WorldWideScience

Sample records for co2 laser welding

  1. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels

    2001-01-01

    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  2. Studies on CO2-laser Hybrid-Welding of Copper

    DEFF Research Database (Denmark)

    Nielsen, Jakob Skov; Olsen, Flemming Ove; Bagger, Claus

    2005-01-01

    CO2-laser welding of copper is known to be difficult due to the high heat conductivity of the material and the high reflectivity of copper at the wavelength of the CO2-laser light. THis paper presents a study of laser welding of copper, applying laser hybrid welding. Welding was performed as a hy...

  3. Welding of dissimilar metals by CO2 lasers

    International Nuclear Information System (INIS)

    Garciandia, F.; Zubiri, F.; Etayo, J.L.; Cervantes, R.; Iriberri, I.

    1998-01-01

    The work carried out in CETENASA (laser department) in order to weld dissimilar metals is summarized. The involved metallic pair is M-35 and F-143, a high speed steel and a spring steel, respectively. Looking at the chemical composition of the involved alloys that will appear later, it can be easily understood the difficulty to obtain welded parts with structures metallurgically acceptable because of the high cracking degree that these materials show, specially M-35. The principles of a study which is being developed in the authors laboratory and which shows some interesting CO 2 laser possibilities are presented. (Author) 2 refs

  4. CO2 and diode laser welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Zhu Jinhong; Li Lin; Liu Zhu

    2005-01-01

    Magnesium alloys are being increasingly used in automotive and aerospace structures. Laser welding is an important joining method in such applications. There are several kinds of industrial lasers available at present, including the conventional CO 2 and Nd:YAG lasers as well as recently available high power diode lasers. A 1.5 kW diode laser and a 2 kW CO 2 laser are used in the present study for the welding of AZ31 alloys. It is found that different welding modes exist, i.e., keyhole welding with the CO 2 laser and conduction welding with both the CO 2 and the diode lasers. This paper characterizes welds in both welding modes. The effect of beam spot size on the weld quality is analyzed. The laser processing parameters are optimized to obtain welds with minimum defects

  5. Assisting Gas Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1996-01-01

    High quality laser welding is achieved under the condition of optimizing all process parameters. Assisting gas plays an important role for sound welds. In the conventional welding process assisting gas is used as a shielding gas to prevent that the weld seam oxidates. In the laser welding process...... assisting gas is also needed to control the laser induced plasma.Assisting gas is one of the most important parameters in the laser welding process. It is responsible for obtaining a quality weld which is characterized by deep penetration, no interior imperfections, i.e. porosity, no crack, homogeneous seam...... surface, etc. In this work a specially designed flexible off-axis nozzle capable of adjusting the angle of the nozzle, the diameter of the nozzle, and the distance between the nozzle end and the welding zone is tested. In addition to the nozzle parameters three gases, Nitrogen, Argon, and Helium...

  6. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel

    Science.gov (United States)

    Kutsuna, Muneharu; Chen, Liang

    2003-03-01

    Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).

  7. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Science.gov (United States)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  8. Application of CO2 laser beam weld for repair of fuel element of nuclear reactor 'YAYOI'

    International Nuclear Information System (INIS)

    Hashimoto, Mitsuo; Yanagi, Hideharu; Sukegawa, Toshio; Saito, Isao; Sasuga, Norihiko; Aizawa, Nagaaki; Miya, Kenzo

    1986-01-01

    The present studies are to develop CO 2 laser beam welding techniques in order to apply for repoint of nuclear reactor fuel of Fast Neutron Source Reactor YAYOI. For that purpos, many experiments were conduted to obtain various effects of laser welding variables with use of SUS 304 plates, pipes and simulated dumy fuels. These experiments provided us an optimal welding condition through metallurgical observations, non-destructive and mechanical tests. It was found that the laser welds exhibited properties equivalent to those of the base metal, in addition they provided us a favorable system than that of electron beam welds against a cladding of radioactive nuclear fuel in a hot cell. The present paper reports on the characteristics of laser welds, structural analysis of fuel element and a system design of remotely operated devices setting in a hot cell. (author)

  9. CO2 laser welding of galvanized steel sheets using vent holes

    International Nuclear Information System (INIS)

    Chen Weichiat; Ackerson, Paul; Molian, Pal

    2009-01-01

    Joining of galvanized steels is a challenging issue in the automotive industry because of the vaporization of zinc at 906 deg. C during fusion welding of steel (>1530 deg. C). In this work, hot-dip galvanized steel sheets of 0.68 mm thick (24-gage) were pre-drilled using a pulsed Nd:YAG laser to form vent holes along the weld line and then seam welded in the lap-joint configuration using a continuous wave CO 2 laser. The welds were evaluated through optical and scanning electron microscopy and tensile/hardness tests. The vent holes allowed zinc vapors to escape through the weld zone without causing expulsion of molten metal, thereby eliminating the defects such as porosity, spatter, and loss of penetration. In addition, riveting of welds occurred so long as the weld width was greater than the hole diameter that in turn provided much higher strength over the traditional 'joint gap' method

  10. Welding of zircalloy-2 and zircalloy-4 by CO2 laser and by TIG

    International Nuclear Information System (INIS)

    Ram, V.

    1990-01-01

    This study deals with the welding of zircaloy-2 and zircaloy-4 by means of two techniqes, namely tungsten inert gas welding and CO 2 laser welding. Suitable devices and jigs were developed and manufactured to allow the welding of flat specimens and cylindrical specimens. The optimal welding parameters for the two welding methods were determined. The quality of the welds was determined by tensile strength tests at room temperature and by determining the corrosion resistance to steam at temprature of 450 deg C, 550 deg C, and at 650 deg C. The influence of the weld on the microstructure of the material, on its composition and its crystallographic structure was investigated. Analysis of fracture surfaces of the tensile specimens was carried out with a scanning electron microscope. (author)

  11. Application of Factorial Design for Gas Parameter Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Dragsted, Birgitte; Olsen, Flemming Ove

    1997-01-01

    The effect of different gas process parameters involved in CO2 laser welding has been studied by applying two-set of three-level complete factorial designs. In this work 5 gas parameters, gas type, gas flow rate, gas blowing angle, gas nozzle diameter, gas blowing point-offset, are optimized...... to be a very useful tool for parameter optimi-zation in laser welding process. Keywords: CO2 laser welding, gas parameters, factorial design, Analysis of Variance........ The bead-on-plate welding specimens are evaluated by a number of quality char-acteristics, such as the penetration depth and the seam width. The significance of the gas pa-rameters and their interactions are based on the data found by the Analysis of Variance-ANOVA. This statistic methodology is proven...

  12. Finding Optimum Focal Point Position with Neural Networks in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1997-01-01

    CO2 lasers are increasingly being utilized for quality welding in production. Considering the high equipment cost, the start-up time and set-up time should be minimized. Ideally the parameters should be set up and optimized more or less automatically. In this article neural networks are designed...

  13. Macrostructural and microstructural features of 1 000 MPa grade TRIP steel joint by CO2 laser welding

    Institute of Scientific and Technical Information of China (English)

    Wang Wenquan; Sun Daqian; Kang Chungyun

    2008-01-01

    Bead-on-plate CO2 laser welding of 1 000 MPa grade transformation induced plasticity (TRIP) steel was conducted under different welding powers, welding speeds and shield gases. The macrostructural and microstructural features of the welded joint were investigated. The increase of welding speed reduced the width of the weld bead and the porosities in the weld bead resulting from the different flow mode of melted metal in weld pool. The decrease of welding power or use of shield gas of helium also contributed to the reduction of porosity in the weld bead due to the alleviation of induced plasma formation, thus stabilizing the keyhole. The porosity formation intimately correlated with the evaporation of alloy element Mn in the base metal. The laser welded metal had same martensite microstructure as that of water-quenched base metal. The welding parameters which increased cooling rate all led to fine microstructures of the weld bead.

  14. Physics of zinc vaporization and plasma absorption during CO2 laser welding

    International Nuclear Information System (INIS)

    Dasgupta, A. K.; Mazumder, J.; Li, P.

    2007-01-01

    A number of mathematical models have been developed earlier for single-material laser welding processes considering one-, two-, and three-dimensional heat and mass transfers. However, modeling of laser welding of materials with multiple compositions has been a difficult problem. This paper addresses a specific case of this problem where CO 2 laser welding of zinc-coated steel, commonly used in automobile body manufacturing, is mathematically modeled. The physics of a low boiling point material, zinc, is combined with a single-material (steel) welding model, considering multiple physical phenomena such as keyhole formation, capillary and thermocapillary forces, recoil and vapor pressures, etc. The physics of laser beam-plasma interaction is modeled to understand the effect on the quality of laser processing. Also, an adaptive meshing scheme is incorporated in the model for improving the overall computational efficiency. The model, whose results are found to be in close agreement with the experimental observations, can be easily extended for studying zinc-coated steel welding using other high power, continuous wave lasers such as Nd:YAG and Yb:YAG

  15. Automatic Optimization of Focal Point Position in CO2 Laser Welding with Neural Network in A Focus Control System

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    CO2 lasers are increasingly being utilized for quality welding in production. Considering the high cost of equipment, the start-up time and the set-up time should be minimized. Ideally the parameters should be set up and optimized more or less automatically. In this paper a control system...... is designed and built to automatically optimize the focal point position, one of the most important parameters in CO2 laser welding, in order to perform a desired deep/full penetration welding. The control system mainly consists of a multi-axis motion controller - PMAC, a light sensor - Photo Diode, a data...

  16. Requirements to gap widths and clamping for CO2 laser butt welding

    DEFF Research Database (Denmark)

    Gong, Hui; Juhl, Thomas Winther

    1999-01-01

    In the experimental study of fixturing and gap width requirements a clamping device for laser butt welding of steel sheets has been developed and tested. It has fulfilled the work and made the gap width experiments possible.It has shown that the maximum allowable gap width to some extent...... is inversely related to the welding speed. Also larger laser power leads to bigger allowable gap widths. The focal point position, though, has little influence on the maximum allowable gap width.During analysis X-ray photos show no interior porosity in the weld seam. Other methods have been applied to measure...... responses from variations in welding parameters.The table below lists the results of the study, showing the maximum allowable gap widths and some corresponding welding parameters.Maximum allowable Gap Width; Welding Speed; Laser Power:0.10 mm2 m/min2, 2.6 kW0.15 mm1 m/min2 kW0.20 mm1 m/min2.6 kW0.30 mm0.5 m...

  17. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  18. Temporal characterization of plasma cw high-power CO2 laser-matter interaction: contribution to the welding process control

    Science.gov (United States)

    Engel, Thierry; Kane, M.; Fontaine, Joel

    1997-08-01

    During high-power laser welding, gas ionization occurs above the sample. The resulting plasma ignition threshold is related to ionization potential of metallic vapors from the sample, and shielding gases used in the process. In this work, we have characterized the temporal behavior of the radiation emitted by the plasma during laser welding in order to relate the observed signals to the process parameters.

  19. CO2 laser development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research and development programs on high-energy, short-pulse CO 2 lasers were begun at LASL in 1969. Three large systems are now either operating or are being installed. The Single-Beam System (SBS), a four-stage prototype, was designed in 1971 and has been in operation since 1973 with an output energy of 250 J in a 1-ns pulse with an on-target intensity of 3.5 x 10 14 W/cm 2 . The Dual-Beam System (DBS), now in the final stages of electrical and optical checkout, will provide about ten times more power for two-beam target irradiation experiments. Four such dual-beam modules are being installed in the Laser-Fusion Laboratory to provide an Eight-Beam System (EBS) scheduled for operation at the 5- to 10-TW level in 1977. A fourth system, a 100- to 200-TW CO 2 laser, is being designed for the High-Energy Gas Laser Facility (HEGLF) program

  20. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    Science.gov (United States)

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded

  1. CO2 Laser Market

    Science.gov (United States)

    Simonsson, Samuel

    1989-03-01

    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  2. An analysis of the shielding gas flow from a coaxial conical nozzle during high power CO2 laser welding

    International Nuclear Information System (INIS)

    Ancona, Antonio; Sibillano, Teresa; Lugara, Pietro Mario; Gonnella, Giuseppe; Pascazio, Giuseppe; Maffione, Donato

    2006-01-01

    An experimental and theoretical study on the role of the nitrogen gas stream, exiting from a conventional conical nozzle tip during a laser welding process, has been carried out. A mathematical model has been used, based on the Navier-Stokes equations which express fundamental conservation laws of mass, momentum and energy for a compressible fluid. Numerical simulations of the gas stream colliding onto a plane surface have been performed showing the effects of variations of inlet gas pressure, nozzle exit diameter and standoff distance on the density and Mach number contours, axis pressure of the gas jet and plate pressure produced on the workpiece surface. Laser welding experiments have been performed on carbon and stainless steel specimens, by varying the process parameters in the same range as in the simulations and keeping constant the incident power and the travel speed. Two different gas stream regimes were found, namely sonic and subsonic, which were experimentally verified to produce cutting and welding conditions, respectively. Weld performances have been evaluated in terms of bead width, penetration depth and melted area. Nozzle standoff distance was found to have a negligible influence, while the exit diameter and the flow rate significantly affect the weld results. The numerical predictions allowed an explanation of the experimental results yielding useful suggestions for enhancing the weld quality, acting simply on the shielding gas parameters

  3. Recent developments in CO2 lasers

    Science.gov (United States)

    Du, Keming

    1993-05-01

    CO2 lasers have been used in industry mainly for such things as cutting, welding, and surface processing. To conduct a broad spectrum of high-speed and high-quality applications, most of the developments in industrial CO2 lasers at the ILT are aimed at increasing the output power, optimizing the beam quality, and reducing the production costs. Most of the commercial CO2 lasers above 5 kW are transverse-flow systems using dc excitation. The applications of these lasers are limited due to the lower beam quality, the poor point stability, and the lower modulation frequency. To overcome the problems we developed a fast axial- flow CO2 laser using rf excitation with an output of 13 kW. In section 2 some of the results are discussed concerning the gas flow, the discharge, the resonator design, optical effects of active medium, the aerodynamic window, and the modulation of the output power. The first CO2 lasers ever built are diffusion-cooled systems with conventional dc excited cylindrical discharge tubes surrounded by cooling jackets. The output power per unit length is limited to 50 W/m by those lasers with cylindrical tubes. In the past few years considerable increases in the output power were achieved, using new mechanical geometries, excitation- techniques, and resonator designs. This progress in diffusion-cooled CO2 lasers is presented in section 3.

  4. Aplicación del rayo láser de CO2 para soldar laminas de acero bajo carbono // Application of the ray laser of CO2 to weld sheets of steel low carbon

    Directory of Open Access Journals (Sweden)

    Enrique J. Martínez D

    1999-07-01

    Full Text Available Debido a que el rayo láser enfocado es un modo de energía calorífico de alta densidad y de diámetro pequeño, se logra con ello unaalta relación profundidad / ancho del cordón de soldadura, y se facilita el proceso de soldadura de láminas muy delgadas, lo cualdifícilmente se logra con los procesos comunes de soldadura. Esta técnica también presenta la ventaja de que fácilmente se puedeautomatizar, produciendo soldaduras de alta precisión con baja contaminación.El trabajo consiste en realizar una investigación sobre el proceso de soldadura de láminas delgadas utilizando un láser de CO2 de bajapotencia en modo continuo, enfocando el láser con una lente de ZnSe y empleando argón industrial para controlar la atmósferaalrededor de la región tratada y evitar la oxidación. Para realizar el proceso, se diseño un dispositivo para' desplazar la muestra a 45ocon respecto a la trayectoria del rayo láser en forma precisa; la soldadura se realizó a tope y sin aporte de material.El trabajo se realizó sobre láminas de acero de bajo carbón de calibre 24 y 26. Las muestras soldadas fueron sometidas a: ensayo detracción, análisis visual, análisis metalográfico y pruebas de microdureza. Los resultados obtenidos muestran que se puede realizarfácilmente el proceso, mediante el control de las variables más importantes, de tal manera que una vez establecidas, el operador nonecesita una gran experiencia en el manejo de esta técnica para realizar el proceso con alta calidad. Los análisis realizados confirmanque mediante esta técnica es posible obtener cordones de soldadura uniformes, con buenas propiedades mecánicas.Palabras claves: Soldadura, láser._______________________________________________________________________________AbstractBecause the ray focused laser is a heating energy way of high density and of small diameter, it is achieved with it a high relationshipdepth / wide of the welding cord, and the process of welding of

  5. CO2 laser cutting

    CERN Document Server

    Powell, John

    1998-01-01

    The laser has given manufacturing industry a new tool. When the laser beam is focused it can generate one of the world's most intense energy sources, more intense than flames and arcs, though similar to an electron beam. In fact the intensity is such that it can vaporise most known materials. The laser material processing industry has been growing swiftly as the quality, speed and new manufacturing possibilities become better understood. In the fore of these new technologies is the process of laser cutting. Laser cutting leads because it is a direct process substitu­ tion and the laser can usually do the job with greater flexibility, speed and quality than its competitors. However, to achieve these high speeds with high quality con­ siderable know how and experience is required. This information is usually carefully guarded by the businesses concerned and has to be gained by hard experience and technical understanding. Yet in this book John Powell explains in lucid and almost non­ technical language many o...

  6. CO2 laser-aided waste incineration

    International Nuclear Information System (INIS)

    Costes, J.R.; Guiberteau, P.; Caminat, P.; Bournot, P.

    1994-01-01

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg -h-1 using a 7 kW CO 2 laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs

  7. CO2 electric discharge lasers - Present status and future applications

    International Nuclear Information System (INIS)

    Reilly, J.P.

    1979-01-01

    CO 2 electric discharge lasers (EDLs) have proven themselves to be efficient sources of high-power high-quality laser energy. The paper outlines applications of high-power CO 2 EDLs, applications which are now becoming commercially viable, as well as those which are still being investigated in research laboratories. Applications of CO 2 lasers are discussed relative to industrial applications (laser welding, laser surface hardening, heat treatment, and surface chemistry modification by laser alloying and laser glazing), laser radar applications, laser-induced fusion, and laser propulsion. Attention is given to requirements of applications versus status of technology. Examples are given of the engineering solutions used to address the technology issues identified by particular laser applications

  8. Laser welding closed-loop power control

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....

  9. Laser welding of tailored blanks

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.; Olsen, F.O.

    1998-01-01

    Laser welding has an increasing role in the automotive industry, namely on the sub-assemblies manufacturing. Several sheet-shape parts are laser welded, on a dissimilar combination of thicknesses and materials, and are afterwards formed (stamped) being transformed in a vehicle body component. In this paper low carbon CO 2 laser welding, on the thicknesses of 1,25 and 0.75 mm, formability investigation is described. There will be a description of how the laser welded blanks behave in different forming tests, and the influence of misalignment and undercut on the formability. The quality is evaluated by measuring the limit strain and limit effective strain for the laser welded sheets and the base material, which will be presented in a forming limit diagram. (Author) 14 refs

  10. Trend of CO2 laser cutting; Saikin no CO2 laser setsudan

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T.; Sano, Y.; Nagahori, M. [Tanaka Engineering Works Ltd., Saitama (Japan)

    1998-08-01

    This paper describes CO2 laser cutting of medium thick plates. Carbon dioxide laser is mainly used for laser generators. The generation efficiency of CO2 laser is 5 to 15% which is higher than that of the other lasers. Ninety percent of the usage is for cutting, piercing and welding. Laser cutter having a separated generator with a power from 3 to 6 kW is often used for cutting medium thick plates. The recent trend of new cutting technology is introduced. When power is increased from 3 kW to 6 kW without using oxygen as assist gas, the cutting thickness of stainless steel plate increased into 1.5 times, and the cutting speed increased into 1.5 to 2 times. For the soft steel members with black coating in which the power-up effects have not been obtained, the cutting speed, quality of cutting surface and cutting stability were improved by introducing new technology. Piercing time has been reduced by developing a method by which pulse generation is changed during piercing and a method by which piercing is conducted by irradiating the maximum power of continuous generation. Cutting quality with high accuracy has been realized by developing light weight generator and high performance NC unit. 10 figs.

  11. Emerging terawatt picosecond CO2 laser technology

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-09-01

    The first terawatt picosecond (TWps) CO 2 laser is under construction at the BNL Accelerator Test Facility (ATF). TWps-CO 2 lasers, having an order of magnitude longer wavelength than the well-known table-top terawatt solid state lasers, offer new opportunities for strong-field physics research. For laser wakefield accelerators (LWFA) the advantage of the new class of lasers is due to a gain of two orders of magnitude in the ponderomotive potential. The large average power of CO 2 lasers is important for the generation of hard radiation through Compton back-scattering of the laser off energetic electron beams. The authors discuss applications of TWps-CO 2 lasers for LWFA modules of a tentative electron-positron collider, for γ-γ (or γ-lepton) colliders, for a possible table-top source of high-intensity x-rays and gamma rays, and the generation of polarized positron beams

  12. High-powered CO2 -lasers and noise control

    Science.gov (United States)

    Honkasalo, Antero; Kuronen, Juhani

    High-power CO2 -lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future, different kinds of surface treatments will also become routine practice with laser units. The industries benefitting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Metal processing lasers are interesting from the point of view of noise control because the working tool is a laser beam. It is reasonable to suppose that the use of such laser beams will lead to lower noise levels than those connected with traditional metal processing methods and equipment. In the following presentation, the noise levels and possible noise-control problems attached to the use of high-powered CO2 -lasers are studied.

  13. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma......, or metal inactive gas/metal active gas.This is followed by reports of how the many process parameters governing the hybrid welding process can be set and how the choice of secondary energy source, shielding gas, etc. can affect the overall welding process....

  14. Material Processing with High Power CO2-Lasers

    Science.gov (United States)

    Bakowsky, Lothar

    1986-10-01

    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  15. ARTICLES: Physical laws governing the interaction of pulse-periodic CO2 laser radiation with metals

    Science.gov (United States)

    Vedenov, A. A.; Gladush, G. G.; Drobyazko, S. V.; Pavlovich, Yu V.; Senatorov, Yu M.

    1985-01-01

    It is shown theoretically and experimentally that the efficiency of welding metals with a pulse-periodic CO2 laser beam of low duty ratio, at low velocities, can exceed that of welding with cw lasers and with electron beams. For the first time an investigation was made of the influence of the laser radiation parameters (energy and frequency) and of the welding velocity on the characteristics of the weld and on the shape of the weldpool. The influence of the laser radiation polarization on the efficiency of deep penetration was analyzed.

  16. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1996-01-01

    In this paper, some research and develop-ment activities within pulsed laser welding technology at the Tech-nical University of Denmark will be described. The laser group at the Insti-tute for Manufacturing Technology has nearly 20 years of experience in laser materials process-ing. Inter......-nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...... activities concerning the weldability of high alloyed austenitic stainless steels for mass production industry applying industrial lasers for fine welding will be described. Studies on hot cracking sensitivity of high alloyed austenitic stainless steel applying both ND-YAG-lasers and CO2-lasers has been...

  17. Cutting weeds with a CO2 laser

    DEFF Research Database (Denmark)

    Heisel, T.; Schou, Jørgen; Christensen, S.

    2001-01-01

    Stems of Chenopodium album. and Sinapis arvensis. and leaves of Lolium perenne. were cut with a CO2 laser or with a pair of scissors. Treatments were carried out on greenhouse-grown pot plants at three different growth stages and at two heights. Plant dry matter was measured 2 to 5 weeks after...... treatment. The relationship between dry weight and laser energy was analysed using a non-linear dose-response regression model. The regression parameters differed significantly between the weed species. At all growth stages and heights S. arvensis was more difficult to cut with a CO2 laser than C. album....... When stems were cut below the meristems, 0.9 and 2.3 J mm(-1) of CO2 laser energy dose was sufficient to reduce by 90% the biomass of C. album and S. arvensis respectively. Regrowth appeared when dicotyledonous plant stems were cut above meristems, indicating that it is important to cut close...

  18. Cladding using a 15 kW CO2 laser

    International Nuclear Information System (INIS)

    Vesely, E.J.; Verma, S.K.

    1989-01-01

    Laser alloying or cladding differs little in principle from the traditional forms of weld overlays, but lasers as a heat source offer some distinct advantages. With the selective heating attainable using high power lasers, good metallurgical bond of the clad layer, minimal dilution and typically, a very fine homogeneous microstructure can be obtained in the clad layer. This is a review of work in laser cladding using the 15 kW CO 2 laser. The authors discuss the ability of the laser clad surface to increase the high temperature oxidation resistance of a low-alloy carbon steel (4140). Examples of clads subjected to high- temperature thermal cycling of nickel-20% aluminum and TaC + 4140 clad low-alloy steel and straight high-temperature oxidation of Stellite 6-304L cladding on a 4140 substrate are given

  19. Comparison of CO2 and Nd:YAG laser welding of grade 250 maraging steel, IIW doc. II-A-173-06

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2006-11-01

    Full Text Available are the SEM images of the single spot (SS/6), twin spot (TS/4) and pulsed YAG (PY) butt welds after PWHT. More reverted austenite was observed in the twin spot weld compared to the single spot and pulsed Nd:YAG welds. EDS (energy dispersive spectroscopy... line, c) TS/4 near fusion line, d) TS/4 weld centre line, e) PY near fusion line, f) PY weld centre line EDS line scans were performed in the unetched condition. Areas were observed that was enriched in Mo and Ti. Etched samples were analysed...

  20. Stereotactic CO2 laser therapy for hydrocephalus

    Science.gov (United States)

    Kozodoy-Pins, Rebecca L.; Harrington, James A.; Zazanis, George A.; Nosko, Michael G.; Lehman, Richard M.

    1994-05-01

    A new fiber-optic delivery system for CO2 radiation has been used to successfully treat non-communicating hydrocephalus. This system consists of a hollow sapphire waveguide employed in the lumen of a stereotactically-guided neuroendoscope. CO2 gas flows through the bore of the hollow waveguide, creating a path for the laser beam through the cerebrospinal fluid (CSF). This delivery system has the advantages of both visualization and guided CO2 laser radiation without the same 4.3 mm diameter scope. Several patients with hydrocephalus were treated with this new system. The laser was used to create a passage in the floor of the ventricle to allow the flow of CSF from the ventricles to the sub-arachnoid space. Initial postoperative results demonstrated a relief of the clinical symptoms. Long-term results will indicate if this type of therapy will be superior to the use of implanted silicone shunts. Since CO2 laser radiation at 10.6 micrometers is strongly absorbed by the water in tissue and CSF, damage to tissue surrounding the lesion with each laser pulse is limited. The accuracy and safety of this technique may prove it to be an advantageous therapy for obstructive hydrocephalus.

  1. Development of longitudinally excited CO2 laser

    Science.gov (United States)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  2. Generation rate of carbon monoxide from CO2 arc welding.

    Science.gov (United States)

    Ojima, Jun

    2013-01-01

    CO poisoning has been a serious industrial hazard in Japanese workplaces. Although incomplete combustion is the major cause of CO generation, there is a risk of CO poisoning during some welding operations. The aim of the present study was to evaluate the generation rate of CO from CO2 arc welding under controlled laboratory conditions and estimate the ventilation requirements for the prevention of CO poisoning. Bead on plate welding was carried out with an automatic welding robot on a rolled steel base metal under several conditions. The concentration of emitted CO from the welding was measured by a real-time CO monitor in a well-ventilated laboratory that was free from ambient CO contamination. The generation rate of CO was obtained from the three measurements-the flow rate of the welding exhaust gas, CO concentration in the exhaust gas and the arcing time. Then the ventilation requirement to prevent CO poisoning was calculated. The generation rate of CO was found to be 386-883 ml/min with a solid wire and 331-1,293 ml/min with a flux cored wire respectively. It was found that the CO concentration in a room would be maintained theoretically below the OSHA PEL (50 ppm) providing the ventilation rate in the room was 6.6-25.9 m3/min. The actual ventilation requirement was then estimated to be 6.6-259 m3/min considering incomplete mixing. In order to prevent CO poisoning, some countermeasures against gaseous emission as well as welding fumes should be taken eagerly.

  3. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  4. Using Taguchi method to optimize welding pool of dissimilar laser welded components

    OpenAIRE

    Anawa, E.; Olabi, Abdul-Ghani

    2008-01-01

    In the present work CO2 continuous laser welding process was successfully applied and optimized for joining a dissimilar AISI 316 stainless steel and AISI 1009 low carbon steel plates. Laser power, welding speed, and defocusing distance combinations were carefully selected with the objective of producing welded joint with complete penetration, minimum fusion zone size and acceptable welding profile. Fusion zone area and shape of dissimilar austenitic stainless steel with ferritic low carbon s...

  5. Power stabilized CO2 gas transport laser

    International Nuclear Information System (INIS)

    Foster, J.D.; Kirk, R.F.; Moreno, F.E.; Ahmed, S.A.

    1975-01-01

    The output power of a high power (1 kW or more) CO 2 gas transport laser is stabilized by flowing the gas mixture over copper plated baffles in the gas channel during operation of the laser. Several other metals may be used instead of copper, for example, nickel, manganese, palladium, platinum, silver and gold. The presence of copper in the laser gas circuit stabilizes output power by what is believed to be a compensation of the chemical changes in the gas due to the cracking action of the electrical discharge which has the effect of diminishing the capactiy of the carbon dioxide gas mixture to maintain the rated power output of the laser. (U.S.)

  6. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  7. CO2 laser milling of hard tissue

    Science.gov (United States)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  8. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  9. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Kaiman, Michael; Overman, Robert; Glenn, John D.; Tayebati, Parviz

    2012-03-01

    TeraDiode has produced kW-class ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 2,040 W from a 50 μm core diameter, 0.15 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.75 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 2-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers.

  10. Picosecond CO2 laser for relativistic particle acceleration

    International Nuclear Information System (INIS)

    Pogorelsky, I.; Ben-Zvi, I.; Kimura, W.D.; Kurnit, N.A.; Kannari, F.

    1994-01-01

    A table-top 20-GW 50-ps CO 2 laser system is under operation at the Brookhaven Accelerator Test Facility. We compare laser performance with model predictions. Extrapolations suggest the possibility of compact terawatt CO 2 laser systems suitable as laser accelerator drivers and for other strong-field applications. Latest progress on an Inverse Cherenkov Laser Accelerator experiment is reported

  11. Dependence of fracture toughness of molybdenum laser welds on dendritic spacing and in situ titanium additions

    International Nuclear Information System (INIS)

    Jellison, J.L.

    1979-01-01

    The fracture toughness of molybdenum welds has been improved by in situ gettering of oxygen by means of physically deposited titanium. The addition of titanium suppressed brittle intergranular fracture. Pulsed laser welds (both Nd:YAG and CO 2 ) exhibited superior toughness to that of continuous wave CO 2 laser welds. Also, welds of vacuum arc remelted grades were tougher than those of sintered molybdenum. However, weld toughness could not be correlated with either oxygen or carbon content

  12. Development of high-power CO2 lasers and laser material processing

    Science.gov (United States)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  13. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-01-01

    Efficient techniques for rapid tritium removal will be necessary for ITER to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:Yag laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 ms is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  14. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER (International Thermonuclear Experimental Reactor) to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:YAG laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 msec is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  15. Anterior capsulotomy using the CO2 laser

    Science.gov (United States)

    Barak, Adiel; Ma-Naim, Tova; Rosner, Mordechai; Eyal, Ophir; Belkin, Michael

    1998-06-01

    Continuous circular capsulorhexis (CCC) is the preferred technique for removal of the anterior capsule during cataract surgery due to this technique assuring accurate centration of the intraocular lens. During modern cataract surgery, especially with small or foldable intra ocular lenses, centration of the lens is obligatory. Radial tears at the margin of an anterior capsulotomy may be associated with the exit of at least one loop of an intraocular lens out of the capsular bag ('pea pod' effect) and its subsequent decentration. The anterior capsule is more likely to ream intact if the continuous circular capsulorhexis (CCC) technique is used. Although manual capsulorhexis is an ideal anterior capsulectomy technique for adults, many ophthalmologists are still uncomfortable with it and find it difficult to perform, especially in complicated cases such as these done behind small pupil, cataract extraction in children and pseudoexfoliation syndrome. We have developed a technique using a CO2 laser system for safe anterior capsulotomy and tested it in animal eyes.

  16. DF--CO2 transfer laser development

    International Nuclear Information System (INIS)

    Tregay, G.W.; Drexhage, M.G.; Wood, L.M.; Andrysiak, S.J.

    1975-01-01

    Power extraction and chemiluminescence experiments have been conducted in the large-scale DF-CO 2 transfer chemical laser (TCL) (IRIS-I and IRIS-II) facility at Bell Aerospace Company (BAC). The modular design of the device allowed testing to be conducted with both a supersonic nozzle bank and also in subsonic flow with sonic injection for the deuterium. Power levels of 15 kW at 10.6 μ were obtained in IRIS-I (subsonic) employing an unstable resonator with a 50 percent output coupling ratio and cavity pressure of 35 torr. For IRIS-II (supersonic) somewhat lower power was obtained. In both systems the fluorine dissociation (α = F/F + 2F 2 ) was less than 0.01. Chemiluminescent emission from HF and DF was monitored under zero-power conditions along an axis parallel to the laser-mirror axis. From the measured DF-concentration profiles it can be inferred that vibrationally excited DF is being produced throughout the cavity and, accordingly, the production of DF must be attributed largely to the chain reaction

  17. Gain measurements in CO2 CW low pressure lasers

    International Nuclear Information System (INIS)

    Rodrigues, N.A.S.; Chanes Junior, J.B.; Jayaram, K.

    1983-01-01

    A series of gain measurements in low pressure CO 2 CW laser were performed in order to study the behaviour of a CO 2 laser ampliflier as a function of pressure and discharge current. A theoretical model, based on rate equations is also presented to describe the laser behaviour and the experimental procedure adopted. (C.L.B.) [pt

  18. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  19. CO2 laser technology for advanced particle accelerators

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  20. Present and future of laser welding machine; Laser yosetsuki no genjo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Taniu, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-04-01

    This paper describes recent trends of laser welding machine. For CO2 laser welding machine, seam weld of large diameter weld pipes using a 25 kW-class machine, and plate weld of steel plate using a 45 kW-class machine are reported. For YAG laser welding machine, high-output 5.5 kW-class machines are commercialized. Machines with slab structure of plate-like YAG chrystal have been developed which show high-oscillation efficiency and can be applied to cutting. Machines have been developed in which YAG laser output with slab structure is transmitted through GI fiber. High-speed welding of aluminum alloys can be realized by improving the converging performance. Efficiency of YAG laser can be enhanced through the time-divided utilization by switching the beam transmission path using fiber change-over switch. In the automobile industry, CO2 laser is mainly used, and a system combining CO laser with articulate robot is realized. TIG and MIG welding is often used for welding of aluminum for railway vehicles. It is required to reduce the welding strain. In the iron and steel industry, the productivity has been improved by the laser welding. YAG laser is put into practice for nuclear reactors. 5 refs., 8 figs., 1 tab.

  1. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    weld pool has been evaluated in case of high power CO2 laser beam welding. The ... The experiments based on twin or triple spot interaction geometry have also ... while the other one is between the liquid and the solid states of the metal.

  2. High-speed high-efficiency 500-W cw CO2 laser hermetization of metal frames of microelectronics devices

    Science.gov (United States)

    Levin, Andrey V.

    1996-04-01

    High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.

  3. Mechanical properties of CO2/MIG welded structural rolled steel and stainless steel

    International Nuclear Information System (INIS)

    Lim, Jong Young; Yoon, Myong Jin; Kim, Sang Youn; Kim, Tae Gyu; Shin, Hyeon Seung

    2015-01-01

    To accomplish long-term use of specific parts of steel, welding technology is widely applied. In this study, to compare the efficiency in improving mechanical properties, rolled steel (SS400) was welded with stainless steel (STS304) by both CO 2 welding method and MIG (metal inert gas) welding method, respectively. Multi-tests were conducted on the welded specimen, such as X-ray irradiation, Vickers' Hardness, tensile test, fatigue test and fatigue crack growth test. Based on the fatigue crack growth test performed by two different methods, the relationship of da/dN was analyzed. Although the hardness by the two methods was similar, tensile test and fatigue properties of MIG welded specimen are superior to CO 2 welded one.

  4. Development of high power pulsed CO2 laser

    International Nuclear Information System (INIS)

    Nakai, Sadao; Matoba, Masafumi; Fujita, Hisanori; Daido, Hiroyuki; Inoue, Mitsuo

    1982-01-01

    The inertial nuclear fusion research using pellet implosion has rapidly progressed accompanying laser technique improvement and output increase. As the high output lasers for this purpose, Nd glass lasers or CO 2 lasers are used. The CO 2 lasers possess the characteristics required as reactor lasers, i.e., high efficiency, high frequency repetition, possibility of scale-up and economy. So, the technical development of high power CO 2 lasers assuming also as reactor drivers has been performed at a quick pace together with the research on the improvement of efficiency of pellet implosion by 10 μm laser beam. The Institute of Laser Engineering, Osaka University, stated to build a laser system LEKKO No. 8 of 8 beams and 10 kJ based on the experiences in laser systems LEKKO No. 1 and LEKKO No. 2, and the system LEKKO No. 8 was completed in March, 1981. The operation tests for one year since then has indicated as the laser characteristics that the system performance was as designed initially. This paper reviews the structure, problems and present status of the large scale CO 2 lasers. In other words, the construction of laser system, CO 2 laser proper, oscillator, booster amplifier, prevention of parasitic oscillation, non-linear pulse propagation and fairing of output pulse form, system control and beam alignment, and high power problems are described. The results obtained are to be reported in subsequent issues. (Wakatsuki, Y.)

  5. High power CO2 lasers and their applications in nuclear industry

    International Nuclear Information System (INIS)

    Nath, A.K.

    2002-01-01

    Carbon dioxide laser is one of the most popular lasers in industry for material processing applications. It has very high power capability and high efficiency, can be operated in continuous wave (CW), modulated and pulsed modes, and has relatively low cost. Due to these characteristics high power CO 2 lasers are being used worldwide in different industries for a wide variety of materials processing operations. In nuclear industry, CO 2 laser has made its way in many applications. Some of the tasks performed by multikilowatt CO 2 laser are cutting operations necessary to remove unprocessible hardware from reactor fuel assemblies, sealing/fixing/removing radioactive contaminations onto/from concrete surfaces and surface modification of engineering components for improved surface mechanical and metallurgical characteristics. We have developed various models of CW CO 2 lasers of power up to 12 kW and a high repetitive rate TEA (Transversely Excited Atmospheric pressure) CO 2 laser of 500 W average power operating at 500 Hz repetition rates. We have carried many materials processing applications of direct relevance to DAE. Recent work includes laser welding of end plug PFBR fuel tubes, martensitic stainless steel and titanium alloy, surface cladding of turbine blades made of Ni-super alloy with stellite 694, fabrication on graded material of stainless steel and stellite, and laser scabbling, drilling and cutting of concrete which have potential application in decontamination and decommissioning of nuclear facilities. A brief overview of these indigenous developments will be presented. (author)

  6. Fractional CO2 laser resurfacing for atrophic acne scars

    DEFF Research Database (Denmark)

    Hedelund, Lene; Haak, Christina Skovbølling; Togsverd-Bo, Katrine

    2012-01-01

    The treatment of acne scars with fractional CO(2) lasers is gaining increasing impact, but has so far not been compared side-by-side to untreated control skin.......The treatment of acne scars with fractional CO(2) lasers is gaining increasing impact, but has so far not been compared side-by-side to untreated control skin....

  7. Laser Welding of Sub-assemblies before Forming

    DEFF Research Database (Denmark)

    Rasmussen, Mads; Olsen, Flemmming Ove; Pecas, Paulo

    1996-01-01

    This paper describes some experimental investigations of the formability of CO2-laser-welded 0.75 mm and 1.25 mm low carbon steel. There will be a description of how the laser welded blanks behave in different forming tests, and the influene of misalignment and undercut on the formability....... The quality is evalutated by measuring the imit strain and the limit effective strain for the laser welded sheets and the base material. These strains will be presented in a forming limit diagram (FLD). Finally the formability of the laser sheets is compared to that of the base materials....

  8. Pre-Industry-Optimisation of the Laser Welding Process

    DEFF Research Database (Denmark)

    Gong, Hui

    This dissertation documents the investigations into on-line monitoring the CO2 laser welding process and optimising the process parameters for achieving high quality welds. The requirements for realisation of an on-line control system are, first of all, a clear understanding of the dynamic...... phenomena of the laser welding process including the behaviour of the keyhole and plume, and the correlation between the adjustable process parameters: laser power, welding speed, focal point position, gas parameters etc. and the characteristics describing the quality of the weld: seam depth and width......, porosity etc. Secondly, a reliable monitoring system for sensing the laser-induced plasma and plume emission and detecting weld defects and process parameter deviations from the optimum conditions. Finally, an efficient control system with a fast signal processor and a precise feed-back controller...

  9. Research on industrial 10kW CO2 laser achieves major breakthrough

    Science.gov (United States)

    1991-01-01

    The industrial 10kW CO2 laser is one of the items which the industrially developed nations are competing to develop. This laser is capable of continuous output power of over 10kW and can operate continuously for more than 6 hours. The 10kW CO2 laser developed as a key task of China's 7th Five-Year Plan and all its technological targets such as output power, electrooptical conversion efficiency and primary charging continuous operating time, have reached the level of world advancement, allowing China to enter the ranks of international advancement in the area of laser technology. The industrial 10kW CO2 laser can have wide application in such areas of industry as heat treating, machining, welding and surface treatment in industries such as steel, automobiles, ship building and aircraft manufacturing. For instance, using the high-efficiency laser beams of this 10kW laser to treat rollers, fan blades and automotive cylinder blocks can increase the life of these parts and produce large economic benefits. At present, industrial tests of gear welding is already being done on this 10kW laser.

  10. Longitudinally excited CO2 laser with multiple laser tubes

    Science.gov (United States)

    Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-11-01

    We developed a longitudinally excited CO2 laser system that was constituted of two or three laser tubes and a single driving circuit. The multiple laser tubes simultaneously produced almost the same short laser pulses with a spike pulse width of about 164 ns and a pulse tail length of about 74 μs with a single driving circuit. The double-tube system was constituted of two 30 cm-long laser tubes with inner diameters of 13 mm and 16 mm and a single driving circuit with an input energy of 2.18 J. The output energy of the 13 mm-tube was 23.3 mJ, and that of the 16 mm-tube was 21.9 mJ at a gas pressure of 4.2 kPa (CO2:N2:He = 1:1:2). The triple-tube system was constituted of three 30 cm-long laser tubes with inner diameters of 9 mm, 13 mm, and 16 mm and a single driving circuit with an input energy of 2.18 J. The output energy of the 9 mm tube was 15.9 mJ, that of the 13 mm tube was 24.1 mJ, and that of the 16 mm tube was 19.2 mJ at a gas pressure of 4.2 kPa. With the same driving circuit and the same input energy, the total output energies of the multitube laser systems were higher than the output energy of a single-tube system.

  11. Clinical effects of CO2 laser on equine diseases

    Science.gov (United States)

    Lindholm, Arne; Svensson, Ulf; Collinder, Eje

    2002-10-01

    CO2 lasers has been used for five years at Malaren Equine Hospital, as an alternative treatment of some equine diseases. The application of CO2 laser has been studied for evaluation of its appropriateness for treatment of the equine diseases sarcoids, lameness in fetlock joints or pulmonary haemorrhage. During the last five years, above 100 equine sarcoids have been removed by laser surgery (CO2 laser) and so far resulting in significantly few recurrences compared with results from usual excision surgery. In one study, acute traumatic arthritis in fetlock joints was treated three times every second day with defocalised CO2 laser. The therapeutic effectiveness of CO2 laser in this study was better than that of the customary therapy with betamethasone plus hyaluronan. During one year, chronic pulmonary bleeders, namely exercise induced pulmonary haemorrhage, has been treated with defocalised CO2 laser. Six race horses have been treated once daily during five days. Until now, three of these horses have subsequently been successfully racing and no symptoms of pulmonary haemorrhage have been observed. These studies indicate that CO2 laser might be an appropriate therapy on sarcoids and traumatic arthritis, and probably also on exercise induced pulmonary haemorrhage. Other treatments for this pulmonary disease are few.

  12. Possible applications of powerful pulsed CO2-Lasers in tokamak

    International Nuclear Information System (INIS)

    Nastoyashchii, A.F.; Morozov, I.N.; Hassanein, A.

    1998-01-01

    Applications of powerful pulsed CO 2 -lasers for injection of fuel tablets or creation of a protective screen from the vapor of light elements to protect against the destruction of plasma-facing components are discussed, and the corresponding laser parameters are determined. The possibility of using CO 2 -lasers in modelling the phenomena of powerful and energetic plasma fluxes interaction with a wall, as in the case of a plasma disruption, is considered. (author)

  13. Development of automatic laser welding system

    International Nuclear Information System (INIS)

    Ohwaki, Katsura

    2002-01-01

    Laser are a new production tool for high speed and low distortion welding and applications to automatic welding lines are increasing. IHI has long experience of laser processing for the preservation of nuclear power plants, welding of airplane engines and so on. Moreover, YAG laser oscillators and various kinds of hardware have been developed for laser welding and automation. Combining these welding technologies and laser hardware technologies produce the automatic laser welding system. In this paper, the component technologies are described, including combined optics intended to improve welding stability, laser oscillators, monitoring system, seam tracking system and so on. (author)

  14. Comparison of CO2 Laser Cutting with Different Laser Sources

    DEFF Research Database (Denmark)

    Ketting, Hans-Ole; Olsen, Flemmming Ove

    1996-01-01

    This paper contains CO2 laser cutting results in mild and stainless steel with different laser sources. The main factors which affect the cutting speed and quality are the power, the cutting gas and focal point conditions. Keeping the power and cutting gas constant, the focal point conditions have...... size,for the maximum cutting speed. One of the 7 laser sources with different focal length and thus different minimum spot size, was then used to investigate more in details the importance of the focal spot size cutting stainless steel with high pressure nitrogen. It looks as if there is a strong...... connection between the smallest avail-able spot size and cutting speed in mild steel, whereas the conditions in stainless steel, depends strongly on the flow conditions in the cut kerf, and not only on the focal spot size....

  15. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  16. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  17. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  18. Laser welding of Ti-Ni type shape memory alloy

    International Nuclear Information System (INIS)

    Hirose, Akio; Araki, Takao; Uchihara, Masato; Honda, Keizoh; Kondoh, Mitsuaki.

    1990-01-01

    The present study was undertaken to apply the laser welding to the joining of a shape memory alloy. Butt welding of a Ti-Ni type shape memory alloy was performed using 10 kW CO 2 laser. The laser welded specimens showed successfully the shape memory effect and super elasticity. These properties were approximately identical with those of the base metal. The change in super elasticity of the welded specimen during tension cycling was investigated. Significant changes in stress-strain curves and residual strain were not observed in the laser welded specimen after the 50-time cyclic test. The weld metal exhibited the celler dendrite. It was revealed by electron diffraction analysis that the phase of the weld metal was the TiNi phase of B2 structure which is the same as the parent phase of base metal and oxide inclusions crystallized at the dendrite boundary. However, oxygen contamination in the weld metal by laser welding did not occur because there was almost no difference in oxygen content between the base metal and the weld metal. The transformation temperatures of the weld metal were almost the same as those of the base metal. From these results, laser welding is applicable to the joining of the Ti-Ni type shape memory alloy. As the application of laser welding to new shape memory devices, the multiplex shape memory device of welded Ti-50.5 at % Ni and Ti-51.0 at % Ni was produced. The device showed two-stage shape memory effects due to the difference in transformation temperature between the two shape memory alloys. (author)

  19. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...... video pictures (400 Hz), a clear impact on the seam characteristics has been identified when a hump occurs.Finally, a clear correlation between the position of the focus point, the resultant process type and the corresponding signal intensity and signal variation has been found for sheets welded...

  20. Metals welding by using laser

    International Nuclear Information System (INIS)

    Al-Qaisy, R.A.W.

    1991-01-01

    In the present work, same welding ''conduction limited type'' under atmospheric conditions was performed using pulsed Ng:YAG laser to weld; low carbon steel (LCS), stainless steel (304) (SUS304), stainless steel (303) (SUS303), and brass. Microstructure of welded zone, heat affected zone (HAZ), and the laser energy on penetration depth and effective diameter were studied. Tensile test, micro-hardness, and surface roughness of welded and parent metals were also dealt with. Melting efficiency was worked out and an under vacuum seam welding of low carbon steel has been accomplished. Finally spot welding of aluminium tungsten, and platinium wires were employed using different layer energies. 34 tabs.; 82 figs.; 51 refs.; 1 app

  1. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Knag , Heeshin

    2017-01-01

    International audience; In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plat...

  2. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Heeshin Knag

    2016-01-01

    In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plate coated with zinc were ...

  3. CO2 laser technology for advanced particle accelerators. Revision

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage distance, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  4. METHOD AND SYSTEM FOR LASER WELDING

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  5. CO2 laser photolysis of clustered ions, (1)

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Soga, Takeshi; Suzuki, Kazuya; Ohno, Shin-ichi.

    1990-09-01

    Vibrational excitation and the following decomposition of cluster ions by CO 2 laser photons are studied. Characteristics of the cluster ion and the CO 2 laser photon are summarized in their relation to the photolysis of cluster ions. An apparatus was installed, which is composed of (1) corona discharge-jet expansion section (formation of cluster ions), (2) CO 2 laser section (photolysis of cluster ions), and (3) mass spectrometer section. Experimental results of ammonia cluster ions were described. Effects of repeller voltage, shape of repellers, and adiabatic cooling are examined on the formation of ammonia cluster ions by corona discharge-jet expansion method. Collisional dissociation of cluster ions was observed at high repeller voltages. Size distribution of the ammonia cluster ion is discussed in connection with the temperature of cluster ions. Intensity of CO 2 laser was related to decomposition yield of cluster ions. (author)

  6. 367 cases of CO2 laser therapy on facial acne

    Science.gov (United States)

    Gao, Yunqing; Liu, Songhao; Zhang, You; Liu, T. C.

    1996-09-01

    Since 1989, we have cured 367 persons of facial acne of different course by using direct irradiation of high-power CO2 laser combing with operative therapy of low-power CO2 laser. The cure rate is 100 percent. In this paper, we stated the therapeutic approach. It was shown that this therapeutic approach is simple and effective, and its recurrence rate is zero. There are no cicatrices after healing. It is easy to accept it, and is worthy of extension.

  7. Investigation into CO2 laser cleaning of titanium alloys for gas-turbine component manufacture

    International Nuclear Information System (INIS)

    Turner, M.W.; Crouse, P.L.; Li, L; Smith, A.J.E.

    2006-01-01

    This paper reports results of the investigation into the feasibility of using a CO 2 laser technology to perform critical cleaning of gas-turbine aero-engine components for manufacture. It reports the results of recent trials and relates these to a thermal model of the cleaning mechanisms, and describes resultant component integrity. The paper defines the experimental conditions for the laser cleaning of various aerospace-grade contaminated titanium alloys, using a continuous wave CO 2 laser. Laser cleaning of Ti64 proved successful for electron beam welding, but not for the more sensitive Ti6246. For diffusion bonding the trials produced a defective standard of joint. Effects of oxide formation is modelled and examined experimentally

  8. Development of laser welding techniques for vanadium alloys

    International Nuclear Information System (INIS)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-01-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO 2 laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m 3 /s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to ∼180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000 degrees C for 1 h in vacuum reduced the DBTT to <-25 degrees C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study

  9. Controlling chaotic behavior in CO2 and other lasers

    Science.gov (United States)

    1993-06-01

    Additional substantial experimental progress has been made, in the third month of the project, in setting up equipment and testing for producing chaotic behavior with a CO2 laser. The project goal is to synchronize and control chaos in CO2 and other lasers, and thereby increase the power in ensembles of coupled laser sources. Numerous investigations into the chaos regime have been made, a second CO2 laser has been brought on stream, and work is progressing in the fourth month toward coupling the two lasers and control of the first laser. It is also intended to submit at least two papers to the Second Experimental Chaos Conference which is supported by the Office of Naval Research. Abstracts to those two papers are attached. Last month's report discussed the experimental investigation of nonlinear dynamics of CO2 lasers which involved a new technique of inducing chaos. In this new technique, an acoustically modulated feedback of the laser light was used and led to chaotic dynamics at a very low modulation frequency of 375 Hz. Since then, new results have been obtained by an Electro-Optical Modulation (EOM) technique. In the new setup, the electro-optical modulator is placed in an external cavity outside the laser.

  10. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  11. Modeling CO2 Laser Ablative Impulse with Polymers

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-01-01

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO 2 laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO 2 laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  12. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  13. Helios, a 20 TW CO2 laser fusion facility

    International Nuclear Information System (INIS)

    Ladish, J.S.

    1979-01-01

    Since June 1978 the Los Alamos Scientific Laboratory's Helios CO 2 laser fusion facility has been committed to an experimental target program to investigate the feasibility of laser produced inertial confinement fusion. This system is briefly described, and preliminary experimental results are reported

  14. Influence of acoustic waves on TEA CO2 laser performance

    CSIR Research Space (South Africa)

    Von Bergmann, H

    2007-01-01

    Full Text Available In this paper the author’s present results on the influence of acoustic waves on the output laser beam from high repetition rate TEA CO2 lasers. The authors show that acoustic waves generated inside the cavity lead to deterioration in beam quality...

  15. Efficient TEA CO2 laser based coating removal system

    CSIR Research Space (South Africa)

    Prinsloo, FJ

    2007-04-01

    Full Text Available stream_source_info Prinsloo_2007.pdf.txt stream_content_type text/plain stream_size 11617 Content-Encoding UTF-8 stream_name Prinsloo_2007.pdf.txt Content-Type text/plain; charset=UTF-8 Efficient TEA CO2 laser based... by keeping energy density below the damage threshold. The advantage of a pulsed TEA CO2 laser system is that a laser frequency and temporal profile can be chosen to maximize paint removal and concurrently minimize substrate damage. To achieve...

  16. CO 2 lasers to destroy defiance of nanobacteria

    Directory of Open Access Journals (Sweden)

    Jafar Kolahi

    2015-01-01

    Full Text Available Introduction: Nanobacteria are mysterious particles that have spurred one of the biggest controversies in modern microbiology. The apatite mineral around the nanobacteria serves as a primary defense shield against various chemicals and extremely harsh condition. It is combined with a very slow metabolism of nanobacteria. These two items would be the likely explanation for the sever resistance of nanobacteria. The Hypothesis: The CO 2 laser is a continuous wave gas laser and emits infrared light at 9,600-10,600 nm in an easily manipulated focused beam that is well absorbed by water and hydroxyapatite. Hence, it seems logical to postulate that CO 2 laser can be used successfully to destroy defensive external hydroxyapatite layer of nanobacteria. Evaluation of the Hypothesis: Main criticism with this hypothesis is differential radiation of nanobacteria. It is well known that CO 2 laser has high water absorption and consequently can cause unwanted damage to human host tissues.

  17. A comparison of CO2 laser versus traditional stapedectomy outcomes.

    LENUS (Irish Health Repository)

    Ryan, S

    2012-02-01

    The aim of this study was to audit the introduction of the use of the CO2 laser into our department and to compare hearing outcomes and complication rates in patients who underwent either laser or mechanical stapedectomy. We found that the use of laser is at least as safe as the traditional approach with regards the rate of post-operative complications. One patient in the laser group suffered prolonged post-operative tinnitus, whilst one patient in the traditional group suffered prolonged post-operative vertigo. There was no evidence, however, of improved Air-Bone Gap closure compared to the traditional approach (Pre- and Post-Op Air Bone Gaps of 34 +\\/- 3 and 9 +\\/- 2 for laser stapedectomy versus 35 +\\/- 4 and 13 +\\/- 2 for traditional stapedectomy (mean +\\/- SEM)). In summary, therefore, CO2 laser surgery for otosclerosis is a safe surgical procedure resulting in similar hearing outcomes to that obtained following mechanical stapes surgery.

  18. Influence of laser-target interaction on the polarization of a CO2-laser

    International Nuclear Information System (INIS)

    Du, K.; Herziger, G.; Loosen, P.; Seelig, W.

    1988-01-01

    Laser materials processing shows a special peculiarity compared to other customary techniques: the generally reflecting target introduces optical feedback into the system. This feedback changes the mode properties of the laser radiation according to the targets dynamics. The authors report on one of these aspects of laser-target interaction resulting in the change of the polarization of the incident light. Based of rate equations, a theoretical model is presented in this paper that allows the calculation of this change with respect of the target properties, yielding a simple relation for the two orthogonal planes of polarization of a laser mode. This relation turns out to be linearly dependent of a function ψ (t) which describes the optical feedback. The relation holds for target reflexions of up to 10% and four times larger than τ 2 x τ 2 /τ 1 - τ 2 (where τ 1 , τ 2 are the time constants of the passive resonator for the two orthogonal planes of polarization). The model offers a method for the modulation for the modulation of laser radiation without change of frequency or intensity. It might also be of interest for high-power CO 2 laser cutting and welding of metals

  19. Precision beam splitters for CO2 lasers

    International Nuclear Information System (INIS)

    Franzen, D.L.

    1975-01-01

    Beam splitters for 10-μm lasers are discussed and then applied to the precision measurement of high average powers. In particular, beam splitter stability has been investigated in various materials over the 20--600-W power range with power densities up to 1 kW/cm 2 . The absolute beam splitter ratios are given along with the achieved measurement precisions. The semiconductors investigated were GaAs, CdTe, and ZnSe in addition to one alkali-halide KC1. Standard deviations for the beam splitter ratios of 1% over the power range were typical. Absolute ratios agree with the predictions from Fresnel's equations to 1% or better. The best measurement was made on ZnSe when a standard deviation of 0.4% was obtained for the measurement of a ratio that agreed with a calculation from Fresnel's equations to better than 0.5%

  20. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    OpenAIRE

    Pasquale Russo Spena

    2017-01-01

    This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests wer...

  1. Single mode operation of a TEA CO2 laser

    International Nuclear Information System (INIS)

    Wada, Kazuhiro; Tunawaki, Yoshiaki; Yamanaka, Masanobu.

    1993-01-01

    Single mode operation of a TEA CO 2 laser was performed by using an optical system of Fox-Smith type. Laser beam was taken out from the cavity by using a beam splitter, and was reflected by a mirror back to the cavity. By inserting a Fabry-Perot etalon between the splitter and the mirror, beat of laser pulses can be removed completly. (author)

  2. Investigation of scleral buckling by CO2 laser

    International Nuclear Information System (INIS)

    Maswadi, S.

    2001-05-01

    This thesis investigates the effect of using the infrared wavelength CO 2 laser (10.6μm) as a localised heat source for inducing scleral buckling on eyes. Retinal detachment disease is a major cause of blindness and the scleral buckling is an important technique used in treatment. A radio-frequency excited 10.6λm laser source is used to heat collagen in the sclera above its shrinkage temperature so as to produce a localised indentation and deformation in the human eye (in vitro). Basic measurements of the onset shrinkage temperatures of porcine and human sclera are taken. Optical properties of sclera tissue at 10.6μm are also determined to provide information about the interaction of the CO 2 laser with the sclera. It is found that CO 2 laser radiation is highly absorbed by the scleral water. Optical diffraction technique is investigated to quantify in-plane deformation in the sclera tissue as result of heating by producing grating on porcine and human sclera using the ArF laser (193nm). Photothermal deflection technique is also used to investigate scleral ablation by using the TEA and Ultrapulse CO 2 laser. This technique provides a useful guide to the regime where ablation rather than heat shrinkage of collagen in the sclera will dominate using the Ultrapulse CO 2 laser. A quantitative assessment of buckling using the technique of projection moire interferometry is described which allows a non-contact measurement to be made of the out-of-plane displacement by laser radiation. In-plane surface strain (shrinkage) has also been demonstrated using in-situ optical microscopy of the laser treated eye. The moire method is suitable to obtain information on buckling in real time and to obtain a three-dimensional view of the eye surface as laser treatment proceeds. A theoretical heat flow model is described for predicting the temperature profile produced in the sclera using the Ultrapulse CO 2 laser. For appropriate exposure parameters the CO 2 laser is found to be an

  3. Laser welding of aluminium alloys

    OpenAIRE

    Forsman, Tomas

    2000-01-01

    This thesis treats laser welding of aluminium alloys from a practical perspective with elements of mathematical analysis. The theoretical work has in all cases been verified experimentally. The aluminium alloys studied are from the 5xxx and 6xxx groups which are common for example in the automotive industry. Aluminium has many unique physical properties. The properties which more than others have been shown to influence the welding process is its high reflection, high thermal conductivity, lo...

  4. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  5. Fusion welding studies using laser on Ti-SS dissimilar combination

    Science.gov (United States)

    Shanmugarajan, B.; Padmanabham, G.

    2012-11-01

    Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.

  6. Pulsed photothermal radiometry in investigation of tissue destruction caused by CO2 laser action

    Science.gov (United States)

    Chebotareva, Galina P.; Zubov, Boris V.; Nikitin, Alexander P.; Rakcheev, Anatolii P.; Alexeeva, Larisa R.

    1994-12-01

    Pulsed photothermal radiometry (PPTR) of tissue based on the analysis of thermal radiation kinetics measured from tissue at laser heating is an effective method of laser-tissue interaction investigation. The processes of destruction under laser radiation action (coagulation, fusion and welding), which are characterized by definite dynamics of temperature in the region of laser heating, have been studied. The amplitude and kinetics of the thermal signal registered by PPTR technique depend on space and temporal temperature changes in the zone of heating, which is conditioned by the regime of laser action and internal processes in tissue. In the present study the investigation of thermal tissue destruction under action of high-power pulsed CO2 and YAG:Er-laser radiation has been carried out using PPTR. Soft and hard tissues have been examined. The nonlinear dependencies of thermal emission kinetics, the thermal signal amplitude, and the integral absorption on laser energy density are presented and discussed. We represent PPTR as a technique which can be used for the definition of the destruction threshold and for the regulation of laser action on tissue. PPTR method has been applied in clinics with the aim of more accurate definition of CO2 pulsed medical laser radiation dose for treatment of patients with different dermatological diseases.

  7. Effect of Defocused CO2 Laser on Equine Tissue Perfusion

    Directory of Open Access Journals (Sweden)

    Bergh A

    2006-03-01

    Full Text Available Treatment with defocused CO2 laser can have a therapeutic effect on equine injuries, but the mechanisms involved are unclear. A recent study has shown that laser causes an increase in equine superficial tissue temperature, which may result in an increase in blood perfusion and a stimulating effect on tissue regeneration. However, no studies have described the effects on equine tissue perfusion. The aim of the present study was to investigate the effect of defocused CO2 laser on blood perfusion and to correlate it with temperature in skin and underlying muscle in anaesthetized horses. Differences between clipped and unclipped haircoat were also assessed. Eight horses and two controls received CO2 laser treatment (91 J/cm2 in a randomised order, on a clipped and unclipped area of the hamstring muscles, respectively. The significant increase in clipped skin perfusion and temperature was on average 146.3 ± 33.4 perfusion units (334% and 5.5 ± 1.5°C, respectively. The significant increase in perfusion and temperature in unclipped skin were 80.6 ± 20.4 perfusion units (264% and 4.8 ± 1.4°C. No significant changes were seen in muscle perfusion or temperature. In conclusion, treatment with defocused CO2 laser causes a significant increase in skin perfusion, which is correlated to an increase in skin temperature.

  8. Thin-Sheet zinc-coated and carbon steels laser welding

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.

    1998-01-01

    This paper describes the results of a research on CO 2 laser welding of thin-sheet carbon steels (Zinc-coated and uncoated), at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignment, and zinc-coated laser welding defects like porous and zinc ventilation. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion test. (Author) 8 refs

  9. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  10. Laser welding of tailored blanks

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available Laser welding has an incrising role in the automotive industry, namely on the sub-assemblies manufacturing. Several sheet-shape parts are laser welded, on a dissimilar combination of thicknesses and materials, and are afterwards formed (stamped being transformed in a vehicle body component. In this paper low carbon CO2 laser welding, on the thicknesses of 1,25 and 0,75 mm, formability investigation is described. There will be a description of how the laser welded blanks behave in different forming tests, and the influence of misalignment and undercut on the formibility. The quality is evaluated by measuring the limit strain and limit effective strain for the laser welded sheets and the base material, which will be presented in a forming limit diagram.

    A soldadura laser assume um papel cada vez mais importante na indústria automóvel, principalmente para a fabricação de sub-conjuntos constituídos por varias partes de chapa de diferentes espessuras (e diferentes materiais, que depois de estampados constituem um componente para integrar num veículo. Descreve-se neste artigo o trabalho de investigação de enformabilidade de chapa de ac.o de baixo carbono soldada por laser de CO2, nas espessuras de 1,25 e 0,75 mm. Apresenta-se uma descrição do comportamento das chapas soldadas por laser em diferentes testes de enformação, e a influência dos defeitos das soldaduras (desalinhamento e queda do banho-undercut no comportamento à enformação. A qualidade é avaliada pela medição da extensão limite e da extensão limite efectiva no material base e no material soldado, que serão representadas num diagrama de limite de enformabilidade.

  11. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing

    Directory of Open Access Journals (Sweden)

    A. Suzuki

    2013-06-01

    Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.

  12. CO 2 laser photoacoustic spectra and vibrational modes of heroin ...

    Indian Academy of Sciences (India)

    Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 m and 10.6 m regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with conventional low ...

  13. Hologaphy of a CO2 laser generated plasma

    International Nuclear Information System (INIS)

    Elkerbout, A.C.H.; Van Dijk, J.W.; Donaldson, T.P.

    1976-01-01

    An expermental technique for generating holographic interferograms is discussed and illustrated with results obtained on a plasma generated by a 75 J CO 2 laser pulse incident at intensities of approximately 9 x 10 12 W/cm 2 on a plane carbon target. (author)

  14. Fractional CO(2) laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Sakamoto, Fernanda H; Farinelli, William A

    2010-01-01

    Ablative fractional resurfacing (AFR) creates vertical channels that might assist the delivery of topically applied drugs into skin. The purpose of this study was to evaluate drug delivery by CO(2) laser AFR using methyl 5-aminolevulinate (MAL), a porphyrin precursor, as a test drug....

  15. Using a CO2 laser for PIR-detector spoofing

    NARCIS (Netherlands)

    Schleijpen, R.; Putten, F.J.M. van

    2016-01-01

    This paper presents experimental work on the use of a CO2 laser for triggering of PIR sensors. Pyro-electric InfraRed sensors are often used as motion detectors for detection of moving persons or objects that are warmer than their environment. Apart from uses in the civilian domain, also

  16. Absorption Enhanced Liquid Ablation with TEA CO2 Laser

    National Research Council Canada - National Science Library

    Sterling, Enrique

    2004-01-01

    ... that strongly absorbs radiation in the 8-11 m wavelength interval. A TEA CO2 laser (λ = 10.6 m), 300 ns pulse width and 8 J pulse energy, was used for ablation of water diluted NaBF4 contained in a conical aluminum nozzle...

  17. Ablative skin resurfacing with a novel microablative CO2 laser.

    Science.gov (United States)

    Gotkin, Robert H; Sarnoff, Deborah S; Cannarozzo, Giovanni; Sadick, Neil S; Alexiades-Armenakas, Macrene

    2009-02-01

    Carbon dioxide (CO2) laser skin resurfacing has been a mainstay of facial rejuvenation since its introduction in the mid 1990s. Recently, a new generation of fractional or microablative CO2 lasers has been introduced to the marketplace. According to the concept of fractional photothermolysis, these lasers ablate only a fraction of the epidermal and dermal architecture in the treatment area. An array of microscopic thermal wounds is created that ablates the epidermis and dermis within very tiny zones; adjacent to these areas, the epidermis and dermis are spared. This microablative process of laser skin resurfacing has proven safe and effective not only for facial rejuvenation, but elsewhere on the body as well. It is capable of improving wrinkles, acne scars, and other types of atrophic scars and benign pigmented lesions associated with elastotic, sun-damaged skin. Because of the areas of spared epidermis and dermis inherent in a procedure that employs fractional photothermolysis, healing is more rapid compared to fully ablative CO2 laser skin resurfacing and downtime is proportionately reduced. A series of 32 consecutive patients underwent a single laser resurfacing procedure with the a new microablative CO2 laser. All patients were followed for a minimum of 6 months and were asked to complete patient satisfaction questionnaires; a 6 month postoperative photographic evaluation by an independent physician, not involved in the treatment, was also performed. Both sets of data were graded and reported on a quartile scale. Results demonstrated greater than 50% improvement in almost all patients with those undergoing treatment for wrinkles, epidermal pigment or solar elastosis deriving the greatest change for the better (>75%).

  18. Dental hard tissue drilling by longitudinally excited CO2 laser

    Science.gov (United States)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2017-07-01

    We developed a longitudinally excited CO2 laser with a long optical cavity and investigated the drilling characteristics of dental hard tissue. The CO2 laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 13 mm, a pulse power supply, a step-up transformer, a storage capacitance, a spark gap, and a long optical cavity with a cavity length of 175 cm. The CO2 laser produced a short pulse that had a spike pulse with the width of 337 ns and the energy of 1.9 mJ, a pulse tail with the length of 180 μs and the energy of 37.6 mJ, and a doughnut-like beam. In the investigation, a sample was a natural drying human tooth (enamel and dentine). In a processing system, a ZnSe focusing lens with the focal length of 50 mm was used and the location of the focal plane was that of the sample surface. In 1 pulse irradiation, the drilling characteristics depended on the fluence was investigated. In the enamel and dentin drilling, the drilling depth increased with the fluence. The 1 pulse irradiation with the fluence of 21.5 J/cm2 produced the depth of 79.3 μm in the enamel drilling, and the depth of 152.7 μm in the dentin drilling. The short-pulse CO2 laser produced a deeper drilling depth at a lower fluence than long-pulse CO2 lasers in dental hard tissue processing.

  19. Experimental study on concrete cutting by CO2 laser beam

    International Nuclear Information System (INIS)

    Kutsumizu, Akira; Tomura, Hidemasa; Wakizaka, Tatsuya; Hishikawa, Kyoichi; Moriya, Masahiro

    1994-01-01

    Methods for dismantling nuclear reactor facilities must meet particularly exacting requirements imposed by heavily reinforced and radioactivated reactor shield walls. Conventional methods do not meet all such requirements, however. Intrigued by excellent characteristics of the laser cutting method relative to nuclear facility demolition, we carried out an experimental study to make a comprehensive evaluation of its characteristics, especially for deep cutting, with success in identifying main factors affecting the cutting depth of a laser and characterizing its cutting behavior. The study results indicate that a 50 kW class CO 2 laser has a potential to provide a practicable cutting speed and depth. (author)

  20. The use of laser CO2 in salivary gland diseases

    Science.gov (United States)

    Ciolfi, C.; Rocchetti, F.; Fioravanti, M.; Tenore, G.; Palaia, G.; Romeo, U.

    2016-03-01

    Salivary gland diseases can include reactive lesions, obstructive lesions, and benign tumors. All these clinical entities are slow growing. Salivary glands reactive lesions, such as mucoceles, can result from extravasation of saliva into the surrounding soft tissue or from retention of saliva within the duct. Sialolithiasis, one of the most common obstructive lesions, is generally due to calculi, which are attributed to retention of saliva. Monomorphic adenoma is a salivary gland benign tumor, which is exclusively resulted from proliferation of epithelial cells, with no alterations interesting the connective tissue. The elective therapy of these lesions is surgical excision because sometimes they can be accompained by difficulties during chewing and phonation and can interfere with prosthesis's stability. The aim of the study is to evaluate the efficacy of CO2 laser in the treatment of patients with salivary gland diseases. Three different cases - a mucocele, a scialolithiasis and a monomorphic adenoma - were treated with CO2 laser excision (CW and 4W), under local anesthesia. Two different techniques were used: circumferential incision for the adenoma, and mucosa preservation technique for mucocele and sialolithiasis. In each case final haemostasis was obtained by thermocoagulation, but suture was applied to guarantee good healing by sewing up the flaps. The patients were checked after twenty days and the healing was good. The carbon dioxide laser (CO2 laser) was one of the earliest gas laser to be developed, and is still the highest-power continuous wave laser that is currently available. In dentistry the CO2 laser produces a beam of infrared light with the principal wavelength bands centering around 9.4 and 10.6 micrometers. Laser excision can be very useful in oral surgery. In the cases presented CO2 laser offered, differently from traditional surgery, simplified surgical technique, shorter duration of operation, minimal postoperative pain, minimal scarring

  1. TEA CO2 laser machining of CFRP composite

    Science.gov (United States)

    Salama, A.; Li, L.; Mativenga, P.; Whitehead, D.

    2016-05-01

    Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO2 (continuous wave), disc and fibre lasers were used in cutting CFRP composites and the control of damages such as the size of heat-affected zones (HAZs) remains a challenge. In this paper, a short-pulsed (8 μs) transversely excited atmospheric pressure CO2 laser was used, for the first time, to machine CFRP composites. The laser has high peak powers (up to 250 kW) and excellent absorption by both the carbon fibre and the epoxy binder. Design of experiment and statistical modelling, based on response surface methodology, was used to understand the interactions between the process parameters such as laser fluence, repetition rate and cutting speed and their effects on the cut quality characteristics including size of HAZ, machining depth and material removal rate (MRR). Based on this study, process parameter optimization was carried out to minimize the HAZ and maximize the MRR. A discussion is given on the potential applications and comparisons to other lasers in machining CFRP.

  2. Nd-YAG laser welding of bare and galvanised steels

    International Nuclear Information System (INIS)

    Kennedy, S.C.; Norris, I.M.

    1989-01-01

    Until recently, one of the problems that has held back the introduction of lasers into car body fabrication has been the difficulty of integrating the lasers with robots. Nd-YAG laser beams can be transmitted through fibre optics which, as well as being considerably easier to manipulate than a mirror system, can be mounted on more lightweight accurate robots. Although previously only available at low powers, recent developments in Nd-YAG laser technology mean that lasers of up to 1kW average power will soon be available, coupled to a fibre optic beam delivery system. The increasing usage of zinc coated steels in vehicle bodies has led to welding problems using conventional resistance welding as well as CO 2 laser welding. The use of Nd-YAG lasers may be able to overcome these problems. This paper outlines work carried out at The Welding Institute on a prototype Lumonics 800W pulsed Nd-YAG laser to investigate its welding characteristics on bare and zinc coated car body steels

  3. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  4. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  5. Removal of dogs' gingival pigmentation with CO2 laser

    Science.gov (United States)

    Figueiredo, Jose A. P.; Chavantes, Maria C.; Gioso, Marco A.; Pesce, Hildeberto F.; Jatene, Adib D.

    1995-05-01

    The aim of this study was to analyze the ability of CO2 laser to remove physiologic pigmentation of gingiva. Dogs were chosen for this study because of their intense black pigmentation on the gingiva, similar to what can be found in human negroes and other dark- skinned races. Three specimens were irradiated at the left side of the buccal aspect of the gingiva, while for comparison the right side was used as a control. CO2 laser in a continuous mode applying 3 watt power was used (Xanar-20, USA). The portion to be irradiated was continuously irrigated with saline solution, to prevent tissue damage from the excessive heat generated. The handpiece device irradiated the target easily and fast, with no bleeding. All the pigmentation could be removed from the portion exposed to the laser beam. A 45th day follow up showed very little repigmentation just in one of the specimens. It could be concluded that CO2 laser irradiation can be an alternative to remove pigmentation of the gingiva for cosmetic purposes. The risk of repigmentation exists, so the patients should be aware of this inconvenience, sometimes demanding further irradiation.

  6. Laser-GMA Hybrid Pipe Welding System

    National Research Council Canada - National Science Library

    Reutzel, Edward W; Kern, Ludwig; Sullivan, Michael J; Tressler, Jay F; Avalos, Juan

    2007-01-01

    The combination of laser welding with conventional gas metal arc welding technology offers substantial increases in production rate of joining pipe through single-pass joining compared to multi-pass...

  7. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  8. Water vapor-nitrogen absorption at CO2 laser frequencies

    Science.gov (United States)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  9. Homoclinic crises in a model for the CO2 laser

    International Nuclear Information System (INIS)

    Pando L, C.L.; Cerdeira, H.A.

    1993-04-01

    We show that the four-level model for the CO 2 laser with modulated losses predicts a critical exponent close to 1/2 for the characteristic times in two homoclinic crises. In the five-dimensional Poincare map corresponding to this model, a sequential horseshoe formation due to the period three unstable orbit takes place after a region of multistability. (author). 14 refs, 4 figs

  10. Gaseous saturable absorbers for the Helios CO2 laser system

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Nowak, A.V.; Czuchlewski, S.J.

    1981-01-01

    Saturable absorbers are widely used to suppress parasitic oscillations in large-aperture, high-power CO 2 fusion-laser systems. We report experimental results on SF 6 -based gaseous saturable absorbers used for parasitic suppression in the eight-beam, 10 kJ Helios fusion-laser system. The gas mix effectively quenches self-lasing in the 9 and 10 μm branches of the CO 2 laser spectrum while simultaneously allowing high transmission of subnanosecond multiwavelength pulses for target-irradiation experiments. The gas isolator now in use consists of SF 6 and the additional fluorocarbons: 1, 1-difluoroethane (FC-152a); dichlorodifluoromethane (FC-12); chloropentafluoroethane (FC-115); 1,1-dichloro 2,2-difluoroethylene (FC-1112a); chlorotrifluoroethylene (FC-1113); and perfluorocyclobutane (FC-C318). The saturation of the mix was studied as a function of incident fluence, pressure, cell length, and incident wavelength. Experimental results are presented on the saturation properties of pure SF 6 and FC-152a and compared with the saturation behavior of CO 2 at 400 0 C

  11. Research on Heat Source Model and Weld Profile for Fiber Laser Welding of A304 Stainless Steel Thin Sheet

    Directory of Open Access Journals (Sweden)

    Peizhi Li

    2018-01-01

    Full Text Available A heat source model is the key issue for laser welding simulation. The Gaussian heat source model is not suitable to match the actual laser weld profile accurately. Furthermore, fiber lasers are widely recognized to result in good-quality laser beam output, a narrower weld zone, less distortion, and high process efficiency, compared with other types of lasers (such as CO2, Nd : YAG, and diode lasers. At present, there are few heat source models for fiber laser welding. Most of researchers evaluate the weld profile only by the bead width and depth of penetration, which is not suitable for the laser keyhole welding nail-like profile. This paper reports an experimental study and FEA simulation of fiber laser butt welding on 1 mm thick A304 stainless steel. A new heat source model (cylindrical and cylindrical is established to match the actual weld profile using Marc and Fortran software. Four bead geometry parameters (penetration depth, bead width, waist width, and depth of the waist are used to compare between the experimental and simulation results. The results show that the heat source model of cylindrical and cylindrical can match the actual shape of the fiber laser welding feasibly. The error range of the penetration depth, bead width, waist width, and depth of the waist between experimental and simulation results is about 4.1 ± 1.6%, 2.9 ± 2.0%, 13.6 ± 7.4/%, and 18.3 ± 8.0%, respectively. In addition, it is found that the depth of penetration is more sensitive to laser power rather than bead width, waist width, and depth of the waist. Welding speed has a similar influence on the depth of penetration, weld width, waist width, and depth of the waist.

  12. Pulse propagation properties in high-power CO2 laser system for laser fusion

    International Nuclear Information System (INIS)

    Daido, H.; Inoue, M.; Fujita, H.; Matoba, M.; Nakai, S.

    1981-01-01

    The simulation results of nonlinear propagation properties in the CO 2 laser system using a simulation model of the SF 6 saturable absorbers and the CO 2 laser amplifiers agree well with the experimental results. The technical problems of the simultaneous irradiation of the multi-beams to a target are also discussed. (author)

  13. Laser-GMA Hybrid Pipe Welding System

    Science.gov (United States)

    2007-11-01

    Investigation of varying laser power. The welded pipe is shown, with close -ups of the rootside reinforcement and macro sections...68 Figure 44. Investigation of varying laser stand-off. The welded pipe is shown, along with close -ups of backside...conventional beveled joints. With appropriate joint configuration and preparation, deep keyhole penetration provided by the laser and additional filler

  14. CO2 laser-driven Stirling engine. [space power applications

    Science.gov (United States)

    Lee, G.; Perry, R. L.; Carney, B.

    1978-01-01

    A 100-W Beale free-piston Stirling engine was powered remotely by a CO2 laser for long periods of time. The engine ran on both continuous-wave and pulse laser input. The working fluid was helium doped with small quantities of sulfur hexafluoride, SF6. The CO2 radiation was absorbed by the vibrational modes of the sulfur hexafluoride, which in turn transferred the energy to the helium to drive the engine. Electrical energy was obtained from a linear alternator attached to the piston of the engine. Engine pressures, volumes, and temperatures were measured to determine engine performance. It was found that the pulse radiation mode was more efficient than the continuous-wave mode. An analysis of the engine heat consumption indicated that heat losses around the cylinder and the window used to transmit the beam into the engine accounted for nearly half the energy input. The overall efficiency, that is, electrical output to laser input, was approximately 0.75%. However, this experiment was not designed for high efficiency but only to demonstrate the concept of a laser-driven engine. Based on this experiment, the engine could be modified to achieve efficiencies of perhaps 25-30%.

  15. Subsurface plasma in beam of continuous CO2-laser

    Science.gov (United States)

    Danytsikov, Y. V.; Dymshakov, V. A.; Lebedev, F. V.; Pismennyy, V. D.; Ryazanov, A. V.

    1986-03-01

    Experiments performed at the Institute of Atomic Energy established the conditions for formation of subsurface plasma in substances by laser radiation and its characteristics. A quasi-continuous CO2 laser emitting square pulses of 0.1 to 1.0 ms duration and 1 to 10 kW power as well as a continuous CO2 laser served as radiation sources. Radiation was focused on spots 0.1 to 0.5 mm in diameter and maintained at levels ensuring constant power density during the interaction time, while the temperature of the target surface was measured continuously. Metals, graphite and dielectric materials were tested with laser action taking place in air N2 + O2 mixtures, Ar or He atmosphere under pressures of 0.01 to 1.0 atm. Data on radiation intensity thresholds for evaporation and plasma formation were obtained. On the basis of these thresholds, combined with data on energy balance and the temperature profile in plasma layers, a universal state diagram was constructed for subsurface plasma with nonquantified surface temperature and radiation intensity coordinates.

  16. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  17. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor

    Science.gov (United States)

    Osuna, J. L.; Bora, M.; Bond, T.

    2015-12-01

    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  18. Striated filamentary sparks produced by a CO2 TEA laser

    International Nuclear Information System (INIS)

    Schmieder, R.W.

    1979-01-01

    Sparks in the form of long, thin filaments having quasi-periodic longitudinal light and dark regions (striations) in time-integrated images have been ovserved in various gases using a CO 2 TEA laser. Typically, a 50-mJ pulse will produce a filament 1 cm long and 130 μm in diameter, with more than 150 striations spaced 50 μm apart in atmospheric air. Each striation is associated with the formation of a plasma region by one pulse in train of pulses from the mode-locked laser, and the filament results from the formation of successive (nearly identical) region, each displaced from the previous one toward the laser. The possible use of these sparks as a light source in diagnostics is noted

  19. Laser plant "Iguana" for transmyocardial revascularization based on kW-level waveguide CO2 laser

    Science.gov (United States)

    Panchenko, Vladislav Y.; Bockeria, L. A.; Berishvili, I. I.; Vasiltsov, Victor V.; Golubev, Vladimir S.; Ul'yanov, Valery A.

    2001-05-01

    For many years the Institute on Laser and Information Technologies RAN has been developing a concept of high-power industrial CO2 lasers with diffusion cooling of the working medium. The paper gives a description of the laser medical system Iguana for transmyocardial laser revascularization (TMLR) as an example of various applications of high-power waveguide CO2 lasers. The clinical results of the TMLR method application in surgical treatment are presented. The methods of determination of the time, when the laser beam passes through the demarcation line between myocardium tissue and blood, are discussed.

  20. Ablation of polytetrafluoroethylene using a continuous CO2 laser beam

    International Nuclear Information System (INIS)

    Tolstopyatov, E M

    2005-01-01

    The ablation of polytetrafluoroethylene (PTFE) is studied using a continuous CO 2 laser beam of 30-50 W at a mean intensity of 0.05-50 MW m -2 . The ablation products and changes in the target layer are examined using infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and electron microscopy. The main experiments were conducted with an unfocused beam of intensity 0.9-1.2 MW m -2 . The radiation-polymer interaction characteristics were found to change appreciably as the ablation conditions are approached. Within the polymer layer, light scattering diminishes and true resonant light absorption increases. Two distinct polymer components, which differ primarily in their resistance to CO 2 laser radiation, were found to exist under ablation conditions. The less stable component depolymerizes intensively, while the more resistant component is blown up into fibres by intense gas flow. The reasons behind this behaviour are discussed. Preliminary gamma irradiation of PTFE is found to have a significant influence on the laser ablation process

  1. Development of remote laser welding technology

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Kim, Woong-Ki; Lee, Jung-Won; Yang, Myung-Seung; Park, Hyun-Soo

    1999-01-01

    Various welding processes are now available for end cap closure of nuclear fuel element such as TIG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding process are widely used for manufacturing of the commercial fuel elements, it can not be recommended for the remote seal welding of fuel element at PIE facility due to its complexity of the electrode alignment, difficulty in the replacement of parts in the remote manner and its large heat input for thin sheath. Therefore, Nd:YAG laser system using the optical fiber transmission was selected for Zircaloy-4 end cap welding. Remote laser welding apparatus is developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The laser weldability is satisfactory in respect of the microstructures and mechanical properties comparing with the TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in remote manner have been developed. (author)

  2. Hybrid Laser Welding of Large Steel Structures

    DEFF Research Database (Denmark)

    Farrokhi, Farhang

    Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....

  3. Laser welding and collagen crosslinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, K.M.; Last, J.A. [California Univ., Davis, CA (United States). Dept. of Medicine; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L. [Lawrence Livermore National Lab., CA (United States)

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  4. CO2-laser photoacoustic detection of gaseous n-pentylacetate

    Czech Academy of Sciences Publication Activity Database

    Herecová, L.; Hejzlar, T.; Pavlovský, J.; Míček, D.; Zelinger, Zdeněk; Kubát, Pavel; Janečková, B.; Nevrlý, Václav; Bitala, P.; Střižík, Michal; Klouda, E.; Civiš, Svatopluk

    2009-01-01

    Roč. 256, č. 1 (2009), s. 109-110 ISSN 0022-2852 R&D Projects: GA MŠk OC 111; GA MŠk LC06071; GA ČR GA202/06/0216; GA MŽP SPII1A0/45/07 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z20760514 Keywords : n-pentylacetate * CO2 laser photoacoustic spectroscopy * FTIR spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.542, year: 2009

  5. Design and construction of wave guide CO2 laser

    International Nuclear Information System (INIS)

    Al-Ali, M.S.

    1989-01-01

    This thesis describes the design, construction and operation of a countinous wave (CW) CO2 waveguide laser with axial gas flow in which the multi-electrode technique was used to achieve uniform volume of ionized gas using two and four pairs of electrodes. Resonators of lengths ( 26 - 47.5 ) cm with inside diameter ( 3 - 4 ) mm were used with discharge taking place between four pairs of electordes 8.25 cm long each, in axial direction of the tube. The avearge flow at the tube outlet was ( 5 - 6.5 ) L/min at different gas pressures. ( 4 tabs., 74 figs., 58 refs. )

  6. Repeatability analysis on LPFGs written by a CO2 laser

    Science.gov (United States)

    Nespereira, Marta; Castro Alves, D.; Coelho, João. M. P.; Monteiro, Fernando; Abreu, Manuel; Rebordão, J. M.

    2014-08-01

    The physical mechanisms involved in the writing process of long period fiber gratings (LPFG) using mid-infrared radiation emitted by CO2 lasers limit the obtained characteristics, in particular the minimum period that can be achieved. In order to evaluate the performances of a new methodology developed by us, we analyzed its capability to produce gratings with different periods (from 600 μm down to 300 μm). We also present a repeatability study on the obtained LPFG characteristics (mainly the resonant wavelength and grating length) for several values of the repetition period.

  7. The design and development of CO2 medium-level laser power calibration system for industrial and medical applications in Thailand

    Science.gov (United States)

    Nontapot, Kanokwan

    2018-03-01

    The carbon dioxide laser (CO2 laser) is one of the most useful and is the highest CW laser at the present. The laser produces infrared light at 10.6 um. Due to its high power, CO2 lasers are usually used in industrial applications such as cutting and welding, or for engraving at less power. CO2 lasers are also used widely in medical applications, such as laser surgery, skin resurfacing, and removing mold, due to water (biological tissue) absorb light at this wavelength very well. CO2 lasers are also used as LIDAR laser source for military range finding applications because of the transparency of the atmosphere to infrared light. Due to the increasing use of CO2 lasers laser in industrial and medical applications in Thailand, the National Institute of Metrology (Thailand) has set up a CO2 laser power calibration system and provide calibration service to customers this year. The service support calibration of medium-level laser power at wavelength of 10.6 um and at power range 100 mW-10W. The design and development of the calibration system will be presented.

  8. Technology of discharge and laser resonators for high power CO2 lasers. Koshutsuryoku CO2 laser ni tsukawareru hoden reiki laser kyoshinki gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Y.; Kuzumoto, M. (Mitsubishi Electric Corp., Tokyo (Japan))

    1994-03-20

    This paper describes discharge excitation technology and resonator technology as basic technologies for high power CO2 lasers. As a result of progress in high-frequency power element techniques, the discharge excitation technology now generally uses laser excitation using AC discharge of capacity coupling type. Its representative example is silent discharge (SD) excitation. This is a system to excite laser by applying high voltages with as high frequency as 100 kHz to 1 MHz across a pair of electrodes covered with a dielectric material. The system maintains stability in discharge even if power supply voltage amplitude is modulated, and easily provides pulse outputs. Discharge excitation for diffusion cooled type CO2 laser generates a discharge in a gap with a gap length of about 2 mm, and can perform gas cooling by means of thermal conduction of gas, whereas a compact resonator can be fabricated. A resonator for the diffusion cooled type CO2 laser eliminates gas circulation and cooling systems, hence the device can be made more compact. A report has been given that several of these compact resonators were combined, from which a laser output of 85W was obtained by using RF discharge of 2kW. 43 refs., 21 figs.

  9. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...... the laser beam as close as possible. After welding, the samples were quality assessed according to ISO 13.919-1 and tested for hardness. The metallurgical phases are analysed and briefly described. A comparison between purely laser welded samples and induction heat-treated laser welded samples is made......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...

  10. Upper Eyelid Fractional CO2 Laser Resurfacing With Incisional Blepharoplasty.

    Science.gov (United States)

    Kotlus, Brett S; Schwarcz, Robert M; Nakra, Tanuj

    2016-01-01

    Laser resurfacing, performed at the same time as blepharoplasty, has most commonly been applied to the lower eyelid skin but can effectively be used on the upper eyelid to reduce rhytidosis and improve skin quality. The authors evaluate the safety and efficacy of this procedure. Fractional CO2 laser resurfacing was performed in conjunction with incisional upper blepharoplasty. The ultrapulsed laser energy was applied to the sub-brow skin, the upper medial canthal skin, and the pretarsal skin in 30 patients. Photos were obtained preoperatively and at 3 months. All patients demonstrated reduction in upper eyelid rhytidosis without any serious complications. Independent rhytidosis grading (0-4) showed a mean improvement of 42%. One patient experienced wound dehiscence that satisfactorily resolved without intervention. Upper eyelid laser resurfacing is effective and can be safely performed at the same time as upper blepharoplasty. This approach reduces or eliminates the need for medial incisions to address medial canthal skin redundancy and rhytidosis and it directly treats upper eyelid wrinkles on residual eyelid and infra-brow skin during blepharoplasty.

  11. Laser welding of balloon catheters

    Science.gov (United States)

    Flanagan, Aidan J.

    2003-03-01

    The balloon catheter is one of the principal instruments of non-invasive vascular surgery. It is used most commonly for angioplasty (and in recent years for delivering stents) at a multitude of different sites in the body from small arteries in the heart to the bilary duct. It is composed of a polymer balloon that is attached to a polymer shaft at two points called the distal and proximal bonds. The diverse utility of balloon catheters means a large range of component sizes and materials are used during production; this leads to a complexity of bonding methods and technology. The proximal and distal bonds have been conventionally made using cyanoacrylate or UV curing glue, however with performance requirements of bond strength, flexibility, profile, and manufacturing costs these bonds are increasingly being made by welding using laser, RF, and Hot Jaw methods. This paper describes laser welding of distal and proximal balloon bonds and details beam delivery, bonding mechanisms, bond shaping, laser types, and wavelength choice.

  12. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components

    Science.gov (United States)

    Tsirkas, S. A.

    2018-03-01

    The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.

  13. Ablation of Liquids for Laser Propulsion With TEA CO2 Laser

    National Research Council Canada - National Science Library

    Sinko, John; Kodgis, Lisa; Porter, Simon; Sterling, Enrique; Lin, Jun; Pakhomov, Andrew V; Larson, C. W; Mead, Jr., Franklin B

    2005-01-01

    .... A Transversely Excited at Atmospheric pressure (TEA) CO2 laser operated at 10.6 um, 300 ns pulse width, and 9 J pulse energy was used to ablate liquids contained in various aluminum and glass vessels...

  14. Ablation of Liquids for Laser Propulsion with TEA CO2 Laser

    National Research Council Canada - National Science Library

    Sinko, John; Kodgis, Lisa; Porter, Simon; Sterling, Enrique; Lin, Jun; Pakhomov, Andrew V; Larson, C. W; Mead, Jr, Franklin B

    2005-01-01

    .... A Transversely Excited at Atmospheric pressure (TEA) CO2 laser operated at 10.6 micro-m, 300 ns pulse width, and 9 J pulse energy was used to ablate liquids contained in various aluminum and glass vessels...

  15. Design Optimization and Fatigue Analysis of Laser Stake Welded Connections

    Science.gov (United States)

    2008-06-01

    is ultimately envisioned that laser welding will be as common in the shipyard as other processes such -- as MIG, TIG and SMAW. Laser stake- welding of...input from conventional welding techniques can be detrimental to the polymer matrix composite material. In comparison, the laser welding process allows...more discrete frequencies. In the laser welding process , the photons are targeted on the work piece surface which needs to be welded . Highly

  16. A comparative evaluation: Oral leukoplakia surgical management using diode laser, CO2 laser, and cryosurgery.

    Science.gov (United States)

    Natekar, Madhukar; Raghuveer, Hosahallli-Puttaiah; Rayapati, Dilip-Kumar; Shobha, Eshwara-Singh; Prashanth, Nagesh-Tavane; Rangan, Vinod; Panicker, Archana G

    2017-06-01

    The comparatively evaluate the three surgical treatment modalities namely cryosurgery, diode and CO2 laser surgery in terms of healing outcomes on the day of surgery, first and second week post operatively and recurrence at the end of 18 months was assessed. Thirty selected patients were divided randomly into three groups. Each group comprising of ten patients were subjected to one of the three modalities of treatment namely cryosurgery, diode laser or CO2 laser surgery for ablation of OL. Obtained data was analyzed using mainly using Chi-square and Anova tests. Study showed statistical significant differences (p > 0.05) for evaluation parameters like pain, edema and scar. The parameters like infection, recurrence, bleeding showed no statistical significance. Pain was significantly higher in CO2 laser surgery group as compared with diode laser group. There was no recurrence observed at the end of the 6 months follow up period in all the three study groups. Observations from the study highlights that all three surgical modalities used in this study were effective for treatment of OL, and the overall summation of the results of the study showed that laser therapy (CO2 and Diode) seems to offer better clinically significant results than cryotherapy. Key words: Oral premalignant lesion, leukoplakia, cryosurgery, CO2 laser surgery, diode laser surgery.

  17. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  18. Pulsed CH3OH terahertz laser radiation pumped by 9P(36) CO2 lasers

    International Nuclear Information System (INIS)

    Jiu Zhixian; Zuo Duluo; Miao Liang; Cheng Zuhai

    2011-01-01

    An efficient pulsed CH 3 OH terahertz (THz) laser pumped by a TEA CO 2 laser was investigated experimentally. A simple terahertz cavity and a TEA CO 2 laser for the optically pumped THz radiation were studied experimentally. To improve THz laser energy and photon conversion efficiency, two different TEA CO 2 lasers were developed to pump CH 3 OH. When CH 3 OH was pumped by the 9P(36) line with different powers of the CO 2 laser, the generation of terahertz radiation with energy as high as 0.307mJ and 23.75mJ were obtained, respectively. The corresponding photon conversion efficiencies were 0.29% and 2.4%. The photon conversion efficiency increases by a factor of about 8. Meanwhile, higher peak power of pump laser effectively improves the photon conversion efficiency. And the optimum THz laser pressure increases with narrower pulse width of pump laser because of increasing absorptive gases molecules of CH 3 OH with higher peak power of pump laser.

  19. Lithium niobate bulk crystallization promoted by CO2 laser radiation

    Science.gov (United States)

    Ferreira, N. M.; Costa, F. M.; Nogueira, R. N.; Graça, M. P. F.

    2012-09-01

    The crystallization induced by laser radiation is a very promising technique to promote glass/ceramic transformation, being already used to produce crystalline patterns on glass surfaces. In this work, a SiO2-Li2O-Nb2O5 glass, prepared by the sol-gel route, was submitted to CO2 laser radiation and conventional heat-treatments in order to induce the LiNbO3 crystallization. The structure and morphology of the samples prepared by both routes was analyzed as a function of exposure time, radiation power and heat-treatment temperatures by XRD, Raman spectroscopy and SEM. The results reveal a correlation between the crystallization degree of LiNbO3 particles and glass matrix with the heat treatment type and experimental parameters. An heat-treatment at 650 °C/4 h was necessary to induce crystallization in heat treatments samples while 4 W/500 s was enough for laser radiation ones, corresponding a reduction time processing of ˜14 000 s.

  20. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-10-01

    Full Text Available This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests were based on a L9(34 orthogonal array design, with the effects of the process parameters on the quality responses being determined by means of a statistical analysis of variance (ANOVA. Quadratic mathematical models were developed to determine the relationships between the cutting parameters and the quality responses. Finally, a routine based on an optimization criterion was employed to predict the optimal setting of cutting factors and its effect on the quality responses. A confirmation experiment was conducted to verify the appropriateness of the optimization routine. The results show that all of the examined process parameters have a key role in determining the cut quality of hot stamping boron steel sheets, with cutting speed and their interactions having the most influencing effects. Particularly, interactions can have an opposite behavior for different levels of the process parameters.

  1. Effect Of Laser CO2 Parameters In Marking Of Glass

    International Nuclear Information System (INIS)

    Khanafi-Benghalem, Nafissa; Boudoukha, Hassina; Benghalem, Kamel

    2008-01-01

    Currently many techniques of marking are exploited in a great number of sectors, on various materials (cardboard, textile, wood, leather, plastic, metal, ceramics and glass). The printing is done on supports of great or small dimension for all geometrical forms (plane, round, conical and ovalised). We can print colour as much than we wish. The marking technology for the identification of the glass parts knows a remarkable development carried by the new needs for the industrialists using transparent materials such as the optical, chemical, pharmaceutical sectors, the luxury and drink industries or publicity and decoration (neon signs, advertising mirrors). The objective of our work consists particularly in engraving on glass the measurement scales forming a whole of ordered graduation which the goal is to carry out reading systems of measuring apparatus about 1/10 μm of precision. We used as tool for marking the laser CO 2 . Our choice is justified by the flexibility of the laser, the permanent lifespan of the graduations carried out and the guarantee of the facility of reading incidentally the precision and the accuracy of the measuring apparatus. The study parameters of the laser beam are the velocity (400, 600, 800, 1000 m/s.), the power (25, 75 and 80% of 25W) and the numbers pass (one, two and three pass). The optical observations results obtained suggest that the highest and the average power used remain the favourable parameters for the quality of the graduations carried out.

  2. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  3. High Efficiency Mask Based Laser Materials Processing with TEA-CO2 - and Excimer Laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review of the ...... line marking with TEA-CO2 laser of high speed canning lines. The second one is manufactured for marking or microdrilling with excimer laser....

  4. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO2 laser polishing

    International Nuclear Information System (INIS)

    Choi, Hun-Kook; Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak; Kim, Jin-Tae; Ahsan, Shamim

    2014-01-01

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO 2 laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO 2 laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO 2 laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  5. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  6. Application of CO2 laser cutting machine to shipbuilding; Zosen no setsudan eno CO2 laser no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Y. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1998-11-01

    Carbon dioxide laser has been applied to cutting works in shipbuilding. As NC cutter was obsolete, CO2 laser cutting machine with a rated output 3 kW was introduced. According to the specifications of the machinable plate, the maximum thickness is 19 mm, and effective width and length are 5.4 m and 29.1 m, respectively. As the cutting width is wide and the running distance of laser beam is long, the error of light axis is expanded only by a small error of irradiation angle, which results in the inconvenience. Stable operation was realized by improving the fixation of reflecting mirror. Right angle cutting section with a cutting curve below 0.5 mm was obtained, and cutting time was reduced by the one-line cutting by which both sections can be available with a single cutting line. For the cutting of thin plate with a thickness less than 10 mm, strain was not formed, and remedy was not required. Block strain was remarkably reduced during the assembly process. Maintenance-free operation without monitoring can be performed for a long time. This machine is operated at night and lunch time, resulting in the reduced processes. The working environment is appropriate without noise and dust. Facility cost and maintenance cost were also reduced. Lower cutting speed is a weak point, when compared with the plasma cutting machine. The present machine is not applied to aluminum plates with high surface reflectivity. 13 figs.

  7. Micromachining for Si etching using CW CO_2 laser

    International Nuclear Information System (INIS)

    Al-Hawat, Sh.; Naddaf, M.; Al-Sadat, W.; Wiess, Sh.

    2015-01-01

    Many experiments were carried out to achieve etching for silicon samples located on glass substrate (Pyrex or Quartz) using CW CO_2 laser under treating conditions which were in the case of linear scanning as: the power was 35-47 W, the number of round trips was 10-60 and the linear scanning speed was 17-75 mm/s, and in the case of fixed sample they were as: the power was 40 W and the exposure time was between 2-6 min. The obtained results were different depending on the form of etching and its quality, according to the applied treating conditions on the silicon samples, taking the treated silicon surface attached directly to the glass substrate surface or taking the opposite side of the silicon sample. The etching of the first type was easy to get, but the second one was more difficult to obtain, which requires very strong conditions. The best of these results were recorded using a quartz substrate under treating conditions: the laser power was 42.5 W, the number of round trips was 30, and the scanning speed was 75 mm/s, so the etching was limited to separate spots produced on the surface of the sample. In the all cases, the pictures of spots and lines formed on treated Si samples were taken using scanning electron microscope (SEM) for both sides of the studied samples.(author)

  8. CO2 Laser-Based Rapid Prototyping of Micropumps

    Directory of Open Access Journals (Sweden)

    Zachary Strike

    2018-05-01

    Full Text Available The fabrication of microdevices for fluidic control often requires the use of flexible diaphragms in a way that requires cleanroom equipment and compromises performance. We use a CO 2 laser to perform the standard ablative techniques of cutting and engraving materials, but we also apply a method that we call laser placement. This allows us to fabricate precisely-positioned and precisely-sized, isolated diaphragms. This in turn enables the rapid prototyping of integrated multilayer microfluidic devices to form complex structures without the need for manual positioning or cleanroom equipment. The fabrication process is also remarkably rapid and capable of being scaled to manufacturing levels of production. We explore the use of these devices to construct a compact system of peristaltic pumps that can form water in oil droplets without the use of the non-pulsatile pumping systems typically required. Many devices can be fabricated at a time on a sheet by sheet basis with a fabrication process that, to our knowledge, is the fastest reported to date for devices of this type (requiring only 3 h. Moreover, this system is unusually compact and self-contained.

  9. Micromachining for Si etching using CW CO 2 laser

    International Nuclear Information System (INIS)

    Hawat, Sh.; Naddaf, M.; Al-Sadat, W.; Weiss, Sh.

    2012-08-01

    Many experiments were carried out to achieve etching for silicon samples located on glass substrate (Pyrex or Quartz) using Cw CO 2 laser under treating conditions which were in the case of linear scanning as: the power was 35-47 W, the number of round trips was 10-60 and the linear scanning speed was 17-75 mm/s, and in the case of fixed sample they were as: the power was 40 W and the exposure time was between 2-6 min. The obtained results were different depending on the form of etching and its quality, according to the applied treating conditions on the silicon samples, taking the treated silicon surface attached directly to the glass substrate surface or taking the opposite side of the silicon sample. The etching of the first type was easy to get, but the second one was more difficult to obtain, which requires very strong conditions. The best of these results were recorded using a quartz substrate under treating conditions: the laser power was 42.5 W, the number of round trips was 30, and the scanning speed was 75 mm/s, so the etching was limited to separate spots produced on the surface of the sample. In the all cases, the pictures of spots and lines formed on treated Si samples were taken using scanning electron microscope (SEM) for both sides of the studied samples. (authors)

  10. Numerical simulation of the shape of laser cut for fiber and CO2 lasers

    Science.gov (United States)

    Zaitsev, A. V.; Ermolaev, G. V.; Polyanskiy, T. A.; Gurin, A. M.

    2017-10-01

    The results of numerical modeling of steel plate laser cutting with nitrogen as assist gas with consideration of heat transfer into a bulk material are presented. In this work we studied a distribution of absorbed radiation energy inside cut kerf and the difference between CO2 and fiber laser radiation propagation and absorption. The influence of secondary absorption of reflected from the cut front radiation on stability of melt hydrodynamics is discussed for different laser types.

  11. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  12. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  13. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  14. Method for laser spot welding monitoring

    Science.gov (United States)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  15. Laser welding, cutting and surface treatment

    International Nuclear Information System (INIS)

    Crafer, R.C.

    1984-01-01

    Fourteen articles cover a wide range of laser applications in welding, cutting and surface treatment. Future trends are covered as well as specific applications in shipbuilding, the manufacture of heart pacemakers, in the electronics industry, in automobile production and in the aeroengine industry. Safety with industrial lasers and the measurement of laser beam parameters are also included. One article on 'Lasers in the Nuclear Industry' is indexed separately. (U.K.)

  16. A new approach to model CW CO2 laser using rate equations

    Indian Academy of Sciences (India)

    2016-11-11

    Nov 11, 2016 ... Abstract. Two popular methods to analyse the operation of CW CO2 lasers use the temperature model and ... Grouping of the vibration levels helped in restrict- ..... [10] D C Tyte, Carbon dioxide lasers, in: Advances in quan-.

  17. Selection of Near Optimal Laser Cutting Parameters in CO2 Laser Cutting by the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Miloš MADIĆ

    2013-12-01

    Full Text Available Identification of laser cutting conditions that are insensitive to parameter variations and noise is of great importance. This paper demonstrates the application of Taguchi method for optimization of surface roughness in CO2 laser cutting of stainless steel. The laser cutting experiment was planned and conducted according to the Taguchi’s experimental design using the L27 orthogonal array. Four laser cutting parameters such as laser power, cutting speed, assist gas pressure, and focus position were considered in the experiment. Using the analysis of means and analysis of variance, the significant laser cutting parameters were identified, and subsequently the optimal combination of laser cutting parameter levels was determined. The results showed that the cutting speed is the most significant parameter affecting the surface roughness whereas the influence of the assist gas pressure can be neglected. It was observed, however, that interaction effects have predominant influence over the main effects on the surface roughness.

  18. CO2 laser pulse shortening by laser ablation of a metal target

    International Nuclear Information System (INIS)

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-01-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO 2 laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ∼2 ns and to remove the low power, long duration tails that are present in TEA CO 2 pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ∼10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  19. Modematic: a fast laser beam analyzing system for high power CO2-laser beams

    Science.gov (United States)

    Olsen, Flemming O.; Ulrich, Dan

    2003-03-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.

  20. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO2 lasers

    International Nuclear Information System (INIS)

    Golyshev, A A; Malikov, A G; Orishich, A M; Shulyat'ev, V B

    2014-01-01

    Processes of cutting stainless steel by ytterbium fibre and CO 2 lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO 2 laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO 2 laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)

  1. SF6 laser remote sensing by CO2 laser DIAL lidar

    International Nuclear Information System (INIS)

    Parvin, P.; Basam, Z.; Zamanipour, Z.; Kariminezhad, H.; Boyook, N.; Borna, F.; Azari, T.; Eshragi, N.; Ataran, A.; Ghods Ahmad Zadeh, R.

    2004-01-01

    A DIAL system using tunable CO 2 laser has been demonstrated practically for remote sensing of SF 6 components in Mashad Shahid Motahhari Research Complex. Non toxic components of SF 6 as a rare isotope is studied to calibrate the lidar function in several conditions. The whole system enables us to detect ppm amounts of chemical gases as well as pollutants and poisonous species

  2. Fabrication of microlens and microlens array on polystyrene using CO 2 laser

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2011-01-01

    This study presents a new process for fabricating microlens and microlens arrays directly on a surface of polystyrene using a CO2 laser. The working spot of the polystyrene is heated locally by a focused CO2 laser beam, which tends to have a

  3. The results of CO2 laser surgery in patients with oral leukoplakia : a 25 year follow

    NARCIS (Netherlands)

    van der Hem, PS; Nauta, JM; van der Wal, JE; Roodenburg, JLN

    Oral leukoplakia, is an important premalignant Lesion of the oral mucosa. We treat this Lesion prophylactically with CO2 laser evaporation. In the period from 1976 to 2001, a group of 200 patients with 282 oral leukoplakias were treated by CO2 laser evaporation. In a follow up period of 1-219 months

  4. CO2 laser treatment of As-S chalcogenide thin films

    International Nuclear Information System (INIS)

    Andriesch, A.M.; Bertolotti, M.; Ferrari, A.; Popesku, A.A.

    1990-01-01

    The changes of the refractive index of As 2 S 3 and As 2 S 5 films deposited on glass substrates upon CO 2 laser irradiation have been studied. The possibility of writing with the CO 2 laser a waveguiding channel in As 2 S 3 is demonstrated

  5. Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover

    Directory of Open Access Journals (Sweden)

    Li-Li Zuo

    2012-03-01

    Full Text Available To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.

  6. High-power laser and arc welding of thorium-doped iridium alloys

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.

    1980-05-01

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO 2 laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed

  7. High efficiency metal marking with CO2 laser and glass marking with excimer laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    with a thoroughly tested ray-tracing model is presented and compared with experimental results. Special emphasis is put on two different applications namely marking in metal with TEA-CO2 laser and marking in glass with excimer laser. The results are evaluated on the basis of the achievable energy enhancement......Today, mask based laser materials processing and especially marking is widely used. However, the energy efficiency in such processes is very low [1].This paper gives a review of the results, that may be obtained using the energy enhancing technique [1]. Results of simulations performed...

  8. Summary of the guideline on underwater laser beam repair welding

    International Nuclear Information System (INIS)

    Ichikawa, Hiroya; Yoda, Masaki; Motora, Yuichi

    2013-01-01

    It is known that stress corrosion cracking (SCC) might occur at the weld of a reactor pressure vessel or core internals. Underwater laser beam clad welding for mitigation of SCC has been already established and the guideline 'Underwater laser beam clad welding' was published. Moreover, the guideline 'Seal welding' was also published as a repair method for SCC. In addition to these guidelines, the guideline 'Underwater laser beam repair welding' was newly published in November, 2012 for the repair welding after completely removing a SCC crack occurred in weld or base metal. This paper introduces the summary of this guideline. (author)

  9. Recent Results in High Power CO2-Laser Cutting for Shipbuilding Industry

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Juhl, Thomas Winther; Nielsen, Jakob Skov

    2003-01-01

    In 1997 a high power laser cutting and welding test facility was established at the Danish shipyard Odense Steel Shipyard (OSS). Research and development projects were initiated in order to establish the basis for applying the full power of the laser for laser-cutting, by developing mirror based...

  10. Approach to compact terawatt CO2 laser system for particle acceleration

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Kimura, W.D.; Fisher, C.H.; Kannari, F.

    1994-01-01

    A compact table-top 20-GW 50-ps CO 2 laser system is in operation for strong-field physics studies at the ATF. We propose scaling up of the picosecond CO 2 laser to a terawatt peak power level to meet the requirements of advanced laser accelerators. Computer modeling shows that a relatively compact single-beam picosecond CO 2 laser system with a high-pressure x-ray picosecond amplifier of a 10-cm aperture is potentially scalable to the ∼1-TW peak power level

  11. Control of laser pulse waveform in longitudinally excited CO2 laser by adjustment of excitation circuit

    Science.gov (United States)

    Uno, Kazuyuki; Jitsuno, Takahisa

    2018-05-01

    In a longitudinally excited CO2 laser that had a 45 cm-long discharge tube with a 1:1:2 mixture of CO2/N2/He gas at a pressure of 3.0 kPa, we realized the generation of a short laser pulse with a spike pulse width of about 200 ns and a pulse tail length of several tens of microseconds, control of the energy ratio of the spike pulse part to the pulse tail part in the short laser pulse, the generation of a long laser pulse with a pulse width of several tens of microseconds, and control of the pulse width in the long laser pulse, by using four types of excitation circuits in which the capacitance was adjusted. In the short laser pulse, the energy ratio was in the range 1:14-1:112. In the long laser pulse, the pulse width was in the range 25.7-82.7 μs.

  12. Cryogen spray cooling during laser tissue welding.

    Science.gov (United States)

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  13. Development of laser weld monitoring system for PWR space grid

    International Nuclear Information System (INIS)

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  14. Laser Welding of Coated Press-hardened Steel 22MnB5

    Science.gov (United States)

    Siltanen, Jukka; Minkkinen, Ari; Järn, Sanna

    The press-hardening process is widely used for steels that are used in the automotive industry. Using ultra-high-strength steels enables car manufacturers to build lighter, stronger, and safer vehicles at a reduced cost and generating lower CO2 emissions. In the study, laser welding properties of the coated hot stamped steel 22BMn5 were studied. A constant 900 °C temperature was used to heat the steel plates, and two different furnace times were used in the press-hardening, being 300 and 740 seconds. Some of the plates were shot blasted to see the influence of the partly removed oxide layer on the laser welding and quality. The welding set-up, welding, and testing of the weld specimens complied with the automotive testing code SEP 1220.

  15. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  16. Possible applications of powerful pulsed CO2-lasers in tokamak reactors

    International Nuclear Information System (INIS)

    Nastoyashchii, A.F.; Morozov, I.N.; Hassanein, A.

    1998-01-01

    Applications of powerful pulsed CO 2 -lasers for injection of fuel tablets or creation of a protective screen from the vapor of light elements to protect against the destruction of plasma-facing components are discussed, and the corresponding laser parameters are determined. The possibility of using CO 2 -lasers in modeling the phenomena of powerful and energetic plasma fluxes interaction with a wall, as in the case of a plasma disruption, is considered

  17. D2O laser pumped by an injection-locked CO2 laser for ion-temperature measurements

    International Nuclear Information System (INIS)

    Okada, Tatsuo; Ohga, Tetsuaki; Yokoo, Masakazu; Muraoka, Katsunori; Akazaki, Masanori.

    1986-01-01

    The cooperative Thomson scattering method is one of the various new techniques proposed for measuring the temperature of ions in nuclear fusion critical plasma, for which a high-performance FIR laser pumped by an injection-locked CO 2 laser is required. This report deals with D 2 O laser with a wavelength of 385 μm which is pumped by injection-locked single-mole TEA CO 2 laser composed of a driver laser and an output-stage laser. A small-sized automatic pre-ionization type laser is employed for the driver. The resonator of the driver laser consists of a plane grating of littrow arrangement and ZnSe plane output mirrors with reflection factor of 50 %. An aperture and ZnSe etalon are inserted in the resonator to produce single transverse- and longitudinal-mode oscillation, respectively. The output-stage laser is also of the automatic pre-ionization type. Theoretically, an injection power of 0.1 pW/mm 3 is required for a CO 2 laser. Single-mode oscillation of several hundred nW/mm 3 can be produced by the CO 2 laser used in this study. Tuning of the output-stage laser is easily controlled by the driver laser. High stability of the injection-locked operation is demonstrated. CO 2 laser beam is introduced into the D 2 O laser through a KCl window to excite D 2 O laser beam in the axial direction. Input and output characteristics of the D 2 O laser are shown. Also presented are typical pulse shapes from the D 2 O laser pumped by a free-running CO 2 laser pulse or by an injection-locked single-mode CO 2 laser pulse. (Nogami, K.)

  18. Forming Tests for Laser Welded Blanks

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Rasmussen, Mads

    1998-01-01

    Ratio test (LDR)Tensile testBulge testMarziniak testPractical examples obtained for laser welded blanks are shown. In combination, tensile tests and the Bulge test can form the so-called Forming Limiting Curves and examples of curves obtained from laser welded blanks are shown.......In this paper different means for testing the formability of new material combinations used as tailored blanks in the automotive industry are presented. The following forming techniques will be described and their benefits and drawbacks presented :Limiting Dome Height test (LDH)Limiting Drawing...

  19. Numerical Simulation Of The Laser Welding

    Directory of Open Access Journals (Sweden)

    Aleksander Siwek

    2008-01-01

    Full Text Available The model takes into consideration thermophysical and metallurgical properties of theremelting steel, laser beam parameters and boundary conditions of the process. As a resultof heating the material, in the area of laser beam operation a weld pool is being created,whose shape and size depends on convection caused by the Marangoni force. The directionof the liquid stream depends on the temperature gradient on the surface and on the chemicalcomposition as well. The model created allows to predict the weld pool shape depending onmaterial properties, beam parameters, and boundary conditions of the sample.

  20. Experimental investigation on mechanical and microstructural properties of AISI 304 to Cu joints by CO2 laser

    Directory of Open Access Journals (Sweden)

    Bikash Ranjan Moharana

    2016-06-01

    Full Text Available Aim of the present work is to investigate mechanical and metallurgical characteristics of continuous wave CO2 laser welded dissimilar couple of AISI 304 stainless steel and commercially pure copper sheets in autogenous mode. Metallurgical analysis of the fusion zone has been done to understand the mixing and solidification behavior. Macroscopic examination has been carried out to observe the macro-segregation pattern of Cu, Fe and Cr rich phases in different zones, and the thickness of HAZ was found to be around 10 µm. The micro-channels formed from the steel side to weld pool describe that the copper solidifies first and provides the nucleation surface for the residual melt to grow. These tubular micro-channels formed may be due to carbide precipitation. The EDS analysis conforms the well mixing of SS and Cu inside the weld pool. The mechanical properties in terms of tensile stress found up to 201 MPa and the fracture are obtained outside the weld zone. Microhardness measurements over the fusion zone have been done to understand the keyhole growth and quenching, solidification sequence and stress distribution over the full area.

  1. Study on laser beam welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2012-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  2. Predicting gas decomposition in an industrialized pulsed CO2 laser

    CSIR Research Space (South Africa)

    Forbes, A

    2005-03-01

    Full Text Available to be stable at O2 levels in excess of 2%, whereas previously reported values suggest stable operation at values of less than 1%. This is thought to be related to the unusually high starting CO2 concentration of the gas mix, and the short time pulse...

  3. Excitation of transversely excited CO2 waveguide lasers

    International Nuclear Information System (INIS)

    Wood II, O.R.; Smith, P.W.; Adams, C.R.; Maloney, P.J.

    1975-01-01

    Using a preionization scheme based on the Malter effect, small-signal gains >5%/cm at 10.6 μm have been produced in a 1-mm 2 -cross-section waveguide CO 2 amplifier at total operating pressures of 100--760 Torr. Comparisons are made between this preionization scheme and those using electron beams

  4. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.

    Science.gov (United States)

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John

    2016-04-10

    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives.

  5. Texture characterisation of hexagonal metals: Magnesium AZ91 alloy, welded by laser processing

    International Nuclear Information System (INIS)

    Kouadri, A.; Barrallier, L.

    2006-01-01

    Cooled and cast magnesium AZ91 alloy was welded using a CO 2 laser. The changes in the microstructure were analysed by optical and scanning electron microscopy and X-ray diffraction. Modification of the anisotropic properties was evaluated by the characterization of the texture in the base metal, in the core of the welded zone and in the welded zone close to the surface. In the two former zones, we have not observed a texture. Laser welding only leads to a change of the grain size and a disappearance of the eutectic phase. By contrast, in the welded zone close to the surface, the laser process leads both to a finer microstructure, to a loss of the Al-content and to the presence of several texture components. In this zone, our results showed that these textures are on pyramidal {101-bar 1} and prismatic {101-bar 0} planes. Much of the explanation for such texture rests with the fact that during the laser welding, material solidifies in strong non-equilibrium conditions. The kinetics of the nucleation and the growth are partly controlled by the high-rise and high fall of the temperature and the power produced by the laser process. The nature of the texture has been explained by the presence of a columnar to equiaxed transition in the welded zone

  6. Clinical efficacy of utilizing Ultrapulse CO2 combined with fractional CO2 laser for the treatment of hypertrophic scars in Asians-A prospective clinical evaluation.

    Science.gov (United States)

    Lei, Ying; Li, Shi Feng; Yu, Yi Ling; Tan, Jun; Gold, Michael H

    2017-06-01

    Hypertrophic scarring is seen regularly. Tissue penetration of laser energy into hypertrophic scars using computer defaults from some lasers may be insufficient and penetration not enough. We have developed a treatment with an interrupted laser "drilling" by the Ultrapulse CO 2 (Manual Fractional Technology, MFT) and, a second pass, with fractional CO 2 . The MFT with fractional CO 2 lasers to treat hypertrophic scars is evaluated. A total of 158 patients with hypertrophic scars had three sessions of MFT with fractional CO 2 laser at 3-month intervals. Evaluations made before and 6 months after the 3rd treatment: (1) the Vancouver Scar Scale (VSS), (2) the University of North Carolina (UNC) Scar Scale, and (3) a survey of patient satisfaction. All data were analyzed using a t-test before and after treatment. The VSS score decreased from 9.35 to 3.12 (Plaser drilling by MFT and a fractional CO2 laser had profound effects on the hypertrophic scars treated. It works by increasing the penetration depth of the CO 2 laser in the scar tissue, exerting more precise effects on the hypertrophic scars. MFT combined with fractional CO 2 laser has the potential to be a major advance in the treatment of hypertrophic scars. © 2017 Wiley Periodicals, Inc.

  7. Laser heat treatment of welds for various stainless steels

    Science.gov (United States)

    Dontu, O.; Ganatsios, S.; Alexandrescu, N.; Predescu, C.

    2008-03-01

    The paper presents a study concerning the post - weld heat treatment of a duplex stainless steel. Welded joint samples were surface - treated using the same laser source adopted during welding in order to counterbalance the excess of ferrite formed in the welding process.

  8. A compact spark pre-ionized pulser sustainer TE–CO2 laser

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Compact transversely excited atmospheric (TEA) CO2 lasers (Marchetti et al 1983) find numerous scientific and technical applications. These include pulsed laser deposition (PLD). (Sankur et al 1988), photo-chemistry (Baranov 1983), lidar (Killinger & Menyuk 1981), optical pumping of molecular lasers (Midorikawa et al ...

  9. Effect of surface-breakdown plasma on metal drilling by pulsed CO2-laser radiation

    Science.gov (United States)

    Arutiunian, P. V.; Baranov, V. Iu.; Bobkov, I. V.; Bol'Shakov, L. A.; Dolgov, V. A.

    1988-03-01

    The effect of low-threshold surface breakdown produced by short (5-microsec) CO2-laser pulses on the metal drilling process is investigated. Data on the interaction of metals with laser pulses having the same duration but different shape are shown to be different. The effect of the ambient atmospheric pressure on the laser drilling process is investigated.

  10. Laser tissue welding in ophthalmic surgery.

    Science.gov (United States)

    Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Pini, Roberto

    2008-09-01

    Laser welding of ocular tissues is an alternative technique or adjunct to conventional suturing in ophthalmic surgery. It is based on the photothermal interaction of laser light with the main components of the extracellular matrix of connective tissues. The advantages of the welding procedure with respect to standard suturing and stapling are reduced operation times, lesser inflammation, faster healing and increased ability to induce tissue regeneration. The procedure we set up is based on the use of an infrared diode laser in association with the topical application of the chromophore Indocyanine Green. Laser light may be delivered either continuously or in pulses, thus identifying two different techniques that have been applied clinically in various types of transplants of the cornea.

  11. Fractional CO2 laser treatment for vaginal laxity: A preclinical study.

    Science.gov (United States)

    Kwon, Tae-Rin; Kim, Jong Hwan; Seok, Joon; Kim, Jae Min; Bak, Dong-Ho; Choi, Mi-Ji; Mun, Seok Kyun; Kim, Chan Woong; Ahn, Seungwon; Kim, Beom Joon

    2018-05-07

    Various studies have investigated treatment for vaginal laxity with microablative fractional carbon dioxide CO 2 laser in humans; however, this treatment has not yet been studied in an animal model. Herein, we evaluate the therapeutic effects of fractional CO 2 laser for tissue remodeling of vaginal mucosa using a porcine model, with the aim of improving vaginal laxity. The fractional CO 2 laser enables minimally invasive and non-incisional procedures. By precisely controlling the laser energy pulses, energy is sent to the vaginal canal and the introitus area to induce thermal denaturation and contraction of collagen. We examined the effects of fractional CO 2 laser on a porcine model via clinical observation and ultrasound measurement. Also, thermal lesions were histologically examined via hematoxylin-eosin staining, Masson's trichrome staining, and Elastica van Gieson staining and immunohistochemistry. The three treatment groups, which were determined according to the amount of laser-energy applied (60, 90, and 120 mJ), showed slight thermal denaturation in the vaginal mucosa, but no abnormal reactions, such as excessive hemorrhaging, vesicles, or erythema, were observed. Histologically, we also confirmed that the denatured lamina propria induced by fractional CO 2 laser was dose-dependently increased after laser treatment. The treatment groups also showed an increase in collagen and elastic fibers due to neocollagenesis and angiogenesis, and the vaginal walls became firmer and tighter because of increased capillary and vessel formation. Also, use of the fractional CO 2 laser increased HSP (heat shock protein) 70 and collagen type I synthesis. Our results show that microablative fractional CO 2 laser can produce remodeling of the vaginal connective tissue without causing damage to surrounding tissue, and the process of mucosa remodeling while under wound dressings enables collagen to increase and the vaginal wall to become thick and tightened. Lasers Surg. Med

  12. Micro and nanohardness testing of laser welds

    Czech Academy of Sciences Publication Activity Database

    Šebestová, H.; Čtvrtlík, Radim; Chmelíčková, H.; Tomáštík, J.

    2014-01-01

    Roč. 15, č. 3 (2014), s. 247-253 ISSN 1454-9069 R&D Projects: GA TA ČR TA01010517 Institutional support: RVO:68378271 Keywords : Vickers microhardness * depth sensing indentation * laser welding Subject RIV: JP - Industrial Processing Impact factor: 1.658, year: 2014

  13. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    Science.gov (United States)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  14. A DC excited waveguide multibeam CO2 laser using high frequency ...

    Indian Academy of Sciences (India)

    High power industrial multibeam CO2 lasers consist of a large number of closely packed ... by producing pre-ionization using an auxiliary high frequency pulsed ... of few kilowatts output power, multibeam technique is used [2]. .... gas mixture of CO2, N2 and He enters in each discharge tube individually from .... Commercial.

  15. Pulse forming networks for fast pumping of high power electron-beam-controlled CO2 lasers

    International Nuclear Information System (INIS)

    Riepe, K.B.

    1975-01-01

    The transverse electric discharge is a widely used technique for pumping CO 2 lasers at high pressures for the generation, simply and efficiently, of very high power laser pulses. The development of the electron-beam-controlled discharge has allowed the application of the transverse discharge to large aperture, very high energy systems. LASL is now in the process of assembly and checkout of a CO 2 laser which is designed to generate a one nanosecond pulse containing 10 kilojoules, for use in laser fusion experiments. The front end of this laser consists of a set of preamplifiers and a mode locked oscillator with electro-optic single pulse switchout. The final amplifier stage consists of four parallel modules, each one consisting of a two-sided electron gun, and two 35 x 35 x 200 cm gas pumping regions operating at a pressure of 1800 torr with a 3/ 1 / 4 /1 (He/N 2 /CO 2 ) laser mix. (auth)

  16. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    Silva, V.L. da.

    1986-01-01

    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N 2 , NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N 2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author) [pt

  17. Endoscopic myotomy of the cricopharyngeal muscle with CO2 laser surgery.

    NARCIS (Netherlands)

    Takes, R.P.; Hoogen, F.J.A. van den; Marres, H.A.M.

    2005-01-01

    BACKGROUND: Cricopharyngeal dysfunction may lead to severe dysphagia and aspiration. Several treatment modalities are available, such as external myotomy of the muscle, dilatation, and local infiltration with botulinum toxin. Recently, endoscopic transmucosal myotomies using a CO2 laser have been

  18. Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers

    International Nuclear Information System (INIS)

    Stuermer, E.; von Allmen, M.

    1978-01-01

    Drilling of highly reflective metals in an ambient atmosphere with single TEA-CO 2 -laser pulses of fluences between 300 and 6000 J/cm 2 is reported. The drilling process was investigated by measuring the time-resolved laser power reflected specularly from the targets during the interaction and by analyzing the craters produced. Experiments were performed in ambient air, argon, and helium. Target damage was found to be strongly influenced by a laser-supported detonation (LSD) wave in the ambient gas. If the laser fluence exceeded a material-dependent damage threshold (copper: 300 J/cm 2 ), drilling occurred, but the efficiency was inversely related to the duration of the LSD wave. Efficient material removal is possible if the LSD wave can be dissipated within a small fraction of the laser pulse duration. This was achieved by small-F-number focusing of TEM 00 laser pulses of 5-μs duration. Replacing the ambient air at the target by a gas of lower density results in a further significant reduction of LSD-wave lifetime, and a correlated increase of the drilling yield. On copper targets a maximum drilling yield of 10 -5 cm 3 /J was observed in ambient helium at a laser fluence of 1 kJ/cm 2

  19. Advanced concept of 100 kJ CO2 laser module for reactor laser

    International Nuclear Information System (INIS)

    Nakai, S.; Matoba, M.; Fujita, H.; Kawamura, Y.; Daido, H.

    1980-01-01

    The design study of 100 kJ CO 2 laser module for inertial fusion confinement is in progress. The basic requirement for the design of a 100 kJ laser is that the structure should be simple enough so as to be one module which can be compiled to set up a 1 MJ system. The requirements imposed on the design are the single gain medium to extract 100 kJ, the multi-pass amplification to achieve high efficiency, laser beam passing the gain medium many times, the possibility to preserve the arbitrary angle of beam injection, and the possibility of construction based on the established or tractable techniques. The gain medium of cylindrical shape was adopted to preserve all directional access with equal configuration. Demonstration experiments are planned to find out the optimized condition regarding to the vibrational relaxation, the time interval of each passage of a laser pulse, gas mixture and pressure, and pumping condition. The optical design of one beam for a 100 kJ test module is presented. This optical design named PENTAGONAL 10 has the following features; compact optics, high parasitic oscillation threshold, and the same intervals of multiple passing for energy extraction with four beams. The laser is an electron beam (E-beam)-controlled discharge laser. An electric power source and feed through were also studied. The construction of a 100 kJ laser system will be possible with the conventional techniques. (Kato, T.)

  20. TEA CO2 laser machining of CFRP composite

    OpenAIRE

    Salama, Adel; Li, Lin; Mativenga, Paul; Whitehead, David

    2016-01-01

    Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO...

  1. Influence of Metal Transfer Stability and Shielding Gas Composition on CO and CO2 Emissions during Short-circuiting MIG/MAG Welding

    Directory of Open Access Journals (Sweden)

    Valter Alves de Meneses

    Full Text Available Abstract: Several studies have demonstrated the influence of parameters and shielding gas on metal transfer stability or on the generation of fumes in MIG/MAG welding, but little or nothing has been discussed regarding the emission of toxic and asphyxiating gases, particularly as it pertains to parameterization of the process. The purpose of this study was to analyze and evaluate the effect of manufacturing aspects of welding processes (short-circuit metal transfer stability and shielding gas composition on the gas emission levels during MIG/MAG welding (occupational health and environmental aspects. Using mixtures of Argon with CO2 and O2 and maintaining the same average current and the same weld bead volume, short-circuit welding was performed with carbon steel welding wire in open (welder’s breathing zone and confined environments. The welding voltage was adjusted to gradually vary the transfer stability. It was found that the richer the composition of the shielding gas is in CO2, the more CO and CO2 are generated by the arc. However, unlike fume emission, voltage and transfer stability had no effect on the generation of these gases. It was also found that despite the large quantity of CO and CO2 emitted by the arc, especially when using pure CO2 shielding gas, there was no high level residual concentration of CO and CO2 in or near the worker’s breathing zone, even in confined work cells.

  2. Early treatment using fractional CO2 laser before skin suture during scar revision surgery in Asians.

    Science.gov (United States)

    Du, Feiya; Yu, Yusheng; Zhou, Zhiqin; Wang, Liujia; Zheng, Shusen

    2018-04-01

    Fractional CO 2 laser is one of the most effective treatment options used to resurface scars. However, most previous studies have been performed on mature scars at least 2 months after surgery. Recent studies have emphasized the importance of early treatment to reduce scar formation. In the present study, we described our experience with fractional CO 2 laser intervention before skin suture during scar revision surgery in Asians, and found the treatment was safe and effective.

  3. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  4. Fabrication of microlens and microlens array on polystyrene using CO 2 laser

    KAUST Repository

    Fan, Yiqiang

    2011-11-01

    This study presents a new process for fabricating microlens and microlens arrays directly on a surface of polystyrene using a CO2 laser. The working spot of the polystyrene is heated locally by a focused CO2 laser beam, which tends to have a hyperboloid profile due to the surface tension and can be used as a microlens. The microlenses with different dimensions were fabricated by changing the power of the laser beam. Microlens array was also fabricated with multiple scans of the laser beam on the polystyrene surface. © (2012) Trans Tech Publications, Switzerland.

  5. CO2 laser photo-induced decomposition of ammoniated ammonium ions

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Soga, Takesi; Suzuki, Kazuya; Moriyama, Noboru; Ohno, Shin-ichi

    1995-01-01

    Photo-induced decomposition of ammoniated (clustered) ammonium ions was studied using a CO 2 laser to excite vibrational levels of the cluster ion. A tandem mass spectrometer (TMS) was installed with two quadrupole mass filters, a corona discharge ionization chamber, and a series of einzel lenses. Cluster ions of NH 4 + ·nNH 3 with n=1-7 were formed in TMS, and found to decompose at the frequency of 1077 cm -1 to an extent in proportional to laser intensity. CO 2 laser between 925 and 1055 do not decompose the cluster ions with laser intensities examined. (author)

  6. Surface modification of polyethylene terephthalate using excimer and CO2 laser

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2002-01-01

    Complete text of publication follows. Attempts have been made to evaluate microstructuring which affects cell behaviour, physical and chemical changes produced by laser irradiation onto the polyethylene terephthalate (PET) surface. The surfaces of PET were irradiated using the CO 2 laser and KrF excimer pulsed laser. The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-IR) and contact angle measurements. ATR-IR Spectra showed that the crystallinity in the surface region decreased due to the CO 2 laser and excimer laser irradiation. Scanning electron microscopy observations showed that the morphology of the laser irradiated PET surface changed due to laser irradiation. The results obtained from the cell behaviour studies revealed that changes of physico-chemical properties of the laser treated PET film have significantly changed in comparison with the unmodified PET

  7. Measurements of sulfur compounds in CO2 by diode laser atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Franzke, J.; Stancu, D.G.; Niemax, K.

    2003-01-01

    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry

  8. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool

  9. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  10. Measurement of laser welding pool geometry using a closed convex active contour model

    International Nuclear Information System (INIS)

    Zheng, Rui; Zhang, Pu; Duan, Aiqing; Xiao, Peng

    2014-01-01

    The purpose of this study was to develop a computer vision method to measure geometric parameters of the weld pool in a deep penetration CO 2 laser welding system. Accurate measurement was achieved by removing a huge amount of interference caused by spatter, arc light and plasma to extract the true weld pool contour. This paper introduces a closed convex active contour (CCAC) model derived from the active contour model (snake model), which is a more robust high-level vision method than the traditional low-level vision methods. We made an improvement by integrating an active contour with the information that the weld pool contour is almost a closed convex curve. An effective thresholding method and an improved greedy algorithm are also given to complement the CCAC model. These influences can be effectively removed by using the CCAC model to acquire and measure the weld pool contour accurately and relatively fast. (paper)

  11. Laser Wakefield Acceleration Driven by a CO2 Laser (STELLA-LW) - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Wayne D

    2008-06-27

    The original goals of the Staged Electron Laser Acceleration – Laser Wakefield (STELLA-LW) program were to investigate two new methods for laser wakefield acceleration (LWFA). In pseudo-resonant LWFA (PR-LWFA), a laser pulse experiences nonlinear pulse steepening while traveling through the plasma. This steepening allows the laser pulse to generate wakefields even though the laser pulse length is too long for resonant LWFA to occur. For the conditions of this program, PR-LWFA requires a minimum laser peak power of 3 TW and a low plasma density (10^16 cm^-3). Seeded self-modulated LWFA (seeded SM-LWFA) combines LWFA with plasma wakefield acceleration (PWFA). An ultrashort (~100 fs) electron beam bunch acts as a seed in a plasma to form a wakefield via PWFA. This wakefield is subsequently amplified by the laser pulse through a self-modulated LWFA process. At least 1 TW laser power and, for a ~100-fs bunch, a plasma density ~10^17 cm^-3 are required. STELLA-LW was located on Beamline #1 at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). The ATF TW CO2 laser served as the driving laser beam for both methods. For PR-LWFA, a single bunch was to probe the wakefield produced by the laser beam. For seeded SM-LWFA, the ATF linac would produce two bunches, where the first would be the seed and the second would be the witness. A chicane would compress the first bunch to enable it to generate wakefields via PWFA. The plasma source was a short-length, gas-filled capillary discharge with the laser beam tightly focused in the center of the capillary, i.e., no laser guiding was used, in order to obtain the needed laser intensity. During the course of the program, several major changes had to be made. First, the ATF could not complete the upgrade of the CO2 laser to the 3 TW peak power needed for the PR-LWFA experiment. Therefore, the PR-LWFA experiment had to be abandoned leaving only the seeded SM-LWFA experiment. Second, the ATF discovered that the

  12. Accelerator mass spectrometry 14C determination in CO2 produced from laser decomposition of aragonite.

    Science.gov (United States)

    Rosenheim, Brad E; Thorrold, Simon R; Roberts, Mark L

    2008-11-01

    The determination of (14)C in aragonite (CaCO(3)) decomposed thermally to CO(2) using an yttrium-aluminum-garnet doped neodymium laser is reported. Laser decomposition accelerator mass spectrometry (LD-AMS) measurements reproduce AMS determinations of (14)C from the conventional reaction of aragonite with concentrated phosphoric acid. The lack of significant differences between these sets of measurements indicates that LD-AMS radiocarbon dating can overcome the significant fractionation that has been observed during stable isotope (C and O) laser decomposition analysis of different carbonate minerals. The laser regularly converted nearly 30% of material removed into CO(2) despite it being optimized for ablation, where laser energy breaks material apart rather than chemically altering it. These results illustrate promise for using laser decomposition on the front-end of AMS systems that directly measure CO(2) gas. The feasibility of such measurements depends on (1) the improvement of material removal and/or CO(2) generation efficiency of the laser decomposition system and (2) the ionization efficiency of AMS systems measuring continuously flowing CO(2).

  13. CO2 laser interaction with magnetically confined plasmas. Annual report

    International Nuclear Information System (INIS)

    Vlases, G.C.; Pietrzyk, Z.A.

    1977-08-01

    The experimental program involves two basic experimental configurations termed the slow (or steady) solenoid, and the fast solenoid. In the former, the field is essentially steady during the experiment lifetime, the gas (plasma) remains in contact with the wall, and all the heating is done by the laser. In the fast solenoid, the field rises on a timescale comparable to the laser pulse length, removing the plasma from the wall, and contributing to the plasma energy content via compression work. In the slow solenoid, preionization is generally not used, and the laser both creates the plasma and heats it. In the fast solenoid, the preionization technique is relatively critical as it must create conditions leading to a true particle minimum on axis in order to insure favorable refraction of the laser beam (''trapping''). Substantial progress has been made in both experiments this year, particularly with respect to diagnostic capabilities. In addition, the theoretical effort has expanded considerably. Highlights of this year's program are listed and details are contained in the balance of the report

  14. Fractional CO2 lasers contribute to the treatment of stable non-segmental vitiligo.

    Science.gov (United States)

    Yuan, Jinping; Chen, Hongqiang; Yan, Ru; Cui, Shaoshan; Li, Yuan-Hong; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2016-12-01

    Stable non-segmental vitiligo is often resistant to conventional therapies. The purpose of this study was to investigate the effect of three types of fractional lasers in the treatment of stable non-segmental vitiligo. Twenty patients were enrolled in the study. The vitiligo lesions of each patient were divided into four treatment parts, and all parts were treated with narrowband ultraviolet-B (NB-UVB). Three of the four parts were respectively treated with three types of fractional lasers (two ablative 10,600-nm CO 2 lasers and one non-ablative 1,565-nm laser), followed by topical betamethasone solution application. The treatment period lasted six months. Efficacy and satisfaction were respectively assessed by dermatologists and patients. The ablative CO 2 lasers, in combination with topical betamethasone solution and NB-UVB, achieved marked to excellent improvement on white patches assessed by dermatologists. Patients showed high satisfaction scores for the treatments. The non-ablative 1,565-nm fractional laser did not provide any further benefit in the treatment of vitiligo. No severe adverse events developed for any of the treatments. The treatment protocol with ablative CO 2 lasers, in combination with topical betamethasone solution and NB-UVB, was suitable for stable non-segmental vitiligo. For vitiligo, the ablative fractional CO 2 laser is more effective than the non-ablative fractional laser.

  15. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  16. Numerical modeling of keyhole dynamics in laser welding

    Science.gov (United States)

    Zhang, Wen-Hai; Zhou, Jun; Tsai, Hai-Lung

    2003-03-01

    Mathematical models and the associated numerical techniques have been developed to study the following cases: (1) the formation and collapse of a keyhole, (2) the formation of porosity and its control strategies, (3) laser welding with filler metals, and (4) the escape of zinc vapor in laser welding of galvanized steel. The simulation results show that the formation of porosity in the weld is caused by two competing mechanisms: one is the solidification rate of the molten metal and the other is the speed that molten metal backfills the keyhole after laser energy is terminated. The models have demonstrated that porosity can be reduced or eliminated by adding filler metals, controlling laser tailing power, or applying an electromagnetic force during keyhole collapse process. It is found that a uniform composition of weld pool is difficult to achieve by filler metals due to very rapid solidification of the weld pool in laser welding, as compared to that in gas metal arc welding.

  17. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser......Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  18. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Science.gov (United States)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  19. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    CERN Document Server

    Yi, Longqing; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO 2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  20. Pseudoxanthoma Elasticum Treatment with Fractional CO2 Laser

    Directory of Open Access Journals (Sweden)

    Alessandra Grassi Salles, MD, PhD

    2014-09-01

    Full Text Available Summary: Pseudoxanthoma elasticum (PE is a rare genetic disease characterized by calcification and fragmentation of elastic fibers of the skin, retina, and cardiovascular system. We report a case of PE in which fractional carbon dioxide laser treatment was successfully used to achieve improvement of the cervical skin with 2-year follow-up, in a patient with Fitzpatrick skin type IV. After the fifth session, the patient presented with a local herpes infection. The postlaser reaction of the PE skin was similar to that of the normal skin, in terms of the duration of redness, pain, swelling, and duration of crusting. The overall cosmetic result was satisfactory, with improvement in skin texture, irregularity, volume, and distensibility. The herpetic infection reinforces the value of antiviral prophylaxis during laser treatment of extrafacial areas.

  1. CO2 laser cutting of advanced high strength steels (AHSS)

    International Nuclear Information System (INIS)

    Lamikiz, A.; Lacalle, L.N. Lopez de; Sanchez, J.A.; Pozo, D. del; Etayo, J.M.; Lopez, J.M.

    2005-01-01

    This article demonstrates the optimum working areas and cutting conditions for the laser cutting of a series of advanced high strength steels (AHSS). The parameters that most influence the cutting of sheet metal have been studied and the results have been divided into two large groups with thickness of more and less than 1 mm. The influence of the material and, more important, the effect of coating have been taken into account. The results, have demonstrate very different behaviours between the thinnest and thickest sheets, whilst the variation of the cutting parameters due to the influence of the material is less relevant. The optimum cutting areas and the quality of the cut evaluated with different criteria are presented. Finally, the best position for the laser beam has been observed to be underneath the sheet

  2. Closed-Cycle, Frequency-Stable CO2 Laser Technology

    Science.gov (United States)

    Batten, Carmen E. (Editor); Miller, Irvin M. (Editor); Wood, George M., Jr. (Editor); Willetts, David V. (Editor)

    1987-01-01

    These proceedings contain a collection of papers and comments presented at a workshop on technology associated with long-duration closed-cycle operation of frequency-stable, pulsed carbon dioxide lasers. This workshop was held at the NASA Langley Research Center June 10 to 12, 1986. The workshop, jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Royal Signals and Radar Establishment (RSRE), was attended by 63 engineers and scientists from the United States and the United Kingdom. During the 2 1/2 days of the workshop, a number of issues relating to obtaining frequency-stable operation and to the catalytic control of laser gas chemistry were discussed, and specific recommendations concerning future activities were drafted.

  3. Application Of CO2 Lasers To High Speed Blanking

    Science.gov (United States)

    Grenier, L. E.

    1986-11-01

    While laser cutting of sheetmetal has attained wide acceptance in the automotive industry for the purposes of prototyping and very limited preproduction work, the production rates possible with currently available systems have precluded the use of this technique in a production environment. The device design to be described embodies a high speed X-Y positioner carrying a cutting head with limited Z-axis capability. This approach confers two main benefits, first, production rate is limited only by laser power, since the positioner technology selected will permit movement at rates up to 1.5 m/s (60 in/s), second, the use of a high speed non-contact surface follower to control the Z-axis movement reduces the need to clamp the workpiece rigidly to a precision reference surface. The realized reduction of the clamping requirement permits some latitude in the feed methods that can be employed, allowing the use of coil or sheet feeding as appropriate. The author will provide estimated production rates for the proposed design and demonstrate that a suitable choice of laser source and material feed will permit the production of parts at a rate and cost comparable to conventional blanking with the advantage of much greater flexibility and reduced retooling time.

  4. Adaptive metal mirror for high-power CO2 lasers

    Science.gov (United States)

    Jarosch, Uwe-Klaus

    1996-08-01

    Spherical mirrors with a variable radius of curvature are used inside laser resonators as well as in the beam path between the laser and the workpiece. Commercially-available systems use piezoelectric actuators, or the pressure of the coolant, to deform the mirror surface. In both cases, the actuator and the cooling system influence each other. This interaction is avoided through the integration of the cooling system with the flexible mirror membrane. A multi- channel design leads to an optimized cooling effect, which is necessary for high power applications. The contour of the variable metal mirror depends on the mounting between the membrane and the mirror body and on the distribution of forces. Four cases of deformation can be distinguished for a circular elastic membrane. The realization of an adaptive metal mirror requires a technical compromise to be made. A mechanical construction is presented which combines an elastic hinge with the inlet and outlet of the coolant. For the deformation of the mirror membranes two actuators with different character of deformation are used. The superposition of the two deformations results in smaller deviations from the spherical surface shape than can be achieved using a single actuator. DC proportional magnets have been introduced as cheap and rigid actuators. The use of this adaptive mirror, either in a low pressure atmosphere of a gas laser resonator, or in an extra-cavity beam path is made possible through the use of a ventilation system.

  5. Laser penetration spike welding : A microlaser welding technique enabling novel product designs and constructions

    NARCIS (Netherlands)

    Dijken, D.K; Hoving, W.; de Hosson, J.T.M.

    A novel method for laser penetration microspot welding of sheet metal is presented. With this so called "laser spike-welding," large gap tolerances are allowed. Depending on the ratio of laser spot radius to top plate thickness, gaps of 100% of the top layer thickness and more can be bridged. With

  6. Optimisation of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis

    Directory of Open Access Journals (Sweden)

    Shanmugarajan B.

    2016-08-01

    Full Text Available Creep strength enhanced ferritic (CSEF steels are used in advanced power plant systems for high temperature applications. P92 (Cr–W–Mo–V steel, classified under CSEF steels, is a candidate material for piping, tubing, etc., in ultra-super critical and advanced ultra-super critical boiler applications. In the present work, laser welding process has been optimised for P92 material by using Taguchi based grey relational analysis (GRA. Bead on plate (BOP trials were carried out using a 3.5 kW diffusion cooled slab CO2 laser by varying laser power, welding speed and focal position. The optimum parameters have been derived by considering the responses such as depth of penetration, weld width and heat affected zone (HAZ width. Analysis of variance (ANOVA has been used to analyse the effect of different parameters on the responses. Based on ANOVA, laser power of 3 kW, welding speed of 1 m/min and focal plane at −4 mm have evolved as optimised set of parameters. The responses of the optimised parameters obtained using the GRA have been verified experimentally and found to closely correlate with the predicted value.

  7. Carbon dioxide (CO2) laser treatment of cutaneous papillomas in a common snapping turtle, Chelydra serpentina.

    Science.gov (United States)

    Raiti, Paul

    2008-06-01

    Carbon dioxide (CO2) laser was used to treat multiple cutaneous papillomas on an adult female common snapping turtle, Chelydra serpentina serpentina. A combination of excisional and ablative techniques provided excellent intraoperative visibility and postoperative results due to the laser's unique ability to incise and vaporize soft tissue.

  8. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation

    NARCIS (Netherlands)

    Brugmans, M. J.; Kemper, J.; Gijsbers, G. H.; van der Meulen, F. W.; van Gemert, M. J.

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an

  9. Acoustic waves in transversely excited atmospheric CO2 laser discharges: effect on performance and reduction techniques

    CSIR Research Space (South Africa)

    von Bergmann, HM

    2008-08-01

    Full Text Available Results are presented on the influence of acoustic waves on the performance of high-repetition-rate TEA CO2 lasers. It is shown that acoustic waves generated inside the laser cavity lead to nonuniform discharges, resulting in a deterioration...

  10. Comparison of results with CO2 laser and traditional surgical treatment of stage I malignant melanoma

    International Nuclear Information System (INIS)

    Reali, U.M.; Donati, E.; Quercetani, R.; Ciardi, C.; Chiarugi, C.

    1987-01-01

    The follow-up data on 39 cases of stage I malignant melanoma treated with CO 2 laser are compared to those of an analogous group of cases treated by traditional surgical methods and selected for their clinical and pathologic similarities with the laser-treated group. The findings ware expressed in terms of tumor-free time and were evaluated by variance analysis. The data showed that traditional methods gave better results. CO 2 laser surgery requires longer headling time, which may have a negative effect on the course of the disease

  11. Effects of heat treatments on laser welded Mg-rare earth alloy NZ30K

    International Nuclear Information System (INIS)

    Dai Jun; Huang Jian; Li Min; Li Zhuguo; Dong Jie; Wu Yixiong

    2011-01-01

    Highlights: → Firstly find the tadpole-shape precipitates in the welding joint. → The precipitation strengthening can account for 79% of the total strength. → The results can provide some insights on the application of Mg-RE alloy. - Abstract: In this study, the effects of heat treatments on the quality of laser welded Mg-rare earth alloy NZ30K were systematically studied. The microstructure and mechanical properties of joints, welded by a 15 kW high power CO 2 laser, under different heat treatments had been tested and analyzed. The results indicated that the heat treatment plays an important role in the mechanical strength of laser welded joint of NZ30K. The microstructure of samples after the solution treatment as well as aging treatment is different from that of the as-received welded joint. For solution treatment, although the microstructure is much different from that of as-received welded joint, the solution strengthening effect is not obvious. There are lots of precipitates in the fusion zone after the aging treatment, which will significantly enhance the ultimate tensile strength (UTS) and the yield tensile strength (YTS) of the welding joint. 79% of YTS is caused by precipitation strengthening. Therefore, the results implied that the UTS and YTS can be greatly improved by proper heat treatment.

  12. Diode laser welding of aluminum to steel

    International Nuclear Information System (INIS)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica

    2011-01-01

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  13. Laser penetration spike welding: a welding tool enabling novel process and design opportunities

    Science.gov (United States)

    Dijken, Durandus K.; Hoving, Willem; De Hosson, J. Th. M.

    2002-06-01

    A novel method for laser welding for sheet metal. is presented. This laser spike welding method is capable of bridging large gaps between sheet metal plates. Novel constructions can be designed and manufactured. Examples are light weight metal epoxy multi-layers and constructions having additional strength with respect to rigidity and impact resistance. Its capability to bridge large gaps allows higher dimensional tolerances in production. The required laser systems are commercially available and are easily implemented in existing production lines. The lasers are highly reliable, the resulting spike welds are quickly realized and the cost price per weld is very low.

  14. Thermal analysis of laser welding for ITER correction coil case

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C., E-mail: fangchao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Song, Y.T.; Wu, W.Y.; Wei, J.; Xin, J.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Wu, H.P.; Salminen, A. [Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2015-11-15

    Highlights: • Morphology of simulated heat source is found to be close to the welded joint sample. • The FEA temperature distribution shows good agreement with experimental measurements. • Laser welding process used on ITER correction coil case will not harm the winding pack. - Abstract: This paper presents the simulation results of 3D finite element analysis (FEA) of laser welding processes for the ITER correction coil case welding; predicts the temperature distribution and compares it with the experimental result to evaluate the impact to the properties of winding pack during the welding process. A specimen of coil case was modeled and simulated by using specialized welding simulation software SYSWELD, Modeling used austenitic stainless steel 316LN as the specimen material and a 3D Conical Gaussian was used as a heat source model. A plate sample was welded before the FE modeling in order to obtain the laser welding parameters and the Gaussian parameters of molten pool. To verify the simulation results, a coil case sample was welded using laser welding with welding parameters that matched the model, and the corresponding temperature values were measured using thermocouples. Compared with the FEA results, it was found that the FEA temperature distribution shows good agreement with the experimental measurements and the laser welding process will not harm the winding pack.

  15. Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization

    Science.gov (United States)

    Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.

    1999-01-01

    The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.

  16. Welding with high power fiber lasers - A preliminary study

    International Nuclear Information System (INIS)

    Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J.

    2007-01-01

    The new generation of high power fiber lasers presents several benefits for industrial purposes, namely high power with low beam divergence, flexible beam delivery, low maintenance costs, high efficiency and compact size. This paper presents a brief review of the development of high power lasers, and presents initial data on welding of API 5L: X100 pipeline steel with an 8 kW fiber laser. Weld bead geometry was evaluated and transition between conduction and deep penetration welding modes was investigated

  17. Fiber laser welding of nickel based superalloy Inconel 625

    Science.gov (United States)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  18. Laser Welding of Shape Memory Alloys

    Science.gov (United States)

    Oliveira, Joao Pedro de Sousa

    Joining of shape memory alloys is of great importance for both functional and structural applications as it can provide an increased design flexibility. In this work similar NiTi/NiTi, CuAlMn/CuAlMn and dissimilar NiTi/Ti6Al4V joints were produced by Nd:YAG laser. For the NiTi/NiTi joints the effect of process parameters (namely the heat input) on the superelastic and shape memory effects of the joints was assessed and correlated to its microstructure. Microstructural analysis was performed by means of X-ray diffraction using synchrotron radiation, which allowed for fine probing of the welded material. It was noticed the presence of martensite in the thermally affected regions, while the base material remained fully austenitic. The mechanisms for the formation of martensite, at room temperature, due to the welding procedure are presented and the influence of this phase on the functional properties of the joints is discussed. Additionally, the residual stresses were determined using synchrotron X-ray diffraction. For the dissimilar NiTi/Ti6Al4V joints, a Niobium interlayer was used to prevent the formation undesired brittle intermetallic compounds. Additionally, it was observed that positioning of the laser beam was of significant importance to obtain a sound joint. The mechanisms responsible for the joint formation are discussed based on observations with advanced characterization techniques, such as transmission electron microscopy. At the NiTi/Nb interface, an eutectic reaction promotes joining of the two materials, while at the Ti6Al4V/Nb interface fusion and, subsequent solidification of the Ti6Al4V was responsible for joining. Short distance diffusion of Nb to the fusion zone of Ti6Al4V was observed. Although fracture of the dissimilar welded joints occurred at a stress lower than the minimum required for the stress induced transformation, an improvement on the microstructure and mechanical properties, relatively to existing literature, was obtained. Finally

  19. A thyratron-switched modular CO2 TEA laser for infrared photochemical studies

    International Nuclear Information System (INIS)

    Hamilton, N.; Kelly, J.W.; Struve, H.

    1982-09-01

    A thyratron-switched, ultraviolet pre-ionised CO 2 TEA laser, consisting of four modules connected in series, has been designed and constructed. The laser can be operated in the TEM 00 mode and is able to produce 2.5 J per pulse. The design and operation of the laser as a tool for infrared studies is discussed together with an evaluation of the effect of operating parameters on output characteristics

  20. CO 2 laser cutting of MDF . 1. Determination of process parameter settings

    Science.gov (United States)

    Lum, K. C. P.; Ng, S. L.; Black, I.

    2000-02-01

    This paper details an investigation into the laser processing of medium-density fibreboard (MDF). Part 1 reports on the determination of process parameter settings for the effective cutting of MDF by CO 2 laser, using an established experimental methodology developed to study the interrelationship between and effects of varying laser set-up parameters. Results are presented for both continuous wave (CW) and pulse mode (PM) cutting, and the associated cut quality effects have been commented on.

  1. An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces

    OpenAIRE

    MILAN S. TRTICA; SCEPAN S. MILJANIC; NATASA N. STJEPANOVIC

    2000-01-01

    There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. A pulsed TEA CO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lase...

  2. Laser Decontamination of Type 304 Stainless Steel Contaminated with Co2+ and CeO2

    International Nuclear Information System (INIS)

    Won, Hui Jun; Baigalmaa, Byambatseren; Moon, Jei Kwon; Jung, Chong Hun; Lee, Kune Woo

    2009-01-01

    The merits of laser decontamination are a remote operation, a short application time, and the high removal efficiency. And also, generation of the secondary waste is negligible. A series of laser decontamination test by Qswitched Nd:YAG laser at 532 nm were performed on stainless steel specimens artificially contaminated with the Co 2+ and CeO 2 , respectively. Test results were examined by SEM and EPMA

  3. Modeling of plasma plume induced during laser welding

    International Nuclear Information System (INIS)

    Moscicki, T.; Hoffman, J.; Szymanski, Z.

    2005-01-01

    During laser welding, the interaction of intense laser radiation with a work-piece leads to the formation of a long, thin, cylindrical cavity in a metal, called a keyhole. Generation of a keyhole enables the laser beam to penetrate into the work-piece and is essential for deep welding. The keyhole contains ionized metal vapour and is surrounded by molten material called the weld pool. The metal vapour, which flows from the keyhole mixes with the shielding gas flowing from the opposite direction and forms a plasma plume over the keyhole mouth. The plasma plume has considerable influence on the processing conditions. Plasma strongly absorbs laser radiation and significantly changes energy transfer from the laser beam to a material. In this paper the results of theoretical modelling of plasma plume induced during welding with CO 2 laser are presented. The set of equations consists of equation of conservation of mass, energy, momentum and the diffusion equation: ∂ρ/∂t + ∇·(ρ ρ ν =0; ∂(ρE)/∂t + ∇·( ρ ν (ρE + p)) = ∇ (k eff ∇T - Σ j h j ρ J j + (τ eff · ρ ν )) + Σ i κ i I i - R; ∂/∂t(ρ ρ ν ) + ∇· (ρ ρ ν ρ ν ) = - ∇p + ∇(τ) + ρ ρ g + ρ F, where τ is viscous tensor τ = μ[(∇ ρ ν + ∇ ρT ν )-2/3∇· ρ ν I]; ∂/∂t(ρY i ) + ∇·(ρ ρ ν Y i ) = ∇·ρD i,m ∇T i ; where μ ν denotes velocity vector, E - energy, ρ mass density; k - thermal conductivity, T- temperature, κ - absorption coefficient, I i local laser intensity, R - radiation loss function, p - pressure, h j enthalpy, J j - diffusion flux of j component, ν g - gravity, μ F - external force, μ - dynamic viscosity, I - unit tensor, Y i - mass fraction of iron vapor in the gas mixture, D i,m - mass diffusion coefficient. The terms k eff and τ eff contain the turbulent component of the thermal conductivity and the viscosity, respectively. All the material functions are functions of the temperature and mass fraction only. The equations

  4. Pulsed TEA CO2 Laser Irradiation of Titanium in Nitrogen and Carbon Dioxide Gases

    Science.gov (United States)

    Ciganovic, J.; Matavulj, P.; Trtica, M.; Stasic, J.; Savovic, J.; Zivkovic, S.; Momcilovic, M.

    2017-12-01

    Surface changes created by interaction of transversely excited atmospheric carbon dioxide (TEA CO2) laser with titanium target/implant in nitrogen and carbon dioxide gas were studied. TEA CO2 laser operated at 10.6 μm, pulse length of 100 ns and fluence of ˜17 J/cm2 which was sufficient for inducing surface modifications. Induced changes depend on the gas used. In both gases the grain structure was produced (central irradiated zone) but its forms were diverse, (N2: irregular shape; CO2: hill-like forms). Hydrodynamic features at peripheral zone, like resolidified droplets, were recorded only in CO2 gas. Elemental analysis of the titanium target surface indicated that under a nitrogen atmosphere surface nitridation occurred. In addition, irradiation in both gases was followed by appearance of plasma in front of the target. The existence of plasma indicates relatively high temperatures created above the target surface offering a sterilizing effect.

  5. Fundamental experiment for flash removal of aluminum alloy by CO2 laser beam cutting; CO2 laser beam setsudan ni yoru aluminium gokin no ibaritori no kiso jikken

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Y.; Tokunaga, T. [University of Industrial Technology, Kanagawa (Japan); Miyazaki, T. [Chiba Institute of Technology, Chiba (Japan)

    1995-08-25

    CO2 laser beam has been applied to cut of the aluminum alloy. Average cut width, roughness of cut surface and average thickness of heat affected zone are investigated as functions of laser power, cutting speed and assist gas pressure. The average cut width increases with laser power, but it does not depend on the cutting speed. The narrowest average cut width obtained is 0.22mm under the conditions of laser power of 900W and cutting speeds from 600 to 1000mm/min. The roughness of cut surface decreases with decreasing cutting speed. The best smoothness of cut surface obtained is 17 {mu}m (Rmax) , when the conditions are 1100W and 600mm/min. The average thickness of heat affected zone decreases with increasing assist gas pressure. CO2 laser beam cutting is applicable to flash removal from aluminum alloy casting. This process is expected to reduce the need of physical labor and to improve the working conditions in the foundry industry. 32 refs., 10 figs., 2 tabs.

  6. Investigation of a high power UV pre-ionized tea CO2 laser for making purposes

    International Nuclear Information System (INIS)

    Tan Shiw Jin; Low Kum Seng

    1988-01-01

    A simple, high-power TEA CO 2 laser using profiled electrodes with capacitatively-coupled side-arcs to provide preionization is described. The output pulse energy, beam size and beam divergence of this laser is measured as well as the voltage across the two laser electrodes. The effect of various operating parameters on the output pulse energy and efficiency of this laser are also described. The laser, with a maximum output energy of 4 J per pulse, has been used successfully to mark plastic surfaces such as plastic Ic components. (author)

  7. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding

    Science.gov (United States)

    Luo, Masiyang; Shin, Yung C.

    2015-01-01

    In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.

  8. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  9. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

    Directory of Open Access Journals (Sweden)

    Jae Woong Kim

    2013-09-01

    Full Text Available The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power CO2 laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

  10. Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper

    Science.gov (United States)

    Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan

    2018-06-01

    Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.

  11. Application of YAG laser processing in underwater welding and cutting

    Energy Technology Data Exchange (ETDEWEB)

    Ohwaki, Katsura; Morita, Ichiro; Kojima, Toshio; Sato, Shuichi [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2002-09-01

    The high-power YAG laser is a new fabrication tool. The laser torch is easy to combine with complex with complex mechanics because of beam delivery through optical fiber. A direct underwater laser welding technology has been developed and applied to the preservation, maintenance and removal of nuclear power plants. For subdividing or removing operations for retirement of plants, the laser cutting properties were confirmed to allow a maximum cutting thickness of 80 mm. For repairing inner surface of stainless steel tanks, an underwater laser welding system using a remote-controlled robot was developed and the high quality of underwater laser welding was confirmed. (author)

  12. Measurement of Laser Weld Temperatures for 3D Model Input

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grossetete, Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maccallum, Danny O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  13. Development of electrical excited CO2-laser with transversal gas flow as well an axial flowed CO2-laser for material treatment, in particular for cutting

    International Nuclear Information System (INIS)

    Wollermann-Windgasse, R.; Ackermann, F.

    1987-04-01

    The project describes the development of a new generation of CO 2 -lasers using high frequency discharge (13.56 MHz) for laser excitation by capacitive dielectrical input. HF-excitation has a lot of advantages compared with direct current technology, these are higher electrical input power into the plasma, better homogeneity and stability of discharges. In addition to this, HF-excitation shows excellent possibilities for pulsing and modulation. As a result of this, there are compact powerful laser systems with the possibility of scaling up to the multi-kW-range. The examination included fast transversal flowed as well as fast axial flowed systems. In the end of this project development prototypes with laser output power of 1000 W, 1500 W and 3000 W were available. Detailed attempts of application show that these lasers on grounds of excellent laser output quality and controlability of laser power specifically to each process make possible new ways for material treatment by laser. (orig./HP) [de

  14. Laser welding of maraging steel rocket motor casing

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-11-01

    Full Text Available This presentation looks at the experimental procedure and results of laser welding of maraging steel rocker motor casing. It concludes that a fracture occurred in weld metal of autogenous welding and that a fracture occurred in base material when...

  15. Highly efficient repetitively pulsed electric-discharge industrial CO2 laser

    International Nuclear Information System (INIS)

    Osipov, V V; Ivanov, M G; Lisenkov, V V; Platonov, V V

    2002-01-01

    The results of investigations aimed at the development of a repetitively pulsed CO 2 laser with an active medium volume of 1000 cm 3 pumped by a combined discharge are generalised. It is shown that, at pump pulse durations of 200-500 μs the optimal characteristics are achieved at active-medium pressures of 60-100 Torr. In this case, the laser efficiency at the initial stage of its operation can reach 22% and; if the energy dissipated in the region of the cathode potential drop is neglected, the efficiency is 28%. After emission of 3x10 5 pulses, the laser efficiency falls to 12%. It has been found that adding CO with a relative concentration [CO]/[CO 2 ] ∼0.75 increases the input and output power by almost 50%. The lasing efficiency is then 10%-12%, and the service life of the laser is by more than 10 6 pulses with a power decrease of no more than 10%. Adding hydrogen up to a concentration [H 2 ]/[CO 2 ] ∼10 leads to an increase in the energy supplied to the gas due to a decrease in the rate of ionisation processes. However, the optimal ratio is [H 2 ]/[CO 2 ] ∼ 1, at which the output power increases by 15%. In a long-term operating mode, the laser power is 1 kW at a peak power of 10 kW and an efficiency of 12%. (lasers)

  16. Absorption of CO2 laser light by a dense, high temperature plasma

    International Nuclear Information System (INIS)

    Peacock, N.J.; Forrest, M.J.; Morgan, P.D.; Offenberger, A.A.

    1977-01-01

    The interaction between a pulsed, CO 2 laser beam and the plasma produced in a plasma focus device is investigated theoretically and experimentally. The CO 2 laser radiation, directed orthogonal to the pinch axis and along the density gradient only weakly perturbs the focus since the radiation density of 30 J cm -3 (allowing for the Airy enhancement factor near the critical layer), is still less than the plasma thermal energy >=1 kJ cm -3 . On the contrary, the CO 2 laser beam is grossly affected by the plasma and absorption during the compressed pinch phase when the plasma frequency is much more complete than can be predicted by classical resistivity. Density fluctuations at the Langmuir frequency are measured directly for forward scattering from a probe, ruby laser beam. Since the wave numbers correspond to approximately 0.1 the Langmuir waves should appear as electron 'lines' in the scattered spectrum shifted by 427 A from the ruby laser wavelength. At low CO 2 laser pump intensity the electron wave intensity is close to the thermal level. As the pump is increased beyond a threshold of approximately 3x10 9 W/cm -2 (in vacuo) enhanced scattering is observed, reaching a factor of 30 above thermal. A WKB treatment of the electron-ion decay instability which takes into account the linear growth of waves at equal electron and ion temperatures and their convection in an inhomogeneous plasma is reasonably consistent with the observations

  17. Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation.

    Science.gov (United States)

    González-Rodríguez, Alberto; de Dios López-González, Juan; del Castillo, Juan de Dios Luna; Villalba-Moreno, Juan

    2011-05-01

    Various authors have reported more effective fluoridation from the use of lasers combined with topical fluoride than from conventional topical fluoridation. Besides the beneficial effect of lasers in reducing the acid solubility of an enamel surface, they can also increase the uptake of fluoride. The study objectives were to compare the action of CO(2) and GaAlAs diode lasers on dental enamel and their effects on pulp temperature and enamel fluoride uptake. Different groups of selected enamel surfaces were treated with amine fluoride and irradiated with CO(2) laser at an energy power of 1 or 2 W or with diode laser at 5 or 7 W for 15 s each and compared to enamel surfaces without treatment or topical fluoridated. Samples were examined by means of environmental scanning electron microscopy (ESEM). Surfaces of all enamel samples were then acid-etched, measuring the amount of fluoride deposited on the enamel by using a selective ion electrode. Other enamel surfaces selected under the same conditions were irradiated as described above, measuring the increase in pulp temperature with a thermocouple wire. Fluorination with CO(2) laser at 1 W and diode laser at 7 W produced a significantly greater fluoride uptake on enamel (89 ± 18 mg/l) and (77 ± 17 mg/l) versus topical fluoridation alone (58 ± 7 mg/l) and no treatment (20 ± 1 mg/l). Diode laser at 5 W produced a lesser alteration of the enamel surface compared to CO(2) laser at 1 W, but greater pulp safety was provided by CO(2) laser (ΔT° 1.60° ± 0.5) than by diode laser (ΔT° 3.16° ± 0.6). Diode laser at 7 W and CO(2) laser at 2 W both caused alterations on enamel surfaces, but great pulp safety was again obtained with CO(2) (ΔT° 4.44° ± 0.60) than with diode (ΔT° 5.25° ± 0.55). Our study demonstrates that CO(2) and diode laser irradiation of the enamel surface can both increase fluoride uptake; however, laser energy parameters must be carefully

  18. Synthesis of higher diamondoids by pulsed laser ablation plasmas in supercritical CO2

    International Nuclear Information System (INIS)

    Nakahara, Sho; Stauss, Sven; Kato, Toru; Terashima, Kazuo; Sasaki, Takehiko

    2011-01-01

    Pulsed laser ablation (wavelength 532 nm; fluence 18 J/cm 2 ; pulse width 7 ns; repetition rate 10 Hz) of highly oriented pyrolytic graphite was conducted in adamantane-dissolved supercritical CO 2 with and without cyclohexane as a cosolvent. Micro-Raman spectroscopy of the products revealed the presence of hydrocarbons possessing sp 3 -hybridized carbons similar to diamond structures. The synthesis of diamantane and other possible diamondoids consisting of up to 12 cages was confirmed by gas chromatography-mass spectrometry. Furthermore, gas chromatography-mass spectrometry measurements of samples before and after pyrolysis treatment indicate the synthesis of the most compact decamantane, namely, superadamantane. It is thought that oxidant species originating from CO 2 during pulsed laser ablation might lead to the selective dissociation of C-H bonds, enabling the synthesis of low H/C ratio molecules. Therefore, laser ablation in supercritical CO 2 is proposed as a practical method for synthesizing diamondoids.

  19. Wound healing with PRGF infiltration in CO(2) laser lesions of the tongue: an animal study.

    Science.gov (United States)

    Camacho-Alonso, Fabio; López-Jornet, Pía; Jiménez-Torres, María José; Orduña-Domingo, Albina

    2009-06-01

    This study was done of the effects of plasma rich in growth factors (PRGF) on the healing of tongue wounds induced by the CO(2) laser. A prospective blind study was made of 60 Sprague-Dawley rats divided into two groups after the creation of tongue lesions using the CO(2) laser. Nothing was applied to the resulting wounds in the first group, while PRGF was applied to the 30 wounds in the second group. Wound re-epithelialization and inflammation were measured after 7, 14, and 28 d. No significant differences were seen between the two groups in relation to wound re-epithelialization, and the group without PRGF actually showed significantly better resolution of the inflammatory process after 14 d (p = 0.036). After 28 d, the rat tongue wounds produced by the CO(2) laser showed complete healing, independently of PRGF application.

  20. Development of control and data processing system for CO2 laser interferometer

    International Nuclear Information System (INIS)

    Chiba, Shinichi; Kawano, Yasunori; Tsuchiya, Katsuhiko; Inoue, Akira

    2001-11-01

    CO 2 laser interferometer diagnostic has been operating to measure the central electron density in JT-60U plasmas. We have developed a control and data processing system for the CO 2 laser interferometer with flexible functions of data acquisition, data processing and data transfer in accordance with the sequence of JT-60U discharges. This system is mainly composed of two UNIX workstations and CAMAC clusters, in which the high reliability was obtained by sharing the data process functions to the each workstations. Consequently, the control and data processing system becomes to be able to provide electron density data immediately after a JT-60U discharge, routinely. The realtime feedback control of electron density in JT-60U also becomes to be available by using a reference density signal from the CO 2 laser interferometer. (author)

  1. Some studies on weld bead geometries for laser spot welding process using finite element analysis

    International Nuclear Information System (INIS)

    Siva Shanmugam, N.; Buvanashekaran, G.; Sankaranarayanasamy, K.

    2012-01-01

    Highlights: → In this study, a 2 kW Nd:YAG laser welding system is used to conduct laser spot welding trials. → The size and shape of the laser spot weld is predicted using finite element simulation. → The heat input is assumed to be a three-dimensional conical Gaussian heat source. → The result highlights the effect of beam incident angle on laser spot welds. → The achieved results of numerical simulation are almost identical with a real weldment. -- Abstract: Nd:YAG laser beam welding is a high power density welding process which has the capability to focus the beam to a very small spot diameter of about 0.4 mm. It has favorable characteristics namely, low heat input, narrow heat affected zone and lower distortions, as compared to conventional welding processes. In this study, finite element method (FEM) is applied for predicting the weld bead geometry i.e. bead length (BL), bead width (BW) and depth of penetration (DP) in laser spot welding of AISI 304 stainless steel sheet of thickness 2.5 mm. The input parameters of laser spot welding such as beam power, incident angle of the beam and beam exposure time are varied for conducting experimental trials and numerical simulations. Temperature-dependent thermal properties of AISI 304 stainless steel, the effect of latent heat of fusion, and the convective and radiative aspects of boundary conditions are considered while developing the finite element model. The heat input to the developed model is assumed to be a three-dimensional conical Gaussian heat source. Finite-element simulations of laser spot welding were carried out by using Ansys Parametric Design Language (APDL) available in finite-element code, ANSYS. The results of the numerical analysis provide the shape of the weld beads for different ranges of laser input parameters that are subsequently compared with the results obtained through experimentation and it is found that they are in good agreement.

  2. Design and performance of a sealed CO2 laser for industrial applications

    International Nuclear Information System (INIS)

    Botero, G; Gomez, D; Nisperuza, D; Bastidas, A

    2011-01-01

    A large amount of materials processing is done using an industrial CO 2 laser operating in the mid-infrared (IR) spectrum. Their high efficiency and tremendous power output have made them one of the most commonly known transition wavelength at 10,6 microns facilitates laser cutting, drilling and marking of a wide variety of materials in the electronics and medical industries. Because lasers are feedback systems, many of their design parameters strongly interact with one another, and arriving at an optimum design requires a really thorough understanding of just how they interact. We report the construction of a sealed CO2 gas discharge laser with a glass laser tube design as well as clear acrylic housing makes this an excellent demonstrational tool. Sealed operation was characterized in mode, power, warm-up and stability over a long time. The results indicate a good operation, optimum wavelength, powers and beam quality will remove material more efficiently in effective industrial applications.

  3. A sulfur hexafluoride sensor using quantum cascade and CO2 laser-based photoacoustic spectroscopy.

    Science.gov (United States)

    Rocha, Mila; Sthel, Marcelo; Lima, Guilherme; da Silva, Marcelo; Schramm, Delson; Miklós, András; Vargas, Helion

    2010-01-01

    The increase in greenhouse gas emissions is a serious environmental problem and has stimulated the scientific community to pay attention to the need for detection and monitoring of gases released into the atmosphere. In this regard, the development of sensitive and selective gas sensors has been the subject of several research programs. An important greenhouse gas is sulphur hexafluoride, an almost non-reactive gas widely employed in industrial processes worldwide. Indeed it is estimated that it has a radiative forcing of 0.52 W/m(2). This work compares two photoacoustic spectrometers, one coupled to a CO(2) laser and another one coupled to a Quantum Cascade (QC) laser, for the detection of SF(6). The laser photoacoustic spectrometers described in this work have been developed for gas detection at small concentrations. Detection limits of 20 ppbv for CO(2) laser and 50 ppbv for quantum cascade laser were obtained.

  4. Fatigue properties of dissimilar metal laser welded lap joints

    Science.gov (United States)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  5. Comparison of fiber delivered CO2 laser and electrocautery in transoral robot assisted tongue base surgery.

    Science.gov (United States)

    Karaman, Murat; Gün, Taylan; Temelkuran, Burak; Aynacı, Engin; Kaya, Cem; Tekin, Ahmet Mahmut

    2017-05-01

    To compare intra-operative and post-operative effectiveness of fiber delivered CO 2 laser to monopolar electrocautery in robot assisted tongue base surgery. Prospective non-randomized clinical study. Twenty moderate to severe obstructive sleep apnea (OSA) patients, non-compliant with Continuous Positive Airway Pressure (CPAP), underwent Transoral Robotic Surgery (TORS) using the Da Vinci surgical robot in our University Hospital. OSA was treated with monopolar electrocautery in 10 patients, and with flexible CO 2 laser fiber in another 10 patients. The following parameters in the two sets are analyzed: Intraoperative bleeding that required cauterization, robot operating time, need for tracheotomy, postoperative self-limiting bleeding, length of hospitalization, duration until start of oral intake, pre-operative and post-operative minimum arterial oxygen saturation, pre-operative and post-operative Epworth Sleepiness Scale score, postoperative airway complication and postoperative pain. Mean follow-up was 12 months. None of the patients required tracheotomy and there were no intraoperative complications related to the use of the robot or the CO 2 laser. The use of CO 2 laser in TORS-assisted tongue base surgery resulted in less intraoperative bleeding that required cauterization, shorter robot operating time, shorter length of hospitalization, shorter duration until start of oral intake and less postoperative pain, when compared to electrocautery. Postoperative apnea-hypopnea index scores showed better efficacy of CO 2 laser than electrocautery. Comparison of postoperative airway complication rates and Epworth sleepiness scale scores were found to be statistically insignificant between the two groups. The use of CO 2 laser in robot assisted tongue base surgery has various intraoperative and post-operative advantages when compared to monopolar electrocautery.

  6. Influences on target irradiation symmetry in CO2 laser-fusion experiments

    International Nuclear Information System (INIS)

    Carman, R.L.

    1981-01-01

    The existence of very steep density profiles and high upper shelf densities imply that the CO 2 laser deposits its energy spatially quite close to the ablation surface where calculations indicate that a high degree of symmetry must exist in order to achieve the necessary high compression ratios. Thus, energy transport provides only limited improvement in the ablative symmetry over that achieved in the irradiation symmetry. Current data suggests that a balance between radiation pressure and hydrodynamic pressure underestimates the density to which the CO 2 laser light penetrates for early times

  7. Electron transport in solid targets and in the active mixture of a CO2 laser amplifier

    Science.gov (United States)

    Galkowski, A.

    The paper examines the use of the NIKE code for the Monte Carlo computation of the deposited energy profile and other characteristics of the absorption process of an electron beam in a solid target and the spatial distribution of primary ionization in the active mixture of a CO2 laser amplifier. The problem is considered in connection with the generation of intense electron beams and the acceleration of thin metal foils, as well as in connection with the electric discharge pumping of a CO2 laser amplifier.

  8. Characterization of laser welds in Al-10 wt.%Si coated ferritic stainless steel

    International Nuclear Information System (INIS)

    Kong, Jong Pan; Park, Tae Jun; Kim, Jeong Kil; Uhm, Sang Ho; Woo, In Su; Lee, Jong Sub; Park, Bong Gyu; Kang, Chung Yun

    2011-01-01

    409L stainless steel hot-dipped with Al-10 wt.%Si was welded using CO 2 laser and the microstructure and hardness of the weld were investigated. When the specimen was welded with laser power of 5 kW and welding speed of 5 m/min, full-penetrated sound weld was obtained. With that specimen, the relationship between the microstructure and hardness of the weld was examined. The hardness of the weld was the highest in the fusion zone (FZ) and decreased to the base metal (BM) via heat affected zone (HAZ). The hardness of the HAZ near bond line was also higher than that near the base metal. The maximum hardness in the fusion zone could be explained by the existence of the precipitates, that is, TiN, Ti(C,N), Al 2 O 3 and Al 2 O 3 + TiN mixed compounds with the size of 500 nm, and solution strengthening due to the elements Al and Si dissolved from the coating layer to the fusion zone. There were subgrains within the HAZ and more in the area near the bond line. In addition, fine TiC particles with the size under 50 nm was precipitated in the sub-grain boundaries. The formation of sub-grain boundaries and the particles precipitated in the boundaries might contributed to the high hardness in the HAZ.

  9. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  10. Weld pool and keyhole dynamic analysis based on visual system and neural network during laser keyhole welding

    OpenAIRE

    Luo, Masiyang

    2014-01-01

    In keyhole fiber laser welding processes, the weld pool behavior and keyhole dynamics are essential to determining welding quality. To observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. In addition, because of the cause-and-effect relationship between the welding defects and stability of the keyhole, which is primarily determined by keyhole geometry during the welding process, the stability of keyhole needs to be consid...

  11. Laser welded steel sandwich panel bridge deck development : finite element analysis and stake weld strength tests.

    Science.gov (United States)

    2009-09-01

    This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...

  12. High efficiency pump combiner fabricated by CO2 laser splicing system

    Science.gov (United States)

    Zhu, Gongwen

    2018-02-01

    High power combiners are of great interest for high power fiber lasers and fiber amplifiers. With the advent of CO2 laser splicing system, power combiners are made possible with low manufacturing cost, low loss, high reliability and high performance. Traditionally fiber optical components are fabricated with flame torch, electrode arc discharge or filament heater. However, these methods can easily leave contamination on the fiber, resulting inconsistent performance or even catching fire in high power operations. The electrodes or filaments also degrade rapidly during the combiner manufacturing process. The rapid degradation will lead to extensive maintenance, making it unpractical or uneconomic for volume production. By contrast, CO2 laser is the cleanest heating source which provides reliable and repeatable process for fabricating fiber optic components including high power combiners. In this paper we present an all fiber end pumped 7x1 pump combiner fabricated by CO2 laser splicing system. The input pump fibers are 105/125 (core/clad diameters in μm) fibers with a core NA of 0.22. The output fiber is a 300/320 fiber with a core NA of 0.22. The average efficiency is 99.4% with all 7 ports more than 99%. The process is contamination-free and highly repeatable. To our best knowledge, this is the first report in the literature on power combiners fabricated by CO2 laser splicing system. It also has the highest reported efficiency of its kind.

  13. Gap Width Study and Fixture Design in Laser Butt-Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    .5-2.0 m/min, the laser power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely......This paper discusses some practical consideration for design of a mechanical fixture, which enables to accurately measure the width of a gap between two stainless steel workpieces and to steadfastly clamp the workpieces for butt-welding with a high power CO2 laser.With such a fixture, a series...... of butt-welding experiment is successfully carried out in order to find the maximum allowable gap width in laser butt-welding. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0...

  14. Standard guidelines of care: CO2 laser for removal of benign skin lesions and resurfacing.

    Science.gov (United States)

    Krupashankar, D S

    2008-01-01

    Resurfacing is a treatment to remove acne and chicken pox scars, and changes in the skin due to ageing. MACHINES: Both ablative and nonablative lasers are available for use. CO 2 laser is the gold standard in ablative lasers. Detailed knowledge of the machines is essential. INDICATIONS FOR CO 2 LASER: Therapeutic indications: Actinic and seborrheic keratosis, warts, moles, skin tags, epidermal and dermal nevi, vitiligo blister and punch grafting, rhinophyma, sebaceous hyperplasia, xanthelasma, syringomas, actinic cheilitis angiofibroma, scar treatment, keloid, skin cancer, neurofibroma and diffuse actinic keratoses. CO 2 laser is not recommended for the removal of tattoos. AESTHETIC INDICATIONS: Resurfacing for acne, chicken pox and surgical scars, periorbital and perioral wrinkles, photo ageing changes, facial resurfacing. PHYSICIANS' QUALIFICATIONS: Any qualified dermatologist (DVD or MD) may practice CO 2 laser. The dermatologist should possess postgraduate qualification in dermatology and should have had specific hands-on training in lasers either during postgraduation or later at a facility which routinely performs laser procedures under a competent dermatologist/plastic surgeon, who has experience and training in using lasers. For the use of CO 2 lasers for benign growths, a full day workshop is adequate. As parameters may vary in different machines, specific training with the available machine at either the manufacturer's facility or at another centre using the machine is recommended. CO 2 lasers can be used in the dermatologist's minor procedure room for the above indications. However, when used for full-face resurfacing, the hospital operation theatre or day care facility with immediate access to emergency medical care is essential. Smoke evacuator is mandatory. Detailed counseling with respect to the treatment, desired effects, possible postoperative complications, should be discussed with the patient. The patient should be provided brochures to study and

  15. Standard guidelines of care: CO 2 laser for removal of benign skin lesions and resurfacing

    Directory of Open Access Journals (Sweden)

    Krupashankar D

    2008-03-01

    Full Text Available Resurfacing is a treatment to remove acne and chicken pox scars, and changes in the skin due to ageing. Machines : Both ablative and nonablative lasers are available for use. CO 2 laser is the gold standard in ablative lasers. Detailed knowledge of the machines is essential. Indications for CO 2 laser: Therapeutic indications: Actinic and seborrheic keratosis, warts, moles, skin tags, epidermal and dermal nevi, vitiligo blister and punch grafting, rhinophyma, sebaceous hyperplasia, xanthelasma, syringomas, actinic cheilitis angiofibroma, scar treatment, keloid, skin cancer, neurofibroma and diffuse actinic keratoses. CO 2 laser is not recommended for the removal of tattoos. Aesthetic indications: Resurfacing for acne, chicken pox and surgical scars, periorbital and perioral wrinkles, photo ageing changes, facial resurfacing. Physicians′ qualifications: Any qualified dermatologist (DVD or MD may practice CO 2 laser. The dermatologist should possess postgraduate qualification in dermatology and should have had specific hands-on training in lasers either during postgraduation or later at a facility which routinely performs laser procedures under a competent dermatologist/plastic surgeon, who has experience and training in using lasers. For the use of CO 2 lasers for benign growths, a full day workshop is adequate. As parameters may vary in different machines, specific training with the available machine at either the manufacturer′s facility or at another centre using the machine is recommended. Facility: CO 2 lasers can be used in the dermatologist′s minor procedure room for the above indications. However, when used for full-face resurfacing, the hospital operation theatre or day care facility with immediate access to emergency medical care is essential. Smoke evacuator is mandatory. Preoperative counseling and Informed consent Detailed counseling with respect to the treatment, desired effects, possible postoperative complications, should be

  16. Enhancement of low power CO2 laser cutting process for injection molded polycarbonate

    Science.gov (United States)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2017-11-01

    Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.

  17. Investigating the CO2 laser cutting parameters of MDF wood composite material

    OpenAIRE

    Eltawahni, Hayat; Olabi, Abdul-Ghani; Benyounis, Khaled

    2011-01-01

    Laser cutting of medium density fibreboard (MDF) is a complicated process and the selection of the process parameters combinations is essential to get the highest quality of the cut section. This paper presents laser cutting of MDF based on design of experiments (DOE). CO2 laser was used to cut three thicknesses 4, 6 and 9 mm of MDF panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. In this work, cutting quality was evaluated by me...

  18. Optimization of Cutting Parameters of the Haynes 718 Nickel Alloy With Gas CO2 Laser

    Directory of Open Access Journals (Sweden)

    Jana PETRŮ

    2011-06-01

    Full Text Available This article deals with the application of laser technology and the optimization of parameters in the area of nickel alloy laser cutting intended for application in the aircraft industry. The main goal is to outline possibilities of use of the laser technology, primarily its application in the area of 3D material cutting. This experiment is focused on the optimization of cutting parameters of the Haynes 718 alloy with a gas CO2 laser. Originating cuts are evaluated primarily from the point of view of cut quality and accompanying undesirable phenomena occurring in the process of cutting. In conclusion the results achieved in the metallographic laboratory are described and analyzed.

  19. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth.

    Science.gov (United States)

    Bahrololoomi, Zahra; Fotuhi Ardakani, Faezeh; Sorouri, Milad

    2015-08-01

    Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (Pdiode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake.

  20. Laser welding of polymers, compatibility and mechanical properties

    DEFF Research Database (Denmark)

    Nielsen, Steen Erik; Strange, Marianne; Kristensen, Jens Klæstrup

    2013-01-01

    for research and development. This paper presents some research results related to laser welding of various polymer materials, including weld compatibility investigations related to the joining of different polymers. Theory for bonding mechanisms, strength development, mechanical properties testing and other......Laser welding of polymers is today a commonly used industrial technology. It has shown obvious advantages compared to e.g. adhesive bonding in terms of higher productivity, better quality and easiness for automation. The ongoing development of lasers tailored for polymer welding in coordination...

  1. Fabrication of versatile cladding light strippers and fiber end-caps with CO2 laser radiation

    Science.gov (United States)

    Steinke, M.; Theeg, T.; Wysmolek, M.; Ottenhues, C.; Pulzer, T.; Neumann, J.; Kracht, D.

    2018-02-01

    We report on novel fabrication schemes of versatile cladding light strippers and end-caps via CO2 laser radiation. We integrated cladding light strippers in SMA-like connectors for reliable and stable fiber-coupling of high-power laser diodes. Moreover, the application of cladding light strippers in typical fiber geometries for high-power fiber lasers was evaluated. In addition, we also developed processes to fuse end-caps to fiber end faces via CO2 laser radiation and inscribe the fibers with cladding light strippers near the end-cap. Corresponding results indicate the great potential of such devices as a monolithic and low-cost alternative to SMA connectors.

  2. Underwater laser cladding and seal welding for INCONEL 52

    International Nuclear Information System (INIS)

    Tamura, Masataka; Kouno, Wataru; Makino, Yoshinobu; Kawano, Shohei; Yoda, Masaki

    2007-01-01

    Recently, stress corrosion cracking (SCC) has been observed at aged components of nuclear power plants under water environment and high exposure of radiation. Toshiba has been developing both an underwater laser welding directly onto surface of the aged components as maintenance and repair techniques. This paper reports underwater laser cladding and seal welding for INCONEL 52. (author)

  3. Finite element simulation of laser transmission welding of dissimilar ...

    African Journals Online (AJOL)

    user

    materials between polyvinylidene fluoride and titanium ... finite element (FE) thermal model is developed to simulate the laser ... Keywords: Laser transmission welding, Temperature field, Weld dimension, Finite element analysis, Thermal modeling. 1. .... 4) The heating phenomena due to the phase changes are neglected.

  4. Keyhole behaviour during laser welding of zinc-coated steel

    NARCIS (Netherlands)

    Pan, Y.; Richardson, I.M.

    2011-01-01

    The production of consistent, high-quality laser welds on zinc-coated steels for the automotive industry remains a challenge. A simple overlap joint geometry is desirable in these applications but has been shown to be extremely detrimental to laser welding because the zinc vapour formed at the

  5. Laser power coupling efficiency in conduction and keyhole welding ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    tomacrograph showing grain orientation ... steep columnar grains of the fusion .... viz. pre-oxidation of metal surface by laser heating in air, chemical ... 4.1b Sheets of 0.5 mm thickness: Laser welds of 0.5-mm thick sheets exhibited steep angles ... boundaries of solidifying weld metal which leads to intergranular cracking ...

  6. Synchronisation of electron-beam controlled CO2 lasers with a plasma mirror

    International Nuclear Information System (INIS)

    Basov, N.G.; Boiko, V.A.; Danilychev, V.A.; Zvorykin, V.D.; Lobanov, A.N.; Kholin, I.V.; Chugunov, A.Y.

    1979-03-01

    A new approach to the development of laser systems for spherically symmetrical compression of thermonuclear targets which essentially involves using a plasma formed by the action of laser radiation on the surface of a target as a common mirror for high-power electron-beam-controlled CO 2 lasers distributed uniformly around a sphere has been proposed. The achievement of the required time-synchronised operation of several lasers to obtain symmetrical irradiation is discussed here. It is found that the lasers cannot be synchronised accurately by stabilising only the electrical parameters of the systems. Even if the laser pumping systems are switched on strictly simultaneously, small random fluctuations in the pumping level, active mixture composition, optical Q factor of the resonators and other parameters give rise to an appreciable scatter in the output pulse evolution times. Methods for precise synchronisation based on introducing optical coupling between the laser resonators are proposed. (UK)

  7. The first picosecond terawatt CO2 laser at the Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Babzien, M.

    1998-02-01

    The first terawatt picosecond CO 2 laser will be brought to operation at the Brookhaven Accelerator Test Facility in 1998. System consists of a single-mode TEA oscillator, picosecond semiconductor optical switch, multi-atmosphere. The authors report on design, simulation, and performance tests of the 10 atm final amplifier that allows for direct multi-joule energy extraction in a picosecond laser pulse

  8. High pressure X-ray preionized TEMA-CO2 laser

    Science.gov (United States)

    Bonnie, R. J. M.; Witteman, W. J.

    1987-09-01

    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5-20 atm, yielding a specific laser output in the order of 35 J/l.

  9. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

    KAUST Repository

    Li, Huawei

    2013-10-10

    In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

  10. Holographic interferometry of isolated deuterium plasmas produced by a CO2 laser

    International Nuclear Information System (INIS)

    Gatenby, P.V.; Walker, A.C.

    1978-10-01

    The application of double exposure fractional fringe holographic interferometry to measurements of electron density in a plasma generated by irradiation of a freely falling pellet of solid deuterium with a focused CO 2 laser pulse is discussed. A particularly simple technique is used for processing and reconstructing the holograms and this is described in detail. A summary and discussion of the results is included with the emphasis on the observed evolution of the deuterium plasma over the duration of the laser irradiation. (author)

  11. Parameters Influence of CO2 Laser on Cutting Quality of Polymer Materials

    OpenAIRE

    Robert Cep; Sarka Malotova; Marek Pagac; Marek Sadilek; Jiri Lichovnik

    2016-01-01

    The article deals with evaluating of the resulting surface state of the three plastic materials and identification of suitable conditions for laser cutting with CO2 tube. As representative were chosen polypropylene, polymethylmethacrylate and polyamide. When cutting these types of materials it could melt eventually their re-sintering. A suitable combination of parameters is possible to achieve of sufficient quality of the cut. The samples were cut at different feed speed and laser power. Then...

  12. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Foulds, Ian G.; Kodzius, Rimantas

    2013-01-01

    In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

  13. A study on laser welding deformation of 304 stainless steel

    International Nuclear Information System (INIS)

    Kitagawa, Akikazu; Maehara, Kenji; Takeda, Shinnosuke; Matsunawa, Akira

    2002-01-01

    In heavy industries, 304 austenitic stainless steel is the most popular material which is used for nuclear equipment, chemical vessels, vacuum vessels and so on. On the fabrication, not only a joint quality but also severe dimensional accuracy is required. To keep dimensional accuracy, considerable cost and efforts are requested, because the welding deformation of austenitic stainless steel is deeply depended on the physical properties of material itself. To decrease welding deformation, big jigs or water cooling method are commonly used which lead to the high cost. In general, the fusion welding by high energy density heat source results in less distortion. Today, laser welding technology has grown up to the stage that enables to weld thick plate with small deformation. The researches of welding deformation have been conducted intensively, but they are mainly concerned for arc welding, and studies for laser welding are very few. In this report, the authors will show the test results of deformation behavior in laser welding of 304 stainless steel. Also, they will discuss the deformation behavior comparing to that in arc welding. The main results of this study are as follows. 1. The angular distortion of laser welding can be unified by heat input parameter (Hp) which is used for arc welding deformation. 2. The angular distortion are same under the condition of Hp 3 in spite of different welding method, however under the condition of Hp>6-9 J/mm 3 the angular distortion is quite different depending on the power density of welding method. 3. Pure angular distortion seemed to complete just after welding, but following longitudinal distortion took place for long period. 4. The critical value of longitudinal distortion can be estimated from heat input parameter. The transverse deformation can be also estimated by heat input parameter. (author)

  14. Portable laser spectrometer for airborne and ground-based remote sensing of geological CO2 emissions.

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio

    2017-07-15

    A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.

  15. An investigation of CO2 laser scleral buckling using moiré interferometry.

    Science.gov (United States)

    Maswadi, Saher M; Dyer, Peter E; Verma, Dinesh; Jalabi, Wadah; Dave, Dinesh

    2002-01-01

    To demonstrate suitability of moiré interferometry to assess and quantify laser-induced shrinkage of scleral collagen for buckling procedures. Scleral buckling of human cadaver eyes was investigated using a Coherent Ultrapulse CO2 laser. Projection moiré interferometry was employed to determine the out-of plane displacement produced by laser exposure, and in-situ optical microscopy of reference markers on the eye was used to measure in-plane shrinkage. Measurements based on moiré interferometry allow a three dimensional view of shape changes in the eye surface as laser treatment proceeds. Out-of-plane displacement reaches up to 1.5 mm with a single laser spot exposure. In-plane shrinkage reached a maximum of around 30%, which is similar to that reported by Sasoh et al (Ophthalmic Surg Lasers. 1998;29:410) for a Tm:YAG laser. The moiré technique is found to be suitable for quantifying the effects of CO2 laser scleral shrinkage and buckling. This can be further developed to provide a standardized method for experimental investigations of other laser sources for scleral shrinkage.

  16. Theoretical And Experimental Investigations On The Plasma Of A CO2 High Power Laser

    Science.gov (United States)

    Abel, W.; Wallter, B.

    1984-03-01

    The CO2 high power laser is increasingly used in material processing. This application of the laser has to meet some requirements: at one hand the laser is a tool free of wastage, but at the other hand is to guarantee that the properties of that tool are constant in time. Therefore power, geometry and mode of the beam have to be stable over long intervalls, even if the laser is used in rough industrial environment. Otherwise laser material processing would not be competitive. The beam quality is affected by all components of the laser - by the CO2 plasma and its IR - amplification, by the resonator which at last generates the beam by optical feedback, and also by the electric power supply whose effects on the plasma may be measured at the laser beam. A transversal flow laser has been developed at the Technical University of Vienna in cooperation with VOest-Alpine AG, Linz (Austria). This laser produces 1 kW of beam power with unfolded resonator. It was subject to investigations presented in this paper.

  17. The laser beam welding test of ODS fuel claddings

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2004-06-01

    As a alternative method of pressurized resistance welding being currently developed, integrity evaluations for a laser beam welding joint between a ODS cladding tube and a FMS end plug were conducted for the purpose of studying the applicability of the laser beam welding technique to the welding with the lower end plug. The laser beam welding causes blowholes in the welding zone, whose effect on the high cycle fatigue strength of the joint is essential because of the flow-induced vibration during irradiation. The rotary bending tests using specimens with laser beam welding between ODS cladding tubes and FMS end plugs were carried out to evaluate the fatigue strength of the welding joint containing blowholes. The fatigue limit of stress amplitude about 200 MPa from 10 6 -10 7 cycles suggested that the laser beam welding joint had enough strength against the flow-induced vibration. Sizing of blowholes in the welding zone by using a micro X ray CT technique estimated the rate of defect areas due to blowholes at 1-2%. It is likely that the fatigue strength remained nearly unaffected by blowholes because of the no correlation between the breach of the rotary bending test specimen and the rate of defect area. Based on results of tensile test, internal burst test, Charpy impact test and fatigue test of welded zone, including study of allowable criteria of blowholes in the inspection, it is concluded that the laser beam welding can be probably applied to the welding between the ODS cladding tube and the FMS lower end plug. (author)

  18. Light scattering from thermal density fluctuations using a CW-CO2-laser and heterodyne detection

    International Nuclear Information System (INIS)

    Massig, J.H.

    1978-01-01

    The ion feature in the scattered light spectrum of an arc plasma was measured using heterodyne detection. A low-power CW-CO 2 -laser was employed. The weak signals were discriminated against noise by lock-in technique. (orig.) [de

  19. Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating

    Science.gov (United States)

    Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.

    2018-06-01

    In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.

  20. Studies of calorimeter absorbers for CW and pulsed CO2 lasers

    International Nuclear Information System (INIS)

    Gunn, S.R.

    1975-01-01

    Solid and liquid absorbers, used in calorimeters to measure the power and energy of cw and pulsed CO 2 lasers, have been studied from 9.24 to 10.76 μm (cw) and near 10.588 μm (pulsed). The principal materials used were magnesium oxide, lithium fluoride, polystyrene, polytetrafluorethylene, carbon tetrachloride and kerosene. (U.S.)

  1. The transient evolution of AM mode locking a TEA CO2laser

    NARCIS (Netherlands)

    van Goor, F.A.; Bonnie, Ronald J.M.; Witteman, W.J.

    1985-01-01

    The evolution of the pulse in an AM mode-locked TEA CO2laser has been investigated. The experiments have been performed by injecting the mode-locked pulses in a high-pressure slave oscillator at various time intervals after the initiation of the mode-lock process. This technique allows the

  2. Endoscopic treatment of pharyngeal pouches: electrocoagulation vs carbon dioxide (CO2) laser

    NARCIS (Netherlands)

    Flikweert, D. C.; van der Baan, S.

    1992-01-01

    Endoscopic treatment of a hypopharyngeal diverticulum was performed in 75 patients during the period 1976-1990. Initially electrocoagulation was used to divide the septum between the diverticulum and oesophagus. More recently, the CO2 laser combined with the operating microscope has been used.

  3. Single mode CO2 laser frequency modulation up to 350 MHz

    Science.gov (United States)

    Leeb, W. R.; Peruso, C. J.

    1977-01-01

    Experiments on internal frequency modulation (FM) of a CO2 laser showed no limitation of FM by the linewidth. However, distortions in the form of strong enhancement of sideband amplitude arise for frequencies equal to the cavity resonant frequencies, most pronounced if the modulator is positioned near a cavity mirror.

  4. Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.

    2009-01-01

    An improved model for CO 2 laser ablation impulse in polyoxymethylene and similar polymers is presented that describes the transition effects from the onset of vaporization to the plasma regime in a continuous fashion. Several predictions are made for ablation behavior.

  5. Development of CO2 and KrF gas lasers as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rockwood, S.D.

    1983-01-01

    Several different driver systems are currently under development in the national ICF program. Los Alamos has traditionally emphasized gas laser systems because of their intrinsic high average power capability and ease of operation. This paper will review the status of activities in both carbon dioxide (CO 2 ) and krypton fluoride (KrF) development at the Laboratory

  6. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    International Nuclear Information System (INIS)

    Tu, K T; Chung, C K

    2016-01-01

    An integrated technology of CO 2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO 2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO 2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO 2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold. (paper)

  7. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  8. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    Science.gov (United States)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  9. Innovative CO2 LASER-Based Pavement Striping and Stripe Removal

    Science.gov (United States)

    2014-07-01

    This is a Technical Report of an FY2014 NDOT funded project on Innovative CO2 Laserbased Pavement Striping and Stripe Removal. The project was concerned with adopting the laser technology for pavement stripe and markers removal and inferring on its e...

  10. Treatment of striae distensae with needling therapy versus CO2 fractional laser.

    Science.gov (United States)

    Khater, Mohamed H; Khattab, Fathia M; Abdelhaleem, Manal R

    2016-01-01

    Striae are atrophic dermal scars with overlying epidermal atrophy causing cosmetic concern. This study assesses and compares the efficacy and safety of needling therapy versus CO2 fractional laser in treatment of striae. Twenty Egyptian female patients with striae in the abdomen and lower limbs were involved in the study. The patients were treated with needling therapy and CO2 laser every 1 month for 3 sessions. Follow-up by digital photography and skin biopsy was conducted at baseline and 6 months after treatment. Clinical improvement was assessed by comparing photographs and patient's satisfaction before and after treatment. Nine of 10 (90%) needle-treated patients showed improvement. Among them, 3 (30%) had good, 4 (40%) had fair, and 2 (20%) had poor improvements; however, 1 (10%) did not show any improvement after the treatment. In CO2-laser treated patients, 5 of 10 (50%) of the patients showed clinical improvement; 1 (10%) were good, 3 (30%) were fair, and 1 (10%) were poor; however, 5 (50%) did not show improvement. The results support the use of microneedle therapy over CO2 lasers for striae treatment.

  11. High pressure X-ray preionized TEMA-CO2 laser

    NARCIS (Netherlands)

    Bonnie, R.J.M.; Witteman, W.J.

    1987-01-01

    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5–20

  12. CO2 Laser annealing of n-doped hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Bertolotti, M.; Ferrari, A.; Evangelisti, F.; Fiorini, P.; Proietti, M.G.

    1985-01-01

    Low power CO 2 laser annealing of n-doped a-Si:H is reported. Conductivity and its activation energy, photoconductivity, absorption coefficient and dependence of photoconductivity on light power show changes which can be interpreted as due to a better doping efficiency

  13. Laser-welded ureteral anastomoses: experimental studies with three techniques.

    Science.gov (United States)

    Gürpinar, T; Gürer, S; Kattan, M W; Wang, L; Griffith, D P

    1996-01-01

    Tissue welding with laser energy is a new technique for reconstructive surgery. The potential advantages of laser welding are (a) lack of foreign body reaction, (b) decreased operative time, (c) less tissue manipulation, and (d) effective union of tissues equivalent to sutured anastomoses. We have performed ureteral anastomoses in adult mongrel dogs using a KTP 532 nm laser at an intensity of 1.4 W. Multiple "spot welds" of 1-s duration were utilized in a single layer anastomosis. Laser-welded anastomoses were performed with and without protein solder (33% and 50% human albumin) and were compared to sutured anastomoses. The laser-welded anastomoses required less operative time and provided bursting pressure levels similar to those of traditional sutured anastomoses. There was no advantage or disadvantage to the addition of human albumin as a solder in these experimental studies.

  14. Analysis and validation of laser spot weld-induced distortion

    Energy Technology Data Exchange (ETDEWEB)

    Knorovsky, G.A.; Kanouff, M.P.; Maccallum, D.O.; Fuerschbach, P.W.

    1999-12-09

    Laser spot welding is an ideal process for joining small parts with tight tolerances on weld size, location, and distortion, particularly those with near-by heat sensitive features. It is also key to understanding the overlapping laser spot seam welding process. Rather than attempting to simulate the laser beam-to-part coupling (particularly if a keyhole occurs), it was measured by calorimetry. This data was then used to calculate the thermal and structural response of a laser spot welded SS304 disk using the finite element method. Five combinations of process parameter values were studied. Calculations were compared to experimental data for temperature and distortion profiles measured by thermocouples and surface profiling. Results are discussed in terms of experimental and modeling factors. The authors then suggest appropriate parameters for laser spot welding.

  15. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    Science.gov (United States)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  16. 13CO2/12CO2 ratio analysis in exhaled air by lead-salt tunable diode lasers for noninvasive diagnostics in gastroenterology

    Science.gov (United States)

    Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Selivanov, Yurii G.; Chizhevskii, Eugene G.; Os'kina, Svetlana; Ivashkin, Vladimir T.; Nikitina, Elena I.

    1999-07-01

    An analyzer of 13CO2/12CO2 ratio in exhaled air based on lead-salt tunable diode lasers is presented. High accuracy of the carbon isotope ratio detection in exhaled carbon dioxide was achieved with help of very simple optical schematics. It was based on the use of MBE laser diodes operating in pulse mode and on recording the resonance CO2 absorption at 4.2 micrometers . Special fast acquisition electronics and software were applied for spectral data collection and processing. Developed laser system was tested in a clinical train aimed to assessment eradication efficiency in therapy of gastritis associated with Helicobacter pylori infection. Data on the 13C-urea breath test used for P.pylori detection and obtained with tunable diode lasers in the course of the trail was compared with the results of Mass-Spectroscopy analysis and histology observations. The analyzer can be used also for 13CO2/12CO2 ratio detection in exhalation to perform gastroenterology breath test based on using other compounds labeled with stable isotopes.

  17. Evaluating mechanical properties of hybrid laser arc girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Pussegoda, L. N.; Begg, D.; Holdstock, R.; Jodoin, A. [BMT Fleet Technology Ltd Techonology, Kanata, ON, (Canada); Ligh, K.; Rondeau, D. [Appliead Thermal Sciences Inc., Sanford, ME, (United States); Hansen, E. [ESAB, Florence, SC, (United States)

    2010-07-01

    Hybrid laser arc welding (HLAW) is a promising new process for making girth welds on steel pipelines. This study investigated the mechanical properties of overmatched X80 and X100 pipeline steel girth welds made using the HLAW process. The testing of this process was conducted on NPS36 pipes of 10.4 mm and 14.3 mm thickness, respectively. Various weld positions were produced on X80 and X100 pipes. Laser inspection data were collected during the whole welding process. Also standard tests for girth welds, Charpy V-notch impact tests, CTOD tests, all weld metal (AWM) tension tests, were carried out. The results showed that the fracture transition temperature is higher at the 3 and 9 o'clock positions than at the 9 and 12 o'clock positions. The effect of clock position on fracture toughness is currently being explored; a modified CTOD has been developed to reduce the possibility of crack deviation.

  18. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  19. Development of underwater YAG laser repair welding robots for tanks

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Satoh, Syuichi; Ito, Kosuke; Kochi, Tsutomu; Kojima, Toshio; Ohwaki, Katsura; Morita, Ichiro

    1999-01-01

    A remote-controlled repair welding robot which uses YAG laser welding technology in underwater environment was developed. This is an underwater robot technology combined with a laser welding technology. This report will describe the structure and performance of this robot, and the welding test results. The repair welding robot consists of two parts. The one is driving equipment, and the other is welding unit. It can swim in the tank, move around the tank wall, and stay on the welding area. After that it starts YAG laser repair welding. The target of this technology is inner surface repair of some tanks made of austenitic stainless steel, for example RW (Radioactive Waste) tanks. A degradation by General Corrosion and so on might be occurred at inner surface of these tanks in BWR type nuclear power plants. If the damaged area is wide, repair welding works are done. Some workers go into the tank and set up scaffolding after full drainage. In many cases it spends too much time for draining water and repair welding preparation. If the repair welding works can be done in underwater environment, the outage period will be reduced. This is a great advantage. (author)

  20. Utility and safety of the flexible-fiber CO2 laser in endoscopic endonasal transsphenoidal surgery.

    Science.gov (United States)

    Jayarao, Mayur; Devaiah, Anand K; Chin, Lawrence S

    2011-01-01

    This study sought to report on the utility and safety of the flexible-fiber CO2 laser in endoscopic endonasal transsphenoidal surgery. A retrospective chart review identified 16 patients who underwent laser-assisted transsphenoidal surgery. All tumor pathology types were considered. Results were assessed based on hormone status, tumor size, pathology, complications, and resection rates. Sixteen pituitary lesions (pituitary adenomas, 12; Rathke cleft cyst, 2; pituitary cyst and craniopharyngioma, 1 each) with an average size of 22.7 mm were identified by radiographic and pathologic criteria. All patients underwent flexible-fiber CO2 laser-assisted endoscopic endonasal transsphenoidal surgery. Of the adenomas, 8 were nonsecreting and 4 were secreting (3 prolactinomas and 1 ACTH secreting). Gross total resection was achieved in 7 of 16 patients (43.75%) with hormone remission in all patients (100%) after a mean follow-up of 19.3 months. Postoperative complications occurred in 3 patients (18.75%): 2 patients developed transient diabetes insipidus (DI) and 1 developed a CSF leak requiring surgical repair. Five patients (31.25%) underwent postoperative radiation to the residual lesions. We found that CO2-laser-assisted endoscopic endonasal transsphenoidal surgery for sellar tumors is a minimally invasive approach using a tool that is quick and effective at cutting and coagulation. The surgery has a low rate of complication, and no laser-related complications were encountered. The laser fiber allows the surgeon to safely cut and coagulate without the line-of-sight problems encountered with conventional CO2 lasers. Further studies are recommended to further define its role in endoscopic endonasal sellar surgery. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Studies on mechanical properties, microstructure and fracture morphology details of laser beam welded thick SS304L plates for fusion reactor applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Chauhan, N.; Raole, P.M.; Natu, Harshad

    2015-01-01

    Highlights: • CO 2 laser welding of 8 mm thick SS304L plates has been carried out and full penetration welds fabricated and characterized for mechanical properties and microstructure details. • Welded samples have shown tensile properties comparable to base indicating good weld quality joints. • Impact fracture tests of weld zone and heat affected zone samples have shown poor toughness compared to the base metal. • SEM analysis of fracture samples of tensile and impact specimens indicated the complex microstructure features in weld zone and combined ductile and brittle fracture features. • Combined features of dendrite and cellular structures are observed in weld microstructures with narrow HAZ and delta ferrite is found in the welds and further confirmed by higher Ferrite Number data. - Abstract: Austenitic stainless steel is widely used structural material for the fabrication of the fusion reactor components. Laser welding is high power density process which offers several advantages over the other conventional processes like Tungsten Inert Gas welding. The features like low distortion, narrow heat affected zone, deep penetration in single pass, good mechanical properties are some of the advantages of laser welding process. The laser weld process parameters optimization has several challenges in terms of overcoming the weld defects like voids due to lack of penetration over depth, undercuts and porosity. The present paper reports the studies carried out with CO 2 laser welding of 8 mm thick austenitic stainless steel SS304L plates and their characterization of mechanical properties, microstructure and fracture morphology details. The weld process parameter optimization towards defect free welds with full penetration welding has been carried out. The welded samples have shown tensile properties comparable to base metal, bend tests are successfully passed. The hardness measurements have shown slightly higher for weld zone compared to base metal and the

  2. Efficacy of inferior turbinoplasty with the use of CO(2) laser, radiofrequency, and electrocautery.

    Science.gov (United States)

    Prokopakis, Emmanuel P; Koudounarakis, Eleftherios I; Velegrakis, George A

    2014-01-01

    Inferior turbinate surgery is one of the most commonly performed methods for the treatment of rhinitis symptoms, especially nasal obstruction. This is a comparative study of CO2 laser, electrocautery, and radiofrequency turbinoplasty in the treatment of rhinitis symptoms. From 1994 to 2011, 3219 patients were enrolled in the study. Two hundred eighty-three patients were lost during follow-.up. Of the remaining 2936 patients, 1066 were managed using the CO2 laser, whereas 664 and 1206 were managed with the use of radiofrequency and electrocautery, respectively. All procedures were performed under local anesthesia. Patients were asked to evaluate their symptoms with the visual analog scale (VAS) preoperatively, as well as 1 month and 1 year postoperatively. Rhinomanometry was used to objectively evaluate the effect on nasal obstruction. Mean VAS values preoperatively, regarding nasal obstruction, were 7.43 ± 0.96, 7.33 ± 0.87, and 7.64 ± 0.95 in the CO2 laser, radiofrequency, and electrocautery group, respectively. One month postoperatively, the score was significantly improved in all groups (CO2 laser, 3.44 ± 0.99; radiofrequency, 3.26 ± 0.76; electrocautery, 3.19 ± 0.79), which was almost stable in the 1st year of follow-up. Similar results were also observed in the evaluation of sneezing and rhinorrhea. Outcome did not statistically differ between the three methods. The CO2 laser, radiofrequency and electrocautery offer excellent postoperative results in turbinoplasty cases under local anesthesia.

  3. Metal cutting by radiation from a CO2 laser with a self-filtering cavity

    International Nuclear Information System (INIS)

    Malikov, A G; Orishich, Anatolii M; Shulyat'ev, Viktor B

    2009-01-01

    The possibility of quality cutting by radiation from a CO 2 laser with an unstable self-filtering cavity (SFC) is experimentally investigated. The SFC provides the product of the divergence angle by the beam radius close to that for lower modes in a stable cavity (SC), however, at a higher radiation power, which favours faster cutting. In the far-field zone, the SFC beam has a diffraction structure with side maxima, which is usually considered as a negative factor in laser cutting. 25-mm-thick steel slabs have been cut. The comparison of the obtained results with known data on SC lasers shows that the principal characteristics of the cut (the width, edge roughness, specific expenditure of energy) are close in these lasers. A conclusion is made that at the chosen cavity parameters, the specific spatial structure of the SFC laser beam has no significant effect on the cut characteristics. (laser technologies)

  4. Hybrid laser arc welding: State-of-art review

    Science.gov (United States)

    Acherjee, Bappa

    2018-02-01

    Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.

  5. Development of laser beam welding for the lip seal configuration

    International Nuclear Information System (INIS)

    Yadav, Ashish; Joshi, Jaydeep; Singh, Dhananjay Kumar; Natu, Harshad; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2015-01-01

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  6. Dye-enhanced laser welding for skin closure.

    Science.gov (United States)

    DeCoste, S D; Farinelli, W; Flotte, T; Anderson, R R

    1992-01-01

    The use of a laser to weld tissue in combination with a topical photosensitizing dye permits selective delivery of energy to the target tissue. A combination of indocyanine green (IG), absorption peak 780 nm, and the near-infrared (IR) alexandrite laser was studied with albino guinea pig skin. IG was shown to bind to the outer 25 microns of guinea pig dermis and appeared to be bound to collagen. The optical transmittance of full-thickness guinea pig skin in the near IR was 40% indicating that the alexandrite laser should provide adequate tissue penetration. Laser "welding" of skin in vivo was achieved at various concentrations of IG from 0.03 to 3 mg/cc using the alexandrite at 780 nm, 250-microseconds pulse duration, 8 Hz, and a 4-mm spot size. A spectrum of welds was obtained from 1- to 20-W/cm2 average irradiance. Weak welds occurred with no thermal damage obtained at lower irradiances: stronger welds with thermal damage confined to the weld site occurred at higher irradiances. At still higher irradiances, local vaporization occurred with failure to "weld." Thus, there was an optimal range of irradiances for "welding," which varied inversely with dye concentration. Histology confirmed the thermal damage results that were evident clinically. IG dye-enhanced laser welding is possible in skin and with further optimization may have practical application.

  7. Development of laser beam welding for the lip seal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashish, E-mail: ashish.yadav@iter-india.org [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Joshi, Jaydeep; Singh, Dhananjay Kumar [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Natu, Harshad [Magod Laser Machining Pvt. Ltd., KIADB Ind. Area, Jigani, Anekal Taluk, Bengaluru 560105 (India); Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India)

    2015-10-15

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  8. Frequency stabilization of quantum cascade laser for spectroscopic CO2 isotope analysis

    Science.gov (United States)

    Han, Luo; Xia, Hua; Pang, Tao; Zhang, Zhirong; Wu, Bian; Liu, Shuo; Sun, Pengshuai; Cui, Xiaojuan; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2018-06-01

    Using off-axis integrated cavity output spectroscopy, named OA-ICOS, the absorption spectrum of CO2 at 4.32 μm is recorded by using a quantum cascade laser (QCL). The concentration of the three isotopologues 16O12C16O, 16O13C16O and 16O12C18O is detected simultaneously. The isotope abundance ratio of 13C and 18O in CO2 gas can be obtained, which is most useful for ecological research. Since the ambient temperature has a serious influence on the output wavelength of the laser, even small temperature variations seriously affect the stability and sensitivity of the system. In this paper, a wavelength locking technique for QCL is proposed. The output of a digital potentiometer integrated in the laser current driver control is modified by software, resulting in a correction of the driving current of the laser and thus of its wavelength. This method strongly reduces the influence of external factors on the wavelength drift of lasers and thus substantially improves the stability and performance of OA-ICOS as is demonstrated with long-time measurements on CO2 in laboratory air.

  9. Comparison of Videonystagmography and Audiological Findings after Stapedotomy; CO2 Laser vs Perforator.

    Science.gov (United States)

    Karaca, Sait; Basut, Oğuz; Demir, Uygar Levent; Özmen, Ömer Afşın; Kasapoğlu, Fikret; Coşkun, Hakan

    2016-08-01

    Various types of laser, microdrill, and perforator are effectively used in the surgical treatment of otosclerosis. However, they have certain disadvantages along with advantages. The aim of this study was to evaluate the effects of carbon dioxide (CO2) laser and perforator stapedotomy techniques on audiological outcomes and postoperative vestibular functions via videonystagmography (VNG). This prospective and randomized clinical study was conducted in an academic tertiary medical center. Sixty-nine patients diagnosed with otosclerosis who underwent stapedotomy were enrolled in this study. Patients were divided into two groups based on the technique used in stapedotomy: CO2 laser and perforator. Postoperative hearing gain and VNG findings were the main outcome measures. Subsequently, the two study groups were compared for analysis. The preoperative air-bone gap was 32.7±8.9 decibel (dB) in the study population and it was improved to 12.9±8.4 dB after operation. There were no differences in VNG findings and vertigo symptoms between the laser and perforator groups at postoperative day 2. There was no significant gain difference regarding the air conduction, bone conduction, and air-bone gap between the two groups (p=0.294, p=0.57, and p=0.37, respectively). Both CO2 laser and perforator stapedotomy have successful audiological outcomes with no difference in postoperative vestibular disturbance.

  10. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  11. Catalysts for long-life closed-cycle CO2 lasers

    Science.gov (United States)

    Schryer, David R.; Sidney, Barry D.; Miller, Irvin M.; Hess, Robert V.; Wood, George M.; Batten, Carmen E.; Burney, Lewis G.; Hoyt, Ronald F.; Paulin, Patricia A.; Brown, Kenneth G.

    1987-01-01

    Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin (IV) oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-LaRC on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) achievement of 98% to 100% conversion of a stoichiometric mixture of CO and O2 to CO2 for 318 hours (greater than 1 x 10 to the 6th power seconds), continuous, at a catalyst temperature of 60 C, and (2) development of a technique verified in a 30-hour test, to prevent isotopic scrambling when CO-18 and O-18(2) are reacted in the presence of a common-isotope Pt/Sn O-16(2) catalyst.

  12. Management of recalcitrant oral pemphigus vulgaris with CO 2 laser - Report of two cases

    Directory of Open Access Journals (Sweden)

    Bhardwaj Ashu

    2010-01-01

    Full Text Available Laser has been used efficiently for treatment of oral lichen planus, leukoplakia, aphthous ulcers and oral manifestations of HIV. Two cases of recalcitrant oral pemphigus vulgaris that were successfully treated with CO 2 laser are described. The patients had been treated by a dermatologist with pulse therapy of methyl prednisolone and cyclophosphamide over a period of 6 to 8 months, but the clinical course was characterized by episodes of painful flare-ups and nonresponsiveness. The patients were extremely uncomfortable with recurrent oral lesions. CO 2 laser at low power was used to irradiate the lesions. It was shown to be effective in relieving pain and healing of lesions, with nonrecurrence. To the best of our knowledge, this is the first case report of such a treatment of oral pemphigus vulgaris. Further clinical studies are warranted to confirm efficacy and to optimize the treatment protocol.

  13. Experimental investigation of drug delivery using a super pulse CO2 laser

    International Nuclear Information System (INIS)

    Khosroshahi, M. E.; Jafari, A.; Mansoori, S.

    2006-01-01

    We have carried out an experiment using a super long CO 2 laser pulse (10 ms) on simulated gelatin-ink model. The mechanism of laser-gelatin-ink model interaction was studied by photothermal deflection and time-resolved dynamics techniques and fast photography. It seems that the main operating mechanisms with super long CO 2 laser where the absorption coefficient of gelatin-ink model is high, are photothermal vaporization and photomechanical photophorosis and cavitation collapse. The drug molecules can be transported into the tissue bulk described by the Fick's law for a given cavity geometry and mechanical waves, unlike only by pure photomechanical waves (id est photo acoustically) as with short pulses.

  14. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    Science.gov (United States)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  15. CO2 laser direct writing of silver lines on epoxy resin from solid film

    International Nuclear Information System (INIS)

    Liu, J.G.; Chen, C.H.; Zheng, J.S.; Huang, J.Y.

    2005-01-01

    A technique of CO 2 laser direct writing from solid film was proposed in this paper. Patterns of silver lines were locally deposited on the non-conductive substrate using a preset layer of silver compound solid film, which was irradiated by focused CO 2 laser beam. The deposits were analyzed by XPS and EPMA. Results showed that metallic silver was dominant with an even distribution on the surface of the substrate, and part of the deposited silver had diffused into the substrate interior. The deposits had catalytic activity for the further electroless copper plating and had strong adhesion to the substrate. At last, the deposition mechanism and the dependence of the width of silver lines on the laser power and scan speed were roughly explored

  16. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    DEFF Research Database (Denmark)

    Frahm, Ken Steffen; Andersen, Ole K.; Arendt-Nielsen, Lars

    2010-01-01

    Background: CO(2) lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial...... to deeper skin layers. Methods: In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO(2) laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were...... compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results: The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p

  17. A compact plasma pre-ionized TEA-CO2 laser pulse clipper for material processing

    Science.gov (United States)

    Gasmi, Taieb

    2017-08-01

    An extra-laser cavity CO2-TEA laser pulse clipper using gas breakdown techniques for high spatial resolution material processing and shallow material engraving and drilling processes is presented. Complete extinction of the nitrogen tail, that extends the pulse width, is obtained at pressures from 375 up to 1500 torr for nitrogen and argon gases. Excellent energy stability and pulse repeatability were further enhanced using high voltage assisted preionized plasma gas technique. Experimental data illustrates the direct correlation between laser pulse width and depth of engraving in aluminum and alumina materials.

  18. Performance comparison of CO2 and diode lasers for deep-section concrete cutting

    International Nuclear Information System (INIS)

    Crouse, Philip L.; Li, Lin; Spencer, Julian T.

    2004-01-01

    Layer-by-layer laser machining with mechanical removal of vitrified dross between passes is a new technique with a demonstrated capability for deep-section cutting, not only of concrete, but of ceramic and refractory materials in general. For this application fairly low power densities are required. A comparison of experimental results using high-power CO 2 and diode lasers under roughly equivalent experimental conditions, cutting to depths of >100 mm, is presented. A marked improvement in cutting depth per pass is observed for the case of the diode laser. The increased cutting rate is rationalized in terms of the combined effects of coupling efficiency and beam shape

  19. Energy modulation of nonrelativistic electrons with a CO2 laser using a metal microslit

    OpenAIRE

    Jongsuck, Bae; Ryo, Ishikawa; Sumio, Okuyama; Takashi, Miyajima; Taiji, Akizuki; Tatsuya, Okamoto; Koji, Mizuno

    2000-01-01

    A metal microslit has been used as an interaction circuit between a CO2 laser beam and nonrelativistic free electrons. Evanescent waves which are induced on the slit by illumination of the laser light modulate the energy of electrons passing close to the surface of the slit. The electron-energy change of more than ±5 eV for the 80 keV electron beam has been observed using the 7 kW laser beam at the wavelength of 10.6 μm.

  20. Spatial dynamics of picosecond CO2 laser pulses produced by optical switching in Ge

    International Nuclear Information System (INIS)

    Pogorelsky, I.; Fisher, A.S.; Veligdan, J.; Russell, P.

    1991-01-01

    The design, test and optimization of a picosecond CO 2 pulse-forming system are presented. The system switches a semiconductor's optical characteristics at 10 μm under the control of a synchronized 1.06-μm Nd:YAG picosecond laser pulse. An energy-efficient version of such a system using collimated beams is described. A simple, semi-empirical approach is used to simulate the switching process, specifically including the spatial distributions of the laser energy and phase, which are relevant for experiments in laser-driven electron acceleration. 11 refs., 7 figs

  1. Energy modulation of nonrelativistic electrons with a CO2 laser using a metal microslit

    Science.gov (United States)

    Bae, Jongsuck; Ishikawa, Ryo; Okuyama, Sumio; Miyajima, Takashi; Akizuki, Taiji; Okamoto, Tatsuya; Mizuno, Koji

    2000-04-01

    A metal microslit has been used as an interaction circuit between a CO2 laser beam and nonrelativistic free electrons. Evanescent waves which are induced on the slit by illumination of the laser light modulate the energy of electrons passing close to the surface of the slit. The electron-energy change of more than ±5 eV for the 80 keV electron beam has been observed using the 7 kW laser beam at the wavelength of 10.6 μm.

  2. Effect of a target on the stimulated emission of microsecond CO2-laser pulses

    Science.gov (United States)

    Baranov, V. Iu.; Dolgov, V. A.; Maliuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The paper reports a change in the pulse shape of a TEA CO2 laser with an unstable cavity under the interaction between the laser radiation and a metal surface in the presence of a breakdown plasma. It is shown that a continuous change in the phase difference between the wave reflected in the cavity and the principal cavity wave gives rise to changes in the pulse shape and the appearance of power fluctuations. The possible effect of these phenomena on the laser treatment of materials is considered.

  3. High speed surface cleaning by a high repetition rated TEA-CO2 laser

    International Nuclear Information System (INIS)

    Tsunemi, Akira; Hirai, Ryo; Hagiwara, Kouji; Nagasaka, Keigo; Tashiro, Hideo

    1994-01-01

    We demonstrated the feasibility of high speed cleaning of solid surfaces by the laser ablation technique using a TEA-CO 2 laser. The laser pulses with the repetition rate of 1 kHz were applied to paint, rust, moss and dirt attached on the surfaces. The attachments were effectively removed without the damage of bulk surfaces by the irradiation of line-focused sequential pulses with an energy of 300 mJ/pulse. A cleaning rate reached to 17 m 2 /hour for the case of paint removal from iron surfaces. (author)

  4. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    International Nuclear Information System (INIS)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A.

    2012-01-01

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti–Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of γ–γ' eutectic in γ' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: ► A newly developed superalloy was welded by CO 2 laser beam joining technique. ► Electron microscopy characterization of the weld microstructure was performed. ► Identified interdendritic microconstituents consist of MC-type carbides. ► Modification of primary solidification path is used to explain cracking resistance.

  5. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C., E-mail: cboyle@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada); Martel, P. [Novika Solutions, La Pocatiere, QC (Canada)

    2015-07-01

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Arc Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  6. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C. [Nuclear Waste Management Organization (NWMO), Toronto, Ontario (Canada); Martel, P. [Novika Solutions, La Pocatiere, Quebec (Canada)

    2015-09-15

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Axe Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  7. Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple Constraints

    Science.gov (United States)

    2015-12-10

    Laboratory (Ret.), private communication. 33. S. Kou, Welding Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 34. J. K...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple

  8. Flexible CO2 laser and submucosal gel injection for safe endoluminal resection in the intestines.

    Science.gov (United States)

    Au, Joyce T; Mittra, Arjun; Wong, Joyce; Carpenter, Susanne; Carson, Joshua; Haddad, Dana; Monette, Sebastien; Ezell, Paula; Patel, Snehal; Fong, Yuman

    2012-01-01

    The CO(2) laser's unique wavelength of 10.6 μm has the advantage of being readily absorbed by water but historically limited it to line-of-sight procedures. Through recent technological advances, a flexible CO(2) laser fiber has been developed and holds promise for endoluminal surgery. We examined whether this laser, along with injection of a water-based gel in the submucosal space, will allow safe dissection of the intestines and enhance the potential of this tool for minimally invasive surgery. Using an ex vivo model with porcine intestines, spot ablation was performed with the flexible CO(2) laser at different power settings until transmural perforation. Additionally, excisions of mucosal patches were performed by submucosal dissection with and without submucosal injection of a water-based gel. With spot ablation at 5 W, none of the specimens was perforated by 5 min, which was the maximum recorded time. The time to perforation was significantly shorter with increased laser power, and gel pretreatment protected the intestines against spot ablation, increasing the time to perforation from 6 to 37 s at 10 W and from 1 to 7 s at 15 W. During excision of mucosal patches, 56 and 83% of untreated intestines perforated at 5 and 10 W, respectively. Gel pretreatment prior to excision protected all intestines against perforation. These specimens were verified to be intact by inflation with air to over 100 mmHg. Furthermore, excision of the mucosal patch was complete in gel-pretreated specimens, whereas 22% of untreated specimens had residual islands of mucosa after excision. The flexible CO(2) laser holds promise as a precise dissection and cutting tool for endoluminal surgery of the intestines. Pretreatment with a submucosal injection of a water-based gel protects the intestines from perforation during ablation and mucosal dissection.

  9. Advantages of CO2 laser use in surgical management of otosclerosis

    Directory of Open Access Journals (Sweden)

    Matković Svjetlana

    2003-01-01

    Full Text Available Background. Otosclerosis is a progressive osteo-destructive disorder of the bony labyrinth in which the fixation of the stapes causes the hearing loss. The aim of this study was the postoperative determination of parameters of the effect of surgical intervention on hearing and the incidence of complications and, on the basis of the differences in the examined parameters of the study, the estimation of the eficacy of the two mentioned surgical thechniques in the treatment of otosclerosis. Methods. In our research 40 patients with conductive hearing loss caused by otosclerosis underwent surgery with CO2 laser. Functional results were compared postoperatively with the results of 40 patients operated by the classical technique without the use of CO2 laser. The research was accomplished as a prospective comparative study. Results. The air-bone interval (gap as the difference between the rim of air and bone conductivity for separate frequencies did not significantly differ between the control and the experimental group. Both methods were effective in closing the air-bone gap with the rates of closure to within 10 dB in 82.6% and 75.3% for the laser and drill, respectively. The incidence of tinnitus was significantly lower in patients who underwent surgery with CO2 laser. The frequency of intraoperative and postoperative complications was significantly lower in the laser group. Differences were statistically significant for all parameters (p<0.05. Conclusion. On the basis of the degree of postoperative hearing improvement, tinnitus and the incidence of complications it can be concluded that the use of CO2 laser during inverse stapedoplasty represents an effective and safe method, justifying the promotion of its use in the surgical management of otosclerosis.

  10. Research on catalysts for long-life closed-cycle CO2 laser oaperation

    Science.gov (United States)

    Sidney, Barry D.; Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.

    1987-01-01

    Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin-oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-Langley on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) the effects of various catalyst pretreatment techniques on catalyst efficiency; (2) development of a technique, verified in a 30-hour test, to prevent isotopic scrambling when C(O-18) and (O-18)2 are reacted in the presence of a common-isotope Pt/Sn(O-16)2 catalyst; and (3) development of a mathematical model of a laser discharge prior to catalyst introduction.

  11. The porosity formation mechanism in the laser-MIG hybrid welded joint of Invar alloy

    Science.gov (United States)

    Zhan, Xiaohong; Gao, Qiyu; Gu, Cheng; Sun, Weihua; Chen, Jicheng; Wei, Yanhong

    2017-10-01

    The porosity formation mechanism in the laser-metal inter gas (MIG) multi-layer hybrid welded (HW) joint of 19.05 mm thick Invar alloy is investigated. The microstructure characteristics and energy dispersive spectroscopy (EDS) are analyzed. The phase identification was conducted by the X-ray diffractometer (XRD). Experimental results show that the generation of porosity is caused by the relatively low laser power in the root pass and low current in the cover pass. It is also indicated that the microstructures of the welded joints are mainly observed to be columnar crystal and equiaxial crystal, which are closely related to the porosity formation. The EDS results show that oxygen content is significantly high in the inner wall of the porosity. The XRD results indicate that the BM and the WB of laser-MIG HW all are composed of Fe0.64Ni0.36 and γ-(Fe,Ni). When the weld pool is cooled quickly, [NiO] [FeO] and [MnO] are formed that react on C to generate CO/CO2 gases. The porosity of laser-MIG HW for Invar alloy is oxygen pore. The root source of metallurgy porosity formation is that the dissolved gases are hard to escape sufficiently and thus exist in the weld pool. Furthermore, 99.99% pure Argon is recommended as protective gas in the laser-MIG HW of Invar alloy.

  12. Study of CW Nd-Yag laser welding of Zn-coated steel sheets

    International Nuclear Information System (INIS)

    Fabbro, Remy; Coste, Frederic; Goebels, Dominique; Kielwasser, Mathieu

    2006-01-01

    The welding of Zn-coated steel thin sheets is a great challenge for the automotive industry. Previous studies have defined the main physical processes involved. For non-controlled conditions, the zinc vapour expelled from the interface of the two sheets violently expands inside the keyhole and expels the melt pool. When using CO 2 lasers, we have previously shown that an elongated laser spot produces an elongated keyhole, which is efficient for suppressing this effect. We have adopted a similar approach for CW Nd : Yag laser welding and we observe that an elongated spot is not necessary for achieving good weld seams. Several diagnostics were used in order to understand these interesting results. High-speed video camera visualizations of the top and the bottom of the keyhole during the process show the dynamics of the keyhole hydrodynamic behaviour. It appears that the role of the reflected beam on the front keyhole wall for generating a characteristic rear wall deformation is crucial for an efficient stabilization of the process. Our dynamic keyhole modelling, which includes ray tracing, totally confirms this interpretation and explains the results for very different experimental conditions (effect of welding speed, laser intensity, variable sheet thickness, laser beam intensity distribution) that will be presented

  13. Modeling and application of plasma charge current in deep penetration laser welding

    International Nuclear Information System (INIS)

    Zhang, Xudong; Chen, Wuzhu; Jiang, Ping; Guo, Jing; Tian, Zhiling

    2003-01-01

    Plasma charge current distribution during deep penetration CO 2 laser welding was analyzed theoretically and experimentally. The laser-induced plasma above the workpiece surface expands up to the nozzle, driven by the particle concentration gradient, forming an electric potential between the workpiece and the nozzle due to the large difference between the diffusion velocities of the ions and the electrons. The plasma-induced current obtained by electrically connecting the nozzle and the workpiece can be increased by adding a negative external voltage. For a fixed set of welding conditions, the plasma charge current increases with the external voltage to a saturation value. The plasma charge current decreases as the nozzle-to-workpiece distance increases. Therefore, closed-loop control of the nozzle-to-workpiece distance for laser welding can be based on the linear relationship between the plasma charge current and the distance. In addition, the amount of plasma above the keyhole can be reduced by a transverse magnetic field, which reduces the attenuation of the incident laser power by the plasma so as to increase the laser welding thermal efficiency

  14. Laser spot welding of cobalt-based amorphous metal foils

    International Nuclear Information System (INIS)

    Runchev, Dobre; Dorn, Lutc; Jaferi, Seifolah; Purbst, Detler

    1997-01-01

    The results concerning weldability of amorphous alloy (VAC 6025F) in shape of foils and the quality of laser-spot welded joints are presented in this paper. The aim of the research was the production of a high quality welding joint, by preserving the amorphous structure. The quality of the joint was tested by shear strength analysis and microhardness measuring. The metallographic studies were made by using optical microscope and SEM. The results show that (1) overlapped Co based amorphous metals foils can be welded with high-quality by a pulsed Nd: YAG-Laser, but only within a very narrow laser parameter window; (2) the laser welded spots show comparably high strength as the basic material; (3) the structure of the welded spot remains amorphous, so that the same characteristics as the base material can be achieved. (author)

  15. Method for laser welding a fin and a tube

    Science.gov (United States)

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  16. Multi - pulse tea CO2 laser beam interaction with the TiN thin films

    International Nuclear Information System (INIS)

    Gakovic, B.; Trtica, M.; Nenadovic, T.; Pavlicevic, B.

    1998-01-01

    The interaction of various types of energetic beams including a laser beam with the high-hardness coatings is of great fundamental and technological interest. The Nd:YAG, excimer and CO 2 are frequently used laser beams for this purpose. The interaction of a laser beam with low thickness coatings, deposited on austenitic stainless steel, is insufficiently known in the literature. Titanium nitride (TiN) possess the excellent physico-chemical characteristics. For this reason TiN films/coatings are widely used. The purpose of this article is a consideration of the effect of TEA C0 2 laser radiation on the TiN film deposited on austenitic stainless steel substrate (AISI 316). Investigation of TiN morphological changes, after multipulse laser irradiation, shown dependence on laser fluence, number of laser pulses and the laser pulse shape. Subsequently fast heating and cooling during multi-pulse laser bombardment cause the grain growth of TiN layer. Both laser pulses (pulses with tail and tail-free pulses) produced periodical wave like structure on polished substrate material. Periodicity is observed also on AISI 316 protected with TiN layer, but only with laser pulse with tail. (author)

  17. Possibilities of a metal surface radioactive decontamination using a pulsed CO2 laser

    Science.gov (United States)

    Milijanic, Scepan S.; Stjepanovic, Natasa N.; Trtica, Milan S.

    2000-01-01

    There is a growing interest in the laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. A main mechanism of cleaning in by lasers is ablation. In this work a pulsed TEA CO2 laser was used for surface cleaning, primarily in order to demonstrate that the ablation from metal surfaces with this laser is possible even with relatively low pulse energies, and secondary, that it could be competitive with other lasers because of much higher energy efficiencies. The laser pulse contains two parts, one strong and shot peak at the beginning, followed with a tail. The beam was focused onto a contaminated surface with a KBr lens. The surface was contaminated with 137Cs. Three different metals were used: stainless steel, copper and aluminum. The evaporated material was pumped out in air atmosphere and transferred to a filter. Presence of the activity on the filter was proved by a germanium detector-multichannel analyzer. Activity levels were measured by a GM counter. Calculated decontamination factors as well as collection factors have shown that ablation takes place with relatively high efficiency of decontamination. This investigation suggests that decontamination using the CO2 laser should be seriously considered.

  18. CO2 laser ablation of bent optical fibers for sensing applications

    International Nuclear Information System (INIS)

    Lévesque, L; Jdanov, V

    2011-01-01

    A procedure for the fabrication of a fiber optic sensor involving CO 2 laser ablation at λ = 10.6 µm is proposed. A basic system to achieve optical fiber bending and material processing on a single mode optical fiber is described and it is demonstrated that an optical fiber can be bent at a very precise angle by focusing a CO 2 beam locally near the glass cladding surface until it reaches melting temperature. A method is also described for removing material at the apex of a bent fiber to obtain a smooth and well flattened plane surface that is suitable for optical fiber sensing

  19. Infrared radiation and inversion population of CO2 laser levels in Venusian and Martian atmospheres

    Science.gov (United States)

    Gordiyets, B. F.; Panchenko, V. Y.

    1983-01-01

    Formation mechanisms of nonequilibrium 10 micron CO2 molecule radiation and the possible existence of a natural laser effect in the upper atmospheres of Venus and Mars are theoretically studied. An analysis is made of the excitation process of CO2 molecule vibrational-band levels (with natural isotropic content) induced by direct solar radiation in bands 10.6, 9.4, 4.3, 2.7 and 2.0 microns. The model of partial vibrational-band temperatures was used in the case. The problem of IR radiation transfer in vibrational-rotational bands was solved in the radiation escape approximation.

  20. Investigation of Thermal Stress Distribution in Laser Spot Welding Process

    OpenAIRE

    Osamah F. Abdulateef

    2009-01-01

    The objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transf...

  1. The use of electromagnetic body forces to enhance the quality of laser welds

    Science.gov (United States)

    Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.

    2003-11-01

    The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.

  2. Picosecond streak camera diagnostics of CO2 laser-produced plasmas

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Marjoribanks, R.S.; Sancton, R.W.; Enright, G.D.; Richardson, M.C.

    1979-01-01

    The interaction of intense laser radiation with solid targets is currently of considerable interest in laser fusion studies. Its understanding requires temporal knowledge of both laser and plasma parameters on a picosecond time scale. In this paper we describe the progress we have recently made in analysing, with picosecond time resolution, various features of intense nanosecond CO 2 laser pulse interaction experiments. An infrared upconversion scheme, having linear response and <20 ps temporal resolution, has been utilized to characterise the 10 μm laser pulse. Various features of the interaction have been studied with the aid of picosecond IR and x-ray streak cameras. These include the temporal and spatial characteristics of high harmonic emission from the plasma, and the temporal development of the x-ray continuum spectrum. (author)

  3. Flow with vibrational energy exchange, application to CO2 electric laser

    International Nuclear Information System (INIS)

    Dahan, Claude.

    1974-01-01

    The performances of a continuous wave (CO 2 , N 2 , He) laser ionized by an electron beam are calculated. Several types of phenomena are considered: energy exchange processes between molecules of laser medium, electron molecular excitation processes, aerodynamic phenomena: the energy exchanges accompanying the laser effect generate important quantities of heat, which have to be evacuated by the flow. After a survey of the fundamental assumptions on molecular phenomena, a computer code was developed for following, along the flow, the evolution of the thermodynamic parameters (pressure, temperature), of the laser gain, and of the electrical properties (electron density and temperature). To provide a finer description of the last ones, a model giving the energy distribution of the electrons in the laser medium was established [fr

  4. Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers

    Science.gov (United States)

    Engler, Sebastian; Ramsayer, Reiner; Poprawe, Reinhart

    Copper materials are classified as difficult to weld with state-of-the-art lasers. High thermal conductivity in combination with low absorption at room temperature require high intensities for reaching a deep penetration welding process. The low absorption also causes high sensitivity to variations in surface conditions. Green laser radiation shows a considerable higher absorption at room temperature. This reduces the threshold intensity for deep penetration welding significantly. The influence of the green wavelength on energy coupling during heat conduction welding and deep penetration welding as well as the influence on the weld shape has been investigated.

  5. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    Directory of Open Access Journals (Sweden)

    Arendt-Nielsen Lars

    2010-11-01

    Full Text Available Abstract Background CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. Methods In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p 0.90, p 2 (5 W, 0.12 s, d1/e2 = 11.4 mm only two reported pain to glabrous skin stimulation using the same stimulus intensity. The temperature at the epidermal-dermal junction (depth 50 μm in hairy and depth 133 μm in glabrous skin was estimated to 46°C for hairy skin stimulation and 39°C for glabrous skin stimulation. Conclusions As compared to previous one dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO2 laser stimulation intensity, temperature levels and nociceptor activation.

  6. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    Science.gov (United States)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold

  7. CO2 and diode laser for excisional biopsies of oral mucosal lesions. A pilot study evaluating clinical and histopathological parameters.

    Science.gov (United States)

    Suter, Valérie G A; Altermatt, Hans Jörg; Sendi, Pedram; Mettraux, Gérald; Bornstein, Michael M

    2010-01-01

    The present pilot study evaluates the histopathological characteristics and suitability of CO2 and diode lasers for performing excisional biopsies in the buccal mucosa with special emphasis on the extent of the thermal damage zone created. 15 patients agreed to undergo surgical removal of their fibrous hyperplasias with a laser. These patients were randomly assigned to one diode or two CO2 laser groups. The CO2 laser was used in a continuous wave mode (cw) with a power of 5 W (Watts), and in a pulsed char-free mode (cf). Power settings for the diode laser were 5.12 W in a pulsed mode. The thermal damage zone of the three lasers and intraoperative and postoperative complications were assessed and compared. The collateral thermal damage zone on the borders of the excisional biopsies was significantly smaller with the CO, laser for both settings tested compared to the diode laser regarding values in pm or histopathological index scores. The only intraoperative complication encountered was bleeding, which had to be controlled with electrocauterization. No postoperative complications occurred in any of the three groups. The CO2 laser seems to be appropriate for excisional biopsies of benign oral mucosal lesions. The CO2 laser offers clear advantages in terms of smaller thermal damage zones over the diode laser. More study participants are needed to demonstrate potential differences between the two different CO2 laser settings tested.

  8. Diffusion of Co and W in diamond tool induced by 10.6 µm CO2 laser radiation

    CSIR Research Space (South Africa)

    Masina, Bathusile N

    2011-05-01

    Full Text Available www.csir.co.za Experimental setup CO2 laser ZnSe lens, f = 250 mm HPHT diamond sample Infrared camera Slide 8 © CSIR 2009 www.csir.co.za Experimental setup CO2 laser ZnSe lens, f = 250 mm HPHT diamond sample Infrared camera...

  9. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  10. Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.

    Science.gov (United States)

    Liger-Belair, Gérard

    2016-04-21

    Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.

  11. Evolution of microstructure in laser welding of SS304L

    International Nuclear Information System (INIS)

    Kumar, Santosh; Kushwaha, R.P.; Viswanadham, C.S.; Dey, G.K.

    2009-01-01

    Laser welding is an important joining process and its application in industries is growing rapidly. One can produce laser welds over a wide range of process parameters and this offers very good opportunity for producing microstructure of different morphology and scales in the weldment. Weld beads have been produced on 5 mm thick plates of SS304L using CW Nd-YAG laser. Laser power was varied in 200 W to 1000 W range and welding speed was varied in 100 mm/mm to 1000 mm/mm. This resulted in weld beads of different morphology. Microstructure of the weld beads was examined on the cross-section as well as in the axial direction using optical microscopy and Transmission Electron Microscopy (TEM) to study evolution of the microstructure in the weldment. Microstructure was cellular and cellular-dendritic with grains growing from the fusion line towards the centerline. In the central region, cellular growth along the welding direction was observed. The cell size was found to increase with increasing laser power and decreasing welding speed. The findings are presented in this paper. (author)

  12. Development of an optical displacement transducer for CO2 laser auto-focusing

    International Nuclear Information System (INIS)

    Brown, D.P.D.

    1986-01-01

    The PCMWP has partially funded the development of an optical displacement transducer by UKAEA Culham Laboratory (Laser Applications Group). This report covers all work which was done up to the end of the 1984/5 financial year. The purpose of the transducer is to sense automatically the standoff gap between the workpiece and a laser cutting head and subsequently to control an auto-focusing head for the CO 2 laser cutting process. Development of the transducer has reached a stage where it can be mounted on an industrial robot and incorporated into a closed loop servo control system so that standoff gap can be closely controlled whilst traversing variable geometry workpieces. The transducer has been shown to be insensitive to angular displacement of the workpiece (within limits) and to workpiece type or surface finish with the exception of transparent materials. Separate trials have shown it to be unaffected by CO 2 laser light and it has been used, with a motorised laser head, to control standoff whilst the laser cuts a range of contoured materials. The scientific principle of the transducer has thus been proved and a laboratory system has been successfully tested. Its performance has matched the specification with the exception of its ability to sense transparent materials. (author)

  13. An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces

    Directory of Open Access Journals (Sweden)

    MILAN S. TRTICA

    2000-06-01

    Full Text Available There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. A pulsed TEA CO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lasers because of much higher energy efficiencies. A brief theoretical analysis was made before the experiments. The laser beam was focused using a KBr-lens onto a surface contaminated with 137Cs (b-, t1/2 = 30.17 y. Three different metals were used: stainless steel, copper and aluminium. The ablated material was pumped out in an air atmosphere and transferred to a filter. The presence of activity on the filter was shown by a germanium detector-multichannel analyzer. The activity levels were measured by a GM counter. The calculated decontamination factors and collection factors showed that ablation occurs with a relatively high efficiency of decontamination. This investigation suggests that decontamination using a CO2 laser should be seriously considered.

  14. Fractional CO2 Laser Resurfacing as Monotherapy in the Treatment of Atrophic Facial Acne Scars.

    Science.gov (United States)

    Majid, Imran; Imran, Saher

    2014-04-01

    While laser resurfacing remains the most effective treatment option for atrophic acne scars, the high incidence of post-treatment adverse effects limits its use. Fractional laser photothermolysis attempts to overcome these limitations of laser resurfacing by creating microscopic zones of injury to the dermis with skip areas in between. The aim of the present study is to assess the efficacy and safety of fractional CO2 laser resurfacing in atrophic facial acne scars. Sixty patients with moderate to severe atrophic facial acne scars were treated with 3-4 sessions of fractional CO2 laser resurfacing at 6-week intervals. The therapeutic response to treatment was assessed at each follow up visit and then finally 6 months after the last laser session using a quartile grading scale. Response to treatment was labelled as 'excellent' if there was >50% improvement in scar appearance and texture of skin on the grading scale while 25-50% response and resurfacing as monotherapy is effective in treating acne scars especially rolling and superficial boxcar scars with minimal adverse effects.

  15. Optimization of CO2 Laser Cutting Process using Taguchi and Dual Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Madić

    2014-09-01

    Full Text Available Selection of optimal cutting parameter settings for obtaining high cut quality in CO2 laser cutting process is of great importance. Among various analytical and experimental optimization methods, the application of Taguchi and response surface methodology is one of most commonly used for laser cutting process optimization. Although the concept of dual response surface methodology for process optimization has been used with success, till date, no experimental study has been reported in the field of laser cutting. In this paper an approach for optimization of CO2 laser cutting process using Taguchi and dual response surface methodology is presented. The goal was to determine the near optimal laser cutting parameter values in order to ensure robust condition for minimization of average surface roughness. To obtain experimental database for development of response surface models, Taguchi’s L25 orthogonal array was implemented for experimental plan. Three cutting parameters, the cutting speed (3, 4, 5, 6, 7 m/min, the laser power (0.7, 0.9, 1.1, 1.3, 1.5 kW, and the assist gas pressure (3, 4, 5, 6, 7 bar, were used in the experiment. To obtain near optimal cutting parameters settings, multi-stage Monte Carlo simulation procedure was performed on the developed response surface models.

  16. Tailoring weld geometry during keyhole mode laser welding using a genetic algorithm and a heat transfer model

    International Nuclear Information System (INIS)

    Rai, R; DebRoy, T

    2006-01-01

    Tailoring of weld attributes based on scientific principles remains an important goal in welding research. The current generation of unidirectional laser keyhole models cannot determine sets of welding variables that can lead to a particular weld attribute such as specific weld geometry. Here we show how a computational heat transfer model of keyhole mode laser welding can be restructured for systematic tailoring of weld attributes based on scientific principles. Furthermore, the model presented here can calculate multiple sets of laser welding variables, i.e. laser power, welding speed and beam defocus, with each set leading to the same weld pool geometry. Many sets of welding variables were obtained via a global search using a real number-based genetic algorithm, which was combined with a numerical heat transfer model of keyhole laser welding. The reliability of the numerical heat transfer calculations was significantly improved by optimizing values of the uncertain input parameters from a limited volume of experimental data. The computational procedure was applied to the keyhole mode laser welding of the 5182 Al-Mg alloy to calculate various sets of welding variables to achieve a specified weld geometry. The calculated welding parameter sets showed wide variations of the values of welding parameters, but each set resulted in a similar fusion zone geometry. The effectiveness of the computational procedure was examined by comparing the computed weld geometry for each set of welding parameters with the corresponding experimental geometry. The results provide hope that systematic tailoring of weld attributes via multiple pathways, each representing alternative welding parameter sets, is attainable based on scientific principles

  17. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  18. Laser repair welding of molds with various pulse shapes

    Directory of Open Access Journals (Sweden)

    M. Pleterski

    2010-01-01

    Full Text Available Repair welding of cold-work tool steels with conventional methods is very difficult due to cracking during remelting or cladding and is generally performed with preheating. As an alternative, repair welding with laser technology has recently been used. This paper presents the influence of different pulse shapes on welding of such tools with the pulsed Nd:YAG laser. Repair welding tests were carried out on AISI D2 tool steel, quenched and tempered to hardness of 56 HRc, followed by microstructural analysis and investigation of defects with scanning electron microscopy. Test results suggest that it is possible to obtain sound welds without preheating, with the right selection of welding parameters and appropriate pulse shape.

  19. Real weld geometry determining mechanical properties of high power laser welded medium plates

    Science.gov (United States)

    Liu, Sang; Mi, Gaoyang; Yan, Fei; Wang, Chunming; Li, Peigen

    2018-06-01

    Weld width is commonly used as one of main factors to assess joint performances in laser welding. However, it changes significantly through the thickness direction in conditions of medium or thick plates. In this study, high-power autogenous laser welding was conducted on 7 mm thickness 201 stainless steel to elucidate the factor of whole weld transverse shape critically affecting the mechanical properties with the aim of predicting the performance visually through the weld appearance. The results show that single variation of welding parameters could result in great changes of weld pool figures and subsequently weld transverse shapes. All the obtained welds are composed of austenite containing small amount of cellular dendritic δ-Ferrite. The 0.2% proof stresses of Nail- and Peanut-shaped joint reach 458 MPa and 454 MPa, 88.2% and 87.5% of the base material respectively, while that of Wedge-shaped joint only comes to 371 MPa, 71.5% of the base material. The deterioration effect is believed to be caused by the axial grain zone in the weld center. The fatigue strength of joint P is a bit lower than N, but much better than W. Significant deformation incompatibility through the whole thickness and microstructure resistance to crack initiation should be responsible for the poor performance of W-shaped joints.

  20. Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser

    Science.gov (United States)

    Baitimerov, R. M.; Lykov, P. A.; Radionova, L. V.; Safonov, E. V.

    2017-10-01

    TiAl6V4 alloy is one of the widely used materials in powder bed fusion additive manufacturing technologies. In recent years selective laser melting (SLM) of TiAl6V4 alloy by fiber laser has been well studied, but SLM by CO2-lasers has not. SLM of TiAl6V4 powder by CO2-laser was studied in this paper. Nine 10×10×10 mm cubic specimens were fabricated using different SLM process parameters. All of the fabricated specimens have a good dense structure and a good surface finish quality without dimensional distortion. The lowest porosity that was achieved was about 0.5%.

  1. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    Science.gov (United States)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  2. 13CO2/12CO2 isotope ratio analysis in human breath using a 2 μm diode laser

    Science.gov (United States)

    Sun, Mingguo; Cao, Zhensong; Liu, Kun; Wang, Guishi; Tan, Tu; Gao, Xiaoming; Chen, Weidong; Yinbo, Huang; Ruizhong, Rao

    2015-04-01

    The bacterium H. pylori is believed to cause peptic ulcer. H. pylori infection in the human stomach can be diagnosed through a CO2 isotope ratio measure in exhaled breath. A laser spectrometer based on a distributed-feedback semiconductor diode laser at 2 μm is developed to measure the changes of 13CO2/12CO2 isotope ratio in exhaled breath sample with the CO2 concentration of ~4%. It is characterized by a simplified optical layout, in which a single detector and associated electronics are used to probe CO2 spectrum. A new type multi-passes cell with 12 cm long base length , 29 m optical path length in total and 280 cm3 volume is used in this work. The temperature and pressure are well controlled at 301.15 K and 6.66 kPa with fluctuation amplitude of 25 mK and 6.7 Pa, respectively. The best 13δ precision of 0.06o was achieved by using wavelet denoising and Kalman filter. The application of denoising and Kalman filter not only improved the signal to noise ratio, but also shorten the system response time.

  3. Fractional CO 2 laser resurfacing as monotherapy in the treatment of atrophic facial acne scars

    Directory of Open Access Journals (Sweden)

    Imran Majid

    2014-01-01

    Full Text Available Background: While laser resurfacing remains the most effective treatment option for atrophic acne scars, the high incidence of post-treatment adverse effects limits its use. Fractional laser photothermolysis attempts to overcome these limitations of laser resurfacing by creating microscopic zones of injury to the dermis with skip areas in between. Aim: The aim of the present study is to assess the efficacy and safety of fractional CO 2 laser resurfacing in atrophic facial acne scars. Materials and Methods: Sixty patients with moderate to severe atrophic facial acne scars were treated with 3-4 sessions of fractional CO 2 laser resurfacing at 6-week intervals. The therapeutic response to treatment was assessed at each follow up visit and then finally 6 months after the last laser session using a quartile grading scale. Response to treatment was labelled as ′excellent′ if there was >50% improvement in scar appearance and texture of skin on the grading scale while 25-50% response and <25% improvement were labelled as ′good′ and ′poor′ response, respectively. The overall satisfaction of the patients and any adverse reactions to the treatment were also noted. Results: Most of the patients showed a combination of different morphological types of acne scars. At the time of final assessment 6 months after the last laser session, an excellent response was observed in 26 patients (43.3% while 15 (25% and 19 patients (31.7% demonstrated a good and poor response respectively. Rolling and superficial boxcar scars responded the best while pitted scars responded the least to fractional laser monotherapy. The commonest reported adverse effect was transient erythema and crusting lasting for an average of 3-4 and 4-6 days, respectively while three patients developed post-inflammatory pigmentation lasting for 8-12 weeks. Conclusions: Fractional laser resurfacing as monotherapy is effective in treating acne scars especially rolling and superficial boxcar

  4. Analysis of the heat affected zone in CO2 laser cutting of stainless steel

    Directory of Open Access Journals (Sweden)

    Madić Miloš J.

    2012-01-01

    Full Text Available This paper presents an investigation into the effect of the laser cutting parameters on the heat affected zone in CO2 laser cutting of AISI 304 stainless steel. The mathematical model for the heat affected zone was expressed as a function of the laser cutting parameters such as the laser power, cutting speed, assist gas pressure and focus position using the artificial neural network. To obtain experimental database for the artificial neural network training, laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of the cutting parameter. Using the 27 experimental data sets, the artificial neural network was trained with gradient descent with momentum algorithm and the average absolute percentage error was 2.33%. The testing accuracy was then verified with 6 extra experimental data sets and the average predicting error was 6.46%. Statistically assessed as adequate, the artificial neural network model was then used to investigate the effect of the laser cutting parameters on the heat affected zone. To analyze the main and interaction effect of the laser cutting parameters on the heat affected zone, 2-D and 3-D plots were generated. The analysis revealed that the cutting speed had maximum influence on the heat affected zone followed by the laser power, focus position and assist gas pressure. Finally, using the Monte Carlo method the optimal laser cutting parameter values that minimize the heat affected zone were identified.

  5. Thermal and molecular investigation of laser tissue welding

    Energy Technology Data Exchange (ETDEWEB)

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  6. Diffractive beam shaping for enhanced laser polymer welding

    Science.gov (United States)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  7. Modeling and design of energy concentrating laser weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J.O. [Los Alamos National Lab., NM (United States); Sklar, E. [OptiCad Corp., Santa Fe, NM (United States)

    1997-04-01

    The application of lasers for welding and joining has increased steadily over the past decade with the advent of high powered industrial laser systems. Attributes such as high energy density and precise focusing allow high speed processing of precision assemblies. Other characteristics of the process such as poor coupling of energy due to highly reflective materials and instabilities associated with deep penetration keyhole mode welding remain as process limitations and challenges to be overcome. Reflective loss of laser energy impinging on metal surfaces can in some cases exceed ninety five percent, thus making the process extremely inefficient. Enhanced coupling of the laser beam can occur when high energy densities approach the vaporization point of the materials and form a keyhole feature which can trap laser energy and enhance melting and process efficiency. The extreme temperature, pressure and fluid flow dynamics of the keyhole make control of the process difficult in this melting regime. The authors design and model weld joints which through reflective propagation and concentration of the laser beam energy significantly enhance the melting process and weld morphology. A three dimensional computer based geometric optical model is used to describe the key laser parameters and joint geometry. Ray tracing is used to compute the location and intensity of energy absorption within the weld joint. Comparison with experimentation shows good correlation of energy concentration within the model to actual weld profiles. The effect of energy concentration within various joint geometry is described. This method for extending the design of the laser system to include the weld joint allows the evaluation and selection of laser parameters such as lens and focal position for process optimization. The design of narrow gap joints which function as energy concentrators is described. The enhanced laser welding of aluminum without keyhole formation has been demonstrated.

  8. GAP WIDTH STUDY IN LASER BUTT-WELDING

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely related......In this paper the maximum allowable gap width in laser butt-welding is intensively studied. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.5-2.0 m/min, the laser...... to the welding speed, (2) the larger laser power leads to the bigger maximum allowable gap width and (3) the focal point position has very little influence on the maximum gap width....

  9. Laser tissue welding mediated with a protein solder

    Science.gov (United States)

    Small, Ward, IV; Heredia, Nicholas J.; Celliers, Peter M.; Da Silva, Luiz B.; Eder, David C.; Glinsky, Michael E.; London, Richard A.; Maitland, Duncan J.; Matthews, Dennis L.; Soltz, Barbara A.

    1996-05-01

    A study of laser tissue welding mediated with an indocyanine green dye-enhanced protein solder was performed. Freshly obtained sections of porcine artery were used for the experiments. Sample arterial wall thickness ranged from two to three millimeters. Incisions approximately four millimeters in length were treated using an 805 nanometer continuous- wave diode laser coupled to a one millimeter diameter fiber. Controlled parameters included the power delivered by the laser, the duration of the welding process, and the concentration of dye in the solder. A two-color infrared detection system was constructed to monitor the surface temperatures achieved at the weld site. Burst pressure measurements were made to quantify the strengths of the welds immediately following completion of the welding procedure.

  10. Complications of endoscopic CO2 laser surgery for laryngeal cancer and concepts of their management.

    OpenAIRE

    Prgomet, Drago; Bačić, Antun; Prstačić, Ratko; Janjanin, Saša

    2013-01-01

    Endoscopic CO 2 laser surgery (ELS) is a widely accepted treatment modality for early laryngeal cancer. Commonly re- ported advantages of ELS are good oncologic results with low incidence of complications. Although less common if com- pared with open procedures, complications following ELS can be very serious, even with lethal outcome. They can range from intraoperative endotracheal tube fire accidents to early and late postoperative sequels that require intensive medical treatment, blood tra...

  11. Effect of CO2 laser on root caries inhibition around composite restorations: an in vitro study.

    Science.gov (United States)

    de Melo, Jociana Bandeira; Hanashiro, Fernando Seishim; Steagall, Washington; Turbino, Miriam Lacalle; Nobre-dos-Santos, Marinês; Youssef, Michel Nicolau; de Souza-Zaroni, Wanessa Christine

    2014-03-01

    The aim of the present study was to investigate the in vitro effect of CO2 laser on the inhibition of root surface demineralization around composite resin restorations. For this purpose, 30 blocks obtained from human molar roots were divided into three groups: group 1 (negative control), cavity prepared with cylindrical diamond bur + acid etching + adhesive + composite resin restoration; group 2, cavity prepared with cylindrical diamond bur + CO2 laser (5.0 J/cm(2)) + acid etching + adhesive + composite resin; and group 3, cavity prepared with cylindrical diamond bur + CO2 laser (6.0 J/cm(2)) + acid etching + adhesive + composite resin. After this procedure, the blocks were submitted to thermal and pH cycling. Root surface demineralization around the restorations was measured by microhardness analysis. The hardness results of the longitudinally sectioned root surface were converted into percentage of mineral volume, which was used to calculate the mineral loss delta Z (ΔZ). The percentage of mineral volume, ΔZ, and the percentage of demineralization inhibition of the groups were statistically analyzed by using analysis of variance and Tukey-Kramer test. The percentage of mineral volume was higher in the irradiated groups up to 80 μm deep. The ΔZ was significantly lower in the irradiated groups than in the control group. The percentage of reduction in demineralization ranged from 19.73 to 29.21 in position 1 (50 μm), and from 24.76 to 26.73 in position 2 (100 μm), when using 6 and 5 J/cm(2), respectively. The CO2 laser was effective in inhibiting root demineralization around composite resin restorations.

  12. Differential expression of myofibroblasts on CO2 laser wounds and scalpel wounds: an experimental model

    Science.gov (United States)

    Machado, R. M.; Oliveira, C. R. B.; Vitória, L. A.; Xavier, F. C. A.; Pinheiro, A. L. B.; Freitas, A. C.; Ramalho, L. M. P.

    2018-04-01

    Wound contraction of both traumatic and surgical origin may reduce or limit the function of the tissue. Myofibroblasts are cells involved on the process of wound contraction, which is smaller on CO2 Laser wounds. The aims of this study were to quantitative and statistically assess the presence of myofibroblasts on both conventional and CO2 Laser wounds. Thirty-two animals (rattus norvegicus) were divided into four groups and operated using either the CO2 Laser (groups A1 and A2) or conventional scalpel (groups B1 and B2). The animals were sacrificed eight days post-operatively (groups: A1 and B1) and 14th days after surgery (groups: A2 and B2). The spec imens we re routinely processed to wax and stained with a-Smooth Muscle Actin (aSMA) and analyzed under light microscopy (40X). Two standard areas around the wound of each slide were selected and used to count the number of myofribroblasts present using a calibrated eyepiece and a graticule. The number of myofibroblasts at day eight was significantly higher than at day 14th. Comparison of the two techniques at day eight showed significant differences between the two groups (Laser, p=0.007 and scalpel, p=0.001). The number of cells present on group B1 was significantly higher than group A1 (p=0.001). However at the 14th day there was no such difference (p=0,072). It is concluded that the small number of myofibroblasts at day eight after wounding with the CO2 Lasermay be the reason why contraction on this wound is smaller than the one observed in conventional surgery.

  13. A CO2 laser polarimeter for measurement of plasma current profile in Alcator C-Mod

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Richards, R.K.; Irby, J.; Luke, T.

    1994-01-01

    A multichannel infrared polarimeter system for measurement of the plasma current profile in Alcator C-Mod has been designed, constructed, and tested. The system utilizes a cw CO 2 , laser at a wavelength of 10.6 μm. An electro-optic polarization-modulation technique has been used to achieve the high sensitivity required for the measurement. The recent results of the measurements as well as the feasibility of its application on ITER are presented

  14. Experimental observation of parametric effects near period doubling in a loss-modulated CO2 laser

    OpenAIRE

    Chizhevsky, V. N.

    1996-01-01

    A number of parametric effects, such as suppression of period doubling, shift of the bifurcation point, scaling law relating the shift and the perturbation amplitude, influence of the detuning on the suppression, reaching of the maximum gain between the original and shifted bifurcation points, and scaling law for idler power are experimentally observed near period doubling bifurcation in a loss-driven CO2 laser that is subjected to periodic loss perturbations at a frequency that is close to a...

  15. Comparison of surface roughness quality created by abrasive water jet and CO2 laser beam cutting

    Czech Academy of Sciences Publication Activity Database

    Zeleňák, M.; Valíček, Jan; Klich, Jiří; Židková, P.

    2012-01-01

    Roč. 19, č. 3 (2012), s. 481-485 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive waterjet cut ting * CO2 laser beam cut ting * optical profilometry * titanium sample Subject RIV: JQ - Machines ; Tools Impact factor: 0.601, year: 2012 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=129054

  16. Oral Crest Lengthening for Increasing Removable Denture Retention by Means of CO2 Laser

    Directory of Open Access Journals (Sweden)

    Samir Nammour

    2014-01-01

    Full Text Available The loss of teeth and their replacement by artificial denture is associated with many problems. The denture needs a certain amount of ridge height to give it retention and a long-term function. Crest lengthening procedures are performed to provide a better anatomic environment and to create proper supporting structures for more stability and retention of the denture. The purpose of our study is to describe and evaluate the effectiveness of CO2 laser-assisted surgery in patients treated for crest lengthening (vestibular deepening. There have been various surgical techniques described in order to restore alveolar ridge height by pushing muscles attaching of the jaws. Most of these techniques cause postoperative complications such as edemas, hemorrhage, pain, infection, slow healing, and rebound to initial position. Our clinical study describes the treatment planning and clinical steps for the crest lengthening with the use of CO2 laser beam (6–15 Watts in noncontact, energy density range: 84.92–212.31 J/cm2, focus, and continuous mode with a focal point diameter of 0.3 mm. At the end of each surgery, dentures were temporarily relined with a soft material. Patients were asked to mandatorily wear their relined denture for a minimum of 4–6 weeks and to remove it for hygienic purposes. At the end of each surgery, the deepest length of the vestibule was measured by the operator. No sutures were made and bloodless wounds healed in second intention without grafts. Results pointed out the efficiency of the procedure using CO2 laser. At 8 weeks of post-op, the mean of crest lengthening was stable without rebound. Only a loss of 15% was noticed. To conclude, the use of CO2 laser is an effective option for crest lengthening.

  17. Properties of ZnO whiskers under CO2-laser irradiation

    International Nuclear Information System (INIS)

    Shkumbatyuk, P. S.

    2010-01-01

    Needlelike ZnO single crystals (whiskers) 0.3-0.8 mm long and 1-10 μm in diameter with a resistivity from 3 x 10 2 to 1 Ω cm have been grown under cw CO 2 -laser irradiation. The whiskers exhibit weak electroluminescence caused by injection from contacts with participation of intrinsic defects, which affect the electric field distribution.

  18. Laser welding to expand the allowable gap in bore welding for ITER blanket hydraulic connection

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hisashi, E-mail: tanigawa.hisashi@jaea.go.jp; Maruyama, Takahito; Noguchi, Yuto; Takeda, Nobukazu; Kakudate, Satoshi

    2015-10-15

    For application to bore welding of hydraulic connection in the ITER blanket module, laser welding presents the following benefits: low weld heat input is preferred for re-welding of the irradiated material. Its contactless process can intrinsically avoid a failure mode of the tool sticking on the weld. The exact requirements for pipe alignment were assessed in comparison with the assembly tolerance. The groove geometry was modified to expand the allowable initial gap. The groove was machined to be partially thick to obviate the filler wire. First, plates with partially thick grooves were welded to elucidate the preferred groove geometry and welding conditions. With the modified groove, the plates were welded for the initial gap of 1.0 mm. Then the groove geometry and welding conditions were adjusted based on results of pipe welding tests. By application of the additional 0.5-mm-thick and 2.5-mm-wide metal in the groove, pipes with an initial gap of 0.7 mm were welded successfully.

  19. Alignment control of columnar liquid crystals with wavelength tunable CO2 laser irradiation

    International Nuclear Information System (INIS)

    Monobe, Hirosato; Awazu, Kunio; Shimizu, Yo

    2008-01-01

    Infrared-induced alignment change with wavelength tunable CO 2 laser irradiation for columnar liquid crystal domains was investigated for a liquid crystalline triphenylene derivative. A uniformly aligned alignment change of domains was observed when a chopped linearly polarized infrared laser light corresponding to the wavelength of the aromatic C-O-C stretching vibration band (9.65 μm) was irradiated. The results strongly imply that the infrared irradiation is a possible technique for device fabrication by use of columnar mesophase as a liquid crystalline semiconductor

  20. Epiglottis reshaping using CO2 laser: A minimally invasive technique and its potent applications

    Directory of Open Access Journals (Sweden)

    Velegrakis George

    2008-07-01

    Full Text Available Abstract Laryngomalacia (LRM, is the most common laryngeal abnormality of the newborn, caused by a long curled epiglottis, which prolapses posteriorly. Epiglottis prolapse during inspiration (acquired laryngomalacia is an unusual cause of airway obstruction and a rare cause of obstructive sleep apnea syndrome (OSAS. We present a minimally invasive technique where epiglottis on cadaveric larynx specimens was treated with CO2 laser. The cartilage reshaping effect induced by laser irradiation was capable of exposing the glottis opening widely. This technique could be used in selected cases of LRM and OSAS due to epiglottis prolapse as an alternative, less morbid approach.

  1. Design of an Optical System for High Power CO2 Laser Cutting

    DEFF Research Database (Denmark)

    de Lange, D.F.; Meijer, J.; Nielsen, Jakob Skov

    2003-01-01

    The results of a design study for the optical system for cutting with high power CO2 lasers (6 kW and up) will be presented. As transparent materials cannot be used for these power levels, mirrors have been applied. A coaxial cutting gas supply has been designed with a laser beam entrance into th...... independent of the entering beam angle or position. manufacturing tolerances have been compensated in a one time adjustment during the assembly of the optical system. Preliminary cutting results in 13 mm thick steel in a shipyard application show a signinficant improvement in the cutting performance....

  2. CO2-laser--produced plasma columns in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Offenberger, A.A.; Cervenan, M.R.; Smy, P.R.

    1976-01-01

    A 1-GW CO 2 laser pulse has been used to produce extended column breakdown of hydrogen at low pressure in a 20-cm-long solenoid. Magnetic fields of up to 110 kG were used to inhibit radial losses of the plasma column. A differential pumping scheme was devised to prevent formation of an opaque absorption wave travelling out of the solenoid back toward the focusing lens. Target burns give direct evidence for trapped laser beam propagation along the plasma column

  3. Dispersion of Light and Heavy Pollutants in Urban Scale Models: CO2 Laser Photoacoustic Studies

    Czech Academy of Sciences Publication Activity Database

    Zelinger, Zdeněk; Střižík, M.; Kubát, Pavel; Civiš, Svatopluk; Grigorová, E.; Janečková, R.; Zavila, O.; Nevrlý, Václav; Herecová, L.; Bailleux, S.; Horká-Zelenková, Veronika; Ferus, Martin; Skříňský, J.; Kozubková, M.; Drábková, S.; Jaňour, Zbyněk

    2009-01-01

    Roč. 63, č. 4 (2009), s. 430-436 ISSN 0003-7028 R&D Projects: GA MŠk OC 111; GA MŠk LC06071; GA ČR GA202/06/0216; GA MŽP SPII1A0/45/07 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z20760514 Keywords : Air pollution * CO2 laser photoacoustic spectroscopy * PAS * Laser diode spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.564, year: 2009

  4. Experimental and theoretical analysis of defocused CO2 laser microchanneling on PMMA for enhanced surface finish

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-02-01

    The poor surface finish of CO2 laser-micromachined microchannel walls is a major limitation of its utilization despite several key advantages, like low fabrication cost and low time consumption. Defocused CO2 laser beam machining is an effective solution for fabricating smooth microchannel walls on polymer and glass substrates. In this research work, the CO2 laser microchanneling process on PMMA has been analyzed at different beam defocus positions. Defocused processing has been investigated both theoretically and experimentally, and the depth of focus and beam diameter have been determined experimentally. The effect of beam defocusing on the microchannel width, depth, surface roughness, heat affected zone and microchannel profile were examined. A previously developed analytical model for microchannel depth prediction has been improved by incorporating the threshold energy density factor. A semi-analytical model for predicting the microchannel width at different defocus positions has been developed. A semi-empirical model has also been developed for predicting microchannel widths at different defocusing conditions for lower depth values. The developed models were compared and verified by performing actual experiments. Multi-objective optimization was performed to select the best optimum set of input parameters for achieving the desired surface roughness.

  5. Topical sucralfate for pain after oral CO2 laser surgery: a prospective, randomized, controlled trial.

    Science.gov (United States)

    Guo, Chau-Shiang; Chuang, Hui-Ching; Chien, Chih-Yen

    2012-01-01

    The aim of this study was to assess the effect of topical sucralfate on postoperative pain scores and other secondary outcomes including the frequency and duration of analgesic use and postoperative bleeding episodes after CO(2) laser treatment of oral leukoplakia. In this prospective trial, a total of 80 patients were randomized into the sucralfate group (n = 40) or the control group (n = 40). Postoperative pain scores, the frequency and duration of analgesic requirements, and postoperative wound bleeding episodes were compared between the 2 groups from the operative day to postoperative day 6. Patients in the sucralfate group experienced significantly less postoperative pain on postoperative days 1 and 2. Although there was no significant difference in frequency and duration of analgesic use between the 2 groups, a trend toward lower frequency and fewer days of analgesic use in the sucralfate group was observed. This study demonstrated the efficacy of topical sucralfate application in diminishing postoperative pain after CO(2) laser therapy for oral leukoplakia. Topical sucralfate can be considered a feasible adjuvant medication for the control of pain after CO(2) laser treatment of oral leukoplakia. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. CO2-laser decomposition method of carbonate for AMS 14C measurements

    International Nuclear Information System (INIS)

    Kitagawa, Hiroyuki

    2013-01-01

    A CO 2 laser decomposition method enabled the efficient preparation of carbonate samples for AMS 14 C measurement. Samples were loaded in a vacuum chamber and thermally decomposed using laser emission. CO 2 liberated from the carbonate was directly trapped in the cold finger trap of a small CO 2 reduction reactor and graphitized by a hydrogen gas reduction method using catalytic iron powder. The fraction modern values for 0.07–0.57 mg of carbon, obtained from 200 μm-diameter spots of IAEA-C1, varied with sample size in the range of 0.00072 ± 0.00003 to 0.00615 ± 0.00052. The contamination induced by the laser decomposition method and the following graphite handling was estimated to be 0.53 ± 0.21 μg of modern carbon, assuming a constant amount of extraneous carbon contamination. This method could also make it possible to avoid the time-consuming procedures of the conventional acid dissolution method that involves multiple complex steps for the preparation of carbonate samples.

  7. Correlation between Surface Roughness Characteristics in CO2 Laser Cutting of Mild Steel

    Directory of Open Access Journals (Sweden)

    M. Radovanović

    2012-12-01

    Full Text Available CO2 laser oxygen cutting of mild steel is widely used industrial application. Cut surface quality is a very important characteristic of laser cutting that ensures an advantage over other contour cutting processes. In this paper mathematical models for estimating characteristics of surface quality such as average surface roughness and ten-point mean roughness in CO2 laser cutting of mild steel based on laser cutting parameters were developed. Empirical models were developed using artificial neural networks and experimental data collected. Taguchi’s orthogonal array was implemented for experimental plan. From the analysis of the developed mathematical models it was observed that functional dependence between laser cutting parameters, their interactions and surface roughness characteristics is complex and non-linear. It was also observed that there exist region of minimal average surface roughness to ten-point mean roughness ratio. The relationship between average surface roughness and ten-point mean roughness was found to be nonlinear and can be expressed with a second degree polynomial.

  8. Feasibility study of a CO2-laser based lightning-protection system realization

    Science.gov (United States)

    Apollonov, Victor V.

    2005-01-01

    The feasibility of producing a continuous laser spark (CLS) with low resistance by focusing radiation from a CO2 laser with a conic mirror is demonstrated. The laser energy input per unit length required for this is experimentally found to be equal to ≈200 J/m. The possibility to efficiently control the trajectory of an electric discharge by means of a CLS is demonstrated. The effect of polarity in the electric breakdown of the air gaps between the CLS plasma channel and a metal rod is discovered and interpreted. The transverse structure of CLS conductivity is investigated. The possibility of producing a long laser spark (LLS) with much higher resistance by focusing radiation from a CO2 laser with a spherical mirror used to protect objects against lightning is studied. The conditions under which the electric discharges from clouds can be guided reproducibly along a LLS are determined. Experiments reveal that the interaction between the LLS and the discharge from an electrode (lightning rod) leads to a decrease in the lifetime of the streamer corona burst, as well as to an increase in the current of the developing leader and its velocity compared to the case without the LLS.

  9. Mechanism of single-frequency operation of the hybrid-CO2 laser

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Heckenberg, N.R.; Holzhauer, E.

    1975-01-01

    The mechanism of a new method of obtaining high-power single-frequency pulses from a TEA-CO 2 laser is discussed. Measurements of the shape and monochromaticity of pulses from the hybrid laser which has both a TEA and a low-pressure gain section inside one resonator are presented. The mechanism of single-frequency operation of the hybrid laser is discussed with reference to numerical solutions of simplified rate equations. The low-pressure section provides gain only over a narrow range of frequencies so that a mode lying in that band-width builds up faster than neighboring modes to give a single-frequency pulse resembling in overall shape the normal TEA laser pulse. If the system is already lasing when the TEA discharge begins, the single-mode radiation already present rapidly grows to give a single-frequency pulse lacking a gain-switched peak. (U.S.)

  10. Investigating the CO 2 laser cutting parameters of MDF wood composite material

    Science.gov (United States)

    Eltawahni, H. A.; Olabi, A. G.; Benyounis, K. Y.

    2011-04-01

    Laser cutting of medium density fibreboard (MDF) is a complicated process and the selection of the process parameters combinations is essential to get the highest quality cut section. This paper presents a means for selecting the process parameters for laser cutting of MDF based on the design of experiments (DOE) approach. A CO 2 laser was used to cut three thicknesses, 4, 6 and 9 mm, of MDF panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. In this work, cutting quality was evaluated by measuring the upper kerf width, the lower kerf width, the ratio between the upper kerf width to the lower kerf width, the cut section roughness and the operating cost. The effect of each factor on the quality measures was determined. The optimal cutting combinations were presented in favours of high quality process output and in favours of low cutting cost.

  11. Material Properties of Laser-Welded Thin Silicon Foils

    Directory of Open Access Journals (Sweden)

    M. T. Hessmann

    2013-01-01

    Full Text Available An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1 laser spot welding with low constant feed speed, (2 laser line welding, and (3 keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.

  12. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy.

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-15

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0Raman peak area can be used for the determination of δ 13 C values within the relative errors range of 0.076% to 1.154% in 13 CO 2 / 12 CO 2 binary mixtures when F 12CO2 /F 13CO2 is 0.466972625. In addition, measurement of δ 13 C values by Micro-Laser Raman analysis were carried out on natural CO 2 gas from Shengli Oil-field at room temperature under different pressures. The δ 13 C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ 13 C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ 13 C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ 13 C values in natural CO 2 gas reservoirs. Copyright © 2018. Published by Elsevier B.V.

  13. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  14. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    Science.gov (United States)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  15. Efficient extreme ultraviolet plasma source generated by a CO2 laser and a liquid xenon microjet target

    Science.gov (United States)

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-05-01

    We demonstrated efficacy of a CO2-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5nm at variable laser pulse widths between 200ps and 25ns. The plasma target was a 30μm liquid xenon microjet. To ensure the optimum coupling of CO2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5nm EUV emission for different pulse widths of the CO2 laser. A maximum CE of 0.6% was obtained for a CO2 laser pulse width of 25ns at an intensity of 5×1010W/cm2.

  16. Efficient extreme ultraviolet plasma source generated by a CO2 laser and a liquid xenon microjet target

    International Nuclear Information System (INIS)

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-01-01

    We demonstrated efficacy of a CO 2 -laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5 nm at variable laser pulse widths between 200 ps and 25 ns. The plasma target was a 30 μm liquid xenon microjet. To ensure the optimum coupling of CO 2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5 nm EUV emission for different pulse widths of the CO 2 laser. A maximum CE of 0.6% was obtained for a CO 2 laser pulse width of 25 ns at an intensity of 5x10 10 W/cm 2

  17. Novel CO2 laser robotic controller outperforms experienced laser operators in tasks of accuracy and performance repeatability.

    Science.gov (United States)

    Wong, Yu-Tung; Finley, Charles C; Giallo, Joseph F; Buckmire, Robert A

    2011-08-01

    To introduce a novel method of combining robotics and the CO(2) laser micromanipulator to provide excellent precision and performance repeatability designed for surgical applications. Pilot feasibility study. We developed a portable robotic controller that appends to a standard CO(2) laser micromanipulator. The robotic accuracy and laser beam path repeatability were compared to six experienced users of the industry standard micromanipulator performing the same simulated surgical tasks. Helium-neon laser beam video tracking techniques were employed. The robotic controller demonstrated superiority over experienced human manual micromanipulator control in accuracy (laser path within 1 mm of idealized centerline), 97.42% (standard deviation [SD] 2.65%), versus 85.11% (SD 14.51%), P = .018; and laser beam path repeatability (area of laser path divergence on successive trials), 21.42 mm(2) (SD 4.35 mm(2) ) versus 65.84 mm(2) (SD 11.93 mm(2) ), P = .006. Robotic micromanipulator control enhances accuracy and repeatability for specific laser tasks. Computerized control opens opportunity for alternative user interfaces and additional safety features. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  18. Image-guided automatic triggering of a fractional CO2 laser in aesthetic procedures.

    Science.gov (United States)

    Wilczyński, Sławomir; Koprowski, Robert; Wiernek, Barbara K; Błońska-Fajfrowska, Barbara

    2016-09-01

    Laser procedures in dermatology and aesthetic medicine are associated with the need for manual laser triggering. This leads to pulse overlapping and side effects. Automatic laser triggering based on image analysis can provide a secure fit to each successive doses of radiation. A fractional CO2 laser was used in the study. 500 images of the human skin of healthy subjects were acquired. Automatic triggering was initiated by an application together with a camera which tracks and analyses the skin in visible light. The tracking algorithm uses the methods of image analysis to overlap images. After locating the characteristic points in analysed adjacent areas, the correspondence of graphs is found. The point coordinates derived from the images are the vertices of graphs with respect to which isomorphism is sought. When the correspondence of graphs is found, it is possible to overlap the neighbouring parts of the image. The proposed method of laser triggering owing to the automatic image fitting method allows for 100% repeatability. To meet this requirement, there must be at least 13 graph vertices obtained from the image. For this number of vertices, the time of analysis of a single image is less than 0.5s. The proposed method, applied in practice, may help reduce the number of side effects during dermatological laser procedures resulting from laser pulse overlapping. In addition, it reduces treatment time and enables to propose new techniques of treatment through controlled, precise laser pulse overlapping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cold cathode electron guns in the LASL high power short-pulse CO2 laser program

    International Nuclear Information System (INIS)

    Singer, S.; Ladish, J.S.; Nutter, M.J.

    1975-01-01

    The Electron Beam Controlled Discharge CO 2 Laser is now firmly established as the only high power short pulse laser amplifier that has been demonstrated to have scaling capabilities to large apertures and energies much greater than 100 J. These devices require a beam of energetic electrons to control the gas discharge that produces the required population inversion. Until recently, the electron source was usually a thermionic emitter, even for rather large lasers, whose heater requirements dwarfed the pulsed energies associated with the transient operation of the laser. With the advent of reliable cold-cathode electron guns, the operation of these lasers has been greatly simplified. At LASL, there are four electron beam controlled laser systems which are in operation, under construction, or in design: the 1 kJ system, now operational; the 2.5 kJ system; the 10 kJ system; and the 100 kJ system. Only the first uses thermionic-emitter electron guns; the remainder use or will use cold cathode sources. The operation of the 200 x 35 cm 2 two sided cold cathode electron gun used in the 2.5 kJ laser system and to be used in the 10 kJ laser is described

  20. Sensor development and integration for robotized laser welding

    NARCIS (Netherlands)

    Iakovou, D.

    2009-01-01

    Laser welding requires fast and accurate positioning of the laser beam over the seam trajectory. The task of accurate positioning of the laser tools is performed by robotic systems. It is therefore necessary to teach the robot the path it has to follow. Seam teaching is implemented in several ways:

  1. Energy losses estimation during pulsed-laser seam welding

    Czech Academy of Sciences Publication Activity Database

    Šebestová, Hana; Havelková, M.; Chmelíčková, H.

    2014-01-01

    Roč. 45, č. 3 (2014), s. 1116-1121 ISSN 1073-5615 R&D Projects: GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : laser welding * pulsed-laser * Nd:YAG laser Subject RIV: JP - Industrial Processing Impact factor: 1.461, year: 2014

  2. Thermo-Mechanical Modeling of Laser-Mig Hybrid Welding (lmhw)

    Science.gov (United States)

    Kounde, Ludovic; Engel, Thierry; Bergheau, Jean-Michel; Boisselier, Didier

    2011-01-01

    Hybrid welding is a combination of two different technologies such as laser (Nd: YAG, CO2…) and electric arc welding (MIG, MAG / TIG …) developed to assemble thick metal sheets (over 3 mm) in order to reduce the required laser power. As a matter of fact, hybrid welding is a lso used in the welding of thin materials to benefit from process, deep penetration and gap limit. But the thermo-mechanical behaviour of thin parts assembled by LMHW technology for railway cars production is far from being controlled the modeling and simulation contribute to the assessment of the causes and effects of the thermo mechanical behaviour in the assembled parts. In order to reproduce the morphology of melted and heat-affected zones, two analytic functions were combined to model the heat source of LMHW. On one hand, we applied a so-called "diaboloïd" (DB) which is a modified hyperboloid, based on experimental parameters and the analysis of the macrographs of the welds. On the other hand, we used a so-called "double ellipsoïd" (DE) which takes the MIG only contribution including the bead into account. The comparison between experimental result and numerical result shows a good agreement.

  3. Design Optimization and Fatigue Analysis of Laser Stake Welded Connections

    National Research Council Canada - National Science Library

    Singh, Anshuman; Vel, Senthil S; Caccese, Vincent

    2008-01-01

    This report summanzes research on the design and fatigue analysis of laser-stake welded connections performed at the University of Maine from January 2006 to December 2007 for the Structural Response...

  4. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    Science.gov (United States)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  5. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  6. Thermal and molecular investigation of laser tissue welding

    Science.gov (United States)

    Small, Ward, IV

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack on both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of the probability of long-term success. Molecular effects induced in the tissue by laser irradiation were investigated by measuring the concentrations of specific collagen covalent crosslinks and measuring the infrared absorption spectra before and after the laser exposure. This investigation yielded results pertaining to both the methods and mechanisms of laser tissue welding. The combination of two-color infrared thermometry to obtain accurate surface temperatures free from emissivity bias and computer modeling illustrated the importance of including evaporation in the simulations, which effectively serves as an inherent cooling mechanism during laser irradiation. Moreover, the hydration state predicted by the model was useful in assessing the role of electrostatic versus covalent bonding in the fusion. These tools also helped elicit differences between dye- enhanced liquid solders and solid-matrix patches in laser-assisted tissue welding, demonstrating the significance of repeatable energy delivery. Surprisingly, covalent bonds

  7. Osteogenesis differentiation of human periodontal ligament cells by CO2 laser-treatment stimulating macrophages via BMP2 signalling pathway

    International Nuclear Information System (INIS)

    Hsieh, Wen-Hui; Chen, Yi-Jyun; Hung, Chi-Jr; Huang, Tsui-Hsien; Kao, Chia-Tze; Shie, Ming-You

    2014-01-01

    Immune reactions play an important role in determining the biostimulation of bone formation, either in new bone formation or inflammatory fibrous tissue encapsulation. Macrophage cell, the important effector cells in the immune reaction, which are indispensable for osteogenesis and their heterogeneity and plasticity, render macrophages a primer target for immune system modulation. However, there are very few studies about the effects of macrophage cells on laser treatment-regulated osteogenesis. In this study, we used CO 2 laser as a model biostimulation to investigate the role of macrophage cells on the CO 2 laser stimulated osteogenesis. Bone morphogenetic protein 2 (BMP2) was also significantly up regulated by the CO 2 laser stimulation, indicating that macrophage may participate in the CO 2 laser stimulated osteogenesis. Interestingly, when laser treatment macrophage-conditioned medium were applied to human periodontal ligament cells (hPDLs), the osteogenesis differentiation of hPDLs was significantly enhanced, indicating the important role of macrophages in CO 2 laser-induced osteogenesis. These findings provided valuable insights into the mechanism of CO 2 laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment. (paper)

  8. First results of laser welding of neutron irradiated stainless steel

    International Nuclear Information System (INIS)

    Osch, E.V. van; Hulst, D.S. d'; Laan, J.G. van der.

    1994-10-01

    First results of experimental investigations on the laser reweldability of neutron irradiated material are reported. These experiments include the manufacture of 'heterogeneous' joints, which means joining of irradiated stainless steel of type AISI 316L-SPH to 'fresh' unirradiated material. The newly developed laser welding facility in the ECN Hot Cell Laboratory and experimental procedures are described. Visual inspections of welded joints are reported as well as results of electron microscopy and preliminary metallographic examinations. (orig.)

  9. The effect of fractional CO2 laser irradiation on remineralization of enamel white spot lesions.

    Science.gov (United States)

    Poosti, Maryam; Ahrari, Farzaneh; Moosavi, Horieh; Najjaran, Hoda

    2014-07-01

    This study investigated the combined effect of fractional CO(2) laser irradiation and fluoride on treatment of enamel caries. Sixty intact premolars were randomly assigned into four groups and then stored in a demineralizing solution to induce white spot lesions. Tooth color was determined at baseline (T1) and after demineralization (T2). Afterwards, the teeth in group 1 remained untreated (control), while group 2 was exposed to an acidulated phosphate fluoride (APF) gel for 4 min. In groups 3 and 4, a fractional CO(2) laser was applied (10 mJ, 200 Hz, 10 s) either before (group 3) or through (group 4) the APF gel. The teeth were then immersed in artificial saliva for 90 days while subjected to daily fluoride mouthrinse and weekly brushing. Color examinations were repeated after topical fluoride application (T3) and 90 days later (T4). Finally, the teeth were sectioned, and microhardness was measured at the enamel surface and at 30 and 60 μ from the surface. In both lased groups, the color change between T1 and T4 stages (∆E(T1-T4)) was significantly lower than those of the other groups (p Laser irradiation followed by fluoride application (group 3) caused a significant increase in surface microhardness compared to APF alone and control groups (p laser before fluoride therapy is suggested for recovering the color and rehardening of demineralized enamel.

  10. Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation

    Science.gov (United States)

    Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.

    2013-07-01

    CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.

  11. Feasibility evaluations for the integration of laser butt welding of tubes in industrial pipe coil production lines

    Science.gov (United States)

    Penasa, Mauro; Colombo, Enrico; Giolfo, Mauro

    1994-09-01

    Due to the good performance shown by laser welded joints, to the quality and repeatability achievable by this welding technique and to its high process productivity, a feature inherent to the laser technology which, together with its high flexibility, allows different operations to be performed by a single source, consistent savings in a production line may be obtained. Therefore laser welding techniques may be of high relevance for industrial applications, provided that a sufficient attention is paid to avoiding a low utilization time to the operating laser source. The paper describes a feasibility study for the integration of a laser source as an automatic unit for circumferential butt welding of tubes in production lines of pipe coils, just before the cold bending station. Using a 6 kW CO2 source, thickness ranging from 3.5 to 11.2 mm in carbon, low alloyed Cr-Mo and austenitic stainless steels, have been successfully welded. Cr-Mo steels require on line preheating treatment, which however can be achieved by laser defocused passes just before welding. The results of the preliminary qualification performed on laser welded joints of the involved topologies of product (materials, diameters and thicknesses) are described together with technological tests required for approval: laser circumferential butt welding of tubes has proven to be effective, with satisfactory and repeatable results and good joint performances. An exhaustive comparison with current welding techniques (TIG, MIG) is then carried out, along with a detailed analysis of the potential advantages and benefits which may be expected by using the laser welding technique, as well as with a first estimation of the investments and running costs. Since laser productivity is saturated only at a rough 35% during the year, an accurate analysis of other possible applications and of a possible lay out of a laser working cell integrated in the factory production lines is performed. Usually little attention is

  12. Automation methodology for the development of LPFG using CO2 laser radiation

    Science.gov (United States)

    Castro Alves, D.; Coelho, João. M. P.; Nespereira, Marta; Monteiro, Fernando; Abreu, Manuel; Rebordão, J. M.

    2013-11-01

    The mid-infrared radiation produced by CO2 lasers is being widely used to produce long period fiber gratings (LPFG) with several advantages over other methods. Several techniques can be used to irradiate the fiber in order to produce the necessary effect. Using a cylindrical lens to create a line of light or scanning of a spot over the fiber are the most common approaches. Usually, the period is produced either by a translation stage moving perpendicular to the incident beam or by using a two mirrors scanner that inscribes the entire period directly on the fiber. In both cases, the synchronization between the laser and the moving elements is critical. Also, when using a two mirrors scanner, the dimension of the LPFG is limited by the focusing lens diameter and its focal length. All this become critical when one needs to increase the LPFG's length or reduce its period. The later usually implies shorter laser emission times, which is limited by the laser emission physics (at least for cheap low power CW lasers). In order to overcome the disadvantages of each method, a combined approach is presented and analyzed. A mirror scans vertically the beam over a cylindrical lens and a translation stage moves the fiber to create the different periods. The laser keeps emitting during the complete process increasing laser power stability and thus, improving grating homogeneity. To guarantee the synchronization between the translation table and the one mirror scanner, special hardware and software was created.

  13. Interaction of a CO2 laser beam with a shock-tube plasma

    International Nuclear Information System (INIS)

    Box, S.J.C.; John, P.K.; Byszewski, W.W.

    1977-01-01

    The results of experimental investigations of the interaction of a CO 2 laser beam with plasma produced in an electromagnetic shock tube are presented. The interaction was investigated in two different configurations: with the laser beam perpendicular to the direction of propagation of the shock wave and with the laser beam parallel to the direction of the shock wave. The laser energy was 0.3 J in a 180-nsec pulse. The plasma density was in the range 10 17 --10 18 cm -3 and temperature was around 2 eV. Spectroscopic methods were used in the measurement of density and temperature. Direct observation of the path of the laser beam through the plasma was made by an image-convertor camera in conjunction with a narrow-band interference filter. The propagation of the laser through the plasma and energy absorption are discussed. The observed maximum increase in electron temperature due to the laser in the first configuration was 0.4 eV and the estimated temperature increase in the second configuration was about 2 eV

  14. Plasma production and heating by a laser TEA-CO2

    International Nuclear Information System (INIS)

    Goes, L.C.S.; Sudano, J.P.; Rodrigues, N.A.S.

    1987-01-01

    Preliminary experiments of plasma production and heating by laser irradiation of gases and solid targets have been performed with a laser TEA-CO 2 (1 MW, 80 ns, monomode), developed and built at the IEAv/Laser Laboratory. The laser beam was focused in the interior of a vacuum chamber (100 1) with a base pressure of 10 1 torr, and recolimated by a system of confocal lenses. The breakdown theresholds for nitrogen gas was investigated by varying the laser power, the neutral gas density and the focal lenght of the lenses. Plasma breakdown observed in the range of pressures between 100-720 torr was in good agreement with calculations of cascade ionization theory and classical absorption by inverse-Bremsstrahlung. The laser absorption was inferred by measuring the power transmitted in the presence and absence of plasma. The light emitted by the plasma was detected by a fast photo-diode, indicating that the plasma expansion phase lasted for several microseconds. These investigations have been applied in the development of plasma shutters for laser pulse compression. (author) [pt

  15. Inflammatory responses, matrix remodeling, and re-epithelialization after fractional CO2 laser treatment of scars.

    Science.gov (United States)

    DeBruler, Danielle M; Blackstone, Britani N; Baumann, Molly E; McFarland, Kevin L; Wulff, Brian C; Wilgus, Traci A; Bailey, J Kevin; Supp, Dorothy M; Powell, Heather M

    2017-09-01

    Fractional CO 2 laser therapy has been used to improve scar pliability and appearance; however, a variety of treatment protocols have been utilized with varied outcomes. Understanding the relationship between laser power and extent of initial tissue ablation and time frame for remodeling could help determine an optimum power and frequency for laser treatment. The characteristics of initial injury caused by fractional CO 2 laser treatment, the rates of dermal remodeling and re-epithelialization, and the extent of inflammation as a function of laser stacking were assessed in this study in a porcine scar model. Full-thickness burn wounds were created on female Red Duroc pigs followed by immediate excision of the eschar and split-thickness autografting. Three months after injury, the resultant scars were treated with a fractional CO 2 laser with 70 mJ of energy delivered as either a single pulse or stacked for three consecutive pulses. Immediately prior to laser treatment and at 1, 24, 96, and 168 hours post-laser treatment, transepidermal water loss (TEWL), erythema, and microscopic characteristics of laser injury were measured. In addition, markers for inflammatory cytokines, extracellular matrix proteins, and re-epithelialization were quantified at all time points using qRT-PCR. Both treatments produced erythema in the scar that peaked 24 hours after treatment then decreased to basal levels by 168 hours. TEWL increased after laser treatment and returned to normal levels between 24 and 96 hours later. Stacking of the pulses did not significantly increase the depth of ablated wells or extend the presence of erythema. Interleukin 6 and monocyte chemoattractant protein-1 were found to increase significantly 1 hour after treatment but returned to baseline by 24 hours post laser. In contrast, expression of transforming growth factor β1 and transforming growth factor β3 increased slowly after treatment with a more modest increase than interleukin 6 and monocyte

  16. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  17. Molten pool characterization of laser lap welded copper and aluminum

    International Nuclear Information System (INIS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu Jr

    2013-01-01

    A 3D finite volume simulation model for laser welding of a Cu–Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu–Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint. (paper)

  18. Laser induced fluorescence in nanosecond repetitively pulsed discharges for CO2 conversion

    Science.gov (United States)

    Martini, L. M.; Gatti, N.; Dilecce, G.; Scotoni, M.; Tosi, P.

    2018-01-01

    A CO2 nanosecond repetitively pulsed discharge (NRP) is a harsh environment for laser induced fluorescence (LIF) diagnostics. The difficulties arise from it being a strongly collisional system in which the gas composition, pressure and temperature, have quick and strong variations. The relevant diagnostic problems are described and illustrated through the application of LIF to the measurement of the OH radical in three different discharge configurations, with gas mixtures containing CO2 + H2O. These range from a dielectric barrier NRP with He buffer gas, a less hostile case in which absolute OH density measurement is possible, to an NRP in CO2+H2O, where the full set of drawbacks is at work. In the last case, the OH density measurement is not possible with laser pulses and detector time resolution in the ns time scale. Nevertheless, it is shown that with a proper knowledge of the collisional rate constants involved in the LIF process, a collisional energy transfer-LIF methodology is still applicable to deduce the gas composition from the analysis of LIF spectra.

  19. Problems in laser repair welding of polished surfaces

    Directory of Open Access Journals (Sweden)

    A. Skumavc

    2014-10-01

    Full Text Available This paper presents problems in laser repair welding of the tools for injection moulding of plastics and light metals. Tools for injection moulding of the car headlamps are highly polished in order to get a desirable quality of the injected part. Different light metals, glasses, elastomers, thermoplastics and thermosetting polymers are injected into the die cavity under high pressures resulting in the surface damages of the tool. Laser welding is the only suitable repair welding technique due to the very limited sputtering during deposition of the filler metal. Overlapping of the welds results in inhomogeneous hardness of the remanufactured surface. Results have shown strong correlation between hardness and surface waviness after final polishing of the repair welded surface.

  20. Intelligent monitoring of YAG laser welding on steam generator tubes

    International Nuclear Information System (INIS)

    Hosaka, Shigetaka; Nagura, Yasumi; Ishide, Takashi; Nagashima, Tadashi; Akaba, Takashi

    1992-01-01

    The 'KASHIKOKI' intelligent device for monitoring the YAG laser welding of steam generator tubes is described in this paper. The 'KASHIKOKI', it monitors the series of six channels, for example, the reflected laser beam and the welding speed, etc. It learns the normal criteria and the anomalous criteria of welding, and discriminates between normal and anomalous welding using the learned criteria, and distinguishes the anomaly into several types. As the results of evaluation test, the degree of correspondence between this device and an expert is about 90%. This paper describes the new methods the multi-variate analysis model for discriminating between normal and anomalous welding, and a neural network model for distinguishing the types of anomaly. (author)

  1. Fractional CO2 laser treatment for vulvovaginal atrophy symptoms and vaginal rejuvenation in perimenopausal women

    Directory of Open Access Journals (Sweden)

    Arroyo C

    2017-08-01

    Full Text Available César Arroyo HM Montepríncipe University Hospital Laser Unit, Madrid, Spain Background: This study investigated a novel fractional carbon dioxide (CO2 laser for treatment of symptoms associated with vulvovaginal atrophy (VVA in perimenopausal women.Methods: The study included 21 perimenopausal women (mean age 45±7 years treated three times by CO2 laser resurfacing and coagulation of the vaginal canal tissue and mucosal tissue of the introitus. Vaginal health index (VHI scores were computed by the investigator at baseline and follow-ups. Subjects reported on sexual function, satisfaction, and improvement with treatment. A visual analog scale was used to measure discomfort with treatment.Results: Vaginal health and subject assessment of vaginal symptoms improved with successive treatments. At 12 weeks following the third treatment, 82% of the patients showed a statistically significant improvement in VHI (P<0.05. Additionally, 81% of subjects reported improvement in sexual gratification, 94% reported improvement in vaginal rejuvenation, and 100% reported satisfaction with treatment. VHI improvement remained significant at 6–8 months after treatments (P<0.01. Most patients (97% reported no to mild discomfort with treatment. Responses were mild and transient following treatment, with itching being the most commonly reported (20% side effect.Conclusion: In this study, fractional CO2 laser treatment was associated with improvement of vaginal health and amelioration of symptoms of VVA, resulting in improved sexual function in perimenopausal women. Treatment time was quick, and there was minimal discomfort associated with treatment. Investigation of clinical outcome in a larger study population is warranted. Keywords: genitourinary syndrome of menopause, vaginal rejuvenation, stress urinary incontinence, collagen remodeling, sexual dysfunction, vulvovaginal atrophy

  2. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    Science.gov (United States)

    2010-01-01

    Background CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. Methods In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p 0.90, p < 0.001). Of the 16 subjects tested; eight subjects reported pricking pain in the hairy skin following a stimulus of 0.6 J/cm2 (5 W, 0.12 s, d1/e2 = 11.4 mm) only two reported pain to glabrous skin stimulation using the same stimulus intensity. The temperature at the epidermal-dermal junction (depth 50 μm in hairy and depth 133 μm in glabrous skin) was estimated to 46°C for hairy skin stimulation and 39°C for glabrous skin stimulation. Conclusions As compared to previous one dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO2 laser stimulation intensity, temperature levels and nociceptor activation. PMID:21059226

  3. CO2 laser coating of nanodiamond on aluminum using an annular beam

    International Nuclear Information System (INIS)

    Blum, Rodger; Molian, Pal

    2014-01-01

    Laser coating of nanodiamond (ND) on aluminum alloy A319 substrate was investigated using a diffraction-free ring beam. A 1000 W continuous wave CO 2 laser in the ring beam configuration heated the 25–35 μm thick electrostatically sprayed ND powder layers on aluminum surface, melted a very thin layer (10 μm) of aluminum in a controlled fashion and caused phase transition of ND to form 50–60 μm thick ND/diamond-like carbon (DLC) coating. Significant improvements in friction, wear resistance and surface finish were observed in the ring beam method over the traditional Gaussian beam method suggesting that these thick (50–60 μm) ND/DLC laser coatings can outperform the currently used thin (<4 μm) chemically vapor deposited DLC coatings for aluminum parts in automobiles.

  4. AN ARTIFICIAL INTELLIGENCE APPROACH FOR THE PREDICTION OF SURFACE ROUGHNESS IN CO2 LASER CUTTING

    Directory of Open Access Journals (Sweden)

    MILOŠ MADIĆ

    2012-12-01

    Full Text Available In laser cutting, the cut quality is of great importance. Multiple non-linear effects of process parameters and their interactions make very difficult to predict cut quality. In this paper, artificial intelligence (AI approach was applied to predict the surface roughness in CO2 laser cutting. To this aim, artificial neural network (ANN model of surface roughness was developed in terms of cutting speed, laser power and assist gas pressure. The experimental results obtained from Taguchi’s L25 orthogonal array were used to develop ANN model. The ANN mathematical model of surface roughness was expressed as explicit nonlinear function of the selected input parameters. Statistical results indicate that the ANN model can predict the surface roughness with good accuracy. It was showed that ANNs may be used as a good alternative in analyzing the effects of cutting parameters on the surface roughness.

  5. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    Science.gov (United States)

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  6. A 2.5-kW industrial CO2 laser

    Science.gov (United States)

    Golov, V. K.; Ivanchenko, A. I.; Krasheninnikov, V. V.; Ponomarenko, A. G.; Shepelenko, A. A.

    1986-06-01

    A fast-flow laser is reported in which the active medium is excited by a self-sustained dc discharge produced by an electric-discharge device with nonsectioned electrodes. In the laser, two discharge gaps are formed by a flat anode and two cathodes, one on each side of the anode. A gas mixture is driven through the gasdynamic channel by a centrifugal fan rotating at 6000 rpm/min. With a mixture of CO2:N2:He = 2.5:7.5:5 mm Hg, the rated power is 2.5 kW; the maximum power is 4 kW with the mixture 2.5:7.5:10 mm Hg. The general design of the laser is described, and its principal performance characteristics are given.

  7. Nonlinear dynamic effects in a two-wave CO2 laser

    International Nuclear Information System (INIS)

    Gorobets, V A; Kozlov, K V; Kuntsevich, B F; Petukhov, V O

    1999-01-01

    Theoretical and experimental investigations were made of nonlinear dynamic regimes of the operation of a two-wave CO 2 laser with cw excitation in an electric discharge and loss modulation in one of the channels. Nonlinear amplitude - frequency characteristics of each of the laser channels have two low-frequency resonance spikes, associated with forced linear oscillations of two coupled oscillators, and high-frequency spikes, corresponding to doubling of the period of the output radiation oscillations. At low loss-modulation frequencies the intensity oscillations of the output radiation in the coupled channels are in antiphase, whereas at high modulation frequencies the dynamics is cophasal. Nonlinear dynamic effects, such as doubling of the period and of the repetition frequency of the pulses and chaotic oscillations of the output radiation intensity, are observed for certain system parameters. (control of laser radiation parameters)

  8. Influence of shielding gas composition on weld profile in pulsed Nd:YAG laser welding of low carbon steel

    Directory of Open Access Journals (Sweden)

    M Jokar

    2014-12-01

    Full Text Available Weld area and weld depth/width ratio can be considered to be of the most important geometrical factors in pulsed laser welding. The effects of carbon dioxide and oxygen additions to the argon shielding gas on the weld properties in pulsed laser welding of low carbon steel is investigated. Presence of carbon dioxide and oxygen up to 10 and 15 percent respectively decreases the weld geometrical factors. But, at higher levels of additions, the weld geometrical factors will increase. It is observed that the plasma plume temperature decreases from 6000K to 5500K with the addition of 15% carbon dioxide but increases to 7700K with 25% carbon dioxide addition. Increase in laser absorption coefficient, laser energy absorption, formation of oxide layer on the work-piece surface, exothermic reactions and their competitive effects can be considered as the competing phenomena involved in such a behavior in the weld profile

  9. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.

    Science.gov (United States)

    Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-09-08

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.

  10. ARTICLES: Stabilization of the composition of the gaseous medium in a pulse-periodic CO2 laser by hopcalite

    Science.gov (United States)

    Baranov, V. Yu; Drokov, G. F.; Kuz'menko, V. A.; Mezhevov, V. S.; Pigul'skaya, V. V.

    1986-05-01

    The results of experiments on using hopcalite to stabilize the gas mixture composition in pulse-periodic and single-pulse CO2 lasers are reported. A study was made of the reasons for a fall in the activity of the catalyst with time under typical CO2 laser conditions and a catalyst regeneration regime was selected. The use of hopcalite ensured prolonged operation of a high-power pulse-periodic CO2 laser without replenishment of the gas mixture in a closed loop. Certain characteristic features concerning the use of hopcalite are described.

  11. Proton- and x-ray beams generated by ultra-fast CO2 lasers for medical applications

    Science.gov (United States)

    Pogorelsky, Igor; Polyanskiy, Mikhail; Yakimenko, Vitaly; Ben-Zvi, Ilan; Shkolnikov, Peter; Najmudin, Zulfikar; Palmer, Charlotte A. J.; Dover, Nicholas P.; Oliva, Piernicola; Carpinelli, Massimo

    2011-05-01

    Recent progress in using picosecond CO2 lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle- sources. These experiments capitalize on certain advantages of long-wavelength CO2 lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons' ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO2 laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO2 laser to sub-PW peak power. This planned improvement includes optimizing the 10-μm ultra-short pulse generation, assuring higher amplification in the CO2 gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO2 lasers in medicine and other areas.

  12. Interaction of CO2 laser-modified nylon with osteoblast cells in relation to wettability

    International Nuclear Information System (INIS)

    Waugh, D.G.; Lawrence, J.; Morgan, D.J.; Thomas, C.L.

    2009-01-01

    It has been amply demonstrated previously that CO 2 lasers hold the ability to surface modify various polymers. In addition, it has been observed that these surface enhancements can augment the biomimetic nature of the laser irradiated materials. This research has employed a CO 2 laser marker to produce trench and hatch topographical patterns with peak heights of around 1 μm on the surface of nylon 6,6. The patterns generated have been analysed using white light interferometry, optical microscopy and X-ray photoelectron spectroscopy was employed to determine the surface oxygen content. Contact angle measurements were used to characterize each sample in terms of wettability. Generally, it was seen that as a result of laser processing the contact angle, surface roughness and surface oxygen content increased whilst the apparent polar and total surface energies decreased. The increase in contact angle and reduction in surface energy components was found to be on account of a mixed intermediate state wetting regime owing to the change in roughness due to the induced topographical patterns. To determine the biomimetic nature of the modified and as-received control samples each one was seeded with 2 x 10 4 cells/ml normal human osteoblast cells and observed after periods of 24 h and 4 days using optical microscopy and SEM to determine mean cell cover densities and variations in cell morphology. In addition, a haemocytometer was used to show that the cell count for the laser patterned samples had increased by up to a factor of 1.5 compared to the as-received control sample after 4 days of incubation. Significantly, it was determined that all laser-induced patterns gave rise to better cell response in comparison to the as-received control sample studied due to increased preferential cell growth on those surfaces with increased surface roughness.

  13. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    Science.gov (United States)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  14. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  15. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1999-01-01

    In a number of systematic laboratory experiments the critical gap distance that results in sound beads in laser butt welding is sought identified. By grinding the edges of the sheets, a number of "reference" welds are made and compared to the sheets with shear cut edges. In the tests the gap...... was set at 0.00, 0.02, 0.05, 0.08 and 0.10 mm. Mild steel (St 1203) with a thickness of 0.75 and 1.25 mm with and without zinc coating were analysed. A total of 120 welds were made at different welding speeds.As quality norm DIN 8563 was used to divide the welds into quality classes. A number of welds...... were also x-ray photographed.Of the weld combinations analysed 80 % were of high quality and 17 % of a non-acceptable quality. 90 % of the bad welds had a gap distance larger than 0.05 mm. The results showed that 85 % of the bad welds were shear cut and only 15 % grinded. Two third of the bad welds...

  16. Development of underwater laser cladding and underwater laser seal welding techniques for reactor components

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Tanaka, Yoshimi; Kouno, Wataru; Makino, Yoshinobu; Kawano, Shohei; Matsunaga, Keiji

    2009-01-01

    Stress corrosion cracking (SCC) has been reported at the aged components in many nuclear power plants. Toshiba has been developing the underwater laser welding. This welding technique can be conducted without draining the water in the reactor vessel. It is beneficial for workers not to exposure the radiation. The welding speed can be attaining twice as fast as that of Gas Tungsten Arc Welding (GTAW). The susceptibility of SCC can also be lower than the Alloy 600 base metal. (author)

  17. Laser welding by dental Nd:YAG device

    Science.gov (United States)

    Fornaini, Carlo; Bertrand, Caroline; Merigo, Elisabetta; Bonanini, Mauro; Rocca, Jean-Paul; Nammour, Samir

    2009-06-01

    Welding laser was introduced in jewellery during years 70 and, just after, was successfully used also by dental technicians. Welding laser gives a great number of advantages, versus traditional welding and, for this reason, this procedure had a great diffusion in the technician laboratories and stimulated the companies to put in the market more and more evolutes appliances. Some aspects, such great dimensions, high costs and delivery system today still characterize these machines by fixed lenses, which have strictly limited its use only to technician laboratories. The aim of this study is to demonstrate the possibility, by using a fibber-delivered laser normally utilized in the dental office, to make, by dentist himself in his office, welding on different metals and to evaluate advantages and possibilities of this new technique.

  18. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements

    Science.gov (United States)

    Hoffmann, Alex; Macleod, Neil A.; Huebner, Marko; Weidmann, Damien

    2016-12-01

    This technology demonstration paper reports on the development, demonstration, performance assessment, and initial data analysis of a benchtop prototype quantum cascade laser heterodyne spectroradiometer, operating within a narrow spectral window of ˜ 1 cm-1 around 953.1 cm-1 in transmission mode and coupled to a passive Sun tracker. The instrument has been specifically designed for accurate dry air total column, and potentially vertical profile, measurements of CO2. Data from over 8 months of operation in 2015 near Didcot, UK, confirm that atmospheric measurements with noise levels down to 4 times the shot noise limit can be achieved with the current instrument. Over the 8-month period, spectra with spectral resolutions of 60 MHz (0.002 cm-1) and 600 MHz (0.02 cm-1) have been acquired with median signal-to-noise ratios of 113 and 257, respectively, and a wavenumber calibration uncertainty of 0.0024 cm-1.Using the optimal estimation method and RFM as the radiative transfer forward model, prior analysis and theoretical benchmark modelling had been performed with an observation system simulator (OSS) to target an optimized spectral region of interest. The selected narrow spectral window includes both CO2 and H2O ro-vibrational transition lines to enable the measurement of dry air CO2 column from a single spectrum. The OSS and preliminary retrieval results yield roughly 8 degrees of freedom for signal (over the entire state vector) for an arbitrarily chosen a priori state with relatively high uncertainty ( ˜ 4 for CO2). Preliminary total column mixing ratios obtained are consistent with GOSAT monthly data. At a spectral resolution of 60 MHz with an acquisition time of 90 s, instrumental noise propagation yields an error of around 1.5 ppm on the dry air total column of CO2, exclusive of biases and geophysical parameters errors at this stage.

  19. Early Regenerative Modifications of Human Postmenopausal Atrophic Vaginal Mucosa Following Fractional CO2 Laser Treatment

    Directory of Open Access Journals (Sweden)

    Stefano Salvatore

    2018-01-01

    Full Text Available BACKGROUND: Postmenopausal women experience undesired symptoms that adversely affect their quality of life. In the recent years, a specific 12 - week fractional CO2 laser treatment has been introduced, with highly significant relief of symptoms. AIM: The aim of this paper is the identification of the early modifications of structural components of atrophic vaginal mucosa induced by laser irradiation, which is responsible for the restorative processes. MATERIAL AND METHODS: We investigated by microscopical, ultrastructural and biochemical methods the modifications of the structural components of postmenopausal atrophic vaginal mucosa tissues after 1 hour following a single fractional laser CO2 application. RESULTS: In one hour, the mucosal epithelium thickens, with the maturation of epithelial cells and desquamation at the epithelial surface. In the connective tissue, new papillae indenting the epithelium with newly formed vessels penetrating them, new thin fibrils of collagen III are also formed in a renewed turnover of components due to the increase of metalloproteinase - 2. Specific features of fibroblasts support stimulation of their activity responsible of the renewal of the extracellular matrix, with an increase of mechanical support as connective tissue and stimulation of growth and maturation to epithelium thanks to new vessels and related factors delivered. CONCLUSION: We found the activation of regenerative mechanisms expressed both in the connective tissue - with the formation of new vessels, new papillae, and new collagen - and in the epithelium with the associated thickening and desquamation of cells at the mucosal surface.

  20. Time-resolved UV spectroscopy on ammonia excited by a pulsed CO2 laser

    International Nuclear Information System (INIS)

    Holbach, H.

    1980-07-01

    This work investigates the excitation of ammonia by a pulsed CO 2 laser, in particular the processes associated with collisions with argon. It was prompted by two previous observations: the previously reported infrared multiphoton dissociation of NH 3 under nearly collisionless conditions, and the ill understood excitation mechanism of apparently nonresonant low vibrational levels in the presence of Ar. Based on recent spectroscopic data, all vibrational-rotational levels were determined which are simultaneously excited by different CO 2 laser lines. Transitions between the 1 + and 2 - vibrational levels were also taken into account. The linewidth in these calculations was dominated by power broadening, which generates a half width at half maximum of 0.36 cm -1 at the typical power density of 10 MW/cm 2 . In order to reproduce published experimental absorption data, it proved necessary to take account all transitions within a distance of 20 cm -1 from the laser line. This fact implies in most cases the simultaneous population of a large number of vibrational-rotational levels. The population of levels by absorption or by subsequent collisional processes was probed by time-resolved absorption measurement of vibrational bands and their rotational envelope in the near UV. Time resolution (5...10) was sufficient to observe rotational relaxation within individual vibrational levels. Characteristic differences were found for the various excitation lines. (orig.) [de

  1. Simulation and initial experiments of a high power pulsed TEA CO2 laser

    Science.gov (United States)

    Torabi, R.; Saghafifar, H.; Koushki, A. M.; Ganjovi, A. A.

    2016-01-01

    In this paper, the output characteristics of a UV pin array pre-ionized TEA CO2 laser have been simulated and compared with the associated experimental data. In our simulation, a new theoretical model has been improved for transient behavior analysis of the discharge current pulse. The laser discharge tube was modeled by a nonlinear RLC electric circuit as a real model for electron density calculation. This model was coupled with a six-temperature model (6TM) in order to simulation dynamic emission processes of the TEA CO2 laser. The equations were solved numerically by the fourth order Runge-Kutta numerical method and some important variables such as current and voltage of the main discharge, resistance of the plasma column and electron density in the main discharge region, were calculated as functions of time. The effects of non-dissociation factor, rotational quantum number and output coupler reflectivity were also studied theoretically. The experimental and simulation results are in good agreement.

  2. QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source

    Science.gov (United States)

    Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2017-01-01

    Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.

  3. Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining

    Directory of Open Access Journals (Sweden)

    Wei-Te Wu

    2013-03-01

    Full Text Available This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10−4 RIU (linear fitting R2 = 0.954 was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10−5 RIU, and greater linearity at R2 = 0.999.

  4. Structure and properties of optical-discharge plasma in CO2-laser beam near target surface

    Science.gov (United States)

    Danshchikov, Ye. V.; Dymshakov, V. A.; Lebedev, F. V.; Ryazanov, A. V.

    1986-05-01

    An experimental study of optical-discharge plasma in a CO2-laser beam at a target surface was made for the purpose of exploring the not yet understood role of this plasma in the laser-target interaction process. Such a plasma was produced by means of a quasi-continuous CO2-laser with an unstable resonator, its power being maintained constant for 1 ms periods. Its radiation was focused on the surfaces of thick and seeding thin Al, Ti, and Ta targets inclined at an approximately 70 deg. angle to the beam, inside a hermetic chamber containing air, argon, or helium under atmospheric pressure. The radiation intensity distribution over the focal plane and the nearest caustic surface in the laser beam was measured along with the plasma parameters, the latter by the methods of spectral analysis and photoelectric recording. The instrumentation for this purpose included an MDR-3 monochromator with an entrance slit, a double electron-optical converter, a memory oscillograph, and an SI-10-30 ribbon lamp as radiation reference standard. The results yielded integral diametral intensity distributions of the emission lines Ti-II (457.2 nm), Ti-I (464 nm), Ar-II (462 nm), radial and axial temperature profiles of optical discharge in metal vapor in surrounding gas, and the radial temperature profile of irradiated metal surface at successive instants of time. The results reveal marked differences between the structures and the properties of optical-discharge plasma in metal vapor and in surrounding gas, optical discharge in the former being characterized by localization within the laser beam and optical discharge in the latter being characterized by a drift away from the target.

  5. Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers

    OpenAIRE

    Engler, Sebastian; Ramsayer, Reiner; Poprawe, Reinhart

    2011-01-01

    Copper materials are classified as difficult to weld with state-of-the-art lasers. High thermal conductivity in combination with low absorption at room temperature require high intensities for reaching a deep penetration welding process. The low absorption also causes high sensitivity to variations in surface conditions. Green laser radiation shows a considerable higher absorption at room temperature. This reduces the threshold intensity for deep penetration welding significantly. The influen...

  6. CO2 laser with modulated losses: Theoretical models and experiments in the chaotic regime

    International Nuclear Information System (INIS)

    Pando L, C.L.; Meucci, R.; Ciofini, M.; Arecchi, F.T.

    1993-04-01

    We compare two different theoretical models for a CO 2 laser, namely the two-and four-level model, and show that the second one traces with much better accuracy the experimental behavior in the case of a chaotic dynamics due to time modulation of the cavity losses. Even though the two-level model provides a qualitative explanation of the chaotic dynamics, only the four-level one assures a quantitative fitting. We also show that, at the onset of chaos, the chaotic dynamics is low dimensional and can be described in terms of a noninvertible unidimensional map. (author). 12 refs, 8 figs, 2 tabs

  7. CO2-laser ablation of Bi-Sr-Ca-Cu oxide by millisecond pulse lengths

    Science.gov (United States)

    Meskoob, M.; Honda, T.; Safari, A.; Wachtman, J. B.; Danforth, S.; Wilkens, B. J.

    1990-03-01

    We have achieved ablation of Bi-Sr-Ca-Cu oxide from single targets of superconducting pellets by CO2-laser pulses of l ms length to grow superconducting thin films. Upon annealing, the 6000-Å thin films have a Tc (onset) of 90 K and zero resistance at 78 K. X-ray diffraction patterns indicate the growth of single-phase thin films. This technique allows growth of uniform single-phase superconducting thin films of lateral area greater than 1 cm2.

  8. Angiofibroma of inferior turbinate as an unusual complication of CO2 laser turbinoplasty.

    Science.gov (United States)

    Kang, Ju Wan; Kim, Yon Hee; Kim, Jeong Hong

    2013-01-01

    Angiofibroma is a benign vascular tumor that usually occurs in the nasopharynx, and extranasopharyngeal angiofibromas are rarely reported. We report the first case of an angiofibroma arising from the inferior turbinate after CO2 laser turbinoplasty. Endoscopic excisional biopsy was performed, but the tumor recurred after 2 months of surgery. The mass was excised by endoscopic approach including surrounding normal mucosal tissue. Histologic examination suggested the diagnosis of angiofibroma. The patient was asymptomatic, and there was no evidence of recurrence after 1 year of the second surgery.

  9. Alignment system for large high-power CO2 laser fusion systems

    International Nuclear Information System (INIS)

    Bausman, M.D.; Liberman, I.; Manning, J.P.; Singer, S.

    1977-01-01

    Aligning a pulsed CO 2 laser fusion system involves control systems which insure that the centers of beams follow a prescribed path to within 1 mm, that the pointing of the beams is correct to approximately 20 microradians, and that focal spot at the location of the experimental fusion target be placed to accuracies of 10 to 20 micrometers laterally and approximately 50 micrometers axially. These alignments are accomplished by a variety of sensing techniques which include thermal pinholes and quadrant detectors, Seebeck effect silicon detectors, and imaging autocollimating Hartmann test procedures employing ir vidicon systems

  10. Recurrence rate and patient satisfaction of CO2 laser evaporation of lesions in patients with hidradenitis suppurativa

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Riis; Dufour, Deirde Nathalie; Zarchi, Kian

    2015-01-01

    : To determine the recurrence rate, time to recurrence, and factors influencing disease recurrence in skin treated with CO2 laser evaporation, and healing by secondary intention; and patients' satisfaction with treatment. METHODS: Fifty-eight patients treated with CO2 laser evaporation were interviewed regarding...... recurrence and satisfaction after a mean of 25.7 months. RESULTS: Seventeen of 58 (29%) reported recurrence of HS lesions within the borders of the treated areas after a mean of 12.7 months. Obesity was a risk factor for recurrence with a hazard ratio of 4.53. Fifty-five patients (95%) reported some or great...... improvement, and 91% would recommend the CO2 laser surgery to other HS patients. CONCLUSION: This study supports the claim that CO2 laser treatment is an effective modality for recurrent HS lesions in a majority of patients. The authors identified obesity as a risk factor for recurrence. Self...

  11. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    Science.gov (United States)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  12. Surface hardening using cw CO2 laser: laser heat treatment, modelation, and experimental work

    Science.gov (United States)

    Muniz, German; Alum, Jorge

    1996-02-01

    In the present work are given the results of the application of laser metal surface hardening techniques using a cw carbon dioxide laser as an energy source on steel 65 G. The laser heat treatment results are presented theoretically and experimentally. Continuous wave carbon dioxide laser of 0.6, 0.3, and 0.4 kW were used. A physical model for the descriptions of the thermophysical laser metal interactions process is given and a numerical algorithm is used to solve this problem by means of the LHT code. The results are compared with the corresponding experimental ones and a very good agreement is observed. The LHT code is able to do predictions of transformation hardening by laser heating. These results will be completed with other ones concerning laser alloying and cladding presented in a second paper.

  13. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    Science.gov (United States)

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  14. Experimental Development of Dual Phase Steel Laser-arc Hybrid Welding and its Comparison to Laser and Gas Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Wagner Duarte Antunes

    Full Text Available Abstract Dual phase DP600 steels have been used in many automobile structures and laser welding has been the standard method for the joining of different sections. This work proposed a comparison between laser welding with arc welding (GMAW and with hybrid laser-arc welding in order to access the microstructures and the mechanical behavior. The laser and hybrid welds are competitive in terms of microstructure and mechanical behavior, presenting both acceptable and tough welds. The maximum ductility of the laser and hybrid welds are very similar, around 14%, and near to the values observed in the base material. The GMAW presents low ductility due to the softening caused by tampering of the martensite, and thus is unacceptable as the welding procedure.

  15. The Influence of Different Assist Gases on Ductile Cast Iron Cutting by CO2 Laser

    Directory of Open Access Journals (Sweden)

    Meško J.

    2017-12-01

    Full Text Available This article deals with the technology and principles of the laser cutting of ductile cast iron. The properties of the CO2 laser beam, input parameters of the laser cutting, assist gases, the interaction of cut material and the stability of cutting process are described. The commonly used material (nodular cast iron - share of about 25% of all castings on the market and the method of the laser cutting of that material, including the technological parameters that influence the cutting edge, are characterized. Next, the application and use of this method in mechanical engineering practice is described, focusing on fixing and renovation of mechanical components such as removing the inflow gate from castings with the desired quality of the cut, without the further using of the chip machining technology. Experimental samples from the nodular cast iron were created by using different technological parameters of laser cutting. The heat affected zone (HAZ, its width, microstructure and roughness parameter Pt was monitored on the experimental samples (of thickness t = 13 mm. The technological parameters that were varied during the experiments included the type of assist gases (N2 and O2, to be more specific the ratio of gases, and the cutting speed, which ranged from 1.6 m/min to 0.32 m/min. Both parameters were changed until the desired properties were achieved.

  16. The effect of microablative fractional CO2 laser on vaginal flora of postmenopausal women.

    Science.gov (United States)

    Athanasiou, S; Pitsouni, E; Antonopoulou, S; Zacharakis, D; Salvatore, S; Falagas, M E; Grigoriadis, T

    2016-10-01

    To assess the effect of microablative fractional CO2 laser (MFCO2-Laser) therapy on the vaginal microenvironment of postmenopausal women. Three laser therapies at monthly intervals were applied in postmenopausal women with moderate to severe symptoms of genitourinary syndrome of menopause, pH of vaginal fluid >4.5 and superficial epithelial cells on vaginal smear Vaginal fluid pH values, fresh wet mount microscopy, Gram stain and aerobic and anaerobic cultures were evaluated at baseline and 1 month after each subsequent therapy. Nugent score and Hay-Ison criteria were used to evaluate vaginal flora. Fifty-three women (mean age 57.2 ± 5.4 years) participated and completed this study. MFCO2-Laser therapy increased Lactobacillus (p vaginal pH from a mean of 5.5 ± 0.8 (initial value) to 4.7 ± 0.5 (p aerobic vaginitis or candidiasis did not appear in any participant. MFCO2-Laser therapy is a promising treatment for improving the vaginal health of postmenopausal women by helping repopulate the vagina with normally existing Lactobacillus species and reconstituting the normal flora to premenopausal status.

  17. Deep pulse fractional CO2 laser combined with a radiofrequency system: results of a case series.

    Science.gov (United States)

    Cannarozzo, Giovanni; Sannino, Mario; Tamburi, Federica; Chiricozzi, Andrea; Saraceno, Rosita; Morini, Cristiano; Nisticò, Steven

    2014-07-01

    The purpose of this study was evaluation of the safety and efficacy of this new combined technology that adds deep ablation to thermal stimulation. Minimally ablative or subablative lasers, such as fractional CO2 lasers, have been developed in an attempt to achieve the same clinical results observed with traditional ablative lasers, but with fewer side effects. Despite being an ablative laser, the system used in this study is able to produce a fractional supply of the beam of light. Fractional ablation of skin is performed through the development of microscopic vertical columns surrounded by spared areas of epidermis and dermis, ensuring rapid wound healing and minimum down time. Simultaneous synchronized delivery of a radiofrequency (RF) current to the deeper layers of the skin completes the therapeutic scenario, ensuring an effective skin tightening effect over the entire treated area. Nine adult patients were treated for wrinkles and acne scars using this new laser technology. An independent observer evaluated the improvement using a five point scale. All patients had good results in terms of improvement of skin texture, with mild and transitory side effects. This novel combined system produced improvement in wrinkles and acne scars, with progressive enhancement of skin tone and elasticity.

  18. Dedicated Laboratory Setup for CO2 TEA Laser Propulsion Experiments at Rensselaer Polytechnic Institute

    International Nuclear Information System (INIS)

    Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.; Notaro, Samuel

    2010-01-01

    Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO 2 lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 μs); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnostics tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.

  19. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Modification of biological objects in water media by CO2-laser radiation

    Science.gov (United States)

    Baranov, G. A.; Belyaev, A. A.; Onikienko, S. B.; Smirnov, S. A.; Khukharev, V. V.

    2005-09-01

    The modification of biological objects (polysaccharides and cells) by CO2-laser radiation in water added drop by drop into the interaction region is studied theoretically and experimentally. Calculations are performed by using the models describing gas-dynamic and heterogeneous processes caused by absorption of laser radiation by water drops. It is found experimentally that the laser modification of polysaccharides leads to the formation of low-molecular derivatives with immunostimulating properties. A dose of the product of laser activation of the yeast culture Saccharamyces cerevisiae prevented the development of a toxic emphysema in mice and protected them against lethal grippe and also prevented a decrease of survival rate, increased the average life, and prevented the development of metabolic and immune disorders in mice exposed to sublethal gamma-radiation doses.

  20. Construction and design of CO2-laser amplifiers with self-sustained and electron-beam-controlled gas discharge

    International Nuclear Information System (INIS)

    Schmid, W.E.

    1975-08-01

    Following a description of the fundamentals and of the manner of functioning of CO 2 lasers, a theoretical and experimental investigation is performed to see whether the self-sustained or the non-self-sustained gas discharge is suitable for an amplifier in a CO 2 high-power laser system. The measured results show that the excitation by non-self-sustained gas discharge is more advantageous for amplifiers. The reasons are given. (GG/LH) [de