption has not reached a level where it can make a significant contribution to emissions reduction.

  4. Utopia Switzerland (2) - A Country Without CO2 Emissions

    International Nuclear Information System (INIS)

    Streit, Marco

    2008-01-01

    Global warming and climate change are major themes in the today's energy policy discussion. Awarding Al Gore and the IPCC with the Nobel price in 2007 shows the importance of the climate change for the whole world. That we are running into climatic problems is already known since several decades and possibilities to solve the CO 2 emissions were proposed and discussed since years, but a reduction in the CO 2 emissions is not detectable. This might be due to the fact, that the major part of CO 2 production (traffic and heating) is not consequently touched. It seems to be easier to discuss about renewable energies in the electricity market than in other areas. And the consequences of discussing stepping out of nuclear all over the world, has enforced the problem. Although the renaissance of nuclear has started and the known positive impact to the climate from this energy source, it is not forced to be the solution for the biggest problem of the near future. There are only a few countries worldwide which produce electricity without or with only small amounts of CO 2 emissions like Norway or Switzerland. Those countries could be demonstration countries to show the possibilities for reducing and avoiding CO 2 emissions. Would it be possible to replace all fossil energy sources during a reasonable period of time by using nuclear energy and hydrogen as an energy storage system? Is this scenario technical feasible and of economic interest for a small, developed country like Switzerland? If yes, Switzerland might be a good candidate to establish the first CO 2 -free industrial developed state in the world. Looking much more ahead this study will discuss a simple but might be effective scenario for Switzerland. The study is based on a paper presented at IYNC 2006 and will update the used data as well as going in more details. (authors)

  5. Interpretation of the mitigation of runoff on the FOCUS Surface Water Scenarios as described in the FOCUS l&M report

    NARCIS (Netherlands)

    Horst, ter M.M.S.; Adriaanse, P.I.; Boesten, J.J.T.I.

    2009-01-01

    Our interpretation is that the reduced runoff fluxes (water and mass) of the 20 ha upstream are combined with the unchanged runoff water fluxes of the remaining 80 ha upstream catchment. This implies that the reduction factor on exposure concentrations in FOCUS streams of Step 4 FOCUS scenarios

  6. CO2 Capture from the Air: Technology Assessment and Implications for Climate Policy

    Science.gov (United States)

    Keith, D. W.

    2002-05-01

    for global climate policy are examined using DIAM [2], a stylized integrated assessment model. We find that air capture can fundamentally alter the temporal dynamics of global warming mitigation. The reason for this is that air capture differs from conventional mitigation in three key aspects. First, it removes emissions from any part of the economy with equal ease or difficulty, so its cost provides an absolute cap on the cost of mitigation. Second, it permits reduction in concentrations faster than the natural carbon cycle: the effects of irreversibility are thus partly alleviated. Third, because it is less coupled with the energy system, air capture may offer stronger economies of scale and smaller adjustment costs than the more conventional mitigation technologies. Air capture limits the total cost of a worst-case climate scenario. In an optimal sequential decision framework with uncertainty, existence of air capture decreases the need for near-term precautionary abatement. Like geoengineering, air capture thus poses a moral hazard. 1. S. Elliott, et al. Compensation of atmospheric CO2 buildup through engineered chemical sinkage. Geophys. Res. Let., 28:1235-1238, 2001. 2. Minh Ha-Duong, Michael J. Grubb, and Jean-Charles Hourcade. Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement. Nature, 390: 270-274, 1997.

  7. Bioelectrochemical conversion of CO2 to chemicals

    NARCIS (Netherlands)

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J.N.; Strik, David P.B.T.B.; Pant, Deepak

    2017-01-01

    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds

  8. Numerical studies of CO2 and brine leakage into a shallow aquifer through an open wellbore

    Science.gov (United States)

    Wang, Jingrui; Hu, Litang; Pan, Lehua; Zhang, Keni

    2018-03-01

    Industrial-scale geological storage of CO2 in saline aquifers may cause CO2 and brine leakage from abandoned wells into shallow fresh aquifers. This leakage problem involves the flow dynamics in both the wellbore and the storage reservoir. T2Well/ECO2N, a coupled wellbore-reservoir flow simulator, was used to analyze CO2 and brine leakage under different conditions with a hypothetical simulation model in water-CO2-brine systems. Parametric studies on CO2 and brine leakage, including the salinity, excess pore pressure (EPP) and initially dissolved CO2 mass fraction, are conducted to understand the mechanism of CO2 migration. The results show that brine leakage rates increase proportionally with EPP and inversely with the salinity when EPP varies from 0.5 to 1.5 MPa; however, there is no CO2 leakage into the shallow freshwater aquifer if EPP is less than 0.5 MPa. The dissolved CO2 mass fraction shows an important influence on the CO2 plume, as part of the dissolved CO2 becomes a free phase. Scenario simulation shows that the gas lifting effect will significantly increase the brine leakage rate into the shallow freshwater aquifer under the scenario of 3.89% dissolved CO2 mass fraction. The equivalent porous media (EPM) approach used to model the wellbore flow has been evaluated and results show that the EPM approach could either under- or over-estimate brine leakage rates under most scenarios. The discrepancies become more significant if a free CO2 phase evolves. Therefore, a model that can correctly describe the complex flow dynamics in the wellbore is necessary for investigating the leakage problems.

  9. Co-firing of imported wood pellets – An option to efficiently save CO2 emissions in Europe?

    International Nuclear Information System (INIS)

    Ehrig, Rita; Behrendt, Frank

    2013-01-01

    In this paper the energy and carbon footprints of pellet imports from Australia, West Canada, and Russia for co-firing in Europe are investigated. Their ecologic and economic performances are proven by applying the Belgian and UK co-firing subsidy systems, which require dedicated sustainability evaluations. Based on the modelling of different subsidy schemes and price scenarios, the present paper identifies favourable conditions for the use of biomass co-firing in Germany and Austria, which currently do not have dedicated co-firing incentives. The present paper shows that under present conditions, co-firing has a narrow financial gap to coal with −3 to 4 € Cent/kWh el and has low CO 2 mitigation costs compared to other renewables. Moreover, it is shown that co-firing is one of the most cost-attractive options to reach the EU-2020 targets. For policy makers, the support of co-firing is found to be very efficient in terms of cost-benefit ratio. It is proven that the co-firing subsidy schemes might direct supply chain decisions towards options with low energy and carbon impacts. - Highlights: • Co-firing has a low financial gap and allows for advantageous CO 2 mitigation costs compared to other renewable. • Belgian and UK's co-firing subsidies are reasonable options to promote cost-effective renewable electricity generation. • Co-firing subsidy schemes can effectively direct supply chain decisions towards low energy and carbon options

  10. CO2 reduction: is increasing the diesel share the way to go?

    NARCIS (Netherlands)

    Rijkeboer, R.C.; Havenith, C.; Baarbe, H.L.

    1998-01-01

    Different scenarios have been compared for the future reduction of CO2-emission under real-world driving conditions. A significant shift towards diesel appears hardly to benefit the CO2 but would carry a real NOx penalty. Introduction of DI petrol engines and a shift towards gaseous fuels for s.i.

  11. Energy implications of future stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Hoffert, M.I.; Jain, A.K.

    1998-01-01

    The United Nations Framework Convention on Climate Change calls for ''stabilization of greenhouse-gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system...''. A standard baseline scenario that assumes no policy intervention to limit greenhouse-gas emissions has 10 TW (10 x 10 12 watts) of carbon-emission-free power being produced by the year 2050, equivalent to the power provided by all today's energy sources combined. Here we employ a carbon-cycle/energy model to estimate the carbon-emission-free power needed for various atmospheric CO 2 stabilization scenarios. We find that CO 2 stabilization with continued economic growth will require innovative, cost-effective and carbon-emission-free technologies that can provide additional tens of terawatts of primary power in the coming decades, and certainly by the middle of the twenty-first century, even with sustained improvement in the economic productivity of primary energy. (author)

  12. A multinational model for CO2 reduction: defining boundaries of future CO2 emissions in nine countries

    International Nuclear Information System (INIS)

    Kram, Tom; Hill, Douglas.

    1996-01-01

    A need to make substantial future reductions in greenhouse gas emissions would require major changes in national energy systems. Nine industrialized countries have explored the technical boundaries of CO 2 emission restrictions during the next 40 to 50 years using comparable scenario assumptions and a standard model, MARKAL. Quantitative results for the countries are shown side by side in a set of energy maps that compare the least-cost evolution of the national energy systems by the main factors that contribute to CO 2 emissions. The ability to restrict future CO 2 emissions and the most cost-effective measures for doing so differ among the countries; an international agreement that would mandate substantial emission restrictions among countries by an equal percentage reduction is clearly impossible. The results are a first step toward a basis for allocating such international reductions, and the multinational process by which they were produced provides an example for further international greenhouse gas abatement costing studies. (Author)

  13. Using noble gas fingerprints at the Kerr Farm to assess CO2 leakage allegations linked to the Weyburn-Midale CO2 Monitoring and Storage Project

    OpenAIRE

    Gilfillan, Stuart; Sherk, George Williams; Poreda, Robert J.; Haszeldine, Robert

    2017-01-01

    For carbon capture and storage technology to successfully contribute to climate mitigation efforts, the stored CO2 must be securely isolated from the atmosphere and oceans. Hence, there is a need to establish and verify monitoring techniques that can detect unplanned migration of injected CO2 from a storage site to the near surface. Noble gases are sensitive tracers of crustal fluid input in the subsurface due to their low concentrations and unreactive nature. Several studies have identified ...

  14. Tropical coral reef habitat in a geoengineered, high-CO2 world

    Science.gov (United States)

    Couce, E.; Irvine, P. J.; Gregorie, L. J.; Ridgwell, A.; Hendy, E. J.

    2013-05-01

    Continued anthropogenic CO2 emissions are expected to impact tropical coral reefs by further raising sea surface temperatures (SST) and intensifying ocean acidification (OA). Although geoengineering by means of solar radiation management (SRM) may mitigate temperature increases, OA will persist, raising important questions regarding the impact of different stressor combinations. We apply statistical Bioclimatic Envelope Models to project changes in shallow water tropical coral reef habitat as a single niche (without resolving biodiversity or community composition) under various representative concentration pathway and SRM scenarios, until 2070. We predict substantial reductions in habitat suitability centered on the Indo-Pacific Warm Pool under net anthropogenic radiative forcing of ≥3.0 W/m2. The near-term dominant risk to coral reefs is increasing SSTs; below 3 W/m2 reasonably favorable conditions are maintained, even when achieved by SRM with persisting OA. "Optimal" mitigation occurs at 1.5 W/m2 because tropical SSTs overcool in a fully geoengineered (i.e., preindustrial global mean temperature) world.

  15. Analysis of carbon mitigation technology to 2050 in Japan through integrated energy economic model

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Suzuki, Kengo; Nagatomi, Yu; Matsuo, Yuji; Suehiro, Shigeru

    2011-01-01

    This paper describes the outline of integrated energy economic model and calculated result concerning the outlook of energy and carbon dioxide emissions in Japan to 2050. The energy model developed in this paper is integrated one which consistently combines econometric model endogenously generating socio-economic outlook and bottom-up type technology model, MARKAL, identifying cost-minimizing optimal mix of various energy technologies. In reference scenario which imposes no carbon emissions constraint, CO 2 emission in 2050 will decrease by approximately 40% from the level of emissions in 2005. In carbon-constraints scenario, imposing emissions cap of 60% reduction by 2050 from the emissions in 2005, natural gas-fired power plant equipped with CCS and renewable energy are expected to expand its portion in power generation mix. In transportation sector on this scenario, clean energy vehicles such as electric vehicle (EV) and hydrogen fuel cell vehicle (FCV) will be deployed and contribute to mitigate CO 2 emissions. (author)

  16. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    Science.gov (United States)

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  17. CO2 Urban Synthesis and Analysis ("CO2-USA") Network

    Science.gov (United States)

    Lin, J. C.; Hutyra, L.; Loughner, C.; Stein, A. F.; Lusk, K.; Mitchell, L.; Gately, C.; Wofsy, S. C.

    2017-12-01

    Emissions of carbon associated with cities comprise a large component of the anthropogenic source. A number of cities have announced plans to reduce greenhouse gas emissions, but the scientific knowledge to quantitatively track emissions and assess the efficacy of mitigation is lacking. As the global population increasingly resides in urban regions, scientific knowledge about how much, where, and why a particular city emits carbon becomes increasingly important. To address this gap, researchers have initiated studies of carbon emissions and cycling in several U.S. cities, making it timely to develop a collaborative network to exchange information on community standards and common measurements, facilitate data sharing, and create analysis frameworks and cross-city syntheses to catalyze a new generation of researchers and enable new collaborations tackling important objectives that are difficult to address in isolation. We describe initial results from an incipient network focusing initially on cities in the U.S. with low barriers of entry that entrains a cross-section of U.S. urban centers with varying characteristics: size, population density, vegetation, urban form, infrastructure, development rates, climate, and meteorological patterns. Results will be reported that emerge from an initial workshop covering data harmonization & integration, inventory comparison, stakeholder outreach, network design, inverse modeling, and collaboration.

  18. Forest succession at elevated CO2; TOPICAL

    International Nuclear Information System (INIS)

    Clark, James S.; Schlesinger, William H.

    2002-01-01

    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response

  19. A human development framework for CO2 reductions.

    Directory of Open Access Journals (Sweden)

    Luís Costa

    Full Text Available Although developing countries are called to participate in CO(2 emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI and per capita CO(2 emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO(2 emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU. If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8. In particular, 300 Gt of cumulative CO(2 emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20 % to 30 % of previously calculated CO(2 budgets limiting global warming to 2 °C. These constraints and results are incorporated into a CO(2 reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2 °C target after a particular development threshold is reached. For example, in each time step of five years, countries with an HDI of 0.85 would need to reduce their per capita emissions by approx. 17% and countries with an HDI of 0.9 by 33 %. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100 Gt of CO(2. These values are within the uncertainty range of emissions to limit global temperatures to 2 °C.

  20. A human development framework for CO2 reductions.

    Science.gov (United States)

    Costa, Luís; Rybski, Diego; Kropp, Jürgen P

    2011-01-01

    Although developing countries are called to participate in CO(2) emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO(2) emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO(2) emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300 Gt of cumulative CO(2) emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20 % to 30 % of previously calculated CO(2) budgets limiting global warming to 2 °C. These constraints and results are incorporated into a CO(2) reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2 °C target after a particular development threshold is reached. For example, in each time step of five years, countries with an HDI of 0.85 would need to reduce their per capita emissions by approx. 17% and countries with an HDI of 0.9 by 33 %. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100 Gt of CO(2). These values are within the uncertainty range of emissions to limit global temperatures to 2 °C. © 2011 Costa et al.

  1. The Climate Science Special Report: Perspectives on Climate Change Mitigation

    Science.gov (United States)

    DeAngelo, B. J.

    2017-12-01

    This chapter of CSSR provides scientific context for key issues regarding the long-term mitigation of climate change. Policy analysis and recommendations are beyond the scope of CSSR. Limiting and stabilizing warming to any level implies that there is an upper limit to the cumulative amount of CO2 that can be added to the atmosphere. Eventually stabilizing the global temperature requires CO2 emissions to approach zero. For a 3.6°F (2°C) or any desired global mean temperature target, an estimated range of allowable cumulative CO2 emissions from the current period onward can be calculated. Accounting for the temperature effects of non-CO2 species, cumulative CO2 emissions are required to stay below about 800 GtC in order to provide a two-thirds likelihood of preventing 3.6°F (2°C) of warming, meaning approximately 230 GtC more could be emitted globally. Assuming global emissions follow the range between the RCP8.5 and RCP4.5 scenarios, emissions could continue for approximately two decades before this cumulative carbon threshold is exceeded. Meeting a 2.7°F (1.5°C) target implies much tighter constraints. Mitigation of non-CO2 species contributes substantially to near-term cooling benefits but cannot be relied upon for ultimate stabilization goals. Successful implementation of the first round of Nationally Determined Contributions associated with the Paris Agreement will provide some likelihood of meeting the long-term temperature goal of limiting global warming to "well below" 3.6°F (2°C) above preindustrial levels; the likelihood depends strongly on the magnitude of global emission reductions after 2030. If interest in geoengineering increases, interest will also increase in assessments of the technical feasibilities, costs, risks, co-benefits, and governance challenges of these additional measures, which are as yet unproven at scale.

  2. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    Science.gov (United States)

    McNeil, Ben I.; Sasse, Tristan P.

    2016-01-01

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean ‘CO2 hotspots’ evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for

  3. Residual CO2 trapping in Indiana limestone.

    Science.gov (United States)

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-02

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  4. CO2 clearance by membrane lungs.

    Science.gov (United States)

    Sun, Liqun; Kaesler, Andreas; Fernando, Piyumindri; Thompson, Alex J; Toomasian, John M; Bartlett, Robert H

    2018-05-01

    Commercial membrane lungs are designed to transfer a specific amount of oxygen per unit of venous blood flow. Membrane lungs are much more efficient at removing CO 2 than adding oxygen, but the range of CO 2 transfer is rarely reported. Commercial membrane lungs were studied with the goal of evaluating CO 2 removal capacity. CO 2 removal was measured in 4 commercial membrane lungs under standardized conditions. CO 2 clearance can be greater than 4 times that of oxygen at a given blood flow when the gas to blood flow ratio is elevated to 4:1 or 8:1. The CO 2 clearance was less dependent on surface area and configuration than oxygen transfer. Any ECMO system can be used for selective CO 2 removal.

  5. Reducing CO2 emissions in Sierra Leone and Ghana

    International Nuclear Information System (INIS)

    Davidson, O.

    1991-01-01

    With soring population growth rates and minimal economic growth, the nations of Africa are afflicted with innumerable problems. Why then should Africa's developing countries worry about CO 2 emissions? First, because agricultural activities form the backbone of most African economies; thus, these nations may be particularly vulnerable to the negative impacts of climate change. Second, acting to reduce carbon emissions will bring about more efficient energy use. All of Africa could benefit from the improved use of energy. Finally, the accumulation of CO 2 in the atmosphere is a global problem with individual solutions; in order to reduce international emissions, all countries, including those in Africa, must contribute. Typical of many African countries, Ghana and Sierra Leone have among the lowest levels of energy demand per capita across the globe. primary energy demand per capita in these two West African nations equals about one quarter of the world's average and about one twentieth of the US average. This work summarizes the results of two long-term energy use and carbon emissions scenarios for Sierra Leone and Ghana. In the high emissions (HE) scenario for 2025, policy changes focused on galvanizing economic growth lead to significant increases in energy use and carbon emissions in Ghana and Sierra Leone between 1985 and 2025. In the low emissions (LE) scenario, the implementation of policies aimed specifically at curtailing CO 2 emissions significantly limits the increase in carbon in both nations by 2025

  6. Analysis of Microbial Communities in the Oil Reservoir Subjected to CO2-Flooding by Using Functional Genes as Molecular Biomarkers for Microbial CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jin-Feng eLiu

    2015-03-01

    Full Text Available Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  7. Uncertainty studies and risk assessment for CO2 storage in geological formations

    International Nuclear Information System (INIS)

    Walter, Lena Sophie

    2013-01-01

    Carbon capture and storage (CCS) in deep geological formations is one possible option to mitigate the greenhouse gas effect by reducing CO 2 emissions into the atmosphere. The assessment of the risks related to CO 2 storage is an important task. Events such as CO 2 leakage and brine displacement could result in hazards for human health and the environment. In this thesis, a systematic and comprehensive risk assessment concept is presented to investigate various levels of uncertainties and to assess risks using numerical simulations. Depending on the risk and the processes, which should be assessed, very complex models, large model domains, large time scales, and many simulations runs for estimating probabilities are required. To reduce the resulting high computational costs, a model reduction technique (the arbitrary polynomial chaos expansion) and a method for model coupling in space are applied. The different levels of uncertainties are: statistical uncertainty in parameter distributions, scenario uncertainty, e.g. different geological features, and recognized ignorance due to assumptions in the conceptual model set-up. Recognized ignorance and scenario uncertainty are investigated by simulating well defined model set-ups and scenarios. According to damage values, which are defined as a model output, the set-ups and scenarios can be compared and ranked. For statistical uncertainty probabilities can be determined by running Monte Carlo simulations with the reduced model. The results are presented in various ways: e.g., mean damage, probability density function, cumulative distribution function, or an overall risk value by multiplying the damage with the probability. If the model output (damage) cannot be compared to provided criteria (e.g. water quality criteria), analytical approximations are presented to translate the damage into comparable values. The overall concept is applied for the risks related to brine displacement and infiltration into drinking water

  8. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel

    2000-09-01

    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  9. Estimating future energy use and CO2 emissions of the world's cities

    International Nuclear Information System (INIS)

    Singh, Shweta; Kennedy, Chris

    2015-01-01

    This paper develops a tool for estimating energy-related CO 2 emissions from the world's cities based on regression models. The models are developed considering climatic (heating-degree-days) and urban design (land area per person) independent variables. The tool is applied on 3646 urban areas for estimating impacts on urban emissions of a) global transitioning to Electric Vehicles, b) urban density change and c) IPCC climate change scenarios. Results show that urban density decline can lead to significant increase in energy emissions (upto 346% in electricity & 428% in transportation at 2% density decline by 2050). Among the IPCC climate scenarios tested, A1B is the most effective in reducing growth of emissions (upto 12% in electricity & 35% in heating). The tool can further be improved by including more data in the regression models along with inclusion of other relevant emissions and climatic variables. - Highlights: • A tool for estimation of energy related emissions for urban areas is developed. • Heating degree days and urbanized area per capita are driving variables for urban energy consumption. • Global transition to EVs can only mitigate transportation emissions if GHG intensity of electricity grid is reduced. • Density decline of urban areas can lead to exponential increase of energy related emissions. • Climate change scenarios can slightly reduce the growth of energy related emissions increase by 2050. - A tool for estimation of global impact of urban systems on energy related emissions was developed that can simulate the impact of future scenarios (climate change, urban design etc)

  10. Re-Examining Embodied SO2 and CO2 Emissions in China

    Directory of Open Access Journals (Sweden)

    Rui Huang

    2018-05-01

    Full Text Available CO2 and SO2, while having different environmental impacts, are both linked to the burning of fossil fuels. Research on joint patterns of CO2 emissions and SO2 emissions may provide useful information for decision-makers to reduce these emissions effectively. This study analyzes both CO2 emissions and SO2 emissions embodied in interprovincial trade in 2007 and 2010 using multi-regional input–output analysis. Backward and forward linkage analysis shows that Production and Supply of Electric Power and Steam, Non-metal Mineral Products, and Metal Smelting and Pressing are key sectors for mitigating SO2 and CO2 emissions along the national supply chain. The total SO2 emissions and CO2 emissions of these sectors accounted for 81% and 76% of the total national SO2 emissions and CO2 emissions, respectively.

  11. Wellbore integrity analysis of a natural CO2 producer

    KAUST Repository

    Crow, Walter

    2010-03-01

    Long-term integrity of existing wells in a CO2-rich environment is essential for ensuring that geological sequestration of CO2 will be an effective technology for mitigating greenhouse gas-induced climate change. The potential for wellbore leakage depends in part on the quality of the original construction as well as geochemical and geomechanical stresses that occur over its life-cycle. Field data are essential for assessing the integrated effect of these factors and their impact on wellbore integrity, defined as the maintenance of isolation between subsurface intervals. In this report, we investigate a 30-year-old well from a natural CO2 production reservoir using a suite of downhole and laboratory tests to characterize isolation performance. These tests included mineralogical and hydrological characterization of 10 core samples of casing/cement/formation, wireline surveys to evaluate well conditions, fluid samples and an in situ permeability test. We find evidence for CO2 migration in the occurrence of carbonated cement and calculate that the effective permeability of an 11′-region of the wellbore barrier system was between 0.5 and 1 milliDarcy. Despite these observations, we find that the amount of fluid migration along the wellbore was probably small because of several factors: the amount of carbonation decreased with distance from the reservoir, cement permeability was low (0.3-30 microDarcy), the cement-casing and cement-formation interfaces were tight, the casing was not corroded, fluid samples lacked CO2, and the pressure gradient between reservoir and caprock was maintained. We conclude that the barrier system has ultimately performed well over the last 3 decades. These results will be used as part of a broader effort to develop a long-term predictive simulation tool to assess wellbore integrity performance in CO2 storage sites. © 2009 Elsevier Ltd. All rights reserved.

  12. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California

    Science.gov (United States)

    Peiffer, Loïc; Wanner, Christoph; Lewicki, Jennifer L.

    2018-02-01

    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d-1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107-108 t) in a shallow

  13. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  14. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. CO2 flux from Javanese mud volcanism.

    Science.gov (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A

    2017-06-01

    Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.

  16. Explaining CO2 fluctuations observed in snowpacks

    Science.gov (United States)

    Graham, Laura; Risk, David

    2018-02-01

    Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.

  17. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-05-01

    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  18. Consequences of CO2-rich water intrusion into the Critical Zone

    Science.gov (United States)

    Gal, Frédérick; Lions, Julie

    2017-04-01

    From a geochemical point of view, the sensitivity of the Critical Zone to hazards is not only linked to its proximity to the surface. It may also be linked to - albeit less common - intrusion of upward migrating fluids. One of the hazard scenarios to observe these pathways in surface environments is the occurrence of CO2-rich fluid leakage from deeper horizons and especially leakage from reservoir in the case of underground storage such as Carbon Storage applications. Much effort is done to prevent this risk but it necessary to consider the mitigation of this leak to insure safe storage. Numerous active or planned CO2 storage sites belong to large sedimentary basins. In that perspective, a CO2 injection has been performed in a multi-layered - carbonated aquifer (Beauce aquifer) from the Paris basin as this basin has been considered for such applications. The aquifer mineralogy of the targeted site is dominated by calcite (95 to 98%) with traces of quartz and clay minerals. Around 10,000 liters of CO2 were injected at 50 m depth during a series of gaseous pulsed injections for 5 days. After 3 days of incubation in the aquifer, the groundwater was pumped during 5 days allowing the recovery of 140 m3 of backward water. Physico-chemical parameters, major and trace elements concentrations and dissolved CO2 concentrations were monitored to evaluate water-rock interactions occurring within the aquifer and impacts onto water quality. Main changes that were observed during the CO2 release are in good agreement with results from previous experiments performed worldwide. A strong decrease of the pH value (2 units), a rise of the electrical conductivity (2 fold) and changes in the redox conditions (from oxidising to less oxidising) are monitored few hours after the initiation of the pumping. The dissolution of CO2 induces a drop of pH that favours water-rock interaction processes. The kinetic of reactions appears to be dominated by the dissolution of carbonate, mainly calcite

  19. Environmental impacts of ocean disposal of CO2. First quarterly report, September 1--September 30, 1994

    International Nuclear Information System (INIS)

    Tester, J.W.

    1994-01-01

    This paper is divided into five sections (corresponding to five tasks) which all must be considered in order to determine the ultimate environmental impact of ocean disposal of CO 2 . The sections are: ambient physical and chemical properties of the ocean; CO 2 loadings (i.e. quantities and purities of CO 2 ) produced using different capture technologies; methods of CO 2 transport and injection, and their associated physical/chemical perturbations; environmental impacts for the scenarios outlined in section the previous section; and other considerations including legal issues, public perception, and monitoring requirements

  20. Regional differences in the CO_2 emissions of China's iron and steel industry: Regional heterogeneity

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2016-01-01

    Identifying the key influencing factors of CO_2 emissions in China's iron and steel industry is vital for mitigating its emissions and formulating effective environmental protection measures. Most of the existing researches utilized time series data to investigate the driving factors of the industry's CO_2 emission at the national level, but regional differences have not been given appropriate attention. This paper adopts provincial panel data from 2000 to 2013 and panel data models to examine the key driving forces of CO_2 emissions at the regional levels in China. The results show that industrialization dominates the industry's CO_2 emissions, but its effect varies across regions. The impact of energy efficiency on CO_2 emissions in the eastern region is greater than in the central and western regions because of a huge difference in R&D investment. The influence of urbanization has significant regional differences due to the heterogeneity in human capital accumulation and real estate development. Energy structure has large potential to mitigate CO_2 emissions on account of increased R&D investment in energy-saving technology and expanded clean energy use. Hence, in order to effectively achieve emission reduction, local governments should consider all these factors as well as regional heterogeneity in formulating appropriate mitigation policies. - Highlights: • We explore the driving forces of CO_2 emissions in China's steel industry. • Industrialization dominates CO_2 emissions in the iron and steel industry. • Energy structure has large potential to mitigate CO_2 emissions in the steel industry. • The influence of urbanization has significant regional differences.

  1. Drought stress and tree size determine stem CO2 efflux in a tropical forest.

    Science.gov (United States)

    Rowland, Lucy; da Costa, Antonio C L; Oliveira, Alex A R; Oliveira, Rafael S; Bittencourt, Paulo L; Costa, Patricia B; Giles, Andre L; Sosa, Azul I; Coughlin, Ingrid; Godlee, John L; Vasconcelos, Steel S; Junior, João A S; Ferreira, Leandro V; Mencuccini, Maurizio; Meir, Patrick

    2018-06-01

    CO 2 efflux from stems (CO 2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO 2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO 2_stem in the droughted forest relative to a control forest. This was driven by increasing CO 2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO 2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO 2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO 2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO 2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO 2_stem fluxes, stand-scale future estimates of changes in stem CO 2 emissions remain highly uncertain. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  2. Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration

    International Nuclear Information System (INIS)

    Lee, Yohan; Lee, Dongyoung; Lee, Jong-Won; Seo, Yongwon

    2016-01-01

    Highlights: • We examine sH hydrates with CO 2 + N 2 + neohexane for CO 2 capture and sequestration. • The structural transition occurs in the CO 2 (40%) + N 2 (60%) + neohexane system. • CO 2 molecules are enclathrated into sH hydrates in the N 2 -rich systems. • CO 2 selectivity in sH hydrates is slightly lower than that in sI hydrates. • ΔH d values provide information on the structural transition of sH to sI hydrates. - Abstract: In this study, the thermodynamic behaviors, cage-specific guest distributions, structural transition, and dissociation enthalpies of sH hydrates with CO 2 + N 2 gas mixtures were investigated for their potential applications to hydrate-based CO 2 capture and sequestration. The stability conditions of the CO 2 + N 2 + water systems and the CO 2 + N 2 + neohexane (2,2-dimethylbutane, NH) + water systems indicated that the gas mixtures in the range of flue gas compositions could form sH hydrates, thereby mitigating the pressure and temperature required for gas hydrate formation. Structure identification using powder X-ray diffraction (PXRD) revealed the coexistence of sI and sH hydrates in the CO 2 (40%) + N 2 (60%) + NH system and the hydrate structure transformed from sH into sI as the CO 2 concentration increased. In addition, the Raman analysis clearly demonstrated that CO 2 molecules were enclathrated into the cages of sH hydrates in the N 2 -rich systems. It was found from direct CO 2 composition measurements that CO 2 selectivity in the sH hydrate phase was slightly lower than that in the corresponding sI hydrate phase. Dissociation enthalpy (ΔH d ) measurements using a high-pressure micro-differential scanning calorimeter (HP μ-DSC) indicated that the ΔH d values could also provide valuable information on the structural transition of sH to sI hydrates with respect to the CO 2 concentration in the feed gas. This study provides a better understanding of the thermodynamic and physicochemical background for CO 2

  3. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  4. Carbon-constrained scenarios. Final report

    International Nuclear Information System (INIS)

    2009-05-01

    This report provides the results of the study entitled 'Carbon-Constrained Scenarios' that was funded by FONDDRI from 2004 to 2008. The study was achieved in four steps: (i) Investigating the stakes of a strong carbon constraint for the industries participating in the study, not only looking at the internal decarbonization potential of each industry but also exploring the potential shifts of the demand for industrial products. (ii) Developing an hybrid modelling platform based on a tight dialog between the sectoral energy model POLES and the macro-economic model IMACLIM-R, in order to achieve a consistent assessment of the consequences of an economy-wide carbon constraint on energy-intensive industrial sectors, while taking into account technical constraints, barriers to the deployment of new technologies and general economic equilibrium effects. (iii) Producing several scenarios up to 2050 with different sets of hypotheses concerning the driving factors for emissions - in particular the development styles. (iv) Establishing an iterative dialog between researchers and industry representatives on the results of the scenarios so as to improve them, but also to facilitate the understanding and the appropriate use of these results by the industrial partners. This report provides the results of the different scenarios computed in the course of the project. It is a partial synthesis of the work that has been accomplished and of the numerous exchanges that this study has induced between modellers and stakeholders. The first part was written in April 2007 and describes the first reference scenario and the first mitigation scenario designed to achieve stabilization at 450 ppm CO 2 at the end of the 21. century. This scenario has been called 'mimetic' because it has been build on the assumption that the ambitious climate policy would coexist with a progressive convergence of development paths toward the current paradigm of industrialized countries: urban sprawl, general

  5. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contri