WorldWideScience

Sample records for co2 ja o3

  1. A common behaviour of thermoelectric layered cobaltites: incommensurate spin density wave states in [Ca2Co4/3Cu2/3O4]0.62[CoO2] and [Ca2CoO3]0.62[CoO2

    International Nuclear Information System (INIS)

    Sugiyama, J; Brewer, J H; Ansaldo, E J; Itahara, H; Dohmae, K; Xia, C; Seno, Y; Hitti, B; Tani, T

    2003-01-01

    Magnetism of a misfit layered cobaltite [Ca 2 Co 4/3 Cu 2/3 O 4 ] x RS [CoO 2 ] (x ∼ 0.62, RS denotes a rocksalt-type block) was investigated by a positive muon spin rotation and relaxation (μ + SR) experiment. A transition to an incommensurate (IC) spin density wave (SDW) state was found below 180 K (= T C on ); and a clear oscillation due to a static internal magnetic field was observed below 140 K(= T C ). Furthermore, an anisotropic behaviour of the zero-field μ + SR experiment indicated that the IC-SDW lies in the a-b plane, with oscillating moments directed along the c axis. These results were quite similar to those for the related compound [Ca 2 CoO 3 ] 0.62 RS [CoO 2 ], i.e., Ca 3 Co 4 O 9 . Since the IC-SDW field in [Ca 2 Co 4/3 Cu 2/3 O 4 ] 0.62 RS [CoO 2 ] was approximately the same as those in pure and doped [Ca 2 CoO 3 ] 0.62 RS [CoO 2 ], it was concluded that the IC-SDW exists in the [CoO 2 ] planes

  2. Crystal structure and magnetic properties of the Ba3TeCo3P2O14, Pb3TeCo3P2O14, and Pb3TeCo3V2O14 langasites

    DEFF Research Database (Denmark)

    Krizan, J.W.; de la Cruz, C.; Andersen, Niels Hessel

    2013-01-01

    We report the structural and magnetic characterizations of Ba3TeCo3P2O14, Pb3TeCo3P2O14, and Pb3TeCo3V2O14, compounds that are based on the mineral dugganite, which is isostructural to langasites. The magnetic part of the structure consists of layers of Co2+ triangles. Nuclear and magnetic...... structures were determined through a co-refinement of synchrotron and neutron powder diffraction data. In contrast to the undistorted P321 langasite structure of Ba3TeCo3P2O14, a complex structural distortion yielding a large supercell is found for both Pb3TeCo3P2O14 and Pb3TeCo3V2O14. Comparison...... of the three compounds studied along with the zinc analog Pb3TeZn3P2O14, also characterized here, suggests that the distortion is driven by Pb2+ lone pairs; as such, the Pb compounds crystallize in a pyroelectric space group, P2. Magnetic susceptibility, magnetization, and heat capacity measurements were...

  3. Thermoelectric properties of Ba3Co2O6(CO3)0.7 containing one-dimensional CoO6 octahedral columns

    OpenAIRE

    Iwasaki, Kouta; Yamamoto, Teruhisa; Yamane, Hisanori; Takeda, Takashi; Arai, Shigeo; Miyazaki, Hidetoshi; Tatsumi, Kazuyoshi; Yoshino, Masahito; Ito, Tsuyoshi; Arita, Yuji; Muto, Shunsuke; Nagasaki, Takanori; Matsui, Tsuneo

    2009-01-01

    The thermoelectric properties of Ba3Co2O6(CO3)0.7 have been investigated using prismatic single crystals elongated along the c axis. Ba3Co2O6(CO3)0.7 has a pseudo-one-dimensional structure similar to that of 2H perovskite-type BaCoO3 and contains CoO6 octahedral columns running parallel to the c axis. The prismatic crystals are grown by a flux method using a K2CO3–BaCl2 flux. The electrical conductivity(σ) along the columns (c axis) exhibits a metallic behavior (670–320 S cm−1 in the temperat...

  4. Solubility of NaNd(CO3)2.6H2O(c) in concentrated Na2CO3 and NaHCO3 solutions

    International Nuclear Information System (INIS)

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.; Novak, C.F.

    1996-01-01

    NaNd(CO 3 ) 2 x 6 H 2 O(c) was identified to be the final equilibrium solid phase in suspensions containing concentrated sodium carbonate (0.1 to 2.0 M) and sodium bicarbonate (0.1 to 1.0 M), with either NaNd(CO 3 ) 2 x 6 H 2 O(c) or Nd 2 (CO 3 ) 3 x xH 2 O(s) as initial solids. A thermodynamic model, based on Pitzer's specific into-interaction approach, was developed to interpret the solubility of NaNd(CO 3 ) 2 x 6 H 2 O(c) as functions of sodium carbonate and sodium bicarbonate concentrations. In this model, the solubility data of NaNd(CO 3 ) 2 x 6 H 2 O(c) were explained by assuming the formation of NdCO 3 + , Nd(CO 3 ) 2 - and Nd(CO 3 ) 3 3- species and invoking the specific ion interactions between Na + and Nd(CO 3 ) 3 3- . Ion interaction parameters for Na + -Nd(CO 3 ) 3 3- were developed to fit the solubility data. Based on the model calculations, Nd(CO 3 ) 3 3- was the predominant aqueous neodymium species in 0.1 to 2 M sodium carbonate and 0.1 to 1 M sodium bicarbonate solutions. The logarithm of the NaNd(CO 3 ) 2 x 6 H 2 O solubility product (NaNd(CO 3 ) 2 x 6 H 2 O(c)=Na + +Nd 3+ +2 CO 3 2- +6 H 2 O) was calculated to be -21.39. This model also provided satisfactory interpretation of the solubility data of the analogous Am(III) system in less concentrated carbonate and bicarbonate solutions. (orig.)

  5. Formic Acid Modified Co3O4-CeO2 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ruishu Shang

    2016-03-01

    Full Text Available A formic acid modified catalyst, Co3O4-CeO2, was prepared via facile urea-hydrothermal method and applied in CO oxidation. The Co3O4-CeO2-0.5 catalyst, treated by formic acid at 0.5 mol/L, performed better in CO oxidation with T50 obtained at 69.5 °C and T100 obtained at 150 °C, respectively. The characterization results indicate that after treating with formic acid, there is a more porous structure within the Co3O4-CeO2 catalyst; meanwhile, despite of the slightly decreased content of Co, there are more adsorption sites exposed by acid treatment, as suggested by CO-TPD and H2-TPD, which explains the improvement of catalytic performance.

  6. Carbonate hydrates of the heavy alkali metals: preparation and structure of Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O; Carbonat-Hydrate der schweren Alkalimetalle: Darstellung und Struktur von Rb{sub 2}CO{sub 3} . 1,5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Cirpus, V.; Wittrock, J.; Adam, A. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O and Cs{sub 2}CO{sub 3} . 3 H{sub 2}O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four-circle diffractometer data, the crystal structures were determined (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, {beta} = 120.133(8) , V{sub EZ} = 1109.3(6) . 10{sup 6} pm{sup 3}; Cs{sub 2}CO{sub 3} . 3 H{sub 2}O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, {beta} = 90.708(14) , V{sub EZ} = 393.9(2) . 10{sup 6} pm{sup 3}). Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O is isostructural with K{sub 2}CO{sub 3} . 1.5 H{sub 2}O. In case of Cs{sub 2}CO{sub 3} . 3 H{sub 2}O no comparable structure is known. Both structures show {sub {infinity}}{sup 1}[(CO{sub 3}{sup 2-})(H{sub 2}O)]-chains, being connected via additional H{sub 2}O forming columns (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O) and layers (Cs{sub 2}CO{sub 3} . 3 H{sub 2}O), respectively. (orig.)

  7. Improved solar-driven photocatalytic performance of Ag_2CO_3/(BiO)_2CO_3 prepared in-situ

    International Nuclear Information System (INIS)

    Zhong, Junbo; Li, Jianzhang; Huang, Shengtian; Cheng, Chaozhu; Yuan, Wei; Li, Minjiao; Ding, Jie

    2016-01-01

    Highlights: • Ag_2CO_3/(BiO)_2CO_3 photocatalysts were prepared in-situ. • The photo-induced charge separation rate has been greatly increased. • The photocatalytic activity has been greatly promoted. - Abstract: Ag_2CO_3/(BiO)_2CO_3 composites have been fabricated in-situ via a facile parallel flaw co-precipitation method. The specific surface area, structure, morphology, and the separation rate of photo-induced charge pairs of the photocatalysts were characterized by Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy(DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and surface photovoltage (SPV) spectroscopy, respectively. XRD patterns and DRS demonstrated that Ag_2CO_3 has no effect on the crystal phase and bandgap of (BiO)_2CO_3. The existence of Ag_2CO_3 in the composites enhances the separation rate of photo-induced charge pairs of the photocatalysts. The photocatalytic performance of Ag_2CO_3/(BiO)_2CO_3 was evaluated by the decolorization of methyl orange (MO) aqueous solution under simulated solar irradiation. It was found that the simulated solar-induced photocatalytic activity of Ag_2CO_3/(BiO)_2CO_3 copmposites was significantly improved, which was mainly attributed to the enhanced surface area and the separation rate of photo-induced charge pairs.

  8. Topotactic synthesis of Co3O4 nanoboxes from Co(OH)2 nanoflakes

    International Nuclear Information System (INIS)

    Tian Li; Huang Kelong; Liu Younian; Liu Suqin

    2011-01-01

    Hollow nanocubes of spinel Co 3 O 4 with the dimension of 20 nm were successfully prepared via a facile and reproducible solvothermal route. The structure and morphology of Co 3 O 4 nanoboxes were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) techniques. And a possible growth mechanism of Co 3 O 4 nanoboxes were suggested that solid Co 3 O 4 nanocubes nucleate in-situ and grow epitaxially from hexagonal β-Co(OH) 2 precursors with the structural matching relationship of [0 0 1] β-Co(OH) 2 //[1 1 1] Co 3 O 4 , and then solid Co 3 O 4 nanocubes gradually hollow and convert to single-crystal nanoboxes owing to Ostwald ripening. - Graphical abstract: The formation mechanism of Co 3 O 4 nanoboxes can be expressed as epitaxial growth of Co 3 O 4 nanocubes from β-Co(OH) 2 nanoflakes due to a topotactic transformation and hollowing process owing to Ostwald ripening. Highlights: → Co 3 O 4 nanoboxes were prepared by a convenient, economical and controllable hydrothermal route. → Morphology and structure of Co 3 O 4 nanoboxes were characterized by XRD, SEM, and TEM techniques. → Co 3 O 4 nanoboxes grow epitaxially from Co(OH) 2 by topotactic transformation was suggested.

  9. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    Science.gov (United States)

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  10. Vacuum ultraviolet excited photoluminescence properties of Gd2O2CO3:Eu3+ phosphor

    Institute of Scientific and Technical Information of China (English)

    WANG Zhilong; WANG Yuhua; ZHANG Jiachi

    2008-01-01

    The Gd2O2CO3:Eu3+ with type-II structure phosphor was successfully synthesized via flux method at 400℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO32- host absorption and charge transfer (CT) of Gd3+-O2- were observed for Gd2O2CO3:Eu3+. Under 172 nm excitation, Gd2O2CO3:Eu3+ exhibited strong red emission with good color purity, indicating Eu3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu3+ excited by 172 nm for Gd2O2CO3:Eu3+ was about 5%. Gd2O2CO3:Eu3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.

  11. Interfaces exchange bias and magnetic properties of ordered CoFe_2O_4/Co_3O_4 nanocomposites

    International Nuclear Information System (INIS)

    Zhang, B.B.; Xu, J.C.; Wang, P.F.; Han, Y.B.; Hong, B.; Jin, H.X.; Jin, D.F.; Peng, X.L.; Li, J.; Yang, Y.T.; Gong, J.; Ge, H.L.; Wang, X.Q.

    2015-01-01

    Graphical abstract: - Highlights: • CoFe_2O_4 nanoparticles were well-dispersed anchored in mesopores of Co_3O_4. • The magnetic behavior of nanocomposites changed greatly at low temperature. • CoFe_2O_4 nanoparticles reinforced the interfaces magnetic interaction of nanocomposites. • M increased with the doping of CoFe_2O_4 and the decreasing temperature. • Exchange bias effect was observed at 100 K and increased with the doping of CoFe_2O_4. - Abstract: Cobalt ferrites (CoFe_2O_4) nanoparticles were implanted into the ordered mesoporous cobaltosic oxide (Co_3O_4) nanowires to synthesize magnetic CoFe_2O_4/Co_3O_4 nanocomposites. X-ray diffraction (XRD), N_2 physical absorption–desorption, transmission electron microscope (TEM) and energy disperse spectroscopy (EDS) were used to characterize the microstructure of mesoporous Co_3O_4 and CoFe_2O_4/Co_3O_4 nanocomposites. The percent of pore-volume of mesoporous Co_3O_4 nanowires was calculated to be about 41.99% and CoFe_2O_4 nanoparticles were revealed to exist in the mesopores of Co_3O_4_. The magnetic behavior of both samples were investigated with superconducting quantum interference device (SQUID). Magnetization increased with the doping CoFe_2O_4 and decreasing temperature, while coercivity hardly changed. The exchange bias effect was obviously observed at 100 K and enhanced with the doping CoFe_2O_4. CoFe_2O_4 nanoparticles reinforced the interfaces magnetic interaction between antiferromagnetic Co_3O_4 and ferrimagnetic CoFe_2O_4.

  12. NMR Spectroscopic Characterization of Methylcobalt(III) Compounds with Classical Ligands. Crystal Structures of [Co(NH(3))(5)(CH(3))]S(2)O(6), trans-[Co(en)(2)(NH(3))(CH(3))]S(2)O(6) (en = 1,2-Ethanediamine), and [Co(NH(3))(6)]-mer,trans-[Co(NO(2))(3)(NH(

    DEFF Research Database (Denmark)

    Kofod, Pauli; Harris, Pernille; Larsen, Sine

    1997-01-01

    magnetic resonance spectroscopy and by absorption spectroscopy. Single-crystal X-ray structure determinations at 122.0(5) K were performed on [Co(NH(3))(5)(CH(3))]S(2)O(6) (1), trans-[Co(en)(2)(NH(3))(CH(3))]S(2)O(6) (2), and [Co(NH(3))(6)]-mer,trans-[Co(NO(2))(3)(NH(3))(2)(CH(3))](2)-trans-[Co(NO(2...

  13. Co3(PO4)2·4H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  14. Graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3: A novel multi-heterojunction photocatalyst with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Ao, Yanhui; Xu, Liya; Wang, Peifang; Wang, Chao; Hou, Jun; Qian, Jin; Li, Yi

    2015-01-01

    Graphical abstract: A novel multi-heterojunction photocatalyst (graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3) was prepared for the first time. The as-obtained samples showed much higher activity compared to pure Bi_2O_2CO_3, TiO_2 and GR–Bi_2O_2CO_3 for dye degradation, which is almost 14 times higher than that of pure Bi_2O_2CO_3 and also much higher than the sum of graphene–Bi_2O_2CO_3 and TiO_2. - Highlights: • Graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3 was prepared for the first time. • The sample shows enhanced photocatalytic activity due to the formation of multi-heterojunction. • The sample also exhibits a synergetic effect of graphene and TiO_2. • The composite photocatalyst shows a good stability for dye degradation. - Abstract: In this paper, graphene (GR) and titania co-modified flower-like Bi_2O_2CO_3 multi-heterojunction composite photocatalysts were prepared by a simple and feasible two step hydrothermal process. The prepared samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), photoluminescence (PL), N_2 adsorption–desorption isotherm, and photo-induced current. The photocatalytic activity was investigated by the degradation of MO under UV light irradiation. The as prepared multi-heterojunction GR/Bi_2O_2CO_3/TiO_2 composites exhibited much higher photocatalytic activity than pure Bi_2O_2CO_3, TiO_2 and GR–Bi_2O_2CO_3. The higher performance of GR/Bi_2O_2CO_3/TiO_2 can be ascribed to the formation of multi-heterojunctions, which promote the effective separation of photo-induced electron–hole pairs. Moreover, the higher photocatalytic activity can also be ascribed to the high surface area of GR and TiO_2, which offers more active sites for the photodegradation reaction. Furthermore, the photocatalytic activity of GR/Bi_2O_2CO_3/TiO_2 remained without striking decrease after five cycles

  15. Al2O3-Cact-(CuO, Cr2O3, Co3O4 Adsorbents-Catalysts: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Gitana DABRILAITĖ-KUDŽMIENĖ

    2013-03-01

    Full Text Available Al2O3-Cact-(CuO, Cr2O3 Co3O4 adsorbents-catalysts were prepared using Al2O3-Cact (alumina gel–activated carbon adsorbent and different amount of CuO, Cr2O3 and Co3O4. The active components were incorporated into wet alumina gel–carbon mixture using different conditions (by sol-gel method and mixing a milled metal oxides. Equilibrium adsorptive capacity measurements of alcohol vapours were carried out in order to determine the influence of preparation conditions on the stability of prepared adsorbents–catalysts. Specific surface area of the prepared adsorbents-catalysts were measured by BET method. It was established that for adsorbent-catalyst produced by sol-gel method SBET = 244.7 m2/g. Surface area SBET = 29.32 m2/g was obtained for adsorbent-catalyst with metal oxides. On the basis of these results it was assumed that active carbon was lost in this adsorbent-catalyst during the preparation process. Sol-gel derived adsorbent–catalyst was tested for the oxidation of methanol vapours. Catalytic oxidation was carried out in fixed-bed reactor. Experimental data indicate that adsorptive capacity of the adsorbent–catalyst is (3.232 – 3.259 mg/m3 CH3OH at relative air humidity is 40 % – 50 %. During a fast heating of CH3OH – saturated adsorbent-catalyst a part of adsorbate is converted to CO2 and H2O. Methanol conversion increases with increasing of adsorbent-catalyst heating rate.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3832

  16. Steam reforming of ethanol over Co3O4–Fe2O3 mixed oxides

    KAUST Repository

    Abdelkader, A.

    2013-05-03

    Co3O4, Fe2O3 and a mixture of the two oxides Co-Fe (molar ratio of Co3O4/Fe 2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O 3 on the catalytic behaviour. The reforming activity over Fe 2O3, while initially high, underwent fast deactivation. In comparison, over the Co-Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe 2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co-Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co-Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield. © Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  17. Sol-gel system study of Zr O2- Co3 O-4

    International Nuclear Information System (INIS)

    Cerri, J.A.; Matos, E.M.R.; Longo, E.; Varela, J.A.; Santos, C.O.P.

    1992-01-01

    Phases present in the system Zr O 2 + Co 3 O 4 were studied through X-Ray diffraction. The processing of the powder was developed through a modified sol-gel method, where the precursors Zr O (N O 3)2 and Co (N O 3)2 were in an ethanol solution. To verify the influence of CO 3 O 4 on the stabilization and phases formation, the crystallite size and the lattice parameter were determined considering as standard, the system without cobalt. (author)

  18. Synthesis of a new compound - Sr2CuO2CO3

    International Nuclear Information System (INIS)

    Fomichev, D.V.; Khardanov, A.L.; Antipov, E.V.; Kovba, L.M.

    1990-01-01

    A new compound of Sr 2 CuO 2 CO 3 composition, being an intermediate product of solid phase synthesis in air in SrCo 3 -CuO system at T 2 CuO 2 CO 3 have low resistance at room temperature and semiconductor type conductivity

  19. Solubility of NpO2 in Na2CO3 solutions

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Yang, Han Beom; Lee, Eil Hee; Kim, Kwang Wook

    2010-03-01

    Solubilities of NpO 2 were measured in 0.1 M Na 2 CO 3 (pH 11.25) and 0.1 M Na 2 CO 3 -0.5M H 2 O 2 (pH 11.25), respectively, for two weeks. Three detection methods such as gas proportional counting (GPC), liquid scintillation counting (LSC) and ICP-MS were used for the measurement of dissolved NpO 2 in the solutions and the results by different methods were compared with each other. The solubility of NpO 2 increased as the contact time increased and those after 2 weeks showed 4.4 x 10 -9 M in 0.10 M Na 2 CO 3 (pH 11.25) and 2.4 x 10 -8 M in 0.10 M Na 2 CO 3 -0.5M H 2 O 2 (pH 11.25), respectively

  20. Temperature-programmed reaction of CO2 reduction in the presence of hydrogen over Fe/Al2O3, Re/Al2O3 and Cr-Mn-O/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Mirzabekova, S.R.; Mamedov, A.B.; Krylov, O.V.

    1996-01-01

    Regularities in CO 2 reduction have been studied using the systems Fe/Al 2 O 3 , Re/Al 2 O 3 and Cr-Mn-O/Al 2 O 3 under conditions of thermally programmed reaction by way of example. A sharp increase in the reduction rate in the course of CO 2 interaction with reduced Fe/Al 2 O 3 and Re/Al 2 O 3 , as well as with carbon fragments with addition in CO 2 flow of 1-2%H 2 , has been revealed. The assumption is made on intermediate formation of a formate in the process and on initiating effect of hydrogen on CO 2 reduction by the catalyst. Refs. 26, figs. 10

  1. Inverse CeO2sbnd Fe2O3 catalyst for superior low-temperature CO conversion efficiency

    Science.gov (United States)

    Luo, Yongming; Chen, Ran; Peng, Wen; Tang, Guangbei; Gao, Xiaoya

    2017-09-01

    The paper presents a rational design of highly efficient and affordable catalysts for CO oxidation with a low operating temperature. A series of ceria-iron catalysts were inversely built via a co-precipitation method. The catalytic activity of low-temperature CO oxidation was much higher with CeO2-modified Fe2O3 (CeO2sbnd Fe2O3) than with Fe2O3-modified CeO2 (Fe2O3sbnd CeO2). In particular, the 7.5% CeO2sbnd Fe2O3 catalyst had the highest activity, reaching 96.17% CO conversion at just 25 °C. Catalyst characterization was carried out to explore the cause of the significantly different CO conversion efficiencies between the Fe2O3sbnd CeO2 and Fe2O3sbnd CeO2 catalysts. HRTEM showed a significant inhomogeneous phase in 7.5% CeO2sbnd Fe2O3 with small CeO2 nanoparticles highly dispersed on the rod-shaped Fe2O3 surface. Furthermore, the 7.5% CeO2sbnd Fe2O3 composite catalyst exhibited the highest ratios of Fe2+/Fe3+ and Ce3+/Ce4+ as well as the largest pore volume. These properties are believed to benefit the CO conversion in 7.5% CeO2sbnd Fe2O3.

  2. Eu3+/Tb3+-doped La2O2CO3/La2O3 nano/microcrystals with multiform morphologies: facile synthesis, growth mechanism, and luminescence properties.

    Science.gov (United States)

    Li, Guogang; Peng, Chong; Zhang, Cuimiao; Xu, Zhenhe; Shang, Mengmeng; Yang, Dongmei; Kang, Xiaojiao; Wang, Wenxin; Li, Chunxia; Cheng, Ziyong; Lin, Jun

    2010-11-15

    LaCO(3)OH nano/microcrystals with a variety of morphologies/sizes including nanoflakes, microflowers, nano/microrhombuses, two-double microhexagrams sandwichlike microspindles, and peach-nucleus-shaped microcrystals have been synthesized via a facile homogeneous precipitation route under mild conditions. A series of controlled experiments indicate that the pH values in the initial reaction systems, carbon sources, and simple ions (NH(4)(+) and Na(+)) were responsible for the shape determination of the LaCO(3)OH products. A possible formation mechanism for these products with diverse architectures has been presented. After annealing at suitable temperatures, LaCO(3)OH was easily converted to La(2)O(2)CO(3) and La(2)O(3) with the initial morphologies. A systematic study on the photoluminescence and cathodoluminescence properties of Eu(3+)- or Tb(3+)-doped La(2)O(2)CO(3)/La(2)O(3) samples has been performed in detail. The excitation and site-selective emission spectra were recorded to investigate the microstructure, site symmetry, and difference in the (5)D(0) → (7)F(2) transition of Eu(3+) ions in La(2)O(2)CO(3) and La(2)O(3) host lattices. In addition, the dependence of the luminescent intensity on the morphology for the as-prepared La(2)O(2)CO(3)/La(2)O(3):Ln(3+) (Ln = Eu, Tb) samples has been investigated. The ability of generating diverse morphologies and multiemitting colors for different rare-earth activator ion (Ln = Eu, Tb) doped La(2)O(2)CO(3)/La(2)O(3) nano/microstructures provides a great opportunity for the systematic evaluation of morphology-dependent luminescence properties, as well as the full exploration of their application in many types of color display fields.

  3. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Hongmei Qin

    2015-04-01

    Full Text Available Conventional supported Pt catalysts have often been prepared by loading Pt onto commercial supports, such as SiO2, TiO2, Al2O3, and carbon. These catalysts usually have simple metal-support (i.e., Pt-SiO2 interfaces. To tune the catalytic performance of supported Pt catalysts, it is desirable to modify the metal-support interfaces by incorporating an oxide additive into the catalyst formula. Here we prepared three series of metal oxide-modified Pt catalysts (i.e., Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3, where M = Al, Fe, Co, Cu, Zn, Ba, La for CO oxidation. Among them, Pt/CoOx/SiO2, Pt/CoOx/TiO2, and Pt/CoOx/Al2O3 showed the highest catalytic activities. Relevant samples were characterized by N2 adsorption-desorption, X-ray diffraction (XRD, transmission electron microscopy (TEM, H2 temperature-programmed reduction (H2-TPR, X-ray photoelectron spectroscopy (XPS, CO temperature-programmed desorption (CO-TPD, O2 temperature-programmed desorption (O2-TPD, and CO2 temperature-programmed desorption (CO2-TPD.

  4. Monolayer dispersion of CoO on Al2O3 probed by positronium atom

    International Nuclear Information System (INIS)

    Liu, Z.W.; Zhang, H.J.; Chen, Z.Q.

    2014-01-01

    CoO/Al 2 O 3 catalysts were prepared by wet impregnation method with CoO contents ranging from 0 wt% to 24 wt%. X-ray diffraction and X-ray photoelectron spectroscopy measurements suggest formation of CoO after calcined in N 2 . Quantitative X-ray diffraction analysis indicates monolayer dispersion capacity of CoO in CoO/Al 2 O 3 catalysts to be about 3 wt%. Positron annihilation lifetime and coincidence Doppler broadening measurements were performed to study the dispersion state of CoO on Al 2 O 3 . The positron lifetime measurements reveal two long lifetime components τ 3 and τ 4 , which correspond to ortho-positronium annihilation lifetime in microvoids and large pores, respectively. It was found that the positronium atom is very sensitive to the dispersion state of CoO on Al 2 O 3 . The presence of CoO significantly decreases both the lifetime and the intensity of τ 4 . Detailed analysis of the coincidence Doppler broadening measurements suggests that with the CoO content lower than the monolayer dispersion, spin conversion reaction of positronium is induced by CoO. When the cobalt content is higher than the monolayer dispersion capacity, inhibition of positronium formation becomes the dominate effect.

  5. Solid state synthesis of stoichiometric LiCoO2 from mechanically activated Co-Li2CO3 mixtures

    International Nuclear Information System (INIS)

    Berbenni, Vittorio; Milanese, Chiara; Bruni, Giovanna; Marini, Amedeo

    2006-01-01

    Stoichiometric lithium cobalt oxide (LiCoO 2 ) has been synthesized by solid state reaction of mixtures of the system Co-0.5Li 2 CO 3 after mechanical activation by high energy milling. The differences in the reaction mechanism and in product stoichiometry with respect to what happens when starting from the non activated (physical) system have been brought into evidence by TG analysis. Furthermore it has been shown that stoichiometric LiCoO 2 is obtained by a 200 h annealing of the activated mixture at temperatures as low as 400 deg. C. Finally, it has been revealed that longer activation times (150 h) result in Co oxidation to Co 3 O 4 that, in turn, hampers the formation of stoichiometric LiCoO 2

  6. Investigations on the Synthesis and Properties of Fe2O3/Bi2O2CO3 in the Photocatalytic and Fenton-like Process

    Science.gov (United States)

    Sun, Dongxue; Shen, Tingting; Sun, Jing; Wang, Chen; Wang, Xikui

    2018-01-01

    Catalyst of Bi2O2CO3 and Fe2O3 modified Bi2O2CO3 (Fe2O3/Bi2O2CO3) were prepared by hydrothermal method and characterized by X-ray diffractions (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and UV-vis DRS. The catalytic activity of Bi2O2CO3 and Fe2O3/Bi2O2CO3 were comparatively investigated in the photodegradation and Fento-like process. Rhodamine B(RhB) was selected as the target pollutant under the irradiation of 300 W xenon lamp. The results indicated that Fe2O3 plays a great role in the enhancing the treatment efficiency and the and the maximum reaction rate was achieved at the Fe2O3 loading of 1.5%. The Fenton-like degradation rate constant of RhB with bare Bi2O2CO3 in dark is 0.4 min-1, while that with 1.5 Fe2O3/Bi2O2CO3 increases to 28.4 min-1 under visible light irradiation, a 71-fold improvement. It is expected to shed a new light for the constructing novel composite photocatalyst and also provide a potential method for the removal of dyes in the aqueous system.

  7. Co3(PO42·4H2O

    Directory of Open Access Journals (Sweden)

    Yang Kim

    2008-10-01

    Full Text Available Single crystals of Co3(PO42·4H2O, tricobalt(II bis[orthophosphate(V] tetrahydrate, were obtained under hydrothermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO42·4H2O (mineral name hopeite and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetrahedral coordination, while the second, located on a mirror plane, has a distorted octahedral coordination environment. The tetrahedrally coordinated Co2+ is bonded to four O atoms of four PO43− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water molecules (two of which are located on mirror planes, forming a framework structure. In addition, hydrogen bonds of the type O—H...O are present throughout the crystal structure.

  8. The formation mechanism of a textured ceramic of thermoelectric [Ca2CoO3](0.62)[CoO2] on beta-Co(OH)2 templates through in situ topotactic conversion.

    Science.gov (United States)

    Itahara, Hiroshi; Seo, Won-Seon; Lee, Sujeong; Nozaki, Hiroshi; Tani, Toshihiko; Koumoto, Kunihito

    2005-05-04

    We investigated the formation mechanism of thermoelectric [Ca(2)CoO(3)](0.62)[CoO(2)] (CCO) on beta-Co(OH)(2) templates with maintained orientations by identifying the intermediate phases and specifying the relationship between their crystallographic orientations. We mixed beta-Co(OH)(2) templates with the complementary reactant CaCO(3) and prepared a compact by tape casting, with the developed (001) plane of the templates aligned along the casting plane. High-temperature XRD of the compact revealed that beta-Co(OH)(2) decomposed into Co(3)O(4) by 873 K, and Co(3)O(4) reacted with CaO to form CCO by 1193 K via the formation of the newly detected intermediate phase beta-Na(x)()CoO(2)-type Ca(x)()CoO(2) at 913-973 K. Pole figure measurements and SEM and TEM observations revealed that the relationship between the crystallographic planes was (001) beta-Co(OH)(2)//{111} Co(3)O(4)//(001) Ca(x)()CoO(2)//(001) CCO. The crystal structures of the four materials possess the common CoO(2) layer (or similar), which is composed of edge-sharing CoO(6) octahedra, parallel to the planes. The cross-sectional HRTEM analysis of an incompletely reacted specimen showed transient lattice images from Ca(x)()CoO(2) into CCO, in which every other CoO(2) layer of Ca(x)()CoO(2) was preserved. Thus, it was demonstrated that a textured CCO ceramic is produced through a series of in situ topotactic conversion reactions with a preserved CoO(2) layer of its template.

  9. Reaction of silanes in supercritical CO2 with TiO2 and Al2O3.

    Science.gov (United States)

    Gu, Wei; Tripp, Carl P

    2006-06-20

    Infrared spectroscopy was used to investigate the reaction of silanes with TiO2 and Al2O3 using supercritical CO2 (Sc-CO2) as a solvent. It was found that contact of Sc-CO2 with TiO2 leads to partial removal of the water layer and to the formation of carbonate, bicarbonate, and carboxylate species on the surface. Although these carbonate species are weakly bound to the TiO2 surface and can be removed by a N2 purge, they poison the surface, resulting in a lower level of reaction of silanes with TiO2. Specifically, the amount of hexamethyldisilazane adsorbed on TiO2 is about 10% of the value obtained when the reaction is performed from the gas phase. This is not unique to TiO2, as the formation of carbonate species also occurs upon contact of Al2O3 with Sc-CO2 and this leads to a lower level of reaction with hexamethyldisilazane. This is in contrast to reactions of silanes on SiO2 where Sc-CO2 has several advantages over conventional gaseous or nonaqueous methods. As a result, caution needs to be applied when using Sc-CO2 as a solvent for silanization reactions on oxides other than SiO2.

  10. Ionic conductivity of co-doped Sc2O3-ZrO2 ceramics

    DEFF Research Database (Denmark)

    Omar, Shobit; bin Najib, Waqas; Chen, Weiwu

    2012-01-01

    The oxide ionic conductivity of Sc0.18Zr0.82O1.91 doped with 0.5 mol.% of both Yb2O3 and In2O3 is evaluated at various temperatures in air. Among various co-doped compositions, In0.02Sc0.18Zr0.80O1.90 exhibits the highest grain ionic conductivity followed by Yb0.02Sc0.18Zr0.80O1.90 at 500°C....... However, it also possesses phase transformation from c- to β-phase at 475°C on cooling. In the present work, an attempt is made to completely stabilize the cphase in In0.02Sc0.18Zr0.80O1.90 by substituting 0.5 mol.% of In2O3 with Yb2O3, which can enhance the ionic conductivity in co-doped compositions....

  11. Co2+ adsorption in porous oxides Mg O, Al2O3 and Zn O

    International Nuclear Information System (INIS)

    Moreno M, J. E.; Granados C, F.; Bulbulian, S.

    2009-01-01

    The porous oxides Mg O, Al 2 O 3 and Zn O were synthesized by the chemical combustion in solution method and characterized be means of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The adsorption behavior of Co 2+ ions present in aqueous solution were studied on the synthesized materials by means of experiments lots type to ambient temperature. It was found that the cobalt ions removal was of 90% in Mg O, 65% in Zn O and 72% in Al 2 O 3 respectively, indicating that the magnesium oxide is the best material to remove Co 2+ presents in aqueous solution. (Author)

  12. Ultrathin Co3O4 Layers Realizing Optimized CO2 Electroreduction to Formate.

    Science.gov (United States)

    Gao, Shan; Jiao, Xingchen; Sun, Zhongti; Zhang, Wenhua; Sun, Yongfu; Wang, Chengming; Hu, Qitao; Zu, Xiaolong; Yang, Fan; Yang, Shuyang; Liang, Liang; Wu, Ju; Xie, Yi

    2016-01-11

    Electroreduction of CO2 into hydrocarbons could contribute to alleviating energy crisis and global warming. However, conventional electrocatalysts usually suffer from low energetic efficiency and poor durability. Herein, atomic layers for transition-metal oxides are proposed to address these problems through offering an ultralarge fraction of active sites, high electronic conductivity, and superior structural stability. As a prototype, 1.72 and 3.51 nm thick Co3O4 layers were synthesized through a fast-heating strategy. The atomic thickness endowed Co3O4 with abundant active sites, ensuring a large CO2 adsorption amount. The increased and more dispersed charge density near Fermi level allowed for enhanced electronic conductivity. The 1.72 nm thick Co3O4 layers showed over 1.5 and 20 times higher electrocatalytic activity than 3.51 nm thick Co3O4 layers and bulk counterpart, respectively. Also, 1.72 nm thick Co3O4 layers showed formate Faradaic efficiency of over 60% in 20 h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst

    Science.gov (United States)

    Dou, Maobin; Zhang, Minhua; Chen, Yifei; Yu, Yingzhe

    2018-06-01

    The interactions between ZrO2 support and In2O3 catalyst play pivotal role in the catalytic conversion of CO2 to methanol. Herein, a density functional theory study has been conducted to research the mechanism of methanol synthesis from CO2 and CO hydrogenation on the defective ZrO2 supported In2O3(110) surface (D surface). The calculations reveal that methanol is produced mainly via the HCOO reaction pathway from CO2 hydrogenation on D surface, and the hydrogenation of HCOO to form H2COO species with an activation barrier of 1.21 eV plays the rate determining step for the HCOO reaction pathway. The direct dissociation of CO2 to CO on D surface is kinetically and energetically prohibited. Methanol synthesis from CO hydrogenation on D surface is much facile comparing with the elementary steps involved in CO2 hydrogenation. The rate determining step of CO hydrogenation to methanol is the formation of H3CO species on the vacancy site with a barrier of 0.51 eV. ZrO2 support has significant effect on the suppressing of the dissociation of CO2 and stabilization of H2COO species on the surface of In2O3 catalyst.

  14. Enhancement of CO Evolution by Modification of Ga2O3 with Rare-Earth Elements for the Photocatalytic Conversion of CO2 by H2O.

    Science.gov (United States)

    Tatsumi, Hiroyuki; Teramura, Kentaro; Huang, Zeai; Wang, Zheng; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2017-12-12

    Modification of the surface of Ga 2 O 3 with rare-earth elements enhanced the evolution of CO as a reduction product in the photocatalytic conversion of CO 2 using H 2 O as an electron donor under UV irradiation in aqueous NaHCO 3 as a pH buffer, with the rare-earth species functioning as a CO 2 capture and storage material. Isotope experiments using 13 CO 2 as a substrate clearly revealed that CO was generated from the introduced gaseous CO 2 . In the presence of the NaHCO 3 additive, the rare-earth (RE) species on the Ga 2 O 3 surface are transformed into carbonate hydrates (RE 2 (CO 3 ) 3 ·nH 2 O) and/or hydroxycarbonates (RE 2 (OH) 2(3-x) (CO 3 ) x ) which are decomposed upon photoirradiation. Consequently, Ag-loaded Yb-modified Ga 2 O 3 exhibits much higher activity (209 μmol h -1 of CO) than the pristine Ag-loaded Ga 2 O 3 . The further modification of the surface of the Yb-modified Ga 2 O 3 with Zn afforded a selectivity toward CO evolution of 80%. Thus, we successfully achieved an efficient Ag-loaded Yb- and Zn-modified Ga 2 O 3 photocatalyst with high activity and controllable selectivity, suitable for use in artificial photosynthesis.

  15. Effect of Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O Promoter Catalysts on H2, CO and CH4 Concentration by CO2 Gasification of Rosa Multiflora Biomass

    Directory of Open Access Journals (Sweden)

    Tursunov Obid

    2017-11-01

    Full Text Available The thermal behaviour of the Rosa mutiflora biomass by thermogravimetric analysis was studied at heating rate 3 K min−1 from ambient temperature to 950 °C. TGA tests were performed in high purity carbon dioxide (99 998% with a flow rate 200 ml/min and 100 mg of sample, milled and sieved to a particle size below 250 µm. Moreover, yields of gasification products such as hydrogen (H2, carbon monoxide (CO and methane (CH4 were determined based on the thermovolumetric measurements of catalytic (Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O promoter catalysts and non-catalytic gasification of the Rosa multiflora biomass. Additionally, carbon conversion degrees are presented. Calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the catalytic and non-catalytic CO2 gasification processes. A high temperature of 950 °C along with Ni/Al2O3-SiO2and Ni/Al2O3-SiO2 with K2O promoter catalysts resulted in a higher conversion of Rosa multiflora biomass into gaseous yield production with greatly increasing of H2 and CO contents. Consequently, H2 and CO are the key factors to produce renewable energy and bio-gases (synthesis gas. The parameters obtained during the experimental examinations enable a tentative assessment of plant biomasses for the process of large-scale gasification in industrial sectors.

  16. Phase formation in K2O(K2CO3)-CdO-MoO3 system

    International Nuclear Information System (INIS)

    Tsirenova, G.D.; Tsybikova, B.A.; Bazarova, Zh.G.; Solodovnikov, S.F.; Zolotova, E.S.

    2000-01-01

    Phase formation in K 2 O(K 2 CO 3 )-CdO-MoO 3 system are studied by the methods of x-ray diffraction, thermal and crystal optical analyses. Three potassium-cadmium molybdates are detected: K 4 Cd(MoO 4 ) 3 with a new structure, alluodite-like K 4-2x Cd 1+x (MoO 4 ) 3 (0.26≤x≤0.38 at 470 Deg C) and K 4 CdMo 4 O 15 of K 4 MnMo 4 O 15 type. First of them decomposes in solid phase at 580 Deg C, and others melt incongruently at 720 and 515 Deg C correspondingly. It is established that K 4-2x Cd 1+x (MoO 4 ) 3 compound undergoes phase transition of the second type in the temperature interval of 500-550 Deg C. Phase diagram of quasibinary cross section K 2 MoO 4 -CdMoO 4 is plotted [ru

  17. Thermogravimetric and Magnetic Studies of the Oxidation and Reduction Reaction of SmCoO3 to Nanostructured Sm2O3 and Co

    Science.gov (United States)

    Kelly, Brian; Cichocki, Ronald; Poirier, Gerald; Unruh, Karl

    The SmCoO3 to nanostructured Sm2O3 and Co oxidation and reduction reaction has been studied by thermogravimetric analysis (TGA) measurements in forming gas (FG) and inert N2 atmospheres, x-ray diffraction (XRD) and vibrating sample magnetometry (VSM). The TGA measurements showed two clearly resolvable reduction processes when heating in FG, from the initial SmCoO3 phase through an intermediate nanostructured mixture of Sm2O3 and CoO when heated to 330°C for several minutes, and then the conversion of CoO to metallic Co when heated above 500°C. These phases were confirmed by XRD and VSM. Similar measurements in N2 yielded little mass change below 900°C and coupled reduction processes at higher temperatures. Isoconversional measurements of the CoO to Co reduction reaction in FG yielded activation energies above 2eV/atom in the nanostructured system. This value is several times larger than those reported in the literature or obtained by similar measurements of bulk mixtures of Sm2O3 and CoO, suggesting the nanostructuring was the source of the large increase in activation energy.

  18. Surface and catalytic properties of MoO3/Al2O3 system doped with Co3O4

    International Nuclear Information System (INIS)

    Zahran, A.A.; Shaheen, W.M.; El-Shobaky, G.A.

    2005-01-01

    Thermal solid-solid interactions in cobalt treated MoO 3 /Al 2 O 3 system were investigated using X-ray powder diffraction. The solids were prepared by wet impregnation method using Al(OH) 3 , ammonium molybdate and cobalt nitrate solutions, drying at 100 deg. C then calcination at 300, 500, 750 and 1000 deg. C. The amount of MoO 3 , was fixed at 16.67 mol% and those of cobalt oxide were varied between 2.04 and 14.29 mol% Co 3 O 4 . Surface and catalytic properties of various solid samples precalcined at 300 and 500 deg. C were studied using nitrogen adsorption at -196 deg. C, conversion of isopropanol at 200-500 deg. C and decomposition of H 2 O 2 at 30-50 deg. C. The results obtained revealed that pure mixed solids precalcined at 300 deg. C consisted of AlOOH and MoO 3 phases. Cobalt oxide-doped samples calcined at the same temperature consisted also of AlOOH, MoO 3 and CoMoO 4 compounds. The rise in calcination temperature to 500 deg. C resulted in complete conversion of AlOOH into very poorly crystalline γ-Al 2 O 3 . The further increase in precalcination temperature to 750 deg. C led to the formation of Al 2 (MoO 4 ) 3 , κ-Al 2 O 3 besides CoMoO 4 and un-reacted portion of Co 3 O 4 in the samples rich in cobalt oxide. Pure MoO 3 /Al 2 O 3 preheated at 1000 deg. C composed of MoO 3 -αAl 2 O 3 solid solution (acquired grey colour). The doped samples consisted of the same solid solution together with CoMoO 4 and CoAl 2 O 4 compounds. The increase in calcination temperature of pure and variously doped solids from 300 to 500 deg. C increased their specific surface areas and total pore volume which suffered a drastic decrease upon heating at 750 deg. C. Doping the investigated system with small amounts of cobalt oxide (2.04 and 4 mol%) followed by heating at 300 and 500 deg. C increased its catalytic activity in H 2 O 2 decomposition. This increase, measured at 300 deg. C, attained 25.4- and 12.9-fold for the solids precalcined at 300 and 500 deg. C, respectively

  19. Sol-gel synthesis and structure of La2O3CoO–SiO2 powders

    Directory of Open Access Journals (Sweden)

    Lachezar Radev

    2008-12-01

    Full Text Available LaCoO3 powders are studied because they exhibit interesting electrical, magnetic and catalytic properties. In this paper, new synthesized La2O3-CoO-SiO2 powders with different quantity of silica were prepared via solgel method in aqua media, starting from metal nitrates with different chelating agents. The relation between the reaction in solution, crystallization pathway and morphology were discussed. In LaCoO3-SiO2 powders, depending on the content of SiO2 and the treatment temperature (700–1100°C, different crystalline phases (LaCoO3, Co2SiO4 and La9.31(SiO46O2 were observed with the crystallite sizes ranging from 50 to 100 nm. It was proved that chemical composition and nature of used additives has influence on the phase formation and structure of obtained nanomaterials.

  20. Promotion Effect of CaO Modification on Mesoporous Al2O3-Supported Ni Catalysts for CO2 Methanation

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2016-01-01

    Full Text Available The catalysts Ni/Al2O3 and CaO modified Ni/Al2O3 were prepared by impregnation method and applied for methanation of CO2. The catalysts were characterized by N2 adsorption/desorption, temperature-programmed reduction of H2 (H2-TPR, X-ray diffraction (XRD, and temperature-programmed desorption of CO2 and H2 (CO2-TPD and H2-TPD techniques, respectively. TPR and XRD results indicated that CaO can effectively restrain the growth of NiO nanoparticles, improve the dispersion of NiO, and weaken the interaction between NiO and Al2O3. CO2-TPD and H2-TPD results suggested that CaO can change the environment surrounding of CO2 and H2 adsorption and thus the reactants on the Ni atoms can be activated more easily. The modified Ni/Al2O3 showed better catalytic activity than pure Ni/Al2O3. Ni/CaO-Al2O3 showed high CO2 conversion especially at low temperatures compared to Ni/Al2O3, and the selectivity to CH4 was very close to 1. The high CO2 conversion over Ni/CaO-Al2O3 was mainly caused by the surface coverage by CO2-derived species on CaO-Al2O3 surface.

  1. Enhancement of electrochemical performance of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 by surface modification with MnO_2

    International Nuclear Information System (INIS)

    Guo, Xin; Cong, Li-Na; Zhao, Qin; Tai, Ling-Hua; Wu, Xing-Long; Zhang, Jing-Ping; Wang, Rong-Shun; Xie, Hai-Ming; Sun, Li-Qun

    2015-01-01

    LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is successfully coated with MnO_2 by a chemical deposition method. The X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) results demonstrate that MnO_2 forms a thin layer on the surface of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 without destroying the crystal structure of the core material. Compared with pristine LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2, the MnO_2-coated sample shows enhanced electrochemical performance especially the rate capability. Even at a current density of 750 mA g"−"1, the discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is 155.15 mAh g"−"1, while that of the pristine electrode is only 132.84 mAh g"−"1 in the range of 2.5–4.5 V. The cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) curves show that the MnO_2 coating layer reacts with Li"+ during cycling, which is responsible for the higher discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2. Electrochemical impedance spectroscopy (EIS) results confirmed that the MnO_2 coating layer plays an important role in reducing the charge transfer resistance on the electrolyte–electrode interfaces. - Highlights: • MnO_2 coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 cathode material is synthesized for the first time. • MnO_2 offers available sites for insertion of extracted lithium. • The preserved surface and crystal structures results in the improved kinetics.

  2. Improved solar-driven photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} prepared in-situ

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Junbo, E-mail: junbozhong@163.com [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Li, Jianzhang, E-mail: lschmanuscript@163.com [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Huang, Shengtian; Cheng, Chaozhu; Yuan, Wei [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Li, Minjiao [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Sichuan Provincial Academician (Expert) Workstation, Sichuan University of Science and Engineering, Zigong 643000 (China); Ding, Jie [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-05-15

    Highlights: • Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} photocatalysts were prepared in-situ. • The photo-induced charge separation rate has been greatly increased. • The photocatalytic activity has been greatly promoted. - Abstract: Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} composites have been fabricated in-situ via a facile parallel flaw co-precipitation method. The specific surface area, structure, morphology, and the separation rate of photo-induced charge pairs of the photocatalysts were characterized by Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy(DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and surface photovoltage (SPV) spectroscopy, respectively. XRD patterns and DRS demonstrated that Ag{sub 2}CO{sub 3} has no effect on the crystal phase and bandgap of (BiO){sub 2}CO{sub 3}. The existence of Ag{sub 2}CO{sub 3} in the composites enhances the separation rate of photo-induced charge pairs of the photocatalysts. The photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} was evaluated by the decolorization of methyl orange (MO) aqueous solution under simulated solar irradiation. It was found that the simulated solar-induced photocatalytic activity of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} copmposites was significantly improved, which was mainly attributed to the enhanced surface area and the separation rate of photo-induced charge pairs.

  3. Transparent Ga and Zn co-doped In2O3 electrode prepared by co-sputtering of Ga:In2O3 and Zn:In2O3 targets at room temperature

    International Nuclear Information System (INIS)

    Jeong, Jin-A; Kim, Han-Ki

    2011-01-01

    This study examined the characteristics of Ga:In 2 O 3 (IGO) co-sputtered Zn:In 2 O 3 (IZO) films prepared by dual target direct current (DC) magnetron sputtering at room temperature in a pure Ar atmosphere for transparent electrodes in IGZO-based TFTs. Electrical, optical, structural and surface properties of Ga and Zn co-doped In 2 O 3 (IGZO) electrodes were investigated as a function of IGO and IZO target DC power during the co-sputtering process. Unlike semiconducting InGaZnO 4 films, which were widely used as a channel layer in the oxide TFTs, the co-sputtered IGZO films showed a high transmittance (91.84%) and low resistivity (4.1 x 10 -4 Ω cm) at optimized DC power of the IGO and IZO targets, due to low atomic percent of Ga and Zn elements. Furthermore, the IGO co-sputtered IZO films showed a very smooth and featureless surface and an amorphous structure regardless of the IGO and IZO DC power due to the room temperature sputtering process. This indicates that co-sputtered IGZO films are a promising S/D electrode in the IGZO-based TFTs due to their low resistivity, high transmittance and same elements with channel InGaZnO 4 layer.

  4. Lanthanite-(Nd), Nd2(CO3)3·8H2O

    Science.gov (United States)

    Morrison, Shaunna M.; Andrade, Marcelo B.; Wenz, Michelle D.; Domanik, Kenneth J.; Downs, Robert T.

    2013-01-01

    Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octa­hydrate], is a member of the lanthanite mineral group characterized by the general formula REE 2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water mol­ecules. PMID:23476479

  5. Impedance spectroscopy of Li2CO3 doped (Ba,Sr)TiO3 ceramic

    Science.gov (United States)

    Ham, Yong-Su; Koh, Jung-Hyuk

    2013-02-01

    (BaxSr1-x)TiO3-based ceramic has been considered as one of the most important electronic materials widely employed in microwave passive device applications. Many researches have been performed to lower the high sintering temperature, by adding various dopants such as B2O3, La2O3, etc. In our previous study, by adding Li2CO3 to (Ba0.5,Sr0.5)TiO3 ceramics, the sintering temperature of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics decreased from 1350 to 900 °C. This study observed the crystalline structure and electrical properties of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics. In scanning the crystalline structure of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics, no pyro phase was observed by X-ray diffraction analysis. To investigate the electrical properties of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics, real and imaginary parts of the impedances were analyzed. Complex impedance data were measured from 100 Hz to 1 MHz at various temperature ranges.

  6. Graphene wrapped porous Co_3O_4/NiCo_2O_4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor

    International Nuclear Information System (INIS)

    Xue, Bei; Li, Kezhi; Feng, Lei; Lu, Jinhua; Zhang, Leilei

    2017-01-01

    Highlights: • Graphene wrapped Co_3O_4/NiCo_2O_4 DSNCs has been prepared for detection of glucose. • Sensing performance was improved by synergy between electrocatalytic activity and efficient electron transport. • The sensor has excellent sensing performance with high sensitivity and low detection limit. • The developed method was successfully applied to detect glucose in human serum. - Abstract: Graphene (G) wrapped porous Co_3O_4/NiCo_2O_4 double-shelled nanocages (Co_3O_4/NiCo_2O_4 DSNCs@G) were prepared by the formation of Co_3O_4/NiCo_2O_4 DSNCs using zeolite imidazole frameworks-67 as template with the subsequent calcination and package of G by hydrothermal method. The abundant accessible active sites provided by the porous structure of Co_3O_4/NiCo_2O_4 DSNCs and efficient electron transport pathways for electrocatalytic reaction offered by the high conductive G worked very well together in a ferocious synergy, which endowed Co_3O_4/NiCo_2O_4 DSNCs@G with excellent electrocatalytic behaviors for determining glucose. A comparison between Co_3O_4/NiCo_2O_4 DSNCs without G packing and Co_3O_4/NiCo_2O_4 DSNCs@G showed that former had linear response window concentrations of 0.01-3.52 mM (correlation coefficient = 0.999), detection limit of 0.744 μM (S/N = 3) and sensitivity of 0.196 mA mM"−"1 cm"−"2, whereas the latter exhibited linear response window concentrations of 0.01-3.52 mM (correlation coefficient = 0.999), detection limit of 0.384 μM (S/N = 3) and sensitivity of 0.304 mA mM"−"1 cm"−"2. The combination of Co_3O_4/NiCo_2O_4 DSNCs and G was a meaningful strategy to fabricate high-performance non-enzyme glucose sensors with low detection limit, good selectivity and high sensitivity.

  7. Influences of Different Preparation Conditions on Catalytic Activity of Ag2O-Co3O4/γ-Al2O3 for Hydrogenation of Coal Pyrolysis

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available A series of catalysts of Ag2O-Co3O4/γ-Al2O3 was prepared by equivalent volume impregnation method. The effects of the metal loading, calcination time, and calcination temperatures of Ag and Co, respectively, on the catalytic activity were investigated. The optimum preparing condition of Ag2O-Co3O4/γ-Al2O3 was decided, and then the influence of different preparation conditions on catalytic activity of Ag2O-Co3O4/γ-Al2O3 was analyzed. The results showed the following: (1 at the same preparation condition, when silver loading was 8%, the Ag2O-Co3O4/γ-Al2O3 showed higher catalyst activity, (2 the catalyst activity had obviously improved when the cobalt loading was 8%, while it was weaker at loadings 5% and 10%, (3 the catalyst activity was influenced by different calcination temperatures of silver, but the influences were not marked, (4 the catalyst activity can be influenced by calcination time of silver, (5 different calcination times of cobalt can also influence the catalyst activity of Ag2O-Co3O4/γ-Al2O3, and (6 the best preparation conditions of the Ag2O-Co3O4/γ-Al2O3 were silver loading of 8%, calcination temperature of silver of 450°C, and calcinations time of silver of 4 h, while at the same time the cobalt loading was 8%, the calcination temperature of cobalt was 450°C, and calcination time of cobalt was 4 h.

  8. Effects of Y{sub 2}O{sub 3}/CeO{sub 2} co-doping on microwave dielectric properties of Ba(Co{sub 0.6}Zn{sub 38}){sub 1/3}Nb{sub 2/3}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqin; Zhou, Xiaohua, E-mail: 1250590698@qq.com; Yang, Xinshi; Sun, Chengli; Yang, Fan; Chen, Hetuo

    2016-09-15

    The effects of CeO{sub 2}/Y{sub 2}O{sub 3} co-doping on the microstructure and microwave dielectric properties of Ba(Co{sub 0.6}Zn{sub 0.38}){sub 1/3}Nb{sub 2/3}O{sub 3}-xA-xB (x = 0,1,2,3,4,6; A = 0.1204 wt%Y{sub 2}O{sub 3}; B = 0.1 wt%CeO{sub 2}) ceramics prepared by the conventional solid-state route technique were investigated. The X-ray diffraction (XRD) results presented that all the well sintered samples exhibited the main phase BaZn{sub 0.33}Nb{sub 0.67}O{sub 3}−Ba{sub 3}CoNb{sub 2}O{sub 9}. A certain amount of Ba{sub 8}CoNb{sub 6}O{sub 24} surface secondary phase and minority phase of Ba{sub 5}Nb{sub 4}O{sub 15} were also observed in all sintered ceramics. The 1:2 B-site cation ordering degree was found to influenced by the substitution of Y{sup 3+} and Ce{sup 4+} in the crystal lattice, especially for x = 0.02. Then the scanning electron microscopy (SEM) picture of the optimally well-sintered (1350 °C for 20 h) ceramic has shown a dense microstructure. Although the ε{sub r} almost kept unchanged, appropriate doping content would greatly improve the Q × f value. Meanwhile, the τ{sub f} value first declined and then increased with increasing x. At last, the excellent microwave dielectric properties of ε{sub r} = 36.09, Q × f = 72006 GHz, τ{sub f} = 3.35 ppm/ºC were obtained for the ceramic with x = 0.02 sintered in air at 1350 °C for 20 h. - Graphical abstract: Fig. SEM images of as-sintered Ba(Co{sub 0.6}Zn{sub 0.38}){sub 1/3}Nb{sub 2/3}O{sub 3}-xA-Xb (A = 0.1204 wt%Y{sub 2}O{sub 3}; B = 0.1 wt%CeO{sub 2)}ceramics: (a) x = 0,(b) x = 0.01,(c) x = 0.02,(d) x = 0.03, (e) x = 0.04,(f) x = 0.06. The images confirmed the presences of two phases on the surface of the ceramics, plate-shaped grains (Ba{sub 8}(C{sub O},Zn){sub 1}Nb{sub 6}O{sub 24}phase) and needle-shaped grains (Ba{sub 3}(Co{sub 0.6}Zn{sub 0.38}){sub 1}Nb{sub 2}O{sub 9} phase). As a small content of CeO{sub 2}/Y{sub 2}O{sub 3} (x = 0.01–0.04) was codoped into the BCZN ceramics, the

  9. Thermodynamic modeling of NH_3-CO_2-SO_2-K_2SO_4-H_2O system for combined CO_2 and SO_2 capture using aqueous NH_3

    International Nuclear Information System (INIS)

    Qi, Guojie; Wang, Shujuan

    2017-01-01

    Highlights: • A new application of aqueous NH_3 based combined CO_2 and SO_2 process was proposed. • A thermodynamic model simulated the heat of absorption and the K_2SO_4 precipitation. • The CO_2 content can be regenerated in a stripper with lower heat of desorption. • The SO_2 content can be removed by K_2SO_4 precipitation from the lean NH_3 solvent. - Abstract: A new application of aqueous NH_3 based post-combustion CO_2 and SO_2 combined capture process was proposed to simultaneously capture CO_2 and SO_2, and remove sulfite by solid (K_2SO_4) precipitation method. The thermodynamic model of the NH_3-CO_2-SO_2-K_2SO_4-H_2O system for the combined CO_2 and SO_2 capture process was developed and validated in this work to analyze the heat of CO_2 and SO_2 absorption in the NH_3-CO_2-SO_2-H_2O system, and the K_2SO_4 precipitation characteristics in the NH_3-CO_2-SO_2-K_2SO_4-H_2O system. The average heat of CO_2 absorption in the NH_3-CO_2-H_2O system at 40 °C is around −73 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N. The average heat of SO_2 absorption in the NH_3-SO_2-H_2O system at 40 °C is around −120 kJ/mol SO_2 in 2.5 wt% NH_3 with SO_2 loading between 0 and 0.5 S/N. The average heat of CO_2 absorption in the NH_3-CO_2-SO_2-H_2O system at 40 °C is 77, 68, and 58 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N, when SO_2 loading is 0, 0.1, 0.2 S/N, respectively. The solubility of K_2SO_4 increases with temperature, CO_2 and SO_2 loadings, but decreases with NH_3 concentration in the CO_2 and SO_2 loaded aqueous NH_3. The thermodynamic evaluation indicates that the combined CO_2 and SO_2 capture process could employ the typical absorption/regeneration process to simultaneously capture CO_2 and SO_2 in an absorber, thermally desorb CO_2 in a stripper, and feasibly remove sulfite (oxidized to sulfate) content by precipitating K_2SO_4 from the lean NH_3 solvent after the lean/rich heat exchanger.

  10. Co{sup 2+} adsorption in porous oxides Mg O, Al{sub 2}O{sub 3} and Zn O;Adsorcion de Co{sup 2+} en oxidos porosos MgO, Al{sub 2}O{sub 3} y ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Moreno M, J. E.; Granados C, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Bulbulian, S., E-mail: francisco.granados@inin.gob.m [UNAM, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2009-07-01

    The porous oxides Mg O, Al{sub 2}O{sub 3} and Zn O were synthesized by the chemical combustion in solution method and characterized be means of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The adsorption behavior of Co{sup 2+} ions present in aqueous solution were studied on the synthesized materials by means of experiments lots type to ambient temperature. It was found that the cobalt ions removal was of 90% in Mg O, 65% in Zn O and 72% in Al{sub 2}O{sub 3} respectively, indicating that the magnesium oxide is the best material to remove Co{sup 2+} presents in aqueous solution. (Author)

  11. Effects of Sm3+/Yb3+ co-doping and temperature on the Raman, IR spectra and structure of [TeO2-GeO2-K2O-Sm2O3/Yb2O3] glasses

    International Nuclear Information System (INIS)

    Shaltout, I.; Badr, Y.

    2006-01-01

    Effects of Sm 3+ /Yb 3+ co-doping on Raman scattering, IR absorption, temperature dependence of the Raman spectra up to 210 o C and the structure of two glass systems of the composition (80TeO 2 -10GeO 2 -8K 2 O-2Sm 2 O 3 /Yb 2 O 3 ) is discussed. It was found that the addition of Yb 3+ to the glass very strongly enhances the intensities of the antistokes' Raman bands at 155, 375, 557 and 828 cm -1 and quenches both the intensities of the stokes' vibration modes of the TeO 4 units in the range of 120-770 cm -1 and the intensities of the OH - stretching vibration modes in the range of 2600-3300 cm -1 . Sm 2 O 3 /Yb 2 O 3 rare earth co-doping has a great influence on removing and/or changing the nature of the OH - groups. The appearance and splitting of the stretching vibration modes of the OH - groups at lower frequencies (2770, 2970 cm -1 ) for the Sm +3 singly doped glass sample, compared to the band at ∼3200 cm -1 for the Sm 3+ /Yb 3+ co-doped glass sample, suggested that the OH - groups are more strongly bonded and incorporated with the glass matrix for the singly doped glass. Heating the sample up continuously weakens the hydrogen bonding of the OH - groups to the glass matrix leading to creation of NBO and breakdown of the connectivity of the OH - groups to the TeO 4 , TeO 3+1 and TeO 3 structural units. Raman bands at 286, 477, 666 and 769 cm -1 were assigned to its respective vibrations of Te 2 O 7 , TeO 4 -4 species, the (Te-O-Te) bending vibrations of the TeO 4 triagonal bipyramids (tbps), the axial symmetric stretching vibration modes (Te ax -O) s with bridging oxygen BO atoms and to the (Te-O) nbo non-bridging stretching vibration modes of the TeO 3+1 and/or TeO 3 pyramids

  12. Effect of phase interaction on catalytic CO oxidation over the SnO_2/Al_2O_3 model catalyst

    International Nuclear Information System (INIS)

    Chai, Shujing; Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang; Xian, Hui; Mi, Wenbo; Li, Xingang

    2017-01-01

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO_2 and Al_2O_3. • Interaction between SnO_2 and Al_2O_3 phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn"4"+ cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO_2/Al_2O_3 model catalysts. Our results show that interaction between the Al_2O_3 and SnO_2 phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO_2/Al_2O_3 catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO_2, which probably results from the change of electron concentration on the interface of the SnO_2 and Al_2O_3 phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn"4"+ cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO_2-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  13. Na3Co2(AsO4(As2O7: a new sodium cobalt arsenate

    Directory of Open Access Journals (Sweden)

    Abderrahmen Guesmi

    2012-07-01

    Full Text Available In the title compound, trisodium dicobalt arsenate diarsenate, Na3Co2AsO4As2O7, the two Co atoms, one of the two As and three of the seven O atoms lie on special positions, with site symmetries 2 and m for the Co, m for the As, and 2 and twice m for the O atoms. The two Na atoms are disordered over two general and special positions [occupancies 0.72 (3:0.28 (3 and 0.940 (6:0.060 (6, respectively]. The main structural feature is the association of the CoO6 octahedra in the ab plane, forming Co4O20 units, which are corner- and edge-connected via AsO4 and As2O7 arsenate groups, giving rise to a complex polyhedral connectivity with small tunnels, such as those running along the b- and c-axis directions, in which the Na+ ions reside. The structural model is validated by both bond-valence-sum and charge-distribution methods, and the distortion of the coordination polyhedra is analyzed by means of the effective coordination number.

  14. Synthesis of DME by CO2 hydrogenation over La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Zhang Yajing

    2017-01-01

    Full Text Available A series of La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts were prepared by an oxalate co-precipitation method. The catalysts were fully characterized by X-ray diffraction (XRD, N2 adsorption-desorption, hydrogen temperature pro-grammed reduction (H2-TPR, ammonia temperature programmed desorption (NH3-TPD, and X-ray photoelectron spectroscopy (XPS techniques. The effect of the La2O3 content on the structure and performance of the catalysts was thoroughly investigated. The catalysts were evaluated for the direct synthesis of dimethyl ether (DME from CO2 hydrogenation. The results displayed that La2O3 addition enhanced catalytic performance, and the maximal CO2 conversion (34.3% and DME selectivity (57.3% were obtained over the catalyst with 1% La2O3, which due to the smaller size of Cu species and a larger ratio of Cu+/Cu.

  15. Effects of TiO2 and Co3O4 Nanoparticles on Circulating Angiogenic Cells

    Science.gov (United States)

    Spigoni, Valentina; Cito, Monia; Alinovi, Rossella; Pinelli, Silvana; Passeri, Giovanni; Zavaroni, Ivana; Goldoni, Matteo; Campanini, Marco; Aliatis, Irene; Mutti, Antonio

    2015-01-01

    Background and Aim Sparse evidence suggests a possible link between exposure to airborne nanoparticles (NPs) and cardiovascular (CV) risk, perhaps through mechanisms involving oxidative stress and inflammation. We assessed the effects of TiO2 and Co3O4 NPs in human circulating angiogenic cells (CACs), which take part in vascular endothelium repair/replacement. Methods CACs were isolated from healthy donors’ buffy coats after culturing lymphomonocytes on fibronectin-coated dishes in endothelial medium for 7 days. CACs were pre-incubated with increasing concentration of TiO2 and Co3O4 (from 1 to 100 μg/ml) to test the effects of NP – characterized by Transmission Electron Microscopy – on CAC viability, apoptosis (caspase 3/7 activation), function (fibronectin adhesion assay), oxidative stress and inflammatory cytokine gene expression. Results Neither oxidative stress nor cell death were associated with exposure to TiO2 NP (except at the highest concentration tested), which, however, induced a higher pro-inflammatory effect compared to Co3O4 NPs (p<0.01). Exposure to Co3O4 NPs significantly reduced cell viability (p<0.01) and increased caspase activity (p<0.01), lipid peroxidation end-products (p<0.05) and pro-inflammatory cytokine gene expression (p<0.05 or lower). Notably, CAC functional activity was impaired after exposure to both TiO2 (p<0.05 or lower) and Co3O4 (p<0.01) NPs. Conclusions In vitro exposure to TiO2 and Co3O4 NPs exerts detrimental effects on CAC viability and function, possibly mediated by accelerated apoptosis, increased oxidant stress (Co3O4 NPs only) and enhancement of inflammatory pathways (both TiO2 and Co3O4 NPs). Such adverse effects may be relevant for a potential role of exposure to TiO2 and Co3O4 NPs in enhancing CV risk in humans. PMID:25803285

  16. Solid-state thermal decomposition of the [Co(NH3)5CO3]NO3·0.5H2O complex: A simple, rapid and low-temperature synthetic route to Co3O4 nanoparticles

    International Nuclear Information System (INIS)

    Farhadi, Saeid; Safabakhsh, Jalil

    2012-01-01

    Highlights: ► [Co(NH 3 ) 5 CO 3 ]NO 3 ·0.5H 2 O complex was used for preparing pure Co 3 O 4 nanoparticles. ► Co 3 O 4 nanoparticles were prepared at low temperature of 175 °C. ► Co 3 O 4 nanoparticles show a weak ferromagnetic behaviour at room temperature. ► The method is simple, low-cost and suitable for the production of Co 3 O 4 . - Abstract: Co 3 O 4 nanoparticles were easily prepared via the decomposition of the pentammine(carbonato)cobalt(III) nitrate precursor complex [Co(NH 3 ) 5 CO 3 ]NO 3 ·0.5H 2 O at low temperature (175 °C). The product was characterized by thermal analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV–visible spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Brunauer–Emmett–Teller (BET) specific surface area measurements and magnetic measurements. The FT-IR, XRD, Raman and EDX results indicated that the synthesized Co 3 O 4 nanoparticles are highly pure and have a single phase. The TEM analysis revealed nearly uniform and quasi-spherical Co 3 O 4 nanoparticles with an average particle size of approximately 10 nm. The optical absorption spectrum of the Co 3 O 4 nanoparticles showed two direct band gaps of 2.18 and 3.52 eV with a red shift in comparison with previous reported values. The prepared Co 3 O 4 nanoparticles showed a weak ferromagnetic behaviour that could be attributed to uncompensated surface spins and/or finite-size effects. Using the present method, Co 3 O 4 nanoparticles can be produced without expensive organic solvents and complicated equipment. This simple, rapid, safe and low-cost synthetic route can be extended to the synthesis of other transition-metal oxides.

  17. Capture of atmospheric CO2 into (BiO)2CO3/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Zhang, Wendong; Dong, Fan; Zhang, Wei

    2015-01-01

    Graphical abstract: Self-assembly of (BiO) 2 CO 3 nanoflakes on graphene and graphene oxide nanosheets were realized by a one-pot efficient capture of atmospheric CO 2 at room temperature. - Highlights: • A facile one-step method was developed for graphene-based composites. • The synthesis was conducted by utilization of atmospheric CO 2 . • (BiO) 2 CO 3 -graphene and (BiO) 2 CO 3 -graphene oxide composites were synthesized. • The nanocomposites exhibited enhanced photocatalytic activity. - Abstract: Self-assembly of (BiO) 2 CO 3 nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO 2 at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV–vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO) 2 CO 3 , (BiO) 2 CO 3 /Ge and (BiO) 2 CO 3 /GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO 2 in green synthetic strategy.

  18. One-step facile hydrothermal synthesis of Fe2O3@LiCoO2 composite as excellent supercapacitor electrode materials

    Science.gov (United States)

    Gopi, Chandu V. V. Muralee; Somasekha, A.; Reddy, Araveeti Eswar; Kim, Soo-Kyoung; Kim, Hee-Je

    2018-03-01

    Herein, for the first time, we demonstrate the fabrication of Fe2O3@LiCoO2 hybrid nanostructures on Ni foam substrate by facile one-step hydrothermal technique. Morphological studies reveal that aggregated Fe2O3 nanoflakes anchored on the surface of sphere-like LiCoO2 nanoflakes. Electrochemical studies are used to examine the performance of the supercapacitor electrodes. The composite Fe2O3@LiCoO2 electrode exhibited excellent electrochemical performance than Fe2O3 and LiCoO2 electrodes, such as a low charge transfer resistance, a high specific capacitance of 489 F g-1 at 5 mA cm-2 and an enhanced capacity retention of 108% over 3000 cycles at 15 mA cm-2. The composite Fe2O3@LiCoO2 holds great promise for electrochemical applications due to well-defined hierarchical morphology, synergetic effect of Fe2O3 and LiCoO2, enhanced electrical conductivity, efficient electrolyte penetration and fast electron transfer.

  19. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    Science.gov (United States)

    Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.

    Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  20. Photosynthetic responses to elevated CO2 and O3 in Quercus ilex leaves at a natural CO2 spring

    International Nuclear Information System (INIS)

    Paoletti, E.; Seufert, G.; Della Rocca, G.; Thomsen, H.

    2007-01-01

    Photosynthetic stimulation and stomatal conductance (Gs) depression in Quercus ilex leaves at a CO 2 spring suggested no down-regulation. The insensitivity of Gs to a CO 2 increase (from ambient 1500 to 2000 μmol mol -1 ) suggested stomatal acclimation. Both responses are likely adaptations to the special environment of CO 2 springs. At the CO 2 -enriched site, not at the control site, photosynthesis decreased 9% in leaves exposed to 2x ambient O 3 concentrations in branch enclosures, compared to controls in charcoal-filtered air. The stomatal density reduction at high CO 2 was one-third lower than the concomitant Gs reduction, so that the O 3 uptake per single stoma was lower than at ambient CO 2 . No significant variation in monoterpene emission was measured. Higher trichome and mesophyll density were recorded at the CO 2 -enriched site, accounting for lower O 3 sensitivity. A long-term exposure to H 2 S, reflected by higher foliar S-content, and CO 2 might depress the antioxidant capacity of leaves close to the vent and increase their O 3 sensitivity. - Very high CO 2 concentrations did not compensate for the effects of O 3 on holm oak photosynthesis

  1. Solubility Modeling of the Binary Systems Fe(NO3)3–H2O, Co(NO3)2–H2O and the Ternary System Fe(NO3)3Co(NO3)2–H2O with the Extended Universal Quasichemical (UNIQUAC) Model

    DEFF Research Database (Denmark)

    Arrad, Mouad; Kaddami, Mohammed; Goundali, Bahija El

    2016-01-01

    Solubility modeling in the binary system Fe(NO3)3–H2O, Co(NO3)2–H2O and the ternary system Fe(NO3)3Co(NO3)2–H2O is presented. The extended UNIQUAC model was applied to the thermodynamic assessment of the investigated systems. The model parameters obtained were regressed simultaneously using...... the available databank but with more experimental points, recently published in the open literature. A revision of previously published parameters for the cobalt ion and new parameters for the iron(III) nitrate system are presented. Based on this set of parameters, the equilibrium constants of hydrates...

  2. Upconversion properties of Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses.

    Science.gov (United States)

    Su, Fangning; Deng, Zaide

    2006-01-01

    The Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses were prepared by conventional melting procedures, and their upconversion spectra were performed. The dependence of luminescence intensity on the ratio of Yb3+/Er3+ was studied, and the relationship between green upconversion luminescence intensity and Er3+ concentration is discussed in detail. The 546 nm green upconversion luminescence intensity is optimised in the studied glasses either when the Yb3+/Er3+ ratio is 25/1 and Er3+ concentration is 0.1 mol%, or when the Yb3+/Er3+ ratio is 10/1 and Er3+ concentration is 0.15 mol%. These glasses could be one of the potential candidates for LD pumping microchip solid-state lasers.

  3. Crystal structure and magnetic properties of Mn substituted ludwigite Co 3O 2BO 3

    Science.gov (United States)

    Knyazev, Yu. V.; Ivanova, N. B.; Kazak, N. V.; Platunov, M. S.; Bezmaternykh, L. N.; Velikanov, D. А.; Vasiliev, А. D.; Ovchinnikov, S. G.; Yurkin, G. Yu.

    2012-03-01

    The needle shape single crystals Co3-x MnxO2BO3 with ludwigite structure have been prepared. According to the X-ray diffraction data the preferable character of distinct crystallographic positions occupation by Mn ions is established. Magnetization field and temperature dependencies are measured. Paramagnetic Curie temperature value Θ=-100 K points out the predominance of antiferromagnetic interactions. Spin-glass magnetic ordering takes the onset at TN=41 K. The crystallographic and magnetic properties of Co3O2BO3:Mn are compared with the same for the isostructural analogs Co3O2BO3 and CoO2BO3:Fe.

  4. CO gas sensing properties of In_4Sn_3O_1_2 and TeO_2 composite nanoparticle sensors

    International Nuclear Information System (INIS)

    Mirzaei, Ali; Park, Sunghoon; Sun, Gun-Joo; Kheel, Hyejoon; Lee, Chongmu

    2016-01-01

    Highlights: • In4Sn3O12–TeO2 composite nanoparticles were synthesized via a facile hydrothermal route. • The response of the In4Sn3O12–TeO2 composite sensor to CO was stronger than the pristine In4Sn3O12 sensor. • The response of the In4Sn3O12–TeO2 composite sensor to CO was faster than the pristine In4Sn3O12 sensor. • The improved sensing performance of the In4Sn3O12–TeO2 nanocomposite sensor is discussed in detail. • The In4Sn3O12-based nanoparticle sensors showed selectivity to CO over NH3, HCHO and H2. - Abstract: A simple hydrothermal route was used to synthesize In_4Sn_3O_1_2 nanoparticles and In_4Sn_3O_1_2–TeO_2 composite nanoparticles, with In(C_2H_3O_2)_3, SnCl_4, and TeCl_4 as the starting materials. The structure and morphology of the synthesized nanoparticles were examined by X-ray diffraction and scanning electron microscopy (SEM), respectively. The gas-sensing properties of the pure and composite nanoparticles toward CO gas were examined at different concentrations (5–100 ppm) of CO gas at different temperatures (100–300 °C). SEM observation revealed that the composite nanoparticles had a uniform shape and size. The sensor based on the In_4Sn_3O_1_2–TeO_2 composite nanoparticles showed stronger response to CO than its pure In_4Sn_3O_1_2 counterpart. The response of the In_4Sn_3O_1_2–TeO_2 composite-nanoparticle sensor to 100 ppm of CO at 200 °C was 10.21, whereas the maximum response of the In_4Sn_3O_1_2 nanoparticle sensor was 2.78 under the same conditions. Furthermore, the response time of the composite sensor was 19.73 s under these conditions, which is less than one-third of that of the In_4Sn_3O_1_2 sensor. The improved sensing performance of the In_4Sn_3O_1_2–TeO_2 nanocomposite sensor is attributed to the enhanced modulation of the potential barrier height at the In_4Sn_3O_1_2–TeO_2 interface, the stronger oxygen adsorption of p-type TeO_2, and the formation of preferential adsorption sites.

  5. Synthesis and optical properties of SiO2–Al2O3–MgO–K2CO3–CaO ...

    Indian Academy of Sciences (India)

    Synthesis and optical properties of SiO 2 –Al 2 O 3 –MgO–K 2 CO 3 –CaO–MgF 2 –La 2 O 3 glasses. C R GAUTA. Volume 39 Issue 3 June 2016 pp 677-682 ... Author Affiliations. C R GAUTA1. Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India ...

  6. Interactions of a La{sub O.9}Sr{sub O.1}Ga{sub O.8}Mg{sub O.2}O{sub 3-{delta}} electrolyte with Fe{sub 2}O{sub 3}, Co{sub 2}O{sub 3} and NiO anode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Ohara, S.; Okawa, H.; Maric, R.; Fukui, T. [Japan Fine Ceramics Center, 2-4-1 Mutsuo, Atsuta-ku, 456-8587 Nagoya (Japan)

    2001-01-02

    In this study, the interactions of a Sr- and Mg-doped lanthanum gallate (LSGM with composition La{sub O.9}Sr{sub O.1}Ga{sub O.8}Mg{sub O.2}O{sub 3-{delta}}) electrolyte with Fe{sub 2}O{sub 3}, Co{sub 2}O{sub 3} and NiO as the anode starting materials were investigated. It was found that the order of reactivity of the LSGM with the three oxides was Co{sub 2}O{sub 3}>NiO>Fe{sub 2}O{sub 3}, and La-containing oxides were detected in these binary powder mixtures after firing. The anode performance was greatly influenced by the interaction. The Fe{sub 2}O{sub 3}-LSGM anode, mixed with 40 vol.% LSGM powder and sintered at 1150C, exhibited the highest initial performance in comparison with NiO-LSGM and Co{sub 2}O{sub 3}-LSGM anodes. It seems that Fe{sub 2}O{sub 3} is a possible anode starting material for a LSGM-based solid oxide fuel cell.

  7. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    Science.gov (United States)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  8. Photocatalytic properties of Co_3O_4/LiCoO_2 recycled from spent lithium-ion batteries using citric acid as leaching agent

    International Nuclear Information System (INIS)

    Santana, I.L.; Moreira, T.F.M.; Lelis, M.F.F.; Freitas, M.B.J.G.

    2017-01-01

    In this work, cobalt and lithium from the cathodes of spent lithium-ion batteries were recycled to synthesize a mixture of Co_3O_4 and LiCoO_2. The positive electrode was leached with citric acid in the green recycling. After being heated to 85 °C, the leaching solution formed a pink sol, and after being dried at 120 °C for 24 h, it formed a gel, which is a precursor material for Co_3O_4 and LiCoO_2 synthesis. A mixture of Co_3O_4 and LT-LiCoO_2 was obtained after the calcination of the precursor material at 450 °C for 3 h. The photocatalytic properties of the Co_3O_4 and LiCoO_2 were tested in the discoloration of methylene blue dye. The discoloration efficiency of methylene blue dye in the presence of Co_3O_4 and LiCoO_2 was 90% after 10 h and 100% after 24 h of heterogeneous catalysis. The contribution of this work is that it presents a means to produce valuable materials with photocatalytic properties from recycled batteries through a spent Li-ion battery recycling process without polluting the environment. - Highlights: • Synthesis a mixture of Co_3O_4/LiCoO_2 from spent Li-ion batteries. • Citric acid for leaching of the cathodes of the spent Li-ion batteries. • Co_3O_4/LiCoO_2 as catalysts in the photodegradation of the methylene blue dye.

  9. Synthesis and enhanced photoelectrocatalytic activity of p–n junction Co3O4/TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Dai Gaopeng; Liu Suqin; Liang Ying; Luo Tianxiong

    2013-01-01

    Highlights: ► Co 3 O 4 /TiO 2 nanotube arrays (NTs) were prepared by an impregnating–deposition–decompostion method treatment. ► Co 3 O 4 /TiO 2 NTs exhibit high photoelectrocatalytic (PEC) activity. ► The high PEC activity was attribute to the formation of p–n junction between Co 3 O 4 and TiO 2 . - Abstract: Co 3 O 4 /TiO 2 nanotube arrays (NTs) were prepared by depositing Co 3 O 4 nanoparticles (NPs) on the tube wall of the self-organized TiO 2 NTs using an impregnating–deposition–decompostion method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–vis absorption spectroscopy. The photoelectrocatalytic (PEC) activity is evaluated by degradation of methyl orange (MO) aqueous solution. The prepared Co 3 O 4 /TiO 2 NTs exhibit much higher PEC activity than TiO 2 NTs due to the p–n junction formed between Co 3 O 4 and TiO 2 .

  10. Mechanistic and kinetic study of the CH3CO+O2 reaction

    Science.gov (United States)

    Hou, Hua; Li, Aixiao; Hu, Hongyi; Li, Yuzhen; Li, Hui; Wang, Baoshan

    2005-06-01

    Potential-energy surface of the CH3CO+O2 reaction has been calculated by ab initio quantum chemistry methods. The geometries were optimized using the second-order Moller-Plesset theory (MP2) with the 6-311G(d,p) basis set and the coupled-cluster theory with single and double excitations (CCSD) with the correlation consistent polarized valence double zeta (cc-pVDZ) basis set. The relative energies were calculated using the Gaussian-3 second-order Moller-Plesset theory with the CCSD/cc-pVDZ geometries. Multireference self-consistent-field and MP2 methods were also employed using the 6-311G(d,p) and 6-311++G(3df,2p) basis sets. Both addition/elimination and direct abstraction mechanisms have been investigated. It was revealed that acetylperoxy radical [CH3C(O)OO] is the initial adduct and the formation of OH and α-lactone [CH2CO2(A'1)] is the only energetically accessible decomposition channel. The other channels, e.g., abstraction, HO2+CH2CO, O +CH3CO2, CO +CH3O2, and CO2+CH3O, are negligible. Multichannel Rice-Ramsperger-Kassel-Marcus theory and transition state theory (E-resolved) were employed to calculate the overall and individual rate coefficients and the temperature and pressure dependences. Fairly good agreement between theory and experiments has been obtained without any adjustable parameters. It was concluded that at pressures below 3 Torr, OH and CH2CO2(A'1) are the major nascent products of the oxidation of acetyl radials, although CH2CO2(A'1) might either undergo unimolecular decomposition to form the final products of CH2O+CO or react with OH and Cl to generate H2O and HCl. The acetylperoxy radicals formed by collisional stabilization are the major products at the elevated pressures. In atmosphere, the yield of acetylperoxy is nearly unity and the contribution of OH is only marginal.

  11. Steam reforming of ethanol over Co3O4–Fe2O3 mixed oxides

    KAUST Repository

    Abdelkader, A.; Daly, H.; Saih, Y.; Morgan, K.; Mohamed, M.A.; Halawy, S.A.; Hardacre, C.

    2013-01-01

    solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O 3 on the catalytic behaviour. The reforming activity over Fe 2O3, while initially high

  12. Nanostructural origin of semiconductivity and large magnetoresistance in epitaxial NiCo2O4/Al2O3 thin films

    Science.gov (United States)

    Zhen, Congmian; Zhang, XiaoZhe; Wei, Wengang; Guo, Wenzhe; Pant, Ankit; Xu, Xiaoshan; Shen, Jian; Ma, Li; Hou, Denglu

    2018-04-01

    Despite low resistivity (~1 mΩ cm), metallic electrical transport has not been commonly observed in inverse spinel NiCo2O4, except in certain epitaxial thin films. Previous studies have stressed the effect of valence mixing and the degree of spinel inversion on the electrical conduction of NiCo2O4 films. In this work, we studied the effect of nanostructural disorder by comparing the NiCo2O4 epitaxial films grown on MgAl2O4 (1 1 1) and on Al2O3 (0 0 1) substrates. Although the optimal growth conditions are similar for the NiCo2O4 (1 1 1)/MgAl2O4 (1 1 1) and the NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, they show metallic and semiconducting electrical transport, respectively. Post-growth annealing decreases the resistivity of NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, but the annealed films are still semiconducting. While the semiconductivity and the large magnetoresistance in NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films cannot be accounted for in terms of non-optimal valence mixing and spinel inversion, the presence of anti-phase boundaries between nano-sized crystallites, generated by the structural mismatch between NiCo2O4 and Al2O3, may explain all the experimental observations in this work. These results reveal nanostructural disorder as being another key factor for controlling the electrical transport of NiCo2O4, with potentially large magnetoresistance for spintronics applications.

  13. Effect of elevated CO2, O3, and UV radiation on soils.

    Science.gov (United States)

    Formánek, Pavel; Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  14. Characteristics of NaNO3-Promoted CdO as a Midtemperature CO2 Absorbent.

    Science.gov (United States)

    Kim, Kang-Yeong; Kwak, Jin-Su; An, Young-In; Oh, Kyung-Ryul; Kwon, Young-Uk

    2017-06-28

    In this study, we explored the reaction system CdO(s) + CO 2 (g) ⇄ CdCO 3 (s) as a model system for CO 2 capture agent in the intermediate temperature range of 300-400 °C. While pure CdO does not react with CO 2 at all up to 500 °C, CdO mixed with an appropriate amount of NaNO 3 (optimal molar ratio NaNO 3 /CdO = 0.14) greatly enhances the conversion of CdO into CdCO 3 up to ∼80% (5.68 mmol/g). These NaNO 3 -promoted CdO absorbents can undergo many cycles of absorption and desorption by temperature swing between 300 and 370 °C under a 100% CO 2 condition. Details of how NaNO 3 promotes the CO 2 absorption of CdO have been delineated through various techniques using thermogravimetry, coupled with X-ray diffraction and electron microscopy. On the basis of the observed data, we propose a mechanism of CO 2 absorption and desorption of NaNO 3 -promoted CdO. The absorption proceeds through a sequence of events of CO 2 adsorption on the CdO surface covered by NaNO 3 , dissolution of so-formed CdCO 3 , and precipitation of CdCO 3 particles in the NaNO 3 medium. The desorption occurs through the decomposition of CdCO 3 in the dissolved state in the NaNO 3 medium where CdO nanoparticles are formed dispersed in the NaNO 3 medium. The CdO nanoparticles are aggregated into micrometer-large particles with smooth surfaces and regular shapes.

  15. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles

    Science.gov (United States)

    Polishchuk, Dmytro; Nedelko, Natalia; Solopan, Sergii; Ślawska-Waniewska, Anna; Zamorskyi, Vladyslav; Tovstolytkin, Alexandr; Belous, Anatolii

    2018-03-01

    Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core ( 4.1 and 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.

  16. Effect of Preparation Methods on Al2O3 Supported CuO-CeO2-ZrO2 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Gaurav Rattan

    2012-12-01

    Full Text Available To examine the effect of preparation methods, four catalyst samples having same composition (CuCe5.17Zr3.83Ox/g-Al2O3 (15wt% were prepared by four different methods for CO oxidation. The catalysts were prepared by co-impregnation, citric acid sol-gel, urea nitrate combustion and urea gelation co-precipitation methods, and characterized by BET, XRD, TGA/DSC and SEM. The The air oxidation of CO was carried out in a tubular fixed bed reactor under the following operating conditions: catalyst weight - 100 mg, temperature - ambient to 250 oC, pressure - atmospheric, 2.5% CO in air, total feed rate - 60 ml/min.  It was observed that the catalytic activity greatly influenced by the preparation methods. The highest activity of the catalyst prepared by the sol gel method appeared to be associated with its largest BET surface area. All the four catalysts were active for CO oxidation and did not show deactivation of catalytic activity for 50 hours of continuous runs. The ranking order of the preparation methods of the catalyst is as follows: sol-gel > co-impregnation > urea gelation > urea nitrate combustion. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 14th June 2012, Revised: 8th September 2012, Accepted: 19th September 2012[How to Cite: G. Rattan, R. Prasad, R.C.Katyal. (2012. Effect of Preparation Methods on Al2O3 Supported CuO-CeO2-ZrO2 Catalysts for CO Oxidation. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 112-123. doi:10.9767/bcrec.7.2.3646.112-123] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3646.112-123 ] | View in 

  17. The Cheshire-cat-like Behavior of 2nu(sub 3) Overtone of Co2 near 2.134 micron: NIR Lab Spectra of Solid CO2 in H2O and CH3OH

    Science.gov (United States)

    Bernstein, Max; Sandford, Scott; Cruikshank, Dale

    2005-01-01

    Infrared (IR) spectra have demonstrated that solid H2O is very common in the outer Solar System, and solid carbon dioxide (CO2) has been detected on icy satellites, comets, and planetismals throughout the outer Solar System. In such environments, CO2 and H2O must sometimes be mixed at a molecular level, changing their IR absorption features. In fact, the IR spectra of CO2-H2O mixtures are not equivalent to a linear combination of the spectra of the pure materials. Laboratory IR spectra of pure CO2 and H2O have been published but a lack of near-IR spectra of CO2-H2O mixtures has made the interpretation of outer Solar System spectra more difficult. We present near infrared (IR) spectra of CO2 in H2O and in CH3OH compared to that of pure solid CO2 and find significant differences. Peaks not present in either pure H2O or pure CO2 spectra become evident. First, the CO2 (2nu(sub 3)) overtone near 2.134 micron (4685/ cm) that is not seen in pure solid CO2 is prominent in the spectrum of a CO2/H2O = 25 mixture. Second, a 2.74 micron (3650/ cm) dangling OH feature of water (and a potentially related peak at 1.89 micron) appear in the spectra of CO2-H2O ice mixtures, but may not be specific to the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with water. Changes in CO2 peak positions and profiles on warming of a CO2/H2O = 5 mixture are consistent with 'segregation' of the ice into nearly pure separate components. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 ( 2nu(sub 3)) overtone near 2.134 micron (4685/ cm) is not present in pure CO2 but prominent in mixtures it may be a good observational indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. Significant changes in the near IR spectrum of solid CO2 in the presence of H2O and CH3OH means that the abundance of solid CO2 in the

  18. Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2 O3 for Enhanced CO2 Capture Performance.

    Science.gov (United States)

    Armutlulu, Andac; Naeem, Muhammad Awais; Liu, Hsueh-Ju; Kim, Sung Min; Kierzkowska, Agnieszka; Fedorov, Alexey; Müller, Christoph R

    2017-11-01

    CO 2 capture and storage is a promising concept to reduce anthropogenic CO 2 emissions. The most established technology for capturing CO 2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high-temperature CO 2 sorbent can significantly reduce the costs of CO 2 capture. A serious disadvantage of CaO derived from earth-abundant precursors, e.g., limestone, is the rapid, sintering-induced decay of its cyclic CO 2 uptake. Here, a template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO 2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al 2 O 3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO 2 capture and release, and (iii) a minimal quantity of Al 2 O 3 for structural stabilization, thus maximizing the fraction of CO 2 -capture-active CaO. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. O2(a1Δ) quenching in O/O2/O3/CO2/He/Ar mixtures

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-02-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ))+O+M-->2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ)) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ)) quenching were followed by observing the 1268 nm fluorescence of the O2 a1Δ-X3Ε transition. Fast quenching of O2(a1Δ)) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  20. Incorporation of μ3-CO3 into an MnIII/MnIV Mn12 cluster: {[(cyclam)MnIV(μ-O)2MnIII(H2O)(μ-OH)]6(μ3-CO3)2}Cl8·24H2O

    Science.gov (United States)

    Levaton, Ben B.; Olmstead, Marilyn M.

    2010-01-01

    The centrosymmetric title cluster, hexa­aquadi-μ3-carbonato-hexa­cyclamhexa-μ2-hydroxido-dodeca-μ2-oxido-hexa­mang­an­ese(IV)hexa­manganese(III) octa­chloride tetra­cosa­hydrate, [Mn12(CO3)2O12(OH)6(C10H24N4)6(H2O)6]Cl8·24H2O, has two μ3-CO3 groups that not only bridge octahedrally coordinated MnIII ions but also act as acceptors to two different kinds of hydrogen bonds. The carbonate anion is planar within experimental error and has an average C—O distance of 1.294 (4) Å. The crystal packing is stabilized by O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds. Two of the four independent chloride ions are disordered over five positions, and eight of the 12 independent water mol­ecules are disordered over 21 positions. PMID:21587382

  1. Preparation, characterization and catalytic behavior of hierachically porous CuO/α-Fe2O3/SiO2 composite material for CO and o-DCB oxidation

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Ma; Xi Feng; Xuan He; Hongwen Guo; Lu Lü

    2011-01-01

    Hierachically porous (HP) CuO/α-Fe2O3/SiO2 composite material was fabricated by sol-gel method and multi-hydrothermal processes using HP-SiO2 as support.The resulting material was characterized by N2 adsorption-desorption,X-ray diffraction and scanning electron microscopy.The as-prepared CuO/Fe2O3/HP-SiO2 sample,with α-Fe2O3 and CuO nanocrystals,possessed a co-continuous skeleton,through-macroporous and mesoporous structure.Its catalytic behavior for CO and o-DCB oxidation was investigated.The result showed that CuO/Fe2O3/HP-SiO2 catalyst exhibited high catalytic activity for both CO and o-DCB oxidation,indicating its potential application in combined abatement of CO and chlorinated volatile organic compounds.

  2. Fischer-Tropsch synthesis: Support and cobalt cluster size effects on kinetics over Co/Al{sub 2}O{sub 3} and Co/SiO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wenping Ma; Gary Jacobs; Dennis E. Sparks; Muthu K. Gnanamani; Venkat Ramana Rao Pendyala; Chia H. Yen; Jennifer L.S. Klettlinger; Thomas M. Tomsik; Burtron H. Davis [University of Kentucky, Lexington, KY (USA). Center for Applied Energy Research

    2011-02-15

    The influence of support type and cobalt cluster size (i.e., with average diameters falling within the range of 8-40 nm) on the kinetics of Fischer-Tropsch synthesis (FT) were investigated by kinetic tests employing a CSTR and two Co/{gamma}-Al{sub 2}O{sub 3} catalysts having different average pore sizes, and two Co/SiO{sub 2} catalysts prepared on the same support but having different loadings. A kinetic model -r{sub CO}=kP{sup a}{sub co}P{sup b}{sub H2}/(1 + mP{sub H2O}/P{sub H2}) that contains a water effect constant 'm' was used to fit the experimental data obtained with all four catalysts. Kinetic parameters suggest that both support type and average Co particle size impact FT behavior. Cobalt cluster size influenced kinetic parameters such as reaction order, rate constant, and the water effect parameter.Decreasing the average Co cluster diameter by about 30% led to an increase in the intrinsic reaction rate constant k, defined on a per g of catalyst basis, by 62-102% for the {gamma}-Al{sub 2}O{sub 3} and SiO{sub 2}-supported cobalt catalysts. Moreover, less inhibition by adsorbed CO and greater H{sub 2} dissociation on catalysts having smaller Co particles was suggested by the higher a and lower b values obtained for the measured reaction orders. Irrespective of support type, the catalysts having smaller average Co particles were more sensitive to water. Comparing the catalysts having strong interactions between cobalt and support (Co/Al{sub 2}O{sub 3}) to the ones with weak interactions (Co/SiO{sub 2}), the water effect parameters were found to be positive (indicating a negative influence on CO conversion) and negative (denoting a positive effect on CO conversion), respectively. Greater a and a/b values were observed for both Al{sub 2}O{sub 3}-supported Co catalysts, implying greater inhibition of the FT rate by strongly adsorbed CO on Co/Al{sub 2}O{sub 3} relative to Co/SiO{sub 2}. 78 refs., 4 figs., 3 tabs.

  3. Effect of Co3O4 and Co3O4/CeO2 infiltration on the catalytic and electro-catalytic activity of LSM15/CGO10 porous cells stacks for oxidation of propene

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    The objective of this work was to study the effect of Co3O4 and Co3O4/CeO2 infiltration on the propene oxidation catalytic activity of a La0.85Sr0.15MnO3/Ce0.9Gd0.1O1.95 electrochemical porous cell stack (11 layers, 5 single cells in series). The effect of the infiltration of Co3O4 and Co3O4/CeO2...... on the electrochemical properties of the porous cell stack was also investigated by electrochemical impedance spectroscopy (EIS). Co3O4 and Co3O4/CeO2 exhibited high catalytic activity for propene oxidation. The increase of propene oxidation rate with +4 V (0.8 V/cell) polarization reached 10% for the Co3O4 infiltrated...... reactor and 48% of efficiency at 300 °C. The Co3O4/CeO2 co-infiltration decreased the reactor polarization resistance, while Co3O4 infiltration had negligible effect on reactor electrochemical performance. The beneficial effect of CeO2 on the electrode activity was attributed to the increased...

  4. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Directory of Open Access Journals (Sweden)

    Pavel Formánek

    2014-01-01

    Full Text Available In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  5. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Science.gov (United States)

    Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424

  6. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    Science.gov (United States)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  7. Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors

    Science.gov (United States)

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-01

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  8. Facile synthesis and electrochemical performance of Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} nanocomposite for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    An, Bonan [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Ru, Qiang, E-mail: ruqiang@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hu, Shejun; Song, Xiong; Li, Juan [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China)

    2014-12-15

    Graphical abstract: TEM of Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite and the discharge curves of pure Co{sub 3}O{sub 4}, pure Co{sub 2}SnO{sub 4} and Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite. - Highlights: • Novel Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite has been prepared by simple co-precipitation method. • Small spherical nanocrystals adhering to the surface of large polyhedral particles. • Formation mechanism is relate to solubility of Sn(OH){sub 6}{sup 2−} in high concentration OH{sup −} . • The composite shows better electrochemical performance than Co{sub 2}SnO{sub 4} and Co{sub 3}O{sub 4} - Abstract: A novel dispersed structure Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite has been successfully synthesized by a conventional co-precipitation method with certain amount of NaOH concentration. The obtained composite exhibits dispersed structure with small spherical nanocrystals adhering to the surface of large polyhedral particles, which has been studied as an anode material in lithium-ion battery. Galvanostatic charge–discharge and cyclic voltammetry has been conducted to measure the electrochemical properties of the material. The results show that Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite demonstrates good reversible capacity of 702.5 mA h g{sup −1} after 50 cycles at a current density of 100 mA h g{sup −1}, much better than that of pure Co{sub 3}O{sub 4} (375.1 mA h g{sup −1}) and pure Co{sub 2}SnO{sub 4} (194.1 mA h g{sup −1}). This material also presents improved rate performance with capacity retention of 71.1% when the current ranges from 100 mA g{sup −1} to 1000 mA g{sup −1}. The excellent electrochemical performance of the as-prepared dispersed structure Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite could be attributed to the good dispersibility of nanoparticles which can effectively alleviate the volume expansion and improve the conductivity, thus enhance the cycling stability.

  9. Thermodynamic modeling of the CaO-SiO2-CaCO3-HCaCO2O closed and open system at 25ºC

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    2003-06-01

    Full Text Available This paper reports on a thermodynamic calculation-based study of the CaO-SiOCaCO2-CaCOCaCO3-HCaCO2O closed system at 25 °C, conducted to determine the range of carbonate ion concentrations at which each phase of the system is stable. Portlandite (CH and the CSH gel were found to be stable for carbonate ion concentrations of less than or equal to 7.62 X 10-3 mM/kg and 1.62 x 10-2 mM/kg, respectively. The CSH gel was found to remain stable in the system at pH values ranging from 10.18 to 10.48. In the CaO-SiO2-H2O open system at 25 °C, likewise studied, with PCO2 held constant at atmospheric values, only hydrated silica (SH and calcite were found to be stable.En este trabajo se estudia el sistema CaO2-CaCO3-H2O, cerrado y a 25 ºC a través de cálculos termodinámicos, y se determina el rango de concentración de ion carbonato en el que son estables cada una de las fases del sistema. Se concluye que la portlandita (CH y el gel CSH son estables para concentraciones de ion carbonato iguales o inferiores a 7,62 X 10-3 niM/kg y 1,62 x 10-2 mM/kg respectivamente. El rango de pH en el que el gel CSH es estable en el sistema es 10,18-10,48. También se estudia el sistema CaO-SiO2-H2O a 25 °C, en sistema abierto a PCO2 constante e igual a la de dicho gas en la atmósfera, encontrando que solo la sílice hidratada (SH y la calcita son estables en dicho sistema.

  10. Thin (111) oriented CoFe{sub 2}O{sub 4} and Co{sub 3}O{sub 4} films prepared by decomposition of layered cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Buršík, Josef, E-mail: bursik@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Soroka, Miroslav, E-mail: soroka@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Uhrecký, Róbert, E-mail: uhrecky@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Kužel, Radomír, E-mail: kuzel@karlov.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Mika, Filip, E-mail: filip.mika@isibrno.cz [Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, 612 64 Brno (Czech Republic); Huber, Štěpán, E-mail: stepan.huber@vscht.cz [University of Chemistry and Technology, Faculty of Chemical Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-07-15

    Graphical abstract: Pole figures of NaCoO{sub 2} (left) and of CoFe{sub 2}O{sub 4} (right) films formed through the transformation of O3-type NaCoO{sub 2} phase in consequence of sodium deintercalation occurring at 800 °C. Films were prepared by chemical solution deposition on MgO(111) substrate. - Highlights: • Epitaxial Na(CoFe)O{sub 2} thin films by means of chemical solution deposition were prepared. • Oriented spinel films through transformation of Na(CoFe)O{sub 2} were obtained. • Orientation relation to MgO, SrTiO{sub 3} and Zr(Y)O{sub 2} substrates were determined. • Structural aspects of Na(CoFe)O{sub 2} → CoFe{sub 2}O{sub 4} transformation pathway were elucidated. - Abstract: The formation and structural characterization of highly (111)-oriented Co{sub 3}O{sub 4} and CoFe{sub 2}O{sub 4} films prepared by a novel procedure from 00l-oriented NaCoO{sub 2} and Na(CoFe)O{sub 2} is reported. The Na(CoFe)O{sub 2} films were deposited on MgO, SrTiO{sub 3}, LaAlO{sub 3}, and Zr(Y)O{sub 2} single crystals with (100) and (111) orientations by chemical solution deposition method and crystallized at 700 °C. Subsequently they were transformed into (111)-oriented spinel phase during post-growth annealing at 800–1000 °C. Morphology and structure of the films was investigated by means of scanning electron microscopy and X-ray diffraction. While all spinel films exhibit pronounced out-of-plane orientation irrespective of substrate, the rate of in-plane orientation strongly depend on lattice misfit values. Different epitaxial phenomena ranging from true one-to-one epitaxy to the existence of many-to-one epitaxy involving two or more orientations were determined by full 3D texture analysis.

  11. The effect of calcination temperature on the performance of Co3O4-Bi2O3 as a heterogeneous catalyst of peroxymonosulfate

    Science.gov (United States)

    Zhang, Guangshan; Hu, Limin; Wang, Peng; Yuan, Yixing

    2017-11-01

    In this work, a time-saving microwave-assisted method for synthesis of Co3O4-Bi2O3 was reported. The synthesized Co3O4-Bi2O3 samples were characterized with different techniques to probe their crystalline structures and morphologies. The catalytic performances of synthesized Co3O4-Bi2O3 as peroxymonosulfate activator were evaluated by the degradation of bisphenol A. The effect of calcination temperature on Co3O4-Bi2O3 products was explored and the result showed that the sample calcined at 400 °C possessing superior catalytic activity.

  12. Y2O3-W Continuous Graded Materials by Co-sedimentation

    Directory of Open Access Journals (Sweden)

    WANG Shi-yang

    2017-09-01

    Full Text Available The raw Y2O3 powder was classified and graded based on modified co-sedimentation mathematical model,using the size distribution of W particles as the known condition. Y2O3-W continuous graded materials with the composition distribution index P values of 1.0, 0.7, 0.3 and 0.1 were prepared by co-sedimentation and hot-pressing. The results show that the Y2O3 powder consistent with the design requirements can be obtained by graduation method. The gradient continuity of materials can be verified by microstructure observation and hardness testing.

  13. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries.

    Science.gov (United States)

    Su, Dawei; Dou, Shixue; Wang, Guoxiu

    2014-08-29

    Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}.

  14. The crystal structure of galgenbergite-(Ce), CaCe2(CO3)4•H2O

    Science.gov (United States)

    Walter, Franz; Bojar, Hans-Peter; Hollerer, Christine E.; Mereiter, Kurt

    2013-04-01

    Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is C{{a}_{1.00 }}{{( {C{{e}_{1.04 }}L{{a}_{0.42 }}N{{d}_{0.42 }}P{{r}_{0.12 }}} )}_{2.00 }}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O , and the simplified formula is CaC{{e}_2}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group Poverline{1},a=6.3916(5) , b = 6.4005(4), c = 12.3898(9) Å, α = 100.884(4), β = 96.525(4), γ = 100.492(4)°, V = 483.64(6) Å3, Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [ d calc in Å/( I)/ hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm-1, HOH bending mode at 1,607 cm-1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1 = 0.019 for 2,448 unique reflections ( I > 2 σ( I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile

  15. Thermo-Exfoliated Graphite Containing CuO/Cu2(OH3NO3:(Co2+/Fe3+ Composites: Preparation, Characterization and Catalytic Performance in CO Conversion

    Directory of Open Access Journals (Sweden)

    Vladyslav V. Lisnyak

    2010-01-01

    Full Text Available Thermo-exfoliated graphite (TEG/CuO/Cu2(OH3NO3:(Co2+/Fe3+ composites were prepared using a wet impregnation method and subsequent thermal treatment. The physicochemical characterization of the composites was carried out by powder X-ray diffraction (PXRD, scanning electron microscopy (SEM and Ar temperature-desorption techniques. The catalytic efficiency toward CO conversion to CO2 was examined under atmospheric pressure. Characterization of species adsorbed over the composites taken after the activity tests were performed by means of temperature programmed desorption massspectrometry (TPD MS. (TEG/CuO/Cu2(OH3NO3:(Co2+/Fe3+ composites show superior performance results if lower temperatures and extra treatment with H2SO4 or HNO3 are used at the preparation stages. The catalytic properties enhancements can be related to the Cu2(OH3NO3 phase providing reaction centers for the CO conversion. It has been found that prevalence of low-temperature states of desorbed CO2 over high-temperature ones in the TPD MS spectra is characteristic of the most active composite catalysts.

  16. Broadband ˜2μm emission in Tm3+/Ho3+ co-doped TeO2-WO3-La2O3 glass

    Science.gov (United States)

    Li, Kefeng; Wang, Guonian; Zhang, Junjie; Hu, Lili

    2010-10-01

    In this work, we report the infrared emission properties of Tm 3+/Ho 3+ co-doped TeO 2-WO 3-La 2O 3 (TWL) glass under 808 nm laser excitation. A broad and flat emission from 1600 to 2200 nm corresponding to the Tm 3+ ( 3F 4→ 3H 6) and Ho 3+ ( 5I 7→ 5I 8) emissions is observed. The full width at half maximum (FWHM) of this broadband increases up to a value of ˜370 nm with an optimal [Tm 3+]/[Ho 3+] concentration ratio. The energy transfer processes of Tm 3+↔Ho 3+ are analyzed and the results show that energy transfer between Tm 3+ and Ho 3+ plays an important role in the luminescence mechanism. The OH - influence on the broadband emission is also discussed. These results indicate that Tm 3+-Ho 3+ co-doped TWL glass could be a promising material for widely tunable laser or broadband amplifier applications.

  17. Strain and Ferroelectric-Field Effects Co-mediated Magnetism in (011)-CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3Multiferroic Heterostructures

    KAUST Repository

    Wang, Ping; Jin, Chao; Zheng, Dongxing; Li, Dong; Gong, Junlu; Li, Peng; Bai, Haili

    2016-01-01

    Electric-field mediated magnetism was investigated in CoFe2O4 (CFO, deposited by reactive cosputtering under different Oxygen flow rates) films fabricated on (011)-Pb(Mg1/3Nb2/3)(0.7)Ti0.3O3 (PMN-PT) substrates. Ascribed to the volatile strain

  18. Synthesis and electrochemical characterization of LiCo_1_/_3Fe_2_/_3PO_4/C composite using nano CoFe_2O_4 as precursor

    International Nuclear Information System (INIS)

    Wu, Kaipeng; Hu, Guorong; Du, Ke; Peng, Zhongdong; Cao, Yanbing

    2015-01-01

    LiCo_1_/_3Fe_2_/_3PO_4/C composite was synthesized by a solid state method with CoFe_2O_4 as the precursor and glucose as the carbon source. The composite consists of homogeneous Co–Fe distributed LiCo_1_/_3Fe_2_/_3PO_4 with its particles covered by nano-carbon layers, which could prevent the growth of the particles as well as form a fast path for electronic transmission during charging and discharging process. It shows excellent electrochemical performance as the cathode for lithium-ion batteries, which delivers discharge capacities of 154.6, 152.9, 135.4, 122.3, 105.2 and 91.3 mAh g"−"1 at 0.05, 0.1, 0.5, 1, 2 and 5 C, respectively, and retains 94.6% of its initial discharge capacity after 30 cycles at 5 C. - Highlights: • Nano CoFe_2O_4 was prepared by a co-precipitation method. • LiCo_1_/_3Fe_2_/_3PO_4/C composite was synthesized using nano CoFe_2O_4 as a precursor. • Homogeneous Co–Fe distributed LiCo_1_/_3Fe_2_/_3PO_4 is obtained. • LiCo_1_/_3Fe_2_/_3PO_4/C composite exhibits a quite good electrochemical performance.

  19. Bulk tungsten with uniformly dispersed La2O3 nanoparticles sintered from co-precipitated La2O3/W nanoparticles

    International Nuclear Information System (INIS)

    Xia, Min; Yan, Qingzhi; Xu, Lei; Guo, Hongyan; Zhu, Lingxu; Ge, Changchun

    2013-01-01

    Graphical abstract: La 2 O 3 doped La 2 O 3 /W nanoparticles with high-purity and uniform diameters have been fabricated by a co-precipitation process. The as-prepared nanoparticles demonstrate the potential of this method for fabricating uniformly structured bulk tungsten materials. -- Abstract: We report the preparation of 1 wt% La 2 O 3 doped La 2 O 3 /W nanoparticles by a co-precipitation process, using ammonium metatungstate (AMT) and lanthanum nitrate as raw materials. The as-synthesized nanoparticles were characterized by X-ray diffraction, Filed-emission scanning electron microscopy, Transmission electron microscopy (TEM), energy dispersive spectroscopy. Our results reveal that the as-synthesized particles possess uniform diameters of about 70 nm, and are of high purity. The TEM and the corresponding fast Fourier transform images demonstrated that La 2 O 3 precipitates were homogeneously doped into the nano-sized tungsten particles. When the as-synthesized nanoparticles were sintered by spark plasma sintering, the electron backscatter diffraction images of the bulk material reveal that La 2 O 3 nanoparticles were homogenously distributed in both the tungsten grains and the grain boundaries, and the sample exhibit a narrow micro-hardness distribution

  20. Apparent molar volumes for dilute solutions of NaClO4 and [Co(en) 3](ClO4)3 in D2O and H2O at 278-318 K

    International Nuclear Information System (INIS)

    Bottomley, G.A.; Glossop, L.G.

    1981-01-01

    Apparent molar volumes for dilute solutions of NaClO 4 and [Co(en) 3 ](ClO 4 ) 3 in D 2 O and H 2 O were measured by using a dilatometry technique at 278, 298 and 318K. Comparison of limiting slopes with the Debye-Huckel predictions from the dielectric constant and compressibility of H 2 O and D 2 O is complicated by ion pairing. The apparent molar volumes for NaClO 4 were less in D 2 O than in H 2 O. The complex [Co(en) 3 ](ClO 4 ) 3 when studied in D 2 O had its amine protons exchanged by deuterium; this did not allow a direct comparison of the apparent molar volumes of the protonated complex in each solvent system, but revealed a large isotope effect. The apparent molar volumes of the [Co(en) 3 ](ClO 4 ) 3 showed a much larger temperature dependence than that of NaClO 4

  1. Preparation and characterization of self-assembled percolative BaTiO3CoFe2O4 nanocomposites via magnetron co-sputtering

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2014-04-01

    Full Text Available BaTiO3CoFe2O4 composite films were prepared on (100 SrTiO3 substrates by using a radio-frequency magnetron co-sputtering method at 750 °C. These films contained highly (001-oriented crystalline phases of perovskite BaTiO3 and spinel CoFe2O4, which can form a self-assembled nanostructure with BaTiO3 well-dispersed into CoFe2O4 under optimized sputtering conditions. A prominent dielectric percolation behavior was observed in the self-assembled nanocomposite. Compared with pure BaTiO3 films sputtered under similar conditions, the nanocomposite film showed higher dielectric constants and lower dielectric losses together with a dramatically suppressed frequency dispersion. This dielectric percolation phenomenon can be explained by the 'micro-capacitor' model, which was supported by measurement results of the electric polarization and leakage current.

  2. Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3- δ.

    Science.gov (United States)

    Jeen, H; Choi, W S; Freeland, J W; Ohta, H; Jung, C U; Lee, H N

    2013-07-19

    Pulsed laser epitaxy of brownmillerite SrCoO2.5 thin films and their phase transformation to the perovskite SrCoO3-δ are investigated. While the direct growth of the fully oxidized perovskite films is found to be an arduous task, filling some of oxygen vacancies into SrCoO2.5 by topotactic oxidation accompanies systematic evolution of electronic, magnetic, and thermoelectric properties, useful for many information and energy technologies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Local atomic characterization of LiCo1/3Ni1/3Mn1/3O2 cathode material

    International Nuclear Information System (INIS)

    Nedoseykina, Tatiana; Kim, Sung-Soo; Nitta, Yoshiaki

    2006-01-01

    Co, Ni and Mn K-edge XAFS investigation of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as alternative cathode material to commercially used LiCoO 2 in lithium rechargeable battery has been performed. Parameters of a local atomic structure such as radii of metal-oxygen and metal-metal coordination shells and disorder in those shells have been determined. It has been found that the radius of the first coordination shell (metal-oxygen) as well as a local disorder in the second shell (metal-metal) around each of the 3d-metals are in a good agreement with obtained for superlattice model of √3 x √3] R30 o type in triangular lattice of sites by first principle calculation. Other parameters of the local atomic structure around Co, Ni and Mn atoms do not provide evidence for presence of superstructure in LiCo 1/3 Ni 1/3 Mn 1/3 O 2

  4. Electron capture into the n = 3 states of hydrogen by proton impact on CO, CO2, and N2O

    International Nuclear Information System (INIS)

    Loyd, D.H.; Dawson, H.R.

    1979-01-01

    Absolute cross sections for electron capture into the 3s, 3p, and 3d states of hydrogen have been measured for 2.2--8.2-keV proton impact on CO, CO 2 , and N 2 O. The relative magnitudes of the 3s, 3p, and 3d cross sections for CO are very similar to cross sections previously measured for elemental gases. The CO 2 and N 2 O cross sections have a very different relative distribution among the 3s, 3p, and 3d states compared to all other gases studied in this laboratory, with the 3p cross section being so small that only an estimate of the upper limit to the cross section was possible

  5. Effect of phase interaction on catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Shujing [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); The Institute of Seawater Desalination and Miltipurpose Utilization, State Oceanic Administration, Tianjin 300192 (China); Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); Xian, Hui [Tianjin Polytechnic University, School of Computer Science & Software Engineering, Tianjin 300387 (China); Mi, Wenbo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300354 (China); Li, Xingang, E-mail: xingang_li@tju.edu.cn [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China)

    2017-04-30

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO{sub 2} and Al{sub 2}O{sub 3}. • Interaction between SnO{sub 2} and Al{sub 2}O{sub 3} phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn{sup 4+} cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalysts. Our results show that interaction between the Al{sub 2}O{sub 3} and SnO{sub 2} phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO{sub 2}/Al{sub 2}O{sub 3} catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO{sub 2}, which probably results from the change of electron concentration on the interface of the SnO{sub 2} and Al{sub 2}O{sub 3} phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn{sup 4+} cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO{sub 2}-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  6. Capture of atmospheric CO{sub 2} into (BiO){sub 2}CO{sub 3}/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wendong [Department of Scientific Research Management, Chongqing Normal University, Chongqing, 401331 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 (China); Zhang, Wei, E-mail: andyzhangwei@163.com [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China)

    2015-12-15

    Graphical abstract: Self-assembly of (BiO){sub 2}CO{sub 3} nanoflakes on graphene and graphene oxide nanosheets were realized by a one-pot efficient capture of atmospheric CO{sub 2} at room temperature. - Highlights: • A facile one-step method was developed for graphene-based composites. • The synthesis was conducted by utilization of atmospheric CO{sub 2}. • (BiO){sub 2}CO{sub 3}-graphene and (BiO){sub 2}CO{sub 3}-graphene oxide composites were synthesized. • The nanocomposites exhibited enhanced photocatalytic activity. - Abstract: Self-assembly of (BiO){sub 2}CO{sub 3} nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO{sub 2} at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV–vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO){sub 2}CO{sub 3}, (BiO){sub 2}CO{sub 3}/Ge and (BiO){sub 2}CO{sub 3}/GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO{sub 2} in green synthetic strategy.

  7. Modification of Ga2O3 by an Ag-Cr core-shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO2 by H2O.

    Science.gov (United States)

    Pang, Rui; Teramura, Kentaro; Tatsumi, Hiroyuki; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2018-01-25

    A core-shell structure of Ag-Cr dual cocatalyst loaded-Ga 2 O 3 was found to significantly enhance the formation rate of CO and selectivity toward CO evolution for the photocatalytic conversion of CO 2 where H 2 O is used as an electron donor.

  8. Interfacially controlled phenomena in the system K2CO3-KAlO2

    International Nuclear Information System (INIS)

    Cook, L.P.

    1981-01-01

    Potassium carbonate has become of special interest to a number of ceramists because of its use as ionizing seed material which is added to combustion gases to produce a conductive plasma in magnetohydrodynamic electrical power generators. In this high temperature environment, chemical interaction occurs not only with ceramic components of the system such as electrodes and insulators, but also with the mineral ash of the coal used to fuel the generator. As a result, potassium aluminate is an important component of the slags accummulating in such generators. The system K 2 CO 3 -KAlO 2 is under investigation as part of a more general study of potassium carbonate - slag interaction. This note is a summary of some preliminary observations on the phase equilibria of K 2 CO 3 -KAlO 2 with focus on the unusual melting behavior of Kat''CO 3 /KAlO 2 mixtures which appears to have its origin in interfacial interaction

  9. Sodium citrate-assisted anion exchange strategy for construction of Bi2O2CO3/BiOI photocatalysts

    International Nuclear Information System (INIS)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De

    2015-01-01

    Highlights: • Heterostructured Bi 2 O 2 CO 3 /BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi 2 O 2 CO 3 /BiOI composites show high visible light photocatalytic activity. - Abstract: Bi 2 O 2 CO 3 /BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi 2 O 2 CO 3 in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO 3 2− in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi 2 O 2 CO 3 /BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi 2 O 2 CO 3 towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi 2 O 2 CO 3 , which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA

  10. Mesoporous Co{sub 3}O{sub 4} and CoO rate at C topotactically transformed from chrysanthemum-like Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O and their lithium-storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shenglin; Zeng, Hua Chun [Department of Chemical and Biomolecular Engineering, KAUST-NUS GCR Program, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore (Singapore); Chen, Jun Song; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore (Singapore)

    2012-02-22

    In this work, a novel hydrothermal route is developed to synthesize cobalt carbonate hydroxide, Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O. In this method, sodium chloride salt is utilized to organize single-crystalline nanowires into a chrysanthemum-like hierarchical assembly. The morphological evolution process of this organized product is investigated by examining different reaction intermediates during the synthesis. The growth and thus the final assembly of the Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O can be finely tuned by selecting preparative parameters, such as the molar ratio of the starting chemicals, the additives, the reaction time and the temperature. Using the flower-like Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O as a solid precursor, quasi-single-crystalline mesoporous Co{sub 3}O{sub 4} nanowire arrays are prepared via thermal decomposition in air. Furthermore, carbon can be added onto the spinel oxide by a chemical-vapor-deposition method using acetylene, which leads to the generation of carbon-sheathed CoO nanowire arrays (CoO rate at C). Through comparing and analyzing the crystal structures, the resultant products and their high crystallinity can be explained by a sequential topotactic transformation of the respective precursors. The electrochemical performances of the typical cobalt oxide products are also evaluated. It is demonstrated that tuning of the surface texture and the pore size of the Co{sub 3}O{sub 4} products is very important in lithium-ion-battery applications. The carbon-decorated CoO nanowire arrays exhibit an excellent cyclic performance with nearly 100% capacity retention in a testing range of 70 cycles. Therefore, this CoO rate at C nanocomposite can be considered to be an attractive candidate as an anode material for further investigation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Thermal conductivity of Ca3Co2O6 single crystals

    Science.gov (United States)

    Che, H. L.; Shi, J.; Wu, J. C.; Rao, X.; Liu, X. G.; Zhao, X.; Sun, X. F.

    2018-05-01

    Ca3Co2O6 is a rare example of one-dimensional Ising spin-chain material with the moments preferentially aligned along the c axis. In this work, we study the c-axis thermal conductivity (κc) of Ca3Co2O6 single crystal at low temperatures down to 0.3 K and in magnetic fields up to 14 T. The zero-field κc(T) shows a large phonon peak and can be well fitted by using the classical Debye model, which indicates that the heat transport is purely phononic. Moreover, the low-T κc(H) isotherms with H || c display a field-independent behavior. These results indicate that there is no contribution of magnetic excitations to the thermal conductivity in Ca3Co2O6, neither carrying heat nor scattering phonons, which can be attributed to the Ising-like spin anisotropy.

  12. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    Science.gov (United States)

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-02-01

    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  13. Photocatalytic properties of Co{sub 3}O{sub 4}/LiCoO{sub 2} recycled from spent lithium-ion batteries using citric acid as leaching agent

    Energy Technology Data Exchange (ETDEWEB)

    Santana, I.L.; Moreira, T.F.M.; Lelis, M.F.F.; Freitas, M.B.J.G., E-mail: marcosbjg@gmail.com

    2017-04-01

    In this work, cobalt and lithium from the cathodes of spent lithium-ion batteries were recycled to synthesize a mixture of Co{sub 3}O{sub 4} and LiCoO{sub 2}. The positive electrode was leached with citric acid in the green recycling. After being heated to 85 °C, the leaching solution formed a pink sol, and after being dried at 120 °C for 24 h, it formed a gel, which is a precursor material for Co{sub 3}O{sub 4} and LiCoO{sub 2} synthesis. A mixture of Co{sub 3}O{sub 4} and LT-LiCoO{sub 2} was obtained after the calcination of the precursor material at 450 °C for 3 h. The photocatalytic properties of the Co{sub 3}O{sub 4} and LiCoO{sub 2} were tested in the discoloration of methylene blue dye. The discoloration efficiency of methylene blue dye in the presence of Co{sub 3}O{sub 4} and LiCoO{sub 2} was 90% after 10 h and 100% after 24 h of heterogeneous catalysis. The contribution of this work is that it presents a means to produce valuable materials with photocatalytic properties from recycled batteries through a spent Li-ion battery recycling process without polluting the environment. - Highlights: • Synthesis a mixture of Co{sub 3}O{sub 4}/LiCoO{sub 2} from spent Li-ion batteries. • Citric acid for leaching of the cathodes of the spent Li-ion batteries. • Co{sub 3}O{sub 4}/LiCoO{sub 2} as catalysts in the photodegradation of the methylene blue dye.

  14. DFT+U study of polaronic conduction in Li2O2 and Li2CO3

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Myrdal, J.S.G.; Christensen, Rune

    2013-01-01

    The main discharge products formed at the cathode of nonaqueous Li-air batteries are known to be Li2O2 and residual Li2CO3. Recent experiments indicate that the charge transport through these materials is the main limiting factor for the battery performance. It has been also shown...... that the performance of the battery decreases drastically when the amount of Li2CO3 at the cathode increases with respect to Li2O2. In this work, we study the formation and transport of hole and electron polarons in Li2O2 and Li2CO3 using density functional theory (DFT) within the PBE+U approximation. For both...... materials, we find that the formation of polarons (both hole and electron) is stabilized with respect to the delocalized states for all physically relevant values of U. We find a much higher mobility for hole polarons than for the electron polarons, and we show that the poor charge transport in Li2CO3...

  15. Carbon-Encapsulated Co3O4@CoO@Co Nanocomposites for Multifunctional Applications in Enhanced Long-life Lithium Storage, Supercapacitor and Oxygen Evolution Reaction

    International Nuclear Information System (INIS)

    Xu, Dongyang; Mu, Congpu; Xiang, Jianyong; Wen, Fusheng; Su, Can; Hao, Chunxue; Hu, Wentao; Tang, Yongfu; Liu, Zhongyuan

    2016-01-01

    Porous nanostructure composites materials had attracted widely attention due to their potential application in energy storage (Lithium ion batteries (LIBs) and supercapacitor) and electrocatalyst of oxygen evolution reaction (OER). Co 3 O 4 @CoO@Co@C nanocomposites had been successfully synthesized using glucose as carbon source and cobalt nitrate as metalprecurs or of Co 3 O 4 @CoO@Co@C, which has excellent electrochemical performance for LIBs, supercapacitor and OER. Three kinds of morphology samples marked by Co 3 O 4 @CoO@Co@C-2/1, Co 3 O 4 @CoO@Co@C-1/1 and Co 3 O 4 @CoO@Co@C-1/2 are synthesized due to different atomic ratio of cobalt/carbon in precursors. Electrochemical and catalytic performance of Co 3 O 4 @CoO@Co@C-2/1 nanocomposites is more excellent than Co 3 O 4 @CoO@Co@C-1/1 and Co 3 O 4 @CoO@Co@C-1/2. Co 3 O 4 @CoO@Co@C-2/1 shows that discharge capacity can maintain 450 mA h g −1 and coulombic efficiency is nearly 100% during 500 cycles for LIBs. It indicates the excellent cycling stability of Co 3 O 4 @CoO@Co@C-2/1 as electrode for supercapacitor that about 78.3% of initial specific capacitance can be retained after 10000 cycles at current density of 2 A g −1 . Co 3 O 4 @CoO@Co@C-2/1 as catalyst of OER shows excellent electrochemical durability over 15 hours continuous experiment.

  16. Preparation of Au/Y2O3 and Au/NiO catalysts by co-precipitation and their oxidation activities

    International Nuclear Information System (INIS)

    Sreethawong, Thammanoon; Sitthiwechvijit, Norsit; Rattanachatchai, Apiwat; Ouraipryvan, Piya; Schwank, Johannes W.; Chavadej, Sumaeth

    2011-01-01

    Research highlights: → The catalytic activity of Au catalysts supported on Y 2 O 3 and NiO prepared by co-precipitation was investigated for CO and methanol oxidation. → The phase transformation of yttrium support greatly affected the CO oxidation activity. → The Au/Y 2 O 3 exhibited the same activity as Au/NiO for the methanol oxidation while the Au/NiO gave higher activity for CO oxidation. - Abstract: The objective of this work was to investigate the catalytic activity of gold catalysts supported on two metal oxides, yttrium oxide and nickel oxide, prepared by co-precipitation for CO and methanol oxidation reactions. The TGA and XRD results confirmed that yttrium hydroxide (Y(OH) 3 ) was formed at calcination temperature below 300 deg. C. When it was calcined at 400 deg. C, the Y(OH) 3 was transformed to yttrium oxide hydroxide (YOOH). Finally, when calcination temperature was raised to 600 deg. C, the YOOH was completely transformed to yttrium oxide (Y 2 O 3 ). Interestingly, the gold loaded on YOOH calcined at 400 deg. C and gold loaded on Y 2 O 3 calcined at 500 deg. C comparatively showed the highest catalytic activity for complete CO oxidation at a reaction temperature of 300 deg. C. The 0.12% Au/Y 2 O 3 catalyst calcined at 500 deg. C was employed for both CO and methanol oxidation studies. For complete CO oxidation, the reaction temperatures of Au/Y 2 O 3 and Au/NiO catalysts were 325 deg. C and 250 deg. C, respectively. The light-off temperatures of Au/Y 2 O 3 and Au/NiO catalysts for methanol oxidation were 210 deg. C and 205 deg. C, respectively. Conclusively, the Au/Y 2 O 3 clearly exhibited the same activity as that of Au/NiO for methanol oxidation while the Au/NiO gave higher activity for CO oxidation.

  17. Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Linde, Kasper; Hansen, Thomas Klint

    2011-01-01

    containing 16wt.% Mo (atomic ratio Co/Mo=1/3), which did not contain crystalline MoO3 and only small amounts of CoAl2O4. The hydrotreating activity was approximately 75% of that of commercial cobalt molybdenum catalysts prepared by wet impregnation of pre-shaped alumina extrudates. Since the commercial...... obtained consisted mostly of γ-Al2O3 with some CoAl2O4, as evidenced by X-ray diffraction (XRD) and UV–vis spectroscopy. Bulk MoO3 was not detected by XRD, except at the highest molybdenum content (32wt.%) and in the unsupported sample, indicating that molybdenum is well dispersed on the surface.......After activation by sulfidation the activity of the catalysts were measured for the three hydrotreating reactions hydrodesulfurization, hydrodenitrogenation and hydrogenation using a model oil containing dibenzothiophene, indole and naphthalene in n-heptane solution. The best catalyst was the FSP-produced material...

  18. Growth and characterization of thin oriented Co{sub 3}O{sub 4} (111) films obtained by decomposition of layered cobaltates Na{sub x}CoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Buršík, Josef, E-mail: bursik@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68, Husinec-Řež 1001 (Czech Republic); Soroka, Miroslav, E-mail: soroka@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68, Husinec-Řež 1001 (Czech Republic); Kužel, Radomír, E-mail: kuzel@karlov.mff.cuni.cz [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Mika, Filip, E-mail: filip.mika@isibrno.cz [Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, 612 64 Brno (Czech Republic)

    2015-07-15

    The formation and structural characterization of highly (111)-oriented Co{sub 3}O{sub 4} films prepared by a novel procedure from weakly (001)-oriented Na{sub x}CoO{sub 2} is reported. The Na{sub x}CoO{sub 2} films were deposited on both single crystal and amorphous substrates by chemical solution deposition (CSD) method and crystallized at 700 °C. Subsequently they were transformed into (111)-oriented Co{sub 3}O{sub 4} phase during post-growth annealing at 900 °C. The degree of preferred orientation in Co{sub 3}O{sub 4}, which was determined by phi-scan and pole figure measurements, depends on the content of Na in the starting Na{sub x}CoO{sub 2} phase. Surface morphology of the films was investigated using electron microscopy and atomic force microscopy. - Graphical abstract: Structure of growth twins and possible O{sup 2−} stacking sequences in (111)-oriented Co{sub 3}O{sub 4} thin films on α-Al{sub 2}O{sub 3}(001) prepared by chemical solution deposition through the transformation of (001)-oriented Na{sub x}CoO{sub 2} thin film. - Highlights: • Single phase Co{sub 3}O{sub 4} thin films was prepared by means of chemical solution deposition. • Conditions for γ-Na{sub x}CoO{sub 2} to Co{sub 3}O{sub 4} transformation were optimized. • Growth twinning of Co{sub 3}O{sub 4} films due to two possible O{sup 2−} stacking sequences. • Growth with (pseudo)epitaxial relation Co{sub 3}O{sub 4} (111)[−121]//α-Al{sub 2}O{sub 3} (001)[10−10].

  19. Synthesis of BaTiO3 nanoparticles from TiO2-coated BaCO3 particles derived using a wet-chemical method

    Directory of Open Access Journals (Sweden)

    Yuuki Mochizuki

    2014-03-01

    Full Text Available BaCO3 particles coated with amorphous TiO2 precursor are prepared by a wet chemical method to produce BaTiO3 nanoparticles at low temperatures. Subsequently, we investigate the formation behavior of BaTiO3 particles and the particle growth behavior when the precursor is subjected to heat treatment. The state of the amorphous TiO2 coating on the surface of BaCO3 particles depends on the concentration of NH4HCO3, and the optimum concentration is found to be in the range 0.5–1.0 M. Thermogravimetric curves of the BaCO3 particles coated with the TiO2 precursor, prepared from BaCO3 particles of various sizes, show BaTiO3 formation occurring mainly at 550–650 °C in the case of fine BaCO3 particles. However, as evidenced from the curves, the temperature of formation of BaTiO3 shifts to higher values with an increase in the size of the BaCO3 particles. The average particle size of single phase BaTiO3 at heat-treatment temperature of 650–900 °C is observed to be in the range 60–250 nm.

  20. Heterostructured Fe3O4/Bi2O2CO3 photocatalyst: Synthesis, characterization and application in recyclable photodegradation of organic dyes under visible light irradiation

    International Nuclear Information System (INIS)

    Zhu, Gangqiang; Hojamberdiev, Mirabbos; Katsumata, Ken-ichi; Cai, Xu; Matsushita, Nobuhiro; Okada, Kiyoshi; Liu, Peng; Zhou, Jianping

    2013-01-01

    Heterostructured Fe 3 O 4 /Bi 2 O 2 CO 3 photocatalyst was synthesized by a two-step method. First, Fe 3 O 4 nanoparticles with the size of ca. 10 nm were synthesized by chemical method at room temperature and then heterostructured Fe 3 O 4 /Bi 2 O 2 CO 3 photocatalyst was synthesized by hydrothermal method at 180 °C for 24 h with the addition of 10 wt% Fe 3 O 4 nanoparticles into the precursor suspension of Bi 2 O 2 CO 3 . The pH value of synthesis suspension was adjusted to 4 and 6 with the addition of 2 M NaOH aqueous solution. By controlling the pH of synthesis suspension at 4 and 6, sphere- and flower-like Fe 3 O 4 /Bi 2 O 2 CO 3 photocatalysts were obtained, respectively. Both photocatalysts demonstrate superparamagnetic behavior at room temperature. The UV–vis diffuse reflectance spectra of the photocatalysts confirm that all the heterostructured photocatalysts are responsive to visible light. The photocatalytic activity of the heterostructured photocatalysts was evaluated for the degradation of methylene blue (MB) and methyl orange (MO) in aqueous solution over the photocatalysts under visible light irradiation. The heterostructured photocatalysts prepared in this study exhibit highly efficient visible-light-driven photocatalytic activity for the degradation of MB and MO, and they can be easily recovered by applying an external magnetic field. - Highlights: • Sphere- and flower-like Fe 3 O 4 /Bi 2 O 2 CO 3 was synthesized by hydrothermal method. • Fe 3 O 4 nanoparticles with the size of ca. 10 nm were synthesized by chemical method. • Photocatalysts demonstrate superparamagnetic behavior at room temperature. • Photocatalysts exhibit highly efficient visible-light-driven photocatalytic activity. • Photocatalysts can be easily recovered by applying an external magnetic field

  1. Synthesis and luminescent properties of CaCO3:Eu3+@SiO2 phosphors with core-shell structure

    Science.gov (United States)

    Liu, Min; Kang, Ming; Chen, Kexu; Mou, Yongren; Sun, Rong

    2018-03-01

    Integrating the processes of preparation of CaCO3:Eu3+ and its surface-coating, core-shell structured CaCO3:Eu3+@SiO2 phosphors with red emission were synthesized by the carbonation method and surface precipitation procedure using sodium silicate as silica source. The phase structure, thermal stability, morphology and luminescent property of the as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectrum, thermal analysis, field-emission scanning electron microscopy, transmission electron microscope and photoluminescence spectra. The experimental results show that Eu3+ ions as the luminescence center are divided into two types: one is at the surface of the CaCO3 and the other inhabits the site of Ca2+. For CaCO3:Eu3+@SiO2 phosphors, the SiO2 layers are continuously coated on the surface of CaCO3:Eu3+ and show a typical core-shell structure. After coated with SiO2 layer, the luminous intensity and the compatibility with the rubber matrix increase greatly. Additionally, the luminous intensity increases with the increasing of Eu3+ ions concentration in CaCO3 core and concentration quenching occurs when Eu3+ ions concentration exceeds 7.0 mol%, while it is 5.0 mol% for CaCO3:Eu3+ phosphors. Therefore, preparation of CaCO3:Eu3+@SiO2 phosphors can not only simplify the experimental process through integrating the preparation of CaCO3:Eu3+ and SiO2 layer, but also effectively increase the luminous intensities of CaCO3:Eu3+ phosphors. The as-obtained phosphors may have potential applications in the fields of optical materials and functional polymer composite materials, such as plastics and rubbers.

  2. Al2O3 adherence on CoCrAl alloys

    International Nuclear Information System (INIS)

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al 2 O 3 as both the dispersion and protective oxide; and the production of an HfO 2 dispersion while simultaneously aluminizing the alloy. It was found that an Al 2 O 3 dispersion will act to promote the adherence of an external scale of Al 2 O 3 to a degree comparable to previously tested dispersions and an HfO 2 dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization

  3. Investigation of multiphase equilibria in the subsolidus of BaO–CoO–Fe2O3–Al2O3 system

    Directory of Open Access Journals (Sweden)

    Kostyrkin Oleg

    2017-01-01

    Full Text Available One of the most important problems related to the development of new nonmetal materials and their performance characteristics is to predict the phase composition. The most comprehensive information on phase interactions and the thermodynamic stability of phase combinations is given by the state diagrams. The materials synthesized in the system subsolidus domain can be predicted the most accurately, because their sintering occurs without participation of the melt. Due to the above fact, the studies of the subsolidus structure of BaOCoO – Fe2O3 – Al2O3 system are of great interest, because on the basis of this system we can obtain a huge amount of nonmetal materials with prescribed properties, for example ferrimagnetic materials to protect from electromagnetic radiation, because the system compounds have cementing, refractory and ferrimagnetic properties. To study the structure of BaOCoO – Fe2O3 – Al2O3 system in detail the authors summed up already known data on the thermodynamic constants of system compounds. This allowed us to do the thermodynamic analysis of multiphase equilibrium processes that occur in the subsolidus of BaOCoO – Fe2O3 – Al2O3 system that was used as a basis for the plotting of the state diagram for the subsolidus domain of the system. A promising field for the application of obtained data is the cement production technology. The produced cement can be used independently and as a binding material to produce special cements and materials that retain their properties when exposed to the action of high-frequency electromagnetic radiation.

  4. Current-voltage characteristics of SnO2-Co3O4-Cr2O3-Sb2O5 ceramics

    International Nuclear Information System (INIS)

    Aguilar-Martinez, J A; Glot, A B; Gaponov, A V; Hernandez, M B; Guerrero-Paz, J

    2009-01-01

    The effect of mechanical treatment in a planetary mill on the microstructure and electrical properties of tin dioxide based varistor ceramics in the system SnO 2 -Co 3 O 4 -Cr 2 O 3 -Sb 2 O 5 sintered in the range 1150-1450 0 C was studied. The mechanical treatment leads to an increase in shrinkage, decrease in porosity, decrease in sample diameter, change in colour of the sintered samples from grey to black and enhancement of nonlinearity. For the sample sintered at 1350 0 C the mechanical treatment enhances the nonlinearity coefficient from 11 to 31 and decreases the electric field E 1 (at 10 -3 A cm -2 ) from 3500 to 2800 V cm -1 . The observed changes in physical properties are explained in terms of an additional size reduction of oxide particles and a better mixing of oxide powder followed by the formation of potential barriers at the grain boundaries throughout the whole sample. In spite of the low porosity, the low-field electrical conductivity of mechanically treated ceramics is significantly increased with the growth of relative humidity. A higher humidity sensitivity is found for mechanically treated ceramics with higher barrier height and higher nonlinearity coefficient.

  5. Soft template synthesis of mesoporous Co3O4/RuO2.xH2O composites for electrochemical capacitors

    International Nuclear Information System (INIS)

    Liu Yang; Zhao Weiwei; Zhang Xiaogang

    2008-01-01

    Co 3 O 4 /RuO 2 .xH 2 O composites with various Ru content (molar content of Ru = 5%, 10%, 20%, 50%) were synthesized by one-step co-precipitation method. The precursors were prepared via adjusting pH of the mixed aqueous solutions of Co(NO 3 ) 2 .6H 2 O and RuCl 3 .0.5H 2 O by using Pluronic123 as a soft template. For the composite with molar ratio of Co:Ru = 1:1 annealed at 200 deg. C, Brunauer-Emmet-Teller (BET) results indicated that the composite showed mesoporous structure, and the specific surface area of the composite was as high as 107 m 2 g -1 . The electrochemical performances of these composites were measured in 1 M KOH electrolyte. Compared with the composite prepared without template, the composite with P123 exhibited a higher specific capacitance. When the molar content of Ru was rising, the specific capacitance of the composites increased significantly. It was also observed that the crystalline structures as well as the electrochemical activities were strongly dependent on the annealing temperature. A capacitance of 642 F/g was obtained for the composite (Co:Ru = 1:1) annealed at 150 deg. C. Meanwhile, the composites also exhibited good cycle stability. Besides, the morphologies and textural characteristic of the samples were also investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM)

  6. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  7. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    Science.gov (United States)

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  8. The effect of CO2, H2O and SO2 on the kinetics of NO reduction by CH4 over La2O3

    International Nuclear Information System (INIS)

    Toops, Todd J.; Walters, Arden B.; Vannice, M.A.

    2002-01-01

    The effect of CO 2 , H 2 O and SO 2 on the kinetics of NO reduction by CH 4 over unsupported La 2 O 3 has been examined between 773 and 973K in the presence of O 2 in the feed. La 2 O 3 can maintain a stable, high specific activity (mol/(sm 2 )) for NO reduction with high concentrations of CO 2 and H 2 O in the feed; however, either of these two products reversibly inhibits the activity by about one-half in the presence of excess O 2 . The catalyst is poisoned by SO 2 at these temperatures and an oxysulfate phase is formed, but partial regeneration can be achieved at 1023K. CO 2 in the feed causes the formation of lanthanum oxycarbonate, which reverts to La 2 O 3 when CO 2 is removed, but no bulk La oxyhydroxide is detected after quenching with H 2 O in the feed. The influence of CO 2 and H 2 O on kinetic behavior can be described by assuming they compete with reactants for adsorption on surface sites, including them in the site balance equation, and using the rate expression proposed previously for NO reduction by CH 4 in excess O 2 . With O 2 in the feed, integral conversions of CH 4 and O 2 frequently occurred due to the direct combustion of CH 4 by O 2 , although NO conversions remained differential; thus, an integral reactor model was chosen to analyze the data which utilized a recently determined rate equation for CH 4 combustion on La 2 O 3 in conjunction with a previously proposed model for NO reduction by CH 4 . The following rate expression described the rate of N 2 formation: N 2 T = ' NO P NO P CH 4 P O 2 0.5 / 1 + K NO P NO + K CH 4 P CH 4 + K O 2 0.5 P O 2 0.5 + K CO 2 P CO 2 + K H 2 O P H 2 O 2 . It gave a good fit to the experimental rate data for NO reduction, as well as providing enthalpies and entropies of adsorption obtained from the fitting parameters that demonstrated thermodynamic consistency and were similar to previous values. The heats of adsorption were altered somewhat when either CO 2 or H 2 O was added to the feed, and the following

  9. Study of magnetization and magnetoelectricity in CoFe2O4/BiFeO3 core-shell composites

    Science.gov (United States)

    Kuila, S.; Tiwary, Sweta; Sahoo, M. R.; Barik, A.; Babu, P. D.; Siruguri, V.; Birajdar, B.; Vishwakarma, P. N.

    2018-02-01

    CoFe2O4 (core)/BiFeO3 (shell) nanoparticles are prepared by varying the relative molar concentration of core and shell materials (40%CoFe2O4-60%BiFeO3, 50%CoFe2O4-50%BiFeO3, and 60%CoFe2O4-40%BiFeO3). The core-shell nature is confirmed from transmission electron microscopy on these samples. A plot of ΔM (=MFC-MZFC) vs temperature suggests the presence of two types of spin dynamics: (a) particle size dependent spin blocking and (b) spin-disorder. These two spin dynamic processes are found to contribute independently to the generation of magnetoelectric voltage. Very clear first order and second order magnetoelectric voltages are recorded. The resemblance of the first order magnetoelectric coefficient vs temperature plot to that of building up of order parameters in the mean field theory suggests that spin disorder can act like one of the essential ingredients in building the magnetoelectric coupling. The best result is obtained for the 50-50 composition sample, which may be due to better coupling of magnetostrictive CoFe2O4, and piezoelectric BiFeO3, because of the optimum thickness of shell and core.

  10. Solid-solid interactions in Co3O4-MoO3/MgO system

    International Nuclear Information System (INIS)

    Radwan, Nagi R.E.; Ghozza, Ahmed M.; El-Shobaky, Gamil A.

    2003-01-01

    Cobalt/magnesium mixed oxide solids and cobalt-molybdenum/magnesium mixed oxide solids were prepared by thermal decomposition of basic magnesium carbonate pretreated with different proportions of cobalt nitrate and then with calculated amounts of ammonium molybdate. The proportions of cobalt expressed as Co 3 O 4 were 0.1, 0.2 and 0.3 mol while the concentrations of molybdenum expressed as mol% MoO 3 were 2.5 and 5.0. The prepared mixed solid specimens were calcined in air at 400-1000 deg. C. The solid-solid interactions in Co 3 O 4 -MoO 3 were investigated using DTA, TG and X-ray powder diffraction (XRD) techniques. The results obtained revealed that MgO dissolved cobalt oxide in its lattice forming CoO-MgO solid solution. The amount of cobalt dissolved increases by increasing the temperature in the range 800-1000 deg. C. This finding was confirmed by X-ray diffractograms in which all the diffraction lines of cobalt oxide disappeared at 1000 deg. C. MoO 3 present interacted readily with MgO and cobalt oxide by heat treatment at temperature starting from 400 deg. C producing MgMoO 4 and CoMoO 4 which remained stable by heating at 1000 deg. C. The impregnation of basic magnesium carbonate with cobalt nitrate much enhanced its thermal decomposition yielding MgO, which decomposed completely at 395.5 deg. C instead of 525 deg. C. The formation of magnesium cobaltite (MgCo 2 O 4 ) has been ruled out via XRD investigation at relatively high diffraction angles

  11. Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms.

    Science.gov (United States)

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J

    2009-07-01

    Atmospheric carbon dioxide (CO(2)) and ozone (O(3)) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO(2) and O(3) effects on roots, particularly fine-root life span, a critical demographic parameter and determinant of soil C and N pools and cycling rates. We conducted a study in which ponderosa pine (Pinus ponderosa) seedlings were exposed to two levels of CO(2) and O(3) in sun-lit controlled-environment mesocosms for 3 years. Minirhizotrons were used to monitor individual fine roots in three soil horizons every 28 days. Proportional hazards regression was used to analyze effects of CO(2), O(3), diameter, depth, and season of root initiation on fine-root survivorship. More fine roots were produced in the elevated CO(2) treatment than in ambient CO(2). Elevated CO(2), increasing root diameter, and increasing root depth all significantly increased fine-root survivorship and median life span. Life span was slightly, but not significantly, lower in elevated O(3), and increased O(3) did not reduce the effect of elevated CO(2). Median life spans varied from 140 to 448 days depending on the season of root initiation. These results indicate the potential for elevated CO(2) to increase the number of fine roots and their residence time in the soil, which is also affected by root diameter, root depth, and phenology.

  12. Highly active sulfided CoMo catalysts supported on (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} ternary oxides

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, José, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, Gustavo A. Madero, México, D.F. 07730 (Mexico); De Los Reyes, José A., E-mail: jarh@xanum.uam.mx [Area de Ing. Química, UAM – Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México, D.F. 09340 (Mexico); Ulín, Carlos A. [Area de Ing. Química, UAM – Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México, D.F. 09340 (Mexico); Barrera, María C., E-mail: mcbdgavilan@gmail.com [Facultad de Ciencias Químicas, Universidad Veracruzana, Av. Universidad km. 7.5, Col. Santa Isabel, Coatzacoalcos, Veracruz, México, D.F. 96538 (Mexico)

    2013-12-16

    (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} ternary oxide at 20 mol% Al{sub 2}O{sub 3} (80% ZrO{sub 2}–TiO{sub 2}, in turn at 40–60 mol ratio) prepared by controlled co-precipitation (by urea thermal decomposition) of zirconium (ZrOCl{sub 2}·8H{sub 2}O) and titanium (TiCl{sub 4}) chlorides over a ground alumina substrate constitutes a promising material to be used as carrier of sulfided hydrodesulfurization (HDS) catalysts. After calcining (at 500 °C), the ternary oxide presented textural properties (S{sub g} = 387 m{sup 2} g{sup −1}, V{sub p} = 0.74 ml g{sup −1}, mean pore diameter = 7.6 nm) suitable to its utilization as carrier of catalysts applied in the oil-derived middle distillates HDS. As determined by temperature programmed-reduction and Raman and UV–vis spectroscopies ZrO{sub 2}–TiO{sub 2} deposition over alumina substrate resulted in decreased proportion of Mo{sup 6+} species in tetrahedral coordination on the oxidic impregnated material. As those species constitute hardly reducible precursors, their diminished concentration could be reflected in enhanced amount of Mo species susceptible of activation by sulfiding (H{sub 2}S/H{sub 2} at 400 °C) over our ternary carrier. Limiting the concentration of zirconia-titania (at 40–60 mol ratio) to 20 mol% in the mixed oxides support allowed the preparation of highly active promoted (by cobalt, at Co/(Co + Mo) = 0.3) MoS{sub 2} phase (at 2.8 atoms/nm{sup 2}), that formulation showing excellent properties in hydrodesulfurization (HDS) of both dibenzothiophene and highly-refractory 4,6-dimethyl-dibenzothiophene. Due to alike yields to various HDS products over CoMo/(ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} and the corresponding Al{sub 2}O{sub 3}-supported formulation, presence of similar actives sites over those catalysts was strongly suggested. It seemed that enhanced concentration of octahedral Mo{sup 6+} over the oxidic impregnated precursor with (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3

  13. Crystal Structure of the Sodium Cobaltate Deuterate Superconductor NaxCoO2o4xD2O (x=1/3)

    OpenAIRE

    Jorgensen, J. D.; Avdeev, M.; Hinks, D. G.; Burley, J. C.; Short, S.

    2003-01-01

    Neutron and x-ray powder diffraction have been used to investigate the crystal structures of a sample of the newly-discovered superconducting sodium cobaltate deuterate compound with composition Na0.31(3)CoO2o1.25(2)D2O and its anhydrous parent compound Na0.61(1)CoO2. The deuterate superconducting compound is formed by coordinating four D2O molecules (two above and two below) to each Na ion in a way that gives Na-O distances nearly equal to those in the parent compound. One deuteron of the D2...

  14. Elevated tropospheric CO2 and O3 concentrations impair organic pollutant removal from grassland soil.

    Science.gov (United States)

    Ai, Fuxun; Eisenhauer, Nico; Jousset, Alexandre; Butenschoen, Olaf; Ji, Rong; Guo, Hongyan

    2018-04-03

    The concentrations of tropospheric CO 2 and O 3 have been rising due to human activities. These rising concentrations may have strong impacts on soil functions as changes in plant physiology may lead to altered plant-soil interactions. Here, the effects of eCO 2 and eO 3 on the removal of polycyclic aromatic hydrocarbon (PAH) pollutants in grassland soil were studied. Both elevated CO 2 and O 3 concentrations decreased PAH removal with lowest removal rates at elevated CO 2 and elevated O 3 concentrations. This effect was linked to a shift in soil microbial community structure by structural equation modeling. Elevated CO 2 and O 3 concentrations reduced the abundance of gram-positive bacteria, which were tightly linked to soil enzyme production and PAH degradation. Although plant diversity did not buffer CO 2 and O 3 effects, certain soil microbial communities and functions were affected by plant communities, indicating the potential for longer-term phytoremediation approaches. Results of this study show that elevated CO 2 and O 3 concentrations may compromise the ability of soils to degrade organic pollutants. On the other hand, the present study also indicates that the targeted assembly of plant communities may be a promising tool to shape soil microbial communities for the degradation of organic pollutants in a changing world.

  15. Thermodynamics of CoAl2O4-CoGa2O4 solid solutions

    International Nuclear Information System (INIS)

    Lilova, Kristina I.; Navrotsky, Alexandra; Melot, Brent C.; Seshadri, Ram

    2010-01-01

    CoAl 2 O 4 , CoGa 2 O 4 , and their solid solution Co(Ga z Al 1-z ) 2 O 4 have been studied using high temperature oxide melt solution calorimetry in molten 2PbO.B 2 O 3 at 973 K. There is an approximately linear correlation between lattice parameters, enthalpy of formation from oxides, and the Ga content. The experimental enthalpy of mixing is zero within experimental error. The cation distribution parameters are calculated using the O'Neill and Navrotsky thermodynamic model. The enthalpies of mixing calculated from these parameters are small and consistent with the calorimetric data. The entropies of mixing are calculated from site occupancies and compared to those for a random mixture of Ga and Al ions on octahedral site with all Co tetrahedral and for a completely random mixture of all cations on both sites. Despite a zero heat of mixing, the solid solution is not ideal in that activities do not obey Raoult's Law because of the more complex entropy of mixing. - Graphical abstract: Measured enthalpies of mixing of CoAl 2 O 4 -CoGa 2 O 4 solid solutions are close to zero but entropies of mixing reflect the complex cation distribution, so the system is not an ideal solution.

  16. Synthesis, Characterization and Sonocatalytic Activity of Co/N/Er3+ : Y3Al5O12 /TiO2 Film for the Degradation of Organic Dyes

    Directory of Open Access Journals (Sweden)

    Wang L.

    2015-07-01

    Full Text Available The sonocatalytic degradation of organic dyes (C.I. 50040, C.I. Reactive Red 1, C.I. Acid Orange 7 catalysed by Co/N/Er3+ : Y3Al5O12/TiO2 films was studied. For the preparation of Co/N/Er3+ : Y3Al5O12/TiO2 films, the sol-gel coating process was used. The phase composition, morphology, precursor at different temperatures and emitting light properties of the calcined powders were analysed by X-ray diffraction (XRD, absorption spectra and upconversion emission spectra. The X-ray diffraction of powder samples of Co/N/Er3+ : Y3Al5O12/TiO2 took on anatase mine peaks and upconversion luminous agent, respectively. Analysis of absorption spectra of amorphous Co/N/Er3+ : Y3Al5O12/TiO2 showed that doping N stretching vibration peak of water or hydroxyl adsorption, Co2+ ion had very strong absorption in 1.0–1.7 μm wavelength range, the transition luminescence of Er3+ ions was just on Co2+ ions absorption band. The emission spectrum indicated that Co/N/Er3+ : Y3Al5O12/TiO2 could launch green 500–560 nm and red 650–700 nm, 525, 550 and 660 nm peaks corresponding to 2H11/2, 4S3/2 → 4I15/2 and 4H9/2 → 4I15/2 transition of Er3+. Doping Co and N enhanced the upconversion luminescence and absorption effect. Sonocatalytic degradation effect of organic dyes loading Co/N/Er3+ : Y3Al5O12/TiO2 was better when ultrasonic intensity was equal to 15 W cm–2. The degradation ratios of aqueous solutions of these three kinds of organic dyes by ultrasonic irradiation were obviously lower than by ultrasonic irradiation together with Co/N/Er3+ : Y3Al5O12/TiO2 films in the same conditions. Degradation kinetics of organic dyes by ultrasonic irradiation and by ultrasonic irradiation cooperating with Co/N/Er3+ : Y3Al5O12/TiO2 films followed the first-order reaction.

  17. Study of the structural and thermal stability of Li0.3Co2/3Ni1/6Mn1/6O2

    International Nuclear Information System (INIS)

    Mahmoud, Abdelfattah; Saadoune, Ismael; Difi, Siham; Sougrati, Moulay Tahar; Lippens, Pierre-Emmanuel; Amarilla, José Manuel

    2014-01-01

    Thermal and structural stabilities of the delithiated positive electrode material Li x Co 2/3 Ni 1/6 Mn 1/6 O 2 were studied by X-ray diffraction, magnetic and thermogravimetric analysis. In the opposite to the classical electrode materials LiNiO 2 and LiCoO 2 , the structural symmetry (S.G. R-3 m) of the starting material LiCo 2/3 Ni 1/6 Mn 1/6 O 2 is preserved during the electrochemical cycling with a small variation of the unit cell parameters. Squid measurements evidenced that practically no Ni 2+ ions were present in the lithium slab even after the lithium extraction process. For the thermal stability, the highly oxidized phase Li 0.3 Co 2/3 Ni 1/6 Mn 1/6 O 2 was tested. This delithiated phase undergoes only 5.16% weight loss after heating up to 600 °C. This weight loss has no effect on the structure symmetry as the starting α-NaFeO 2 type structure was preserved during the thermal treatment. The obtained results coupled to the excellent electrochemical features of LiCo 2/3 Ni 1/6 Mn 1/6 O 2 clearly showits ability to compete with the commercialized cathode materials

  18. Magneto electric effects in BaTiO3-CoFe2O4 bulk composites

    Science.gov (United States)

    Agarwal, Shivani; Caltun, O. F.; Sreenivas, K.

    2012-11-01

    Influence of a static magnetic field (HDC) on the hysteresis and remanence in the longitudinal and transverse magneto electric voltage coefficients (MEVC) observed in [BaTiO3]1-x-[CoFe2O4]x bulk composites are analyzed. Remanence in MEVC at zero bias (HDC=0) is stronger in the transverse configuration over the longitudinal case. The observed hysteretic behavior in MEVC vs. HDC is correlated with the changes observed in the magnetostriction characteristics (λ and dλ/dH) reported for [BaTiO3]1-x-[CoFe2O4]x bulk composites.

  19. Spin-Coating and Characterization of Multiferroic MFe2O4 (M=Co, Ni) / BaTiO3 Bilayers

    Science.gov (United States)

    Quandt, Norman; Roth, Robert; Syrowatka, Frank; Steimecke, Matthias; Ebbinghaus, Stefan G.

    2016-01-01

    Bilayer films of MFe2O4 (M=Co, Ni) and BaTiO3 were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO3. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm-3 for the CoFe2O4/BaTiO3 and 188 emu cm-3 for the NiFe2O4/BaTiO3 bilayer, respectively were found. For the CoFe2O4/BaTiO3 bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe2O4/BaTiO3 bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems.

  20. Experimental Establishment of the 1300 degree centigrade Isothermal Section within the CaO - Al{sub 2}O{sub 3} - CoO Ternary System; Determinacion experimental de la seccion isotermal de 1300 degree centigrade del Sistema CaO - Al{sub 2}O{sub 3} - CoO

    Energy Technology Data Exchange (ETDEWEB)

    Torres-martinez, L. M.; Zarazua Morin, M. E.; Vasquez mendez, B. A.

    2011-07-01

    The subsolidus of the system CaO-Al{sub 2}O{sub 3}-CoO has been studied. Was established the existence of nine compatibility triangles. It had been found a phase Ca{sub 3}Al{sub 4}CoO{sub 1}0, isostructural to Ca{sub 3}MgAl{sub 4}O{sub 1}0. Solid solutions of CaO, CoO and CoAl{sub 2}O{sub 4} were determined. Color variation on different samples was observed as function of the phase diagram region. When Co was substituted for other bivalents cations (Sr, a, n, Ni, Cu, Cd, Sn and Pb), were not found new phases. This study depicts the most outstanding results concerning the alternate materials research line. The importance focused on the stability of the new compound into the matrix of other materials from some technological processes such as the cement one, into which industrial wastes can be incorporated as alternate raw materials and fuels. (Author) 46 refs.

  1. Orientation dependence of magnetoelectric coefficient in 1-3-type BaTiO3/CoFe2O4

    Science.gov (United States)

    Jian, Gang; Shao, Hui; Zhang, Cheng; Yan, Chao; Zhao, Ning; Song, Bo; Wong, C. P.

    2018-03-01

    Orientation dependence of magnetoelectric coefficient αE33 in 1-3-type BaTiO3/CoFe2O4 composites was calculated in arbitrary directions by three-dimensional coordinate transformation method. The space distributions of pc11‧, pc12‧, e31‧ for piezoelectric phase and mc11‧, mc12‧, q31‧ for magnetic phase were obtained independently using relative experimental data and original matrices for 4mm BaTiO3 and m3m CoFe2O4. Elastic stiffness coefficients show little orientation differences, while e31‧ and q31‧ exhibit high dependence on crystal orientation, with the MAX absolute e31‧ = 2.96 C/m2 and the MAX q31‧ = 556 × 10-12 m/A are found at θ = 0° and θ = 0°, ϕ = 45°, respectively. For space distribution of αE33‧, BaTiO3||[0 0 1]/CoFe2O4||[0 0 1] combination has the maximum value which applies to both 1-3 p/m (1.485 V/A) and 1-3 m/p composites (1.529 V/A). Volume fraction is quite independent of orientations of both piezoelectric and magnetic phases and the volume fraction for magnetic phase f around 0.5 obtains the largest αE33. The results suggest an approach to significantly enhancing magnetoelectric coefficient of composite multiferroic materials through crystal orientation controls of single crystals and textured ceramics.

  2. Solid-state thermal decomposition of the [Co(NH{sub 3}){sub 5}CO{sub 3}]NO{sub 3}{center_dot}0.5H{sub 2}O complex: A simple, rapid and low-temperature synthetic route to Co{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, Saeid, E-mail: sfarhad2001@yahoo.com [Department of Chemistry, Lorestan University, Khorramabad 68135-465 (Iran, Islamic Republic of); Safabakhsh, Jalil [Department of Chemistry, Lorestan University, Khorramabad 68135-465 (Iran, Islamic Republic of)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer [Co(NH{sub 3}){sub 5}CO{sub 3}]NO{sub 3}{center_dot}0.5H{sub 2}O complex was used for preparing pure Co{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer Co{sub 3}O{sub 4} nanoparticles were prepared at low temperature of 175 Degree-Sign C. Black-Right-Pointing-Pointer Co{sub 3}O{sub 4} nanoparticles show a weak ferromagnetic behaviour at room temperature. Black-Right-Pointing-Pointer The method is simple, low-cost and suitable for the production of Co{sub 3}O{sub 4}. - Abstract: Co{sub 3}O{sub 4} nanoparticles were easily prepared via the decomposition of the pentammine(carbonato)cobalt(III) nitrate precursor complex [Co(NH{sub 3}){sub 5}CO{sub 3}]NO{sub 3}{center_dot}0.5H{sub 2}O at low temperature (175 Degree-Sign C). The product was characterized by thermal analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Brunauer-Emmett-Teller (BET) specific surface area measurements and magnetic measurements. The FT-IR, XRD, Raman and EDX results indicated that the synthesized Co{sub 3}O{sub 4} nanoparticles are highly pure and have a single phase. The TEM analysis revealed nearly uniform and quasi-spherical Co{sub 3}O{sub 4} nanoparticles with an average particle size of approximately 10 nm. The optical absorption spectrum of the Co{sub 3}O{sub 4} nanoparticles showed two direct band gaps of 2.18 and 3.52 eV with a red shift in comparison with previous reported values. The prepared Co{sub 3}O{sub 4} nanoparticles showed a weak ferromagnetic behaviour that could be attributed to uncompensated surface spins and/or finite-size effects. Using the present method, Co{sub 3}O{sub 4} nanoparticles can be produced without expensive organic solvents and complicated equipment. This simple, rapid, safe and low-cost synthetic route can be extended to the synthesis of other

  3. Microstructure and Magnetic Properties of Highly Ordered SBA-15 Nanocomposites Modified with Fe2O3 and Co3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    P. F. Wang

    2012-01-01

    Full Text Available Owing to the unique order mesopores, mesoporous SBA-15 could be used as the carrier of the magnetic nanoparticles. The magnetic nanoparticles in the frame and the mesopores lead to the exchange-coupling interaction or other interactions, which could improve the magnetic properties of SBA-15 nanocomposites. Mesoporous Fe/SBA-15 had been prepared via in situ anchoring Fe2O3 into the frame and the micropores of SBA-15 using the sol-gel and hydrothermal processes. Co3O4 nanoparticles had been impregnated into the mesopores of Fe/SBA-15 to form mesoporous Fe/SBA-15-Co3O4 nanocomposites. XRD, HRTEM, VSM, and N2 physisorption isotherms were used to characterize the mesostructure and magnetic properties of the SBA-15 nanocomposites, and all results indicated that the Fe2O3 nanoparticles presented into the frame and micropores, while the Co3O4 nanoparticles existed inside the mesopores of Fe/SBA-15. Furthermore, the magnetic properties of SBA-15 could be conveniently adjusted by the Fe2O3 and Co3O4 magnetic nanoparticles. Fe/SBA-15 exhibited ferromagnetic properties, while the impregnation of Co3O4 nanoparticles greatly improved the coercivity with a value of 1424.6 Oe, which was much higher than that of Fe/SBA-15.

  4. Thermogravimetric, Calorimetric, and Structural Studies of the Co3 O4 /CoO Oxidation/Reduction Reaction

    Science.gov (United States)

    Unruh, Karl; Cichocki, Ronald; Kelly, Brian; Poirier, Gerald

    2015-03-01

    To better assess the potential of cobalt oxide for thermal energy storage (TES), the Co3O4/CoO oxidation/reduction reaction has been studied by thermogravimetric (TGA), calorimetric (DSC), and x-ray diffraction (XRD) measurements in N2 and atmospheric air environments. TGA measurements showed an abrupt mass loss of about 6.6% in both N2 and air, consistent with the stoichiometric reduction of Co3O4 to CoO and structural measurements. The onset temperature of the reduction of Co3O4 in air was only weakly dependent on the sample heating rate and occurred at about 910 °C. The onset temperature for the oxidation of CoO varied between about 850 and 875 °C for cooling rates between 1 and 20 °C/min, but complete re-conversion to Co3O4 could only be achieved at the slowest cooling rates. Due to the dependence of the rate constant on the oxygen partial pressure, the oxidation of Co3O4 in a N2 environment occurred at temperatures between about 775 and 825 °C for heating rates between 1 and 20 °C/min and no subsequent re-oxidation of the reduced Co3O4 was observed on cooling to room temperature. In conjunction with a measured transition heat of about 600 J/g of Co3O4, these measurements indicate that cobalt oxide is a viable TES material.

  5. Effect of copper oxide electrocatalyst on CO2 reduction using Co3O4 as anode

    Directory of Open Access Journals (Sweden)

    V.S.K. Yadav

    2016-09-01

    Full Text Available The reduction of carbon dioxide (CO2 to products electrochemically (RCPE in 0.5 M NaHCO3 and Na2CO3 liquid phase electrolyte solutions was investigated. Cobalt oxide (Co3O4 as anode and cuprous oxide (Cu2O as the cathode were considered, respectively. The impacts of applied potential with time of reaction during reduction of CO2 to products were studied. The anode and cathode were prepared by depositing electrocatalysts on the graphite plate. Ultra-fast liquid chromatography (UFLC was used to analyze the products obtained from the reduction of CO2. The feasible way of reduction by applying voltages with current densities was clearly correlated. The results illustrate the capability of electrocatalyst successfully to remove atmospheric CO2 in the form of valuable chemicals. Maximum Faradaic efficiency of ethanol was 98.1% at 2 V and for formic acid (36.6% at 1.5 V was observed in NaHCO3. On the other hand, in Na2CO3 electrolyte solution maximum efficiency for ethanol was 55.21% at 1.5 V and 25.1% for formic acid at 2 V. In both electrolytes other end products like methanol, propanol, formaldehyde and acetic acid were formed at various applied voltage and output current densities.

  6. Silicon nitride and silicon etching by CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams

    Energy Technology Data Exchange (ETDEWEB)

    Kaler, Sanbir S.; Lou, Qiaowei; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu; Economou, Demetre J., E-mail: economou@uh.edu [Department of Chemical and Biomolecular Engineering, Plasma Processing Laboratory, University of Houston, Houston, Texas 77204 (United States)

    2016-07-15

    Silicon nitride (SiN, where Si:N ≠ 1:1) films low pressure-chemical vapor deposited on Si substrates, Si films on Ge on Si substrates, and p-Si samples were exposed to plasma beams emanating from CH{sub 3}F/O{sub 2} or CH{sub 3}F/CO{sub 2} inductively coupled plasmas. Conditions within the plasma beam source were maintained at power of 300 W (1.9 W/cm{sup 3}), pressure of 10 mTorr, and total gas flow rate of 10 sccm. X-ray photoelectron spectroscopy was used to determine the thicknesses of Si/Ge in addition to hydrofluorocarbon polymer films formed at low %O{sub 2} or %CO{sub 2} addition on p-Si and SiN. Polymer film thickness decreased sharply as a function of increasing %O{sub 2} or %CO{sub 2} addition and dropped to monolayer thickness above the transition point (∼48% O{sub 2} or ∼75% CO{sub 2}) at which the polymer etchants (O and F) number densities in the plasma increased abruptly. The C(1s) spectra for the polymer films deposited on p-Si substrates appeared similar to those on SiN. Spectroscopic ellipsometry was used to measure the thickness of SiN films etched using the CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams. SiN etching rates peaked near 50% O{sub 2} addition and 73% CO{sub 2} addition. Faster etching rates were measured in CH{sub 3}F/CO{sub 2} than CH{sub 3}F/O{sub 2} plasmas above 70% O{sub 2} or CO{sub 2} addition. The etching of Si stopped after a loss of ∼3 nm, regardless of beam exposure time and %O{sub 2} or %CO{sub 2} addition, apparently due to plasma assisted oxidation of Si. An additional GeO{sub x}F{sub y} peak was observed at 32.5 eV in the Ge(3d) region, suggesting deep penetration of F into Si, under the conditions investigated.

  7. Topotactic reduction of YBaCo2O5 and LaBaCo2O5: square-planar Co(I) in an extended oxide.

    Science.gov (United States)

    Seddon, James; Suard, Emmanuelle; Hayward, Michael A

    2010-03-03

    The low-temperature reduction of YBaCo(2)O(5) and LaBaCo(2)O(5) with NaH to form YBaCo(2)O(4.5) and YBaCo(2)O(4.25), respectively, demonstrates that the structures of anion-deficient materials formed by such topotactic reductions can be directed by the ordering and identity of the A-site cations. YBaCo(2)O(4.5) adopts a structure consisting of a corner-shared network of square-based pyramidal CoO(5) and distorted tetrahedral CoO(4) units. The structure of LaBaCoO(4.25) is more complex, consisting of an array of square-based pyramidal CoO(5), distorted tetrahedral CoO(4), and square planar CoO(4) units. Magnetic susceptibility and variable-temperature neutron diffraction data reveal that YBaCo(2)O(4.5) adopts a G-type antiferromagnetically ordered structure below T(N) approximately 280 K. LaBaCo(2)O(4.25) also adopts antiferromagnetic order (T(N) approximately 325 K) with ordered moments consistent with the presence of square-planar, low-spin, s = 0, Co(I) centers. A detailed analysis reveals that the different anion vacancy ordered structures adopted by the two REBaCo(2)O(5-x) phases are directed by the relative sizes and ordering of the La(3+) and Y(3+) cations. This suggests that ordered arrangements of A-cations can be used to direct the anion vacancy order in topotactically reduced phases, allowing the preparation of novel metal-oxygen networks containing unusual transition metal coordination environments.

  8. A second polymorph with composition Co3(PO4)2·H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·H2O, tricobalt(II) bis­[ortho­phosphate(V)] monohydrate, were obtained under hydro­thermal conditions. The compound is the second polymorph of this composition and is isotypic with its zinc analogue, Zn3(PO4)2·H2O. Three independent Co2+ cations are bridged by two independent orthophosphate anions. Two of the metal cations exhibit a distorted tetra­hedral coordination while the third exhibits a considerably distorted [5 + 1] octa­hedral coordination environment with one very long Co—O distance of 2.416 (3) Å. The former cations are bonded to four different phosphate anions, and the latter cation is bonded to four anions (one of which is bidentate) and one water mol­ecule, leading to a framework structure. Additional hydrogen bonds of the type O—H⋯O stabilize this arrangement. PMID:21200979

  9. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    Science.gov (United States)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  10. Fabrication of heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} photocatalyst and efficient photodegradation of organic contaminants under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Meng; Li, Shuangli; Yan, Tao; Ji, Pengge; Zhao, Xia; Yuan, Kun; Wei, Dong [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Du, Bin, E-mail: dubin61@gmail.com [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2017-07-05

    Highlights: • The product shows efficient activity in photodegradation of RhB, BPA, and phenol. • The BBOC-10 heterojunction exhibits the best activity under visible light. • Suppressed recombination of photo-generated carriers lead to the activity enhancement. - Abstract: Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} photocatalysts were fabricated by a facile one-pot hydrothermal method, in which melem served as the sacrificial reagent to supply carbonate anions. The as-synthesized Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} heterojunction catalysts were characterized by X-ray diffraction, UV–vis diffuse reflectance spectra, X-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscope. The XRD patterns of Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} catalysts showed the distinctive peaks of Bi{sub 2}O{sub 2}CO{sub 3} and Bi{sub 2}O{sub 4}. The SEM and TEM results showed that the pure Bi{sub 2}O{sub 2}CO{sub 3} possessed large plate morphology, while Bi{sub 2}O{sub 4} were composed of various nanorods and particles. As for Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} heterojunction, it was obviously observed that Bi{sub 2}O{sub 4} nanorods and particles were grown on the surfaces of Bi{sub 2}O{sub 2}CO{sub 3} plates. The visible light driven photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} heterojunction photocatalyst was evaluated by decomposing dyes, phenol, and bisphenol A in water. Compared with Bi{sub 2}O{sub 2}CO{sub 3} and Bi{sub 2}O{sub 4}, the Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} photocatalysts have exhibited remarkable enhanced activity under visible light. The excellent activity can be mainly attributed to the enhanced separation efficiency of photo-generated carriers. Controlled experiments using different radical scavengers proved that ·O{sub 2}{sup −} and h{sup +} played the main role in decomposing organic pollutants. The results of this work would

  11. A thermodynamic model for the solubility of NpO2(am) in the aqueous K+-HCO3--CO32--OH--H2O system

    International Nuclear Information System (INIS)

    Rai, D.; Hess, N.J.; Felmy, A.R.; Moore, D.A.; Yui, M.

    1999-01-01

    Solubility of NpO 2 (am) was determined in the aqueous K + -HCO 3 - -CO 3 2- -OH - -H 2 O system extending to high concentrations of carbonate, bicarbonate, and mixed carbonate-hydroxide. Several reducing agents (Fe powder, Na 2 S 2 O 4 , NH 2 . NH 2 , and NH 2 OH . HCl) were tested for their effectiveness to maintain neptunium in the tetravalent state. Of these reducing agents, Na 2 S 2 O 4 was found to be the most effective. Even in the presence of Na 2 S 2 O 4 , significant oxidation of Np(IV) to Np(V) occurred in samples containing relatively low concentrations of carbonate/bicarbonate, relatively high concentrations of hydroxide, and samples equilibrated for relatively long periods. X-ray absorption spectroscopy (XAS) and solvent extraction were used to identify aqueous species and oxidation states and to help select appropriate data sets for thermodynamic interpretations. The dominant aqueous species in CO 3 2- and relatively concentrated HCO 3 - solutions was found by XAS to be Np(CO 3 ) 5 6- . Solubility of NpO 2 (am) in carbonate and bicarbonate solutions increased dramatically with increasing molal concentrations (carbonate >0.1 moles per kg H 2 O (m) and bicarbonate >0.01 m), indicating that carbonate makes strong complexes with Np(IV). The dominant Np(IV)-carbonate species that reasonably described all of the experimental data were Np(CO 3 ) 5 6- in low to high concentrations of carbonate and hydroxide and in high concentrations of bicarbonate, and Np(OH) 2 (CO 3 ) 2 2- in low concentrations of bicarbonate. The logarithm of the thermodynamic equilibrium constants for the NpO 2 (am) dissolution reactions involving these species [(NpO 2 (am) + 5 CO 3 2- + 4 H + Np(CO 3 ) 3 6- + 2 H 2 O) and (NpO 2 (am) + 2 HCO 3 - Np(OH) 2 (CO 3 ) 2 2- )] were found to be 34.85 and -4.44, respectively. These values, when combined with the solubility product of NpO 2 (am) [log K Sp = -54.9 [1, and recent unpublished data from Rai et al.

  12. Urchin-Like Ni1/3Co2/3(CO3)1/2(OH)·0.11H2O for Ultrahigh-Rate Electrochemical Supercapacitors: Structural Evolution from Solid to Hollow.

    Science.gov (United States)

    Wei, Wutao; Cui, Shizhong; Ding, Luoyi; Mi, Liwei; Chen, Weihua; Hu, Xianluo

    2017-11-22

    Portable electronics and electric or hybrid electric vehicles are developing in the trend of fast charge and long electric mileage, which ask us to design a novel electrode with sufficient electronic and ionic transport channels at the same time. Herein, we fabricate a uniform hollow-urchin-like Ni 1/3 Co 2/3 (CO 3 ) 1/2 (OH)·0.11H 2 O electrode material through an easy self-generated and resacrificial template method. The one-dimensional chain-like crystal structure unit containing the metallic bonding and the intercalated OH - and H 2 O endow this electrode material with abundant electronic and ionic transport channels. The hollow-urchin-like structure built by nanorods contributes to the large electrode-electrolyte contact area ensuring the supply of ions at high current. CNTs are employed to transport electrons between electrode material and current collector. The as-assembled NC-CNT-2//AC supercapacitor device exhibits a high specific capacitance of 108.3 F g -1 at 20 A g -1 , a capacitance retention ratio of 96.2% from 0.2 to 20 A g -1 , and long cycle life. Comprehensive investigations unambiguously highlight that the unique hollow-urchin-like Ni 1/3 Co 2/3 (CO 3 ) 1/2 (OH)·0.11H 2 O electrode material would be the right candidate for advanced next-generation supercapacitors.

  13. Utilizing Co2+/Co3+ Redox Couple in P2-Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium-Ion Batteries.

    Science.gov (United States)

    Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; Xiao, Na; Hong, Fan; Fu, Zheng-Wen; Wu, Xiao-Jing; Bak, Seong-Min; Yang, Xiao-Qing; Zhou, Yong-Ning

    2017-11-01

    Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na + and vacancy ordering. An interesting structure change of Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 , effectively suppressing the Mn 3+ -induced Jahn-Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 during charge/discharge is contributed by Co 2.2+ /Co 3+ and Mn 3.3+ /Mn 4+ redox couples. This is the first time that the highly reversible Co 2+ /Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.

  14. Crystal structure of the sodium cobaltate deuterate superconductor NaxCoO2ṡ4xD2O (x≈1/3)

    Science.gov (United States)

    Jorgensen, J. D.; Avdeev, M.; Hinks, D. G.; Burley, J. C.; Short, S.

    2003-12-01

    Neutron and x-ray powder diffraction have been used to investigate the crystal structures of a sample of the newly-discovered superconducting sodium cobaltate deuterate compound with composition Na0.31(3)CoO2ṡ1.25(2)D2O and its anhydrous parent compound Na0.61(1)CoO2. The anhydrous parent compound Na0.61(1)CoO2 has two partially occupied Na sites sandwiched, in the same plane, between CoO2 layers. When Na is removed to make the superconducting composition, the Na site that experiences the strongest Na Co repulsion is emptied while the occupancy of the other Na site is reduced to about one third. The deuterate superconducting compound is formed by coordinating four D2O molecules (two above and two below) to each remaining Na ion in a way that gives Na O distances nearly equal to those in the parent compound. One deuteron of the D2O molecule is hydrogen bonded to an oxygen atom in the CoO2 plane and the oxygen atom and the second deuteron of each D2O molecule lie approximately in a plane between the Na layer and the CoO2 layers. This coordination of Na by four D2O molecules leads in a straightforward way to ordering of the Na ions and D2O molecules consistent with the observation of additional shorter-range scattering features in the diffraction data. The sample studied here, which has Tc=4.5 K, has a refined composition of Na0.31(3)CoO2ṡ1.25(2)D2O, in agreement with the expected 1:4 ratio of Na to D2O. These results show that the optimal superconducting composition should be viewed as a specific hydrated compound, not a solid solution of Na and D2O (H2O) in NaxCoO2ṡD2O. The hydrated superconducting compound may be stable over a limited range of Na and D2O concentration, but studies of Tc and other physical properties vs Na or D2O composition should be viewed with caution until it is verified that the compound remains in the same phase over the composition range of the study.

  15. Crystal structure of the sodium cobaltate deuterate superconductor NaxCoO2·4xD2O (x≅(1/3))

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Avdeev, M.; Hinks, D.G.; Burley, J.C.; Short, S.

    2003-01-01

    Neutron and x-ray powder diffraction have been used to investigate the crystal structures of a sample of the newly-discovered superconducting sodium cobaltate deuterate compound with composition Na 0.31(3) CoO 2 ·1.25(2)D 2 O and its anhydrous parent compound Na 0.61(1) CoO 2 . The anhydrous parent compound Na 0.61(1) CoO 2 has two partially occupied Na sites sandwiched, in the same plane, between CoO 2 layers. When Na is removed to make the superconducting composition, the Na site that experiences the strongest Na-Co repulsion is emptied while the occupancy of the other Na site is reduced to about one third. The deuterate superconducting compound is formed by coordinating four D 2 O molecules (two above and two below) to each remaining Na ion in a way that gives Na-O distances nearly equal to those in the parent compound. One deuteron of the D 2 O molecule is hydrogen bonded to an oxygen atom in the CoO 2 plane and the oxygen atom and the second deuteron of each D 2 O molecule lie approximately in a plane between the Na layer and the CoO 2 layers. This coordination of Na by four D 2 O molecules leads in a straightforward way to ordering of the Na ions and D 2 O molecules consistent with the observation of additional shorter-range scattering features in the diffraction data. The sample studied here, which has T c =4.5 K, has a refined composition of Na 0.31(3) CoO 2 ·1.25(2)D 2 O, in agreement with the expected 1:4 ratio of Na to D 2 O. These results show that the optimal superconducting composition should be viewed as a specific hydrated compound, not a solid solution of Na and D 2 O (H 2 O) in Na x CoO 2 ·D 2 O. The hydrated superconducting compound may be stable over a limited range of Na and D 2 O concentration, but studies of T c and other physical properties vs Na or D 2 O composition should be viewed with caution until it is verified that the compound remains in the same phase over the composition range of the study

  16. Fabrication, modification and application of (BiO)_2CO_3-based photocatalysts: A review

    International Nuclear Information System (INIS)

    Ni, Zilin; Sun, Yanjuan; Zhang, Yuxin; Dong, Fan

    2016-01-01

    Graphical abstract: - Highlights: • The (BiO)_2CO_3 with Aurivillius structure y is an emergent material. • Synthesis of (BiO)_2CO_3 micro/nano structures was reviewed. • The mechanisms of (BiO)_2CO_3 based nanocomposites were discussed. • Doping (BiO)_2CO_3 with nonmetals for enhanced activity was highlighted. • Multi-functional applications of (BiO)_2CO_3 based derivatives was demonstrated. - Abstract: (BiO)_2CO_3 (BOC), a fascinating material, belongs to the Aurivillius-related oxide family with an intergrowth texture in which Bi_2O_2"2"+ layers and CO_3"2"− layers are orthogonal to each other. BOC is a suitable candidate for various fields, such as healthcare, photocatalysis, humidity sensor, nonlinear optical application and supercapacitors. Recently, the photocatalysis properties of (BiO)_2CO_3 have been gained increased attention. BOC has a wide band gap (3.1–3.5 eV), which constrains its visible light absorption and utilization. In order to enhance the visible light driven photocatalytic performance of BOC, many modification strategies have been developed. According to the discrepancies of different coupling mechanisms, six primary systems of BOC-based nanocomposites can be classified and summarized: namely, metal/BOC heterojunction, single metal oxides (metal sulfides)/BOC heterostructure, bismuth-based metallic acid salts (Bi_xMO_y)/BOC, bismuth oxyhalides (BiOX)/BOC, metal-free semiconductor/BOC and the BOC-based complex heterojunction. Doping BOC with nonmetals (C, N and oxygen vacancy) is unique strategy and warrants a separate categorization. In this review, we first give a detailed description of the strategies to fabricate various BOC micro/nano structures. Next, the mechanisms of photocatalytic activity enhancement are elaborated in three parts, including BOC-based nanocomposites, nonmetal doping and formation of oxygen vacancy. The enhanced photocatalytic activity of BOC-based systems can be attributed to the unique interaction of

  17. The use of CeO2-Co3O4 oxides as a catalyst for the reduction of N2O emission

    Directory of Open Access Journals (Sweden)

    Rajska Maria

    2016-01-01

    Full Text Available The morphological characterization of a series of cobalt-cerium oxide composites prepared by the deposition of CeO2 onto Co3O4 powder with a molar ratio of cerium oxide to Co3O4 in the range of 0 to 1 was performed. The powders were also impregnated with a solution of K2CO3 to obtain the theoretical content of potassium atoms 2at·nm−2. To investigate the effect of adding specific amount of CeO2 on the catalytic activity, the X-ray diffraction, SEM-EDX, laser particle size distribution and BET surface area measurements were used. The catalysts were tested through the low-temperature decomposition of nitrous oxide in the temperature range of 50°C to 700°C. The addition of CeO2 and K always moved the temperature of a complete N2O conversion towards lower temperatures (480°C-540°C to 340°C-420°C. The best catalytic properties were shown by the samples in which the ratio of cerium oxide to cobalt oxide ranged from 0.4 to 0.7.

  18. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).

    Science.gov (United States)

    Pan, Yun-xiang; Liu, Chang-jun; Mei, Donghai; Ge, Qingfeng

    2010-04-20

    The effects of hydration and oxygen vacancy on CO(2) adsorption on the beta-Ga(2)O(3)(100) surface have been studied using density functional theory slab calculations. Adsorbed CO(2) is activated on the dry perfect beta-Ga(2)O(3)(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect beta-Ga(2)O(3)(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect beta-Ga(2)O(3)(100) surface. Adsorption of CO(2) on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slightly repulsive interaction when H(2)O and CO(2) are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the coadsorbed H(2)O to a bicarbonate species, making the CO(2) adsorption exothermic, with an adsorption energy of -0.13 eV. The effect of defects on CO(2) adsorption and activation has been examined by creating an oxygen vacancy on the dry beta-Ga(2)O(3)(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O(2) molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO(2). In the most stable CO(2) adsorption configuration on the dry defective beta-Ga(2)O(3)(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO(2) occupies the oxygen vacancy site, and the CO(2) adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is spontaneous, with a reaction energy of -0.62 eV. These results indicate that, when water and CO(2) are present in the adsorption system simultaneously, water will compete with CO(2) for the oxygen vacancy sites and impact CO(2) adsorption and conversion negatively.

  19. Magneto-transport properties of Co3O4 nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting phase

    Science.gov (United States)

    Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.

    2018-05-01

    Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc =

  20. Thermodynamic investigation of the CaO-Al2O3-CaCO3-H2O closed system at 25 C and the influence of Na2O

    International Nuclear Information System (INIS)

    Damidot, D.; Stronach, S.; Kindness, A.; Atkins, M.; Glasser, F.P.

    1994-01-01

    The solubilities of calcium hemicarboaluminate, calcium monocarboaluminate and calcium tricarboaluminate have been determined and the equilibrium phase diagram for the CaO-Al 2 O 3 -CaCO 3 -H 2 O closed system at 25 C has been calculated. Six isothermally invariant points have been located involving six stable hydrates: CH, C 3 AH 6 , AH 3 , calcium hemicarboaluminate, calcium monocarboaluminate and calcite. Calcium tricarboaluminate, the carbonate analogue of ettringite, does not appear to be stable at 25 C. This study was part of a larger study on radioactive waste solidification

  1. Porous Co3O4 nanorods anchored on graphene nanosheets as an effective electrocatalysts for aprotic Li-O2 batteries

    Science.gov (United States)

    Yuan, Mengwei; Yang, Yan; Nan, Caiyun; Sun, Genban; Li, Huifeng; Ma, Shulan

    2018-06-01

    The large over-potential during the battery operation is a great obstacle for the application of Li-O2 batteries. The porous structure and electrical conductivity of the electrocatalysts are significant for the electrocatalytic performance of Li-O2 batteries. In this work, a porous Co3O4/GN nanocomposite (Co3O4 nanorods anchored on graphene nanosheets) is prepared via a facile hydrothermal method assisted with heat treatment. The unique structure of Co3O4/GN endows efficient electrocatalystic activity for Li-O2 batteries. In comparison to the Co3O4, the Co3O4/GN demonstrates a better cycle performance showing more than 40 cycles with a 1500 mAh g-1 capacity limit strategy at a current density of 300 mA g-1, and a reduced over-potential of 110 mV at high current density (1200 mA g-1). The Co3O4/GN also displays a high initial specific capacity (7600 mAh g-1) and a good reversibility in full cycle with a coulombic efficiency of 99.8% in the first cycle. The impressed cyclability, specific capacity, rate performance, and low over-potentials indicate that the as-prepared Co3O4/GN nanocomposite is a promising catalyst candidate for reversible Li-O2 batteries.

  2. Recycling of cobalt from spent Li-ion batteries as β-Co(OH)2 and the application of Co3O4 as a pseudocapacitor

    Science.gov (United States)

    Barbieri, E. M. S.; Lima, E. P. C.; Lelis, M. F. F.; Freitas, M. B. J. G.

    2014-12-01

    This work has investigated recycling cobalt from the cathodes of spent Li-ion batteries as β-Co(OH)2, obtaining Co3O4. β-Co(OH)2 with a hexagonal structure by using chemical precipitation (CP) or electrochemical precipitation (EP). In addition, the study has investigated whether the charge density applied directly affects the β-Co(OH)2 morphology. Co3O4 is formed by heat-treating β-Co(OH)2 at 450 °C for 3 h (h) in an air atmosphere. After calcining, the Co3O4 shows a cubic structure and satisfactory purity grade, regardless of the route used for preparation via which it was obtained. Cyclic voltammetry (CV) is then used for electrochemical characterization of the Co3O4 composite electrodes. In the cathodic process, CoO2 undergoes reduction to CoOOH, which undergoes further reduction to Co3O4. In the anodic process, Co3O4 undergoes oxidation to CoOOH, which simultaneously undergoes further oxidation to CoO2. The composite electrodes containing Co3O4, carbon black, and epoxy resin show great reversibility, charge efficiency, and a specific capacitance of 13.0 F g-1 (1.0 mV s-1). The synthesis method of Co(OH)2 influences the charge efficiency of Co3O4 composite electrodes at a scan rate of 10.0 mV s-1. Therefore, in addition to presenting an alternative use for exhausted batteries, Co3O4 composites exhibit favorable characteristics for use as pseudocapacitors.

  3. High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO·Al2O3·CaCO3·11H2O

    KAUST Repository

    Moon, Juhyuk; Oh, Jae Eun; Balonis, Magdalena; Glasser, Fredrik P.; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-01-01

    Synchrotron X-ray diffraction data was collected from a sample of monocarboaluminate 3CaO•Al2O3•CaCO 3•11H2O from ambient pressure to 4.3 GPa. The refined crystal structure at ambient pressure is triclinic with parameters a = 5.77(2) Å, b = 8

  4. Rose-like I-doped Bi_2O_2CO_3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance

    International Nuclear Information System (INIS)

    Zai, Jiantao; Cao, Fenglei; Liang, Na; Yu, Ke; Tian, Yuan; Sun, Huai; Qian, Xuefeng

    2017-01-01

    Highlights: • DFT reveals I"− can partially substitute CO_3"2"−to narrow the bandgap of Bi_2O_2CO_3. • Sodium citrate play a key role on the formation of rose-like I-doped Bi_2O_2CO_3. • Rose-like I-doped Bi_2O_2CO_3 show enhanced visible light response. • The catalyst has enhanced photocatalytic activity to organic and Cr(VI) pollutes. - Abstract: Based on the crystal structure and the DFT calculation of Bi_2O_2CO_3, I"− can partly replace the CO_3"2"−in Bi_2O_2CO_3 to narrow its bandgap and to enhance its visible light absorption. With this in mind, rose-like I-doped Bi_2O_2CO_3 microspheres were prepared via a hydrothermal process. This method can also be extended to synthesize rose-like Cl- or Br-doped Bi_2O_2CO_3 microspheres. Photoelectrochemical test supports the DFT calculation result that I- doping narrows the bandgap of Bi_2O_2CO_3 by forming two intermediate levels in its forbidden band. Further study reveals that I-doped Bi_2O_2CO_3 microspheres with optimized composition exhibit the best photocatalytic activity. Rhodamine B can be completely degraded within 6 min and about 90% of Cr(VI) can be reduced after 25 min under the irradiation of visible light (λ > 400 nm).

  5. Foamlike porous spinel Mn(x)Co(3-x)O4 material derived from Mn3[Co(CN)6]2⋅nH2O nanocubes: a highly efficient anode material for lithium batteries.

    Science.gov (United States)

    Hu, Lin; Zhang, Ping; Zhong, Hao; Zheng, Xinrui; Yan, Nan; Chen, Qianwang

    2012-11-19

    A new facile strategy has been designed to fabricate spinel Mn(x)Co(3-x)O(4) porous nanocubes, which involves a morphology-conserved and pyrolysis-induced transformation of Prussian Blue Analogue Mn(3)[Co(CN)(6)](2)⋅nH(2)O perfect nanocubes. Owing to the release of CO(2) and N(x)O(y) in the process of interdiffusion, this strategy can overcome to a large extent the disadvantage of the traditional ceramic route for synthesis of spinels, and Mn(x)Co(3-x)O(4) with foamlike porous nanostructure is effectively obtained. Importantly, when evaluated as an electrode material for lithium-ion batteries, the foamlike Mn(x)Co(3-x)O(4) porous nanocubes display high specific discharge capacity and excellent rate capability. The improved electrochemical performance is attributed to the beneficial features of the particular foamlike porous nanostructure and large surface area, which reduce the diffusion length for Li(+) ions and enhance the structural integrity with sufficient void space for buffering the volume variation during the Li(+) insertion/extraction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Impacts of Elevated Atmospheric CO2 and O3 on Paper Birch (Betula papyrifera: Reproductive Fitness

    Directory of Open Access Journals (Sweden)

    Joseph N. T. Darbah

    2007-01-01

    Full Text Available Atmospheric CO2 and tropospheric O3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO3 and O3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment site in Rhinelander, WI. Elevated CO2 increased both male and female flower production, while elevated O3 increased female flower production compared to trees in control rings. Interestingly, very little flowering has yet occurred in combined treatment. Elevated CO2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO2 increased germination rate of birch by 110% compared to ambient CO2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination, while the opposite was true of elevated O3 (elevated O3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%. Under elevated CO2, plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO2, while the reverse was true for seedlings from seeds produced under the elevated O3. Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO2 and O3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.

  7. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas.

    Science.gov (United States)

    Guo, Sijie; Zhao, Siqi; Wu, Xiuqin; Li, Hao; Zhou, Yunjie; Zhu, Cheng; Yang, Nianjun; Jiang, Xin; Gao, Jin; Bai, Liang; Liu, Yang; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui

    2017-11-28

    Syngas, a CO and H 2 mixture mostly generated from non-renewable fossil fuels, is an essential feedstock for production of liquid fuels. Electrochemical reduction of CO 2 and H + /H 2 O is an alternative renewable route to produce syngas. Here we introduce the concept of coupling a hydrogen evolution reaction (HER) catalyst with a CDots/C 3 N 4 composite (a CO 2 reduction catalyst) to achieve a cheap, stable, selective and efficient route for tunable syngas production. Co 3 O 4 , MoS 2 , Au and Pt serve as the HER component. The Co 3 O 4 -CDots-C 3 N 4 electrocatalyst is found to be the most efficient among the combinations studied. The H 2 /CO ratio of the produced syngas is tunable from 0.07:1 to 4:1 by controlling the potential. This catalyst is highly stable for syngas generation (over 100 h) with no other products besides CO and H 2 . Insight into the mechanisms balancing between CO 2 reduction and H 2 evolution when applying the HER-CDots-C 3 N 4 catalyst concept is provided.

  8. Elevated CO2 or O3 effects on fine-root survivorship in ponderosa pine

    Science.gov (United States)

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograp...

  9. Hard-X-ray photoelectron spectroscopy of NaxCoO2.yH2O

    International Nuclear Information System (INIS)

    Chainani, A.; Yokoya, T.; Takata, Y.; Tamasaku, K.; Taguchi, M.; Shimojima, T.; Kamakura, N.; Horiba, K.; Tsuda, S.; Shin, S.; Miwa, D.; Nishino, Y.; Ishikawa, T.; Yabashi, M.; Kobayashi, K.; Namatame, H.; Taniguchi, M.; Takada, K.; Sasaki, T.; Sakurai, H.; Takayama-Muromachi, E.

    2005-01-01

    We study the bulk electronic structure of Na x CoO 2 .yH 2 O using Hard X-ray (HX, hν = 5.95KeV) synchrotron photoelectron spectroscopy (PES). The Co 2p core level spectra show well-separated Co 3+ and Co 4+ ions. Cluster calculations suggest low spin Co 3+ and Co 4+ character, and a moderate on-site Coulomb correlation energy U dd ∼3-5.5eV. Photon-dependent valence band PES identifies Co 3d and O 2p derived states, in near agreement with band structure calculations. We discuss the importance of HX-PES for studying correlated transition metal oxides

  10. Preparation of Ag{sub 2}O/Ag{sub 2}CO{sub 3}/MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqin [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Jinze [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Ag{sub 2}O/Ag{sub 2}CO{sub 3}/MWNTs were prepared by calcination of the obtained precipitate. • The holes were main contributor for the degradation processes of ciprofloxacin. • The synergistic effect enhanced the activity and stability of composites. - Abstract: The Ag{sub 2}O/Ag{sub 2}CO{sub 3}/multi-walled carbon nanotube (MWNTs) composite photocatalysts were prepared by calcination of the obtained precipitate. The structures and morphology of as-prepared composite photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, X-ray photoelectron spectroscopy (XPS). The Ag{sub 2}O/Ag{sub 2}CO{sub 3}/MWNTs composite photocatalysts exhibit higher degradation rate of ciprofloxacin (CIP) than the pure Ag{sub 2}CO{sub 3}, Ag{sub 2}O/Ag{sub 2}CO{sub 3} and Ag{sub 2}CO{sub 3}/MWNTs under visible light irradiation. The amount of loaded Ag{sub 2}CO{sub 3} onto MWNTs and calcined time for Ag{sub 2}CO{sub 3}/MWNTs were systematically investigated, and the optimal amount of loaded Ag{sub 2}CO{sub 3} and calcined time of Ag{sub 2}CO{sub 3}/MWNTs are 150 wt% and 10 min, respectively. The highest photocatalytic degradation rate of CIP could reach 76% under optimal conditions. The active species trapping experiments were also analyzed, the results show that the holes are main contributor for the degradation processes of CIP, furthermore the electrons, ·O{sub 2}{sup −} and ·OH are also crucially influenced the photocatalytic degradation processes of CIP. The possible photocatalytic processes of CIP with Ag{sub 2}O/Ag{sub 2}CO{sub 3}/MWNTs composite photocatalyst are also proposed.

  11. Effect of Cr2O3 on the microstructure and non-ohmic properties of (Co, Sb)-doped SnO2 varistors

    International Nuclear Information System (INIS)

    Aguilar M, J. A.; Pech C, M. I.; Hernandez, M. B.; Rodriguez, E.; Garcia O, L.; Glot, A. B.

    2013-01-01

    The effect of Cr 2 O 3 addition on the physical characteristics, microstructure, and current-voltage properties of (Co-Sb)-doped SnO 2 varistors was investigated. SnO 2 -Co 3 O 4 -Sb 2 O 5 ceramics with additions of 0.0, 0.03, 0.05 and 0.07 mol % Cr 2 O 3 were sintered at 1350 C under ambient atmosphere and characterized micro structurally and electrically. The characterization by X-ray diffraction and scanning electron microscopy show that the microstructure remains as a single phase material with multimodal size distribution of SnO 2 grains. The greatest effect of Cr 2 O 3 additions is manifested in the electric breakdown field. Additions of high levels (0.07 and 0.05 %) of this oxide promote and increase of approximately 55% in this parameter compared to the Cr 2 O 3 -free sample. Another physical property is affected: the measured density values decreases as the Cr 2 O 3 content increases. A change in the nonlinearity coefficient value is produced only at the highest Cr 2 O 3 content while at intermediate levels there is not change at all. Consequently, when seeking high nonlinearity coefficients, intermediate levels of Cr 2 O 3 are not recommended. (Author)

  12. Self-Template Synthesis of Hybrid Porous Co3 O4 -CeO2 Hollow Polyhedrons for High-Performance Supercapacitors.

    Science.gov (United States)

    Wei, Chengzhen; Liu, Kangfei; Tao, Jing; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-01-04

    In this work, hybrid porous Co 3 O 4 -CeO 2 hollow polyhedrons have been successfully obtained via a simple cation-exchange route followed by heat treatment. In the synthesis process, ZIF-67 polyhedron frameworks are firstly prepared, which not only serve as a host for the exchanged Ce3 + ions but also act as the template for the synthesis of hybrid porous Co 3 O 4 -CeO 2 hollow polyhedrons. When utilized as electrode materials for supercapacitors, the hybrid porous Co 3 O 4 -CeO 2 hollow polyhedrons delivered a large specific capacitance of 1288.3 F g -1 at 2.5 A g -1 and a remarkable long lifespan cycling stability (<3.3 % loss after 6000 cycles). Furthermore, an asymmetric supercapacitor (ASC) device based on hybrid porous Co 3 O 4 -CeO 2 hollow polyhedrons was assembled. The ASC device possesses an energy density of 54.9 W h kg -1 , which can be retained to 44.2 W h kg -1 even at a power density of 5100 W kg -1 , indicating its promising application in electrochemical energy storage. More importantly, we believe that the present route is a simple and versatile strategy for the preparation of other hybrid metal oxides with desired structures, chemical compositions and applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of carbonation temperature on CO_2 adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO_3

    International Nuclear Information System (INIS)

    Hlaing, Nwe Ni; Sreekantan, Srimala; Hinode, Hirofumi; Kurniawan, Winarto; Thant, Aye Aye; Othman, Radzali; Mohamed, Abdul Rahman; Salime, Chris

    2016-01-01

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO_2 capture mainly due to their high CO_2 adsorption capacity. In this study, micro/nanostructured aragonite CaCO_3 was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO_3 with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO_2 adsorption capacity of CaO derived from aragonite CaCO_3 sample. At 300 °C, the sample reached the CO_2 adsorption capacity of 0.098 g-CO_2/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO_2/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO_2 adsorption capacity of the CaO derived from aragonite CaCO_3.

  14. Description and crystal structure of albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mereiter, K. [Vienna Univ. of Technology (Austria). Inst. of Chemical Technologies and Analytics

    2013-04-15

    Albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O, triclinic, space group P anti 1, a = 13.569(2), b = 13.419(2), c = 11.622(2) Aa, α = 115.82(1), β = 107.61(1), γ = 92.84(1) (structural unit cell, not reduced), V = 1774.6(5) Aa{sup 3}, Z = 2, Dc = 2.69 g/cm{sup 3} (for 17.5 H{sub 2}O), is a mineral that was found in small amounts with schroeckingerite, NaCa{sub 3}F[UO{sub 2}(CO{sub 3}){sub 3}](SO{sub 4}).10H{sub 2}O, on a museum specimen of uranium ore from Joachimsthal (Jachymov), Czech Republic. The mineral forms small grain-like subhedral crystals (= 0.2 mm) that resemble in appearance liebigite, Ca{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]. ∝ 11H{sub 2}O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2V = 65(1) (λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO{sub 2} and H{sub 2}O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO{sub 2}(CO{sub 3}){sub 3}]{sup 4-} anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF{sub 2}(O{sub carbonate}){sub 3}(H{sub 2}O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO{sub 6}, CaF{sub 2}O{sub 2}(H{sub 2}O){sub 4}, CaFO{sub 3}(H{sub 2}O){sub 4} and CaO{sub 2}(H{sub 2}O){sub 6} coordination polyhedra. The crystal structure is built up from MgCa{sub 3}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}].8H{sub 2}O layers parallel to (001) which

  15. Electro-catalytic degradation of bisphenol A with modified Co3O4/β-PbO2/Ti electrode

    International Nuclear Information System (INIS)

    Zhao, Jun; Zhu, Chengzhu; Lu, Jun; Hu, Caiju; Peng, Shuchuan; Chen, Tianhu

    2014-01-01

    Graphical abstract: - Highlights: • Co 3 O 4 /β-PbO 2 electrode was prepared and an excellent electrocatalytic property. • Co 3 O 4 /β-PbO 2 electrode had good corrosion resistance characterization and lifetime. • BPA electrocatalytic degradation followed pseudo-first-order reaction process. - Abstract: Ti-base Co 3 O 4 /β-PbO 2 composite electrodes were prepared using electro-deposition and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry and the accelerated life testing, it indicated that the self-made electrode had high activity in electrolysis as well as excellent corrosion resistance and excellent catalytic performance. The results showed that the removal efficiency of COD Cr could be reached up to 92.2% after 1.5 h electrolysis at NaCl concentration of 0.020 mol·L −1 , bisphenol A initial concentration of 20 mg·L −1 , applied voltage of 20 V, electrode spacing of 7 cm and electrolyte pH of 5. The reaction mechanism and kinetics of Co 3 O 4 /β-PbO 2 /Ti composite electrodes electro-catalytic degradation bisphenol A mainly caused by the OH radical attacking parent molecules and the degradation followed pseudo-first-order kinetics

  16. CO Sensing Properties of Nanostructured La0.8Sr0.2CoO3 Sensors Synthesized by EDTA-Glycol Method

    Directory of Open Access Journals (Sweden)

    G. N. Chaudhari

    2008-11-01

    Full Text Available We report a simple method for the preparation of pure LaCoO3 and La1-xSrxCoO3 (x = 0.1, 0.2 and 0.25 nanostructures by the EDTA-Glycol method. The final powders obtained by this method have been investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM measurements. The gas sensitivity of pure and Sr doped LaCoO3 samples were investigated for CO, NH3, H2 and LPG. La0.8Sr0.2CoO3 powders (sample GIII calcined at 6500C, exhibited a good sensor response towards CO gas at 2500C. On impregnation of 1 wt.% Pd over sample GIII, the operation temperature reduced to 2000C with a significant rise in sensitivity. The response time also decreases from about 3.5 min for sample GIII to less than 2.5 min for the Pd loaded element. The electronic interaction between Pd and metal oxide semiconductor is proposed to account for the sensitization effect.

  17. Adsorption of CO on the perovskite-type oxide LaCoO3

    International Nuclear Information System (INIS)

    Tascon, J.M.D.; Gonzalez Tejuca, L.

    1980-01-01

    In this work the adsorption of CO on LaCoO 3 between 113 and 773 K is studied. Low isosteric heats of adsorption in the temperature range 133-273 K, of 15 to 5 kJ/mol -1 point to physisorption. Between 573 and 648 K, the isosteric heat was 49 kJ/mol -1 , and the entropy values show that the adsorbed species has translational mobility in two dimensions. Adsorption of CO at 673 K and above caused reduction of the bulk. CO adsorption at 298 K gives rise to IR bands at 1495, 1450, 1175, 1110, 1070 and 850 cm -1 , attributed to bidentate carbonates. CO adsorption at 298 K on a surface with preadsorbed O 2 was found to be practically equal to the adsorption measured on a clean surface. On the contrary, preadsorbtion of CO 2 decreased the subsequent adsorption of CO to 1.2%. It is concluded that CO and CO 2 and adsorb on surface O 2- ions while oxygen adsorbs on surface metallic ions (Co 3+ or La 3+ ) of the La CoO 3 . (orig.) [de

  18. Synthesis and structural characterization of two cobalt phosphites: 1-D (H3NC6H4NH3)Co(HPO3)2 and 2-D (NH4)2Co2(HPo3)3

    International Nuclear Information System (INIS)

    Cheng, C.-C.; Chang, W.-K.; Chiang, R.-K.; Wang, S.-L.

    2010-01-01

    Two new cobalt phosphites, (H 3 NC 6 H 4 NH 3 )Co(HPO 3 ) 2 (1) and (NH 4 ) 2 Co 2 (HPO 3 ) 3 (2), have been synthesized and characterized by single-crystal X-ray diffraction. All the cobalt atoms of 1 are in tetrahedral CoO 4 coordination. The structure of 1 comprises twisted square chains of four-rings, which contain alternating vertex-shared CoO 4 tetrahedra and HPO 3 groups. These chains are interlinked with trans-1,4-diaminocyclohexane cations by hydrogen bonds. The 2-D structure of 2 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by Co 2 O 9 to form complex layers. Magnetic susceptibility measurements of 1 and 2 showed that they have a weak antiferromagnetic interaction. - Graphical abstract: The 2-D structure of (NH 4 ) 2 Co 2 (HPO 3 ) 3 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by dimmeric Co 2 O 9 to form complex layers.

  19. IDENTIFYING PLANETARY BIOSIGNATURE IMPOSTORS: SPECTRAL FEATURES OF CO AND O{sub 4} RESULTING FROM ABIOTIC O{sub 2}/O{sub 3} PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Schwieterman, Edward W.; Meadows, Victoria S.; Arney, Giada N.; Luger, Rodrigo; Misra, Amit; Barnes, Rory [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Domagal-Goldman, Shawn D.; Deming, Drake; Harman, Chester E., E-mail: eschwiet@uw.edu [NASA Astrobiology Institute’s Virtual Planetary Laboratory, Seattle, WA 981195 (United States)

    2016-03-01

    O{sub 2} and O{sub 3} have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O{sub 2}/O{sub 3}: CO and O{sub 4}. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by James Webb Space Telescope (JWST). If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 μm) in conjunction with CO{sub 2} (1.6, 2.0, 4.3 μm) in the transmission spectrum of a terrestrial planet it could indicate robust CO{sub 2} photolysis and suggest that a future detection of O{sub 2} or O{sub 3} might not be biogenic. Strong O{sub 4} bands seen in transmission at 1.06 and 1.27 μm could be diagnostic of a post-runaway O{sub 2}-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 μm, CO{sub 2} at 2.0 and 4.3 μm, and O{sub 4} at 1.27 μm are all stronger features in transmission than O{sub 2}/O{sub 3} and could be detected with S/Ns ≳ 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O{sub 4} bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 μm) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced.

  20. Phase equilibria and crystal chemistry of the CaO-½Gd2O3-CoOz system at 885 °C in air

    Science.gov (United States)

    Wong-Ng, W.; Laws, W.; Lapidus, S. H.; Ribaud, L.; Kaduk, J. A.

    2017-10-01

    The CaO-½Gd2O3-CoOz system prepared at 885 °C in air consists of two thermoelectric calcium cobaltate compounds, namely, the 2D thermoelectric oxide solid solution, (Ca3-xGdx)Co4O9-z (0 ≤ x ≤ 0.42) which has a misfit layered structure, and the 1D Ca3Co2O6 compound which consists of chains of alternating CoO6 trigonal prisms and CoO6 octahedra. Ca3Co2O6 was found to be a point compound. In the peripheral binary systems, Gd was not present in the Ca site of CaO, while a small solid solution region was identified for (Gd1-xCax)O(3-z)/2 (0 ≤ x ≤ 0.075). A solid solution region of distorted perovskite, (Gd1-xCax)CoO3-z (0 ≤ x ≤ 0.24, space group Pnma) was established. The structure of a member of the solid solution, (Gd0.92Ca0.08)CoO3-z, was determined using high resolution synchrotron radiation. A ternary oxide compound CaGdCoO4-z which has an orthorhombic structure (Bmab) was found to be stable at this temperature. Five solid solution tie-line regions and six three-phase regions were determined in the CaO-½Gd2O3-CoOz system. A comparison of the phase diagrams of the CaO-½R2O3-CoOz (R = La, Sm and Gd) systems is provided.

  1. Structural and physical properties of the NaxCoO2·yH2O superconducting system

    International Nuclear Information System (INIS)

    Shi, Y G; Li, J Q; Yu, H C; Zhou, Y Q; Zhang, H R; Dong, C

    2004-01-01

    The structural features and physical properties of Na x CoO 2 and Na x CoO 2 ·yH 2 O materials have been investigated. The Na x CoO 2 -yH 2 O samples, in general, undergo superconducting transitions at around 3.5 K. Energy dispersive x-ray analyses suggest that our samples have average compositions of Na 0.65 CoO 2 for the parent compounds and Na 0.26 CoO 2 ·yH 2 O for the superconducting oxyhydrates. Transmission electron microscopy observations reveal a new superstructure with wave vector q = in the parent material. This superstructure becomes very weak in the superconducting samples. Electron energy loss spectra analyses show that the Co ions have valence states of around +3.3 in Na 0.65 CoO 2 and around +3.7 in Na 0.26 CoO 2 -yH 2 O

  2. Effects of TiO{sub 2} and Co{sub 2}O{sub 3} combination additions on the elemental distribution and electromagnetic properties of Mn–Zn power ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.D.; Wang, Y.G., E-mail: yingang.wang@nuaa.edu.cn

    2015-06-15

    The effects of TiO{sub 2} and Co{sub 2}O{sub 3} combination additions on the elemental distribution and electromagnetic properties of Mn–Zn power ferrites are investigated. TiO{sub 2} addition can promote Co{sub 2}O{sub 3} transfer from grain boundaries to the bulk of the grains. The temperature at which the highest initial permeability μ{sub i} and the lowest power losses P{sub L} appear shifts to low temperature range with the increase of Co{sub 2}O{sub 3} content. Compared with the reference sample without TiO{sub 2} and Co{sub 2}O{sub 3} addition, the microstructure and electromagnetic properties of Mn–Zn power ferrites can be considerably improved with suitable amounts of TiO{sub 2} and Co{sub 2}O{sub 3} combination additions. At the peak temperature, the sample with the 0.1 wt% TiO{sub 2} and 0.08 wt% Co{sub 2}O{sub 3} additions has an increase of 15.8% in μ{sub i} to 3951, and a decrease of 22.9% in P{sub L} to 286 kW/m{sup 3}. The saturation magnetic induction B{sub s} and electrical resistivity ρ at 25 °C reach the highest values of 532 mT and 8.12 Ω m, respectively. - Highlights: • TiO{sub 2} addition can promote Co{sub 2}O{sub 3} transfer from grain boundaries to the bulk of grains. • The Co{sup 2+} ion addition has a compensation for the effect of Ti{sup 4+}on the Mn–Zn ferrites. • The combination of TiO{sub 2} and Co{sub 2}O{sub 3} additions insures stabilization of crystal lattice. • The lowest power loss P{sub L} as 286 kW/m{sup 3} is relatively lower than reported now.

  3. Enhanced electrochemical performance of LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 by nanoscale surface modification with Co_3O_4

    International Nuclear Information System (INIS)

    Huang, Yaqun; Huang, Yunhui; Hu, Xianluo

    2017-01-01

    Highlights: • Facile coating method to prepare Co_3O_4-modified NCA. • Co_3O_4 is uniformly coated on the surface of NCA. • The nanolayer coating protects the surface of NCA during Li cycling. • Co_3O_4-modified NCA exhibits enhanced cyclability and rate capability. - Abstract: LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 (NCA) has attracted much attention because of its high capacity and low cost. Herein, we report a facile wet-chemical route to prepare a Co_3O_4-modified NCA cathode material with enhanced electrochemical performance for lithium-ion batteries. The as-prepared Co_3O_4-coated NCA cathode material delivers a specific capacity of 207.6 mAh g"−"1 with an initial Coulombic efficiency of 90.8% at 0.1 C. The capacity retention of the Co_3O_4-coated NCA cathode material is as high as 91.6% at 1 C between the potential from 2.8 to 4.3 V after 100 cycles. More importantly, the capacity retention of the resulting Co_3O_4-coated NCA is higher than 94.7% after 100 cycles at 0.2 C. In addition, the Co_3O_4-coated NCA cathode material exhibits good rate capability, especially a high discharge capacity at a high current density. The outstanding electrochemical performance of Co_3O_4-coated NCA is assigned to the surface coating of Co_3O_4 that may react with lithium-containing impurities on the surface and decrease the charge-transfer resistance.

  4. Single crystals of the anisotropic Kagome staircase compounds Ni3V2O8 and Co3V2O8

    OpenAIRE

    Balakrishnan, G.; Petrenko, O. A.; Lees, M. R.; Paul, D. McK.

    2004-01-01

    Compounds with a Kagome type lattice are known to exhibit magnetic frustration. Large single crystals of two compounds Ni3V2O8 and Co3V2O8, which are variants of a Kagome net lattice, have been grown successfully by the floating zone technique using an optical image furnace. The single crystals are of high quality and exhibit intriguing magnetic properties.

  5. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in

  6. Enhancing Catalyzed Decomposition of Na2CO3 with Co2MnO x Nanowire-Decorated Carbon Fibers for Advanced Na-CO2 Batteries.

    Science.gov (United States)

    Fang, Cong; Luo, Jianmin; Jin, Chengbin; Yuan, Huadong; Sheng, Ouwei; Huang, Hui; Gan, Yongping; Xia, Yang; Liang, Chu; Zhang, Jun; Zhang, Wenkui; Tao, Xinyong

    2018-05-23

    The metal-CO 2 batteries, especially Na-CO 2 , batteries come into sight owing to their high energy density, ability for CO 2 capture, and the abundance of sodium resource. Besides the sluggish electrochemical reactions at the gas cathodes and the instability of the electrolyte at a high voltage, the final discharge product Na 2 CO 3 is a solid and poor conductor of electricity, which may cause the high overpotential and poor cycle performance for the Na-CO 2 batteries. The promotion of decomposition of Na 2 CO 3 should be an efficient strategy to enhance the electrochemical performance. Here, we design a facile Na 2 CO 3 activation experiment to screen the efficient cathode catalyst for the Na-CO 2 batteries. It is found that the Co 2 MnO x nanowire-decorated carbon fibers (CMO@CF) can promote the Na 2 CO 3 decomposition at the lowest voltage among all these metal oxide-decorated carbon fiber structures. After assembling the Na-CO 2 batteries, the electrodes based on CMO@CF show lower overpotential and better cycling performance compared with the electrodes based on pristine carbon fibers and other metal oxide-modified carbon fibers. We believe this catalyst screening method and the freestanding structure of the CMO@CF electrode may provide an important reference for the development of advanced Na-CO 2 batteries.

  7. Quatenary Na//F, Cl, CO3, MoO4 system

    International Nuclear Information System (INIS)

    Kochkarov, Zh.A.; Lok''yaeva, S.M.; Shurdumov, G.K.; Gasanaliev, A.M.; Trunin, A.S.

    1999-01-01

    Perspective in applied respect quatenary system (NaF) 2 -(NaCl)-Na 2 CO 3 -Na 2 MoO 4 being element of narrowing of more complex six-membered mutual Na//F, Cl, CO 3 , MoO 4 (WO 4 ) system is investigated by differential thermal analysis with the use of projection-thermographic method for the first time. Crystallization tree of Na//F, Cl, CO 3 , MoO 4 system is established. It is shown that this system by tetrahedrating (NaF) 2 -Na 2 CO 3 -Na 3 ClMoO 4 section is triangulated on two stable system: (NaF) 2 -Na 3 ClMoO 4 -Na 2 CO 3 -(NaCl) 2 and (NaF) 2 -Na 3 ClMoO 4 -Na 2 CO 3 -Na 2 MoO 4 . Phase single units are determined too. Coordinates of desired quatenary nonvariant points are calculated on analytical models of surfaces by mutual crystallization of two phases and are refined by differential thermal analysis [ru

  8. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth.

    Science.gov (United States)

    Xu, Jing; Wang, Qiufan; Wang, Xiaowei; Xiang, Qingyi; Liang, Bo; Chen, Di; Shen, Guozhen

    2013-06-25

    We have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on acicular Co9S8 nanorod arrays as positive materials and Co3O4@RuO2 nanosheet arrays as negative materials on woven carbon fabrics. Co9S8 nanorod arrays were synthesized by a hydrothermal sulfuration treatment of acicular Co3O4 nanorod arrays, while the RuO2 was directly deposited on the Co3O4 nanorod arrays. Carbon cloth was selected as both the substrate and the current collector for its good conductivity, high flexibility, good physical strength, and lightweight architecture. Both aqueous KOH solutions and polyvinyl alcohol (PVA)/KOH were employed as electrolyte for electrochemical measurements. The as-fabricated ASCs can be cycled reversibly in the range of 0-1.6 V and exhibit superior electrochemical performance with an energy density of 1.21 mWh/cm(3) at a power density of 13.29 W/cm(3) in aqueous electrolyte and an energy density of 1.44 mWh/cm(3) at the power density of 0.89 W/cm(3) in solid-state electrolyte, which are almost 10-fold higher than those reported in early ASC work. Moreover, they present excellent cycling performance at multirate currents and large currents after thousands of cycles. The high-performance nanostructured ASCs have significant potential applications in portable electronics and electrical vehicles.

  9. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    Science.gov (United States)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  10. Electronic Structure and Thermoelectric Properties of Ca3 Co4O9

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relation among electronic structure, chemical bond and thermoelectric property of Ca3 Co4 O9 was studied using density function and discrete variation method (DFT-DVM).The gap between the highest valence band (HVB) and the lowest conduction band (LCB) shows a semiconducting property.Ca3 Co4 O9 colsists of CoO2 and Ca2 CoO3 two layers.The HVB and LCB near Fermi level are only mainly from O(2) 2p and Co(2) 3d in Ca2 CoO3 layer. Therefore, the semiconducting or thermoelectric property of Ca3 Co4 O9 should be mainly from Ca2 CoO3 layer, but it seems to have no direct relation to the CoO2 layer,which is consistent with that binary oxides hardly have a thermoelectric property, but trinary oxide compounds have quite a good thermoelectric property.The covalent and ionic bonds of Ca2 CoO3 layer are both weaker than those of CoO2 layer.Ca plays the role of connections between CoO2 and Ca2 CoO3 layers in Ca3 Co4 O9, decrease the ionic and covalent bond strength, and improve the thermoelectric property.

  11. Influence of CaCO3, Al2O3, and TiO2 microfillers on physico-mechanical properties of Luffa cylindrica/polyester composites

    Directory of Open Access Journals (Sweden)

    Vinay Kumar Patel

    2016-06-01

    Full Text Available The development of natural fibre reinforced polymer composites has gained popularity in many applications due to their environment friendly characteristics over the synthetic fibre based polymer composites. This paper describes the fabrication and physical, mechanical, three-body abrasive wear and water absorption behaviour of Luffa fibre reinforced polyester composites with and without addition of micro-fillers of Al2O3, CaCO3 and TiO2. The ranking of the composite materials has been made by using Technique for order preference by similarity to ideal solution (TOPSIS method with output parameters of their physical, mechanical and abrasive wear and water absorption attributes. The addition of microfillers has enhanced greatly the physical and mechanical properties of Luffa-fibre based composites. The addition of microfillers has influenced the physico-mechanical properties of Luffa-fibre based polyester composites in descending order of CaCO3, Al2O3, and TiO2.

  12. Eu/Tb ions co-doped white light luminescence Y2O3 phosphors

    International Nuclear Information System (INIS)

    Tu Dong; Liang Yujun; Liu Rong; Li Daoyi

    2011-01-01

    Y 2 O 3 :Eu 3+ , Tb 3+ phosphors with white emission are prepared with different doping concentration of Eu 3+ and Tb 3+ ions and synthesizing temperatures from 750 to 950 deg. C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu 3+ and Tb 3+ co-doped Y 2 O 3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu 3+ and two at 481 and 541 nm originate from Tb 3+ , under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu 3+ and Tb 3+ ions were induced into the Y 2 O 3 lattice and the energy transfer from Tb 3+ →Eu 3+ ions in these phosphors was found. The Commission International de l'Eclairage (CIE) chromaticity shows that the Y 2 O 3 :Eu 3+ , Tb 3+ phosphors can obtain an intense white emission. - Highlights: → Novel phosphors Y 2 O 3 :Eu 3+ , Tb 3+ have been synthesized by co-precipitation method. → Samples emit white light with excellent color coordinates under UV excitation. → Luminescence color could be changed by varying the excitation wavelength. → Energy transfer from Tb 3+ →Eu 3+ ions in these phosphors was found.

  13. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    OpenAIRE

    Boukoberine, Yamina; Hamada, Boudjema

    2016-01-01

    CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in ca...

  14. Improvement of structural and electrochemical properties of commercial LiCoO2 by coating with LaF3

    International Nuclear Information System (INIS)

    Yang Zhanxu; Qiao Qingdong; Yang Wensheng

    2011-01-01

    Highlights: → LaF 3 has been introduced as a new coating material for the LiCoO 2 cathode. → The LaF 3 -coated LiCoO 2 showed an excellent overcharge tolerance and structure stability. → The thermal stability of the LaF 3 -coated cathode is significantly enhanced. Therefore, LaF 3 is a probably potential coating material. - Abstract: Commercial LiCoO 2 has been modified with LaF 3 as a new coating material. The surface modified materials were characterized by X-ray diffraction (XRD), transmission electronic microscopy (TEM), field emission scanning electron microscopy (FE-SEM), auger electron spectroscopy (AES) and galvanostatic charge-discharge cycling. The LaF 3 -coated LiCoO 2 had an initial discharge specific capacity of 177.4 mAh g -1 within the potential ranges 2.75-4.5 V (vs. Li/Li + ), and showed a good capacity retention of 90.9% after 50 cycles. It was found that the overcharge tolerance of the coated cathode was significantly better than that of the pristine LiCoO 2 under the same conditions - the capacity retention of the pristine LiCoO 2 was 62.3% after 50 cycles. The improvement could be attributed to the LaF 3 coating layer that hinders interaction between LiCoO 2 and electrolyte and stabilizes the structure of LiCoO 2 . Moreover, DSC showed that the coated LiCoO 2 had a higher thermal stability than the pristine LiCoO 2 .

  15. Upconversion and pump saturation mechanisms in Er3+/Yb3+ co-doped Y2Ti2O7 nanocrystals

    International Nuclear Information System (INIS)

    Wang, Fengxiao; Song, Feng; Zhang, Gong; Han, Yingdong; Li, Qiong; Tian, Jianguo; Ming, Chengguo

    2014-01-01

    The Er 3+ /Yb 3+ co-doped Y 2 Ti 2 O 7 nanocrystals were synthesized by the sol–gel method. X-ray diffraction, transmission electronic microscopy, and photoluminescence spectra were measured to verify the Y 2 Ti 2 O 7 nanocrystalline produced in the sample annealed at 800 °C. The anomalous slopes of the fitted line in the log-log plots for upconversion emissions and the pump-saturation effect of near-infrared emission were observed in the nanocrystalline samples. A theoretical model of practical Er 3+ /Yb 3+ co-doped system based on the rate equations were put forward and explained the experimental phenomena well

  16. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem.

    Science.gov (United States)

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-03-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.

  17. OH yields from the CH3CO+O-2 reaction using an internal standard\\ud

    OpenAIRE

    Carr, S.A.; Baeza-Romero, M.T.; Blitz, M.A.; Pilling, M.J.; Heard, D.E.; Seakins, P.W.

    2007-01-01

    Laser flash photolysis of CH3C(O)OH at 248 nm was used to create equal zero time yields of CH3CO and OH. The absolute OH yield from the CH3CO + O2 (+M) reaction was determined by following the OH temporal profile using the zero time\\ud OH concentration as an internal standard. The OH yield from CH3CO + O2 (+M) was observed to decrease with increasing pressure with an extrapolated zero pressure yield\\ud close to unity (1.1 ± 0.2, quoted uncertainties correspond to 95% confidence limits). The r...

  18. Synthesis of Co3O4/TiO2 composite by pyrolyzing ZIF-67 for detection of xylene

    Science.gov (United States)

    Bai, Shouli; Tian, Ke; Tian, Ye; Guo, Jun; Feng, Yongjun; Luo, Ruixian; Li, Dianqing; Chen, Aifan; Liu, Chung Chiun

    2018-03-01

    Co3O4/TiO2 composites with p-n heterojunction have been successfully prepared by pyrolyzing sacrificial template of Ti ion loaded Co-based Zeolitic imidazolate framework (ZIF-67). The structure and morphology of composite have been characterized by means of the analysis of XRD, FESEM, HRTEM and XPS spectra. The composite with a Co/Ti molar ratio of 4:1 exhibits the maximum sensing response of 6.17-50 ppm xylene, which is 5 times higher than pristine Co3O4. Moreover, Co3O4/TiO2 composite also shows good selectivity, long-term stability and rapid response and recovery. Such excellent sensing performances are attributed to material porous structure, high specific surface and the formation of abundant p-n heterojunction that permits the gas adsorption, diffusion and surface reaction and then improve the gas sensing performance. This work develops a promising synthesized approach of metal oxide composites for broader MOFs application in gas sensor field.

  19. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  20. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.

    Science.gov (United States)

    Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek; Nakai, Izumi; Komaba, Shinichi

    2011-03-30

    Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.

  1. Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated CO2 and O3

    International Nuclear Information System (INIS)

    Wang, Xiaona; Qu, Laiye; Mao, Qiaozhi; Watanabe, Makoto; Hoshika, Yasutomo; Koyama, Akihiro; Kawaguchi, Korin; Tamai, Yutaka; Koike, Takayoshi

    2015-01-01

    We studied the colonization of ectomycorrhizal fungi and species abundance of a hybrid larch (F 1 ) under elevated CO 2 and O 3. Two-year-old seedlings were planted in an Open-Top-Chamber system with treatments: Control (O 3  < 6 nmol/mol), O 3 (60 nmol/mol), CO 2 (600 μmol/mol), and CO 2  + O 3 . After two growing seasons, ectomycorrhiza (ECM) colonization and root biomass increased under elevated CO 2 . Additionally, O 3 impaired ECM colonization and species richness, and reduced stem biomass. However, there was no clear inhibition of photosynthetic capacity by O 3 . Concentrations of Al, Fe, Mo, and P in needles were reduced by O 3 , while K and Mg in the roots increased. This might explain the distinct change in ECM colonization rate and diversity. No effects of combined fumigation were observed in any parameters except the P concentration in needles. The tolerance of F 1 to O 3 might potentially be related to a shift in ECM community structure. - Highlights: • Elevated CO 2 enhanced growth of hybrid larch F 1 (F 1 ). • ECM colonization rate and species richness of ECM were reduced by O 3 . • Species abundance of ECM community differed between O 3 and control. • F 1 potentially resisted O 3 impacts via specific selection of Suillus spp. for element uptake. - Elevated CO 2 moderated the negative effects of O 3 on the growth of hybrid larch F 1 , by stimulating ectomycorrhizas and nutrient uptake

  2. Na3Co2(As0.52P0.48)O4(As0.95P0.05)2O7.

    Science.gov (United States)

    Ben Smida, Youssef; Guesmi, Abderrahmen; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-11-30

    The title compound, trisodium dicobalt(II) (arsenate/phosphate) (diarsenate/diphosphate), was prepared by a solid-state reaction. It is isostructural with Na3Co2AsO4As2O7. The framework shows the presence of CoX22O12 (X2 is statistically disordered with As0.95P0.05) units formed by sharing corners between Co1O6 octa-hedra and X22O7 groups. These units form layers perpendicular to [010]. Co2O6 octa-hedra and X1O4 (X1 = As0.54P0.46) tetra-hedra form Co2X1O8 chains parallel to [001]. Cohesion between layers and chains is ensured by the X22O7 groups, giving rise to a three-dimensional framework with broad tunnels, running along the a- and c-axis directions, in which the Na(+) ions reside. The two Co(2+) cations, the X1 site and three of the seven O atoms lie on special positions, with site symmetries 2 and m for the Co, m for the X1, and 2 and m (× 2) for the O sites. One of two Na atoms is disordered over three special positions [occupancy ratios 0.877 (10):0.110 (13):0.066 (9)] and the other is in a general position with full occupancy. A comparison between structures such as K2CdP2O7, α-NaTiP2O7 and K2MoO2P2O7 is made. The proposed structural model is supported by charge-distribution (CHARDI) analysis and bond-valence-sum (BVS) calculations. The distortion of the coordination polyhedra is analyzed by means of the effective coordination number.

  3. Improved high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode with Tris(2,2,2-trifluoroethyl) phosphite as electrolyte additive

    International Nuclear Information System (INIS)

    Wang, Long; Ma, Yulin; Li, Qin; Cui, Yingzhi; Wang, Panpan; Cheng, Xinqun; Zuo, Pengjian; Du, Chunyu; Gao, Yunzhi

    2017-01-01

    Tris(2,2,2-trifluoroethyl) phosphite (TTFEP) is investigated as an electrolyte additive to improve the electrochemical performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode at high operating voltage (4.6 V). Charge/discharge measurements demonstrate that TTFEP is effective to improve the cycling stability and rate capability of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode. The capacity retention of LiNi 1/3 Co 1/3 Mn 1/3 O 2 /Li cell with 1% TTFEP-containing electrolyte reaches up to 85.4% after 100 cycles at 0.5C (1C = 160 mA g −1 ), while that of the cell with the baseline electrolyte (1 M LiPF 6 in EC/DMC electrolyte) only remains 74.2%. Moreover, the discharge capacity of the cathode with 1% TTFEP-containing electrolyte could maintain around 112.0 mAh g −1 at 4C. Based on the characterization of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), a protective interphase film formed on the cathode surface can be found due to the preferential oxidation of TTFEP, which inhibits the electrolyte decomposition and mitigates the cathode structural destruction, leading to the improved electrochemical performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode at high voltage.

  4. The influence of Pr3+ co-doping on the photoluminescence and cathodoluminescence properties of SiO2:Eu3+/Tb3+

    CSIR Research Space (South Africa)

    Mhlongo, GH

    2011-07-01

    Full Text Available Tb3+-Pr3+, and Eu3+-Pr3+ ion pairs co-doped in a SiO2 matrix were prepared by a sol-gel method. Co-doping of Eu3+ and Tb3+ ions with Pr3+ in SiO2 resulted in the quenching of Eu3+ and Tb3+ emissions with increasing Pr3+ concentrations. The quenching...

  5. EFFECT OF THE REDUCTION TEMPERATURE INTO CATALYTIC ACTIVITY OF Ni SUPPORTED BY TiO2, AL2O2 AND TiO2/AL2O3 FOR CONVERSION CO2 INTO METHANE

    Directory of Open Access Journals (Sweden)

    Hery Haerudin

    2010-06-01

    Full Text Available Nickel catalysts, containing 6% (w/w of nickel, have been prepared using TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9. The catalysts were used for CO2 conversion into methane. The characteristics of catalysts were studied by determination of its specific surface area, temperature programmed reaction technique and X-ray diffraction. The specific surface area were varied slightly by different temperature of reduction, namely after reduction at 300°C it was 39, 120 and 113 m2/g and after reduction at 400°C it was 42, 135  and 120 m2/g for 6% nickel catalysts supported on TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9 respectively. Temperature program reaction studies (TPO and TPR showed that NiTiOx species were possibly formed during the pretreatments which has shown by the shift of its peak to the lower temperature on Ni catalyst, that supported on mixture of TiO2-Al2O3 compared with catalysts supported on individual TiO2 or Al2O3. The nickel species on reduced Ni catalysts supported on TiO2 and on mixture of TiO2-Al2O3 could be detected by X-ray diffraction. The catalyst's activities toward CH4 formation were affected by the reduction temperature. Activity for CH4 formation was decreased in the following order: Ni/ TiO2 > Ni/ TiO2: Al2O3 > Ni/ Al2O3 and Ni/ TiO2: Al2O3 > Ni/ TiO2> Ni/ Al2O3, when catalysts were reduced at 300°C or 400°C respectively. The CO2 conversion was decreased in the following order: Ni/ Al2O3 > Ni/ TiO2: Al2O3 > Ni/ TiO2 when catalysts were reduced at 300°C or 400°C respectively.   Keywords: nickel catalyst, carbondioxide, methane

  6. The Density and Compressibility of BaCO3-SrCO3-CaCO3-K2CO3-Na2CO3-Li2CO3 Liquids: New Measurements and a Systematic Trend with Cation Field Strength

    Science.gov (United States)

    Hurt, S. M.; Lange, R. A.; Ai, Y.

    2015-12-01

    The volumetric properties of multi-component carbonate liquids are required to extend thermodynamic models that describe partial melting of the deep mantle (e.g. pMELTS; Ghiorso et al., 2003) to carbonate-bearing lithologies. Carbonate in the mantle is an important reservoir of carbon, which is released to the atmosphere as CO2 through volcanism, and thus contributes to the carbon cycle. Although MgCO3 is the most important carbonate component in the mantle, it is not possible to directly measure the 1-bar density and compressibility of MgCO3 liquid because, like other alkaline-earth carbonates, it decomposes at a temperature lower than its melting temperature. Despite this challenge, Liu and Lange (2003) and O'Leary et al. (2015) showed that the one bar molar volume, thermal expansion and compressibility of the CaCO3 liquid component could be obtained by measuring the density and sound speeds of stable liquids in the CaCO3-Li2CO3-Na2CO3-K2CO3 quaternary system at one bar. In this study, this same strategy is employed on SrCO3- and BaCO3-bearing alkali carbonate liquids. The density and sound speed of seven liquids in the SrCO3-Li2CO3-Na2CO3-K2CO3 quaternary and three liquids in the BaCO3-Li2CO3-Na2CO3-K2CO3 quaternary were measured from 739-1367K, with SrCO3 and BaCO3 concentrations ranging from 10-50 mol%. The density measurements were made using the double-bob Archimedean method and sound speeds were obtained with a frequency-sweep acoustic interferometer. The molar volume and sound speed measurements were used to calculate the isothermal compressibility of each liquid, and the results show the volumetric properties mix ideally with composition. The partial molar volume and compressibility of the SrCO3 and BaCO3 components are compared to those obtained for the CaCO3 component as a function of cation field strength. The results reveal a systematic trend that allows the partial molar volume and compressibility of the MgCO3 liquid component to be estimated.

  7. Catalisadores sol-gel de Ni-SiO2 e Ni-Al2O3 aplicados na reforma de metano com CO2 = Ni-SiO2 and Ni-Al2O3 sol-gel catalysts applied to methane reforming with CO2

    Directory of Open Access Journals (Sweden)

    Giane Gonçalves

    2005-01-01

    Full Text Available A reação de reforma do metano com CO2 apresenta-se como um processopromissor de geração de gás de síntese e hidrogênio. Neste sentido, foram preparados catalisadores de níquel-sílica e níquel-alumina pelo método sol-gel, com carga metálica nominal de 8% em massa. Os catalisadores foram caracterizados por redução à temperatura programada, análise termogravimétrica e determinação da área superficial específica. A reação de reforma do metano com CO2 foi realizada em um micro-reator contendo 500 mg de catalisador, previamente ativado em uma mistura redutora contendo hidrogênio. Osensaios de reforma a seco do metano foram realizados a 800°C, na pressão atmosférica, por um período de 12 horas, com uma razão molar de alimentação de [CO2:CH4] = 6. Os produtos da reação foram analisados por cromatografia gasosa. Dentre os catalisadoresavaliados, nas condições de reação estudadas, o catalisador de níquel suportado em sílica foi o que apresentou o melhor desempenho.The dry reforming reaction of methane comes as a promising process of syngas and hydrogen. Nickel catalysts on Al2O3 and SiO2 were synthesized by sol-gel method, with metalic load of 8% weight. The catalysts were characterized by temperature programmed reduction (TPR, termogravimetry analysis (TGA and specific surface area measurements (BET. The dry reforming reaction was performed in a micro reactor packed with 500 mg of catalyst, previously activated in atmosphere of hydrogen. The dry reforming tests were done at 800oC and atmospheric pressure by a period of 12 hours, with a molar ratio in the feeding of [CO2:CH4] = 6. The products of the reaction were analyzed by gas chromatograph. The Ni-SiO2 catalysts showed better performance.

  8. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Science.gov (United States)

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  9. Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: Pigments, metabolites, antioxidants, growth and yield

    International Nuclear Information System (INIS)

    Kumari, Sumita; Agrawal, Madhoolika; Tiwari, Supriya

    2013-01-01

    The present study was conducted to assess morphological, biochemical and yield responses of palak (Beta vulgaris L. cv Allgreen) to ambient and elevated levels of CO 2 and O 3 , alone and in combination. As compared to the plants grown in charcoal filtered air (ACO 2 ), growth and yield of the plants increased under elevated CO 2 (ECO 2 ) and decreased under combination of ECO 2 with elevated O 3 (ECO 2 + EO 3 ), ambient O 3 (ACO 2 + AO 3 ) and elevated O 3 (EO 3 ). Lipid peroxidation, ascorbic acid, catalase and glutathione reductase activities enhanced under all treatments and were highest in EO 3. Foliar starch and organic carbon contents increased under ECO 2 and ECO 2 + EO 3 and reduced under EO 3 and ACO 2 + AO 3. Foliar N content declined in all treatments compared to ACO 2 resulting in alteration of C/N ratio. This study concludes that ambient level of CO 2 is not enough to counteract O 3 impact, but elevated CO 2 has potential to counteract the negative effects of future O 3 level. -- Highlights: ► Elevated CO 2 enhanced the growth and yield of palak. ► Ambient and elevated ozone reduced the growth and yield of the test plant. ► Elevated CO 2 reduced negative effects of elevated O 3 by reducing oxidative stress. ► Higher amelioration was recorded at elevated CO 2 + O 3 compared to ambient CO 2 + O 3 . -- Predicted levels of CO 2 have greater ameliorative potential against negative effects of elevated ozone compared to present day CO 2 against ambient ozone

  10. Order-disorder transition in the complex lithium spinel Li2CoTi3O8

    International Nuclear Information System (INIS)

    Reeves, Nik; Pasero, Denis; West, Anthony R.

    2007-01-01

    Li 2 CoTi 3 O 8 has an ordered Li 2 BB' 3 O 8 spinel structure, space group P4 3 32, at room temperature with 3:1 ordering of Ti and Li on the octahedral sites, and Li, Co disordered over the tetrahedral site. Rietveld refinement of variable temperature neutron powder diffraction data has shown an order-disorder phase transition in Li 2 CoTi 3 O 8 which commences at ∼500 deg. C with Li and Co mixing on the tetrahedral and 4-fold octahedral sites and is complete at a first order structural discontinuity at ∼915 deg. C. The fraction of Ti on the 12-fold octahedral site exhibits a small decrease with increasing temperature, which may suggest that the disordering involves all three cations. Above 930 deg. C, the structure, space group Fd3-barm, has Li, Co and Ti sharing a single-octahedral site and Li, Co sharing a tetrahedral site, although Co still exhibits a preference for tetrahedral coordination. A labelling scheme for ordered and partially ordered 3:1 spinels is devised which focuses on the occupancy of the Li,B cations. - Graphical abstract: Rietveld refinement of variable temperature neutron powder diffraction data shows an order-disorder phase transition in Li 2 CoTi 3 O 8 commencing at ∼500 deg. C with Li,Co mixing on tetrahedral and octahedral sites. This becomes complete at a first-order structural discontinuity at ∼915 deg. C. Above 930 deg. C, the structure, space group Fd3-barm, has Li, Co and Ti sharing a single-octahedral site and Li, Co sharing a tetrahedral site

  11. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    Science.gov (United States)

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  12. Characterization of γ- Al2O3 nanopowders synthesized by Co-precipitation method

    International Nuclear Information System (INIS)

    Jbara, Ahmed S.; Othaman, Zulkafli; Ati, Ali A.; Saeed, M.A.

    2017-01-01

    Co-precipitation technique has been used to synthesize gamma-Al 2 O 3 (γ-Al 2 O 3 ) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m 2 /g. Morphology analysis indicates that γ-Al 2 O 3 nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al 2 O 3 may make it more suitable for use as an adsorbent for malachite green. - Highlights: • Co-precipitation technique is used to synthesize gamma- Al 2 O 3 nanopowders. • Pure gamma- Al 2 O 3 phase was obtained having maximum nanoparticle size is 24 nm. • The quantum dots were formed inside powder. • High surface area of nanopowders at the low annealing temperature. • Increasing annealing temperature causes the hexagonal agglomeration shape.

  13. Facile synthesis of surface N-doped Bi_2O_2CO_3: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    International Nuclear Information System (INIS)

    Zhou, Ying; Zhao, Ziyan; Wang, Fang; Cao, Kun; Doronkin, Dmitry E.; Dong, Fan; Grunwaldt, Jan-Dierk

    2016-01-01

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi_2O_2CO_3 surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi_2O_2CO_3 were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi_2O_2CO_3 surface was achieved at room temperature. • N-doped Bi_2O_2CO_3 exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi_2O_2CO_3. • The formation of localized states from N−O bond could account for the visible light activity of Bi_2O_2CO_3. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi_2O_2CO_3 nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi_2O_2CO_3, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi_2O_2CO_3, but also modifies the surface properties of Bi_2O_2CO_3 through the interaction between CTAB and Bi_2O_2CO_3. Nitrogen from CTAB as dopant interstitially incorporates in the Bi_2O_2CO_3 surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi_2O_2CO_3 nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). Both bidentate and monodentate nitrates were identified on the surface of catalysts during the photocatalytic reaction process. The application of this strategy to

  14. Oxide (CeO{sub 2}, NiO, Co{sub 3}O{sub 4} and Mn{sub 3}O{sub 4})-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei; Tian, Zhiqun; Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Shen, Peikang [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2008-01-01

    This study investigated Pt/C, Pd/C and oxide (CeO{sub 2}, NiO, Co{sub 3}O{sub 4} and Mn{sub 3}O{sub 4})-promoted Pd/C for electrooxidation reactions of methanol, ethanol, ethylene glycol and glycerol in alkaline media. The results show that Pd/C electrocatalysts alone have low activity and very poor stability for the alcohol electrooxidation. However, addition of oxides like CeO{sub 2}, NiO, Co{sub 3}O{sub 4} and Mn{sub 3}O{sub 4} significantly promotes catalytic activity and stability of the Pd/C electrocatalysts for the alcohol electrooxidation. The Pd-Co{sub 3}O{sub 4} (2:1, w:w)/C shows the highest activity for the electrooxidation of methanol, EG and glycerol while the most active catalyst for the ethanol electrooxidation is Pd-NiO (6:1, w:w)/C. On the other hand, Pd-Mn{sub 3}O{sub 4}/C shows significantly better performance stability than other oxide-promoted Pd/C for the alcohol electrooxidation. The poor stability of the Pd-Co{sub 3}O{sub 4}/C electrocatalysts is most likely related to the limited solubility of cobalt oxides in alkaline solutions. (author)

  15. The preparation and role of Li_2ZrO_3 surface coating LiNi_0_._5Co_0_._2Mn_0_._3O_2 as cathode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Xu, Yue; Liu, Yang; Lu, Zhongpei; Wang, Haiying; Sun, Deqin; Yang, Gang

    2016-01-01

    Graphical abstract: LiNi_0_._5Co_0_._2Mn_0_._3O_2 is coated by Li_2ZrO_3 layer with the thickness about 20 nm. Li_2ZrO_3 coating effectively improves cycling performance and rate capability. LZO-LMO delivers 194 mAh g"−"1 at 0.2 C and presents improved cyclic performance at 55 °C. - Highlights: • LiNi_0_._5Co_0_._2Mn_0_._3O_2 is coated by Li_2ZrO_3 layer with the thickness about 20 nm. • Li_2ZrO_3 coating effectively improves cycling performance and rate capability. • LZO-LMO delivers 194 mAh g"−"1 at 0.2 C and presents improved cyclic performance at 55 °C. • Li_2ZrO_3 coating suppresses cation dissolution and enhances the structural stability. - Abstract: Li_2ZrO_3-coated LiNi_0_._5Co_0_._2Mn_0_._3O_2 (LZO-LMO) is successful synthesized by using a wet chemical method. Li_2ZrO_3 coating formed a uniform layer on LiNi_0_._5Co_0_._2Mn_0_._3O_2 particles (LMO) without changing the crystal structure. Cyclic voltammetry (CV) and charge–discharge tests show that the Li_2ZrO_3-modified layer can improve the cyclic and rate performance. In the cut-off voltage of 2.7–4.6 V, LZO-LMO maintains 86% of the initial capacity at the 50th cycle, which is much higher than LMO with the retention of 66% of the initial capacity. The coating layer of LZO plays the positive role in conductivity of lithium diffusion and improves rate performance of LMO. At 10 C rates, LZO-LMO delivers the initial capacity of 95 mAh g"−"1 which is much higher than 40 mAh g"−"1 delivered by LMO. At the environmental temperature of 55 °C, LZO-LMO delivers the initial capacity of 194 mAh g"−"1 at 0.2 C rate and presents an improved cyclic performance in comparison with LMO. The elemental analysis of electrodes carried out after 50 charge/discharge cycles shows minor Ni content deviation in LMO, but LZO-LMO still remains the stoichiometric ratio, because the Li_2ZrO_3 coating efficiently hinders the metal dissolution during charge/discharge.

  16. Luminescence properties of Y2O3:Bi3+, Yb3+ co-doped phosphor for application in solar cells

    Science.gov (United States)

    Lee, E.; Kroon, R. E.; Terblans, J. J.; Swart, H. C.

    2018-04-01

    Bismuth (Bi3+) and ytterbium (Yb3+) co-doped yttrium oxide (Y2O3) phosphor powder was successfully synthesised using the co-precipitation technique. The X-ray diffraction (XRD) patterns confirmed that a single phase cubic structure with a Ia-3 space group was formed. The visible emission confirmed the two symmetry sites, C2 and S6, found in the Y2O3 host material and revealed that Bi3+ ions preferred the S6 site as seen the stronger emission intensity. The near-infrared (NIR) emission of Yb3+ increased significantly by the presence of the Bi3+ ions when compared to the singly doped Y2O3:Yb3+ phosphor with the same Yb3+ concentration. An increase in the NIR emission intensity was also observed by simply increasing the Yb3+ concentration in the Y2O3:Bi3+, Yb3+ phosphor material where the intensity increased up to x = 5.0 mol% of Yb3+ before decreasing due to concentration quenching.

  17. Preparation and studies of Eu3+ and Tb3+ co-doped Gd2O3 and Y2O3 sol-gel scintillating films

    International Nuclear Information System (INIS)

    Morales Ramirez, A. de J; Garcia Murillo, A.; Carrillo Romo, F. de J; Ramirez Salgado, J.; Le Luyer, C.; Chadeyron, G.; Boyer, D.; Moreno Palmerin, J.

    2009-01-01

    Eu 3+ (2.5 at.%) and Tb 3+ (0.005-0.01 at.%) co-doped gadolinium and yttrium oxide (Gd 2 O 3 and Y 2 O 3 ) powders and films have been prepared using the sol-gel process. High density and optical quality thin films were prepared with the dip-coating technique. Gadolinium (III) 2,4-pentadionate and yttrium (III) 2,4-pentadionate were used as precursors, and europium and terbium in their nitrate forms were used as doping agents. Chemical and structural analyses (infrared spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy) were conducted on both sol-gel precursor powders and dip-coated films. The morphology of thin films heat-treated at 700 o C was studied by means of atomic force microscopy. It was shown that the highly dense and very smooth films had a root mean roughness (RMS) of 2 nm ± 0.2 (A = 0.0075 Tb 3+ ) and 24 nm ± 3.0 (B = 0.01 Tb 3+ ). After treatment at 700 o C, the crystallized films were in the cubic phase and presented a polycrystalline structure made up of randomly oriented crystallites with grain sizes varying from 20 to 60 nm. The X-ray induced emission spectra of Eu 3+ - and Tb 3+ -doped Gd 2 O 3 and Y 2 O 3 powders showed that Tb 3+ contents of 0.005, 0.0075 and 0.01 at.% affected their optical properties. Lower Tb 3+ concentrations (down to 0.005 at.%) in both systems enhanced the light yield.

  18. Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4

    Science.gov (United States)

    Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.

    2017-10-01

    We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.

  19. The influence of H2O and CO2 on the reactivity of limestone for the oxidation of NH3

    DEFF Research Database (Denmark)

    Zijlma, G. J.; Jensen, Anker Degn; Johnsson, Jan Erik

    2000-01-01

    Although it is known that both H2O and CO2 reduce the catalytic activity of CaO, the kinetics of NO formation catalysed by CaO are often obtained without the presence of H2O or CO2. In this work, the catalytic activity for NH3 oxidation with three types of calcined limestone was tested under...... fluidised bed combustion conditions by adding H2O (0-12 vol%) and CO2 (0-16 vol%). All three types of limestones are active catalysts for the oxidation of NH3. When water is added the activity decreases sharply and already at 3 vol% water the NH3 conversion is reduced by 50%. When the water addition...... is stopped the water desorbs and the activity is restored. Addition of CO2 did not result in a decrease in the oxidation of NH3. Blocking of the active sites by adsorption of H2O is the main cause of the deactivation. A model with a Langmuir adsorption type was developed and both NO and NH3 exit...

  20. ELEVATED CO2 AND O3 EFFECTS ON FINE-ROOT SURVIVORSHIP IN PONDEROSA PINE MESOCOSMS

    Science.gov (United States)

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograph...

  1. Characterization of Al2O3-Co ceramic composite obtained by high energy mill

    International Nuclear Information System (INIS)

    Souza, J.L.; Assis, R.B. de; Carlos, E.M.; Oliveira, T.P.; Costa, F.A. da

    2014-01-01

    This work aims to characterize the ceramic composite Al 2 O3-Co obtained by high energy grinding. The composites were obtained by milling Al 2 O 3 and Co in a high energy mill at a speed of 400 rpm, in proportions of 5 to 20% Cobalt (Co). Ceramic composites with 5 and 20% cobalt were sintered at 1200 and 1300 ° C, with a 60-minute plateau and a heating rate of 10 ° C / min. The samples were characterized by X-ray diffraction (XRD), thermogravimetry and differential scanning calorimetry (TG / DSC) and scanning electron microscopy (SEM). The results show the significant effect of cobalt percentage and high energy grinding on the final properties of the Al 2 O 3 - Co ceramic composite, presenting satisfactory values for the composite with a 20% cobalt percentage, showing to be a promising material for application in cutting tools

  2. Crystal structure and magnetic properties of the solid-solution phase Ca3Co2-v Sc v O6

    International Nuclear Information System (INIS)

    Hervoches, Charles H.; Fredenborg, Vivian Miksch; Kjekshus, Arne; Fjellvag, Helmer; Hauback, Bjorn C.

    2007-01-01

    The two crystallographically non-equivalent Co atoms of the quasi-one-dimensional crystal structure of Ca 3 Co 2 O 6 form chains with alternating, face-sharing polyhedra of Co2O 6 trigonal prisms and Co1O 6 octahedra. This compound forms a substitutional solid-solution phase with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 (more specifically Ca 3 Co1Co2 1- v Sc v O 6 ) extends up to v∼0.55. The crystal structure belongs to space group R3-barc with lattice parameters (in hexagonal setting): 9.0846(3)≤a≤9.1300(2) A and 10.3885(4)≤c≤10.4677(4) A. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice. - Graphical abstract: The quasi-one-dimensional Ca 3 Co 2 O 6 phase forms a substitutional solid-solution system with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 extends up to v∼0.55. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice

  3. PREPARATION AND CATALYTIC ACTIVITY FOR ISOPROPYL BENZENE CRACKING OF Co, Mo AND Co/Mo-Al2O3-PILLARED MONTMORILLONITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Hasanudin Hasanudin

    2010-06-01

    Full Text Available It has been prepared Co, Mo and Co/Mo-Al2O3-pillared montmorillonite catalysts using montmorillonite clay  as raw material. The structure and porosity of the catalysts were determined using N2 adsorption-desorption and FT-IR spectroscopy analysis methods. Isopropyl benzene cracking using these catalysts were used to test the catalytic activity and performance of Co, Mo and Co/Mo-Al2O3-pillared montmorillonites.  Characterization results showed that pillarization resulted in the increase of the total pore volume and specific surface area of the clay. Meanwhile, transition metals (Co, Mo and Co/Mo loaded on Al2O3-pillared monmorillonites could increase the catalytic activity of the catalysts for isopropyl benzene cracking significantly.   Keywords: pillared monmorillonite, isopropyl benzene  and cracking catalyst

  4. Thickness-, Composition-, and Magnetic-Field-Dependent Complex Impedance Spectroscopy of Granular-Type-Barrier Co/Co-Al2O3/Co MTJs

    Science.gov (United States)

    Tuan, Nguyen Anh; Anh, Nguyen Tuan; Nga, Nguyen Tuyet; Tue, Nguyen Anh; Van Cuong, Giap

    2016-06-01

    The alternating-current (ac) electrical properties of granular-type-barrier magnetic tunnel junctions (GBMTJs) based on Co/Co x (Al2O3)1- x ( t)/Co trilayer structures have been studied using complex impedance spectroscopy (CIS). Their CIS characteristics were investigated in external magnetic fields varying from 0 kOe to 3 kOe as a function of Co composition x at 10 at.%, 25 at.%, and 35 at.%, with barrier layer thickness t of 20 nm to 90 nm. The influence of these factors on the behaviors of the ac impedance response of the GBMTJs was deeply investigated and attributed to the dielectric or conducting nature of the Co-Al2O3 barrier layer. The most remarkable typical phenomena observed in these behaviors, even appearing paradoxical, include lower impedance for thicker t for each given x, a declining trend of Z with increasing x, a clear decrease of Z with H, and especially a partition of Z into zones according to the H value. All these effects are analyzed and discussed to demonstrate that diffusion-type and mass-transfer-type phenomena can be inferred from processes such as spin tunneling and Coulomb or spin blockade in the Co-Al2O3 barrier layer.

  5. A second polymorph with composition Co3(PO42·H2O

    Directory of Open Access Journals (Sweden)

    Yang Kim

    2008-10-01

    Full Text Available Single crystals of Co3(PO42·H2O, tricobalt(II bis[orthophosphate(V] monohydrate, were obtained under hydrothermal conditions. The compound is the second polymorph of this composition and is isotypic with its zinc analogue, Zn3(PO42·H2O. Three independent Co2+ cations are bridged by two independent orthophosphate anions. Two of the metal cations exhibit a distorted tetrahedral coordination while the third exhibits a considerably distorted [5 + 1] octahedral coordination environment with one very long Co—O distance of 2.416 (3 Å. The former cations are bonded to four different phosphate anions, and the latter cation is bonded to four anions (one of which is bidentate and one water molecule, leading to a framework structure. Additional hydrogen bonds of the type O—H...O stabilize this arrangement.

  6. Facile synthesis of α-Fe{sub 2}O{sub 3} nanoparticles for high-performance CO gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen Duc, E-mail: nguyenduccuong@hueuni.edu.vn [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City (Viet Nam); Khieu, Dinh Quang; Hoa, Tran Thai [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Quang, Duong Tuan [College of Education, Hue University, 34 Le Loi, Hue City (Viet Nam); Viet, Pham Hung [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, 334 Nguyen Trai, Hanoi (Viet Nam); Lam, Tran Dai [Graduate University of Science and Technology, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam); Hoa, Nguyen Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet, Hanoi (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet, Hanoi (Viet Nam)

    2015-08-15

    Highlights: • We have demonstrated a facile method to prepare Fe{sub 2}O{sub 3} nanoparticles. • The gas sensing properties of α-Fe{sub 2}O{sub 3} have been invested. • The results show potential application of α-Fe{sub 2}O{sub 3} NPs for CO sensors in environmental monitoring. - Abstract: Iron oxide nanoparticles (NPs) were prepared via a simple hydrothermal method for high performance CO gas sensor. The synthesized α-Fe{sub 2}O{sub 3} NPs were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SEM, TEM results revealed that obtained α-Fe{sub 2}O{sub 3} particles had a peanut-like geometry with hemispherical ends. The response of the α-Fe{sub 2}O{sub 3} NPs based sensor to carbon monoxide (CO) and various concentrations of other gases were measured at different temperatures. It found that the sensor based on the peanut-like α-Fe{sub 2}O{sub 3} NPs exhibited high response, fast response–recovery, and good selectivity to CO at 300 °C. The experimental results clearly demonstrated the potential application of α-Fe{sub 2}O{sub 3} NPs as a good sensing material in the fabrication of CO sensor.

  7. Quaternary reciprocal system Na,K//Cl,Co3,MoO4

    International Nuclear Information System (INIS)

    Kochkarov, Zh.A.; Gasanaliev, A.M.

    2004-01-01

    Quaternary reciprocal system Na,K//Cl,Co 3 ,MoO 4 has been investigated for the first time by differential thermal analysis using the methods of projective and differential geometry. A stable (KCl) 2 -Na 2 CO 3 -K 2 CO 3 -K 2 MoO 4 tetrahedron and (NaCl) 2 -(KCl) 2 -Na 2 CO 3 -K 2 MoO 4 -Na 2 MoO 4 pentatope have been revealed in the system. It has been found that four quadruple invariant points are realized in the Na,K//Cl,Co 3 ,MoO 4 system, including one eutectic and three peritectic points [ru

  8. Luminescent properties and quenching effects of Pr3+ co-doping in SiO2:Tb3+/Eu3+ nanophosphors

    CSIR Research Space (South Africa)

    Mhlongo, GH

    2014-02-01

    Full Text Available Luminescence properties of Pr(sup3+) single doped SiO2 and Pr(sup3+) co-doped SiO(sub2):Tb(sup3+)/Eu(sup3+) nanophosphors synthesized using sol–gel method were investigated. X-ray diffraction (XRD), and scanning electron microscope (SEM) were used...

  9. Hydrogenation of carbon monoxide on Co/MgAl2O4 and Ce-Co/MgAl2O4 catalysts

    International Nuclear Information System (INIS)

    Kondoh, S.; Muraki, H.; Fujitani

    1986-01-01

    It is well known that various hydrocarbons are obtained by hydrogenation of CO on Fischer-Tropsch catalysts, the products depending on the catalyst components such as Co, Ni, Fe and Ru: and the reaction conditions, particularly, temperature, pressure, space velocity and H 2 /CO ratio. Further, both reactivity and selectivity of catalysts may be improved by suitable selection of support and an additive. The main program of the present work is to develop a catalyst for producing C 5 + liquid hydrocarbons, as an automobile fuel, by the Fischer-Tropsch synthesis. The authors have studied unique CO catalyst systems consisting of various supports - such as Al 2 O 3 (γ, β, α), MgAl 2 O 4 (alumina magnesia spinel), MgO and additives selected from the lanthanoid elements (LE). The composition of spinel-based supports was altered in a range from 28 mol % excess Al 2 O 3 to 28 mol % excess MgO. Particularly, they found that a MgAl 2 O 4 support with 15-18 mol % excess Al 2 O 3 is the most preferable for our purpose and CeO 2 as the additive for Co/spinel catalyst remarkably improves C 5 + yield. Further, it was confirmed that the catalytic activity of Co-base catalysts agree with the oxidation state of Co-oxides on Co and Co-Ce/spinel catalysts. The performance of Co-based catalysts for the production of higher hydrocarbons from syn-gas were described elsewhere. The items described in this report include (a) selection of supports, (b) selection of optimum reaction conditions for Co-Ce/spinel catalyst, (c) redox characteristics of Co-oxides on a spinel surface, and (d) experimental observation of TPD profiles, adsorption capacities and IR spectra relating to adsorbed CO

  10. Novel detached system to MnCO3 nanowires: A self-sacrificing template for homomorphous Mn3O4 and α-Mn2O3 nanostructures

    International Nuclear Information System (INIS)

    Lei Shuijin; Peng Xiaomin; Li Xiuping; Liang Zhihong; Yang Yi; Cheng Baochang; Xiao Yanhe; Zhou Lang

    2011-01-01

    Research highlights: → A novel detached system along with solvothermal treatment was developed. → Radially aggregated MnCO 3 nanowires were successfully fabricated. → The detached system, solvent, surfactant and reaction time were important. → MnCO 3 nanowires could act as the self-sacrificing template for Mn 3 O 4 and α-Mn 2 O 3 . - Abstract: MnCO 3 , an important raw material, exhibits attractive properties and significant industrial applications. However, few concerns have been raised on the fabrication of its 1D nanostructures. In this paper, a novel detached system was successfully employed for the preparation of MnCO 3 nanowires by a surfactant-assisted solvothermal treatment using N,N-dimethylformamide as the solvent and cetyltrimethylammonium bromide as the surfactant. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy were employed to study the crystal structure and morphologies of the products. Experiments showed that the detached system, solvent, surfactant and reaction time were critical for the formation of the MnCO 3 nanowires. The thermal characterization was studied by differential scanning calorimetric analysis and thermogravimetric analysis measurements. The experimental results demonstrated that the as-prepared MnCO 3 nanocrystals can act as an efficient precursor for production of homomorphous Mn 3 O 4 and α-Mn 2 O 3 nanostructures by calcination at 400 deg. C under the atmosphere of argon and air, respectively. A possible growth mechanism for the MnCO 3 nanowires was also proposed.

  11. Comparative Investigation of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 Cathode Materials Synthesized by Using Different Lithium Sources

    Directory of Open Access Journals (Sweden)

    Peng-Bo Wang

    2018-05-01

    Full Text Available Lithium-rich manganese-based cathode materials has been attracted enormous interests as one of the most promising candidates of cathode materials for next-generation lithium ion batteries because of its high theoretic capacity and low cost. In this study, 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 materials are synthesized through a solid-state reaction by using different lithium sources, and the synthesis process and the reaction mechanism are investigated in detail. The morphology, structure, and electrochemical performances of the material synthesized by using LiOH·H2O, Li2CO3, and CH3COOLi·2H2O have been analyzed by using Thermo gravimetric analysis (TGA, X-ray diffraction (XRD, Scanning electron microscope (SEM, Transmission electron microscope (TEM, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements. The 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 material prepared by using LiOH·H2O displays uniform morphology with nano particle and stable layer structure so that it suppresses the first cycle irreversible reaction and structure transfer, and it delivers the best electrochemical performance. The results indicate that LiOH·H2O is the best choice for the synthesis of the 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 material.

  12. Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors

    Science.gov (United States)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Wen, Zhiyu; Liu, Qing

    2014-04-01

    Hierarchical Co3O4@MnO2 core-shell arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the electrode for high-performance supercapacitors. Owing to the high conductivity of the well-defined mesoporous Co3O4 nanowire arrays in combination with the large surface area provided by the ultrathin MnO2 nanosheets, the unique designed Co3O4@MnO2 core-shell arrays on Ni foam have exhibited a high specific capacitance (560 F g-1 at a current density of 0.2 A g-1), good rate capability, and excellent cycling stability (95% capacitance retention after 5000 cycles). An asymmetric supercapacitor with Co3O4@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide activated graphene (MEGO) as the negative electrode yielded an energy density of 17.7 Wh kg-1 and a maximum power density of 158 kW kg-1. The rational design of the unique core-shell array architectures demonstrated in this work provides a new and facile approach to fabricate high-performance electrode for supercapacitors.

  13. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi; Hagiwara, Toshiya; Fujii, Kyoko; Kojima, Masayuki; Shinoda, Tsutomu; Takanabe, Kazuhiro; Domen, Kazunari

    2011-01-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  14. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi

    2011-12-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  15. Enhancing visible light photocatalytic and photocharge separation of (BiO)_2CO_3 plate via dramatic I"− ions doping effect

    International Nuclear Information System (INIS)

    Liang, Lei; Cao, Jing; Lin, Haili; Guo, Xiaomin; Zhang, Meiyu; Chen, Shifu

    2016-01-01

    Highlights: • Novel I-(BiO)_2CO_3 was prepared by a facile chemical precipitation method. • I"− ions impurity level located on the top of valence band of (BiO)_2CO_3. • I"− ions doping largely improved photocatalytic activity of I-(BiO)_2CO_3. • I-(BiO)_2CO_3 displayed excellent photocharge separation efficiency. - Abstract: Novel I"− ions doped (BiO)_2CO_3 (I-(BiO)_2CO_3) photocatalysts were successfully synthesized via a facile chemical precipitation method. Under visible light (λ > 400 nm), I-(BiO)_2CO_3 displayed much higher activity for rhodamine B and dichlorophenol degradation than the undoped (BiO)_2CO_3. The pseudo-first-order rate constant k_a_p_p of RhB degradation over 15.0% I-(BiO)_2CO_3 was 0.54 h"−"1, which is 11.3 times higher than that of (BiO)_2CO_3. The doped I"− ions formed an impurity level on the top of valence band of (BiO)_2CO_3 and induced much more visible light to be absorbed. The enhanced photocurrent and surface photovoltage properties were detected, which strongly ensures the efficient separation of electrons and holes in I-(BiO)_2CO_3 system under visible light. It provides a facile way to improve the photocatalytic activity of the wide-band-gap (BiO)_2CO_3 via intense doping effect of I"− ions.

  16. In-Situ Hydrothermal Synthesis of Bi-Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity

    Science.gov (United States)

    Kar, Prasenjit; Maji, Tuhin Kumar; Nandi, Ramesh; Lemmens, Peter; Pal, Samir Kumar

    2017-04-01

    Bismuth containing nanomaterials recently received increasing attention with respect to environmental applications because of their low cost, high stability and nontoxicity. In this work, Bi-Bi2O2CO3 heterojunctions were fabricated by in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets via a simple hydrothermal synthesis approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to confirm the morphology of the nanosheet-like heterostructure of the Bi-Bi2O2CO3 composite. Detailed ultrafast electronic spectroscopy reveals that the in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets exhibit a dramatically enhanced electron-hole pair separation rate, which results in an extraordinarily high photocatalytic activity for the degradation of a model organic dye, methylene blue (MB) under visible light illumination. Cycling experiments revealed a good photochemical stability of the Bi-Bi2O2CO3 heterojunction under repeated irradiation. Photocurrent measurements further indicated that the heterojunction incredibly enhanced the charge generation and suppressed the charge recombination of photogenerated electron-hole pairs.

  17. Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr

    Directory of Open Access Journals (Sweden)

    Shuanglong Lin

    2016-10-01

    Full Text Available A facile and feasible oil-in-water self-assembly approach was developed to synthesize flower-like Ag@AgBr/Bi2O2CO3 micro-composites. The photocatalytic activities of the samples were evaluated through methylene blue degradation under visible light irradiation. Compared to Bi2O2CO3, flower-like Ag@AgBr/Bi2O2CO3 micro-composites show enhanced photocatalytic activities. In addition, results indicate that both the physicochemical properties and associated photocatalytic activities of Ag@AgBr/Bi2O2CO3 composites are shown to be dependent on the loading quantity of Ag@AgBr. The highest photocatalytic performance was achieved at 7 wt % Ag@AgBr, degrading 95.18% methylene blue (MB after 20 min of irradiation, which is over 1.52 and 3.56 times more efficient than that of pure Ag@AgBr and pure Bi2O2CO3, respectively. Bisphenol A (BPA was also degraded to further demonstrate the degradation ability of Ag@AgBr/Bi2O2CO3. A photocatalytic mechanism for the degradation of organic compounds over Ag@AgBr/Bi2O2CO3 was proposed. Results from this study illustrate an entirely new approach to fabricate semiconductor composites containing Ag@AgX/bismuth (X = a halogen.

  18. Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment

    Science.gov (United States)

    Johan Uddling; Alan J. Hogg; Ronald M. Teclaw; Mary Anne. Carroll; David S. Ellsworth

    2010-01-01

    Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated...

  19. Reduced Graphene Oxide: Is it a promising catalyst for the electrochemistry of [UO2(CO3)3]4−/[UO2(CO3)3]5−?

    International Nuclear Information System (INIS)

    Guin, Saurav K.; Ambolikar, Arvind S.; Kamat, J.V.

    2015-01-01

    Highlights: • First report on aqueous electrochemistry of uranium on graphene materials. • Graphene(Nafion)/GC did not show applicability for the anionic analytes. • Electrochemically Reduced Graphene Oxide (ERGNO) was synthesised by cyclic voltammetry. • ERGNO catalysed the electrochemistry of [U VI O 2 (CO 3 ) 3 ] 4- /[U V O 2 (CO 3 ) 3 ] 5- . • Both the cathodic and anodic overpotentials of U(VI)/U(V) reaction decreased on ERGNO. - Abstract: The graphene has been emerging in the electrocatalysis and electroanalysis as the potent surface modifying agents for the working electrodes. However, the aqueous electrochemistry of the actinides on graphene (or graphene type materials) is yet unexplored. In this paper, the aqueous electrochemistry of [U VI O 2 (CO 3 ) 3 ] 4− /[U V O 2 (CO 3 ) 3 ] 5− redox couple was systematically investigated on electrochemically reduced graphene oxide (ERGNO) modified glassy carbon (GC) electrode in saturated Na 2 CO 3 solution (pH ∼12.3). This is the first report on aqueous actinide electrochemistry on graphene materials. The results showed that ERGNO could catalyse the redox chemistry of [U VI O 2 (CO 3 ) 3 ] 4− /[U V O 2 (CO 3 ) 3 ] 5− by reducing both the cathodic and anodic overpotentials compared to bare GC electrode. However, no enhancement in the peak current was observed on ERGNO electrode for the same reaction. Therefore, the present study introduces an appeal for a systematic investigation on the electrochemistry of the actinides at graphene materials to gear up their applications in nuclear technology

  20. Relaxation phenomena in CsCoCl3·2 H2O

    NARCIS (Netherlands)

    Flokstra, Jakob; Gerritsma, G.J.; Vermeulen, A.J.W.A; Botterman, A.C.

    1973-01-01

    Dynamic susceptibility measurements have been performed on a single crystal of CsCoCl3·2H2O at liquid temperatures by means of a Hartshorn mutual inductance bridge. At the magnetic phase transition a maximum in τabs(H) has been observed. A jump in τabs(T) has been found at the λ-point of liquid

  1. Investigation of anti-corrosive properties of poly(aniline-co-2-pyridylamine-co-2,3-xylidine) and its nanocomposite poly(aniline-co-2-pyridylamine-co-2,3-xylidine)/ZnO on mild steel in 0.1 M HCl

    Science.gov (United States)

    Alam, Ruman; Mobin, Mohammad; Aslam, Jeenat

    2016-04-01

    A soluble terpolymer of aniline (AN), 2-pyridylamine (PA) and 2,3-xylidine (XY), poly(AN-co-PA-co-XY) and its nanocomposite with ZnO nanoparticles namely, poly(AN-co-PA-co-XY)/ZnO were synthesized by chemical oxidative polymerization employing ammonium persulfate as an oxidant. Nanocomposites of homopolymers, polyaniline/ZnO, poly(XY)/ZnO and poly(PA)/ZnO were also synthesized by following similar synthesis route. FTIR, XRD and SEM techniques were used to characterize the synthesized compounds. The synthesized compounds were chemically deposited on mild steel specimens by solvent evaporation method using N-methyl-2-pyrrolidone (NMP) as solvent and 10% epoxy resin (by weight) as binder. Anticorrosive properties of homopolymer nanocomposites, terpolymer and its nanocomposite coatings were studied in 0.1 M HCl by subjecting them to various corrosion tests which includes: free corrosion potential measurement (OCP), weight loss measurements, potentiodynamic polarization, and AC impedance technique. The surface morphology of the corroded and uncorroded coated steel specimens was evaluated using SEM. The corrosion protection performance of terpolymer nanocomposite coating was compared to the terpolymer and individual homopolymers nanocomposites coatings after 30 days immersion in corrosive medium.

  2. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination

    Science.gov (United States)

    Tao, Fulu; Feng, Zhaozhong; Tang, Haoye; Chen, Yi; Kobayashi, Kazuhiko

    2017-03-01

    Air pollution and climate change are increasing threats to agricultural production and food security. Extensive studies have focused on the effect of climate change, but the interactive effects of multiple global change factors are poorly understood. Here, we incorporate the interactions between climate change, carbon dioxide (CO2) and ozone (O3) into an eco-physiological mechanistic model based on three years of O3 Free-Air Concentration Elevation (O3-FACE) experiments. We then investigate the effects of climate change, elevated CO2 concentration ([CO2]) and rising O3 concentration ([O3]) on wheat growth and productivity in eastern China in 1996-2005 (2000s) and 2016-2025 (2020s) under two climate change scenarios, singly and in combination. We find the interactive effects of climate change, CO2 and O3 on wheat productivity have spatially explicit patterns; the effect of climate change dominates the general pattern, which is however subject to the large uncertainties of climate change scenarios. Wheat productivity is estimated to increase by 2.8-9.0% due to elevated [CO2] however decline by 2.8-11.7% due to rising [O3] in the 2020s, relative to the 2000s. The combined effects of CO2 and O3 are less than that of O3 only, on average by 4.6-5.2%, however with O3 damage outweighing CO2 benefit in most of the region. This study demonstrates a more biologically meaningful and appropriate approach for assessing the interactive effects of climate change, CO2 and O3 on crop growth and productivity. Our findings promote the understanding on the interactive effects of multiple global change factors across contrasting climate conditions, cast doubt on the potential of CO2 fertilization effect in offsetting possible negative effect of climate change on crop productivity as suggested by many previous studies.

  3. Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Yang, Shi-Ze; Gagnon, Catherine; Gariépy, Vincent; Laul, Dharminder; Zhu, Wen; Veillette, René; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-01

    High-performance and long-cycling rechargeable lithium-ion batteries have been in steadily increasing demand for the past decades. Nevertheless, the two dominant anodes at the moment, graphite and L4T5O12, suffer from a safety issue of lithium plating (operating voltage at ∼ 0.1 V vs. Li+/Li) and low capacity (175 mAh/g), respectively. Here, we report LiNi1/3Co1/3Mn1/3O2 as an alternative anode material which has a working voltage of ∼1.1 V and a capacity as high as 330 mAh/g at the current rate of C/15. Symmetric cells with both electrodes containing LiNi1/3Co1/3Mn1/3O2 can deliver average discharge voltage of 2.2 V. In-situ XRD, HRTEM and first principles calculations indicate that the reaction mechanism of a LiNi1/3Co1/3Mn1/3O2 anode is comprised mainly of conversion. Both the fundamental understanding and practical demonstrations suggest that LiNi1/3Co1/3Mn1/3O2 is a promising negative electrode material for lithium-ion batteries.

  4. Preparation of layered oxide Li(Co1/3Ni1/3Mn1/3)O2 via the sol-gel process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; LIU Hanxing; HU Chen; ZHU Xianjun; LI Yanxi

    2008-01-01

    To obtain homogenous layered oxide Li(Co1/3Ni1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material,the sol-gel process using citric acid as a chelating agent was applied.The material Li(Co1/3,Ni1/3Mn1/3)O2 was synthesized at different calcination temperatures.XRD experiment indicated that the hyered Li(Co1/3Ni1/3Mn1/3)O2material could he synthesized at a lower temperature of 800℃,and the oxidation state of Co,Ni,and Mn in the cathode confirmed by XPS were +3,+2,and +4,respectively.SEM observations showed that the synthesized material could form homogenous particle morphology with the particle size of about 200nm In spite of different calcination temperatures,the charge-discharge curves of all the samples for the initial cycle were similar,and the cathode synthesized at 900℃ showed a small irreversible capacity loss of 11.24% and a high discharge capacity of 212.2 mAh.g-1 in the voltage range of 2.9-4.6 V.

  5. Role of BaO/SrO layers in deciding the electronic structure of Cu0.3Co0.7Ba2-xSrxYCu2O7+δ (CoCu-1212) x = 0, 1 and 2

    International Nuclear Information System (INIS)

    Singh, Shiva Kumar; Husain, M.; Kishan, H.; Awana, V.P.S.

    2011-01-01

    Highlights: → Decrease in lattice parameters confirms replacement by Sr ion at Ba ion site. → XPS measurement shows that mixed Cu 1+/2+ and Co 3+/4+ valence state. → With increasing x, Cu valence is non-monotonous whereas Co valence is increasing. → Resistivity reveals that holes in Cu/CoO x planes are taking part in charge transport. → Paramagnetic nature is due to the presence Cu ions in Cu/CoO x chains/planes. - Abstract: In this paper we report the change in electronic structure of Cu 0.3 Co 0.7 Ba 2-x Sr x YCu 2 O 7+δ with change in structural pressure. Rietveld refined X-ray diffraction (XRD) pattern shows that the samples are phase pure. Decrease in lattice parameters with increasing x, confirms replacement by Sr ion at Ba ion site. The calculated tolerance factor of the systems is in accord with lattice parameter changes. The X-ray photoelectron spectroscopy (XPS) is made to find out the variation in ionic state of Co and Cu with ionic size variation in BaO/SrO layers. Effect of the same on the electronic structure and transport properties is explored. The XPS measurement reveals that Cu is in mixed 1+/2+ state and variation in valence state is non-monotonous with increasing x. Whereas Co is in mixed 3+/4+ state and with increasing x its valence state is increasing. The observed changes in electronic structure are subject of structural changes. The resistivity measurement shows that normal state conductivity decreases with increasing x. Resistivity behaviour indicates about holes in Cu/CoO x planes taking part in charge transport. The magnetic measurement (M-T and M-H) shows that paramagnetic nature for all the compositions. The presence of Cu ions in Cu/CoO x chains/planes results in paramagnetic behaviour.

  6. Sono-synthesis and characterization of bimetallic Ni-Co/Al2O3-MgO nanocatalyst: Effects of metal content on catalytic properties and activity for hydrogen production via CO2 reforming of CH4.

    Science.gov (United States)

    Abdollahifar, Mozaffar; Haghighi, Mohammad; Babaluo, Ali Akbar; Talkhoncheh, Saeed Khajeh

    2016-07-01

    Sono-dispersion of Ni, Co and Ni-Co over Al2O3-MgO with Al/Mg ratio of 1.5 was prepared and tested for dry reforming of methane. The samples were characterized by XRD, FESEM, PSD, EDX, TEM, BET and FTIR analyses. In order to assess the effect of ultrasound irradiation, Ni-Co/Al2O3-MgO with Co content of 8% prepared via sonochemistry and impregnation methods. The sono-synthesized sample showed better textural properties and higher activity than that of impregnated one. Comparison of XRD patterns indicated that the NiO peaks became broader by increasing Co content over the support. The FESEM images displayed the particles are small and well-dispersed as a result of sonochemistry method. Also, EDX analysis demonstrated better dispersion of Ni and Co as a result of sonochemistry method in confirmation of XRD analysis. The sono-synthesized Ni-Co/Al2O3-MgO as a superior nanocatalyst with Co content of 3% illustrates much higher conversions (97.5% and 99% for CH4 and CO2 at 850 °C), yields (94% and 96% for H2 and CO at 850 °C) and 0.97 of H2/CO molar ratio in all samples using an equimolar feed ratio at 850 °C. During the 1200 min stability test, H2/CO molar ratio remained constant for the superior nanocatalyst. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Pb3O4 type antimony oxides MSb2O4 (M = Co, Ni) as anode for Li-ion batteries

    International Nuclear Information System (INIS)

    Jibin, A.K.; Reddy, M.V.; Subba Rao, G.V.; Varadaraju, U.V.; Chowdari, B.V.R.

    2012-01-01

    Graphical abstract: Isostructural Pb 3 O 4 type MSb 2 O 4 (M = Co, Ni) compounds were investigated as possible anodes for lithium ion batteries. The reversible capacity is due to electrochemically active Sb and the transition metal and Li 2 O form an inactive matrix which buffers volume variations associated with alloying-de-alloying of antimony. Highlights: ► Isostructural MSb 2 O 4 (M = Co, Ni) were studied as anode for LIBs for first time. ► Li/MSb 2 O 4 (M = Co, Ni) cells displayed reversibility due to electrochemically active Sb. ► CoSb 2 O 4 showed good reversibility compared to NiSb 2 O 4 . - Abstract: Polycrystalline samples of isostructural MSb 2 O 4 (M = Co, Ni) have been prepared by solid state synthesis and lithium-storage is investigated as possible anode materials for lithium-ion batteries. The reaction mechanism of lithium with MSb 2 O 4 (M = Co, Ni) is explored by galvanostatic cycling, cyclic voltammogram and ex situ studies. Both CoSb 2 O 4 and NiSb 2 O 4 exhibit similar electrochemical behavior and show reversible capacity of 490 and 412 mAh g −1 respectively in the first cycle. Reversible alloying de-alloying of Li x Sb takes place in an amorphous matrix of M (Co, Ni) and Li 2 O during electrochemical cycling.

  8. Synthesis, crystal structure and properties of [Co(L2](ClO42 (L=1,3-bis(1H-benzimidazol-2-yl-2-oxapropane

    Directory of Open Access Journals (Sweden)

    Tavman Aydin

    2015-01-01

    Full Text Available The reaction of 1,3-bis(1H-benzimidazol-2-yl-2-oxapropane (L with Co(ClO42•6H2O in absolute ethanol produces di[1,3-bis(1H-benzimidazol-2-yl-2-oxapropane-k2N,N’]cobalt(IIdiperchlorate chelate complex ([Co(L2](ClO42, 1. The complex 1 was characterized by elemental analysis, magnetic moment, molar conductivity, thermogravimetric analysis, FT-IR, UV-visible, mass spectrometry, and its solid state structure was determined by single crystal X-ray diffraction. According to the thermogravimetric analysis data, there is no any water coordinated or uncoordinated in 1 as well as elemental analysis. The complex 1 has 1:2 M:L ionic characteristic according to the molar conductivity. In the complex, the distances between the cobalt and the ethereal oxygen atoms (Co1-O2: 2.805(3; Co2-O1: 2.752(2 Å show the semi-coordination bonding and the Co(II ion is six-coordinated with a N4O2 ligand set, resulting in a distorted octahedron.

  9. Effects of HfO{sub 2}/Co interface and Co/HfO{sub 2} interface on anomalous Hall behavior in perpendicular Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Long [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Guang [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Teng, Jiao, E-mail: tengjiao@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Qi-Xun; Liu, Yi-Wei; Li, Xu-Jing [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Guang-Hua, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-07-01

    Highlights: • Anomalous Hall effect in perpendicular Co/Pt multilayers is studied. • Thermally stable AHE feature is obtained in [Pt/Co]{sub 3}/HfO{sub 2}/Pt multilayers. • Good thermal stability is due to enhanced intrinsic and side-jump contributions. - Abstract: Effects of the HfO{sub 2}/Co interface and the Co/HfO{sub 2} interface on thermal stability of anomalous Hall effect (AHE) in perpendicular Co/Pt multilayers have been studied. It is observed that thermally stable AHE behavior cannot be obtained in perpendicular Co/Pt multilayers with the HfO{sub 2}/Co interface, mainly due to Co-Pt interdiffusion during annealing. In contrast, thermally stable AHE feature is observed in perpendicular Co/Pt multilayers with the Co/HfO{sub 2} interface despite Co-Pt interdiffusion, which is owing to the enhancement of the side jump and intrinsic contributions to the AHE through interfacial modification after annealing.

  10. Synthesis of 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 cathode materials using 3-D urchin-like MnO2 as precursor for high performance lithium ion battery

    International Nuclear Information System (INIS)

    Zhao, Chenhao; Hu, Zhibiao; Zhou, Yunlong; Fang, Shuzhen; Cai, Shaohan

    2015-01-01

    In the paper, we report synthesis of lithium rich layered oxide 0.3Li 2 MnO 3 ·0.7LiNi 1/3 Co 1/3 Mn 1/3 O 2 by using an urchin-like MnO 2 as precursor. The influences of calcination temperatures on the structures and electrochemical performances of as-prepared materials are systematically studied. The results show that the obtained sample can partially retain the morphology of urchin-like precursor especially at low temperature, and a higher calcination temperature helps to improve the layered structure and particle size. As lithium ion battery cathodes, the 750 °C sample with the size of 100–200 nm reveals an optimal electrochemical performance. The initial discharge capacity of 234.6 mAh g −1 with high Coulombic efficiency of 84.6 % can be reached at 0.1C within 2.0–4.7 V. After 50 cycles, the capacity retention can reach 90.2 % at 0.5C. Even at high current density of 5C, the sample also shows a stable discharge capacity of 120.5 mAh g −1 . Anyways, the urchin-like MnO 2 directed route is suitable to prepare 0.3Li 2 MnO 3 ·0.7LiNi 1/3 Co 1/3 Mn 1/3 O 2 as lithium ion battery cathode

  11. Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol

    Directory of Open Access Journals (Sweden)

    Cheng- Hsin Kuo

    2013-12-01

    Full Text Available This study addresses the catalytic performance of Cu/ZnO/Al2O3/Cr2O3 in low-temperature of autothermal reforming (ATR reaction. Various operating conditions were used to decide the optimum reaction conditions: type of promoter (ZrO2, CeO2, and Cr2O3, precipitation temperature, precipitation pH, operation temperature, molar ratio of O2/CH3OH (O/C, and weight hourly space velocity (WHSV. The catalysts were prepared using the oxalic coprecipitation method. Characterization of the catalyst was conducted using a porosity analyzer, XRD, and SEM. The methanol conversion and volumetric percentage of hydrogen using the best catalyst (Cu/ZnO/Al2O3/Cr2O3 exceeded 93% and 43%, respectively. A catalyst prepared by precipitation at -5 oC and at pH of 1 converted methanol to 40% H2 and less than 3000 ppm CO at reaction temperature of 200 oC. The size and dispersion of copper and the degradation rate and turnover frequency of the catalyst was also calculated. Deactivation of the Cu catalyst at a reaction temperature of 200 oC occurred after 30 h. © 2013 BCREC UNDIP. All rights reservedReceived: 8th May 2013; Revised: 10th August 2013; Accepted: 18th August 2013[How to Cite: Cheng, H.K., Lesmana, D., Wu, H.S. (2013. Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 110-124. (doi:10.9767/bcrec.8.2.4844.110-124][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4844.110-124

  12. Sensitivity of Mesoporous CoSb2O6 Nanoparticles to Gaseous CO and C3H8 at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Héctor Guillén-Bonilla

    2015-01-01

    Full Text Available Mesoporous CoSb2O6 nanoparticles, synthesized through a nonaqueous method (using cobalt nitrate, antimony trichloride, ethylenediamine, and ethanol as a solvent, were tested to establish their sensitivity to CO and C3H8 atmospheres at relatively low temperatures. The precursor material was dried at 200°C and calcined at 600°C. X-ray diffraction and scanning electron microscopy were employed to verify the existence of crystal phases (P42/mnm and the morphology of this trirutile-type CoSb2O6 oxide. Pyramidal and cubic shaped crystals (average size: 41.1 nm, embedded in the material’s surface, were identified. Mesopores (average size: 6.5 nm on the nanoparticles’ surface were observed by means of transmission electron microscopy. The best sensitivity of the CoSb2O6 in a CO atmosphere was at the relatively low temperatures of 250 and 350°C, whereas, in a C3H8 atmosphere, the sensitivity increased uniformly with temperature. These results encourage using the CoSb2O6 nanoparticles as gas sensors.

  13. Effects of the co-addition of LiSbO3-LiTaO3 on the densification of (Na1/2K1/2)NbO3 lead free ceramics by atmosphere sintering

    International Nuclear Information System (INIS)

    Jiang Na; Fang Bijun; Wu Jian; Du Qingbo

    2011-01-01

    Research highlights: → This manuscript shows a synthesis method that can easily obtain excellent lead-free samples, which is valuable for industrial production. → Pure phase perovskite 0.94(Na 1/2 K 1/2 )NbO 3 -0.03LiSbO 3 -0.03LiTaO 3 (0.94NKN-0.03LS-0.03LT) lead-free piezoelectric ceramics with high relative density, being 94.73%, and excellent integral electrical properties, piezoelectric constant d 33 being 228 pC/N, were prepared by atmosphere sintering method. Which can be attributed to the co-doping of LiSbO 3 -LiTaO 3 . - Abstract: Pure phase perovskite 0.94(Na 1/2 K 1/2 )NbO 3 -0.03LiSbO 3 -0.03LiTaO 3 (0.94NKN-0.03LS-0.03LT) lead-free piezoelectric ceramics were prepared by the conventional solid-state reaction method. Due to the co-addition of LiSbO 3 -LiTaO 3 , the 0.94NKN-0.03LS-0.03LT ceramics prepared by atmosphere sintering at 1040 deg. C exhibit high relative density, being 94.73%, and rather homogenous microstructure. X-ray diffraction (XRD) measurement confirmed that the sintered ceramics exhibit pure tetragonal perovskite structure. The 0.94NKN-0.03LS-0.03LT ceramics exhibit excellent integral electrical properties, in which the value of piezoelectric constant d 33 is 228 pC/N, the electromechanical coupling factors K p and K t are 0.220 and 0.230, respectively, the mechanical quality factor Q m is 32.19, and the remnant polarization P r is 23.06 μC/cm 2 . Such excellent electrical properties are considered as correlating with the high relative density of the synthesized ceramics induced by the co-doping of LiSbO 3 -LiTaO 3 .

  14. Enhancing photocatalytic CO{sub 2} reduction by coating an ultrathin Al{sub 2}O{sub 3} layer on oxygen deficient TiO{sub 2} nanorods through atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Huilei; Chen, Jiatang; Rao, Guiying; Deng, Wei; Li, Ying, E-mail: yingli@tamu.edu

    2017-05-15

    Highlights: • Oxygen deficient TiO{sub 2} anatase nanorods are coated with an ultrathin Al{sub 2}O{sub 3} layer by ALD. • Exposed {100} facets and oxygen vacancies promote CO{sub 2} photoreduction to CO and CH{sub 4}. • Al{sub 2}O{sub 3} overlayer passivates surface states and mitigates surface charge recombination. • Two cycles of ALD coating lead to maximum photocatalytic CO{sub 2} reduction. • More than five cycles of ALD coating prohibits electron transfer to the surface. - Abstract: In this work, anatase nanorods (ANR) of TiO{sub 2} with active facet {100} as the major facet were successfully synthesized, and reducing the ANR by NaBH{sub 4} led to the formation of gray colored oxygen deficient TiO{sub 2-x} (ReANR). On the surface of ReANR, a thin layer of Al{sub 2}O{sub 3} was deposited using atomic layer deposition (ALD), and the thickness of Al{sub 2}O{sub 3} varied by the number of ALD cycles (1, 2, 5, 10, 50, 100, or 200). The growth rate of Al{sub 2}O{sub 3} was determined to be 0.25 Å per cycle based on high-resolution TEM analysis, and the XRD result showed the amorphous structure of Al{sub 2}O{sub 3}. All the synthesized photocatalysts (ANR, ReANR, and Al{sub 2}O{sub 3} coated ReANR) were tested for CO{sub 2} photocatalytic reduction in the presence of water vapor, with CO detected as the major reduction product and CH{sub 4} as the minor product. Compared with ANR, ReANR had more than 50% higher CO production and more than ten times higher CH{sub 4} production due to the oxygen vacancies that possibly enhanced CO{sub 2} adsorption and activation. By applying less than 5 cycles of ALD, the Al{sub 2}O{sub 3} coated ReANR had enhanced overall production of CO and CH{sub 4} than uncoated ReANR, with 2 cycles being the optimum, about 40% higher overall production than ReANR. Whereas, both CO and CH{sub 4} production decreased with increasing number of ALD cycles when more than 5 cycles were applied. Photoluminescence (PL) analysis showed an

  15. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  16. Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li−Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; García Lastra, Juan Maria; Hummelshøj, Jens S.

    2015-01-01

    The formation and oxidation of the main discharge product in nonaqueous secondary Li−O2 batteries, that is, Li2O2, has been studied intensively, but less attention has been given to the formation of cathode−electrolyte interfaces, which can significantly influence the performance of the Li−O2...... battery. Here we apply density functional theory with the Hubbard U correction (DFT+U) and nonequilibrium Green’s function (NEGF) methods to investigate the role of Li2O2@Li2CO3 interface layers on the ionic and electronic transport properties at the oxygen electrode. We show that, for example, lithium...... vacancies accumulate at the peroxide part of the interface during charge, reducing the coherent electron transport by two to three orders of magnitude compared with pristine Li2O2. During discharge, Li2O2@Li2CO3 interfaces may, however, provide an alternative in-plane channel for fast electron polaron...

  17. Synthesis and thin film growth of alkaline cobaltates Na{sub x}CoO{sub 2} and Li{sub x}CoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra

    2013-02-18

    In this study sol-gel synthesis was used to fabricate Na{sub x}CoO{sub 2}, LiNi{sub 1/2}Co{sub 1/2}O{sub 2} and LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2}. By using acetate precursors a lower process temperature was accessible, which has a positive effect on the sodium and lithium loss during synthesis. The lithium based powders were single phase and kept cation stoichiometry after sintering. A small grain size is favourable for battery applications. Sodium content was slightly reduced after temperature treatment compared to the initial cation mixture, due to the high volatility of Na. To fabricate thin films PLD was used for deposition. All films were deposited on SrTiO{sub 3} substrates. The growth mechanism of Na{sub x}CoO{sub 2} on SrTiO{sub 3} was investigated and an in-plane and out-of-plane relation between film an substrate was found. The films grow 15 and 45 rotated with respect to the ab-plane of the substrate and grow in c-axis direction out-of-plane. The sodium content and the crystallinity of the Na{sub x}CoO{sub 2} was investigated as a function of the post deposition treatment. A change of x between 0.38 and 0.84 can be achieved. The γ-phase was preserved in all films despite of the change of the sodium content. The in-situ variation of sodium stoichiometry, allows to tune the film properties in a wide range. This feature is an advantage compared to bulk Na{sub x}CoO{sub 2}, in which only certain stoichiometries can be stabilized. Fabrication of superconducting thin films Na{sub 0.33}CoO{sub 2}.1.3H{sub 2}O was challenging, since the superconducting phase is metastable and hardly to stabilize as a thin film. LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} and LiNi{sub 1/2}Co{sub 1/2}O{sub 2} thin films were grown by PLD in (104)-orientation. These thin film materials are promising candidates as cathode materials for the development of thin film batteries.

  18. Evaluation of Ca3(Co,M2O6 (M=Co, Fe, Mn, Ni as new cathode materials for solid-oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Fushao Li

    2015-10-01

    Full Text Available Series compounds Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni with hexagonal crystal structure were prepared by sol–gel route as the cathode materials for solid oxide fuel cells (SOFCs. Effects of the varied atomic compositions on the structure, electrical conductivity, thermal expansion and electrochemical performance were systematically evaluated. Experimental results showed that the lattice parameters of Ca3(Co0.9Fe0.12O6 and Ca3(Co0.9Mn0.12O6 were both expanded to certain degree. Electron-doping and hole-doping effects were expected in Ca3(Co0.9Mn0.12O6 and Ca3(Co0.9Ni0.12O6 respectively according to the chemical states of constituent elements and thermal-activated behavior of electrical conductivity. Thermal expansion coefficients (TEC of Ca3(Co0.9M0.12O6 were measured to be distributed around 16×10−6 K−1, and compositional elements of Fe, Mn, and Ni were especially beneficial for alleviation of the thermal expansion problem of cathode materials. By using Ca3(Co0.9M0.12O6 as the cathodes operated at 800 °C, the interfacial area-specific resistance varied in the order of M=CoCo3(Co0.9Fe0.12O6 showed the best electrochemical performance and the power density as high as ca. 500 mW cm−2 at 800 °C achieved in the single cell with La0.8Sr0.2Ga0.83Mg0.17O2.815 as electrolyte and Ni–Ce0.8Sm0.2O1.9 as anode. Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni can be used as the cost-effective cathode materials for SOFCs.

  19. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    Directory of Open Access Journals (Sweden)

    Yamina Boukoberine

    2016-09-01

    Full Text Available CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in catalyst results in a decrease of the thiophene HDS activity. This decrease is probably caused by the formation of heavy compounds and the deactivation of the zeolite at high temperatures.

  20. Synthesis and characterization of novel PPy/Bi{sub 2}O{sub 2}CO{sub 3} composite with improved photocatalytic activity for degradation of Rhodamine-B

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qizhao, E-mail: wangqizhao@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou 730070 (China); Zheng, Longhui; Chen, Yutao; Fan, Jiafeng [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou 730070 (China); Huang, Haohao, E-mail: scuthhh@hotmail.com [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Su, Bitao [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou 730070 (China)

    2015-07-15

    Highlights: • A new photocatalyst PPy/Bi{sub 2}O{sub 2}CO{sub 3} was synthesized by a simple hydrothermal method. • The PPy/Bi{sub 2}O{sub 2}CO{sub 3} photocatalyst shows enhanced degradation activity of RhB under UV light irradiation. • A photocatalytic mechanism is proposed based on the synergistic effect of PPy and Bi{sub 2}O{sub 2}CO{sub 3}. - Abstract: Photocatalyst Bi{sub 2}O{sub 2}CO{sub 3} modified by polypyrrole (PPy) was synthesized via a facile hydrothermal method. As-prepared PPy/Bi{sub 2}O{sub 2}CO{sub 3} composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV–vis diffuse reflectance spectroscopy (DRS). Presence of PPy did not affect the crystal structure, but exerted great influence on the photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3} and enhanced absorption band of pure Bi{sub 2}O{sub 2}CO{sub 3}. The photocatalytic activities of the PPy/Bi{sub 2}O{sub 2}CO{sub 3} samples were determined by photocatalytic degradation of Rhodamine-B (RhB) under ultra violet (UV) irradiation and 0.75 wt.% PPy/Bi{sub 2}O{sub 2}CO{sub 3} composite showed the highest photocatalytic activity. The enhanced photocatalytic performance could be attributed to the synergistic effect of PPy and Bi{sub 2}O{sub 2}CO{sub 3}. A possible photocatalytic mechanism of the PPy/Bi{sub 2}O{sub 2}CO{sub 3} photocatalysts was proposed in order to guide the further improvement of its photocatalytic performance.

  1. Composites Li2MnO3·LiMn1/3Ni1/3Co1/3O2: Optimized synthesis and applications as advanced high-voltage cathode for batteries working at elevated temperatures

    International Nuclear Information System (INIS)

    Yu Chuang; Li Guangshe; Guan Xiangfeng; Zheng Jing; Li Liping; Chen Tianwen

    2012-01-01

    Highlights: ► Composites xLi 2 MnO 3 ·(1 − x)LiMn 1/3 Ni 1/3 Co 1/3 O 2 (x = 0.1–0.4) were prepared by a novel two-step molten-salt route. ► Structure and chemical compositions of the composites were optimized to show an optimum electrochemical property. ► Composite electrode 0.3Li 2 MnO 3 ·0.7LiMn 1/3 Ni 1/3 Co 1/3 O 2 exhibited an excellent electrochemical performance at elevated temperature of 45.4 °C. ► Electrode kinetics of composites was uncovered for the excellent electrochemical performance at elevated temperature. - Abstract: This work reports on the optimized preparation of a series of composites xLi 2 MnO 3 ·(1 − x)LiMn 1/3 Ni 1/3 Co 1/3 O 2 (x = 0.1–0.4) with an aim to find an advanced high-voltage cathode for lithium-ion batteries that can work at elevated temperatures. Developing a two-step molten-salt method leads to composites with a layered-type structure, showing a particle size distribution ranging from 350 to 450 nm. The composites are featured by oxidation states stabilized as Mn 4+ , Ni 2+ , and Co 3+ , and by lattice occupation of Li + in both transition-metal layers and lithium layer of LiMn 1/3 Ni 1/3 Co 1/3 O 2 . When acting as a cathode of lithium-ion batteries, the composite at x = 0.3 shows an optimum electrochemical performance as characterized by a discharge capacity of 120 mAh g −1 at a high current density of 500 mA g −1 and a capacity retention of 64% after 20 cycles. Surprisingly, this electrochemical performance is significantly improved at elevated temperatures. Namely, discharge capacity is increased to 140.4 mAh g −1 at a high current density of 500 mA g −1 , while average capacity decay rate becomes very small to 0.76%. These excellent performance is explained in terms of the dramatically improved lithium-ion diffusions in both electrode and surface films at elevated temperatures.

  2. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries

    Science.gov (United States)

    Seteni, Bonani; Rapulenyane, Nomasonto; Ngila, Jane Catherine; Mpelane, Siyasanga; Luo, Hongze

    2017-06-01

    Lithium-manganese-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 is prepared by combustion method, and then coated with nano-sized LiFePO4 and nano-sized Al2O3 particles via a wet chemical process. The as-prepared Li1.2Mn0.54Ni0.13Co0.13O2, LiFePO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 and Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 are characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The scanning electron microscopy shows the agglomeration of the materials and their nanoparticle size ∼100 nm. The transmission electron microscopy confirms that LiFePO4 forms a rough mat-like surface and Al2O3 remain as islandic particles on the surface of the Li1.2Mn0.54Ni0.13Co0.13O2 material. The Li1.2Mn0.54Ni0.13Co0.13O2 coated with LiFePO4 and Li1.2Mn0.54Ni0.13Co0.13O2 coated with Al2O3 exhibits improved electrochemical performance. The initial discharge capacity is enhanced to 267 mAhg-1 after the LiFePO4 coating and 285 mAhg-1 after the Al2O3 coating compared to the as-prepared Li1.2Mn0.54Ni0.13Co0.13O2 material that has an initial discharge capacity of 243 mAhg-1. Galvanostatic charge-discharge tests at C/10 display longer activation of Li2MnO3 phase and higher capacity retention of 88% after 20 cycles for Li1.2Mn0.54Ni0.13Co0.13O2-LiFePO4 compared to Li1.2Mn0.54Ni0.13Co0.13O2-Al2O3 of 80% after 20 cycles and LMNC of 80% after 20 cycles. Meanwhile Li1.2Mn0.54Ni0.13Co0.13O2-LiFePO4 also shows higher rate capability compared to Li1.2Mn0.54Ni0.13Co0.13O2-Al2O3.

  3. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    Science.gov (United States)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  4. Selective photocatalytic reduction of CO{sub 2} by H{sub 2}O/H{sub 2} to CH{sub 4} and CH{sub 3}OH over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad, E-mail: mtahir@cheme.utm.my [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia); Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, Punjab (Pakistan); Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia)

    2016-12-15

    Highlights: • Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalysts tested for CO{sub 2} photoreduction with H{sub 2}O/H{sub 2}. • Production of CH{sub 4} and CH{sub 3}OH depends on reductants type and metal-loading to TiO{sub 2}. • CH{sub 4} production over Cu-In/TiO{sub 2} was 1.5 fold more than In/TiO{sub 2} and 5 times the TiO{sub 2}. • The Cu-promoted CH{sub 3}OH production while In gave more CH{sub 4} with water vapors. • The H{sub 2} reductant gave negative effect for CH{sub 4} but enhanced CH{sub 3}OH production. - Abstract: Photocatalytic CO{sub 2} reduction by H{sub 2}O and/or H{sub 2} reductant to selective fuels over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N{sub 2} adsorption-desorption, UV–vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO{sub 2}, oxidized as Cu{sup 2+} and In{sup 3+}, promoted efficient separation of photo-generated electron/hole pairs (e{sup −}/h{sup +}). The results indicate that the reduction rate of CO{sub 2} by H{sub 2}O to CH{sub 4} approached to 181 μmol g{sup −1} h{sup −1} using 0.5% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst, a 1.53 fold higher than the production rate over the 3% In{sub 2}O{sub 3}/TiO{sub 2} and 5 times the amount produced over the pure TiO{sub 2}. In addition, Cu was found to promote efficient production of CH{sub 3}OH and yield rate reached to 68 μmol g{sup −1} h{sup −1} over 1% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H{sub 2} reductant was less favorable for CH{sub 4} production, yet a significant amount of CH{sub 4} and CH{sub 3}OH were obtained using a mixture of H{sub 2}O/H{sub 2} reductant. Therefore, Cu-loaded In{sub 2}O{sub 3}/TiO{sub 2} catalyst has shown to be capable for

  5. Determination of the dissociation constant of molten Li/sub 2/CO/sub 3//Na/sub 2/CO/sub 3//K/sub 2/CO/sub 3/ using a stabilized zirconia oxide-ion indicator

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yasuhiko; Tsuru, Kiyoshi; Oishi, Jun; Miyazaki, Yoshinori; Kodama, Teruo

    1985-09-01

    An Li/sub 2/CO/sub 3//Na/sub 2/CO/sub 3//K/sub 2/CO/sub 3/ eutectic melt has been selected as an example of a molten-carbonate system and the suitability of a stabilized zirconia-air electrode as an oxide-ion concentration indicator for this melt has been confirmed. With this indicator, the dissociation constant of the reaction CO/sub 3//sup 2 -/(l)=CO/sub 2/(g)+O/sup 2 -/(l) in this melt has been determined to be Ksub(d)=P sub(CO/sub 2/) (O/sup 2 -/)=4.03 x 10/sup -3/ Pa at 873 K. Reproducible measurements were obtained throughout the experiment and this method might find further application in the study of reactions related to the oxide ion in carbonate melts. (orig.).

  6. Study on upconversion luminescence and thermal properties of Ho{sup 3+}/Yb{sup 3+} co-doped La{sub 2}O{sub 3}–TiO{sub 2}–ZrO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minghui; Wen, Haiqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Yu, Huimei [Analysis and Testing Center of Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Ai, Fei [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Shao, Hui [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 (China); Pan, Xiuhong; Tang, Meibo; Yu, Jianding; Gai, Lijun [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Liu, Yan, E-mail: liuyan@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China)

    2016-07-05

    Bulk Ho{sup 3+}/Yb{sup 3+} co-doped La{sub 2}O{sub 3}–TiO{sub 2}–ZrO{sub 2} glass spheres were fabricated by aerodynamic levitation method. High concentration of Yb{sup 3+} ions was successfully doped in glasses. The effects of Yb{sup 3+} concentration on mechanical properties, Raman, absorption spectra, thermal stability, and glass forming ability were studied systematically. Green, red, and infrared emissions centered at 550, 662, and 758 nm were obtained at 980 nm excitation. Yellow light from glass spheres can be easily observed by naked eyes. As Yb{sup 3+} concentration increases, the upconversion luminescence can be improved obviously. The upconversion luminescence mechanism is a two-photon process of energy transfer, excited state absorption, and energy back transfer. The emission intensity can be enhanced in the samples with high Yb{sup 3+} concentration, since the absorption for the incident laser and the energy transfer efficiency are increased, and the nonradiative relaxation probability is reduced. The light color referring to the ratio for red to green emissions can be tuned by Yb{sup 3+} concentration. Ho{sup 3+}/Yb{sup 3+} co-doped La{sub 2}O{sub 3}–TiO{sub 2}–ZrO{sub 2} glasses show promising comprehensive properties and are helpful to speed the application of upconversion luminescence materials. - Highlights: • Ho{sup 3+}/Yb{sup 3+} doped titanate glasses are prepared by containerless processing. • The effects of Yb{sup 3+} on thermal and mechanical properties have been studied. • High concentration of Yb{sup 3+} is favorable to upconversion luminescence. • The mechanisms are energy transfer, excited state absorption, energy back transfer.

  7. Effect of carbonation temperature on CO{sub 2} adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hlaing, Nwe Ni, E-mail: nwenihlaing76@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Sreekantan, Srimala, E-mail: srimala@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Hinode, Hirofumi, E-mail: hinode@ide.titech.ac.jp; Kurniawan, Winarto, E-mail: Kurniawan.w.ab@m.titech.ac.jp [Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Thant, Aye Aye, E-mail: a2thant@gmail.com [Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Othman, Radzali, E-mail: radzali@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Malacca (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@eng.usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Salime, Chris, E-mail: chris.salim@surya.ac.id [Environmental Engineering, Surya University, Tangerang, 15810 Banten (Indonesia)

    2016-07-06

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO{sub 2} capture mainly due to their high CO{sub 2} adsorption capacity. In this study, micro/nanostructured aragonite CaCO{sub 3} was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO{sub 3} with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO{sub 2} adsorption capacity of CaO derived from aragonite CaCO{sub 3} sample. At 300 °C, the sample reached the CO{sub 2} adsorption capacity of 0.098 g-CO{sub 2}/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO{sub 2}/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO{sub 2} adsorption capacity of the CaO derived from aragonite CaCO{sub 3}.

  8. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries.

    Science.gov (United States)

    He, Li-Po; Sun, Shu-Ying; Song, Xing-Fu; Yu, Jian-Guo

    2017-06-01

    In view of the importance of environmental protection and resource recovery, recycling of spent lithium-ion batteries (LIBs) and electrode scraps generated during manufacturing processes is quite necessary. An environmentally sound leaching process for the recovery of Li, Ni, Co, and Mn from spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 -based LIBs and cathode scraps was investigated in this study. Eh-pH diagrams were used to determine suitable leaching conditions. Operating variables affecting the leaching efficiencies for Li, Ni, Co, and Mn from LiNi 1/3 Co 1/3 Mn 1/3 O 2 , such as the H 2 SO 4 concentration, temperature, H 2 O 2 concentration, stirring speed, and pulp density, were investigated to determine the most efficient conditions for leaching. The leaching efficiencies for Li, Ni, Co, and Mn reached 99.7% under the optimized conditions of 1M H 2 SO 4 , 1vol% H 2 O 2 , 400rpm stirring speed, 40g/L pulp density, and 60min leaching time at 40°C. The leaching kinetics of LiNi 1/3 Co 1/3 Mn 1/3 O 2 were found to be significantly faster than those of LiCoO 2 . Based on the variation in the weight fraction of the metal in the residue, the "cubic rate law" was revised as follows: θ(1-f) 1/3 =(1-kt/r 0 ρ), which could characterize the leaching kinetics optimally. The activation energies were determined to be 64.98, 65.16, 66.12, and 66.04kJ/mol for Li, Ni, Co, and Mn, respectively, indicating that the leaching process was controlled by the rate of surface chemical reactions. Finally, a simple process was proposed for the recovery of valuable metals from spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 -based LIBs and cathode scraps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Exchange coupling behavior in bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Leite, G.C.P. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Chagas, E.F., E-mail: efchagas@fisica.ufmt.br [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Pereira, R.; Prado, R.J. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Terezo, A.J. [Departamento de Quimica, Universidade Federal do Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Alzamora, M.; Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 Urca, Rio de Janeiro (Brazil)

    2012-09-15

    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe{sub 2}O{sub 4} and ferrimagnetic oxide/ferromagnetic metal CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite: (i) first, preparation of CoFe{sub 2}O{sub 4} nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe{sub 2}O{sub 4} particles is about 16 nm. Mossbauer spectra revealed two sites for Fe{sup 3+}. One site is related to Fe in an octahedral coordination and the other one to the Fe{sup 3+} in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe{sub 2}O{sub 4}. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe{sub 2} on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH){sub max} of 1.22 MGOe was achieved at room temperature for CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposites, which is about 115% higher than the value obtained for CoFe{sub 2}O{sub 4} precursor. The exchange coupling interaction and the enhancement of product (BH){sub max} in nanocomposite CoFe{sub 2}O{sub 4}/CoFe{sub 2} are discussed. - Highlights: Black-Right-Pointing-Pointer CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite

  10. Characterization of Al{sub 2}O{sub 3}-Co ceramic composite obtained by high energy mill; Caracterizacao de composito ceramico Al{sub 2}O{sub 3}-CO obtido por moagem de alta energia (MAE)

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.L.; Assis, R.B. de; Carlos, E.M.; Oliveira, T.P.; Costa, F.A. da, E-mail: leonaldojs@hotmail.com [Universidade Federal do Rio Grande do Norte (PPGCEM/UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2014-07-01

    This work aims to characterize the ceramic composite Al{sub 2}O3-Co obtained by high energy grinding. The composites were obtained by milling Al{sub 2}O{sub 3} and Co in a high energy mill at a speed of 400 rpm, in proportions of 5 to 20% Cobalt (Co). Ceramic composites with 5 and 20% cobalt were sintered at 1200 and 1300 ° C, with a 60-minute plateau and a heating rate of 10 ° C / min. The samples were characterized by X-ray diffraction (XRD), thermogravimetry and differential scanning calorimetry (TG / DSC) and scanning electron microscopy (SEM). The results show the significant effect of cobalt percentage and high energy grinding on the final properties of the Al{sub 2}O{sub 3} - Co ceramic composite, presenting satisfactory values for the composite with a 20% cobalt percentage, showing to be a promising material for application in cutting tools.

  11. Efeito do teor metálico em catalisadores Co/Al2O3 aplicados à reação de reforma a vapor de etanol Effect of metal load in Co/Al2o3 catalysts for ethanol steam reforming

    Directory of Open Access Journals (Sweden)

    Rudye K. S. Santos

    2005-08-01

    Full Text Available The development of cobalt catalysts to produce hydrogen from ethanol is the goal of this investigation. Co/Al2O3 catalysts were prepared by impregnation and characterized by atomic absorption, nitrogen adsorption, X-ray diffraction, Raman spectroscopy, temperature programmed reduction and carbon analysis. The catalysts contained Co3O4 oxide and Co3+ and Co2+ species interacting with alumina. The cobalt load affects the crystal size and the crystalline structure and higher Co loads influence the reaction mechanism, changing the selectivity of the catalysts, decreasing the amount of CO produced and avoiding the formation of products catalyzed by the support. The ethanol conversion was 50-70% with 10-<1% of CO in the hydrogen.

  12. Fabrication, modification and application of (BiO){sub 2}CO{sub 3}-based photocatalysts: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Zilin; Sun, Yanjuan [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067 (China); Zhang, Yuxin [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The (BiO){sub 2}CO{sub 3} with Aurivillius structure y is an emergent material. • Synthesis of (BiO){sub 2}CO{sub 3} micro/nano structures was reviewed. • The mechanisms of (BiO){sub 2}CO{sub 3} based nanocomposites were discussed. • Doping (BiO){sub 2}CO{sub 3} with nonmetals for enhanced activity was highlighted. • Multi-functional applications of (BiO){sub 2}CO{sub 3} based derivatives was demonstrated. - Abstract: (BiO){sub 2}CO{sub 3} (BOC), a fascinating material, belongs to the Aurivillius-related oxide family with an intergrowth texture in which Bi{sub 2}O{sub 2}{sup 2+} layers and CO{sub 3}{sup 2−} layers are orthogonal to each other. BOC is a suitable candidate for various fields, such as healthcare, photocatalysis, humidity sensor, nonlinear optical application and supercapacitors. Recently, the photocatalysis properties of (BiO){sub 2}CO{sub 3} have been gained increased attention. BOC has a wide band gap (3.1–3.5 eV), which constrains its visible light absorption and utilization. In order to enhance the visible light driven photocatalytic performance of BOC, many modification strategies have been developed. According to the discrepancies of different coupling mechanisms, six primary systems of BOC-based nanocomposites can be classified and summarized: namely, metal/BOC heterojunction, single metal oxides (metal sulfides)/BOC heterostructure, bismuth-based metallic acid salts (Bi{sub x}MO{sub y})/BOC, bismuth oxyhalides (BiOX)/BOC, metal-free semiconductor/BOC and the BOC-based complex heterojunction. Doping BOC with nonmetals (C, N and oxygen vacancy) is unique strategy and warrants a separate categorization. In this review, we first give a detailed description of the strategies to fabricate various BOC micro/nano structures. Next, the mechanisms of photocatalytic activity enhancement are elaborated in three parts, including BOC-based nanocomposites, nonmetal doping and formation of oxygen vacancy. The

  13. Thermoluminescence properties of Eu and Li co-doped Gd2O3, induced by UV light

    International Nuclear Information System (INIS)

    Hristov, H; Arhangelova, N; Velev, V; Uzunov, N M; Baneva, Y; Nedeva, D; Penev, I; Moschini, G; Rossi, P

    2012-01-01

    For some specific biomedical applications, connected with in-situ measurements of the absorbed dose of ultraviolet (UV) light, we have developed materials, sensitive to the light emission with a wavelength up to 320nm. Thermoluminescence (TL) yield of Gd 2 O 3 , doped with Eu and Li has been analysed with respect to the quantity of Li co-dopant. Lithium has been added as Li 2 CO 3 to a mixture of Gd 2 O 3 with 10 wt% Eu 2 O 3 . Pellets with the mixture have been sintered at a temperature of 1000°C. The kinetic parameters of the phosphors thus obtained have been studied from the TL glow curves after irradiation with UV light. It has been demonstrated that the addition of 16 wt% of Li 2 CO 3 to the Eu-doped Gd 2 O 3 yields a maximum intensity of the peaks at 87°C and at 145°C. Studies on the kinetic parameters as well as the TL properties of Eu-doped Gd 2 O 3 with the addition of 16% of Li 2 CO 3 have been conducted. It has been measured that two of the TL peaks of this phosphor have relatively long fading. Analysis of the TL properties of the phosphors obtained from Gd 2 O 3 , doped with Eu and Li, shows that they possess good sensitivity to the UV emission and could be used as appropriate phosphors for detection and quantitative measurements of UV light.

  14. Two-Nozzle Flame Spray Pyrolysis (FSP) Synthesis of CoMo/Al2O3 Hydrotreating Catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Pham, David K.; Brorson, Michael

    2013-01-01

    and the hydrodenitrogenation activity improved from 70 to 90 % relative activity. This suggests that better promotion of the active molybdenum sulfide phase was achieved when using two-nozzle FSP synthesis, probably due to less formation of the undesired phase CoAl2O4, which makes Co unavailable for promotion.......Two-nozzle frame spray analysis (FSP) synthesis of CoMo/Al2O3 where Co and Al are sprayed in separate flames was applied to minimize the formation of CoAl2O4 observed in one-nozzle flame spray pyrolysis (FSP) synthesis and the materials were characterized by N2-adsorption (BET), X-ray diffraction...... (XRD), UV–vis diffuse reflectance spectroscopy, Raman spectroscopy, transmission electron microscopy, and catalytic performances in hydrotreating. By varying the flame mixing distances (81–175 mm) the amount of CoAl2O4 could be minimized. As evidenced by UV–vis spectroscopy, CoAl2O4 was detected only...

  15. Dependence of the up-conversion emission of Li+ co-doped Y2O3:Er3+ films with dopant concentration

    International Nuclear Information System (INIS)

    Meza-Rocha, A.N.; Huerta, E.F.; Caldiño, U.; Carmona-Téllez, S.; Bettinelli, M.; Speghini, A.; Pelli, S.; Righini, G.C.

    2015-01-01

    The effect of dopant concentration on the up-conversion emission, and in particular on the Er 3+ related green and red emissions of spray pyrolysis deposited films of Y 2 O 3 :Er 3+ co-doped with Li + , is reported. Er 3+ concentrations in the films in the range of 1.1–5.6 at% (1.5–14 at% Er 3+ in the spraying solution) were studied, as well as the effect of co-doping them with Li + . Large concentrations of Er 3+ favor the red emission, especially for contents higher than 10 at% in the spraying solution. Li + co-doping improves the green and red emissions up to 365 and 171 times, respectively, depending on the Er 3+ and Li + concentrations. - Highlights: Up-converting Y 2 O 3 :Er 3+ and Y 2 O 3 :Er 3+ , Li + films were deposited by spray pyrolysis. The effect of Li + co-doping on the green and red UC Er 3+ emission is reported. Li + co-doping improves the green and red emission up to 365 and 171 times

  16. Photocatalytic degradation of water surface oils by CoPcS-TiO2-beads and TiO2-beads%CoPcS/TiO2/beads及TiO2/beads光催化降解水面浮油

    Institute of Scientific and Technical Information of China (English)

    张晓叶; 闰永胜; 孔峰; 赵瑞平; 陈林; 钱华伟

    2008-01-01

    以钛酸四丁酯为原料,空心玻璃微珠(beads)为载体,采用溶胶一凝胶法制备出TiO2/beads光催化剂,用浸渍法制备出CoPcS/TiO2/beads新型光催化剂.研究了利用TiO2/beads及CoPcS/TiO2/beads光催化剂降解水面漂浮植物油的最优条件.结果表明:(1)溶胶-凝胶法制备TiO2/beads的最佳条件为:空心玻璃微珠浸渍3次,450~550℃下焙烧2 h.用CoPcS对TiO2/beads进行改性时,TiO2/beads的最1圭浸渍时间为30 min.(2)在中性或酸性条件下,375 W中压汞灯光照23 h,TiO2/eads与CoPcS/TiO2/beads的最佳用量分别为3 g和1 g(植物油3 g),在此条件下,植物油的去除率都高达90%.(3)微量H2O2对TiO2/beads和CoPcS/TiO2/beads的光催化活性都有很大的提高.对于TiO2/beads催化剂,H2O2的最佳用量为5~11 mmol/L;对于CoPcS/TiO2/beads催化剂,H2O2的最佳用量为5~30 mmol/L.(4)新型光催化剂CoPcS/TiO2/aeads比TiO2/beads具有更好的除油性能.

  17. Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Wan Jing; Cheng Lihong; Sun Jiashi; Zhong Haiyang; Li Xiangping; Lu Weili; Tian Yue; Lin Hai; Chen Baojiu

    2010-01-01

    Dy 3+ single-doped and Eu 3+ /Dy 3+ co-doped gadolinium molybdate (Gd 2 (MoO 4 ) 3 ) phosphors were synthesized by a traditional solid-state reaction method. The XRD was used to confirm the crystal structure of the phosphors. The energy transfer between Eu 3+ and Dy 3+ was observed and studied. The Eu 3+ concentration can hardly affect the blue and yellow emission intensities of Dy 3+ , and the Eu 3+ emission intensity increases with the increase of Eu 3+ concentration. Co-doping with Eu 3+ compensated the red emission component of the Dy 3+ doped Gd 2 (MoO 4 ) 3 phosphor. Introducing proper amount of Eu 3+ can improve the colorimetric performance of the phosphors.

  18. Synthesis of Li{sub 2}MnO{sub 3}-stabilized LiCoO{sub 2} cathode material by spray-drying method and its high-voltage performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiguo; Wang, Zhixing, E-mail: zxwang.csu@hotmail.com; Guo, Huajun; Peng, Wenjie; Li, Xinhai

    2015-03-25

    Highlights: • Li{sub 2}MnO{sub 3} is introduced to stabilize the structure of LiCoO{sub 2} at high voltages. • xLi{sub 2}MnO{sub 3}·(1−x)LiCoO{sub 2} with fine particles prepared by a simple spray-drying method. • The modified sample exhibits enhanced high-voltage electrochemical performance. • Possible kinetic behaviors of the electrode surface are discussed. - Abstract: xLi{sub 2}MnO{sub 3}⋅(1 − x)LiCoO{sub 2} (x = 0, 0.02, 0.05, 0.1) as a cathode material for lithium ion batteries has been prepared by a spray-drying assisted solid-state method. The effects of Li{sub 2}MnO{sub 3} content on crystal structure, morphology, and high-voltage electrochemical performance of LiCoO{sub 2} have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and galvanostatic charge–discharge test. XRD results reveal that all samples have a well-ordered layered structure. SEM and EDS analyses confirm that homogeneous powders with a primary particle size of about 2 μm are observed and the elementals distribute uniformly in the particles. Electrochemical tests demonstrate that the modified samples exhibit obviously enhanced cycling stability in the voltage ranges of 3.0–4.5 V and 3.0–4.6 V, although they deliver somewhat lower discharge capacity. Specifically, 0.02Li{sub 2}MnO{sub 3}⋅0.98LiCoO{sub 2} delivers the initial discharge capacity of 189.0, 216.8 mA h g{sup −1} at 0.1 C in the voltage range of 3.0–4.5 V and 3.0–4.6 V, respectively, and excellent cycling behaviors at 1 C are achieved.

  19. CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.

    Science.gov (United States)

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R

    2017-11-17

    Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2  g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermal, spectroscopic and magnetic properties of the Co xNi1-x(SeO3).2H2O (x = 0, 0.4, 1) phases

    International Nuclear Information System (INIS)

    Larranaga, A.; Mesa, J.L.; Pizarro, J.L.; Pena, A.; Chapman, J.P.; Arriortua, M.I.; Rojo, T.

    2005-01-01

    The Co x Ni 1-x (SeO 3 ).2H 2 O (x = 0, 0.4, 1) family of compounds has been hydrothermally synthesized under autogeneous pressure and characterized by elemental analysis, infrared and UV-vis spectroscopies and thermogravimetric and thermodiffractometric techniques. The crystal structure of Co 0.4 Ni 0.6 (SeO 3 ).2H 2 O has been solved from single-crystal X-ray diffraction data. This phase is isostructural with the M(SeO 3 ).2H 2 O (M = Co and Ni) minerals and crystallizes in the P2 1 /n space group, with a 6.4681(7), b = 8.7816(7), c = 7.5668(7) A, β = 98.927(9) deg and Z = 4. The crystal structure of this series of compounds consists of a three-dimensional framework formed by (SeO 3 ) 2- selenite oxoanions and edge-sharing M 2 O 10 dimeric octahedra in which the metallic cations are coordinated by the oxygens belonging to both the selenite groups and water molecules. The diffuse reflectance spectra show the essential characteristics of Co(II) and Ni(II) cations in slightly distorted octahedral environments. The calculated values of the Dq and Racah (B and C) parameters are those habitually found for the 3d 7 and 3d 8 cations in octahedral coordination. The magnetic measurements indicate the existence of antiferromagnetic interactions in all the compounds. The magnetic exchange pathways involve the metal orbitals from edge-sharing dimeric octahedra and the (SeO 3 ) 2- anions which are linked to the M 2 O 10 polyhedra in three dimensions

  1. Phase equilibria, crystal structure and properties of complex oxides in the Nd{sub 2}O{sub 3}–SrO–CoO system

    Energy Technology Data Exchange (ETDEWEB)

    Aksenova, T.V.; Efimova, T.G. [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation); Lebedev, O.I. [Laboratoire CRISMAT, ENSICAEN UMR6508, 6 Bd Maréchal Juin, Cedex 4, Caen 14050 (France); Elkalashy, Sh.I.; Urusova, A.S. [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation); Cherepanov, V.A., E-mail: v.a.cherepanov@urfu.ru [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation)

    2017-04-15

    The phase equilibria in the ½Nd{sub 2}O{sub 3}–SrO–CoO system were systematically studied at 1373 K in air. The intermediate phases formed in the ½Nd{sub 2}O{sub 3}–SrO–CoO system at 1373 K in air are: Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.0≤x≤0.5 with orthorhombic structure, sp. gr. Pbnm and 0.6≤x≤0.95 whose structure was detected as cubic according to XRD sp. gr. Pm3m, but shown to be tetragonal by TEM due to the oxygen vacancy ordering), Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} (0.6≤y≤1.1 with tetragonal K{sub 2}NiF{sub 4}-type structure, sp. gr. I4/mmm) and Nd{sub 2-z}Sr{sub z}O{sub 3} (0.0≤z≤0.15 with hexagonal structure, sp. gr. P-3m1). The unit cell parameters for the single phase samples were refined by the Rietveld analysis. The changes of oxygen content in Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.6≤x≤0.95) and Ruddlesden-Popper oxide Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} were examined by TGA. All were found to be oxygen deficient phases. High-temperature dilatometry allows calculating the thermal expansion coefficient and evaluating the chemical expansion coefficient at high temperature. The projection of isothermal-isobaric phase diagram for the Nd–Sr–Co–O system at 1373 K in air to the compositional triangle of metallic components has been constructed. The phase equilibria in the studied Nd–Sr–Co–O system were compared to La–Sr–Co–O and Nd–M–Co–O (M=Ca and Ba). - Graphical abstract: Crystal structure of vacancy ordered supercell for Nd{sub 0.2}Sr{sub 0.8}CoO{sub 3-δ} and projection of phase diagram for the Nd–Sr–Co–O system onto the triangle edge of metallic components at 1373 K in air. - Highlights: • The diagram for the Nd–Sr–Co–O system at 1373 K in air has been constructed. • The crystal structure of Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} and Nd{sub 2-y}Sr{sub y}CoO{sub 4±δ} was refined. • The formation of superstructure due to the oxygen vacancy ordering was proved. • The changes of oxygen

  2. Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation.

    Science.gov (United States)

    Trávníček, Zdeněk; Zbořil, Radek; Matiková-Maľarová, Miroslava; Drahoš, Bohuslav; Cernák, Juraj

    2013-01-01

    The Prussian blue analogues represent well-known and extensively studied group of coordination species which has many remarkable applications due to their ion-exchange, electron transfer or magnetic properties. Among them, Co-Fe Prussian blue analogues have been extensively studied due to the photoinduced magnetization. Surprisingly, their suitability as precursors for solid-state synthesis of magnetic nanoparticles is almost unexplored. In this paper, the mechanism of thermal decomposition of [Co(en)3][Fe(CN)6] ∙∙ 2H2O (1a) is elucidated, including the topotactic dehydration, valence and spins exchange mechanisms suggestion and the formation of a mixture of CoFe2O4-Co3O4 (3:1) as final products of thermal degradation. The course of thermal decomposition of 1a in air atmosphere up to 600°C was monitored by TG/DSC techniques, (57)Fe Mössbauer and IR spectroscopy. As first, the topotactic dehydration of 1a to the hemihydrate [Co(en)3][Fe(CN)6] ∙∙ 1/2H2O (1b) occurred with preserving the single-crystal character as was confirmed by the X-ray diffraction analysis. The consequent thermal decomposition proceeded in further four stages including intermediates varying in valence and spin states of both transition metal ions in their structures, i.e. [Fe(II)(en)2(μ-NC)Co(III)(CN)4], Fe(III)(NH2CH2CH3)2(μ-NC)2Co(II)(CN)3] and Fe(III)[Co(II)(CN)5], which were suggested mainly from (57)Fe Mössbauer, IR spectral and elemental analyses data. Thermal decomposition was completed at 400°C when superparamagnetic phases of CoFe2O4 and Co3O4 in the molar ratio of 3:1 were formed. During further temperature increase (450 and 600°C), the ongoing crystallization process gave a new ferromagnetic phase attributed to the CoFe2O4-Co3O4 nanocomposite particles. Their formation was confirmed by XRD and TEM analyses. In-field (5 K / 5 T) Mössbauer spectrum revealed canting of Fe(III) spin in almost fully inverse spinel structure of CoFe2O4. It has been found that the thermal

  3. Global CO emission estimates inferred from assimilation of MOPITT and IASI CO data, together with observations of O3, NO2, HNO3, and HCHO.

    Science.gov (United States)

    Zhang, X.; Jones, D. B. A.; Keller, M.; Jiang, Z.; Bourassa, A. E.; Degenstein, D. A.; Clerbaux, C.; Pierre-Francois, C.

    2017-12-01

    Atmospheric carbon monoxide (CO) emissions estimated from inverse modeling analyses exhibit large uncertainties, due, in part, to discrepancies in the tropospheric chemistry in atmospheric models. We attempt to reduce the uncertainties in CO emission estimates by constraining the modeled abundance of ozone (O3), nitrogen dioxide (NO2), nitric acid (HNO3), and formaldehyde (HCHO), which are constituents that play a key role in tropospheric chemistry. Using the GEOS-Chem four-dimensional variational (4D-Var) data assimilation system, we estimate CO emissions by assimilating observations of CO from the Measurement of Pollution In the Troposphere (MOPITT) and the Infrared Atmospheric Sounding Interferometer (IASI), together with observations of O3 from the Optical Spectrograph and InfraRed Imager System (OSIRIS) and IASI, NO2 and HCHO from the Ozone Monitoring Instrument (OMI), and HNO3 from the Microwave Limb Sounder (MLS). Our experiments evaluate the inferred CO emission estimates from major anthropogenic, biomass burning and biogenic sources. Moreover, we also infer surface emissions of nitrogen oxides (NOx = NO + NO2) and isoprene. Our results reveal that this multiple species chemical data assimilation produces a chemical consistent state that effectively adjusts the CO-O3-OH coupling in the model. The O3-induced changes in OH are particularly large in the tropics. Overall, our analysis results in a better constrained tropospheric chemical state.

  4. Co-{alpha}Al{sub 2}O{sub 3}-Cu as shaped catalyst in NaBH{sub 4} hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chamoun, R. [Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Universite Libanaise, Faculte des Sciences II, Laboratoire de physique appliquee, 90656 Jdeidet El Metn (Lebanon); Demirci, U.B.; Miele, P. [Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Zaatar, Y.; Khoury, A. [Universite Libanaise, Faculte des Sciences II, Laboratoire de physique appliquee, 90656 Jdeidet El Metn (Lebanon)

    2010-07-15

    A study about catalytic films of Co-supported-over-{alpha}Al{sub 2}O{sub 3} fabricated by electrophoretic deposition (EPD) is reported, the as-prepared shaped catalysts being intended to catalyze NaBH{sub 4} hydrolysis. Co-{alpha}Al{sub 2}O{sub 3} supported over Cu substrate can be prepared by a 2-step route: (i) preparation of the supported catalyst Co-{alpha}Al{sub 2}O{sub 3} (in powder form) by wet impregnation of CoCl{sub 2} over {alpha}Al{sub 2}O{sub 3}, followed by a reduction, and (ii) fabrication of Co-{alpha}Al{sub 2}O{sub 3}-Cu (thin film over Cu) by EPD. Both types of catalysts, whatever their form, are highly efficient in hydrolyzing NaBH{sub 4}, conversions of 100% and HGRs of tens of mL(H{sub 2}) min{sup -1} being achieved at 60-80 C. The Co-{alpha}Al{sub 2}O{sub 3}-Cu catalysts are even more reactive than the Co-{alpha}Al{sub 2}O{sub 3} catalysts because the surface of the former materials becomes much more acid than that of the latter ones in the course of the EPD process. The respective rate laws and reaction kinetics have been determined. Independently on the catalyst form, apparent activation energies of about 52 kJ mol{sup -1} and positive reaction orders versus the initial NaBH{sub 4} concentration (i.e. 0.3-0.7) were calculated, suggesting that the EPD does not affect the reaction mechanisms. Besides, it is showed that the hydrolysis is really catalytic as well as typical of a heterogeneous process. For example, an apparent reaction order versus the Co content of 0.9 was calculated. All of these results among others are reported and discussed in the present article. (author)

  5. A Novel Ternary CoFe2O4/CuO/CoFe2O4 as a Giant Magnetoresistance Sensor

    Directory of Open Access Journals (Sweden)

    Ramli

    2016-12-01

    Full Text Available This paper reports the results of a study relating to the synthesis of a novel ternary CoFe2O4/CuO/CoFe2O4 thin film as a giant magnetoresistance (GMR sensor. The CoFe2O4/CuO/CoFe2O4 thin film was prepared onto silicon substrate via DC magnetron sputtering with the targets facing each other. X-ray diffraction was used to determine the structure of the thin film and a 4-point method was used to measure the MR ratio. The GMR ratio is highly dependent on the ferrimagnetic (CoFe2O4 and nonmagnetic (CuO layer thickness. The maximum GMR ratio at room temperature obtained in the CoFe2O4/CuO/CoFe2O4 thin film was 70% when the CoFe2O4 and the CuO layer had a thickness of 62.5 nm and 14.4 nm respectively.

  6. Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1-xAxO3 (A = Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O.

    Science.gov (United States)

    Dey, Sunita; Naidu, B S; Rao, C N R

    2016-02-14

    The effect of substitution of Al(3+), Ga(3+) and Sc(3+) ions in the Mn(3+) site of La0.5Sr0.5MnO3 on the thermochemical splitting of CO2 to generate CO has been studied in detail. Both La0.5Sr0.5Mn1-xGaxO3 and La0.5Sr0.5Mn1-xScxO3 give high yields of O2 and generate CO more efficiently than La0.5Sr0.5Mn1-xAlxO3 or the parent La0.5Sr0.5MnO3. Substitution of even 5% Sc(3+) (x = 0.05) results in a remarkable improvement in performance. Thus La0.5Sr0.5Mn0.95Sc0.05O3 produces 417 μmol g(-1) of O2 and 545 μmol g(-1) of CO, respectively, i.e. 2 and 1.7 times more O2 and CO than La0.5Sr0.5MnO3. This manganite also generates H2 satisfactorily by the thermochemical splitting of H2O.

  7. Rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zai, Jiantao; Cao, Fenglei; Liang, Na; Yu, Ke; Tian, Yuan; Sun, Huai; Qian, Xuefeng, E-mail: xfqian@sjtu.edu.cn

    2017-01-05

    Highlights: • DFT reveals I{sup −} can partially substitute CO{sub 3}{sup 2−}to narrow the bandgap of Bi{sub 2}O{sub 2}CO{sub 3}. • Sodium citrate play a key role on the formation of rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3}. • Rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} show enhanced visible light response. • The catalyst has enhanced photocatalytic activity to organic and Cr(VI) pollutes. - Abstract: Based on the crystal structure and the DFT calculation of Bi{sub 2}O{sub 2}CO{sub 3}, I{sup −} can partly replace the CO{sub 3}{sup 2−}in Bi{sub 2}O{sub 2}CO{sub 3} to narrow its bandgap and to enhance its visible light absorption. With this in mind, rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres were prepared via a hydrothermal process. This method can also be extended to synthesize rose-like Cl- or Br-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres. Photoelectrochemical test supports the DFT calculation result that I- doping narrows the bandgap of Bi{sub 2}O{sub 2}CO{sub 3} by forming two intermediate levels in its forbidden band. Further study reveals that I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres with optimized composition exhibit the best photocatalytic activity. Rhodamine B can be completely degraded within 6 min and about 90% of Cr(VI) can be reduced after 25 min under the irradiation of visible light (λ > 400 nm).

  8. The effect of micro-structure on upconversion luminescence of Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glass-ceramics

    Science.gov (United States)

    Zhang, Minghui; Wen, Haiqin; Pan, Xiuhong; Yu, Jianding; Jiang, Meng; Yu, Huimei; Tang, Meibo; Gai, Lijun; Ai, Fei

    2018-03-01

    Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glasses have been prepared by aerodynamic levitation method. The glasses show high refractive index of 2.28 and Abbe number of 18.3. Glass-ceramics heated at 880 °C for 50 min perform the strongest upconversion luminescence. X-ray diffraction patterns of glass-ceramics with different depths indicate that rare earth ions restrain crystallization. Body crystallization mechanism mixed with surface crystallization is confirmed in the heat treatment. Surface crystals achieve priority to grow, resulting in important effects on upconversion luminescence. The results of atomic force microscope and scanning electron microscope indicate that crystal particles with uniform size distribute densely and homogenously on the surface and large amount of glass matrix exists in the glass ceramics heated at 880 °C for 50 min. Crystals in the glass-ceramics present dense structure and strong boundaries, which can reduce the mutual nonradiative relaxation rate among rare earth ions and then improve upconversion luminescence effectively. Based on micro-structural study, the mechanism that upconversion luminescence can be improved by heat treatment has been revealed. The results of micro-structural analysis agree well with the spectra.

  9. Effect of Li2O-doping of nanocrystalline CoO/Fe2O3 on isopropanol conversion

    International Nuclear Information System (INIS)

    El-Shobaky, Hala G.; Ali, Suzan A.H.; Hassan, Neven A.

    2007-01-01

    The catalytic conversion of isopropanol was carried out over pure and Li 2 O-doped (0.75-4.5 mol%) cobalt ferrite prepared by heating Fe/Co mixed hydroxides at 400 and 600 deg. C. The techniques employed were XRD, N 2 adsorption at -196 deg. C and conversion of isopropanol at 200-400 deg. C using a flow method. The results showed that Li 2 O-doping and increasing the heating temperature of the system investigated from 400 to 600 deg. C stimulated CoFe 2 O 4 formation also. Pure and variously doped solids were moderately crystallized CoFe 2 O 4 phase having a crystallite size varying between 5 and 15 nm. The S BET of various solids was found to decrease by increasing their calcination temperature and also by doping with 4.5 mol% Li 2 O. However, this treatment, resulted in a significant increase in their catalytic activities which much increased by doping. The presence of 1.5 mol% Li 2 O brought about an increase in the catalytic activity, measured at 300 deg. C, of 97% and 63% for the solids being calcined at 400 and 600 deg. C, respectively. All solids investigated behaved as dehydrogenation catalysts (having selectivities to acetone formation above 95%). The doping process did not alter the mechanism of dehydrogenation of isopropanol, but increased the concentration of active sites involved in the catalyzed reaction

  10. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    Science.gov (United States)

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  11. Eco-friendly synthesis of core-shell structured (TiO2/Li2CO3) nanomaterials for low cost dye-sensitized solar cells.

    Science.gov (United States)

    Karuppuchamy, S; Brundha, C

    2016-12-01

    Core-shell structured TiO 2 /Li 2 CO 3 electrode was successfully synthesized by eco-friendly solution growth technique. TiO 2 /Li 2 CO 3 electrodes were characterized using X-ray Diffractometer (XRD), Scanning electron microscopy (SEM) and photocurrent-voltage measurements. The synthesized core-shell electrode material was sensitized with tetrabutylammonium cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenate(II) (N-719). The performance of dye-sensitized solar cells (DSCs) based on N719 dye modified TiO 2 /Li 2 CO 3 electrodes was investigated. The effect of various shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that Li 2 CO 3 shells of all thicknesses perform as inert barriers which improve open-circuit voltage (V oc ) of the DSCs. The energy conversion efficiency was greatly dependent on the thickness of Li 2 CO 3 on TiO 2 film, and the highest efficiency of 3.7% was achieved at the optimum Li 2 CO 3 shell layer. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Facile formation of 2D Co2P@Co3O4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting

    Science.gov (United States)

    Yao, Lihua; Zhang, Nan; Wang, Yin; Ni, Yuanman; Yan, Dongpeng; Hu, Changwen

    2018-01-01

    Exploring efficient non-precious electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for many renewable energy conversion processes. In this work, we report that 2D Co2P@Co3O4 microsheets can be prepared through an in-situ toptactic conversion from single-crystal β-Co(OH)2 microplatelets, associated with a surface phosphatization and corrosion process. The resultant Co2P@Co3O4 2D hybrid materials can further serve as self-supported bifunctional catalytic electrodes to drive the overall water splitting for HER and OER simultaneously, with low overpotentials and high long-term stability. Furthermore, a water electrolyzer based on Co2P@Co3O4 hybrid as both anode and cathode is fabricated, which achieves 10 mA cm-2 current at only 1.57 V during water splitting process. Therefore, this work provides a facile strategy to obtain 2D Co2P-based micro/nanostructures, which act as low-cost and highly active electrocatalysts towards overall water splitting application.

  13. Thermal decomposition of RE(C2H5CO2)3·H2O (RE = Dy, Tb, Gd, Eu and Sm)

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2014-01-01

    The thermal decomposition of Dy(III), Tb(III), Gd(III), Eu(III), and Sm(III) propionate monohydrates was studied in argon by means of simultaneous differential thermal analysis and thermogravimetry, infrared-spectroscopy, X-ray diffraction, and optical microscopy. After dehydration, which takes......, an intermediate stage involving a RE2O(C2H5CO2)4 composition was evidenced in the case of the Eu- and Sm-propionates. For all compounds, further decomposition of RE2O2CO3 into the corresponding sesquioxides (RE2O3) is accompanied by the release of CO2. The thermal decomposition of Dy- and Tb-propionates occurs...

  14. Stable and easily sintered BaCe0.5Zr0.3Y0.2O3−δ electrolytes using ZnO and Na2CO3 additives for protonic oxide fuel cells

    International Nuclear Information System (INIS)

    Li, Yong; Guo, Ruisong; Wang, Chao; Liu, Yu; Shao, Zongping; An, Jing; Liu, Chongwei

    2013-01-01

    Highlights: ► Sintering temperature of BCZY-Z pellets was reduced by adding ZnO and Na 2 CO 3 . ► Chemical stability of BCZY-Z towards CO 2 was improved with Na 2 CO 3 addition. ► Good chemical stability against boiling water was observed for BCZY-Z-C2 sample. ► The electrical conductivity is 7.68 × 10 −3 S cm −1 for BCZY-Z-C2 sample at 700 °C. ► An anode-supported POFC delivered a peak output 302 mW cm 2 at 700 °C. -- Abstract: BaCe 0.5 Zr 0.3 Y 0.2 O 3−δ (BCZY) based composite electrolyte materials were fabricated with ZnO sintering aid (BCZY-Z). The effects of Na 2 CO 3 modification on sintering behavior, chemical stability and electrochemical performance were systematically investigated. The X-ray diffraction patterns indicate that the specimens with Na 2 CO 3 addition possessed a single perovskite structure after sintering at 1320 °C for 2 h. The linear shrinkage of 0.5 mol% Na 2 CO 3 -modified BCZY-Z sample (BCZY-Z-C2) was about 17.5%, higher than that without Na 2 CO 3 addition (14.9%). Energy dispersive spectrometer shows that Na and C elements still existed and mainly distributed along the grain boundaries. Reactivities with carbon dioxide and boiling water of BCZY-Z and Na 2 CO 3 -modified BCZY-Z samples were also evaluated and good chemical stability was observed for Na 2 CO 3 -modified BCZY-Z samples. A conductivity of 7.68 × 10 −3 S cm −1 for BCZY-Z-C2 was obtained at 700 °C in 3% wet hydrogen atmosphere. An anode-supported fuel cell with thin-film BCZY-Z-C2 as electrolyte was fabricated. The fuel cell delivered a peak power density of 302 mW cm 2 and interface resistance value of 0.08 Ω cm 2 at 700 °C

  15. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and α-lactone recorded in gaseous reactions of CH3CO and O2

    Science.gov (United States)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-01

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH3CO and O2; IR absorption spectra of CH3C(O)OO and α-lactone were observed. Absorption bands with origins at 1851±1, 1372±2, 1169±6, and 1102±3 cm-1 are attributed to t-CH3C(O)OO, and those at 1862±3, 1142±4, and 1078±6 cm-1 are assigned to c-CH3C(O)OO. A weak band near 1960 cm-1 is assigned to α-lactone, cyc-CH2C(O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH3C(O)OO is more stable than c-CH3C(O)OO by 3±2 kJ mol-1. Based on these observations, the branching ratio for the OH+α-lactone channel of the CH3CO+O2 reaction is estimated to be 0.04±0.01 under 100 Torr of O2 at 298 K. A simple kinetic model is employed to account for the decay of CH3C(O)OO.

  16. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and alpha-lactone recorded in gaseous reactions of CH3CO and O2.

    Science.gov (United States)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-21

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH(3)CO and O(2); IR absorption spectra of CH(3)C(O)OO and alpha-lactone were observed. Absorption bands with origins at 1851+/-1, 1372+/-2, 1169+/-6, and 1102+/-3 cm(-1) are attributed to t-CH(3)C(O)OO, and those at 1862+/-3, 1142+/-4, and 1078+/-6 cm(-1) are assigned to c-CH(3)C(O)OO. A weak band near 1960 cm(-1) is assigned to alpha-lactone, cyc-CH(2)C(=O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH(3)C(O)OO is more stable than c-CH(3)C(O)OO by 3+/-2 kJ mol(-1). Based on these observations, the branching ratio for the OH+alpha-lactone channel of the CH(3)CO+O(2) reaction is estimated to be 0.04+/-0.01 under 100 Torr of O(2) at 298 K. A simple kinetic model is employed to account for the decay of CH(3)C(O)OO.

  17. Single Crystal Growth of Multiferroic Double Perovskites: Yb2CoMnO6 and Lu2CoMnO6

    Directory of Open Access Journals (Sweden)

    Hwan Young Choi

    2017-02-01

    Full Text Available We report on the growth of multiferroic Yb2CoMnO6 and Lu2CoMnO6 single crystals which were synthesized by the flux method with Bi2O3. Yb2CoMnO6 and Lu2CoMnO6 crystallize in a double-perovskite structure with a monoclinic P21/n space group. Bulk magnetization measurements of both specimens revealed strong magnetic anisotropy and metamagnetic transitions. We observed a dielectric anomaly perpendicular to the c axis. The strongly coupled magnetic and dielectric states resulted in the variation of both the dielectric constant and the magnetization by applying magnetic fields, offering an efficient approach to accomplish intrinsically coupled functionality in multiferroics.

  18. O3, CO2 and chemical fractionation in ponderosa pine saplings

    Science.gov (United States)

    Environmental factors can affect plant tissue quality which is important for quality of organic matter inputs into soil food webs and decomposition of soil organic matter. Thus the effects of increases in CO2 and O3 and their interactions were determined for various chemical fra...

  19. Effect of Cr{sub 2}O{sub 3} on the microstructure and non-ohmic properties of (Co, Sb)-doped SnO{sub 2} varistors

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar M, J. A. [Centro de Investigac ion en Materiales Avanzados, S. C., Alianza Norte No. 202, Parque de Investigacion e Innovacion Tecnologica, Nueva Carretera Aeropuerto Km. 10 Apodaca 66600, Nuevo Leon (Mexico); Pech C, M. I. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Carretera Saltillo-Monterrey Km. 13, Saltillo 25900, Coahuila (Mexico); Hernandez, M. B.; Rodriguez, E.; Garcia O, L. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon (Mexico); Glot, A. B., E-mail: josue.aguilar@cimav.edu.mx [Universidad Tecnologica de la Mixteca, Division de Estudios de Posgrado, Carretera Acatlima Km. 2.5, Huajuapan de Leon 69000, Oaxaca (Mexico)

    2013-10-01

    The effect of Cr{sub 2}O{sub 3} addition on the physical characteristics, microstructure, and current-voltage properties of (Co-Sb)-doped SnO{sub 2} varistors was investigated. SnO{sub 2}-Co{sub 3}O{sub 4}-Sb{sub 2}O{sub 5} ceramics with additions of 0.0, 0.03, 0.05 and 0.07 mol % Cr{sub 2}O{sub 3} were sintered at 1350 C under ambient atmosphere and characterized micro structurally and electrically. The characterization by X-ray diffraction and scanning electron microscopy show that the microstructure remains as a single phase material with multimodal size distribution of SnO{sub 2} grains. The greatest effect of Cr{sub 2}O{sub 3} additions is manifested in the electric breakdown field. Additions of high levels (0.07 and 0.05 %) of this oxide promote and increase of approximately 55% in this parameter compared to the Cr{sub 2}O{sub 3}-free sample. Another physical property is affected: the measured density values decreases as the Cr{sub 2}O{sub 3} content increases. A change in the nonlinearity coefficient value is produced only at the highest Cr{sub 2}O{sub 3} content while at intermediate levels there is not change at all. Consequently, when seeking high nonlinearity coefficients, intermediate levels of Cr{sub 2}O{sub 3} are not recommended. (Author)

  20. Behaviour of Co-Mo-Al/sub 2/O/sub 3/ catalysts in the hydrogenation of phenols

    Energy Technology Data Exchange (ETDEWEB)

    Weigold, H.

    1982-10-01

    The activity of a number of ring alkyl-substituted phenols in the direct hydrodeoxygenation reaction (i.e. C-O bond scission without prior ring hydrogenation) in the presence of a commercial Co-Mo-Al/sub 2/O/sub 3/ catalyst has been investigated. The results indicate that the catalytically active site is stereochemically demanding. It is proposed that the phenol ring hydrogenation and the direct hydrodeoxygenation reaction proceed on the same catalytic site. The ease of the direct hydrodeoxygenation reaction is retarded mainly when transfer of the substrate hydroxyl group onto a co-ordinatively unsaturated metal site on the catalyst is inhibited. This occurs when the catalyst hydroxyl group receptor site is occupied by a co-ordinating ligand (poison) or when substituents on the substrate direct the phenolic hydroxyl group away from this metal site. The catalytic behaviour of Co-Mo-Al/sub 2/O/sub 3/ can be 'transformed' to resemble more closely that of Ni-Mo-Al/sub 2/O/sub 3/ (high reductive capacity) when the reaction medium contains both excess H/sub 2/S and a co-ordinating ligand. It is proposed that this 'transformed' species is of importance in hydrodenitrogenation reactions in an H/sub 2/S-rich environment.

  1. Distorted chain sites for Co- and Fe-substituted YBa2Cu3O/sub 7-δ/

    International Nuclear Information System (INIS)

    Bridges, F.; Boyce, J.B.; Claeson, T.; Geballe, T.H.; Tarascon, J.M.; Xerox Palo Alto Research Center, Palo Alto, California 94304; Physics Department, Chalmers University of Technology, S-41296 Gothenburg, Sweden; Department of Applied Physics, Stanford University, Stanford, California 94305; Bell Communications Research Laboratory, Red Bank, New Jersey 07701)

    1989-01-01

    We present x-ray-absorption fine-structure (XAFS) measurements for a series of Co- and Fe-substituted samples of YBa 2 Cu 3 O/sub 7-δ/(Y-Ba-Cu-O). Our analysis of the first- and second-neighbor environments indicates that the Co atoms primarily replace the Cu in the chain sites, the Cu(1) atoms, in Y-Ba-Cu-O, but many of these Co(1) sites and their neighboring oxygen sites are highly distorted. The first-neighbor Co-O peak consists of approximately 3.5 oxygen at 1.8 A and approximately 1.3 oxygen at 2.4 A, while the second-neighbor multipeak in the XAFS data is unexpectedly low in amplitude. Structure in this peak is inconsistent with a simple Gaussian broadening and indicates that several Co(1)-Ba distances exist. We propose an aggregation of the Co atoms into distorted, zigzag chains along the directions, with some of the Co displaced off center by approximately 0.4 A along a perpendicular direction. This model is consistent with the second-neighbor XAFS data, provides an explanation for the tetragonal structure via twinning on a microscopic scale, and accommodates excess oxygen within the Co chains. The Fe data suggest that similar chains also exist in the Fe-substituted samples. There are, however, some differences between the local environments of the Fe and Co. The primary difference is that a small but significant number of Fe atoms occupy the Cu(2) plane sites while no appreciable number of Co atoms are found on the Cu(2) sites in the more dilute samples. Finally, near-edge measurements on the Co and Fe K-absorption edges indicate that the valence is primarily +3, but a mixture of valences exists. For Co the edge position corresponds to a mixture of +2 and +3 valences, while Fe exists in a mixture of +2, +3, and +4 states

  2. SYNGAS PRODUCTION FROM CO2-REFORMING OF CH4 OVER SOL-GEL SYNTHESIZED Ni-Co/Al2O3-MgO-ZrO2 NANOCATALYST: EFFECT OF ZrO2 PRECURSOR ON CATALYST PROPERTIES AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Sajjadi

    2015-05-01

    Full Text Available Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH and zirconyl nitrate solution (ZNS, was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO2-reforming of CH4. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS. FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH4 and CO2 conversions were 97.2 and 99% at 850 ºC, respectively. Furthermore, NCAMZ-ZNS demonstrated a stable yield with H2/CO close to unit value during the 1440 min stability test.

  3. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors

    Science.gov (United States)

    Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying

    2016-05-01

    Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power

  4. NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles

    Science.gov (United States)

    Yu, Ting; Zhao, Defeng; Song, Xiaojuan; Zhu, Tong

    2018-05-01

    The reaction of SO2 with NO2 on the surface of aerosol particles has been suggested to be important in sulfate formation during severe air pollution episodes in China. However, we found that the direct oxidation of SO2 by NO2 was slow and might not be the main reason for sulfate formation in ambient air. In this study, we investigated the multiphase reaction of SO2 with an O2 / NO2 mixture on single CaCO3 particles using Micro-Raman spectroscopy. The reaction converted the CaCO3 particle to a Ca(NO3)2 droplet, with CaSO4 ⚫ 2H2O solid particles embedded in it, which constituted a significant fraction of the droplet volume at the end of the reaction. The reactive uptake coefficient of SO2 for sulfate formation was on the order of 10-5, which was higher than that for the multiphase reaction of SO2 directly with NO2 by 2-3 orders of magnitude. According to our observations and the literature, we found that in the multiphase reaction of SO2 with the O2 / NO2 mixture, O2 was the main oxidant of SO2 and was necessary for radical chain propagation. NO2 acted as the initiator of radical formation, but not as the main oxidant. The synergy of NO2 and O2 resulted in much faster sulfate formation than the sum of the reaction rates with NO2 and with O2 alone. We estimated that the multiphase oxidation of SO2 by O2 initiated by NO2 could be an important source of sulfate and a sink of SO2, based on the calculated lifetime of SO2 regarding the loss through the multiphase reaction versus the loss through the gas-phase reaction with OH radicals. Parameterization of the reactive uptake coefficient of the reaction observed in our laboratory for further model simulation is needed, as well as an integrated assessment based on field observations, laboratory study results, and model simulations to evaluate the importance of the reaction in ambient air during severe air pollution episodes, especially in China.

  5. Et2NH2C6H3(CO23SnBr2.4H2O: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    DAOUDA NDOYE

    2014-01-01

    Full Text Available The title compound has been obtained on allowing [C6H3(CO23(Et2NH23] to react with SnBr4. The molecular structure of Et2NH2C6H3(CO23SnBr2.4H2O has been determined on the basis of the infrared data. The suggested structure is a dimer in which each tin atom is hexacoordinated by two chelating C6H3(CO233- anions and two Br atoms. Cy2NH2+cations are involved through hydrogen bonds with non-coordinating CO2 groups. The suggested structure is a cage.

  6. Comparative investigation of the solution species [U(CO3)5]6- and the crystal structure of Na6[U(CO3)5].12H2O.

    Science.gov (United States)

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Emmerling, Fanziska; Kraus, Werner; Bernhard, Gert

    2010-04-21

    The limiting U(IV) carbonate species in aqueous solution was investigated by comparing its structure parameters with those of the complex preserved in a crystal structure. The solution species prevails in aqueous solution of 0.05 M U(IV) and 1 M NaHCO(3) at pH 8.3. Single crystals of Na(6)[U(CO(3))(5)].12H(2)O were obtained directly from this mother solution. The U(IV) carbonate complex in the crystal structure was identified as a monomeric [U(CO(3))(5)](6-) anionic complex. The interatomic distances around the U(IV) coordination polyhedron show average distances of U-O = 2.461(8) A, U-C = 2.912(4) A and U-O(dist) = 4.164(6) A. U L(3)-edge EXAFS spectra were collected from the solid Na(6)[U(CO(3))(5)].12H(2)O and the corresponding solution. The first shell of the Fourier transforms (FTs) revealed, in both samples, a coordination of ten oxygen atoms at an average U-O distance of 2.45 +/- 0.02 A, the second shell originates from five carbon atoms with a U-C distance of 2.91 +/- 0.02 A, and the third shell was fit with single and multiple scattering paths of the distal oxygen at 4.17 +/- 0.02 A. These data indicate the identity of the [U(CO(3))(5)](6-) complex in solid and solution state. The high negative charge of the [U(CO(3))(5)](6-) anion is compensated by Na(+) cations. In solid state the Na(+) cations form a bridging network between the [U(CO(3))(5)](6-) units, while in liquid state the Na(+) cations seem to be located close to the anionic complex. The average metal-oxygen distances of the coordination polyhedron show a linear correlation to the radius contraction of the neighbouring actinide(IV) ions and indicate the equivalence of the [An(CO(3))(5)](6-) coordination within the series of thorium, uranium, neptunium and plutonium.

  7. Equilibrium Measurements of the NH3-CO2-H2O System: Speciation Based on Raman Spectroscopy and Multivariate Modeling

    Directory of Open Access Journals (Sweden)

    Maths Halstensen

    2017-01-01

    Full Text Available Liquid speciation is important for reliable process design and optimization of gas-liquid absorption process. Liquid-phase speciation methods are currently available, although they involve tedious and time-consuming laboratory work. Raman spectroscopy is well suited for in situ monitoring of aqueous chemical reactions. Here, we report on the development of a method for speciation of the CO2-NH3-H2O equilibrium using Raman spectroscopy and PLS-R modeling. The quantification methodology presented here offers a novel approach to provide rapid and reliable predictions of the carbon distribution of the CO2-NH3-H2O system, which may be used for process control and optimization. Validation of the reported speciation method which is based on independent, known, NH3-CO2-H2O solutions shows estimated prediction uncertainties for carbonate, bicarbonate, and carbamate of 6.45 mmol/kg H2O, 34.39 mmol/kg H2O, and 100.9 mmol/kg H2O, respectively.

  8. Structural and thermal stabilities of layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials in 18650 high power batteries

    Science.gov (United States)

    He, Yan-Bing; Ning, Feng; Yang, Quan-Hong; Song, Quan-Sheng; Li, Baohua; Su, Fangyuan; Du, Hongda; Tang, Zhi-Yuan; Kang, Feiyu

    The structural and thermal stabilities of the layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode materials under high rate cycling and abusive conditions are investigated using the commercial 18650 Li(Ni 1/3Co 1/3Mn 1/3)O 2/graphite high power batteries. The Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials maintain their layered structure even when the power batteries are subjected to 200 cycles with 10 C discharge rate at temperatures of 25 and 50 °C, whereas their microstructure undergoes obvious distortion, which leads to the relatively poor cycling performance of power batteries at high charge/discharge rates and working temperature. Under abusive conditions, the increase in the battery temperature during overcharge is attributed to both the reactions of electrolyte solvents with overcharged graphite anode and Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode and the Joule heat that results from the great increase in the total resistance (R cell) of batteries. The reactions of fully charged Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathodes and graphite anodes with electrolyte cannot be activated during short current test in the fully charged batteries. However, these reactions occur at around 140 °C in the fully charged batteries during oven test, which is much lower than the temperature of about 240 °C required for the reactions outside batteries.

  9. Spin-Coating and Characterization of Multiferroic MFe{sub 2}O{sub 4} (M=Co, Ni) / BaTiO{sub 3} Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Quandt, Norman [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Germany); Roth, Robert [Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Syrowatka, Frank [Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120 Halle (Germany); Steimecke, Matthias [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Germany); Ebbinghaus, Stefan G., E-mail: stefan.ebbinghaus@chemie.uni-halle.de [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Germany)

    2016-01-15

    Bilayer films of MFe{sub 2}O{sub 4} (M=Co, Ni) and BaTiO{sub 3} were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO{sub 3}. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm{sup −3} for the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} and 188 emu cm{sup −3} for the NiFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer, respectively were found. For the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems. - Graphical abstract: The SEM image of the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer on Pt–Si-substrate (left), magnetization as a function of the magnetic field perpendicular and parallel to the film plane (right top) and P–E and I–V hysteresis loops of the bilayer at room temperature. - Highlights: • Ferrite and perovskite oxides grown on platinum using spin coating technique. • Columnar growth of cobalt ferrite particle on the substrate. • Surface investigation showed a homogenous and smooth surface. • Perpendicular and parallel applied magnetic field revealed a magnetic anisotropy. • Switching peaks and saturated P–E hysteresis loops show ferroelectricity.

  10. Compound effect of CaCO3 and CaSO4·2H2O on the strength of steel slag: cement binding materials

    International Nuclear Information System (INIS)

    Qi, Liqian; Liu, Jiaxiang; Liu, Qian

    2016-01-01

    In this study, we replaced 30% of the cement with steel slag to prepare binding material; additionally, small amounts of CaCO 3 and CaSO 4 ·2H 2 O were added. This was done to study the compound effect of CaCO 3 and CaSO 4 ·2H 2 O on the strength of steel slag-cement binding materials. The hydration degree of the steel slag cementitious material was analyzed by XRD, TG and SEM. The results showed that the optimum proportions of CaCO 3 and CaSO 4 ·2H 2 O were 3% and 2%, respectively. Compared with the steel slag-cement binders without adding CaCO 3 and CaSO 4 ·2H 2 O, the compressive strength increased by 59.9% at 3 days and by 17.8% at 28 days. Acting as the nucleation matrix, CaCO 3 could accelerate the hydration of C 3 S. In addition, CaCO 3 was involved in the hydration reaction, generating a new hydration product, which could stably exist in a slurry. Meanwhile, CaSO 4 ·2H 2 O could increase the number of AFt. The compound effect of CaCO 3 and CaSO 4 ·2H 2 O enhanced the intensity of steel slag-cement binding materials and improved the whole hydration behavior. (author)

  11. Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration

    KAUST Repository

    Baby, Rakhi Raghavan

    2014-03-26

    Mesoporous cobalt oxide (Co3O4) nanosheet electrode arrays are directly grown over flexible carbon paper substrates using an economical and scalable two-step process for supercapacitor applications. The interconnected nanosheet arrays form a three-dimensional network with exceptional supercapacitor performance in standard two electrode configuration. Dramatic improvement in the rate capacity of the Co3O4 nanosheets is achieved by electrodeposition of nanocrystalline, hydrous RuO 2 nanoparticles dispersed on the Co3O4 nanosheets. An optimum RuO2 electrodeposition time is found to result in the best supercapacitor performance, where the controlled morphology of the electrode provides a balance between good conductivity and efficient electrolyte access to the RuO2 nanoparticles. An excellent specific capacitance of 905 F/g at 1 A/g is obtained, and a nearly constant rate performance of 78% is achieved at current density ranging from 1 to 40 A/g. The sample could retain more than 96% of its maximum capacitance even after 5000 continuous charge-discharge cycles at a constant high current density of 10 A/g. Thicker RuO2 coating, while maintaining good conductivity, results in agglomeration, decreasing electrolyte access to active material and hence the capacitive performance. © 2014 American Chemical Society.

  12. Determinación experimental de la sección isotermal de 1300º C del Sistema CaO – Al2O3CoO

    Directory of Open Access Journals (Sweden)

    Vásquez Méndez, B. A.

    2011-04-01

    Full Text Available The subsolidus of the system CaO-Al2O3-CoO has been studied. Was established the existence of nine compatibility triangles. It had been found a phase Ca3Al4CoO10, isoestructural to Ca3MgAl4O10. Solid solutions of CaO, CoO and CoAl2O4 were determinated. Color variation on diferent samples was observed as function of the phase diagram region. When Co was substituted for other bivalents cations (Sr, a, n, Ni, Cu, Cd, Sn and Pb, were not found new phases. This study depicts the most outstanding results concerning the alternate materials research line. The importance focused on the stability of the new compound into the matrix of other materials from some technological processes such as the cement one, into which industrial wastes can be incorporated as alternate raw materials and fuels.Se ha estudiado el subsolidus del sistema CaO-Al2O3-CoO estableciendo la existencia de nueve triángulos de compatibilidad en estado sólido. Se ha encontrado una fase de fórmula Ca3CoAl4O10 isoestructural a Ca3MgAl4O10. Se ha establecido la existencia de soluciones sólidas de Co en CaO, de Ca en CoO y en CoAl2O4. Se ha observado la formación de fases con diversos colores en función de la zona del diagrama. Al sustituir Co por otros cationes bivalentes (Sr, Ba, Mn, Ni, Cu, Cd, Sn y Pb no se encontraron nuevas fases. Este estudio presenta los resultados más relevantes en relación con la línea de investigación del uso de materiales alternos. La relevancia se enfoca en mantener la estabilidad de un nuevo compuesto en la matriz de algún proceso tecnológico, como por ejemplo el proceso del cemento, en el cual pueden ser incorporados desechos industriales como materias primas y combustibles alternos.

  13. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries.

    Science.gov (United States)

    Ryu, Won-Hee; Yoon, Taek-Han; Song, Sung Ho; Jeon, Seokwoo; Park, Yong-Joon; Kim, Il-Doo

    2013-09-11

    Designing a highly efficient catalyst is essential to improve the electrochemical performance of Li-O2 batteries for long-term cycling. Furthermore, these batteries often show significant capacity fading due to the irreversible reaction characteristics of the Li2O2 product. To overcome these limitations, we propose a bifunctional composite catalyst composed of electrospun one-dimensional (1D) Co3O4 nanofibers (NFs) immobilized on both sides of the 2D nonoxidized graphene nanoflakes (GNFs) for an oxygen electrode in Li-O2 batteries. Highly conductive GNFs with noncovalent functionalization can facilitate a homogeneous dispersion in solution, thereby enabling simple and uniform attachment of 1D Co3O4 NFs on GNFs without restacking. High first discharge capacity of 10 500 mAh/g and superior cyclability for 80 cycles with a limited capacity of 1000 mAh/g were achieved by (i) improved catalytic activity of 1D Co3O4 NFs with large surface area, (ii) facile electron transport via interconnected GNFs functionalized by Co3O4 NFs, and (iii) fast O2 diffusion through the ultrathin GNF layer and porous Co3O4 NF networks.

  14. Crystal structure of strontium aqua(ethylenediaminetetraacetato)cobaltate(II) tetrahydrate Sr[CoEdta(H2O)] · 4H2O

    International Nuclear Information System (INIS)

    Zasurskaya, L.A.; Polynova, T.N.; Polyakova, I.N.; Sergienko, V.S.; Poznyak, A.L.

    2001-01-01

    The complex Sr[Co II Edta] · 5H 2 O (I) (where Edta 4- is the ethylenediaminetetraacetate ion) has been synthesized. The crystal structure of this compound is determined by X-ray diffraction. Crystals are monoclinic, a = 7.906(2) A, b = 12.768(2) A, c = 18.254(3) A, β = 95.30(3) deg., V 1834.8 A 3 , space group P2 1 /n, Z = 4, and R = 0.036. The structure is built up of the binuclear complex fragments {Sr(H 2 O) 3 [CoEdta(H 2 O)]}, which consist of the anionic [CoEdta(H 2 O)] 2- and cationic [Sr(H 2 O) 3 ] 2+ units linked by the Sr-O bonds into a three-dimensional framework. The coordination polyhedra of the Co and Sr atoms are mono- and bicapped trigonal prisms. The coordination sphere of the Co atom (the coordination number is equal to 6 + 1) involves six donor atoms (2N and 4O) of the Edta 4- ligand and the O w atom of water molecule. One of the Co-O distances (2.718 A) is considerably longer than the other Co-O lig distances (2.092-2.190 A) and the Co-O w (1) distance (2.079 A). The Sr coordination polyhedron (the coordination number is eight) contains three water molecules, three carbonyl O atoms of the three different anionic complexes, and two O atoms of one acetate group of the fourth anionic complex. The Sr-O distances fall in the range 2.535-2.674 A. The structural formula of the compound is {Sr(H 2 O) 3 [CoEdta(H 2 O)]} 3∞ · H 2 O

  15. Atmospheric CO2 and O3 alter competition for soil nitrogen in developing forests

    Science.gov (United States)

    Donald R. Zak; Mark E. Kubiske; Kurt S. Pregitzer; Andrew J. Burton

    2012-01-01

    Plant growth responses to rising atmospheric CO2 and O3 vary among genotypes and between species, which could plausibly influence the strength of competitive interactions for soil N. Ascribable to the size-symmetric nature of belowground competition, we reasoned that differential growth responses to CO2...

  16. Selective removal of Cs and Re by precipitation in a Na2CO3-H2O2 solution

    International Nuclear Information System (INIS)

    Eil-Hee Lee; Jae-Gwan Lim; Dong-Yong Chung; Han-Beom Yang; Kwang-Wook Kim

    2010-01-01

    The removal of Cs and Re (as a surrogate for Tc) by selective precipitation from the simulated fission products which were co-dissolved with uranium during the oxidative dissolution of spent fuel in a Na 2 CO 3 -H 2 O 2 solution was investigated in this study. The precipitations of Cs and Re were examined by introducing sodium tetraphenylborate (NaTPB) and tetraphenylohosponium chloride (TPPCl), respectively. The precipitation of Cs by NaTPB and that of Re by TPPCl each took place within 5 min, and an increase in temperature up to 50 deg C and a stirring speed up to 1000 rpm hardly affected their precipitation rates. The most important factor in the precipitation with NaTPB and TPPCl was found to be a pH of the solution after precipitation. Since Mo tends to co-precipitate with Cs or Re at a lower pH, an effective precipitation with NaTPB and TPPCl was done at pH of above 9 without the co-precipitation of Mo. More than 99% of Cs and Re were precipitated when the initial concentration ratio of NaTPB to Cs was above 1 and when that of TPPCl to Re was above 1. The precipitation of Cs and Re was never affected by the concentration of Na 2 CO 3 and H 2 O 2 , even though they were raised up to 1.5 and 1.0 M, respectively. Precipitation yields of Cs and Re in a Na 2 CO 3 -H 2 O 2 solution were found to be dependent on the concentration ratios of [NaTBP]/[Cs] and [TPPCl]/[Re]. (author)

  17. Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction

    International Nuclear Information System (INIS)

    Darbah, Joseph N.T.; Kubiske, Mark E.; Nelson, Neil; Oksanen, Elina; Vapaavuori, Elina; Karnosky, David F.

    2008-01-01

    We studied the effects of long-term exposure (nine years) of birch (Betula papyrifera) trees to elevated CO 2 and/or O 3 on reproduction and seedling development at the Aspen FACE (Free-Air Carbon Dioxide Enrichment) site in Rhinelander, WI. We found that elevated CO 2 increased both the number of trees that flowered and the quantity of flowers (260% increase in male flower production), increased seed weight, germination rate, and seedling vigor. Elevated O 3 also increased flowering but decreased seed weight and germination rate. In the combination treatment (elevated CO 2 + O 3 ) seed weight is decreased (20% reduction) while germination rate was unaffected. The evidence from this study indicates that elevated CO 2 may have a largely positive impact on forest tree reproduction and regeneration while elevated O 3 will likely have a negative impact. - In this study, we found that elevated CO 2 enhances and elevated O 3 decreases birch reproduction and early seedling growth

  18. Interfacial effects of the Cu{sub 2}O nano-dots decorated Co{sub 3}O{sub 4} nanorods array and its photocatalytic activity for cleaving organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, X.P. [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yu, J.S. [Department of Chemistry and Chemical Engineering, University of New Haven, 300 Boston Post Road, West Haven, CT 06516 (United States); Xu, H.M.; Chen, W.X.; Hu, W. [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chen, G.L., E-mail: glchen@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-30

    Highlights: • Co{sub 3}O{sub 4} rods were grown on plasma treated Ti foil. • Cu{sub 2}O QDs were uniformly distributed on the surface of nanorods. • Ti/Co{sub 3}O{sub 4}/Cu{sub 2}O exhibited visible light photocatalytic activity with KHSO{sub 5}. • Degradation mechanism was supported by ESR technique and radical scavenger tests. • The heterojunction was highly stable even after recycling many times. - Abstract: A heterogeneous nanocomposite catalyst constructed by the Co{sub 3}O{sub 4} nanorods decorated with the Cu{sub 2}O quantum dots (QDs) were successfully synthesized via a simple hydrothermal method followed by an oxidation-reduction processing. The fabricated Cu{sub 2}O/Co{sub 3}O{sub 4} nanocomposite was characterized by the SEM, TEM, XPS, XRD, UV–vis and PL, and the (2 2 0) and (3 1 1) facets of the Co{sub 3}O{sub 4} were exposed. Compared with the original Co{sub 3}O{sub 4} nanorods with an average diameter of 350 nm, a substantial decrease in the band gap was observed after doping the nanorods with the Cu{sub 2}O QDs (average diameter of 5 nm). Such a dramatic decrease in the band gap indicated a significant enhancement of the photocatalytic activities under visible light. The methylene blue (MB) dye and the phenol were used as model organic pollutants, and the Cu{sub 2}O/Co{sub 3}O{sub 4} nanocomposite catalyst exhibited both high catalytic activity and good recycling stability. The catalytic activities of the Cu{sub 2}O/Co{sub 3}O{sub 4}/potassium monopersulfate triple salt (PMS) system for cleaving the MB and the phenol were dependent on the dosages of the Cu{sub 2}O QDs, and the calculated degradation rates achieved by 7.0 wt% Cu{sub 2}O/Co{sub 3}O{sub 4} nanocomposite catalyst were about 11.3 and 1.8 times than that of the pristine Co{sub 3}O{sub 4} nanorod catalyst for the MB and the phenol, respectively. The reactive species of ·O{sub 2}{sup −} and the holes were determined to be the main active species for the phenol photocatalytic

  19. Co3O4/MnO2/Hierarchically Porous Carbon as Superior Bifunctional Electrodes for Liquid and All-Solid-State Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Li, Xuemei; Dong, Fang; Xu, Nengneng; Zhang, Tao; Li, Kaixi; Qiao, Jinli

    2018-05-09

    The design of efficient, durable, and affordable catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is very indispensable in liquid-type and flexible all-solid-state zinc-air batteries. Herein, we present a high-performance bifunctional catalyst with cobalt and manganese oxides supported on porous carbon (Co 3 O 4 /MnO 2 /PQ-7). The optimized Co 3 O 4 /MnO 2 /PQ-7 exhibited a comparable ORR performance with commercial Pt/C and a more superior OER performance than all of the other prepared catalysts, including commercial Pt/C. When applied to practical aqueous (6.0 M KOH) zinc-air batteries, the Co 3 O 4 /MnO 2 /porous carbon hybrid catalysts exhibited exceptional performance, such as a maximum discharge peak power density as high as 257 mW cm -2 and the most stable charge-discharge durability over 50 h with negligible deactivation to date. More importantly, a series of flexible all-solid-state zinc-air batteries can be fabricated by the Co 3 O 4 /MnO 2 /porous carbon with a layer-by-layer method. The optimal catalyst (Co 3 O 4 /MnO 2 /PQ-7) exhibited an excellent peak power density of 45 mW cm -2 . The discharge potentials almost remained unchanged for 6 h at 5 mA cm -2 and possessed a long cycle life (2.5 h@5 mA cm -2 ). These results make the optimized Co 3 O 4 /MnO 2 /PQ-7 a promising cathode candidate for both liquid-type and flexible all-solid-state zinc-air batteries.

  20. Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visible-light-driven Bi{sub 2}O{sub 3}/Bi{sub 2}O{sub 2}CO{sub 3}/Sr{sub 6}Bi{sub 2}O{sub 9} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shiyuan; Niu, Junfeng, E-mail: junfengn@bnu.edu.cn; Bao, Yueping; Hu, Lijuan

    2013-11-15

    Highlights: • Bi{sub 2}O{sub 3}/Bi{sub 2}O{sub 2}CO{sub 3}/Sr{sub 6}Bi{sub 2}O{sub 9} can degrade SMX efficiently using visible light. • 36% of TOC reduction was achieved after 120 min treatment. • The main mineralization products were confirmed. • Formation of O{sub 2}·{sup −} was evidenced by using ESR and a chemiluminescent probe. -- Abstract: Photocatalytic degradation of sulfamethoxazole (SMX) was investigated using Bi{sub 2}O{sub 3}/Bi{sub 2}O{sub 2}CO{sub 3}/Sr{sub 6}Bi{sub 2}O{sub 9} (BSO) photocatalyst under visible light (>420 nm) irradiation. The photochemical degradation of SMX followed pseudo-first-order kinetics. The reaction kinetics was determined as a function of initial SMX concentrations (5–20 mg L{sup −1}), initial pH (3–11) and BSO concentrations (6–600 mg L{sup −1}). Approximately, 90% of SMX (10 mg L{sup −1}) degradation and 36% of TOC reduction were achieved at pH 7.0 after 120 min irradiation. The main mineralization products, including NH{sub 4}{sup +}, NO{sub 3}{sup −}, SO{sub 4}{sup 2−} and CO{sub 2}, as well as intermediates 3-amino-5-methylisoxazole (AMI), p-benzoquinone (BZQ), and sulfanilic acid (SNA) were detected in aqueous solution. The formation of O{sub 2}·{sup −} radical was evidenced by using electron spin resonance and a chemiluminescent probe, luminal. A possible degradation mechanism involving excitation of BSO, followed by charge injection into the BSO conduction band and formation of reactive superoxide radical (O{sub 2}·{sup −}) was proposed for the mineralization of SMX. During the reaction, the O{sub 2}·{sup −} radical attacks the sulfone moiety and causes the cleavage of the S-N bond, which leads to the formation of two sub-structure analogs, AMI and SNA.

  1. Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence

    International Nuclear Information System (INIS)

    Kontunen-Soppela, Sari; Parviainen, Juha; Ruhanen, Hanna; Brosche, Mikael; Keinaenen, Markku; Thakur, Ramesh C.; Kolehmainen, Mikko; Kangasjaervi, Jaakko; Oksanen, Elina; Karnosky, David F.; Vapaavuori, Elina

    2010-01-01

    Gene expression responses of paper birch (Betula papyrifera) leaves to elevated concentrations of CO 2 and O 3 were studied with microarray analyses from three time points during the summer of 2004 at Aspen FACE. Microarray data were analyzed with clustering techniques, self-organizing maps, K-means clustering and Sammon's mappings, to detect similar gene expression patterns within sampling times and treatments. Most of the alterations in gene expression were caused by O 3 , alone or in combination with CO 2 . O 3 induced defensive reactions to oxidative stress and earlier leaf senescence, seen as decreased expression of photosynthesis- and carbon fixation-related genes, and increased expression of senescence-associated genes. The effects of elevated CO 2 reflected surplus of carbon that was directed to synthesis of secondary compounds. The combined CO 2 + O 3 treatment resulted in differential gene expression than with individual gas treatments or in changes similar to O 3 treatment, indicating that CO 2 cannot totally alleviate the harmful effects of O 3 . - Clustering analysis of birch leaf gene expression data reveals differential responses to O 3 and CO 2 .

  2. Electric Field Tuning Non-volatile Magnetism in Half-Metallic Alloys Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 Heterostructure

    Science.gov (United States)

    Dunzhu, Gesang; Wang, Fenglong; Zhou, Cai; Jiang, Changjun

    2018-03-01

    We reported the non-volatile electric field-mediated magnetic properties in the half-metallic Heusler alloy Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure at room temperature. The remanent magnetization with different applied electric field along [100] and [01-1] directions was achieved, which showed the non-volatile remanent magnetization driven by an electric field. The two giant reversible and stable remanent magnetization states were obtained by applying pulsed electric field. This can be attributed to the piezostrain effect originating from the piezoelectric substrate, which can be used for magnetoelectric-based memory devices.

  3. Chemical and Electrochemical Asymmetric Dihydroxylation of Olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) Systems with Sharpless' Ligand.

    Science.gov (United States)

    Torii, Sigeru; Liu, Ping; Bhuvaneswari, Narayanaswamy; Amatore, Christian; Jutand, Anny

    1996-05-03

    Iodine-assisted chemical and electrochemical asymmetric dihydroxylation of various olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) systems with Sharpless' ligand provided the optically active glycols in excellent isolated yields and high enantiomeric excesses. Iodine (I(2)) was used stoichiometrically for the chemical dihydroxylation, and good results were obtained with nonconjugated olefins in contrast to the case of potassium ferricyanide as a co-oxidant. The potentiality of I(2) as a co-oxidant under stoichiometric conditions has been proven to be effective as an oxidizing mediator in electrolysis systems. Iodine-assisted asymmetric electro-dihydroxylation of olefins in either a t-BuOH/H(2)O(1/1)-K(2)CO(3)/(DHQD)(2)PHAL-(Pt) or t-BuOH/H(2)O(1/1)-K(3)PO(4)/K(2)HPO(4)/(DHQD)(2)PHAL-(Pt) system in the presence of potassium osmate in an undivided cell was investigated in detail. Irrespective of the substitution pattern, all the olefins afforded the diols in high yields and excellent enantiomeric excesses. A plausible mechanism is discussed on the basis of cyclic voltammograms as well as experimental observations.

  4. Current-voltage characteristics of SnO{sub 2}-Co{sub 3}O{sub 4}-Cr{sub 2}O{sub 3}-Sb{sub 2}O{sub 5} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Martinez, J A [Centro de Investigacion en Materiales Avanzados, S.C. (CIMAV), Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica (PIIT), Nueva Carretera Aeropuerto km. 10, Apodaca, Nuevo Leon, CP 66600 (Mexico); Glot, A B [Posgrado, Universidad Tecnologica de la Mixteca, Carretera Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca, CP 69000 (Mexico); Gaponov, A V [Department of Radioelectronics, Dniepropetrovsk National University, Dniepropetrovsk 49050 (Ukraine); Hernandez, M B [Instituto de Mineria, Universidad Tecnologica de la Mixteca, Carretera Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca, CP 69000 (Mexico); Guerrero-Paz, J, E-mail: josue.aguilar@cimav.edu.m [Particulate Materials Lab, Universidad Autonoma del Estado de Hidalgo, Pachuca, CP 42184 (Mexico)

    2009-10-21

    The effect of mechanical treatment in a planetary mill on the microstructure and electrical properties of tin dioxide based varistor ceramics in the system SnO{sub 2}-Co{sub 3}O{sub 4}-Cr{sub 2}O{sub 3}-Sb{sub 2}O{sub 5} sintered in the range 1150-1450 {sup 0}C was studied. The mechanical treatment leads to an increase in shrinkage, decrease in porosity, decrease in sample diameter, change in colour of the sintered samples from grey to black and enhancement of nonlinearity. For the sample sintered at 1350 {sup 0}C the mechanical treatment enhances the nonlinearity coefficient from 11 to 31 and decreases the electric field E{sub 1} (at 10{sup -3} A cm{sup -2}) from 3500 to 2800 V cm{sup -1}. The observed changes in physical properties are explained in terms of an additional size reduction of oxide particles and a better mixing of oxide powder followed by the formation of potential barriers at the grain boundaries throughout the whole sample. In spite of the low porosity, the low-field electrical conductivity of mechanically treated ceramics is significantly increased with the growth of relative humidity. A higher humidity sensitivity is found for mechanically treated ceramics with higher barrier height and higher nonlinearity coefficient.

  5. Effect of Mg"2"+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd_3Al_2Ga_3O_1_2 crystals

    International Nuclear Information System (INIS)

    Lucchini, M.T.; Babin, V.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd_3Al_2Ga_3O_1_2 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd_3Al_2Ga_3O_1_2 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd_3Al_2Ga_3O_1_2 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  6. Electrical conductivity in Fe_2O_3 and CoFe_2O_4 nanoparticle arrays and their application in gas sensing

    International Nuclear Information System (INIS)

    Luby, S.; Benkovicova, M.; Jergel, M.; Siffalovic, P.; Majkova, E.; Rella, R.; Capone, S.; Manera, M. G.

    2013-01-01

    In this paper we summarize the results obtained as a by product of γ-Fe_2O_3 and CoFe_2O_4 sensors testing. Monodisperse γ-Fe_2O_3 and CoFe_2O_4 NPs with the size of 6.4 ± 0.6 and 7.6 ± 0.6 nm, respectively, were synthesized by high-temperature solution phase reaction from methyl acetylacetonates. The thickness of surfactant is 1 nm and 0.8 nm for two types of NPs, respectively. Surfactant stops the growth of NPs at a certain size. The self-assembled NP monolayers were prepared by Langmuir-Blodgett technique from the colloid solutions spread on the water sub-phase in a standard LB trough. M = 1, 2, 4 or 10 NP monolayers (L) were deposited onto auxiliary oxidized Si substrates or onto 2 mm x 2 mm Al_2O_3 sensor substrates equipped with 20 nm Ti/500 nm Pt comb electrodes to read the measuring current and with 20 nm Ti/500 nm Pt meander on the back side for the heating of the structure to a working temperature. Material properties of NPs and arrays were studied by SEM/EDS, GI XRD, GISAXS, XANES and ellipsometry. (authors)

  7. Oriented thin films of Na0.6CoO2 and Ca3Co4O9 deposited by spin-coating method on polycrystalline substrate

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Soroka, Miroslav; Knížek, Karel; Hirschner, Jan; Levinský, Petr; Hejtmánek, Jiří

    2016-01-01

    Roč. 603, MAR (2016), s. 400-403 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S; GA ČR(CZ) GA13-03708S Institutional support: RVO:61388980 ; RVO:68378271 Keywords : Cobaltates * Thermoelectrics * NaxCoO2 * Ca3Co4O9 * Thin film s * ZrO2 Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.879, year: 2016

  8. Nanocasting synthesis of co-doped In{sub 2}O{sub 3}: a 3D diluted magnetic semiconductor composed of nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ni; Li, Jing; Hong, Bo; Jin, Dingfeng; Peng, Xiaoling; Wang, Xinqing; Ge, Hongliang; Jin, Hongxiao, E-mail: hxjin@cjlu.edu.cn, E-mail: hxjin5704@qq.com [China Jiliang University, Zhejiang Province Key Laboratory of Magnetism, College of Materials Science and Engineering (China)

    2015-04-15

    Mesoporous 3D nanosphere arrays of In{sub 2−x}Co{sub x}O{sub 3} (x = 0, 0.01, 0.03, 0.05, and 0.07) were synthesized via nanocasting using the mesoporous silica LP-FDU-12 as a hard template. The mesostructure, morphology, optical properties, and magnetic properties of the materials were determined. The diameter of the nanospheres was about 15–22 nm, and the nanospheres stacked into 0.5–5 μm arrays (particles). The data revealed that the Co ions entered the lattice of the In{sub 2}O{sub 3} bixbyite phase leading to a reduction of the cell parameter. The result also demonstrated that the size of the mesostructured ordering was approximately the same as the particle diameter. Moreover, the optical band gap of Co-doped In{sub 2}O{sub 3} decreased monotonically with the increase of Co concentration and the room-temperature photoluminescence was also observed. The un-doped In{sub 2}O{sub 3} exhibited a ferromagnetic behavior superimposed on a diamagnetic background, while the doped In{sub 2}O{sub 3} displayed a room-temperature ferromagnetic behavior superimposed on a paramagnetic background, which may be correlated with the surface texture of the mesostructure. The mesoporous diluted magnetic semiconductors may find their applications in spintronic nanodevices because of their 3D uniform arrangement of nanospheres and their room-temperature ferromagnetic behavior.

  9. Zn-Doped LiNi1/3Co1/3Mn1/3O2 Composite as Cathode Material for Lithium Ion Battery: Preparation, Characterization, and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Han Du

    2015-01-01

    Full Text Available Zn-doped LiNi1/3Co1/3Mn1/3O2 composite, Li(Ni1/3Co1/3Mn1/31–xZnxO2 (x = 0.02; 0.05; 0.08, is synthesized by the sol-gel method. The crystal structure, morphology, and electrochemical performance are investigated via X-ray diffraction (XRD, scanning electron microscope (SEM, cyclic voltammetry (CV, and constant current charge/discharge experiment. The result reveals that Zn-doping cathode material can reach the initial charge/discharge capacity of 188.8/162.9 mAh·g−1 for Li(Ni1/3Co1/3Mn1/30.98Zn0.02O2 and 179.0/154.1 mAh·g−1 for Li(Ni1/3Co1/3Mn1/30.95Zn0.05O2 with the high voltage of 4.4 V at 0.1 C. Furthermore, the capacity retention of Li(Ni1/3Co1/3Mn1/30.98Zn0.02O2 is 95.1% at 0.5 C after 50 cycles at room temperature. The improved electrochemical properties of Zn-doped LiNi1/3Co1/3Mn1/3O2 are attributed to reduced electrode polarization, enhanced capacity reversibility, and excellent cyclic performance.

  10. Fe(Ⅲ) ions enhanced catalytic properties of (BiO)2CO3 nanowires and mechanism study for complete degradation of xanthate.

    Science.gov (United States)

    Guo, Yujiao; Cui, Kuixin; Hu, Mingyi; Jin, Shengming

    2017-08-01

    The wire-like Fe 3+ -doped (BiO) 2 CO 3 photocatalyst was synthesized by a hydrothermal method. The photocatalytic property of Fe 3+ -doped (BiO) 2 CO 3 nanowires was evaluated through degradation of sodium isopropyl xanthate under UV-visible light irradiation. The as-prepared Fe 3+ -doped (BiO) 2 CO 3 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) in detail. The results of XRD showed that the crystallinity of (BiO) 2 CO 3 nanowires decreased when Fe 3+ ions were introduced into the solution system. XPS results illustrated that xanthate could be absorbed on the surface of Fe 3+ -doped (BiO) 2 CO 3 nanowires to produce BiS bond at the beginning of the reaction, which could broaden the visible light absorption. FTIR spectra confirmed the formation of SO 4 2- after photocatalytic decomposition of xanthate solution. The Fe 3+ -doped (BiO) 2 CO 3 nanowires showed an enhanced photocatalytic activity for decomposition of xanthate due to the narrower band gap and larger BET surface area, comparing with pure (BiO) 2 CO 3 nanowires. By the results of UV-vis spectra of the solution and FTIR spectra of recycled Fe 3+ -doped (BiO) 2 CO 3 , the xanthate was oxidized completely into CO 2 and SO 4 2- . The photocatalytic degradation process of xanthate followed a pseudo-second-order kinetics model. The mechanism of enhanced photocatalytic activity was proposed as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A novel highly efficient adsorbent {[Co4(L)23-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n: Synthesis, crystal structure, magnetic and arsenic (V) absorption capacity

    Science.gov (United States)

    Zhang, Chong; Xiao, Yu; Qin, Yan; Sun, Quanchun; Zhang, Shuhua

    2018-05-01

    A novel highly efficient adsorbent-microporous tetranuclear Co(II)-based polymer, {[Co4(L)23-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n (1, H3L = 4-(N,N‧-bis(4-carboxybenzyl)amino) benzenesulfonic acid, 4,4‧-bipy = 4,4‧-bipyridine), was hydrothermally synthesized. The complex 1 is a metal-organic framework (MOF) material which was characterized by single-crystal X-ray diffraction, BET and platon software. Co-MOF (complex 1) reveals excellent adsorption property. The capacity of Co-MOF to remove arsenic As(V) from sodium arsenate aqueous solutions was investigated (The form of As(V) is AsO43-). The experimental results showed that Co-MOF had a higher stable and relatively high As(V) removal rate (> 98%) at pH 4-10. The adsorption kinetics followed a pseudo-second-order kinetic model, and the adsorption isotherm followed the Langmuir equation. Co-MOF exhibits a very high adsorption capacity of As(V) in aqueous solution (Qmax of 96.08 mg/g). Finally, the optimal adsorption conditions for the model were obtained through a Box-Behnken response surface experiment which was designed with adsorption time, dose, temperature and rotational speed of the shaker as the influencing factors to determine two-factor interaction effects. Co-MOF was further characterized using FTIR, PXRD, X-ray photoelectron spectroscopy before and after adsorption As (V). The magnetism of Co-MOF was also discussed.

  12. Evidence for a temperature-induced spin-state transition of Co3+ in La2-xSrxCoO4

    Science.gov (United States)

    Hollmann, N.; Haverkort, M. W.; Benomar, M.; Cwik, M.; Braden, M.; Lorenz, T.

    2011-05-01

    We study the magnetic susceptibility of mixed-valent La2-xSrxCoO4 single crystals in the doping range of 0.5⩽x⩽0.8 for temperatures up to 1000 K. The magnetism below room temperature is described by paramagnetic Co2+ in the high-spin state and by Co3+ in the nonmagnetic low-spin state. At high temperatures, an increase in susceptibility is seen, which we attribute to a temperature-induced spin-state transition of Co3+. The susceptibility is analyzed by comparison to full-multiplet calculations for the thermal population of the high- and intermediate-spin states of Co3+.

  13. Enhanced photosensitization process induced by the p–n junction of Bi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B

    International Nuclear Information System (INIS)

    Lu, Haijing; Xu, Lingling; Wei, Bo; Zhang, Mingyi; Gao, Hong; Sun, Wenjun

    2014-01-01

    Herein, we report the enhanced photosensitization process in the nanosheet Bi 2 O 2 CO 3 /BiOCl heterojunctions photocatalyst. The combined XRD, FT-IR and Raman results have confirmed the co-existence of Bi 2 O 2 CO 3 and BiOCl phases in the composites. Although both Bi 2 O 2 CO 3 and BiOCl are wide bandgap semiconductors, the composites showed an unexpectedly high catalytic activity in decomposing RhB (rhodamine B) aqueous solution under visible light irradiation. The mechanism of enhanced photocatalytic activity was ascribed to the inner electric field formed in the Bi 2 O 2 CO 3 /BiOCl p–n junction.

  14. Facile synthesis of surface N-doped Bi{sub 2}O{sub 2}CO{sub 3}: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Zhao, Ziyan [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Wang, Fang; Cao, Kun [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Doronkin, Dmitry E. [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Dong, Fan [College of Environmental and Biological Engineering, Chonqing Technology and Business University, Chongqing 400067 (China); Grunwaldt, Jan-Dierk, E-mail: grunwaldt@kit.edu [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-04-15

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi{sub 2}O{sub 2}CO{sub 3} surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi{sub 2}O{sub 2}CO{sub 3} were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi{sub 2}O{sub 2}CO{sub 3} surface was achieved at room temperature. • N-doped Bi{sub 2}O{sub 2}CO{sub 3} exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi{sub 2}O{sub 2}CO{sub 3}. • The formation of localized states from N−O bond could account for the visible light activity of Bi{sub 2}O{sub 2}CO{sub 3}. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3} nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi{sub 2}O{sub 2}CO{sub 3}, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi{sub 2}O{sub 2}CO{sub 3}, but also modifies the surface properties of Bi{sub 2}O{sub 2}CO{sub 3} through the interaction between CTAB and Bi{sub 2}O{sub 2}CO{sub 3}. Nitrogen from CTAB as dopant interstitially incorporates in the Bi{sub 2}O{sub 2}CO{sub 3} surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi{sub 2}O{sub 2}CO{sub 3} nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier

  15. Influence of CaCO3 and SiO2 additives on magnetic properties of M-type Sr ferrites

    Science.gov (United States)

    Huang, Ching-Chien; Jiang, Ai-Hua; Hung, Yung-Hsiung; Liou, Ching-Hsuan; Wang, Yi-Chen; Lee, Chi-Ping; Hung, Tong-Yin; Shaw, Chun-Chung; Kuo, Ming-Feng; Cheng, Chun-Hu

    2018-04-01

    An experiment was carried out to investigate the influence of CaCO3 and SiO2 additives on the magnetic and physical properties of M-type Sr ferrites by changing experimental parameters such as the additive composition and Ca/Si ratio. Specimens were prepared by conventional ceramic techniques. It was found that the magnetic properties (Br = 4.42 kG, iHc = 3.32 kOe and (BH)max = 4.863 MGOe) were considerably improved upon adding CaCO3 = 1.1% and SiO2 = 0.4 wt% together with Co3O4, and the mechanical properties thereof were acceptable for motor applications. It was revealed that CaCO3 and SiO2 additives led to an upswing in the magnetic properties via the enhancement of uniform grain growth, particle alignment, and the densification of Sr ferrite.

  16. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  17. Synthesis and characteristics of a novel 3-D organic amine oxalate: (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)].6.5H2O

    International Nuclear Information System (INIS)

    Yu Xiaohong; Zhang Hanhui; Cao Yanning; Chen Yiping; Wang Zhen

    2006-01-01

    A novel 3-D compound of (enH 2 ) 1.5 [Bi 3 (C 2 O 4 ) 6 (CO 2 CONHCH 2 CH 2 NH 3 )].6.5H 2 O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with a=31.110(8)A, b=11.544(3)A, c=22.583(6)A, β=112.419(3) o , V=7497(3)A 3 , Z=8, R 1 =0.0463 and wR 2 =0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group - CO 2 CONHCH 2 CH 2 NH 3 + , which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445nm

  18. Development and characterization of nickel catalysts supported in CeO2-ZrO2-Al2O3, CeO2-La2O3-Al2O3 e ZrO2-La2O3-Al2O3 matrixes evaluated for methane reforming reactions

    International Nuclear Information System (INIS)

    Abreu, Amanda Jordão de

    2012-01-01

    Nowadays, the methane reforming is large interest industrial for the take advantage of these gas in production the hydrogen and synthesis gas (syngas). Among in the reactions of methane stand of the reactions steam reforming and carbon dioxide reforming of methane. The main catalysts uses in the methane reforming is Ni/Al 2 O 3 . However, the supported-nickel catalyst is susceptible to the deactivation or the destruction by coke deposition. The carbon dissolves in the nickel crystallite and its diffuses through the nickel, leading for formation of the carbon whiskers, which results in fragmentation of the catalyst. Modification of such catalysts, like incorporation of suitable promoters, is desirable to achieve reduction of the methane hydrogenolysis and/or promotion of the carbon gasification. Catalysts 5%Ni/Al 2 O 3 supported on solid solutions formed by ZrO 2 -CeO 2 , La 2 O 3 and CeO 2 -ZrO 2 -La 2 O 3 were prepared, characterized and evaluated in reactions steam and carbon dioxide reforming and partial oxidation of methane with objective the value effect loading solution solid in support. The supports were prepared by co-precipitation method and catalysts were prepared by impregnation method and calcined at 500 deg C. The supports and catalysts were characterized by Nitrogen Adsorption, method -rays diffraction (XRD), X-rays dispersive spectroscopy (XDS), spectroscopy in the region of the ultraviolet and the visible (UV-vis NIR) to and temperature programmed reduction (TPR), Raman Spectroscopy, X-ray absorption spectroscopy and Thermogravimetric Analysis. After all the catalytic reactions check which the addition of solid solution is beneficial for Ni/Al 2 O 3 catalysts and the best catalysts are Ni/CeO 2 -La 2 O 3 -Al 2 O 3 . (author)

  19. Calcium stanate (CaSnO_3) doped with Fe"3"+, Co"2"+ ou Cu"2"+ applied in the photodegradation of Remazol Golden Yellow and in the reduction of NO with CO or NH_3

    International Nuclear Information System (INIS)

    Santos, Guilherme Leocardio Lucena dos

    2017-01-01

    Calcium stannate, CaSnO_3, is orthorhombic perovskite-type that presents technological applications as catalysts and photocatalysts. In this work, undoped CaSnO_3 and doped with Fe"3"+, Co"2"+ or Cu"2"+ were obtained by the modified Pechini method and applied in photodegradation of the textile dye Remazol Golden Yellow and as catalysts in the reduction reaction of nitrogen monoxide (NO). Furthermore, these materials were deposited on the ZrO_2 support or Pd"2"+-doped or Pd impregnated and evaluated in the reduction of NO with CO and NO with NH_3. The catalysts were characterized by thermogravimetric analysis (TG/DTA), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), infrared spectroscopy (IR), Raman spectroscopy, analysis of the surface area by the BET method, scanning electron microscopy with field emission (FE-SEM) and transmission electron microscopy (TEM). XRD patterns showed a small change in the long range-order for the doped samples due to partial substitution of cations. The Raman spectra indicated that the incorporation of Fe"3"+, Co"2"+ and Cu"2"+ in the CaSnO_3 lattice promoted a symmetry breaking, which was confirmed by the change of the band gap values of the samples. The photocatalytic tests of RNL dye were performed in the reactor using a UVC lamp (λ = 254 nm). The catalytic tests were carried out in a reactor containing a gaseous mixture with stoichiometric amounts of nitrogen monoxide (NO) and carbon monoxide (CO) in helium in the temperature range of 300 °C to 700 °C or in a reactor containing a mixture of NO and ammonia (NH_3) in helium in the temperature range of 250 °C to 500 °C. The results of the photocatalytic evaluation showed that CaSnO_3 doping with transition metals increased the photocatalytic efficiency of the material, especially for the Cu"2"+ (76% of discoloration), which was related to the while the decrease in the intensity of the photoluminescence spectrum as a function of doping. The catalytic tests of NO

  20. Synthesis of Mesoporous Single Crystal Co(OH)2 Nanoplate and Its Topotactic Conversion to Dual-Pore Mesoporous Single Crystal Co3O4.

    Science.gov (United States)

    Jia, Bao-Rui; Qin, Ming-Li; Li, Shu-Mei; Zhang, Zi-Li; Lu, Hui-Feng; Chen, Peng-Qi; Wu, Hao-Yang; Lu, Xin; Zhang, Lin; Qu, Xuan-Hui

    2016-06-22

    A new class of mesoporous single crystalline (MSC) material, Co(OH)2 nanoplates, is synthesized by a soft template method, and it is topotactically converted to dual-pore MSC Co3O4. Most mesoporous materials derived from the soft template method are reported to be amorphous or polycrystallined; however, in our synthesis, Co(OH)2 seeds grow to form single crystals, with amphiphilic block copolymer F127 colloids as the pore producer. The single-crystalline nature of material can be kept during the conversion from Co(OH)2 to Co3O4, and special dual-pore MSC Co3O4 nanoplates can be obtained. As the anode of lithium-ion batteries, such dual-pore MSC Co3O4 nanoplates possess exceedingly high capacity as well as long cyclic performance (730 mAh g(-1) at 1 A g(-1) after the 350th cycle). The superior performance is because of the unique hierarchical mesoporous structure, which could significantly improve Li(+) diffusion kinetics, and the exposed highly active (111) crystal planes are in favor of the conversion reaction in the charge/discharge cycles.

  1. Ag{sub 2}CO{sub 3}/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Zhou [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, 117411 (Singapore); Chan, Hardy Sze On [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Wu, Jishan, E-mail: chmwuj@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, 117411 (Singapore)

    2015-12-15

    Highlights: • UiO-66 was an outstanding substrate due to its superior properties and stability. • Ag{sub 2}CO{sub 3}/UiO-66 photocatalyst was synthesized by a simple solution method. • Ag{sub 2}CO{sub 3}/UiO-66 had excellent RhB degrading activity under visible-light irradiation. • Higher surface area of Ag{sub 2}CO{sub 3} in Ag{sub 2}CO{sub 3}/UiO-66 led to the enhanced activity. • Diverse active species may participate in the process of RhB degradation. - Abstract: Because of their excellent properties, metal-organic frameworks (MOFs) are considered as ideal materials for the development of visible-light photocatalyst. Particularly, although increasing research interests have been put on MOF based photocatalysts, the MOF supported Ag{sub 2}CO{sub 3} as photocatalyst has not been reported in the field of water treatment. In this study, a zirconium based MOF, UiO-66, was incorporated with Ag{sub 2}CO{sub 3} through a convenient solution method and used for visible-light prompted dye degradation. Compared to the mixture of pristine UiO-66 and Ag{sub 2}CO{sub 3}, the developed Ag{sub 2}CO{sub 3}/UiO-66 composite exhibited enhanced photocatalytic activity to the degradation of rhodamine B (RhB) under visible-light irradiation. It was supposed that the participation of UiO-66 during the synthesis of Ag{sub 2}CO{sub 3} was crucial for such improvement. In addition, the Ag{sub 2}CO{sub 3}/UiO-66 composite demonstrated good structural stability after the degradation experiment, and most of its photocatalytic activity was still preserved after the recycle test. Moreover, the photocatalytic mechanism of the Ag{sub 2}CO{sub 3}/UiO-66 composite was investigated and a possible pathway of RhB degradation was also proposed.

  2. Effect of gamma irradiation on microstrain and lattice parameter of Co3O4 loaded on Al2O3

    International Nuclear Information System (INIS)

    El-Shobaky, G.A.; El-Shabiny, A.M.; Ramadan, A.A.

    1987-01-01

    Cobaltic oxide, Co 3 O 4 loaded on an amorphous alumina sample and precalcined in air at 650 0 C was exposed to different doses of γ-irradiation ranging between 7 and 60 Mrad. The change in residual microstrain and lattice parameter due to the irradiation process were investigated by X-ray diffraction analyses. The results revealed that γ-irradiation brought about a progressive decrease in both microstrain and lattice parameter to an extent proportional to the dose employed falling to minimum values at a dose of 30 Mrad then increased slightly at doses above this limit. The observed decrease in lattice parameter was attributed to removal of the excess oxygen in Co 3 O 4 samples with subsequent decrease in the concentration of lattice defects (trivalent cobalt ions). The decrease in residual microstrain due to exposure to γ-rays was related to splitting of Co 3 O 4 crystallites. The splitting process resulted in remarkable increase in the catalytic activity (2-6 fold) of the irradiated solid samples. (author)

  3. Characterization of cathode materials SrCoO3 and La0,2Sr0,8CoO3 for use in solid oxide fuel cells (SOFC); Caracterizacao de materiais catodicos SrCoO3 e La0,2Sr0,8CoO3 para aplicacao em celulas a combustivel de oxido solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, G.O.; Aquino, F.M; Silva, R.M.; Medeiros, I.D.M. de, E-mail: gabriela.galvao@cear.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil)

    2016-07-01

    Mixed oxide ceramics with chemical structure of ABO{sub 3} type are promising candidates for cathodes of solid oxide fuel cells (SOFC) for performing well on the electrical conductivity and thermal stability. Various methods of preparation have been studied and used for the synthesis of these materials. In this study, SrCoO{sub 3} and La{sub 0,2}Sr{sub 0,8}CoO{sub 3} perovskites were synthesized using gelatin as directing agent with the purpose of producing homogeneous and porous particles. The powders obtained at 350 ° C / 2 h were calcined at 600, 800 and 1000 ° C for 4 hours and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that gelatin is a good polymerizing agent for metal ions as the material showed characteristic peaks of perovskite, with good porosity and uniformity. Furthermore, the method of synthesis employed has advantages related to cost and toxicity, which are very low. (author)

  4. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    Science.gov (United States)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  5. High-pressure behavior and equations of state of the cobaltates YBaCo{sub 4}O{sub 7}, YBaCo{sub 4}O{sub 7+{delta}}, YBaCoZn{sub 3}O{sub 7} and BaCoO{sub 3-x}

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-Arellano, Erick A., E-mail: eajuarez@unpa.edu.mx [Instituto de Quimica Aplicada, Universidad del Papaloapan, Circuito Central 200, Parque Industrial, 68301 Tuxtepec, Oaxaca (Mexico); Avdeev, Maxim; Yakovlev, Sergey [Bragg Institute, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Lopez-de-la-Torre, Laura; Bayarjargal, Lkhamsuren; Winkler, Bjoern; Friedrich, Alexandra [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Kharton, Vladislav V. [Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2012-12-15

    The compressibilities of the cobaltates YBaCo{sub 4}O{sub 7}, YBaCo{sub 4}O{sub 7+{delta}}, YBaCoZn{sub 3}O{sub 7} and BaCoO{sub 3-x} were investigated by in situ powder X-ray diffraction experiments up to 30 GPa using diamond anvil cells. Pressure-induced phase transitions and amorphization were observed in all the samples. The onset of the pressure-induced phase transition and the onset of the amorphization were observed at {approx}11.7 and 12.2 GPa (YBaCo{sub 4}O{sub 7}), at {approx}14.2 and 16.1 GPa (YBaCo{sub 4}O{sub 7+{delta}}), and at {approx}16.7 and 18.7 GPa (YBaCoZn{sub 3}O{sub 7}), respectively. An attempt to laser anneal at high-pressure failed as it led to a decomposition of the YBaCo{sub 4}O{sub 7} phase into a mixture of phases. Fits of second- and third-order Birch-Murnaghan equations-of-state to the p-V data result in B{sub 0}=109(3) GPa for YBaCo{sub 4}O{sub 7}; B{sub 0}=186(4) GPa and B Prime =1.5 for YBaCo{sub 4}O{sub 7+{delta}}; and B{sub 0}=117(1) GPa for YBaCoZn{sub 3}O{sub 7}. The high-pressure behavior of the studied compounds was compared with isostructural compounds and it is shown that the oxygen-content has a very large effect on the high-pressure behavior of this class of materials. Highlights: Black-Right-Pointing-Pointer Compressibilities were investigated by in situ DAC powder X-ray diffraction experiments. Black-Right-Pointing-Pointer Pressure-induced phase transitions were observed in all the samples. Black-Right-Pointing-Pointer High-pressure phases were very sensitive to small amounts of stresses and strains. Black-Right-Pointing-Pointer Due to the metastability of the compounds, laser annealing leads to decomposition. Black-Right-Pointing-Pointer Oxygen-content has a very large effect on the high pressure behavior in these materials.

  6. Synthesis, structural and luminescence properties of Bi3+ co-doped Y2Sn2O7:Tb nanoparticles

    International Nuclear Information System (INIS)

    Nigam, S.; Sudarsan, V.; Vatsa, R.K.

    2010-01-01

    Full text: In recent years, advanced materials derived from Pyrochlore-type oxides (A 2 B 2 O 7 ) have been of extensive scientific and technological interest. Chemical substitution of A or B sites of pyrochlore oxide by rare earth ions is a widely used approach to prepare thermally stable, lanthanide ion doped luminescent materials. Due to the higher symmetry around the A and B sites in the lattice lanthanide ions like Eu 3+ and Tb 3+ when incorporated at the A or B sites give very poor luminescence. This problem can be avoided by incorporating other ions like Bi 3+ in the lattice so that the lattice gets distorted and luminescent intensity from the lanthanide ions increases. The present study deals with the synthesis and characterization of Bi 3+ co-doped Y 2 Sn 2 O 7 :Tb nanoparticles. For the preparation of Tb 3+ and Bi 3+ doped Y 2 Sn 2 O 7 nano-materials, Sn metal, Bi(NO 3 ) 3 , Tb 4 O 7 , Y 2 CO 3 , were used as starting materials. The solution containing Y 3+ , Sn 4+ ,and Bi 3+ -Tb 3+ in ethylene glycol medium was slowly heated up to 120 deg C and then subjected to urea hydrolysis. The obtained precipitate after washing was heated to 700 deg C. As prepared samples are amorphous in nature and 700 deg C heated sample showed well crystalline pyrochlore structure as revealed by the XRD studies. Average particles size is calculated from the width of the X-ray diffraction peaks and found to be ∼ 5 nm. TEM images of the nanoparticles obtained at 700 deg C shows very fine spherical particles having a diameter in the range of 2-5 nm. Luminescence measurements were carried out for as prepared and 700 deg C heated samples of 2.5%Tb doped Y 2 Sn 2 O 7 nanoparticles. Green emission characteristic 5 D 4 7 F 5 transition of Tb 3+ has been observed from as prepared sample but on heating to 700 deg C the emission characteristic of Tb 3+ ions got completely removed . However, there is a significant improvement in Tb 3+ emission from 2.5% Bi 3+ co-doped Y 2 Sn 2 O 7 :Tb 3

  7. Crystal structure and thermoelectric properties of the composite crystal [(Ca sub 1 sub - sub x Sr sub x) sub 2 CoO sub 3] subrho CoO sub 2

    CERN Document Server

    Miyazaki, Y; Ono, Y; Kajitani, T

    2003-01-01

    Polycrystalline samples of [(Ca sub 1 sub - sub x Sr sub x) sub 2 CoO sub 3] sub p CoO sub 2 with 0<=x<=0.20 have been synthesized at 1193 K in flowing oxygen gas. The modulated crystal structure of the samples has been determined in accordance with a four-dimensional formalism from powder neutron diffraction data. With increasing x, the modulation amplitudes in Co-Co conduction paths become less marked. The non-doped sample (x=0) exhibits the resistivity rho=150 mu OMEGA m and the thermoelectric power S=130 mu V/K at 300K. Both the rho and S values decrease with x but the decrease in rho values is steeper than that of the S values. The power factor S sup 2 /rho increase with x, from 110 mu W/m/K sup 2 (x=0) to 140 mu W/m/K sup 2 (x=0.20) at 300K. This improvement in thermoelectric performance can be explained in terms of the reduction of displacive modulation of the Co-Co conduction paths in the CoO sub 2 sheets. (author)

  8. Structural Characteristics and Magnetic Properties of Al2O3 Matrix-Based Co-Cermet Nanogranular Films

    Directory of Open Access Journals (Sweden)

    Giap Van Cuong

    2015-01-01

    Full Text Available Magnetic micro- and nanogranular materials prepared by different methods have been used widely in studies of magnetooptical response. However, among them there seems to be nothing about magnetic nanogranular thin films prepared by a rf cosputtering technique for both metals and insulators till now. This paper presented and discussed preparation, structural characteristics, and magnetic properties of alumina (Al2O3 matrix-based granular Co-cermet thin films deposited by means of the cosputtering technique for both Co and Al2O3. By varying the ferromagnetic (Co atomic fraction, x, from 0.04 to 0.63, several dominant features of deposition for these thin films were shown. Structural characteristics by X-ray diffraction confirmed a cermet-type structure for these films. Furthermore, magnetic behaviours presented a transition from paramagnetic- to superparamagnetic- and then to ferromagnetic-like properties, indicating agglomeration and growth following Co components of Co clusters or nanoparticles. These results show a typical granular Co-cermet feature for the Co-Al2O3 thin films prepared, in which Co magnetic nanogranules are dispersed in a ceramic matrix. Such nanomaterials can be applied suitably for our investigations in future on the magnetooptical responses of spinplasmonics.

  9. Luminescence studies on Sb3+ co-doped Y2Sn2O7: Tb nanoparticles

    International Nuclear Information System (INIS)

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2008-01-01

    Pyrochlore-type oxides (A 2 B 2 O 7 ) have emerged as important host matrices for lanthanide doped luminescent materials due to their good thermal stability. Due to the higher symmetry around the A and B cations in the lattice lanthanide ions like Eu 3+ and Tb 3+ when incorporated at the A or B sites give very poor luminescence. One way to circumvent this problem is to incorporate ions like Sb 3+ or Bi 3+ in the lattice so that the lattice get distorted and luminescent intensity from the lanthanide ions increases. The present study deals with the synthesis and characterisation of Sb 3+ co-doped Y 2 Sn 2 O 7 :Tb nanoparticles prepared by the hydrolysis of Y 3+ , Sn 4+ , Tb 3+ and Sb 3+ in ethylene glycol medium followed by heating at 700 deg C for 4 hours. From XRD studies it is confirmed that as prepared sample is amorphous and heat treatment at 700 deg C results in the formation of highly crystalline Y 2 Sn 2 O 7 phase having pyrochlore structure

  10. Synthesis and characterization of Cr doped CoFe2O4

    Science.gov (United States)

    Verma, Kavita; Patel, K. R.; Ram, Sahi; Barbar, S. K.

    2016-05-01

    Polycrystalline samples of pure and Cr-doped cobalt ferrite (CoFe2O4 and CoCrFeO4) were prepared by solid state reaction route method. X-ray diffraction pattern infers that both the samples are in single phase with Fd3m space group. Slight reduction in the lattice parameter of CoCrFeO4 has been observed as compared to CoFe2O4. The dielectric dispersion has been explained on the basis of Fe2+ ↔ Fe3+ hopping mechanism. The polarizations at lower frequencies are mainly attributed to electronic exchange between Fe2+ ↔ Fe3+ ions on the octahedral site in the ferrite lattice. In the present system a part from n-type charge carrier (Fe3+/Fe2+), the presence of (Co3+/Co2+) ions give rise to p-type charge carrier. Therefore in addition to n-type charge carrier, the local displacement of p-type charge carrier in direction of external electric field also contributes to net polarization. However, the dielectric constant and loss tangent of CoCrFeO4 are found to be lower than CoFe2O4 and is attributed to the availability of ferrous ion. CoCrFeO4 have less amount of ferrous ion available for polarization as compared to that of CoFe2O4. The impedance spectra reveal a grain interior contribution to the conduction process.

  11. Characterization of γ- Al{sub 2}O{sub 3} nanopowders synthesized by Co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Jbara, Ahmed S., E-mail: ahmedsbhe@yahoo.com [Center for Sustainable Nanomaterials, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Physics Department, Science College, Al-Muthanna University, Samawah - 66001 (Iraq); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Othaman, Zulkafli [Center for Sustainable Nanomaterials, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Ati, Ali A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Saeed, M.A., E-mail: moalsd@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Division of Science and Technology, University of Education, Township, Lahore - 54770 (Pakistan)

    2017-02-15

    Co-precipitation technique has been used to synthesize gamma-Al{sub 2}O{sub 3} (γ-Al{sub 2}O{sub 3}) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m{sup 2}/g. Morphology analysis indicates that γ-Al{sub 2}O{sub 3} nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al{sub 2}O{sub 3} may make it more suitable for use as an adsorbent for malachite green. - Highlights: • Co-precipitation technique is used to synthesize gamma- Al{sub 2}O{sub 3} nanopowders. • Pure gamma- Al{sub 2}O{sub 3} phase was obtained having maximum nanoparticle size is 24 nm. • The quantum dots were formed inside powder. • High surface area of nanopowders at the low annealing temperature. • Increasing annealing temperature causes the hexagonal agglomeration shape.

  12. Pressure, O2, and CO2, in aquatic Closed Ecological Systems

    Science.gov (United States)

    Taub, Frieda B.; McLaskey, Anna K.

    2013-03-01

    Pressure increased during net photosynthetic O2 production in the light and decreased during respiratory O2 uptake during the dark in aquatic Closed Ecological Systems (CESs) with small head gas volumes. Because most CO2 will be in the liquid phase as bicarbonate and carbonate anions, and CO2 is more soluble than O2, volumes of gaseous CO2 and gaseous O2 will not change in a compensatory manner, leading to the development of pressure. Pressure increases were greatest with nutrient rich medium with NaHCO3 as the carbon source. With more dilute media, pressure was greatest with NaHCO3, and less with cellulose or no-added carbon. Without adequate turbulence, pressure measurements lagged dissolved O2 concentrations by several hours and dark respiration would have been especially underestimated in our systems (250-1000 ml). With adequate turbulence (rotary shaker), pressure measurements and dissolved O2 concentrations generally agreed during lights on/off cycles, but O2 measurements provided more detail. At 20 °C, 29.9 times as much O2 will distribute into the gas phase as in the liquid, per unit volume, as a result of the limited solubility of O2 in water and according to Henry's Law. Thus even a small head gas volume can contain more O2 than a larger volume of water. When both dissolved and gaseous O2 and CO2 are summed, the changes in Total O2 and CO2 are in relatively close agreement when NaHCO3 is the carbon source. These findings disprove an assumption made in some of Taub's earlier research that aquatic CESs would remain at approximately atmospheric pressure because approximately equal molar quantities of O2 and CO2 would exchange during photosynthesis and respiration; this assumption neglected the distribution of O2 between water and gas phases. High pressures can occur when NaHCO3 is the carbon source in nutrient rich media and if head-gas volumes are small relative to the liquid volume; e.g., one "worse case" condition developed 800 mm Hg above atmospheric

  13. Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)?

    Science.gov (United States)

    Donnelly, Alison; Craigon, Jim; Black, Colin R.; Colls, Jeremy J.; Landon, Geoff

    2001-04-01

    This study examined the impact of season-long exposure to elevated carbon dioxide (CO2) and ozone (O3), individually and in combination, on leaf chlorophyll content and gas exchange characteristics in potato (Solanum tuberosum L. cv. Bintje). Plants grown in open-top chambers were exposed to three CO2 (ambient, 550 and 680 µmol mol-1) and two O3 treatments (ambient and elevated; 25 and 65 nmol mol-1, 8 h day-1 means, respectively) between crop emergence and maturity; plants were also grown in unchambered field plots. Non-destructive measurements of chlorophyll content and visible foliar injury were made for all treatments at 2-week intervals between 43 and 95 days after emergence. Gas exchange measurements were made for all except the intermediate 550 µmol mol-1 CO2 treatment. Season-long exposure to elevated O3 under ambient CO2 reduced chlorophyll content and induced extensive visible foliar damage, but had little effect on net assimilation rate or stomatal conductance. Elevated CO2 had no significant effect on chlorophyll content, but greatly reduced the damaging impact of O3 on chlorophyll content and visible foliar damage. Light-saturated assimilation rates for leaves grown under elevated CO2 were consistently lower when measured under either elevated or ambient CO2 than in equivalent leaves grown under ambient CO2. Analysis of CO2 response curves revealed that CO2-saturated assimilation rate, maximum rates of carboxylation and electron transport and respiration decreased with time. CO2-saturated assimilation rate was reduced by elevated O3 during the early stages of the season, while respiration was significantly greater under elevated CO2 as the crop approached maturity. The physiological origins of these responses and their implications for the performance of potato in a changing climate are discussed.

  14. Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2.

    Science.gov (United States)

    Gillespie, Kelly M; Xu, Fangxiu; Richter, Katherine T; McGrath, Justin M; Markelz, R J Cody; Ort, Donald R; Leakey, Andrew D B; Ainsworth, Elizabeth A

    2012-01-01

    Antioxidant metabolism is responsive to environmental conditions, and is proposed to be a key component of ozone (O(3)) tolerance in plants. Tropospheric O(3) concentration ([O(3)]) has doubled since the Industrial Revolution and will increase further if precursor emissions rise as expected over this century. Additionally, atmospheric CO(2) concentration ([CO(2)]) is increasing at an unprecedented rate and will surpass 550 ppm by 2050. This study investigated the molecular, biochemical and physiological changes in soybean exposed to elevated [O(3) ] in a background of ambient [CO(2)] and elevated [CO(2)] in the field. Previously, it has been difficult to demonstrate any link between antioxidant defences and O(3) stress under field conditions. However, this study used principle components analysis to separate variability in [O(3)] from variability in other environmental conditions (temperature, light and relative humidity). Subsequent analysis of covariance determined that soybean antioxidant metabolism increased with increasing [O(3)], in both ambient and elevated [CO(2)]. The transcriptional response was dampened at elevated [CO(2)], consistent with lower stomatal conductance and lower O(3) flux into leaves. Energetically expensive increases in antioxidant metabolism and tetrapyrrole synthesis at elevated [O(3)] were associated with greater transcript levels of enzymes involved in respiratory metabolism. © 2011 Blackwell Publishing Ltd.

  15. GITT studies on oxide cathode LiNi1/3Co1/3Mn1/3O2 synthesized ...

    Indian Academy of Sciences (India)

    Li diffusion; LiNi1/3Co1/3Mn1/3O2; lithium ion batteries; layered structure. 1. Introduction ... The coin-type cell CR2012 consisting of a metallic- lithium foil anode ... and the polyvinylidenefluoride (PVDF) binder with a mass ratio of 4:1:1 in NMP ...

  16. A thermodynamic model for the solubility of HfO{sub 2}(am) in the aqueous K{sup +} - HCO{sub 3}{sup -} - CO{sub 3}{sup 2-} - OH{sup -} - H{sub 2}O system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat [Rai Enviro-Chem, LLC, Yachats, OR (United States); Kitamura, Akira [Japan Atomic Energy Agency, Tokai (Japan); Rosso, Kevin M. [Pacific National Laboratory, Richland, WA (United States)

    2017-10-01

    Solubility of HfO{sub 2}(am) was determined as a function of KHCO{sub 3} concentrations ranging from 0.001 mol.kg{sup -1} to 0.1 mol.kg{sup -1}. The solubility of HfO{sub 2}(am) increased dramatically with the increase in KHCO{sub 3} concentrations, indicating that Hf(IV) makes strong complexes with carbonate. Thermodynamic equilibrium constants for the formation of Hf-carbonate complexes were determined using both the Pitzer and SIT models. The dramatic increase in Hf concentrations with the increase in KHCO{sub 3} concentrations can best be described by the formation of Hf(OH{sup -}){sub 2}(CO{sub 3}){sub 2}{sup 2-} and Hf(CO{sub 3}){sub 5}{sup 6-}. The log{sub 10} K{sup 0} values for the reactions [Hf{sup 4+}+2CO{sub 3}{sup 2-}+2OH{sup -}↔Hf(OH){sub 2}(CO{sub 3}){sub 2}{sup 2-}] and [Hf{sup 4+}+5CO{sub 3}{sup 2-}↔Hf(CO{sub 3}){sub 5}{sup 6-}], based on the SIT model, were determined to be 44.53±0.46 and 41.53±0.46, respectively, and based on the Pitzer model they were 44.56±0.48 and 40.20±0.48, respectively.

  17. Inorganic-organic hybrid structure: Synthesis, structure and magnetic properties of a cobalt phosphite-oxalate, [C4N2H12][Co4(HPO3)2(C2O4)3

    International Nuclear Information System (INIS)

    Mandal, Sukhendu; Natarajan, Srinivasan

    2005-01-01

    A hydrothermal reaction of a mixture of cobalt (II) oxalate, phosphorous acid, piperazine and water at 150 o C for 96h followed by heating at 180 o C for 24h gave rise to a new inorganic-organic hybrid solid, [C 4 N 2 H 12 ][Co 4 (HPO 3 ) 2 (C 2 O 4 ) 3 ], I. The structure consists of edge-shared CoO 6 octahedra forming a [Co 2 O 10 ] dimers that are connected by HPO 3 and C 2 O 4 units forming a three-dimensional structure with one-dimensional channels. The amine molecules are positioned within these channels. The oxalate units have a dual role of connecting within the plane of the layer as well as out of the plane. Magnetic susceptibility measurement shows the compound orders antiferromagnetically at low temperature (T N =22K). Crystal data: I, monoclinic, space group=P2 1 /c (No. 14). a=7.614(15), b=7.514(14), c=17.750(3)A, β=97.351(3) o , V=1007.30(3)A 3 , Z=2, ρ calc =2.466g/cm 3 , μ (MoKα) =3.496mm -1 , R 1 =0.0310 and wR 2 =0.0807 data [I>2σ(I)

  18. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100

    Science.gov (United States)

    Zhang, Xiaodong; Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning; Wang, Yuxin; Cui, Lifeng

    2017-07-01

    In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn2O3 cubes through calcination with air at different temperature. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn2O3 catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn2O3 catalyst. Mn2O3 catalyst obtained by calcined at 700 °C (Mn2O3-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T98) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn2O3-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  19. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    Science.gov (United States)

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  20. Electrodeposited Mn3O4-NiO-Co3O4 as a composite electrode material for electrochemical capacitor

    International Nuclear Information System (INIS)

    Rusi; Majid, S.R.

    2015-01-01

    Highlights: • Composite electrodes were synthesized by in situ electrodeposition method. • The highest specific capacitance of composite electrode is 7404 F g −1 . • The power density of composite electrode is 99 kW kg −1 at current density of 20 A g −1 . • The addition of K 3 Fe(CN) 6 in KOH electrolyte has improved the electrochemical performance. - Abstract: A simple and easy galvanostatic electrodeposition method is used to synthesise a composite electrode consisting of manganese oxide (Mn 3 O 4 ), nickel oxide (NiO) and cobalt oxide (Co 3 O 4 ). The influence of Co 3 O 4 on the morphology of fixed Mn 3 O 4 -NiO particles is investigated with a field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The nature and elemental of the composite are examined by means of X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The electrochemical performances of an Mn 3 O 4 -NiO-Co 3 O 4 nanostructure/SS composite electrode are studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD) in various electrolytes, i.e. 0.5 M Na 2 SO 4 , 0.5 M KOH, 0.5 M Na 2 SO 4 /0.04 M K 3 Fe(CN) 6 and 0.5 M KOH/0.04 M K 3 Fe(CN) 6 electrolytes. The composite electrode prepared from 0.15 M Co deposition solution exhibits the optimum specific capacitance of 7404 F g −1 with high energy and power density of 1028 Wh kg −1 and 99 kW kg −1 at 20 A g −1 in mix KOH/0.04 M K 3 Fe(CN) 6 electrolyte, respectively. The results show that the incorporation of K 3 Fe(CN) 6 in KOH electrolyte influences the capacitance of Mn 3 O 4 -NiO-Co 3 O 4 composite electrodes

  1. Iron doped SnO{sub 2}/Co{sub 3}O{sub 4} nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Shilpi [Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa); Tyagi, Inderjeet [Department of Chemistry, Indian Institute of Technology Roorkee, 247667 (India); Gupta, Vinod Kumar, E-mail: vinodg@uj.ac.za [Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa); Sohrabi, Maryam; Mohammadi, Sanaz [Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Golikand, Ahmad Nozad, E-mail: anozad@aeoi.org.ir [Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Jaber Research Laboratory, NSTRI, P.O. Box: 14395-836, Tehran (Iran, Islamic Republic of); Fakhri, Ali, E-mail: ali.fakhri88@yahoo.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2017-01-01

    Sol-gel and precipitation reaction methods were used to synthesize Un-doped and Fe-doped SnO{sub 2}/Co{sub 3}O{sub 4} nanocomposites under UV light; the synthesized nanocomposites were applied for the photocatalytic degradation of metronidazole antibiotic. The developed photo catalyst was well characterized using energy dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), UV–Visible and photoluminescence (PL) spectroscopy. Effective parameters such as pH, photocatalyst dose and contact time was optimized and well investigated. From the obtained facts it is clear that the 98.3% of MTZ was degraded with in 15 min, pH 6 and 0.1 g catalyst when the Fe molar ratio was 1:1 at %. As compared to results obtained from un-doped SnO{sub 2}/Co{sub 3}O{sub 4} nanocomposites Fe doped SnO{sub 2}/Co{sub 3}O{sub 4} nanocomposites possess greater photocatalytic efficiency. - Graphical abstract: Surface textural and morphological presentation. - Highlights: • Un-doped and Fe-doped SnO{sub 2}/Co{sub 3}O{sub 4} nanocomposites were applied as photocatalyst. • The nanocomposites exhibited photocatalytic property under UV light. • The maximum degradation was observed for Fe-doped SnO{sub 2}/Co{sub 3}O{sub 4} (1:1) photocatalyst. • 0.1 g photocatalyst is sufficient to carry out 98.3% degradation of MTZ.

  2. 3D hollow sphere Co3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery

    Directory of Open Access Journals (Sweden)

    Xuemei Li

    2017-07-01

    Full Text Available There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO2 nanotube-supported Co3O4 nanoparticles and its carbon nanotubes hybrid material (Co3O4/MnO2-CNTs have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co3O4/MnO2, bare MnO2 nanotubes and CNTs, the hybrid Co3O4/MnO2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition (0.1 M KOH. Therefore, high cell performances are achieved which result in an appropriate open circuit voltage (∼1.47 V, a high discharge peak power density (340 mW cm−2 and a large specific capacity (775 mAh g−1 at 10 mA cm−2 for the primary Zn-air battery, a small charge–discharge voltage gap and a high cycle-life (504 cycles at 10 mA cm−2 with 10 min per cycle for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process. Keywords: Bi-functional catalyst, Oxygen reduction reaction, Oxygen evolution reaction, Activity and stability, Rechargeable zinc-air battery

  3. Facile synthesis of morphology-controlled Co3O4 nanostructures through solvothermal method with enhanced catalytic activity for H2O2 electroreduction

    Science.gov (United States)

    Cheng, Kui; Cao, Dianxue; Yang, Fan; Xu, Yang; Sun, Gaohui; Ye, Ke; Yin, Jinling; Wang, Guiling

    2014-05-01

    Hydrogen peroxide (H2O2) replaced oxygen (O2) as oxidant has been widely investigated due to its faster reduction kinetics, easier storage and handling than gaseous oxygen. The main challenge of using H2O2 as oxidant is the chemical decomposition. In this article, by using different C2H5OH/H2O volume ratio as the solvent, Co3O4 with different morphologies (nanosheet, nanowire, ultrafine nanowire net, nanobelts, and honeycomb-like) direct growth on Ni foam are synthesized via a simple solvothermal method for the first time. Results show that the introduction of ethanol could obviously improve the catalytic performance toward H2O2 electroreduction. The sample prepared in the solution with the C2H5OH/H2O volume ratio of 1:2 shows the best catalytic performance among the five samples and a current density of 0.214 A cm-2 is observed in 3.0 mol L-1 KOH + 0.5 mol L-1 H2O2 at -0.4 V (vs. Ag/AgCl KCl), which is much larger than that on the other metal oxides reported previously, almost comparable with the precious metals. This electrode of Co3O4 directly grown on Ni foam has superior mass transport property, which combining with its low-cost and facile preparation, make it a promising electrode for fuel cell using H2O2 as the oxidant.

  4. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    International Nuclear Information System (INIS)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-01-01

    Two one-dimensional bismuth-coordination materials, Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 ) x F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi 2 O 3 , 2,6-NC 5 H 3 (CO 2 H) 2 , HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi 3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C led to α-Bi 2 O 3 that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C results in the α-Bi 2 O 3 rods that maintain the original morphology of the crystals. Highlights: ► Synthesis of one-dimensional chain Bi-organic frameworks. ► Reversible hydration reactions of Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F. ► Topotactic decomposition maintaining the same morphology of the original crystals.

  5. High-temperature resistivity and thermoelectric properties of coupled substituted Ca3Co2O6

    Directory of Open Access Journals (Sweden)

    Meenakshisundaram Senthilkumar and Rajagopalan Vijayaraghavan

    2009-01-01

    Full Text Available Polycrystalline samples of Ca3−xNaxCo2−xMnxO6 (x=0.0–0.5 have been prepared by the sol-gel cum combustion method using sucrose in order to investigate the effects of the coupled substitution of Na and Mn on Ca and Co sites on the transport properties of Ca3Co2O6(Co326. The products were characterized by Fourier transform infrared spectroscopy, powder x-ray diffraction (XRD, thermogravimetry (TGA, differential thermal analysis and scanning electron microscopy. XRD patterns reveal the formation of single-phase products up to x=0.5. Coupled substitution increases the solubility of both Na and Mn on Ca and Co sites, respectively, in contrast to the limited solubility of Na and Mn (x=0.2 when separately substituted. TGA confirms the formation of the Ca3Co2O6 phase at temperatures ~720 °C. The grain size of the parent and substituted products is in the range 150–250 nm. Electrical resistivity and Seebeck coefficient were measured in the temperature range 300–800 K. Resistivity shows semiconducting behavior for all the compositions, particularly in the low-temperature regime. The Seebeck coefficient increases with temperature throughout the measured temperature range for all compositions. The maximum Seebeck coefficient (200 μV K−1 is observed for x=0.5 at 825 K, and this composition may be optimal for high-temperature thermoelectric applications.

  6. The studies of geometrical microstructure of tetragonal Co sup 2 sup + -V sub O centers in KNbO sub 3 and KTaO sub 3 crystals from EPR data

    CERN Document Server

    Zheng Wen Chen

    2002-01-01

    From the perturbation formulas for the EPR g factors g sub p sub a sub r sub a sub l sub l sub e sub l and g sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r sub t sub o of a 3d sup 7 ion in tetragonal octahedral crystal field based on a cluster approach, the geometrical microstructures of tetragonal Co sup 2 sup + -V sub O centers in KNbO sub 3 and KTaO sub 3 crystals are obtained by fitting the calculated g sub p sub a sub r sub a sub l sub l sub e sub l and g sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r sub t sub o to the observed values. It is found that the Co sup 2 sup + ion in Co sup 2 sup + -V sub O centers is displaced away from the oxygen vacancy V sub O by 0.3 A in KNbO sub 3 and by 0.29 A in KTaO sub 3. These results are comparable with those of Fe sup 3 sup + -V sub O centers in ABO sub 3 perovskite-type crystals obtained from both the shell-model simulations and the embedded-cluster calculations, and from theoretical studies of EPR da...

  7. Influence of different substrates on the ionic conduction in LiCoO{sub 2}/LiNbO{sub 3} thin-film bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Horopanitis, E.E.; Perentzis, G.; Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, Section of Solid State Physics, Thessaloniki (Greece)

    2008-07-01

    LiNbO{sub 3} thin films, deposited by e-gun evaporation, show lithium deficiency, which is cured by ''Li doping''. The ''Li doping'' of the films was achieved by preparing a structure of Li-Nb-O/Li/Li-Nb-O, which after annealing forms a homogenized LiNbO{sub 3} layer because of diffusion of Li in the two Li-Nb-O layers. The LiCoO{sub 2}/LiNbO{sub 3} bi-layers were prepared either on Stainless Steel/TiN or on Al{sub 2}O{sub 3}/Co/Pt substrates/ohmic-contacts by depositing first either the cathode LiCoO{sub 2} or the electrolyte LiNbO{sub 3}. The Nyquist plots of the AC impedance measurements of all structures showed that the interfaces prepared on Stainless-Steel/TiN consisted of two semicircles. The structures deposited on Al{sub 2}O{sub 3}/Co/Pt showed a third semicircle, which is probably due to the roughness of the substrate. It is important that the ionic properties of the bi-layers with the cathode material deposited first, a usual structure in a microbattery, are improved compared to the other structures. The quality of the LiNbO{sub 3} layer depends very much on the substrate. It can be evaluated from Arrhenius plots that the activation energy of this layer is considerably lower when the whole structure is deposited on Stainless Steel/TiN. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. A Pt-Co3O4-CD electrocatalyst with enhanced electrocatalytic performance and resistance to CO poisoning achieved by carbon dots and Co3O4 for direct methanol fuel cells.

    Science.gov (United States)

    Sun, Yue; Zhou, Yunjie; Zhu, Cheng; Hu, Lulu; Han, Mumei; Wang, Aoqi; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2017-05-04

    Highly efficient electrocatalysts remain huge challenges in direct methanol fuel cells (DMFCs). Here, a Pt-Co 3 O 4 -CDs/C composite was fabricated as an anode electrocatalyst with low Pt content (12 wt%) by using carbon dots (CDs) and Co 3 O 4 nanoparticles as building blocks. The Pt-Co 3 O 4 -CDs/C composite catalyst shows a significantly enhanced electrocatalytic activity (1393.3 mA mg -1 Pt), durability (over 4000 s) and CO-poisoning tolerance. The superior catalytic activity should be attributed to the synergistic effect of CDs, Pt and Co 3 O 4 . Furthermore, the Pt-Co 3 O 4 -CDs/C catalyst was integrated into a single cell, which exhibits a maximum power density of 45.6 mW cm -2 , 1.7 times the cell based on the commercial 20 wt% Pt/C catalyst.

  9. Mechanochemical synthesis of CaO•ZnO.K2CO3 catalyst: Characterization and activity for methanolysis of sunflower oil

    Directory of Open Access Journals (Sweden)

    Kesić Željka

    2015-01-01

    Full Text Available The goal of this study was to prepare CaO.ZnO catalyst which contain small amount of K2CO3 and analyze its activity for biodiesel synthesis. Catalyst was prepared using the following procedure: CaO and ZnO (molar ratio of 1:2, water and K2CO3 (in various amounts were mechanochemically treated and after milling heated at 700 oC in air atmosphere for obtaining mixed CaO•ZnO/xK2CO3 oxides (x = 0, 1, 2 and 4; mole of K2CO3 per 10 mole of CaO. All the samples were characterized by X-ray diffraction (XRD, inductively coupled plasma (ICP, X-ray photoelectron spectroscopy (XPS, thermogravimetric analysis (TGA, infrared spectroscopy (FTIR, scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS, particle size laser diffraction (PSLD distribution, solubility measurement of Ca, Zn and K ions in methanol as well as by determination of their alkalinity (Hammett indicator method. Prepared CaO•ZnO/xK2CO3 composite powders were tested as catalysts for methanolysis of sunflower oil at 70ºC using molar ratio of sunflower oil to methanol of 1:10 and with 2 mas% of catalyst based on oil weight. The presence of K2CO3 in prepared samples was found to increase the activity of catalyst, and that such effect is caused by homogeneous-heterogeneous catalysis of biodiesel synthesis. [Projekat Ministarstva nauke Republike Srbije, br. 45001

  10. Kinetics of CO Oxidation over Unloaded and Pd-Loaded α-Fe2O3 Spherical Submicron Powder Catalysts: Photoacoustic Investigations at Low Pressure

    Directory of Open Access Journals (Sweden)

    Joong-Seok Roh

    2018-02-01

    Full Text Available In this study, α-Fe2O3 spherical particles with an average diameter of approximately 200 nm were synthesized by a solvothermal method for use as both a catalyst and medium for a Pd catalyst. The kinetics of CO oxidation over powders of α-Fe2O3 spherical particles and 14 wt % Pd/α-Fe2O3 spherical particles were measured in a static reactor by using a CO2 laser-based photoacoustic technique. The total pressure was fixed at 40 Torr for the CO/O2/N2 mixture for temperatures in the range of 225–350 °C. The variation in the CO2 photoacoustic signal with the CO2 concentration during CO oxidation was recorded as a function of time, and the CO2 photoacoustic data at the early reaction stage was used to estimate the rates of CO2 formation. Based on plots of ln(rate vs. 1/T, apparent activation energies were calculated as 13.4 kcal/mol for the α-Fe2O3 submicron powder and 13.2 kcal/mol for the 14 wt % Pd/α-Fe2O3 submicron powder. Reaction orders with respect to CO and O2 were determined from the rates measured at various partial pressures of CO and O2 at 350 °C. The zero-order of the reaction with respect to Po2 was observed for CO oxidation over α-Fe2O3 submicron powder, while 0.48 order to Po2 was observed for CO oxidation over Pd/α-Fe2O3 submicron powder. The partial orders with respect to PCO were determined as 0.58 and 0.54 for the α-Fe2O3, and the Pd/α-Fe2O3 submicron powders, respectively. The kinetic results obtained from both catalysts were compared with those for the α-Fe2O3 fine powder catalysts and were used to understand the reaction mechanism.

  11. La2O3 turinčių CO2 adsorbentų savybės ir taikymas

    OpenAIRE

    Ziutelis, Tomas

    2015-01-01

    In Master`s thesis "Properties and application of La2O3-containing CO2 adsorbents" adsorption properties of La2O3-containing carbon dioxide adsorbents were studied. Interaction between carbon dioxide and lanthanum oxide was evaluated. Equilibrium and kinetic parameters of experimental process were calculated. Based on the results of experiment the possibility of application of lanthanum oxide containing adsorbents for concentration of carbon dioxide from compressed air were evaluated.

  12. Hydrogen peroxide assisted synthesis of LiNi1/3Co1/3Mn1/3O2 as high-performance cathode for lithium-ion batteries

    Science.gov (United States)

    Lin, Chaohong; Zhang, Yongzhi; Chen, Li; Lei, Ying; Ou, Junke; Guo, Yong; Yuan, Hongyan; Xiao, Dan

    2015-04-01

    LiNi1/3Co1/3Mn1/3O2 (NCM) is a promising cathode material for lithium-ion battery. In this research, a facile co-precipitation process is employed, during which the mixed solution of NH3·H2O, H2O2 (30% aqueous solution) and LiOH·H2O is added into the nitrate solution. Notably, H2O2 is introduced as the oxidant and dispersant during the co-precipitation process to oxidize the metal ions and decrease the agglomeration of the precursor by giving out O2, and then improves the specific capacity, stability and energy density of NCM. Additionally, O3 is employed to further oxidize NCM to enhance the stability during the calcination process. The obtained NCM material with single crystal structure exhibits a high initial discharge specific capacity of 208.9 mAh g-1 at 0.1 C (1 C = 280 mA g-1), an excellent cycle stability with high retained capacity of 176.3 mAh g-1 after 50 cycles, and a high initial discharge specific capacities of 150.6 mAh g-1 at 5 C even at a high cutoff potential (4.6 V).

  13. Enhancing visible light photocatalytic and photocharge separation of (BiO){sub 2}CO{sub 3} plate via dramatic I{sup −} ions doping effect

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Lei [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Cao, Jing [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Anhui Collaborative Innovation Center of Advanced Functional Composite, Huaibei, 235000, Anhui (China); Lin, Haili, E-mail: linhaili@mail.ipc.ac.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Guo, Xiaomin; Zhang, Meiyu [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, 233100, Anhui (China)

    2016-08-15

    Highlights: • Novel I-(BiO){sub 2}CO{sub 3} was prepared by a facile chemical precipitation method. • I{sup −} ions impurity level located on the top of valence band of (BiO){sub 2}CO{sub 3}. • I{sup −} ions doping largely improved photocatalytic activity of I-(BiO){sub 2}CO{sub 3}. • I-(BiO){sub 2}CO{sub 3} displayed excellent photocharge separation efficiency. - Abstract: Novel I{sup −} ions doped (BiO){sub 2}CO{sub 3} (I-(BiO){sub 2}CO{sub 3}) photocatalysts were successfully synthesized via a facile chemical precipitation method. Under visible light (λ > 400 nm), I-(BiO){sub 2}CO{sub 3} displayed much higher activity for rhodamine B and dichlorophenol degradation than the undoped (BiO){sub 2}CO{sub 3}. The pseudo-first-order rate constant k{sub app} of RhB degradation over 15.0% I-(BiO){sub 2}CO{sub 3} was 0.54 h{sup −1}, which is 11.3 times higher than that of (BiO){sub 2}CO{sub 3}. The doped I{sup −} ions formed an impurity level on the top of valence band of (BiO){sub 2}CO{sub 3} and induced much more visible light to be absorbed. The enhanced photocurrent and surface photovoltage properties were detected, which strongly ensures the efficient separation of electrons and holes in I-(BiO){sub 2}CO{sub 3} system under visible light. It provides a facile way to improve the photocatalytic activity of the wide-band-gap (BiO){sub 2}CO{sub 3} via intense doping effect of I{sup −} ions.

  14. Nanocrystal in Er3+-doped SiO2-ZrO2 Planar Waveguide with Yb3+ Sensitizer

    International Nuclear Information System (INIS)

    Razaki, N. Iznie; Jais, U. Sarah; Abd-Rahman, M. Kamil; Bhaktha, S. N. B.; Chiasera, A.; Ferrari, M.

    2010-01-01

    Higher doping of Er 3+ in glass ceramic waveguides would cause concentration and pair-induced quenching which lead to inhomogeneous line-width of luminescence spectrum thus reduce output intensity. Concentration quenching can be overcome by introducing ZrO 2 in the glass matrix while co-doping with Yb 3+ which acts as sensitizer would improve the excitation efficiency of Er 3+ . In this study, SiO 2 -ZrO 2 planar waveguides having composition in mol percent of 70SiO 2 -30ZrO 2 doped with Er 3+ and co-doped with Yb 3+ , were prepared via sol-gel route. Narrower and shaper peaks of PL and XRD shows the formation of nanocrystals. Intensity is increase with addition amount of Yb 3+ shows sensitizing effect on Er 3+ .

  15. Adsorption properties of CO, H{sub 2} and CH{sub 4} over Pd/γ-Al{sub 2}O{sub 3} catalyst: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zijian; Wang, Ben, E-mail: benwang@hust.edu.cn; Yu, Jie; Ma, Chuan; Qu, Qinggong; Zeng, Zhao; Xiang, Jun; Hu, Song; Sun, Lushi, E-mail: sunlushi@hust.edu.cn

    2016-11-30

    Highlights: • Model of dimer Pd supported on γ-Al{sub 2}O{sub 3} (1 1 0) surface was established. • CO, H{sub 2} and CH{sub 4} adsorption on clean γ-Al{sub 2}O{sub 3} and on Pd/γ-Al{sub 2}O{sub 3} surface was studied by DFT calculations. • CO, H{sub 2} and CH{sub 4} adsorptions are energetically more favorable in the presence of dimer Pd. • Mechanism of CO, H{sub 2} and CH{sub 4} adsorption on Pd/γ-Al{sub 2}O{sub 3} (1 1 0) surface was explained. - Abstract: Density functional theory (DFT) calculations were employed to investigate the adsorption characteristics of carbon monoxide (CO), hydrogen (H{sub 2}), and methane (CH{sub 4}) on the surface of clean γ-Al{sub 2}O{sub 3} and Pd supported γ-Al{sub 2}O{sub 3}, which is of significant for catalytic combustion. The adsorption intensities of the three gas molecules in pure γ-Al{sub 2}O{sub 3} (1 1 0) and Pd/γ-Al{sub 2}O{sub 3} (1 1 0) were in the order of CO > H{sub 2} > CH{sub 4}. The corresponding adsorption energies on the Pd/γ-Al{sub 2}O{sub 3} (1 1 0) surface were at least three times higher than those on γ-Al{sub 2}O{sub 3} (1 1 0). Anlysis of Mulliken population and partial density of states (PDOS) showed that the adsorption mechanisms were as follow: (a) CO stably adsorbed on the bridge site of dimer Pd with two C−Pd bonds because of charges transfer from the surface to CO, and the triple bond (C≡O) was broken to a double bond (C=O); (b) H{sub 2} was dissociated into hydrogen atoms on the dimer Pd and produced a stable planar configuration; and (c) the tetrahedral structure of CH{sub 4} was destroyed on the surface and formed a −CH{sub 3} species bonded to the Pd atom, which contributes to the orbital hybridization between C and Pd atoms.

  16. Morphology-controllable synthesis of 3D CoNiO_2 nano-networks as a high-performance positive electrode material for supercapacitors

    International Nuclear Information System (INIS)

    Zhang, Jijun; Chen, Zexiang; Wang, Yan; Li, Hai

    2016-01-01

    Here, we report a novel three-dimensional (3D) assembly of CoNiO_2 nanowire networks using a facile and scalable hydrothermal method followed by an annealing process for supercapacitor applications. The X-ray diffraction (XRD) results revealed the formation of highly-crystalline CoNiO_2 nano-networks. Scanning electron microscope (SEM) analysis showed the formation of a 3D interconnected network of CoNiO_2 nanowires during the synthesis. In addition, a formation mechanism for 3D CoNiO_2 nano-networks was proposed. Electrochemical analysis showed a typical pseudocapacitive behavior for the CoNiO_2 nanowire networks. The as-prepared CoNiO_2 electrode exhibited a high specific capacitance of 1462 F g"−"1 (45.32 F cm"−"2) at a current density of 1 A g"−"1 (31 mA cm"−"2) and an excellent rate capability of 1000 F g"−"1 (31 F cm"−"2) at 32 A g"−"1 (992 mA cm"−"2). Moreover, a good cycle stability was achieved at 4 A g"−"1 with no degradation over 800 cycles, indicating the stable 3D structure of CoNiO_2 after the redox reactions. The high rate capability and the good cycle stability indicated that the as-prepared 3D CoNiO_2 electrode could satisfy the needs of supercapacitors with both high power and energy densities. - Highlights: • A three-dimensional (3D) assembly of CoNiO_2 nanowire networks was prepared. • Sodium-p-styrenesulfonate (PSS) plays a key role in forming the structure. • The as-prepared 3D CoNiO_2 electrode exhibits high power and energy densities. • The proposed method is easy to provide an industrial mass production. • The method can be used to fabricate different morphologies of nanomaterials.

  17. Dielectric and magnetic properties of xCoFe{sub 2}O{sub 4}–(1 − x)[0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}] composites

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Jyoti [Smart Materials Research Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Yadav, K.L., E-mail: klyadav35@yahoo.com [Smart Materials Research Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Prakash, Satya [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2014-12-15

    Highlights: • Spinel–perovskite xCoFe{sub 2}O{sub 4}–(1 − x)(0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}) composites have been synthesized by solid state reaction method. • Two anomalies in dielectric constant have been identified, and the composites show relaxor behaviour. • The magnetic properties of the composites improve with increasing concentration of CoFe{sub 2}O{sub 4}. • Enhanced magnetodielectric effect is found, and magnetoelectric coupling has been confirmed by Δϵ ∼ γM{sup 2} relation. • Optical band gap energy of these composites has been reported for the first time. - Abstract: xCoFe{sub 2}O{sub 4}–(1 − x)(0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}) composites with x = 0.1, 0.2, 0.3 and 0.4 have been synthesized by solid state reaction method. X-ray diffraction analysis and field emission secondary electron microscopy have been used for structural and morphological analysis, respectively. The spinel CoFe{sub 2}O{sub 4} and perovskite 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} phase could be identified in the composites. Two anomalies in dielectric constant have been identified: first one is close to ferroelectric to paraelectric phase transition of 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} ceramic and the other lies near the magnetic transition temperature of CoFe{sub 2}O{sub 4}. There is an increase in magnetocapacitance and saturation magnetization of the composites at room temperature with increase in CoFe{sub 2}O{sub 4} content. The magnetoelectric coupling coefficient (γ) was approximated by Δϵ ∼ γM{sup 2} relation. The optical band gap energy of the composites decreases with increase in CoFe{sub 2}O{sub 4} content.

  18. Processing of water-based LiNi1/3Mn1/3Co1/3O2 pastes for ...

    Indian Academy of Sciences (India)

    Results show that a substitution of the conventional organic solvent-based manufacturing route for LiNi1/3Mn1/3Co1/3O2 cathodes by water-based processing exhibits a promising way to realise Li-ion batteries with comparable electrochemical behaviour, while avoiding toxic processing aids and reducing overall ...

  19. Theoretical study on the spectroscopic properties of CO3(*-).nH2O clusters: extrapolation to bulk.

    Science.gov (United States)

    Pathak, Arup K; Mukherjee, Tulsi; Maity, Dilip K

    2008-10-24

    Vertical detachment energies (VDE) and UV/Vis absorption spectra of hydrated carbonate radical anion clusters, CO(3)(*-).nH(2)O (n=1-8), are determined by means of ab initio electronic structure theory. The VDE values of the hydrated clusters are calculated with second-order Moller-Plesset perturbation (MP2) and coupled cluster theory using the 6-311++G(d,p) set of basis functions. The bulk VDE value of an aqueous carbonate radical anion solution is predicted to be 10.6 eV from the calculated weighted average VDE values of the CO(3)(*-).nH(2)O clusters. UV/Vis absorption spectra of the hydrated clusters are calculated by means of time-dependent density functional theory using the Becke three-parameter nonlocal exchange and the Lee-Yang-Parr nonlocal correlation functional (B3LYP). The simulated UV/Vis spectrum of the CO(3)(*-).8H(2)O cluster is in excellent agreement with the reported experimental spectrum for CO(3)(*-) (aq), obtained based on pulse radiolysis experiments.

  20. Ionothermal Synthesis of a Novel 3D Cobalt Coordination Polymer with a Uniquely Reported Framework: [BMI]2[Co2(BTC2(H2O2

    Directory of Open Access Journals (Sweden)

    Il-Ju Ko

    2017-01-01

    Full Text Available The framework of [RMI]2[Co2(BTC2(H2O2] (RMI = 1-alkyl-3-methylimidazolium, alkyl; ethyl (EMI; propyl (PMI; butyl (BMI, which has uniquely occurred in ionothermal reactions of metal salts and H3BTC (1,3,5-benzenetricarboxylic acid, an organic ligand, reappeared in this work. Ionothermal reaction of cobalt acetate and H3BTC with [BMI]Br ionic liquid as the reaction medium yielded the novel coordination polymer [BMI]2[Co2(BTC2(H2O2] (compound B2. Similar ionothermal reactions with different [EMI]Br and [PMI]Br as the reaction media have been previously reported to produce [EMI]2[Co3(BTC2(OAc2] (compound A1 and [PMI]2[Co2(BTC2(H2O2] (compound B1, respectively. In contrast with the trinuclear secondary building unit of A1, the framework structure of B1 and B2 consists of dinuclear secondary building units in common, but with subtle distinction posed by the different size of the incorporated cations. These structural differences amidst the frameworks showed interesting aspects, including guest and void volume, and were used to explain the chemical trend observed in the system. Moreover, the physicochemical properties of the newly synthesized compound have been briefly discussed.

  1. Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction.

    Science.gov (United States)

    Darbah, Joseph N T; Kubiske, Mark E; Nelson, Neil; Oksanen, Elina; Vapaavuori, Elina; Karnosky, David F

    2008-10-01

    We studied the effects of long-term exposure (nine years) of birch (Betula papyrifera) trees to elevated CO(2) and/or O(3) on reproduction and seedling development at the Aspen FACE (Free-Air Carbon Dioxide Enrichment) site in Rhinelander, WI. We found that elevated CO(2) increased both the number of trees that flowered and the quantity of flowers (260% increase in male flower production), increased seed weight, germination rate, and seedling vigor. Elevated O(3) also increased flowering but decreased seed weight and germination rate. In the combination treatment (elevated CO(2)+O(3)) seed weight is decreased (20% reduction) while germination rate was unaffected. The evidence from this study indicates that elevated CO(2) may have a largely positive impact on forest tree reproduction and regeneration while elevated O(3) will likely have a negative impact.

  2. Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Yazaki, Kenichi; Kitaoka, Satoshi; Tobita, Hiroyuki

    2015-01-01

    To assess the effects of elevated concentrations of carbon dioxide (CO 2 ) and ozone (O 3 ) on the growth of two mid-successional oak species native to East Asia, Quercus mongolica var. crispula and Quercus serrata, we measured gas exchange and biomass allocation in seedlings (initially 1-year-old) grown under combinations of elevated CO 2 (550 μmol mol −1 ) and O 3 (twice-ambient) for two growing seasons in an open-field experiment in which root growth was not limited. Both the oak species showed a significant growth enhancement under the combination of elevated CO 2 and O 3 (indicated by total dry mass; over twice of ambient-grown plants, p < .05), which probably resulted from a preferable biomass partitioning into leaves induced by O 3 and a predominant enhancement of photosynthesis under elevated CO 2 . Such an over-compensative response in the two Japanese oak species resulted in greater plant growth under the combination of elevated CO 2 and O 3 than elevated CO 2 alone. - Highlights: • Quercus mongolica var. crispula and Quercus serrata were grown under elevated CO 2 and O 3 . • O 3 induced a preferable biomass allocation into leaves. • Photosynthesis was predominantly enhanced under elevated CO 2 exceeding O 3 impacts. • Combination of elevated CO 2 and O 3 enhanced the growth of two oak species. - O 3 -induced carbon allocation into leaves and CO 2 -enhanced photosynthesis result in a significant growth enhancement in Japanese oak species under the combination of gases.

  3. Tailoring order–disorder temperature and microwave dielectric properties of Ba[(Co0.6Zn0.41/3Nb2/3]O3 ceramics

    Directory of Open Access Journals (Sweden)

    Tu Lai Sun

    2016-03-01

    Full Text Available The order–disorder temperature (To–d of Ba[(Co0.6Zn0.41/3Nb2/3]O3 ceramics was determined via X-ray diffraction, Raman spectroscopy and differential thermal analysis, respectively. To–d was determined to be between 1425 and 1450 °C by a quenching method. The endothermic peak in the DTA curve shows the order–disorder transition. B2O3 was applied to tune the densification temperature (Ts and tailor the microwave dielectric properties. The ordering degree and unloaded quality factor (Qf are improved when Ts is reduced to 1400 °C at B2O3 content of 0.25 mol%. Ts is further decreased and the ordering degree and Qf are decreased when B2O3 content is increased to 0.5 mol%. The dielectric constant (εr and temperature coefficient of resonant frequency (τf decrease slightly with increasing B2O3 content. The optimum microwave dielectric properties (i.e., εr = 34.0, Qf = 50,400 GHz, τf = 5.5 × 10−6/°C are obtained for the Ba[(Co0.6Zn0.41/3Nb2/3]O3-0.25 mol% B2O3 ceramics sintered at a lower temperature.

  4. Probing surface sites of TiO2: reactions with [HRe(CO)5] and [CH3Re(CO)5].

    Science.gov (United States)

    Lobo-Lapidus, Rodrigo J; Gates, Bruce C

    2010-10-04

    Two carbonyl complexes of rhenium, [HRe(CO)(5)] and [CH(3)Re(CO)(5)], were used to probe surface sites of TiO(2) (anatase). These complexes were adsorbed from the gas phase onto anatase powder that had been treated in flowing O(2) or under vacuum to vary the density of surface OH sites. Infrared (IR) spectra demonstrate the variation in the number of sites, including Ti(+3)-OH and Ti(+4)-OH. IR and extended X-ray absorption fine structure (EXAFS) spectra show that chemisorption of the rhenium complexes led to their decarbonylation, with formation of surface-bound rhenium tricarbonyls, when [HRe(CO)(5)] was adsorbed, or rhenium tetracarbonyls, when [CH(3)Re(CO)(5)] was adsorbed. These reactions were accompanied by the formation of water and surface carbonates and removal of terminal hydroxyl groups associated with Ti(+3) and Ti(+4) ions on the anatase. Data characterizing the samples after adsorption of [HRe(CO)(5)] or [CH(3)Re(CO)(5)] determined a ranking of the reactivity of the surface OH sites, with the Ti(+3)-OH groups being the more reactive towards the rhenium complexes but the less likely to be dehydroxylated. The two rhenium pentacarbonyl probes provided complementary information, suggesting that the carbonate species originate from carbonyl ligands initially bonded to the rhenium and from hydroxyl groups of the titania surface, with the reaction leading to the formation of water and bridging hydroxyl groups on the titania. The results illustrate the value of using a family of organometallic complexes as probes of oxide surface sites.

  5. The effect of Cu/Zn molar ratio on CO{sub 2} hydrogenation over Cu/ZnO/ZrO{sub 2}/Al{sub 2}O{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shaharun, Salina, E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Taha, Mohd F., E-mail: faisalt@petronas.com.my [Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Mohamad, Dasmawati, E-mail: dasmawati@kck.usm.my [School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-10-24

    Catalytic hydrogenation of carbon dioxide (CO{sub 2}) to methanol is an attractive way to recycle and utilize CO{sub 2}. A series of Cu/ZnO/Al{sub 2}O{sub 3}/ZrO{sub 2} catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method and investigated in a stirred slurry autoclave system. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX), X-ray diffraction (XRD) and N{sub 2} adsorption-desorption. Higher surface area, SA{sub BET} values (42.6–59.9 m{sup 2}/g) are recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m{sup 2}/g found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a low reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 67.73 was achieved at Cu/Zn molar ratio of 1. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 79.30%.

  6. Ce3+ doping into 0.6Li2MnO3·0.4LiNi0.5Co0.2Mn0.3O2 as cathode material for Li-ion batteries applied in new energy vehicle

    Science.gov (United States)

    Peng, Han; Yao, Linxiao; Zhang, Ming

    2018-06-01

    The pristine Li1.20[Mn0.52Ni0.20Co0.08]O2 and Ce3+-doped Li1.20[Mn0.50Ni0.20Co0.08Ce0.02]O2 cathode materials have been synthesized by using the typical sol-gel method. The XRD, SEM, ICP-OES and galvanostatic charge-discharge tests were carried out to study the influence of Ce3+ doping on the crystal structural, morphology and electrochemical properties of Li1.20Mn0.54Ni0.13Co0.13O2. The XRD result revealed the Ce3+ doping modification could decrease the cation mixing degree. The galvanostatic charge-discharge tests results showed that the sample after Ce3+ doping demonstrated the smaller irreversible capacity loss, more stable cyclic performance and better rate capacity than those of the pristine one.

  7. Synthesis and crystal structures of nitratocobaltates Na2[Co(NO3)4], K2[Co(NO3)4], and Ag[Co(NO3)3] and potassium nitratonickelate K2[Ni(NO3)4

    International Nuclear Information System (INIS)

    Morozov, I. V.; Fedorova, A. A.; Albov, D. V.; Kuznetsova, N. R.; Romanov, I. A.; Rybakov, V. B.; Troyanov, S. I.

    2008-01-01

    The cobalt(II) and nickel(II) nitrate complexes with an island structure (Na 2 [Co(NO 3 ) 4 ] (I) and K 2 [Co(NO 3 ) 4 ] (II)] and a chain structure [Ag[Co(NO 3 ) 3 ] (III) and K 2 [Ni(NO 3 ) 4 ] (IV)] are synthesized and investigated using X-ray diffraction. In the anionic complex [Co(NO 3 ) 4 ] 2− of the crystal structure of compound I, the Co coordination polyhedron is a twisted tetragonal prism formed by the O atoms of four asymmetric bidentate nitrate groups. In the anion [Co(NO 3 ) 4 ] 2− of the crystal structure of compound II, one of the four NO 3 groups is monodentate and the other NO 3 groups are bidentate (the coordination number of the cobalt atom is equal to seven, and the cobalt coordination polyhedron is a monocapped trigonal prism). The crystal structures of compounds III and IV contain infinite chains of the compositions [Co(NO 3 ) 2 (NO 3 ) 2/2 ] − and [Ni(NO 3 ) 3 (NO 3 ) 2/2 ] 2− , respectively. In the crystal structure of compound III, seven oxygen atoms of one monodentate and three bidentate nitrate groups form a dodecahedron with an unoccupied vertex of the A type around the Co atom. In the crystal structure of compound IV, the octahedral polyhedron of the Ni atom is formed by five nitrate groups, one of which is terminal bidentate. The data on the structure of Co(II) coordination polyhedra in the known nitratocobaltates are generalized.

  8. Synthesis and crystal structures of nitratocobaltates Na2[Co(NO3)4], K2[Co(NO3)4], and Ag[Co(NO3)3] and potassium nitratonickelate K2[Ni(NO3)4

    International Nuclear Information System (INIS)

    Morozov, I. V.; Fedorova, A. A.; Albov, D. V.; Kuznetsova, N. R.; Romanov, I. A.; Rybakov, V. B.; Troyanov, S. I.

    2008-01-01

    The cobalt(II) and nickel(II) nitrate complexes with an island structure (Na 2 [Co(NO 3 ) 4 ] (I) and K 2 [Co(NO 3 ) 4 ] (II)] and a chain structure [Ag[Co(NO 3 ) 3 ] (III) and K 2 [Ni(NO 3 ) 4 ] (IV)] are synthesized and investigated using X-ray diffraction. In the anionic complex [Co(NO 3 ) 4 ] 2- of the crystal structure of compound I, the Co coordination polyhedron is a twisted tetragonal prism formed by the O atoms of four asymmetric bidentate nitrate groups. In the anion [Co(NO 3 ) 4 ] 2- of the crystal structure of compound II, one of the four NO 3 groups is monodentate and the other NO 3 groups are bidentate (the coordination number of the cobalt atom is equal to seven, and the cobalt coordination polyhedron is a monocapped trigonal prism). The crystal structures of compounds III and IV contain infinite chains of the compositions [Co(NO 3 ) 2 (NO 3 ) 2/2 ] - and [Ni(NO 3 ) 3 (NO 3 ) 2/2 ] 2- , respectively. In the crystal structure of compound III, seven oxygen atoms of one monodentate and three bidentate nitrate groups form a dodecahedron with an unoccupied vertex of the A type around the Co atom. In the crystal structure of compound IV, the octahedral polyhedron of the Ni atom is formed by five nitrate groups, one of which is terminal bidentate. The data on the structure of Co(II) coordination polyhedra in the known nitratocobaltates are generalized

  9. Calcium stanate (CaSnO{sub 3}) doped with Fe{sup 3+}, Co{sup 2+} ou Cu{sup 2+} applied in the photodegradation of Remazol Golden Yellow and in the reduction of NO with CO or NH{sub 3}; Estanatos de calcio (CaSnO{sub 3}) dopados com Fe{sup 3+}, Co{sup 2+} ou Cu{sup 2+} aplicados na fotodegradacao de Remazol Amarelo Ouro e na reducao de NO com CO ou NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Guilherme Leocardio Lucena dos

    2017-11-01

    Calcium stannate, CaSnO{sub 3}, is orthorhombic perovskite-type that presents technological applications as catalysts and photocatalysts. In this work, undoped CaSnO{sub 3} and doped with Fe{sup 3+}, Co{sup 2+} or Cu{sup 2+} were obtained by the modified Pechini method and applied in photodegradation of the textile dye Remazol Golden Yellow and as catalysts in the reduction reaction of nitrogen monoxide (NO). Furthermore, these materials were deposited on the ZrO{sub 2} support or Pd{sup 2+}-doped or Pd impregnated and evaluated in the reduction of NO with CO and NO with NH{sub 3}. The catalysts were characterized by thermogravimetric analysis (TG/DTA), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), infrared spectroscopy (IR), Raman spectroscopy, analysis of the surface area by the BET method, scanning electron microscopy with field emission (FE-SEM) and transmission electron microscopy (TEM). XRD patterns showed a small change in the long range-order for the doped samples due to partial substitution of cations. The Raman spectra indicated that the incorporation of Fe{sup 3+}, Co{sup 2+} and Cu{sup 2+} in the CaSnO{sub 3} lattice promoted a symmetry breaking, which was confirmed by the change of the band gap values of the samples. The photocatalytic tests of RNL dye were performed in the reactor using a UVC lamp (λ = 254 nm). The catalytic tests were carried out in a reactor containing a gaseous mixture with stoichiometric amounts of nitrogen monoxide (NO) and carbon monoxide (CO) in helium in the temperature range of 300 °C to 700 °C or in a reactor containing a mixture of NO and ammonia (NH{sub 3}) in helium in the temperature range of 250 °C to 500 °C. The results of the photocatalytic evaluation showed that CaSnO{sub 3} doping with transition metals increased the photocatalytic efficiency of the material, especially for the Cu{sup 2+} (76% of discoloration), which was related to the while the decrease in the intensity of the

  10. Co{sub 3}O{sub 4} nanowires@MnO{sub 2} nanolayer or nanoflakes core–shell arrays for high-performance supercapacitors: The influence of morphology on performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Shi, Zhongqi, E-mail: zhongqishi@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Yuanyuan [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Ye, Zhiguo [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xia, Hongyan [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Guiwu [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Qiao, Guanjun, E-mail: gjqiao@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-03-05

    Highlights: • MnO{sub 2} nanolayer is coated on Co{sub 3}O{sub 4} nanowire arrays forming a core–shell nanocable structure via chemical bath deposition. • The electrochemical performances of the MnO{sub 2} with two different morphologies are compared and investigated. • Both the Co{sub 3}O{sub 4} nanowires@MnO{sub 2} nanolayer and nanoflakes core–shell arrays possess high specific capacitance. - Abstract: The Co{sub 3}O{sub 4} nanowires@MnO{sub 2} nanolayer or nanoflakes core–shell arrays (Co{sub 3}O{sub 4}@MnO{sub 2} nanolayer or nanoflakes NWAs) supported on carbon fiber paper have been fabricated via a facile and green method and further investigated on the performance as the electrodes for supercapacitors. Our experimental results evidently indicate that both the Co{sub 3}O{sub 4}@MnO{sub 2} nanoflakes and nanolayer NWAs are capable of delivering specific capacitances as high as 1209.4 and 1215.6 F g{sup −1} (based on the MnO{sub 2}) at the current density of 1 A g{sup −1}. Due to the delicately designed hierarchical nanostructure that distributing the nanoscaled MnO{sub 2} on the nanowires with better electric conductivity, the active materials take advantage of the high effective surface area, facile electrolyte diffusion and fast electron transfer. The phenomenon that the Co{sub 3}O{sub 4}@MnO{sub 2} nanolayer NWAs with smaller specific surface area become superior in electrochemical performance to the Co{sub 3}O{sub 4}@MnO{sub 2} nanoflakes NWAs has been carefully investigated. The smaller charge transfer and electrolyte diffusion resistances are mainly demonstrated to be responsible. The analyses presented here could contribute to developing the optimal nanostructure of electrode materials for high-performance supercapacitors.

  11. Low-loss Z-type hexaferrite (Ba3Co2Fe24O41) for GHz antenna applications

    Science.gov (United States)

    Lee, Woncheol; Hong, Yang-Ki; Park, Jihoon; LaRochelle, Gatlin; Lee, Jaejin

    2016-09-01

    We report a low magnetic loss Ba3Co2Fe24O41 (Co2Z) hexaferrite for use in gigahertz (GHz) antennas. Acid-etching was very effective in removal of unwanted Y-type hexaferrite (Ba2Co2Fe12O22) from calcined Co2Z powder. It is found that the calcined and acid etched (AE) Co2Z hexaferrite shows a low magnetic loss tangent (tan δμ) of 0.012 and 0.037 at 1 and 2 GHz, respectively. These low tan δμ are attributed to removal of Y-type hexaferrite, which possesses a lower anisotropy field (Hk) than W-type hexaferrite (BaCo2Fe16O27). The figure of merit (FOM) of the AE Co2Z hexaferrite is 141.7 and 48.7 at 1 and 2 GHz, respectively. These FOM are much higher than the FOM of previously reported low-loss magnetic materials. Therefore, the AE Co2Z hexaferrite can be a good candidate for GHz antenna application in the ultra-high frequency (UHF) band.

  12. Magnetostructural correlations in the antiferromagnetic Co2-x Cux(OH)AsO4 (x=0 and 0.3) phases

    International Nuclear Information System (INIS)

    Pedro, I. de; Rojo, J.M.; Pizarro, J.L.; Rodriguez Fernandez, J.; Arriortua, M.I.; Rojo, T.

    2011-01-01

    The Co 2-x Cu x (OH)AsO 4 (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) A, b=8.559(2) A, c=6.039(1) A and a=8.316(1) A, b=8.523(2) A, c=6.047(1) A for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O 5 -trigonal bipyramid dimers and M(2)O 6 -octahedral chains (M=Co and Cu) are present. Co 2 (OH)AsO 4 shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co 2+ is partially substituted by Cu 2+ ions, Co 1.7 Cu 0.3 (OH)AsO 4 , the ferromagnetic component observed in Co 2 (OH)AsO 4 disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This λ-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx 2 -y 2 orbital and the absence of overlap between neighbour ions. - Graphical abstract: Schematic drawing of the Co 2-x Cu x (OH)AsO 4 (x=0 and 0.3) crystal structure view along the |0 1 0| direction. Polyhedra are occupied by the M(II) ions (M=Co and Cu) and the AsO 4 groups are represented by tetrahedra. Open circles correspond to the oxygen atoms, and small circles show the hydrogen atoms. Highlights: → Synthesis of a new adamite-type compound, Co 1.7 Cu 0.3 (OH)AsO 4 . → Single crystal structure, spectroscopic characterization and magnetic properties. → Unusual dependence on the magnetic field for

  13. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO2 Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al2O3

    Science.gov (United States)

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-01-01

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO2 and Pt/α-Al2O3 catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO2, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H2, while H2 combustion was activated by repeated exposure to H2 gas during the periodic gas test. Selective CO sensing of the micro-TGS against H2 was attempted using a double catalyst structure with 0.3–30 wt% Pt/α-Al2O3 as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al2O3 catalyst, by cancelling out the combustion heat from the AuPtPd/SnO2 catalyst. In addition, the AuPtPd/SnO2 and 0.3 wt% Pt/α-Al2O3 double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H2. PMID:26694397

  14. Combined CO/CH4 oxidation tests over Pd/Co3O4 monolithic catalyst. Effects of high reaction temperature and SO2 exposure on the deactivation process

    International Nuclear Information System (INIS)

    Liotta, L.F.; Venezia, A.M.; Di Carlo, G.; Pantaleo, G.; Deganello, G.; Merlone Borla, E.; Pidria, M.

    2007-01-01

    CO and CH 4 combined oxidation tests were performed over a Pd (70 g/ft 3 )/Co 3 O 4 monolithic catalyst in conditions of GHSV = 100,000 h -1 and feed composition close to that of emission from bi-fuel vehicles. The effect of SO 2 (5 ppm) on CO and CH 4 oxidation activity under lean condition (λ 2) was investigated. The presence of sulphur strongly deactivated the catalyst towards methane oxidation, while the poisoning effect was less drastic in the oxidation of CO. Saturation of the Pd/Co 3 O 4 catalytic sites via chemisorbed SO 3 and/or sulphates occurred upon exposure to SO 2 . A treatment of regeneration to remove sulphate species was attempted by performing a heating/cooling cycle up to 900 C in oxidizing atmosphere. Decomposition of PdO and Co 3 O 4 phases at high temperature, above 750 C, was observed. Moreover, sintering of Pd 0 and PdO particles along with of CoO crystallites takes place. (author)

  15. Zn2(TeO3Br2

    Directory of Open Access Journals (Sweden)

    Mats Johnsson

    2008-05-01

    Full Text Available Single crystals of dizinc tellurium dibromide trioxide, Zn2(TeO3Br2, were synthesized via a transport reaction in sealed evacuated silica tubes. The compound has a layered crystal structure in which the building units are [ZnO4Br] distorted square pyramids, [ZnO2Br2] distorted tetrahedra, and [TeO3E] tetrahedra (E being the 5s2 lone pair of Te4+ joined through sharing of edges and corners to form layers of no net charge. Bromine atoms and tellurium lone pairs protrude from the surfaces of each layer towards adjacent layers. This new compound Zn2(TeO3Br2 is isostructural with the synthetic compounds Zn2(TeO3Cl2, CuZn(TeO32, Co2(TeO3Br2 and the mineral sophiite, Zn2(SeO3Cl2.

  16. Generation of H{sub 2} and CO by solar thermochemical splitting of H{sub 2}O and CO{sub 2} by employing metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita

    2016-10-15

    Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles

  17. Ferromagnetic resonance spectroscopy of CoFeZr-Al{sub 2}O{sub 3} granular films containing “FeCo core – oxide shell” nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kołtunowicz, Tomasz N., E-mail: t.koltunowicz@pollub.pl [Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin (Poland); Zukowski, Pawel [Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin (Poland); Sidorenko, Julia [Department of Semiconductors Physics and Nanoelectronics, Belarusian State University, Independence Av. 4, 220030 Minsk (Belarus); Bayev, Vadim; Fedotova, Julia A. [Institute for Nuclear Problems, Belarusian State University, Bobrujskaya Str. 11, 220030 Minsk (Belarus); Opielak, Marek [Institute of Transport, Combustion Engines and Ecology, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland); Marczuk, Andrzej [Department of Transporting and Agricultural Machinery, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin (Poland)

    2017-01-01

    Ferromagnetic resonance (FMR) spectroscopy is applied for comparative analysis of granular (CoFeZ){sub x}(Al{sub 2}O{sub 3}){sub 100−x}, (31 at%≤x≤47 at%) films containing pure FeCo-based nanoparticles (NPs) or “FeCo-based core – oxide shell” NPs inside Al{sub 2}O{sub 3} matrix when deposited in oxygen-free or oxygen-containing atmosphere, correspondingly. It is established that g-factor extracted from the FMR spectra of films with core–shell NPs decreases with x below the value g =2.0023 for free electron that is untypical for metallic NPs. This effect is associated with the formation of the interface between ferromagnetic core and antiferromagnetic (ferrimagnetic) oxide shell of NPs. - Highlights: • CoFeZr-Al{sub 2}O{sub 3} granular films containing “FeCo core – oxide shell” nanoparticles. • magnetic anisotropy of (CoFeZr){sub x}(Al{sub 2}O{sub 3}){sub 100−x} films is of an easy plane type. • essential difference in dependence of g-factor on metal content in non- and oxidized film. • non-oxidized samples indicates the reduction of the value of films magnetization.

  18. Theoretical and experimental study on solid chemical reaction between BaCO3 and TiO2 in microwave field

    International Nuclear Information System (INIS)

    Liu Hanxing; Guo, Liling; Zou Long; Cao Minhe; Zhou Jian; Ouyang Shixi

    2004-01-01

    Solid-state chemical reaction mechanism for the reaction between BaCO 3 and TiO 2 in microwave field was investigated based on X-ray power diffraction (XRD) data and theory of diffusion. The compositions of the resultant after reaction under different conditions were studied by employing XRD. The quantitative analyses based on XRD data showed the reaction in microwave field was quite different from that in the conventional method. A model was proposed to explain the change of the ratio between the reactant BaCO 3 , TiO 2 and the resultant BaTiO 3 for the chemical reaction. The formation kinetic of BaTiO 3 from the BaCO 3 and TiO 2 was calculated by employing this theoretical model. The reaction rate between BaCO 3 and TiO 2 in microwave field was much higher than that in conventional method. The activation energy of the atomic diffusions in this solid chemical reaction is only 58 kJ/mol, which was only about 1/4 of 232 kJ/mol in the conventional value. The result suggests that the microwave field enhance atomic diffusion during the reaction

  19. Qualidade de maçãs cv. gala armazenadas em diferentes pressões parciais de O2 e CO2 Quality of 'gala' apples stored at different partial pressures of O2 and CO2

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2000-06-01

    Full Text Available Este trabalho teve como objetivo verificar os efeitos da temperatura e pressões parciais de O2 e CO2 sobre a qualidade da maçã cv. Gala armazenada em atmosfera controlada. O delineamento experimental foi o inteiramente casualizado com três repetições de 30 frutos. Os tratamentos foram: 1,0 kPa de O2 e 2,0 kPa de CO2; 1,0 kPa de O2 e 3,0 kPa de CO2; 1,0 kPa de O2 e 4,0 kPa de CO2; 0,75 kPa de O2 e 2,0 kPa de CO2; 0,75 kPa de O2 e 3,0 kPa de CO2 e, 21,0 kPa de O2 e 0,0 kPa de CO2 na temperatura de 0 e 1ºC. A UR permaneceu em torno de 97%. O período de armazenamento foi de oito meses, sendo que as análises foram realizadas no momento da retirada dos frutos das câmaras e após sete dias de exposição dos mesmos à temperatura ambiente (24ºC. Avaliou-se firmeza de polpa, acidez titulável, teor de sólidos solúveis totais, cor de fundo da epiderme, degenerescência senescente, rachaduras e podridões. Melhor conservação da firmeza de polpa, acidez titulável e teores de sólidos solúveis totais foram encontrados com 0,75 a 1 kPa de O2, combinado com 3,0 kPa de CO2 na temperatura de 1ºC. A maçã apresentou degenerescência senescente em 4,0 kPa de CO2 e também quando utilizou-se a temperatura de 0ºC. A temperatura de 1ºC, em relação a 0ºC, manteve melhor qualidade dos frutos após oito meses de armazenamento.To evaluate the effects of the temperature and partial pressures of O2 and CO2 on the quality of `Gala' apples stored under controlled atmosphere an experiment was carried out using a completely randomized design with three replicates, each of 30 fruits. The treatments were: 1.0 kPa of O2 and 2.0 kPa of CO2; 1.0 kPa of O2 and 3.0 kPa of CO2; 1.0 kPa of O2 and 4.0 kPa of CO2; 0.75 kPa of O2 and 2.0 kPa of CO2; 0.75 kPa of O2 and 3.0 kPa of CO2; 21.0 kPa of O2 and 0.0 kPa of CO2 at the temperatures of 0 and 1ºC. RH was mantained around 97%. After 8 months, fruit quality was assessed at the opening of the CA chambers, and

  20. GITT studies on oxide cathode LiNi1/3Co1/3Mn1/3O2 synthesized ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... GITT studies on oxide cathode LiNi1/3Co1/3Mn1/3O2 synthesized by citric acid assisted high-energy ball milling ... The State Key Laboratory Base of Novel Functional Materials and Preparation Science; The Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. ...

  1. Modeling of the Mixed Solvent Electrolyte System CO2-Na2CO3-NaHCO3-Monoethylene Glycol-Water

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    The extended UNIQUAC electrolyte activity coefficient model has been correlated to 751 experimental solid−liquid equilibrium (SLE), vapor−liquid equilibrium (VLE), and excess enthalpy data for the mixed solvent CO2−NaHCO3−Na2CO3−monoethylene glycol(MEG)−H2O electrolyte system. The model...

  2. Characterization of cathode materials SrCoO3 and La0,2Sr0,8CoO3 for use in solid oxide fuel cells (SOFC)

    International Nuclear Information System (INIS)

    Galvao, G.O.; Aquino, F.M; Silva, R.M.; Medeiros, I.D.M. de

    2016-01-01

    Mixed oxide ceramics with chemical structure of ABO_3 type are promising candidates for cathodes of solid oxide fuel cells (SOFC) for performing well on the electrical conductivity and thermal stability. Various methods of preparation have been studied and used for the synthesis of these materials. In this study, SrCoO_3 and La_0_,_2Sr_0_,_8CoO_3 perovskites were synthesized using gelatin as directing agent with the purpose of producing homogeneous and porous particles. The powders obtained at 350 ° C / 2 h were calcined at 600, 800 and 1000 ° C for 4 hours and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that gelatin is a good polymerizing agent for metal ions as the material showed characteristic peaks of perovskite, with good porosity and uniformity. Furthermore, the method of synthesis employed has advantages related to cost and toxicity, which are very low. (author)

  3. Growth Oscillatory Zoning in Erythrite, Ideally Co3(AsO4)2·8H2O: Structural Variations in Vivianite-Group Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Antao, Sytle M.; Dhaliwal, Inayat

    2017-08-01

    The crystal structure of an oscillatory zoned erythrite sample from Aghbar mine, Bou Azzer, Morocco, was refined using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, Rietveld refinement, space group C2/m, and Z = 2. The crystal contains two sets of oscillatory zones that appear to have developed during epitaxial growth. The unit-cell parameters obtained are a = 10.24799(3) Å, b = 13.42490(7) Å, c = 4.755885(8) Å, β = 105.1116(3)°, and V = 631.680(4) Å3. The empirical formula for erythrite, obtained with electron-probe micro-analysis (EPMA), is [Co2.78Zn0.11Ni0.07Fe0.04]Σ3.00(AsO4)2·8H2O. Erythrite belongs to the vivianite-type structure that contains M1O2(H2O)4 octahedra and M22O6(H2O)4 octahedral dimers that are linked by TO4 (T5+ = As or P) tetrahedra to form complex layers parallel to the (010) plane. These layers are connected by hydrogen bonds. The average O>[6] = 2.122(1) Å and average 2–O>[6] = 2.088(1) Å. With space group C2/m, there are two solid solutions: M3(AsO4)2·8H2O and M3(PO4)2·8H2O where M2+ = Mg, Fe, Co, Ni, or Zn. In these As- and P-series, using data from this study and from the literature, we find that their structural parameters evolve linearly with V and in a nearly parallel manner despite of the large difference in size between P5+ (0.170 Å) and As5+ (0.355 Å) cations. Average O>[4], O>[6], and 2–O>[6] distances increase linearly with V. The average O> distance is affected by M atoms, whereas the average O> distance is unaffected because it contains shorter and stronger P–O bonds. Although As- and P-series occur naturally, there is no structural reason why similar V-series vivianite-group minerals do not occur naturally or cannot be synthesized.

  4. Zn2(TeO3)Br2

    Science.gov (United States)

    Zhang, Dong; Johnsson, Mats

    2008-01-01

    Single crystals of dizinc tellurium dibromide trioxide, Zn2(TeO3)Br2, were synthesized via a transport reaction in sealed evacuated silica tubes. The compound has a layered crystal structure in which the building units are [ZnO4Br] distorted square pyramids, [ZnO2Br2] distorted tetra­hedra, and [TeO3 E] tetra­hedra (E being the 5s 2 lone pair of Te4+) joined through sharing of edges and corners to form layers of no net charge. Bromine atoms and tellurium lone pairs protrude from the surfaces of each layer towards adjacent layers. This new compound Zn2(TeO3)Br2 is isostructural with the synthetic compounds Zn2(TeO3)Cl2, CuZn(TeO3)2, Co2(TeO3)Br2 and the mineral sophiite, Zn2(SeO3)Cl2. PMID:21202162

  5. DFT studies of elemental mercury oxidation mechanism by gaseous advanced oxidation method: Co-interaction with H2O2 on Fe3O4 (111) surface

    Science.gov (United States)

    Zhou, Changsong; Song, Zijian; Zhang, Zhiyue; Yang, Hongmin; Wang, Ben; Yu, Jie; Sun, Lushi

    2017-12-01

    Density functional theory calculations have been carried out for H2O2 and Hg0 co-interaction on Fe3O4 (111) surface. On the Fetet1-terminated Fe3O4 (111) surface, the most favored configurations are H2O2 decomposition and produce two OH groups, which have strong interaction with Hg atom to form an OHsbnd Hgsbnd OH intermediate. The adsorbed OHsbnd Hgsbnd OH is stable and hardly detaches from the catalyst surface due to the highly endothermic process. A large amount of electron transfer has been found from Hg to the produced OH groups and has little irreversible effect on the Fe3O4 (111) surface. On the Feoct2-terminated Fe3O4 (111) surface, the Feoct2 site is more active than Fetet1 site. H2O2 decomposition and Hg0 oxidation processes are more likely to occur due to that the Feoct2 site both contains Fe2+ and Fe3+ cations. The calculations reveal that Hg0 oxidation by the OH radical produced from H2O2 is energetically favored. Additionally, Hg0 and H2O2 co-interaction mechanism on the Fe3O4 (111) interface has been investigated on the basis of partial local density of state calculation.

  6. Luminescence, scintillation, and energy transfer in SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Gd{sub 2}O{sub 3}:Ce{sup 3+},Pr{sup 3+} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lertloypanyachai, Prapon; Chewpraditkul, Weerapong; Pattanaboonmee, Nakarin [Department of Physics, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Chen, Danping [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai (China); Babin, Vladimir; Beitlerova, Alena; Nikl, Martin [Institute of Physics, AS CR, Prague (Czech Republic)

    2017-09-15

    Ce{sup 3+},Pr{sup 3+}-codoped SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Gd{sub 2}O{sub 3} glasses (SABG:Ce,Pr) were prepared by melt quenching under a CO reducing atmosphere. Luminescence properties were investigated under UV and X-ray excitations. A dominant emission band at 430 nm belonging to the Ce{sup 3+}:5d{sub 1} → 4f transition was observed in the photo- and radio-luminescence spectra. The energy transfer occurs from this Ce{sup 3+} band toward the {sup 3}P{sub J} levels of Pr{sup 3+} with an efficiency of up to 24%, followed by the reduction of integrated luminescence intensity with an increasing Pr{sup 3+} concentration. This result is attributed to the increase in the reabsorption of Ce{sup 3+} luminescence and the non-radiative energy transfer toward the {sup 3}P{sub J} levels of Pr{sup 3+}. The cross-relaxation process within the Pr{sup 3+} pairs can further diminish the total luminescence yield at high Pr{sup 3+} concentrations. The integral scintillation efficiency and light yield measurements were carried out and compared to the reference Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) crystal. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Co-firing behavior of ZnTiO3-TiO2 dielectrics/hexagonal ferrite composites for multi-layer LC filters

    International Nuclear Information System (INIS)

    Wang Mao; Zhou Ji; Yue Zhenxing; Li Longtu; Gui Zhilun

    2003-01-01

    The low-temperature co-firing compatibility between ferrite and dielectric materials is the key issue in the production process of multi-layer chip LC filters. This paper presents the co-firing behavior and interfacial diffusion of ZnTiO 3 -TiO 2 dielectric/Co 2 Z hexagonal ferrite multi-layer composites. It has been testified that proper constitutional modification is feasible to diminish co-firing mismatch and enhance co-firing compatibility. Interfacial reactions occur at the interface, which can strengthen combinations between ferrite layers and dielectric layers. Titanium and barium tend to concentrate at the interface; iron and zinc have a wide diffusion range

  8. A photoemission study of interfaces between organic semiconductors and Co as well as Al2O3/Co contacts

    NARCIS (Netherlands)

    Grobosch, M.; Schmidt, C.; Naber, W.J.M.; van der Wiel, Wilfred Gerard; Knupfer, M.

    We have studied the energy-level alignment of ex situ, acetone cleaned Co and Al2O3/Co contacts to the organic semiconductors pentacene and rubrene by combined X-ray and ultraviolet photoemission spectroscopy. Our results demonstrate that the work function under these conditions is smaller than in

  9. Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration

    KAUST Repository

    Baby, Rakhi Raghavan; Ché n, Wěi; Hedhili, Mohamed N.; Cha, Dong Kyu; Alshareef, Husam N.

    2014-01-01

    -dimensional network with exceptional supercapacitor performance in standard two electrode configuration. Dramatic improvement in the rate capacity of the Co3O4 nanosheets is achieved by electrodeposition of nanocrystalline, hydrous RuO 2 nanoparticles dispersed

  10. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Lee, Myung-Hun; Komaba, Shinichi; Kumagai, Naoaki; Sun, Yang-Kook

    2005-01-01

    In attempts to prepare layered Li[Ni 1/3 Co 1/3 Mn 1/3 ]O 2 , hydrothermal method was employed. The hydrothermal precursor, [Ni 1/3 Co 1/3 Mn 1/3 ](OH) 2 , was synthesized via a coprecipitation route. The sphere-shaped powder precursor was hydrothermally reacted with LiOH aqueous solution at 170 deg. C for 4 days in autoclave. From X-ray diffraction and scanning electron microscopic studies, it was found that the as-hydrothermally prepared powders were crystallized to layered α-NaFeO 2 structure and the particles had spherical shape. The as-prepared Li[Ni 1/3 Co 1/3 Mn 1/3 ]O 2 delivered an initial discharge of about 110 mA h g -1 due to lower crystallinity. Heat treatment of the hydrothermal product at 800 deg. C was significantly effective to improve the structural integrity, which consequently affected the increase in the discharge capacity to 157 (4.3 V cut-off) and 182 mA h g -1 (4.6 V cut-off) at 25 deg. C with good reversibility

  11. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    Science.gov (United States)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  12. Investigation of thermal stability and spectroscopic properties in Er3+/Yb3+-codoped TeO2-Li2O-B2O3-GeO2 glasses.

    Science.gov (United States)

    Nie, Qiu-Hua; Gao, Yuan; Xu, Tie-Feng; Shen, Xiang

    2005-06-01

    The new Er3+/Yb3+ co-doped 70TeO2-5Li2O-(25-x)B2O3-xGeO2 (x = 0, 5, 10, 15 fand 20 mol.%) glasses were prepared. The thermal stability, absorption spectra, emission spectra and lifetime of the 4I(13/2) level of Er3+ ions were measured and studied. The FT-IR spectra were carried out in order to investigate the structure of local arrangements in glasses. It is found that the thermal stability, absorption cross-section of Yb3+, emission intensity and lifetime of the 4I(13/2) level of Er3+ increase with increasing GeO2 content in the glass composition, while the fluorescence width at half maximum (FWHM) at 1.5 um of Er3+ is about 70 nm. The obtained data suggest that this system glass can be used as a candidate host material for potential broadband optical amplifiers.

  13. Thermal analyses, spectral characterization and structural interpretation of Nd3+/Er3+ ions co-doped TeO2-ZnCl2 glasses system

    Science.gov (United States)

    Ahmed, Kasim F.; Ibrahim, Saeed O.; Sahar, Md. R.; Mawlud, Saman Q.; Khizir, Hersh A.

    2017-09-01

    The Nd3+/Er3+ ions co-doped in the system of zinc-tellurite with the composition of (70-2x)TeO2-30ZnCl2-xNd2O3-xEr2O3 concentration from 1.0 to 3.0 mol% (x=1, 2 and 3) glasses were prepared by using conventional melt-quenching technique. The amorphous nature of the glass been confirmed by using X-RAY Diffraction Spectroscopy. Thermal characteristic were determined using a DTA. The obtained results discussed in terms of the glass structure. The glass structure studied by means of FTIR. Seven significant vibrational peaks around 471, 687, 742, 768, 1632, 2833 and 3378 cm-1 which correspond to the structural bonding of the glass are observed in a range of 400-4000cm-1. The peaks observed are consistent with the stretching and bending vibrations of the Te-O, TeO4 trigonal bipyramids, TeO3 trigonal pyramids, Te-O-Te and OH linkages respectively.

  14. Strain and Ferroelectric-Field Effects Co-mediated Magnetism in (011)-CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3Multiferroic Heterostructures

    KAUST Repository

    Wang, Ping

    2016-08-19

    Electric-field mediated magnetism was investigated in CoFe2O4 (CFO, deposited by reactive cosputtering under different Oxygen flow rates) films fabricated on (011)-Pb(Mg1/3Nb2/3)(0.7)Ti0.3O3 (PMN-PT) substrates. Ascribed to the volatile strain effect of PMN-PT, the magnetization of the CFO films decreases along the [01-1] direction whereas it increases along the [100] direction under the electric field, which is attributed to the octahedron distortion in the spinel ferrite. Moreover, a nonvolatile mediation was obtained in the CFO film with low oxygen flow rate (4 sccm), deriving from the ferroelectric-field effect, in which the magnetization is different after removing the positive and negative fields. The cooperation of the two effects produces four different magnetization states in the CFO film with low oxygen flow rate (4 sccm), compared to the only two different states in the CFO film with high oxygen flow rate (10 sccm). It is suggested that the ferroelectric-field effect is related to the oxygen vacancies in CFO films.

  15. Thermodynamic modeling of neptunium(V) solubility in concentrated Na-CO3-HCO3-Cl-ClO4-H-OH-H2O systems

    International Nuclear Information System (INIS)

    Novak, C.F.; Roberts, K.E.

    1994-01-01

    Safety assessments of nuclear waste repositories often require estimation of actinide solubilities as a function of groundwater composition. Although considerable amount of research has been done on the solubility and speciation of actinides, relatively little has been done to unify these data into a model applicable to concentrate brines. Numerous authors report data on the aqueous chemical properties of Np(V) in NaClO 4 , Na 2 CO 3 , and NaCl media, but a consistent thermodynamic model for predicting these properties is not available. To meet this need, a model was developed to describe the solubility of Np(V) in Na-Cl-ClO 4 -CO 3 aqueous systems, based on the Pitzer activity coefficient formalism for concentrated electrolytes. Hydrolysis and/or carbonate complexation are the dominant aqueous reactions with neptunyl in these systems. Literature data for neptunyl extraction and solubility, and solubility data that the authors developed, are used to parameterize an integrated model for Np(V) solubility in the Np(V)-Na-CO 3 -HCO 3 -Cl-ClO 4 -H-OH-H 2 O system. The resulting model is tested against additional solubility data, and compared with Np(V) solubility experiments in complex synthetic brines

  16. Improved flux-pinning properties of REBa{sub 2}Cu{sub 3}O{sub 7-z} films by low-level Co doping

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wentao; Pu, Minghua; Wang, Weiwei; Lei, Ming [Key Laboratory of Magnetic Levitation and Maglev Trains, Ministry of Education of China, Superconductivity R and D Centre (SRDC), Southwest Jiaotong University, Erhuanlu Beiyiduan 111, 610031 Chengdu (China); Cheng, Cuihua [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, 2052 NSW, Sydney (Australia); Zhao, Yong [Key Laboratory of Magnetic Levitation and Maglev Trains, Ministry of Education of China, Superconductivity R and D Centre (SRDC), Southwest Jiaotong University, Erhuanlu Beiyiduan 111, 610031 Chengdu (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, 2052 NSW, Sydney (Australia)

    2011-09-15

    Biaxially textured REBa{sub 2}Cu{sub 3-x}Co{sub x}O{sub 7-z} (RE = Gd,Y) films were prepared on (00l) LaAlO{sub 3} substrate using self-developed fluorine-free chemical solution deposition (CSD) approach. The in-field J{sub c} values are significantly improved for REBa{sub 2}Cu{sub 3-x}Co{sub x}O{sub 7-z} films through low-level Co doping. Co-doped GdBa{sub 2}Cu{sub 3}O{sub 7-z} film shows the highest J{sub c} values at higher temperatures and fields, whereas the J{sub c} values of Co-doped YBa{sub 2}Cu{sub 3}O{sub 7-z} film surpass that of other films at lower temperatures and fields. In addition, the volume pinning force densities of films with Co doping have been distinctly enhanced in the applied fields, indicating improved flux-pinning properties. The possible reasons are discussed in detail. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Bimolecular reaction of CH3 + CO in solid p-H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex

    Science.gov (United States)

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-01

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.1 (ν1), 2915.6 (ν2), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm-1 were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm-1 appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm-1. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol-1 and internal energy ˜42 kJ mol-1 upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ˜27 kJ mol-1 for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2.

  18. Observation of migrating superoxide species in YBa2Cu3(57Co)O7-δ

    International Nuclear Information System (INIS)

    Kopelev, N.; Chechersky, V.; Tian Jing; Homonnay, Z.; Wei Yen; Nath, A.

    1992-01-01

    The interaction of the migrating superoxide ion O 2 - with the central cobalt-57 atom of the four coordinate species at the chain site is probed with the help of emission Moessbauer spectroscopy. The bond formation between 57 Co and O 2 - requires some thermal activation, and consequently the five-coordinate species is stable only above ∝350 K. The equilibrium shifts in its favor at higher temperatures, and the interconversion between the two species is completely reversible. The O 2 - ion can either attach to cobalt end-on with one of the oxygen atoms or interact equivalently with both. The amount of the five-coordinate species formed seems to be limited by the availability of O 2 - . The interconversion ceases to occur after a prolonged thermal treatment of the YBa 2 Cu 3 ( 57 Co)O 7-δ pellet at 420degC under argon flow. All the interstitial oxygen species are presumably removed without any measurable loss of oxygen from the Cu-O chains. (orig.)

  19. Effect of calcination temperature on the H{sub 2}O{sub 2} decomposition activity of nano-crystalline Co{sub 3}O{sub 4} prepared by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, M.Th. [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Abu-Zied, B.M., E-mail: babuzied@aun.edu.eg [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Mansoure, T.H. [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt)

    2013-06-01

    Cobalt oxide nano-particles were prepared by combustion method using urea as a combustion fuel. The effects of calcination temperature, 350–1000 °C, on the physicochemical, surface and catalytic properties of the prepared Co{sub 3}O{sub 4} nano-particles were studied. The products were characterized by thermal analyses (TGA and DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Textural features of the obtained catalysts were investigated using nitrogen adsorption at −196 °C. X-ray diffraction confirmed that the resulting oxide was pure single-crystalline Co{sub 3}O{sub 4} nano-particles. Transmission electron microscopy indicating that, the crystallite size of Co{sub 3}O{sub 4} nano-crystals was in the range of 8–34 nm. The catalytic activities of prepared nano-crystalline Co{sub 3}O{sub 4} catalysts were tested for H{sub 2}O{sub 2} decomposition at 35–50 °C temperature range. Experimental results revealed that, the catalytic decomposition of H{sub 2}O{sub 2} decreases with increasing the calcination temperature. This was correlated with the observed particle size increase accompanying the calcination temperature rise.

  20. Carbonato-bridged Ni(II)2Ln(III)2 (Ln(III) = Gd(III), Tb(III), Dy(III)) complexes generated by atmospheric CO2 fixation and their single-molecule-magnet behavior: [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH or H2O)Ln(III)(NO3)}2]·solvent [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato].

    Science.gov (United States)

    Sakamoto, Soichiro; Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Re, Nazzareno

    2013-06-17

    Atmospheric CO2 fixation of [Ni(II)(3-MeOsaltn)(H2O)22.5H2O [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato], Ln(III)(NO3)3·6H2O, and triethylamine occurred in methanol/acetone, giving a first series of carbonato-bridged Ni(II)2Ln(III)2 complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH)Ln(III)(NO3)}2] (1Gd, 1Tb, and 1Dy). When the reaction was carried out in acetonitrile/water, it gave a second series of complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(H2O)Ln(III)(NO3)}22CH3CN·2H2O (2Gd, 2Tb, and 2Dy). For both series, each Ni(II)2Ln(III)2 structure can be described as two di-μ-phenoxo-bridged Ni(II)Ln(III) binuclear units bridged by two carbonato CO3(2-) units to form a carbonato-bridged (μ4-CO3)2{Ni(II)2Ln(III)2} structure. The high-spin Ni(II) ion has octahedral coordination geometry, and the Ln(III) ion is coordinated by O9 donor atoms from Ni(II)(3-MeOsaltn), bidentate NO3(-), and one and two oxygen atoms of two CO3(2-) ions. The NO3(-) ion for the first series roughly lie on Ln-O(methoxy) bonds and are tilted toward the outside, while for the second series, the two oxygen atoms roughly lie on one of the Ln-O(phenoxy) bonds due to the intramolecular hydrogen bond. The temperature-dependent magnetic susceptibilities indicated a ferromagnetic interaction between the Ni(II) and Ln(III) ions (Ln(III) = Gd(III), Tb(III), Dy(III)) for all of the complexes, with a distinctly different magnetic behavior between the two series in the lowest-temperature region due to the Ln(III)-Ln(III) magnetic interaction and/or different magnetic anisotropies of the Tb(III) or Dy(III) ion. Alternating-current susceptibility measurements under the 0 and 1000 Oe direct-current (dc) bias fields showed no magnetic relaxation for the Ni(II)2Gd(III)2 complexes but exhibited an out-of-phase signal for Ni(II)2Tb(III)2 and Ni(II)2Dy(III)2, indicative of slow relaxation of magnetization. The energy barriers, Δ/kB, for the spin flipping were estimated from the Arrhenius

  1. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils

    Science.gov (United States)

    Gladys I. Loranger; Kurt S. Pregitzer; John S. King

    2004-01-01

    Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...

  2. Preparation and characterization of coating sodium trisilicate (Na2O.nSiO2) at calcium carbonate (CaCO3) for blowing agent in Mg alloy foam

    Science.gov (United States)

    Erryani, Aprilia; Lestari, Franciska Pramuji; Annur, Dhyah; Kartika, Ika

    2018-05-01

    The role of blowing agent in the manufacture of porous metal alloys is very important to produce the desired pore. The thermal stability and speed of foam formation have an effect on the resulting pore structure. In porous metal alloys, uniformity of size and pore deployment are the main determinants of the resulting alloys. The coating process of calcium carbonate (CaCO3) has been done using Sodium trisilicate solution by sol-gel method. Foaming agent was pretreated by coating SiO2 passive layer on the surface of CaCO3. This coating aims to produce a more stable blowing agent so that the foaming process can produce a more uniform pore size. The microstructure of the SiO2 passive was observed using Scanning Electron Microscope (SEM) equipped by Energy Dispersive X-Ray Spectrometer (EDS) mapping. The results showed coating CaCO3 using sodium trisilicate was successfully done creating a passive layer of SiO2 on the surface of CaCO3. By the coating process, the thermal stability of coated CaCO3 increased compared to uncoated CaCO3.

  3. Single crystalline Co3O4: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Hosny, Nasser Mohammed

    2014-01-01

    Crystals of Co 3 O 4 have been prepared from thermal decomposition of molecular precursors derived from salicylic acid and cobalt (II) acetate or chloride at 500 °C. A cubic phase Co 3 O 4 micro- and nanocrystals have been obtained. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The images of electron microscopes showed octahedral crystals of Co 3 O 4 . The volume and polarizability of the optimized structures of molecular precursors have been calculated and related to the particle size. The optical band gap of the obtained crystals has been measured. The results indicated two optical band gaps with values 2.65 and 2.95 eV for (E g1 ) (E g2 ), respectively. - Highlights: • Synthesis of Co 3 O 4 nanocrystals by decomposition of cobalt salicylic acid precursor. • Characterization of the isolated nanocrystals by using XRD, SEM and HRTEM. • The optical band gap has been measured

  4. ESTRUCTURA METÁLICA DE CATALIZADORES BASADOS EN PEROVSKITA La1-YCeYCo1-XFeXO3 EN METANO REFORMADO CON CO2 Y O2

    Directory of Open Access Journals (Sweden)

    Adriana García

    2011-01-01

    Full Text Available Se prepararon catalizadores metálicos estructurados constituidos por perovskitas con composiciones LaCo0.6Fe0.4O3, LaCo0.4Fe0.6O3 y La0.9Ce0.1Co0.6Fe0.4O3 soportadas sobre estructuras cónicas de una malla de acero inoxidable 316, a fin de estudiar el efecto de la estructura metálica en la reacción. Estos fueron evaluados en el reformado de metano con CO2 y O2, realizando la comparación con el mismo catalizador en polvo. Las condiciones de reacción fueron seleccionadas a partir de barridos de temperatura de reacción y de relación CH4/CO2 de la alimentación. Se alcanzó una conversión máxima de 88% y relación H2/CO de 1.6, para la perovskita de mayor contenido de Co a 850 °C y composición molar 6/1/3 en CH4/CO2/O2. Los catalizadores estructurados en forma de cono y en polvo presentaron un comportamiento similar. La sustitución de La por Ce no generó diferencias apreciables en el comportamiento catalítico. El uso de una estructura metálica similar a un empaque comercial, parece mejorar la estabilidad del catalizador de perovskita LaCo0.6Fe0.4O3 con una mayor relación H2/CO en los productos.

  5. Voltage-controlled ferromagnetism and magnetoresistance in LaCoO3/SrTiO3 heterostructures

    International Nuclear Information System (INIS)

    Hu, Chengqing; Park, Keun Woo; Yu, Edward T.; Posadas, Agham; Demkov, Alexander A.; Jordan-Sweet, Jean L.

    2013-01-01

    A LaCoO 3 /SrTiO 3 heterostructure grown on Si (001) is shown to provide electrically switchable ferromagnetism, a large, electrically tunable magnetoresistance, and a vehicle for achieving and probing electrical control over ferromagnetic behavior at submicron dimensions. Fabrication of devices in a field-effect transistor geometry enables application of a gate bias voltage that modulates strain in the heterostructure via the converse piezoelectric effect in SrTiO 3 , leading to an artificial inverse magnetoelectric effect arising from the dependence of ferromagnetism in the LaCoO 3 layer on strain. Below the Curie temperature of the LaCoO 3 layer, this effect leads to modulation of resistance in LaCoO 3 as large as 100%, and magnetoresistance as high as 80%, both of which arise from carrier scattering at ferromagnetic-nonmagnetic interfaces in LaCoO 3 . Finite-element numerical modeling of electric field distributions is used to explain the dependence of carrier transport behavior on gate contact geometry, and a Valet-Fert transport model enables determination of spin polarization in the LaCoO 3 layer. Piezoresponse force microscopy is used to confirm the existence of piezoelectric response in SrTiO 3 grown on Si (001). It is also shown that this structure offers the possibility of achieving exclusive-NOR logic functionality within a single device

  6. Phase relations in the ZrO2-Nd2O3-Y2O3 system. Experimental study and CALPHAD assessment

    International Nuclear Information System (INIS)

    Fabrichnaya, Olga; Savinykh, Galina; Schreiber, Gerhard; Seifert, Hans J.

    2010-01-01

    The thermodynamic parameters of the Nd 2 O 3 Y 2 O 3 system were re-assessed for better reproduction of experimental data. The thermodynamic parameters were combined from binary descriptions to calculate phase diagrams for the ternary system ZrO 2 -Nd 2 O 3 Y 2 O 3 . The calculated phase diagrams were used to select compositions for the experimental studies at 1250, 1400 and 1600 C. The samples were synthesised by co-precipitation and heat treated at 1250-1600 C, investigated by X-ray diffraction and scanning electron microscopy combined with energy dispersive X-ray spectroscopy. It was found that solubility of the Y 2 O 3 in the pyrochlore phase exceeds 10 mol.%. The experimental data obtained for phase equilibria were used to derive thermodynamic parameters for fluorite, Y 2 O 3 cubic phase C, monoclinic B and Nd 2 O 3 hexagonal A phases by CALPHAD method. The isothermal sections and liquidus surface were calculated for the ZrO 2 -Nd 2 O 3 Y 2 O 3 system. (orig.)

  7. Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis.

    Science.gov (United States)

    Pang, Huan; Gao, Feng; Chen, Qun; Liu, Rongmei; Lu, Qingyi

    2012-05-21

    Dendrite-like Co(3)O(4) nanostructure, made up of many nanorods with diameters of 15-20 nm and lengths of 2-3 μm, has been successfully prepared by calcining the corresponding nanostructured Co-8-hydroxyquinoline coordination precursor in air. The Co(3)O(4) nanostructure was evaluated as an electrochemical sensor for H(2)O(2) detection and the results reveal that it has good linear dependence and high sensitivity to H(2)O(2) concentration changes. As an electrode material of a supercapacitor, it was found that the nanostructured Co(3)O(4) electrode exhibits high specific capacitance and long cycle life. The Co(3)O(4) nanostructure also has good catalytic properties and is steadily active for CO oxidation, giving 100% CO conversion at low temperatures. The multifunctional Co(3)O(4) nanostructure would be a promising functional nanomaterial applied in multi industrialized fields.

  8. Structure and magnetic properties of the orthorhombic n=2 Ruddlesden-Popper phases Sr3Co2O5+δ (δ=0.91, 0.64 and 0.38)

    International Nuclear Information System (INIS)

    Viciu, L.; Zandbergen, H.W.; Xu, Q.; Huang, Q.; Lee, M.; Cava, R.J.

    2006-01-01

    The reduced Ruddlesden-Popper phases, Sr 3 Co 2 O 5+δ with δ=0.91, 0.64 and 0.38, have been prepared in a nitrogen atmosphere. The crystal structures were determined by powder neutron diffraction. Oxygen vacancies are found both in O(3) and O(4) sites but the majority are along one crystallographic axis in the CoO 2 plane, inducing an orthorhombic distortion of the normally tetragonal n=2 Ruddelsden-Popper structure. Superstructures due to oxygen ordering are observed by electron microscopy. The magnetic measurements reveal complex behavior with some ferromagnetic interactions present for Sr 3 Co 2 O 5.91 and Sr 3 Co 2 O 5.64 . 64

  9. Phase relations in the pseudo ternary system In2O3-TiO2-BO (B: Zn, Co and Ni) at 1200 °C in air

    Science.gov (United States)

    Brown, Francisco; Jacobo-Herrera, Ivan Edmundo; Alvarez-Montaño, Victor Emmanuel; Kimizuka, Noboru; Hirano, Tomonosuke; Sekine, Ryotaro; Denholme, Saleem J.; Miyakawa, Nobuaki; Kudo, Akihiko; Iwase, Akihide; Michiue, Yuichi

    2018-02-01

    Phase relations in the pseudo ternary systems In2O3-TiO2-ZnO, In2O3-TiO2-CoO and In2O3-TiO2-NiO at 1200 °C in air were determined by means of a classic quenching method. In6Ti6BO22 (B: Zn, Co and Ni) which has the monoclinic In(Fe1/4Ti3/4)O27/8-type of structure with a 4-dimensional super space group exists in a stable form. There exist homologous phases In1+x(Ti1/2Zn1/2)1-xO3(ZnO)m (m: natural number, 0ternary system In2O3-TiO2-ZnO. All the ions are on the trigonal lattice points, the In(III) is in the octahedral coordination with the oxygen and the {Inx(Ti1/2Zn1/2)1-xZnm} is in the trigonalbipyramidal coordination with oxygen in the crystal structures of each homologous compound. They have R 3 bar m (No. 166) for m = odd or P63/mmc (No. 194) for m = even in space group. Lattice constants for each of the homologous compounds as a hexagonal setting and In6Ti6BO22 as the monoclinic system were determined by means of the powder X-ray diffraction method at room temperature. The temperature dependence of resistivity for In1+x(Ti1/2Zn1/2)1-x(ZnO)4 (0.15 ≤ x ≤ 1) showed semiconducting-like behavior for all samples examined at T(K) = 2-300. The resistivity increased systematically with decreasing x (0.7 ≤ x ≤ 1), and it was found that samples where x ≤ 0.7 became insulators. The optical band gap Eg (eV) of In1+x(Ti1/2Zn1/2)1-x(ZnO)4 has been estimated from the diffuse reflection spectra for the whole range of x (0.15 ≤ x ≤ 1). A minimum value of 2.0717 eV for x = 1 and a maximum one of 3.066 eV for x = 0.15 were observed. Dependence of the crystal structures of the InAO3(BO), In(Ti1/2B1/2)O3(B‧O) and stability of In6Ti6BO22 upon the constituent cations in the pseudo quaternary system In2O3-TiO2-A2O3-BO (A: Fe, Ga and Cr; B, B‧: Mg, Zn, Co, Ni, Ca and Sr) were discussed in terms of their ionic radii and site preference effects.

  10. Enhanced coercivity in Co-doped α-Fe2O3 cubic nanocrystal assemblies prepared via a magnetic field-assisted hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Kinjal Gandha

    2017-05-01

    Full Text Available Ferromagnetic Co-doped α-Fe2O3 cubic shaped nanocrystal assemblies (NAs with a high coercivity of 5.5 kOe have been synthesized via a magnetic field (2 kOe assisted hydrothermal process. The X-ray diffraction pattern and Raman spectra of α-Fe2O3 and Co-doped α-Fe2O3 NAs confirms the formation of single-phase α-Fe2O3 with a rhombohedral crystal structure. Electron microscopy analysis depict that the Co-doped α-Fe2O3 NAs synthesized under the influence of the magnetic field are consist of aggregated nanocrystals (∼30 nm and of average assembly size 2 μm. In contrast to the NAs synthesized with no magnetic field, the average NAs size and coercivity of the Co-doped α-Fe2O3 NAs prepared with magnetic field is increased by 1 μm and 1.4 kOe, respectively. The enhanced coercivity could be related to the well-known spin–orbit coupling strength of Co2+ cations and the redistribution of the cations. The size increment indicates that the small ferromagnetic nanocrystals assemble into cubic NAs with increased size in the magnetic field that also lead to the enhanced coercivity.

  11. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    Science.gov (United States)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-03-01

    Two one-dimensional bismuth-coordination materials, Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2), have been synthesized by hydrothermal reactions using Bi2O3, 2,6-NC5H3(CO2H)2, HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC5H3(CO2)2](OH2)F single crystals at 800 °C led to α-Bi2O3 that maintained the same morphology of the original crystals.

  12. Porous nanocubic Mn3O4-Co3O4 composites and their application as electrochemical supercapacitors.

    Science.gov (United States)

    Pang, Huan; Deng, Jiawei; Du, Jimin; Li, Sujuan; Li, Juan; Ma, Yahui; Zhang, Jiangshan; Chen, Jing

    2012-09-14

    A simple approach has been developed to fabricate ideal supercapacitors based on porous Mn(3)O(4)-Co(3)O(4) nanocubic composite electrodes. We can easily obtain porous corner-truncated nanocubic Mn(3)O(4)-Co(3)O(4) composite nanomaterials without any subsequent complicated workup procedure for the removal of a hard template, seed or by using a soft template. In such a composite, the porous Mn(3)O(4)-Co(3)O(4) enables a fast and reversible redox reaction to improve the specific capacitance. The porous nanocubic Mn(3)O(4)-Co(3)O(4) composite electrode can effectively transport electrolytes and shorten the ion diffusion path, which offers excellent electrochemical performance. These results suggest that such porous Mn(3)O(4)-Co(3)O(4) composite nanocubes are very promising for next generation high-performance supercapacitors.

  13. Few-layered CoHPO4.3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors

    Science.gov (United States)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-06-01

    Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01460f

  14. Magnetic Properties of Electron-Doped LaCoO3

    Science.gov (United States)

    Tomiyasu, Keisuke; Sato, Mika; Koyama, Shun-Ichi; Nojima, Tsutomu; Kajimoto, Ryoichi; Ji, Sungdae; Iwasa, Kazuaki

    2017-09-01

    We studied electron-doped LaCo1 - yTey6 + O3 by magnetization measurements and neutron scattering. The effective Bohr magneton, estimated by Curie-Weiss fitting around room temperature, is independent of y. This suggests that magnetic Co3+(HS), not nonmagnetic Co3+(LS), is mainly replaced by doped magnetic Co2+(HS). At the lowest temperatures, a Brillouin-function-like saturating behavior persists in the magnetization curves even in the high-y samples, and neither a clear magnetic reflection nor magnetic dispersion is observed by neutron scattering. These findings indicate that the magnetic correlation is very weak, in contrast to the well-known hole-doped LaCoO3 accompanied by a drastic transition to a ferromagnetic metal. However, we also found that the low-y samples exhibit nonnegligible enhancement of the saturated magnetization by ˜2μB per a doped electron. All these characteristics are discussed in the light of the activation and inactivation of a spin-state blockade.

  15. Infrared to visible upconversion luminescence in Er3+/Yb3+ co-doped CeO2 inverse opal

    International Nuclear Information System (INIS)

    Yang, Zhengwen; Wu, Hangjun; Liao, Jiayan; Li, Wucai; Song, Zhiguo; Yang, Yong; Zhou, Dacheng; Wang, Rongfei; Qiu, Jianbei

    2013-01-01

    Highlights: • UC emission of Er 3+ was modified by introducing the structure of inverse opal. • Color tuning of CeO 2 :Yb, Er inverse opal was realized by inhibition of UC emission. • Two-photon excitation processes were observed in CeO 2 :Yb, Er inverse opal. -- Abstract: Infrared to visible upconversion luminescence has been investigated in Er 3+ /Yb 3+ co-doped CeO 2 inverse opal. Under the excitation of 980 nm diode lasers, visible emissions centered at 525, 547, 561, 660 and 680 nm are observed, which are assigned to the Er 3+ transitions of 2 H 11/2 → 4 I 15/2 (525 nm), 4 S 3/2 → 4 I 15/2 (547, 561 nm), 4 F 9/2 → 4 I 15/2 (660 and 680 nm), respectively. The effect of photonic band gap on the upconversion luminescence intensity was also obtained. Additionally, the upconversion luminescence mechanism was studied. The dependence of Er 3+ upconversion emission intensity on pump power reveals that it is a two-photon excitation process

  16. Influence of the cation substitution on the magnetic properties of LiCo2O4 and Li(Me,Co2O4 spinels

    Directory of Open Access Journals (Sweden)

    Gautier, J. L.

    2004-08-01

    Full Text Available Lithium-based cells LiCo2O4 have been characterized by magnetic techniques, looking at the influence of the partial substitution of cobalt by 3d or 4d transition metal elements (Fe, Ni, Cu, Cr, Mo. The non-substituted compound LiCo2O4 behaves as an antiferromagnet, with a Néel temperature TN of 30 K, although antiferromagnetic interactions are much more important, as suggested by a Weiss parameter Θ of the order of ‑225 K. In the solid solution Li(NixCo2‑xO4 the Weiss parameter Θ changes with x(Ni, reaching large positive values (e.g., Θ ~ +230 K, for x = 0.5. This phenomenon suggests the existence of a canted‑antiferromagnetic or ferrimagnetic structures with large ferromagnetic components. Substitution of cobalt by other 3d or 4d transition metals in the LiMe0.5Co1.5O4 series shows dramatic effects with respect to the non-substituted LiCo2O4 compound : copper completely suppresses the magnetic order, while iron increases TN to almost room temperature. No modifications are observed when molybdenum substitutes cobalt, while chromium transforms the AF order in a ferromagnetic one, with Tc of about 90 K.Se ha caracterizado por técnicas magnéticas, el efecto de la sustitución parcial de Co por elementos de transición 3d o 4d (Fe, Ni, Cu, Cr, Mo en celdas LiCo2O4 a base de litio. El compuesto no sustituído LiCo2O4, se comporta como un antiferromagneto de temperatura de Néel TN de 30 K, aunque existen interacciones antiferromagnéticas mucho más importantes, como lo indica un parámetro de Weiss Θ del orden de -225K. En la solución sólida Li(NixCo2‑xO4, el parámetro de Weiss Θ cambia con x(Ni, alcanzando valores positivos altos (e.g., Θ ~ +230K, para x=0.5. Este fenómeno sugiere la existencia de una estructura antiferromagnética inclinada (“AF-canted” o de una estructura ferrimagnética, donde predominan componentes ferromagnéticas importantes. La sustitución del cobalto por otros elementos de transición 3d o 4d en

  17. Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors.

    Science.gov (United States)

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Wang, Linlin

    2016-12-01

    Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm(2) at 2 mA/cm(2), which was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm(2)) and NiCo2O4 (0.456 F/cm(2)), respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.

  18. Temperature dependence of the photodissociation of CO2 from high vibrational levels: 205-230 nm imaging studies of CO(X1Σ+) and O(3P, 1D) products

    Science.gov (United States)

    Sutradhar, S.; Samanta, B. R.; Samanta, A. K.; Reisler, H.

    2017-07-01

    The 205-230 nm photodissociation of vibrationally excited CO2 at temperatures up to 1800 K was studied using Resonance Enhanced Multiphoton Ionization (REMPI) and time-sliced Velocity Map Imaging (VMI). CO2 molecules seeded in He were heated in an SiC tube attached to a pulsed valve and supersonically expanded to create a molecular beam of rotationally cooled but vibrationally hot CO2. Photodissociation was observed from vibrationally excited CO2 with internal energies up to about 20 000 cm-1, and CO(X1Σ+), O(3P), and O(1D) products were detected by REMPI. The large enhancement in the absorption cross section with increasing CO2 vibrational excitation made this investigation feasible. The internal energies of heated CO2 molecules that absorbed 230 nm radiation were estimated from the kinetic energy release (KER) distributions of CO(X1Σ+) products in v″ = 0. At 230 nm, CO2 needs to have at least 4000 cm-1 of rovibrational energy to absorb the UV radiation and produce CO(X1Σ+) + O(3P). CO2 internal energies in excess of 16 000 cm-1 were confirmed by observing O(1D) products. It is likely that initial absorption from levels with high bending excitation accesses both the A1B2 and B1A2 states, explaining the nearly isotropic angular distributions of the products. CO(X1Σ+) product internal energies were estimated from REMPI spectroscopy, and the KER distributions of the CO(X1Σ+), O(3P), and O(1D) products were obtained by VMI. The CO product internal energy distributions change with increasing CO2 temperature, suggesting that more than one dynamical pathway is involved when the internal energy of CO2 (and the corresponding available energy) increases. The KER distributions of O(1D) and O(3P) show broad internal energy distributions in the CO(X1Σ+) cofragment, extending up to the maximum allowed by energy but peaking at low KER values. Although not all the observations can be explained at this time, with the aid of available theoretical studies of CO2 VUV

  19. Photoluminescence and thermoluminescence properties of Eu2+ doped and Eu2+ ,Dy3+ co-doped Ba2 MgSi2 O7 phosphors.

    Science.gov (United States)

    Sao, Sanjay Kumar; Brahme, Nameeta; Bisen, D P; Tiwari, Geetanjali

    2016-11-01

    In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu 2 + -doped and Eu 2 + ,Dy 3 + -co-doped Ba 2 MgSi 2 O 7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid-state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba 2 MgSi 2 O 7 :Eu 2 + showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba 2 MgSi 2 O 7 :Eu 2 + Dy 3 + showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f 6 5d 1 to 4f 7 transition of Eu 2 + . TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu 2 + doping in Ba 2 MgSi 2 O 7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy 3 + ions were co-doped in Ba 2 MgSi 2 O 7 :Eu 2 + and maximum TL intensity was observed for 2 mol% of Dy 3 + . TL emission spectra of Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co-doping. The trap depths were calculated to be 0.54 eV for Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and 0.54 eV and 0.75 eV for Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors. It was observed that co-doping with small amounts of Dy 3 + enhanced the thermoluminescence properties of Ba 2 MgSi 2 O 7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The

  20. Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Lifeng; Zhao, Di; Yang, Yang [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000 (China); Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-03-15

    Mesoporous hollow α-Fe{sub 2}O{sub 3} bricks were synthesized via a hydrothermal method to create a precursor MIL-100(Fe) and a subsequent calcination process was applied to prepare the Fe{sub 2}O{sub 3} phase. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed the morphology of hollow α-Fe{sub 2}O{sub 3} bricks which inherited from the MIL-100(Fe) template. The catalytic activities of hollow α-Fe{sub 2}O{sub 3} bricks for CO oxidation are studied in this work. Due to better low temperature reduction behavior, mesoporous hollow α-Fe{sub 2}O{sub 3} bricks obtained at calcination temperature of 430 °C displayed high catalytic activity and excellent stability with a complete CO conversion temperature (T{sub 100}) of 255 °C. - Graphical abstract: Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe). - Highlights: • α-Fe{sub 2}O{sub 3} is prepared by the thermolysis of a MIL-100(Fe) template. • The morphology of hollow α-Fe{sub 2}O{sub 3} bricks is inherited from MIL-100(Fe) template. • α-Fe{sub 2}O{sub 3} obtained at calcined temperature of 430 °C displays high activity • Enhanced activity is attributed to crystal plane and reduction behavior.

  1. Enhanced performance of wet compression-resorption heat pumps by using NH_3-CO_2-H_2O as working fluid

    International Nuclear Information System (INIS)

    Gudjonsdottir, V.; Infante Ferreira, C.A.; Rexwinkel, Glenn; Kiss, Anton A.

    2017-01-01

    Upgrading waste heat by compression resorption heat pumps (CRHP) has the potential to make a strong impact in industry. The efficiency of CRHP can be further improved by using alternative working fluids. In this work, the addition of carbon dioxide to aqueous ammonia solutions for application in CRHP is investigated. The previously published thermodynamic models for the ternary mixture are evaluated by comparing their results with experimental thermodynamic data, and checking their advantages and disadvantages. Then the models are used to investigate the impact of adding CO_2 to NH_3-H_2O in wet compression resorption heat pump applications. For an application where a waste stream is heated from 60 to 105 °C, a COP increase of up to 5% can be attained by adding CO_2 to the ammonia-water mixture, without any risk of salt formation. Additional advantages of adding CO_2 to the ammonia-water mixture in that case are decreased pressure ratio, as well as an increase in the lower pressure level. When practical pressure restrictions are considered the benefits of the added CO_2 become even larger or around 25% increase in the COP. Nonetheless, when the waste stream was considered to be additionally cooled down, no significant benefits were observed. - Highlights: • NH_3-CO_2-H_2O mixture is proposed as a working fluid for CRHP. • COP improvements of 5% are achieved compared to NH_3-H_2O. • Additional advantages of the added CO_2 are decreased pressure ratio.

  2. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties

    Science.gov (United States)

    Li, Jingfa; Xiong, Shenglin; Li, Xiaowei; Qian, Yitai

    2013-02-01

    A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co. Subsequently, the growth of multiporous MnCo2O4 and CoMn2O4 quasi-hollow microspheres by topotactic chemical transformation from the corresponding precursors are realized through a non-equilibrium heat treatment process. Topotactic conversion further demonstrated that the much larger CoMn2O4 pores than those of MnCo2O4 are possibly due to the longer transfer distance of ions. When evaluated as anode materials for LIBs (lithium ion batteries), after 25 cycles at a current density of 200 mA g-1, the resultant MnCo2O4 and CoMn2O4 quasi-hollow microspheres possessed reversible capacities of 755 and 706 mA h g-1, respectively. In particular, the MnCo2O4 samples could deliver a reversible capacity as high as 610 mA h g-1 even at a higher current density of 400 mA g-1 with excellent electrochemical stability after 100 cycles of testing, indicating its potential application in LIBs. We believe that such good performance results from the appropriate pore size and quasi-hollow nature of MnCo2O4 microspheres, which can effectively buffer the large volume variation of anodes based on the conversion reaction during Li+ insertion/extraction. The present strategy is simple but very effective, and due to its versatility, it can be extended to other binary, even ternary complex metal oxides with high-performance in LIBs.A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co

  3. One-step engineered self-assembly Co3O4 nanoparticles to nanocubes for supercapacitors

    Science.gov (United States)

    Nagajyothi, P. C.; Pandurangan, M.; Sreekanth, T. V. M.; Shim, Jaesool

    2018-02-01

    Tricobalt tetraoxide or cobalt oxide (Co3O4) nanocubes (NCs) were synthesized from the self-assemblies of Co3O4 nanoparticles (NPs) via a simple one-step hydrothermal method. X-ray diffraction analysis confirmed the cubic crystal structure of Co3O4 NCs. The surface properties were investigated by x-ray photoelectron spectroscopy, which suggests the co-existence of Co in +2 and +3 states. The self-assemblies of aggregation of NPs to NCs were inspected using scanning electron microscopy, which is supported by transmission electron microscopy. The electrochemical properties of Co3O4 NCs were carried out by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) curves and impedance analysis. The areal capacitance of 3.04 mF cm-2 was obtained at current density of 10 μA cm-2. The Co3O4 NCs electrode exhibits good long-cyclic stability with 92.1% capacitance retention over 3000 cycles. The CV, GCD and impedance curves of Co3O4 NCs were recorded after cyclic test, which are similar to the curves recorded before the test. Therefore, the Co3O4 NCs serves good candidate as positive electrode materials for asymmetric supercapacitors.

  4. The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation

    Science.gov (United States)

    Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.

    2018-01-01

    The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.

  5. Effect of Mg$^{2+}$ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd$_{3}$Al$_{2}$Ga$_{3}$O$_{12}$ crystals

    CERN Document Server

    Lucchini, M.T.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd3Al2Ga3O12 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd3Al2Ga3O12 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd3Al2Ga3O12 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  6. Upgrading of bio-oil derived from tobacco using ferrierite, ZSM-5 and Co-Mo/Al2 O3 catalysts

    Directory of Open Access Journals (Sweden)

    Sawitree Mulika

    2015-03-01

    Full Text Available This research aims to investigate bio-oil yield of tobacco leave by pyrolysis at 450-550o C. The bio-oil was upgraded by ferrierite, ZSM-5, Al2 O3 , Co-Mo/Al2 O3 and Mo2 C catalysts. Pyrolysis was carried out in a semi-batch reactor with a space velocity of 1.7 h-1 under nitrogen atmosphere. The highest liquid yield of 47.1% was observed at 500o C with the high heating value of 36.3 MJ/kg oil (organic phase. Furthermore, char and gas yields were 36.7 and 16.2%, respectively. As a result, the high heating values of the bio-oils catalyzed at 500o C by ferrierite, ZSM-5, Al2 O3 , Mo2 C and Co-Mo/Al2 O3 were 22.5, 24.7, 26.1, 35.8 and 36.8 MJ/kg oil (organic phase, respectively.

  7. Energy transfer dynamics of Er3+/Nd3+ embedded SiO2-Al2O3-Na2CO3-SrF2-CaF2 glasses for optical communications

    Science.gov (United States)

    Gelija, Devarajulu; Kadathala, Linganna; Borelli, Deva Prasad Raju

    2018-04-01

    The fluorescence and upconversion studies of Er3+ doped and Er3+/Nd3+ co-doped silicate based oxyfluoride glasses have been systematically analyzed. The broad band NIR emissions (830-1700 nm), includes optical bands like O, E, S, C and L were observed in the Er3+-Nd3+ co-doped glasses. The NIR emission intensity peaks centered at 876, 1057, 1329 and 1534 nm were observed for the Er3+-Nd3+ co-doped glasses. In the co-doped samples the strongest emission intensity at 1534 nm increased up to 0.5 mol % and then decreased to 3.0 mol % of Nd3+ ions under the excitation of 980 nm. The upconversion studies of the co-doped samples were recorded under the excitation of 980 and 808 nm and found the upconversion emission peaks centered at 524, 530, 547, 590 and 656 nm. The energy transfer processes between the relevant excitation levels of Er3+ and Nd3+ ions and energy transfer efficiency were discussed. The obtained results indicate that Nd3+ can be an efficient sensitizer for Er3+ to enhance upconversion emission at green laser transition for sensors and NIR emission at 1534 nm for optical communication applications.

  8. Preparation and studies of Eu{sup 3+} and Tb{sup 3+} co-doped Gd{sub 2}O{sub 3} and Y{sub 2}O{sub 3} sol-gel scintillating films

    Energy Technology Data Exchange (ETDEWEB)

    Morales Ramirez, A. de J, E-mail: amoralesra@ipn.m [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA) Unidad Altamira Instituto Politecnico Nacional Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Depto. de Ingenieria Metalurgica, ESIQIE-Instituto Politecnico Nacional UPALM C.P. 07738, Mexico D.F. (Mexico); Garcia Murillo, A.; Carrillo Romo, F. de J [Depto. de Ingenieria Metalurgica, ESIQIE-Instituto Politecnico Nacional UPALM C.P. 07738, Mexico D.F. (Mexico); Ramirez Salgado, J. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas No. 152, CP 07730, Mexico D.F. (Mexico); Le Luyer, C. [LPCML, CNRS-UMR 5620/Universite Claude Bernard Lyon 1/69622 Villeurbanne Cedex (France); Chadeyron, G.; Boyer, D. [Laboratoire des Materiaux Inorganiques, CNRS-UMR 6002, Universite Blaise Pascal, 24 Ave des Landais F 63177 Aubiere Cedex (France); Moreno Palmerin, J. [Depto. de Ingenieria Metalurgica, ESIQIE-Instituto Politecnico Nacional UPALM C.P. 07738, Mexico D.F. (Mexico)

    2009-10-30

    Eu{sup 3+} (2.5 at.%) and Tb{sup 3+} (0.005-0.01 at.%) co-doped gadolinium and yttrium oxide (Gd{sub 2}O{sub 3} and Y{sub 2}O{sub 3}) powders and films have been prepared using the sol-gel process. High density and optical quality thin films were prepared with the dip-coating technique. Gadolinium (III) 2,4-pentadionate and yttrium (III) 2,4-pentadionate were used as precursors, and europium and terbium in their nitrate forms were used as doping agents. Chemical and structural analyses (infrared spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy) were conducted on both sol-gel precursor powders and dip-coated films. The morphology of thin films heat-treated at 700 {sup o}C was studied by means of atomic force microscopy. It was shown that the highly dense and very smooth films had a root mean roughness (RMS) of 2 nm {+-} 0.2 (A = 0.0075 Tb{sup 3+}) and 24 nm {+-} 3.0 (B = 0.01 Tb{sup 3+}). After treatment at 700 {sup o}C, the crystallized films were in the cubic phase and presented a polycrystalline structure made up of randomly oriented crystallites with grain sizes varying from 20 to 60 nm. The X-ray induced emission spectra of Eu{sup 3+}- and Tb{sup 3+}-doped Gd{sub 2}O{sub 3} and Y{sub 2}O{sub 3} powders showed that Tb{sup 3+} contents of 0.005, 0.0075 and 0.01 at.% affected their optical properties. Lower Tb{sup 3+} concentrations (down to 0.005 at.%) in both systems enhanced the light yield.

  9. Co3O4/TiO2 films obtained by laser ablation and sol-gel for the reaction of oxygen liberation in alkaline medium

    International Nuclear Information System (INIS)

    Perez A, J.; Fernandez V, S. M.; Escobar A, L.; Jimenez B, J.

    2008-01-01

    The laser ablation technique known as Pulsed Laser Deposition (PLD) is used for obtaining thin films of TiO 2 /SnO 2 , which was later modified with Co 3 O 4 by PLD or by sol-gel technique. The films were characterized by X-ray diffraction, ultraviolet Vis and Raman spectroscopies, scanning electron microscopy and energy analysis of the dispersed X-rays produced by Auger decay. The anatase phase with particles of nano metric size was obtained by depositing the titanium dioxide in argon atmosphere. The Co 3 O 4 films obtained by PLD on the TiO 2 showed the same morphology. The electrocatalytic activity of the films that were used as photo anodes for the reaction of oxygen liberation was carried out in the darkness, with environment light and the light emitted by a xenon lamp. The current density was higher for films of Co 3 O 4 /TiO 2 /SnO 2 obtained by PLD that for cobalt dioxide of mixed valence obtained by sol-gel. (Author)

  10. Reaction mechanism of CO oxidation on Cu2O(111): A density functional study

    Science.gov (United States)

    Sun, Bao-Zhen; Chen, Wen-Kai; Xu, Yi-Jun

    2010-10-01

    The possible reaction mechanisms for CO oxidation on the perfect Cu2O(111) surface have been investigated by performing periodic density functional theoretical calculations. We find that Cu2O(111) is able to facilitate the CO oxidation with different mechanisms. Four possible mechanisms are explored (denoted as MER1, MER2, MLH1, and MLH2, respectively): MER1 is CO(gas)+O2(ads)-->CO2(gas) MER2 is CO(gas)+O2(ads)-->CO3(ads)-->O(ads)+CO2(gas) MLH1 refers to CO(ads)+O2(ads)-->O(ads)+CO2(ads) and MLH2 refers to CO(ads)+O2(ads)-->OOCO(ads)-->O(ads)+CO2(ads). Our transition state calculations clearly reveal that MER1 and MLH2 are both viable; but MER1 mechanism preferentially operates, in which only a moderate energy barrier (60.22 kJ/mol) needs to be overcome. When CO oxidation takes place along MER2 path, it is facile for CO3 formation, but is difficult for its decomposition, thereby CO3 species can stably exist on Cu2O(111). Of course, the reaction of CO with lattice O of Cu2O(111) is also considered. However, the calculated barrier is 600.00 kJ/mol, which is too large to make the path feasible. So, we believe that on Cu2O(111), CO reacts with adsorbed O, rather than lattice O, to form CO2. This is different from the usual Mars-van Krevene mechanism. The present results enrich our understanding of the catalytic oxidation of CO by copper-based and metal-oxide catalysts.

  11. Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Yang, C.; Liu, C.Z.; Wang, C.M.; Zhang, W.G.; Jiang, J.S.

    2012-01-01

    Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles, Bi 0.8 Ca 0.2−x Ba x FeO 3 (x=0–0.20), were prepared by a sol–gel method. The phase structure, grain size, dielectric and magnetic properties of the prepared samples were investigated. The results showed that the lattice structure of the nanoparticles transformed from rhombohedral (x=0) to orthorhombic (x=0.07–0.19) and then to tetragonal (x=0.20) with x increased. The dielectric properties of the nanoparticles were affected by the properties of the substitutional ions as well as the crystalline structure of the samples. The magnetic properties of the nanoparticles were greatly improved and the T N of the nanoparticles was obviously increased. All the Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles presented the high ratio of M r /M from 0.527 to 0.571 and large coercivity from 4.335 to 5.163 KOe. - Highlights: ► Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles were prepared using a sol–gel method. ► The magnetic properties of the nanoparticles are greatly improved. ► The Neel temperature (T N ) of the nanoparticles is greatly increased. ► Doped ions and crystal structure affect the dielectric properties of the nanoparticles.

  12. TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique

    Science.gov (United States)

    Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.

    2018-06-01

    Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.

  13. Phase and morphology evolution of (Na1-xKxNbO3 powders related to calcinations and K2CO3 content

    Directory of Open Access Journals (Sweden)

    Steven J. Milne

    2007-03-01

    Full Text Available Sodium-potassium niobate ((Na1-xKxNbO3 powders with x = 0.2, 0.4, 0.6 and 0.8 were prepared following the conventional mixed oxide method and characterized by TG-DTA, XRD and SEM techniques.The effects of calcination temperature, dwell time and K2CO3 content on phase formation behavior and morphology of the powders were investigated. The calcination temperature and dwell time were found tohave a pronounced effect on the phase formation of the calcined sodium-potassium niobate powders. It was found that the crystallized phase depended on calcination conditions. The high calcination temperature andlong dwell time clearly favored particle growth and the formation of large and hard agglomerates. All the (Na1-xKxNbO3 powders showed a similar orthorhombic phase structure. The K2CO3 content significantlyaffected the calcination temperature and particle size and shape. Large particle size, cubic shape and a lower calcined condition were observed in (Na1-xKxNbO3 powder with low K2CO3 content (x = 0.2.

  14. Improvement of In2O3-based CO sensor by using surface modifiers; Hyomen shushokuzai ni yoru sanka injiumukei soshi no CO kenchi tokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, H.; Miura, N.; Amaze, N. [Kyushu University, Fukuoka (Japan); Tamaki, J. [Ritsumeikan University, Kyoto (Japan); Moriya, K. [Osaka Gas Co. Ltd., Tokyo (Japan)

    1998-02-01

    Aiming at developing a semiconductor CO sensor applicable to the safety control of gas appliances, we carried out an extensive material search for promoters to In2O3-based elements. Among the elements added (0.5 wt%) with each of 12 transition metal oxides, the Co3O4-added one was outstanding in sensitivity and selectivity to CO at 200degC. Remarkably the sensing properties of this element could be improved further by the addition of Au (0.04 wt%). The doubly promoted element, Au(0.04 wt%)-Co(0.5 wt%)-In2O3, gave excellent characteristics in sensitivity to CO, selectivity to CO over H2 and other selected gases, and response rates at 250degC. The promoting effects of the additives were shown to originate from the proper enhancement of catalytic activity for CO oxidation. 11 refs., 9 figs.

  15. Fabrication of lead-free piezoelectric Li2CO3-added (Ba,Ca)(Ti,Sn)O3 ceramics under controlled low oxygen partial pressure and their properties

    Science.gov (United States)

    Noritake, Kouta; Sakamoto, Wataru; Yuitoo, Isamu; Takeuchi, Teruaki; Hayashi, Koichiro; Yogo, Toshinobu

    2018-02-01

    Reduction-resistant lead-free (Ba,Ca)(Ti,Sn)O3 piezoceramics with high piezoelectric constants were fabricated by optimizing the amount of Li2CO3 added. Oxygen partial pressure was controlled during the sintering of (Ba,Ca)(Ti,Sn)O3 ceramics in a reducing atmosphere using H2-CO2 gas. Enhanced grain growth and a high-polarization state after poling treatment were achieved by adding Li2CO3. Optimizing the amount of Li2CO3 added to (Ba0.95Ca0.05)(Ti0.95Sn0.05)O3 ceramics sintered under a low oxygen partial pressure resulted in improved piezoelectric properties while maintaining the high sintered density. The prepared Li2CO3-added ceramic samples had homogeneous microstructures with a uniform dispersion of each major constituent element. However, the residual Li content in the 3 mol % Li2CO3-added (Ba0.95Ca0.05)(Ti0.95Sn0.05)O3 ceramics after sintering was less than 0.3 mol %. Sintered bodies of this ceramic prepared in a CO2 (1.5%)-H2 (0.3%)/Ar reducing atmosphere (PO2 = 10-8 atm at 1350 °C), exhibited sufficient electrical resistivity and a piezoelectric constant (d 33) exceeding 500 pC/N. The piezoelectric properties of this nonreducible ceramic were comparable or superior to those of the same ceramic sintered in air.

  16. Influence of Temperature on the Performance of LiNi1/3Co1/3Mn1/3O2 Prepared by High-Temperature Ball-Milling Method

    Directory of Open Access Journals (Sweden)

    Ming Tian

    2018-01-01

    Full Text Available Aiming at the preparation of high electrochemical performance LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion battery, LiNi1/3Co1/3Mn1/3O2 was prepared with lithium carbonate, nickel (II oxide, cobalt (II, III oxide, and manganese dioxide as raw materials by high-temperature ball-milling method. Influence of ball-milling temperature was investigated in this work. It was shown that the fine LiNi1/3Co1/3Mn1/3O2 powder with high electrochemical performance can be produced by the high-temperature ball-milling process, and the optimal ball-milling temperature obtained in the current study was 750°C. Its initial discharge capacity was 146.0 mAhg−1 at the rate of 0.1 C, and over 50 cycles its capacity retention rate was 90.2%.

  17. Layered P2-Na 2/3 Co 1/2 Ti 1/2 O 2 as a high-performance cathode material for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sabi, Noha; Doubaji, Siham; Hashimoto, Kazuki; Komaba, Shinichi; Amine, Khalil; Solhy, Abderrahim; Manoun, Bouchaib; Bilal, Essaid; Saadoune, Ismael

    2017-02-01

    Layered oxides are regarded as promising cathode materials for sodium-ion batteries. We present Na2/3Co1/2Ti1/2O2 as a potential new cathode material for sodium-ion batteries. The crystal features and morphology of the pristine powder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cathode material is evaluated in galvanostatic charge-discharge and galvanostatic intermittent titration tests, as well as ex-situ X-ray diffraction analysis. Synthesized by a high-temperature solid state reaction, Na2/3Co1/2Ti1/2O2 crystallizes in P2-type structure with P6(3)/mmc space group. The material presents reversible electrochemical behavior and delivers a specific discharge capacity of 100 mAh g(-1) when tested in Na half cells between 2.0 and 4.2 V (vs. Na+/Na), with capacity retention of 98% after 50 cycles. Furthermore, the electrochemical cycling of this titanium-containing material evidenced a reduction of the potential jumps recorded in the NaxCoO2 parent phase, revealing a positive impact of Ti substitution for Co. The ex-situ XRD measurements confirmed the reversibility and stability of the material. No structural changes were observed in the XRD patterns, and the P2-type structure was stable during the charge/discharge process between 2.0 and 4.2 V vs. Na+/Na. These outcomes will contribute to the progress of developing low cost electrode materials for sodium-ion batteries. (C) 2017 Elsevier B.V. All rights reserved.

  18. High performance Pd–Rh/YBaCo4O7/γ-Al2O3 three-way catalysts for gasoil engine

    Directory of Open Access Journals (Sweden)

    Brou Albert Kouadio

    2017-11-01

    Full Text Available The evaluation of catalytic activity for Rh–Pd/YBa(Co1−xMx4O7/γ-Al2O3 (M = Al, Ce, Zr, and La showed that the efficiency of NOx reduction depends strongly on the nature of the OSMs. Among a series of oxygen storage materials, YBa(Co1−xMx4O7 (M = Ce, Zr, La, Ga and In studied for catalyst enhancement, only the catalyst with YBa(Co0.9Ce0.14O7 has better conversion efficiency respectively (85% of NO, 96% of CO and 92% of HC. After treatment at 1000 °C for 3 h, these fresh catalysts showed a substantial decrease of their catalytic activities, only Rh–Pd/YBa(Co0.9Ce0.14O7/γ-Al2O3 retains its high catalytic activity. Keywords: Chemical synthesis, X-ray diffraction, Oxygen storage and catalytic activity

  19. The influence of thermal treatment on the phase development in HfO2-Al2O3 and ZrO2-Al2O3 systems

    International Nuclear Information System (INIS)

    Stefanic, G.; Music, S.; Trojko, R.

    2005-01-01

    Amorphous precursors of HfO 2 -AlO 1.5 and ZrO 2 -AlO 1.5 systems covering the whole concentration range were co-precipitated from aqueous solutions of the corresponding salts. The thermal behaviour of the amorphous precursors was examined by differential thermal analysis, X-ray powder diffraction (XRD), laser Raman spectroscopy and scanning electron microscopy. The crystallization temperature of both systems increased with increase in the AlO 1.5 content, from 530 to 940 deg. C in the HfO 2 -AlO 1.5 system, and from 405 to 915 deg. C in the ZrO 2 -AlO 1.5 system. The results of phase analysis indicate an extended capability for the incorporation of Al 3+ ions in the metastable HfO 2 - and ZrO 2 -type solid solutions obtained after crystallization of amorphous co-gels. Precise determination of lattice parameters, performed using whole-powder-pattern decomposition method, showed that the axial ratio c f /a f in the ZrO 2 - and HfO 2 -type solid solutions with 10 mol% or more of Al 3+ approach 1. The tetragonal symmetry of these samples, as determined by laser Raman spectroscopy, was attributed to the displacement of the oxygen sublattice from the ideal fluorite positions. It was found that the lattice parameters of the ZrO 2 -type solid solutions decreased with increasing Al 3+ content up to ∼10 mol%, whereas above 10 mol%, further increase of the Al 3+ content has very small influence on the unit-cell volume of both HfO 2 - and ZrO 2 -type solid solutions. The reason for such behaviour was discussed. The solubility of Hf 4+ and Zr 4+ ions in the aluminium oxides lattice appeared to be negligible

  20. Corrosion protection of AISI 1018 steel using Co-doped TiO_2/polypyrrole nanocomposites in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Ladan, Magaji; Basirun, Wan Jeffrey; Kazi, Salim Newaz; Rahman, Fariza Abdul

    2017-01-01

    A polypyrrole nanocomposites (PPy NTCs) have been effectively synthesized in the presence of TiO_2 and Co-doped TiO_2 nanoparticles (NPs) by an in situ chemical oxidative polymerization. Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy revealed a tube shape structure of the PPy. The TEM results confirmed that the nanocomposite size of Co-doped TiO_2/PPy NTCs was smaller than TiO_2/PPy NTCs thereby increasing the interaction between the PPy nanotube and the AISI steel surface. The corrosion performance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements in 3.5% NaCl solution. The EIS results show that the log |Z| of AISI 1018 coated with Co-doped TiO_2/PPy NTCs and TiO_2/PPy NTCs reached about 8.2 and 6.0 respectively after 30 days of exposure in 3.5% NaCl solution. This is likely due to the increased surface area of the PPy synthesized in the presence of Co-doped TiO_2 NPs. The EIS results are confirmed by the potentiodynamic polarization and open circuit potential values of the Co-doped TiO_2/PPy which indicated little changes between 1 and 30 days of exposure which confirms the protection ability of this coating. . It is evident that the presence of Co-doped TiO_2 NPs can enhance the resistance against corrosion at the steel/electrolyte interface. - Highlights: • Polymerization of pyrrole monomer in the presence of Co-doped TiO_2 decreases the size of the polypyrrole nanotube (PPy NT). • The corrosion protection increases with the increase in PPy NT dispersion. • The corrosion resistance of steel coated with Co-doped TiO_2/PPy NTCs is considerably higher. • TiO_2/PPy with Co doping reduces the charge transfer across the electrolyte/AISI 1018 steel interface.

  1. MULTIFUNCTIONAL (NOx/CO/O2) SOLID-STATE SENSORS FOR COAL COMBUSTION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2005-03-21

    Sensing properties of a La{sub 2}CuO{sub 4}- and WO{sub 3}-based potentiometric NO{sub x} sensor were investigated both in N{sub 2} and in a simulated exhaust gas. We performed temperature programmed reaction (TPR) and desorption (TPD) experiments to determine the reaction and adsorption characteristics of O{sub 2}, NO{sub x}, CO, CO{sub 2}, and their mixtures on the electrodes, and related the results to sensor performance. The relative responses of the La{sub 2}CuO{sub 4}-based sensor under varied concentrations of NO, NO{sub 2}, CO, CO{sub 2} and O{sub 2} were studied. The results showed a very high sensitivity to CO and NO{sub 2} at 450 C in 3% O{sub 2}, whereas the response to O{sub 2} and CO{sub 2} gases was negligible. The NO response at 400-500 C agreed with the NO adsorption behavior. The high NO{sub 2} sensitivity at 450 C was probably related to heterogeneous catalytic activity of La{sub 2}CuO{sub 4}. The adsorption of NO was not affected by the change of O{sub 2} concentration and thus the sensor showed selective detection of NO over O{sub 2}. However, the NO sensitivity was strongly influenced by the existence of CO, H{sub 2}O, NO{sub 2}, and CO{sub 2}, as the adsorption behavior of NO was influenced by these gases. The WO{sub 3}-based sensor was able to selectively detect NO in the presence of CO{sub 2} in 3% O{sub 2} and at 650 C. The NO sensitivity, however, was affected by the variation of the NO{sub 2}, CO, and H{sub 2}O concentration. No gas-solid reactions were observed using TPR in the NO containing gas mixture, indicating that the NO response was not obtained by the conventionally accepted mixed-potential mechanism. At the same condition the sensor had high sensitivity to {approx}10 ppm NO{sub 2} and selectivity in the presence of CO, CO{sub 2}, and H{sub 2}O, showing it to be applicable to the monitoring of NO{sub 2}. Significantly different sensing properties of NO in simulated exhaust gas suggested the occurrence of gas composition change

  2. Formation reactions and thermal stability of Ca/sub 2/NbCoO/sub 6/ and Ca/sub 2/TaCoO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshova, T B; Razumovskaya, O N; Belyaev, I N; Salei, V S [Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR)

    1979-11-01

    Ca/sub 2/M/sup 5/CoO/sub 6/ compounds and reactions of their formation from oxides were investigated by thermogravimetric and X-ray phase analysis methods. Optimum conditions for synthesizing the above compounds have been found, and the degree of oxidation of Co therein, determined. The thermal stability of the compounds was also studied. It was shown, that the stability of Co (3) in Ca/sub 2/NbCaO/sub 6/ Ca/sub 2/TaCoO/sub 6/ is higher than that in similar compounds containing Pb. The resultant compounds are pure perovskites. Presented are the calculated and the experimental values of perovskite cell parameters.

  3. Influence of a microwave radiation on dissolution kinetics of UO2, CeO2, and Co3O4 in nitric environment

    International Nuclear Information System (INIS)

    Joret, Laurent

    1995-01-01

    This research thesis addresses the issue of dissolution oxides present in spent nuclear fuels. As previous studies outlined important increases of oxide dissolution rate when submitted to microwaves, the issue is then to apply such a technique to PuO 2 which is the most difficult oxide to dissolve. As plutonium may be handled only in certified laboratories and under strict safety conditions, the author studied the influence of a microwave radiation on the dissolution kinetics of other and various metallic oxides in a nitric environment. The choice of this nitric environment is imposed by conditions met in the nuclear industry. Oxides are chosen according to two criteria: dissolution times ranging from few minutes to few days, various responses to electromagnetic radiation (different values for the real and imaginary parts of their dielectric permittivity). Three oxides are retained: UO 2 and CeO 2 (to model PuO 2 ) and Co 3 O 4 . After a recall of some theoretical aspects of the response of a dielectric material to an electromagnetic field, a comparison between conventional and microwave heating, the author presents the main results obtained by using microwaves in chemistry (organic synthesis, ceramic sintering, acid dissolution). He reports the experimental study of nitric dissolution of oxides by conventional heating, and the dielectric characterisation of the studied oxides. He presents the experimental microwave set-up, and reports and discusses experimental results obtained for the dissolution of UO 2 , CeO 2 and Co 3 O 4 in HNO 3 [fr

  4. Facile synthesis of porous Co3O4 nanoplates for supercapacitor ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Porous tricobalt tetraoxide (Co3O4) nanoplates with large aspect ratio have been obtained by annealing Co(OH)2 precursor nanoplates synthesized by a facile reflux method without the need for any template or surfactant. After the heat treatment, the as-obtained phase-pure Co3O4 nanoplates with a well- retained ...

  5. Dielectric and magnetic characterization of the electroceramic Ba2Co2Fe12O22 doped with Bi2O3 for applications in electronics components

    International Nuclear Information System (INIS)

    Pires Junior, G.F.M.; Sales, A.J.M.; Rodrigues, H.O.; Sombra, A.S.B.

    2012-01-01

    The objective of this work is to study the dielectric and magnetic properties of electroceramics (Ba 2 Co 2 Fe 12 O 22 - Co 2 Y) doped with (3; 5 and 10 wt%) of Bi 2 O 3 in order to promote better dielectric and magnetic properties for applications in electronics. Phase Co 2 Y was obtained through the method of solid-state reaction. The structural characterization was performed by X-ray Diffraction using the Rietveld refinement. Magnetic hysteresis curves of the samples were obtained at room temperature. The Impedance Spectroscopy was used in the study of the dielectric function of frequency in the range 100-100 MHz, at room temperature. It follows that the Rietveld refinement confirmed the structure to the hexagonal crystalline phase obtained. The curve analysis confirmed the magnetic hysteresis behavior of the ferrimagnetic samples. Furthermore, the samples showed large values of dielectric permittivity (30.8) and small dielectric loss (3,66 x10 -1 ) at 100 MHz for the sample B1, making them passive miniaturization. (author)

  6. A study of low threshold and high gain Nd3+ ions doped SiO2-B2O3-Na2CO3-NaF-CaF2 glasses for NIR laser applications

    Science.gov (United States)

    Megala, Rajesh; Gowthami, T.; John Sushma, N.; Kamala, S.; Deva Prasad Raju, B.

    2018-05-01

    Fluoroborosilicate glasses of composition 35SiO2-25B2O3-10Na2CO3-15NaF-15CaF2-xNd2O3 (where x = 0.1, 0.5. 1.0, 2.0 mol%) were prepared by melt quenching technique and various physical properties have been calculated. From the absorption spectra J-O Intensity parameters Ωλ (λ = 2, 4, 6) and radiative properties are evaluated by using J-O theory. The high values of Ω2 = 4.213 × 10-20 cm2, Ω4 = 5.345 × 10-20 cm2, Ω6 = 5.526 × 10-20 cm2 suggest that among the prepared glasses 0.5 mol% Nd glass is more asymmetric, more covalent and rigid in nature. The emission spectra were recorded with 808 nm laser as excitation source. The strong NIR emissions were observed at 876 nm, 1056 nm, 1328 nm corresponding to the transitions 4F3/2 → 4I9/2, 4F3/2 → 4I11/2, 4F3/2 → 4I13/2 respectively. Stimulated emission cross -section (σemi) and Gain bandwidth (σemi × Δλeff) were calculated. For 0.5 mol% Nd these values are found to be 3.30 × 10-20 cm2, 11 × 10-26 cm2. From the decay curve analysis the lifetime values for 4F3/2 level have been determined and these values are decreased with increase in Nd3+ ions concentration. These results may suggest that the prepared SBNCNd05 (Nd = 0.5 mol%) glass could be useful for 1056 nm laser applications.

  7. Synthesis of Nano-Structured La0.6Sr0.4Co0.2Fe0.8O3 Perovskite by Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Ebrahim Mostafavi

    2015-06-01

    Full Text Available Nano-structured lanthanum strontium cobalt ferrite, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF, was successfully synthesized via co-precipitation method using metal nitrates as starting materials. Effects of precipitating agent and calcination temperature on the phase composition and morphology of synthesized powders were systematically studied using X-ray diffraction (XRD and field emission scanning electron microscopy (FESEM, respectively. XRD analysis revealed that a single phase La0.6Sr0.4Co0.2Fe0.8O3 perovskite was obtained in the processed sample using ammonium carbonate as precipitating agent with a NH4+/NO3-molar ratio of 2 after calcination at 1000C for 1 h. The phase composition of products was also affected by changing pH values. Moreover, using sodium hydroxide as a precipitant resulted in a mixture of La0.6Sr0.4Co0.2Fe0.8O3 and cobalt ferrite (CoFe2O4 phases. Careless washing of the precursors can also led to the formation of mixed phase after calcination of final powders. Mean crystallite size of the obtained powders was not noticeably affected by varying calcination temperature from 900 to 1050C and remained almost the same at 10 nm, however increasing calcination temperature to 1100C resulted in sharp structural coarsening. FESEM studies demonstrate that relatively uniform particles with mean particle size of 90 nm were obtained in the sample processed with a NH4+/NO3- molar ratio of 2 after calcination at 1000C for 1 h.

  8. An efficient method for the synthesis of phenacyl ester-protected dipeptides using neutral alumina-supported sodium carbonate 'Na2 CO3 /n-Al2 O3 '.

    Science.gov (United States)

    Hashimoto, Chikao; Sugimoto, Kazuhiro; Takahashi, Youhei; Kodomari, Mitsuo

    2013-10-01

    In the synthesis of dipeptides (Boc-AA(1)-AA(2)-OPac: AA(1) and AA(2) represent amino acids) protected by phenacyl (Pac) ester, amines and solid bases as the base for the conversion of the trifluoroacetic acid (TFA) salt of the amino component (TFA·H-AA(2)-OPac) into the corresponding free amino component (H-AA(2)-OPac) were examined. The synthesis of a dipeptide (Boc-Ala-Gly-OPac) using amines for the conversion afforded an unsatisfactory yield with by-products. On the other hand, the use of neutral alumina-supported Na(2) CO(3) (Na(2)CO(3) /n-Al(2)O(3)) as a solid base for the conversion provided the dipeptide in a quantitative yield without by-products. The application of Na(2)CO(3) /n-Al2 O3 to the synthesis of some dipeptides protected by Pac ester gave the desired peptides in excellent yields. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  9. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    Science.gov (United States)

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  10. Compound effect of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O on the strength of steel slag: cement binding materials

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Liqian; Liu, Jiaxiang; Liu, Qian, E-mail: ljxpost@263.net [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, The State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing (China)

    2016-03-15

    In this study, we replaced 30% of the cement with steel slag to prepare binding material; additionally, small amounts of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O were added. This was done to study the compound effect of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O on the strength of steel slag-cement binding materials. The hydration degree of the steel slag cementitious material was analyzed by XRD, TG and SEM. The results showed that the optimum proportions of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O were 3% and 2%, respectively. Compared with the steel slag-cement binders without adding CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O, the compressive strength increased by 59.9% at 3 days and by 17.8% at 28 days. Acting as the nucleation matrix, CaCO{sub 3} could accelerate the hydration of C{sub 3}S. In addition, CaCO{sub 3} was involved in the hydration reaction, generating a new hydration product, which could stably exist in a slurry. Meanwhile, CaSO{sub 4}·2H{sub 2}O could increase the number of AFt. The compound effect of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O enhanced the intensity of steel slag-cement binding materials and improved the whole hydration behavior. (author)

  11. Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Wang, Jingpeng; Du, Chunyu; Yan, Chunqiu; He, Xiaoshu; Song, Bai; Yin, Geping; Zuo, Pengjian; Cheng, Xinqun

    2015-01-01

    Highlights: • Al 2 O 3 -coated concentration-gradient oxide is synthesized by a freeze drying method. • The effect of Al 2 O 3 -coating on concentration-gradient cathode is firstly studied. • Al 2 O 3 -coated sample exhibits high capacity and significantly enhanced cyclability. • Improved cyclability is ascribed to the effective protection of uniform Al 2 O 3 layer. - Abstract: In order to enhance the electrochemical performance of the high capacity layered oxide cathode with a Ni-rich core and a concentration-gradient shell (NRC-CGS), we use a freeze drying method to coat Al 2 O 3 layer onto the surface of NRC-CGS Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material. The samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge-discharge measurements and electrochemical impedance spectroscopy. It is revealed that an amorphous Al 2 O 3 layer of about 5 nm in thickness is uniformly formed on the surface of NRC-CGS Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material by the freeze drying procedure. The freeze drying Al 2 O 3 -coated (FD-Al 2 O 3 -coated) sample demonstrates similar discharge capacity and significantly enhanced cycling performances, in comparison to the pristine and conventional heating drying Al 2 O 3 -coated (HD-Al 2 O 3 -coated) samples. The capacity decay rate of FD-Al 2 O 3 -coated Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material is 1.7% after 150 cycles at 55 °C, which is 9 and 12 times lower than that of the pristine and HD-Al 2 O 3 -coated samples. The superior electrochemical stability of the FD-Al 2 O 3 -coated sample is attributed to the synergistic protection of CGS and high-quality Al 2 O 3 coating that effectively protect the active material from electrolyte attack. The freeze drying process provides an effective method to prepare the high performance surface-coated electrode materials

  12. The far infrared radiation characteristics for Li2O.Al2O3.4SiO2(LAS) glass-ceramics and transition-metal oxide

    International Nuclear Information System (INIS)

    Huh, Nam Jung; Yang, Joong Sik

    1991-01-01

    The far infrared radiation characteristic for Li 2 O.Al 2 O 3 .4SiO 2 (LAS) glass, the LAS glass-ceramic and sintered transition metal oxides such as CuO, Fe 2 O 3 and Co 3 O 4 , were investigated. LAS glass and LAS glass-ceramic was higher than that of the LAS glass. Heat-treated CuO and Co 3 o 4 had radiation characteristic of high efficiency infrared radiant, and heat-treated Fe 2 O 3 had radiation characteristic that infrared emissivity decreased in higher was length above 15μm. (Author)

  13. Preparation and Scintillating Properties of Sol-Gel Eu3+, Tb3+ Co-Doped Lu2O3 Nanopowders

    Directory of Open Access Journals (Sweden)

    Joel Moreno Palmerin

    2011-09-01

    Full Text Available Nanocrystalline Eu3+, Tb3+ co-doped Lu2O3 powders with a maximum size of 25.5 nm were prepared by the sol-gel process, using lutetium, europium and terbium nitrates as precursors, and ethanol as a solvent. Differential thermal analysis (DTA and infrared spectroscopy (IR were used to study the chemical changes during the xerogel annealing. After the sol evaporation at 100 °C, the formed gel was annealed from 300 to 900 °C for 30 min under a rich O2 atmosphere, and the yielded product was analyzed by X-ray diffraction (XRD to characterize the microstructural behavior and confirm the crystalline structure. The results showed that Lu2O3 nanopowders start to crystallize at 400 °C and that the crystallite size increases along with the annealing temperature. A transmission electron microscopy (TEM study of samples annealed at 700 and 900 °C was carried out in order to analyze the microstructure, as well as the size, of crystallites. Finally, in regard to scintillating properties, Eu3+ dopant (5 mol%, Tb3+ codoped Lu2O3 exhibited a typical red emission at 611 nm (Do→7F2, furthermore, the effect of Tb3+ molar content (0.01, 0.015 and 0.02% mol on the Eu3+ radioluminiscence was analyzed and it was found that the higher emission intensity corresponds to the lower Tb3+ content.

  14. Effect of Precursor Synthesis on Catalytic Activity of Co3O4 in N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Chromčáková, Ž.; Obalová, L.; Kovanda, F.; Legut, D.; Titov, A.; Ritz, M.; Fridrichová, D.; Michalik, S.; Kustrowski, P.; Jirátová, Květa

    2015-01-01

    Roč. 257, Part 1 (2015), s. 18-25 ISSN 0920-5861. [AWPAC2014 - International Symposium on Air & Water Pollution Abatement Catalysis. Krakow, 01.09.2014-05.09.2014] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : cobalt spinel * Co3O4 * N2O decomposition * precursor synthesis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.312, year: 2015

  15. Preparation of Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} catalyst and its catalytic properties for selective reduction of NO

    Energy Technology Data Exchange (ETDEWEB)

    Xi-kun Guo; Ping-ping Xie; Shu-dong Lin [Shantou University, Shantou (China). Department of Chemistry

    2008-12-15

    An La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} composite support was prepared by co-precipitation with the mixed aqueous solution of La(NO{sub 3}{sub 3}, Al(NO{sub 3){sub 3}, and ZrOCl{sub 2} dropping into the precipitant of (NH{sub 4})2CO{sub 3} aqueous solution. The Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} catalyst was prepared by the impregnation of La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} with active component Cu{sup 2+} aqueous solution. The effects of the catalyst on the selective catalytic reduction of NO with propylene in excess oxygen were investigated. The relationships between the preparation method, structure and properties of the Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} catalyst were also explored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), surface area measurements (BET), pyridine absorption infrared spectrum (Py-IR), thermal gravimetry (TG), and temperature-programmed reduction (TPR). The results indicate that the support {gamma}-Al{sub 2}O{sub 3} prepared by Al(NO{sub 3})3 dropping into (NH{sub 4}{sub 2} CO{sub 3} can remarkably enlarge the surface area; the addition of La{sub 2}O{sub 3} contributes mainly to the enhancement of the thermal stability; and the introduction of ZrO{sub 2} can increase the amount of Lewis and Broenstead acid. Consequently, the catalyst Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} has excellent activity for the selective reduction of NO with propylene in excess oxygen. NO conversion is up to 88.9% at 300{sup o}C and 81.9% even at the presence of 10% volume fraction of water vapor. 15 refs., 8 figs., 1 tab.

  16. Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries

    Science.gov (United States)

    Hua, Wei-Bo; Guo, Xiao-Dong; Zheng, Zhuo; Wang, Yan-Jie; Zhong, Ben-He; Fang, Baizeng; Wang, Jia-Zhao; Chou, Shu-Lei; Liu, Heng

    2015-02-01

    Developing advanced electrode materials that deliver high energy at ultra-fast charge and discharge rates are very crucial to meet an increasing large-scale market demand for high power lithium ion batteries (LIBs). A three-dimensional (3D) nanoflower structure is successfully developed in the large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 material for the first time. The fast co-precipitation is the key technique to prepare the nanoflower structure in our method. After heat treatment, the obtained LiNi1/3Co1/3Mn1/3O2 nanoflowers (NL333) pronouncedly present a pristine flower-like nano-architecture and provide fast pathways for the transport of Li-ions and electrons. As a cathode material in a LIB, the prepared NL333 electrode demonstrates an outstanding high-rate capability. Particularly, in a narrow voltage range of 2.7-4.3 V, the discharge capacity at an ultra-fast charge-discharge rate (20C) is up to 126 mAh g-1, which reaches 78% of that at 0.2C, and is much higher than that (i.e., 44.17%) of the traditional bulk LiNi1/3Co1/3Mn1/3O2.

  17. Syntheses, characterization and nonlinear optical properties of sodium-scandium carbonate Na5Sc(CO3)4·2H2O

    Science.gov (United States)

    Chen, Jie; Luo, Min; Ye, Ning

    2014-10-01

    A novel nonlinear optical (NLO) material Na5Sc(CO3)4·2H2O has been synthesized under a subcritical hydrothermal condition. The structure is determined by single-crystal X-ray diffraction and further characterized by TG analyses and UV-vis-NIR diffuse reflectance spectrum. It crystallizes in the tetragonal space group P-421c, with a = b = 7.4622(6) Å, C = 11.5928(15) Å. The Second-harmonic generation (SHG) on polycrystalline samples was measured using the Kurtz and Perry technique, which indicated that Na5Sc(CO3)4·2H2O was a phase-matchable material, and its measured SHG coefficient was about 1.8 times as large as that of d36 (KDP). The results from the UV-vis diffuse reflectance spectroscopy study of the powder samples indicated that the short-wavelength absorption edges of Na5Sc(CO3)4·2H2O is about 220 nm, suggesting that this crystal is a promising UV nonlinear optical (NLO) materials.

  18. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3 /Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 1.4 at. % Co. Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  19. 3D-grafiikka ja pelimoottorit

    OpenAIRE

    Sillanpää, Otto

    2014-01-01

    Tässä opinnäytetyössä tutkitaan miten 3D-mallit saadaan sellaiseen muotoon, että ne olisivat käytettävissä eri pelimoottoreissa. Tutkimuksen tarkoituksena on selvittää, miten luodaan 3D-malleja pelimoottoreihin, sekä miten 3D-mallinnusohjelmat ja pelimoottorit eroavat toisistaan, kun käsitellään 3D-malleja. Tässä työssä pelimoottoreina toimivat Valven Source sekä Epic Gamesin Unreal Engine 3. 3D-mallinnusohjelmista käytössä olivat Autodeskin 3ds Max 2014 ja Blender Foundationin Blender 2.7...

  20. N2O Decomposition over Cu–Zn/γ–Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Runhu Zhang

    2016-12-01

    Full Text Available Cu–Zn/γ–Al2O3 catalysts were prepared by the impregnation method. Catalytic activity was evaluated for N2O decomposition in a fixed bed reactor. The fresh and used catalysts were characterized by several techniques such as BET surface area, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The Cu–Zn/γ–Al2O3 catalysts exhibit high activity and stability for N2O decomposition in mixtures simulating real gas from adipic acid production, containing N2O, O2, NO, CO2, and CO. Over the Cu–Zn/γ–Al2O3 catalysts, 100% of N2O conversion was obtained at about 601 °C at a gas hourly space velocity (GHSV of 7200 h−1. Cu–Zn/γ–Al2O3 catalysts also exhibited considerably good durability, and no obvious activity loss was observed in the 100 h stability test. The Cu–Zn/γ–Al2O3 catalysts are promising for the abatement of this powerful greenhouse gas in the chemical industry, particularly in adipic acid production.

  1. Infrared emissions in MgSrAl10O17:Er3+ phosphor co-doped with Yb3+/Ba2+/Ca2+ obtained by solution combustion route

    International Nuclear Information System (INIS)

    Singh, Vijay; Kumar Rai, Vineet; Venkatramu, V.; Chakradhar, R.P.S.; Hwan Kim, Sang

    2013-01-01

    An intense infrared emitting MgSrAl 10 O 17 :Er 3+ phosphor co-doped with Yb 3+ , Ba 2+ and Ca 2+ ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl 10 O 17 phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed upon excitation at 980 nm. Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: ► The hexagonal phase of MgSrAl 10 O 17 could be obtained by the low temperature combustion method. ► The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed. ► Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ were reported.

  2. The thermal behaviour and structural stability of nesquehonite, MgCO3.3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: New constraints on CO2 sequestration within minerals.

    Science.gov (United States)

    Ballirano, Paolo; De Vito, Caterina; Ferrini, Vincenzo; Mignardi, Silvano

    2010-06-15

    In order to gauge the appropriateness of CO(2) reaction with Mg chloride solutions as a process for storing carbon dioxide, the thermal behaviour and structural stability of its solid product, nesquehonite (MgCO(3).3H(2)O), were investigated in situ using real-time laboratory parallel-beam X-ray powder diffraction. The results suggest that the nesquehonite structure remains substantially unaffected up to 373 K, with the exception of a markedly anisotropic thermal expansion acting mainly along the c axis. In the 371-390 K range, the loss of one water molecule results in the nucleation of a phase of probable composition MgCO(3).2H(2)O, which is characterized by significant structural disorder. At higher temperatures (423-483 K), both magnesite and MgO.2MgCO(3) coexist. Finally, at 603 K, periclase nucleation starts and the disappearance of carbonate phases is completed at 683 K. Consequently, the structural stability of nesquehonite at high temperatures suggests that it will remain stable under the temperature conditions that prevail at the Earth's surface. These results will help (a) to set constraints on the temperature conditions under which nesquehonite may be safely stored and (b) to develop CO(2) sequestration via the synthesis of nesquehonite for industrial application. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Synthesis and magnetic properties of hard magnetic (CoFe{sub 2}O{sub 4})-soft magnetic (Fe{sub 3}O{sub 4}) nano-composite ceramics by SPS technology

    Energy Technology Data Exchange (ETDEWEB)

    Fei Chunlong [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China); Zhang Yue [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China); Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan 430062 (China); Yang Zhi; Liu Yong [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China); Xiong Rui, E-mail: wudawujiron@163.co [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China) and Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan 430062 (China); Shi Jing [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China); International Center for Materials Physics, Shen Yang 110015 (China); Ruan Xuefeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China)

    2011-07-15

    CoFe{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} nano-composite ceramics were synthesized by Spark Plasma Sintering. The X-ray diffraction patterns show that all samples are composed of CoFe{sub 2}O{sub 4} and Fe{sub 3}O{sub 4} phases when the sintering temperature is below 900 {sup o}C. It is found that the magnetic properties strongly depend on the sintering temperature. The two-step hysteresis loops for samples sintered below 500 {sup o}C are observed, but when sintering temperature reaches 500 {sup o}C, the step disappears, which indicates that the CoFe{sub 2}O{sub 4} and Fe{sub 3}O{sub 4} are well exchange coupled. As the sintering temperature increases from 500 to 800 {sup o}C, the results of X-ray diffractometer indicate the constriction of crystalline regions due to the ion diffusion at the interfaces of CoFe{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} phases, which have great impact on the magnetic properties. - Research highlights: In this work, a series of CoFe{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} nano-composite ceramics were prepared through SPS. The magnetic properties of these ceramics have been studied in detail. It is found that the magnetic properties strongly depend on the sintering temperature.

  4. Photocatalytic degradation of vegetable oil floating on water by CoPcS/TiO2/beads and TiO2/beads%CoPcS/TiO2/beads及TiO2/beads光催化降解水面漂浮植物油

    Institute of Scientific and Technical Information of China (English)

    张晓叶; 闫永胜; 孔峰; 王赟

    2007-01-01

    以钛酸四丁酯为原料,以空心玻璃微珠为载体,采用溶胶-凝胶法制备出TiO2/beads光催化剂,用浸渍法制备出CoPcS/TiO2/beads光催化剂.研究了TiO2/beads及CoPcS/TiO2/beads光催化降解水面漂浮植物油的最优条件.结果表明,酸性或中性条件下,375 W中压汞灯照射23 h,TiO2/beads与CoPcS/TiO2/beads的投加量分别为3 g与1 g时,植物油的去除率达90%以上,投加微量的H2O2,可大大提高两者的光催化去除率.

  5. Methanesulfonates of high-valent metals. Syntheses and structural features of MoO_2(CH_3SO_3)_2, UO_2(CH_3SO_3)_2, ReO_3(CH_3SO_3), VO(CH_3SO_3)_2, and V_2O_3(CH_3SO_3)_4 and their thermal decomposition under N_2 and O_2 atmosphere

    International Nuclear Information System (INIS)

    Betke, Ulf; Neuschulz, Kai; Wickleder, Mathias S.

    2011-01-01

    Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO_3, UO_2(CH_3COO)_2.2 H_2O, Re_2O_7(H_2O)_2, and V_2O_5 with CH_3SO_3H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO_2(CH_3SO_3)_2 (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm"3, Z=8) contains [MoO_2] moieties connected by [CH_3SO_3] ions to form layers parallel to (100). UO_2(CH_3SO_3)_2 (P2_1/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1) "c"i"r"c"l"e, V=1.8937(3) nm"3, Z=8) consists of linear UO_2"2"+ ions coordinated by five [CH_3SO_3] ions, forming a layer structure. VO(CH_3SO_3)_2 (P2_1/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1) "c"i"r"c"l"e, V=0.8290(2) nm"3, Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO_3(CH_3SO_3) (P anti 1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2) "c"i"r"c"l"e, V=1.1523(4) nm"3, Z=8) a chain structure exhibiting infinite O-[ReO_2]-O-[ReO_2]-O chains is formed. Each [ReO_2]-O-[ReO_2] unit is coordinated by two bidentate [CH_3SO_3] ions. V_2O_3(CH_3SO_3)_4 (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm"3, Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH_3SO_3] ligands. Additional methanesulfonate ions connect the [V_2O_3] groups along [001]. Thermal decomposition of the compounds was monitored under N_2 and O_2 atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N_2 the decomposition proceeds with reduction of the metal leading to the oxides MoO_2, U_3O_7, V_4O_7, and VO_2; for MoO_2(CH_3SO_3)_2, a small amount of MoS_2 is formed. If the thermal decomposition is carried out in a atmosphere of O_2 the oxides MoO_3 and V_2O_5 are formed. (Copyright copyright 2011 WILEY-VCH Verlag

  6. Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents.

    Science.gov (United States)

    Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud

    2018-03-15

    The sol-gel auto-combustion technique is an effective method for the synthesis of the composites. In this research for the first time, CoTiO 3 /CoFe 2 O 4 nanocomposites are successfully synthesized via a new sol-gel auto-combustion technique. The glucose, maltose and starch are used as fuel, capping and reducing agents, also the optimal reducing agent is chosen. The effects of quantity of reducing agent, molar ratio of Ti:Co, calcination temperature and time on the morphology, particle size, magnetic property, purity and phase of the nanocomposites are investigated. XRD patterns show formation of CoTiO 3 /CoFe 2 O 4 spherical nanoparticles with nearly evenly distribution, when the molar ratio of Co/Ti is 1:1. EDS analysis confirm results of XRD. The magnetic behavior of the nanocomposites is studied by VSM. The nanocomposites exhibit a high coercivity at room temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. In situ DRIFTS study of O{sub 3} adsorption on CaO, γ-Al{sub 2}O{sub 3}, CuO, α-Fe{sub 2}O{sub 3} and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianfeng; Su, Tongming; Jiang, Yuexiu; Xie, Xinling [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Qin, Zuzeng, E-mail: qinzuzeng@gmail.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Ji, Hongbing, E-mail: jihb@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-08-01

    Highlights: • In situ DRIFTS study of O{sub 3} adsorption on metal oxides at room temperature. • Using acidic probe molecules (DRIFTS) characterization of surface basicity. • Correlation between basic strength of metal oxides and O{sub 3} adsorption. • Study on the competitive adsorption of O{sub 3} and CO{sub 2}. • DRIFTS study of cinnamaldehyde ozonation and benzaldehyde excessive oxidation. - Abstract: In situ DRIFTS were conducted to identify adsorbed ozone and/or adsorbed oxygen species on CaO, ZnO, γ-Al{sub 2}O{sub 3}, CuO and α-Fe{sub 2}O{sub 3} surfaces at room temperature. Samples were characterized by means of TG, XRD, N{sub 2} adsorption–desorption, pyridine-IR, nitrobenzene-IR, chloroform-IR, and CO{sub 2}-TPD. Pyridine-DRIFTS measurements evidence two kinds of acid sites in all the samples. Nitrobenzene, chloroform-DRIFTS, and CO{sub 2}-TPD reveal that there are large amounts of medium-strength base sites on all the metal oxides, and only CaO, ZnO, and γ-Al{sub 2}O{sub 3} have strong base sites. And the benzaldehyde selectivity was increased in the same order of the alkalinity of the metal oxides. With weaker sites, ozone molecules form coordinative complexes bound via the terminal oxygen atom, observed by vibrational frequencies at 2095–2122 and 1026–1054 cm{sup −1}. The formation of ozonide O{sub 3}{sup −} at 790 cm{sup −1}, atomic oxygen at 1317 cm{sup −1}, and superoxide O{sub 2}{sup −} at 1124 cm{sup −1} was detected; these species are believed to be intermediates of O{sub 3} decomposition on strong acid/base sites. The adsorption of ozone on metal oxides is a weak adsorption, and other gases, such as CO{sub 2}, will compete with O{sub 3} adsorption. The mechanism of cinnamaldehyde ozonation at room temperature over CaO shows that cinnamaldehyde can not only be oxidized into cinnamic acid, but also be further oxidized into benzaldehyde, benzoic acid, maleic anhydride, and ultimately mineralized to CO{sub 2} in the

  8. White photoluminescence emission from ZrO_2 co-doped with Eu"3"+, Tb"3"+ and Tm"3"+

    International Nuclear Information System (INIS)

    Lovisa, L.X.; Araújo, V.D.; Tranquilin, R.L.; Longo, E.; Li, M.S.; Paskocimas, C.A.; Bomio, M.R.D.; Motta, F.V.

    2016-01-01

    The search for high efficiency, reliable, low power consumption and environmental friendly materials for white light-emitting diodes has become a proficient field. Single-phase doped materials have been made to solve some of these challenges. Particles with color-tunable emission can be obtained by a combination of some lanthanide ions in the host material. The luminescence properties and crystalline structure of ZrO_2 particles co-doped with rare earth ions (RE"3"+ = Tb"3"+, Eu"3"+ and Tm"3"+) calcined at different temperatures were studied. We aimed to investigate the emission spectrum of the particles in the red, green, and blue regions under UV excitation. The x and y coordination chromaticity - (x = 0.34, y = 0.34) and (x = 0.31, y = 0.34) - presented values close to those of the white color (x = y = 0.33). In conclusion, the ZrO_2:RE"3"+ powers were successfully obtained by the complex polymerization method and are promising candidates for white light-emitting applications. - Highlights: The ZrO_2:RE materials presented here are promising photoluminescent materials. The CIE coordinates calculated are disposed in the blank region in the CIE diagram. The results for the Raman confirm the response obtained by XRD: stabilization of cubic phase.

  9. Crystal growth and magnetic properties of spinel (Co,Mn)3O4

    Science.gov (United States)

    Kang, Sun Hee; Kim, Ill Won; Jeong, Yoon Hee; Koo, Tae Yeong

    2012-04-01

    Single crystals of cubic and tetragonal spinel Co3-xMnxO4 (x=1.0 and 1.5) were successfully grown using a solvent evaporation method with PbF2 flux. Single crystals in octahedral shape with a size of about 4 mm on edge were obtained from 100 cm3 Pt crucibles. Ferrimagnetic transitions were detected at 170 K and 160 K from the measurements of temperature dependent magnetization and specific heat of Co2MnO4 and Co1.5Mn1.5O4, respectively. Low temperature field-dependent magnetization curves give a strong indication of the non-collinear spin structure, offering an insulating Co3-xMnxO4 system as a possible candidate for examining the multiferroicity.

  10. Improved Charge Transfer in a Mn2O3@Co1.2Ni1.8O4 Hybrid for Highly Stable Alkaline Direct Methanol Fuel Cells with Good Methanol Tolerance.

    Science.gov (United States)

    Liu, Yan; Chen, Yuanzhen; Li, Sai; Shu, Chenyong; Fang, Yuan; Song, Bo

    2018-03-21

    A three-dimensional Mn 2 O 3 @Co 1.2 Ni 1.8 O 4 hybrid was synthesized via facile two-step processes and employed as a cathode catalyst in direct methanol fuel cells (DMFCs) for the first time. Because of the unique architecture with ultrathin and porous nanosheets of the Co 1.2 Ni 1.8 O 4 shell, this composite exhibits better electrochemical performance than the pristine Mn 2 O 3 . Remarkably, it shows excellent methanol tolerance, even in a high concentration solution. The DMFC was assembled with Mn 2 O 3 @Co 1.2 Ni 1.8 O 4 , polymer fiber membranes, and PtRu/C as the cathode, membrane, and anode, respectively. The power densities of 57.5 and 70.5 mW cm -2 were recorded at 18 and 28 °C, respectively, especially the former is the best result reported in the literature at such a low temperature. The stability of the Mn 2 O 3 @Co 1.2 Ni 1.8 O 4 catalyzed cathode was evaluated, and the results show that this compound possesses excellent stability in a high methanol concentration. The improved electrochemical activity could be attributed to the narrow band gap of the hybrid, which accelerates the electrons jumping from the valence band to the conduction band. Therefore, Mn III could be oxidized into Mn IV more easily, simultaneously providing an electron to the absorbed oxygen.

  11. Preparation of Cu2O modified TiO2 nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH

    Science.gov (United States)

    Li, Bin; Niu, Wenchao; Cheng, Yongwei; Gu, Junjie; Ning, Ping; Guan, Qingqing

    2018-05-01

    Cu2O/TiO2 nanopowders were prepared and used as thin film electrode raw materials for CO2 photoelectroreduction. Characterization results from XRD, TEM, UV-Vis and BET show that Cu2O/TiO2 composites have regular morphology, narrow band gap, excellent textural properties, and exhibits marked response of visible light. The photoelectrocatalytic results show that CO2 can be reduced to formaldehyde (i.e., intermediate) and finally methanol (i.e., end product). In addition, the CO2 photoelectroreduction pathway and the mechanism of photoelectrocatalysis are discussed. In summary, the work reports a potential method of CO2 reduction by visible-light photocatalysis without an external bias.

  12. Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas

    Science.gov (United States)

    Gong, Dandan; Li, Shuangshuang; Guo, Shaoxia; Tang, Honggui; Wang, Hong; Liu, Yuan

    2018-03-01

    Sintering of active metal nanoparticles (NPs) and carbon deposition is critical problems for many metal catalysts, such as nickel based catalysts for generating methane from syngas. To improve the resistance to the sintering and carbon deposition, a new scheme was proposed in this work. Lanthanum and cerium co-modified Ni/SiO2 catalysts were synthesized by using perovskite type oxide of La1-xCexNiO3 loaded on SiO2 as the precursor. In a nanocrystallite of La1-xCexNiO3, ions of nickel, lanthanum and cerium are evenly mixed at atomic level and confined in the nanocrystallite, therefore, Ni NPs and the two promoters of La2O3 and CeO2 should be in close contact and highly dispersed on SiO2 after reduction. The catalysts were characterized by using XRD, TEM, BET, H2-TPD, XPS, TG and Raman techniques. Compared with the mono-promoted catalysts, the bi-promoted La0.75Ce0.25NiO3/SiO2 showed much better resistance to carbon deposition, higher resistance to sintering and higher activity for CO methanation, which are attributed to co-eliminating effect of the two promoters for the deposited carbon, confinement of the interacted two promoters for Ni NPs and the higher dispersion of Ni NPs derived from the smaller size of La0.75Ce0.25NiO3.

  13. Co_3V_2O_8 Hexagonal Pyramid with Tunable Inner Structure as High Performance Anode Materials for Lithium Ion Battery

    International Nuclear Information System (INIS)

    Zhang, Qiang; Pei, Jian; Chen, Gang; Bie, Changfeng; Chen, Dahong; Jiao, Yang; Rao, Jiancun

    2017-01-01

    Co_3V_2O_8 hexagonal pyramid was successfully fabricated via a simple hydrothermal process and subsequent heat treatment. The inner structure of the hexagonal pyramid was further adjusted by controlling the size of Co_7V_4O_1_6(OH)_2(H_2O) precursors. Hierarchical Co_3V_2O_8 hexagonal pyramid with height of 1 μm were orderly constructed from 60–80 nm inter-connected particles, showing numerous interval voids. Benefiting from its unique structure, the as-prepared sample showed higher electrochemical performance as an anode material for lithium-ion batteries than that of another bulk sample with height of 5 μm and adhesive inner structure. When tested at a current density of 500 mA g"−"1, the hierarchical Co_3V_2O_8 hexagonal pyramid exhibited good rate capacity, high cycling stability, and excellent discharge capacity up to 712 mA h g"−"1, making it promising electrode materials for lithium-ion batteries.

  14. Syngas production from CO{sub 2}-reforming of CH{sub 4} over sol-gel synthesized Ni-Co/Al{sub 2}O{sub 3}-MgOZrO{sub 2} nanocatalyst: effect of ZrO{sub 2} precursor on catalyst properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Sajjadi, Seyed Mehdi; Haghighi, Mohammad; Rahmani, Farhad, E-mail: haghighi@sut.ac.ir [Reactor and Catalysis Research Center, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-05-15

    Ni-Co/Al{sub 2}O{sub 3}-MgO-ZrO{sub 2} nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH) and zirconyl nitrate solution (ZNS), was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO{sub 2}-reforming of CH{sub 4}. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS). FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH{sub 4} and CO{sub 2} conversions were 97.2 and 99% at 850 °C, respectively. Furthermore, NCAMZZNS demonstrated a stable yield with H{sub 2}/CO close to unit value during the 1440 min stability test. (author)

  15. Moessbauer spectroscopic determination of magnetic moments of Fe3+ and Co2+ in substituted barium hexaferrite, Ba(Co,Ti)xFe(12-2x)O19

    International Nuclear Information System (INIS)

    Williams, J.M.; Adetunji, J.; Gregori, M.

    2000-01-01

    We report the distribution of magnetic moments of Fe 3+ and Co 2+ in Co 2+ -, Ti 4+ -substituted M-type barium hexaferrite, Ba(Co,Ti) x Fe (12-2x) O 19 , as a function of doping rate, x. The substitution, x, for iron has been varied with x=0, 0.25, 0.50, 0.70 and 0.85. The magnetic moments of Fe 3+ and Co 2+ were calculated from the combined results of Moessbauer measurements for Fe 3+ ions in the sublattices and neutron diffraction data for the total moments of Fe 3+ and Co 2+ . A comparison of the signs of the magnetic moments of Fe 3+ and Co 2+ ions enabled us to attribute spin directions of the Co 2+ ions in the sublattices of the substituted ferrite samples. The spin directions of Co 2+ are opposite to those of Fe 3+ in the 4f 2 and 2b sublattices. They are reversed from the original directions in the 4f 1 and 12K sublattices when the value of x≥0.70. A quantitative analysis shows that Co 2+ and Ti 4+ ions are preferably substituted into 4f 2 and 12K sublattices, respectively. In addition, while the hyperfine field of Fe 3+ in the 2b sublattice gives rise to the 2b-4f 2 interaction it is the partially substituted Co 2+ ions in the 4f 1 and 12K sublattices that contribute to the near neighbour 2a-4f 1 and 2b-12K types of interaction

  16. First assessment of Li2O-Bi2O3 ceramic oxides for high temperature carbon dioxide capture

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá(n)ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O-Bi2O3 system.The compounds (Li7BiO6,Li5BiOs,Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction,scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 ℃ under the CO2 atmosphere to evaluate the carbonate formation,which is indicative of the capacity of CO2 capture.Moreover,Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g,which is considerably higher than those of other previously reported ceramics.Li7BiO6 is able to react with CO2 from 240 ℃ to approximately 660 ℃ showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  17. Synthesis of highly efficient Mn{sub 2}O{sub 3} catalysts for CO oxidation derived from Mn-MIL-100

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000 (China); Cui, Lifeng, E-mail: lifeng.cui@gmail.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-07-31

    Highlights: • The morphology of porous Mn{sub 2}O{sub 3} cubes was inherited from Mn-MIL-100 template. • Mn{sub 2}O{sub 3} obtained at calcined temperature of 700 °C displayed high activity. • Enhanced activity is attributed to surface active oxygen, and reduction behavior. - Abstract: In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn{sub 2}O{sub 3} cubes through calcination with air at different temperature. The catalysts were characterized by N{sub 2} adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H{sub 2}-temperature program reduction (H{sub 2}-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn{sub 2}O{sub 3} catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn{sub 2}O{sub 3} catalyst. Mn{sub 2}O{sub 3} catalyst obtained by calcined at 700 °C (Mn{sub 2}O{sub 3}-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T{sub 98}) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn{sub 2}O{sub 3}-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  18. Effects of CO, O2, NO, H2O, and irradiation temperature on the radiation-induced oxidation of SO2

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Nishimura, Koichi; Suzuki, Nobutake; Washino, Masamitsu

    1977-01-01

    When a SO 2 -H 2 O-O 2 -N 2 gaseous mixture was irradiated by electron beams of 1.5 MeV, SO 2 was easily oxidized to H 2 SO 4 . Effects of CO, O 2 , NO, H 2 O, and irradiation temperature on the radiation-induced oxidation of SO 2 were studied by measuring the SO 2 concentration gas chromatographically. The G(-SO 2 ) increased greatly at the addition of a small amount of O 2 , and then decreased gradually with an increase in the O 2 concentration, i.e., the G(-SO 2 ) values were 0.9, 8.0, and 5.3 for the 0, 0.1, and 20% O 2 concentrations at 100 0 C, respectively (Fig.4). The G(-SO 2 ) was independent of the H 2 O concentration in the range of 0.84 to 8.4% (Fig.5). The G(-SO 2 ) decreased with a rise in the irradiation temperature (Fig.6) and an apparent activation energy of the oxidation reaction of SO 2 obtained was -4.2 kcal.mol -1 . The effects of CO, NO, and O 2 on the G(-SO 2 ) showed that SO 2 was mainly oxidized by OH and O and that the contribution of OH to the oxidation of SO 2 increased with an increase in the O 2 concentration (Table 1). The rate constants for the reactions of SO 2 with OH and O, obtained from competitive reactions of SO 2 with CO and O 2 , were 5.4 x 10 11 cm 3 .mol -1 .sec -1 and 5.0 x 10 11 cm 3 .mol -1 .sec -1 , respectively. (auth.)

  19. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode.

    Science.gov (United States)

    Tang, Chun-hua; Yin, Xuesong; Gong, Hao

    2013-11-13

    Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.

  20. Advantages of Stainless Steel Sieves as Support for Catalytic N2O Decomposition over K-doped Co3O4.

    Czech Academy of Sciences Publication Activity Database

    Klyushina, A.; Pacultová, K.; Krejčová, S.; Slowik, G.; Jirátová, Květa; Kovanda, F.; Ryczkowski, J.; Obalová, L.

    2015-01-01

    Roč. 257, Part 1 (2015), s. 2-10 ISSN 0920-5861. [AWPAC2014 - International Symposium on Air & Water Pollution Abatement Catalysis. Krakow, 01.09.2014-05.09.2014] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : N2O catalytic decomposition * Co3O4 * stainless steel support * potassium promoter * TiO2 support Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.312, year: 2015