WorldWideScience

Sample records for co2 geologic storage

  1. Geological storage of CO2

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2005-01-01

    The industrial storage of CO 2 is comprised of three steps: - capture of CO 2 where it is produced (power plants, cement plants, etc.); - transport (pipe lines or boats); - storage, mainly underground, called geological sequestration... Three types of reservoirs are considered: - salted deep aquifers - they offer the biggest storage capacity; - exhausted oil and gas fields; - non-exploited deep coal mine streams. The two latter storage types may allow the recovery of sellable products, which partially or totally offsets the storage costs. This process is largely used in the petroleum industry to improve the productivity of an oil field, and is called FOR (Enhanced Oil Recovery). A similar process is applied in the coal mining industry to recover the imprisoned gas, and is called ECBM (Enhanced Coal Bed methane). Two storage operations have been initiated in Norway and in Canada, as well as research programmes in Europe, North America, Australia and Japan. International organisations to stimulate this technology have been created such as the 'Carbon Sequestration Leadership Forum' and 'the Intergovernmental Group for Climate Change'. This technology will be taken into account in the instruments provided by the Tokyo Protocol. (author)

  2. Natural Analogues of CO2 Geological Storage

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-01-01

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  3. Capture and geological storage of CO2

    International Nuclear Information System (INIS)

    2013-03-01

    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  4. Capture and Geological Storage of CO2

    International Nuclear Information System (INIS)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.

    2009-01-01

    To build on the growing success of the first two international symposia on emission reduction and CO 2 capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO 2 emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO 2 storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO 2 : A global project for carbon management in South-East France (Gilles Munier, Geogreen); Session III

  5. Public Acceptance for Geological CO2-Storage

    Science.gov (United States)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team

    2009-04-01

    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  6. System-level modeling for geological storage of CO2

    OpenAIRE

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related p...

  7. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs

  8. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref

  9. Classification of CO2 Geologic Storage: Resource and Capacity

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.

    2009-01-01

    The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of

  10. Natural Analogues of CO2 Geological Storage; Analogos Naturales del Almacenamiento Geologico de CO2

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L; Pelayo, M; Recreo, F

    2007-07-20

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  11. Geological storage of CO2 : time frames, monitoring and verification

    International Nuclear Information System (INIS)

    Chalaturnyk, R.; Gunter, W.D.

    2005-01-01

    In order to ensure that carbon dioxide (CO 2 ) injection and storage occurs in an environmentally sound and safe manner, many organizations pursuing the development of a CO 2 geological storage industry are initiating monitoring programs that include operational monitoring; verification monitoring; and environmental monitoring. Each represents an increase in the level of technology used and the intensity and duration of monitoring. For each potential site, the project conditions must be defined, the mechanisms that control the fluid flow must be predicted and technical questions must be addressed. This paper reviewed some of the relevant issues in establishing a monitoring framework for geological storage and defined terms that indicate the fate of injected CO 2 . Migration refers to movement of fluids within the injection formation, while leakage refers to movement of fluids outside the injection formation, and seepage refers to movement of fluids from the geosphere to the biosphere. Currently, regulatory agencies focus mostly on the time period approved for waste fluid injection, including CO 2 , into depleted hydrocarbon reservoirs or deep saline aquifers, which is in the order of 25 years. The lifetime of the injection operation is limited by reservoir capacity and the injection rate. Monitoring periods can be divided into periods based on risk during injection-operation (10 to 25 years), at the beginning of the storage period during pressure equilibration (up to 100 years), and over the long-term (from 100 to 1000 years). The 42 commercial acid gas injection projects currently in operation in western Canada can be used to validate the technology for the short term, while validation of long-term storage can be based on natural geological analogues. It was concluded that a monitored decision framework recognizes uncertainties in the geological storage system and allows design decisions to be made with the knowledge that planned long-term observations and their

  12. Noble gas geochemistry to monitor CO2 geological storages

    International Nuclear Information System (INIS)

    Lafortune, St.

    2007-11-01

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO 2 emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO 2 could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO 2 in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO 2 storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO 2 accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  13. Well technologies for CO2 geological storage: CO2-resistant cement

    International Nuclear Information System (INIS)

    Barlet-Gouedard, V.; Rimmele, G.; Porcherie, O.; Goffe, B.

    2007-01-01

    Storing carbon dioxide (CO 2 ) underground is considered the most effective way for long-term safe and low-cost CO 2 sequestration. This recent application requires long-term well-bore integrity. A CO 2 leakage through the annulus may occur much more rapidly than geologic leakage through the formation rock, leading to economic loss, reduction of CO 2 storage efficiency, and potential compromise of the field for storage. The possibility of such leaks raises considerable concern about the long-term well-bore isolation and the durability of hydrated cement that is used to isolate the annulus across the producing/injection intervals in CO 2 -storage wells. We propose a new experimental procedure and methodology to study reactivity of CO 2 -Water-Cement systems in simulating the interaction of the set cement with injected supercritical CO 2 under downhole conditions. The conditions of experiments are 90 deg. C under 280 bars. The evolution of mechanical, physical and chemical properties of Portland cement with time is studied up to 6 months. The results are compared to equivalent studies on a new CO 2 -resistant material; the comparison shows significant promise for this new material. (authors)

  14. Rates of CO2 Mineralization in Geological Carbon Storage.

    Science.gov (United States)

    Zhang, Shuo; DePaolo, Donald J

    2017-09-19

    Geologic carbon storage (GCS) involves capture and purification of CO 2 at industrial emission sources, compression into a supercritical state, and subsequent injection into geologic formations. This process reverses the flow of carbon to the atmosphere with the intention of returning the carbon to long-term geologic storage. Models suggest that most of the injected CO 2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO 3 . The transformation of CO 2 to carbonate minerals requires supply of the necessary divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are highly uncertain and difficult to predict by standard approaches. Here we show that the chemical kinetic observations and experimental results, when they can be reduced to a single cation-release time scale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior as a function of pH, fluid flow rate, and time that the rates of mineralization can be estimated with reasonable certainty. The rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released from silicate minerals by dissolution into pore fluid that has been acidified with dissolved CO 2 . Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when they are evaluated in the context of a reservoir-scale reactive transport simulation, this range becomes much smaller. The reservoir scale simulations provide limits on the applicable conditions under which silicate mineral dissolution and subsequent carbonate mineral precipitation are likely to occur (pH 4.5 to 6, fluid flow velocity less than 5 m/year, and 50-100 years or more after the start of injection). These constraints lead to estimates of

  15. International Symposium on Site Characterization for CO2Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  16. Interactions between CO2, saline water and minerals during geological storage of CO2

    International Nuclear Information System (INIS)

    Hellevang, Helge

    2006-06-01

    The topic of this thesis is to gain a better understanding of interactions between injected CO 2 , aqueous solutions and formation mineralogies. The main focus is concerned with the potential role mineral reactions play in safe long term storage of CO 2 . The work is divided into an experimental part concentrated on the potential of dawsonite (NaAl(OH) 2 CO 3 ) as a permanent storage host of CO 2 , and the development of a new geochemical code ACCRETE that is coupled with the ATHENA multiphase flow simulator. The thesis is composed of two parts: (I) the first part introducing CO 2 storage, geochemical interactions and related work; and (II) the second part that consists of the papers. Part I is composed as follows: Chapter 2 gives a short introduction to geochemical reactions considered important during CO 2 storage, including a thermodynamic framework. Chapter 3 presents objectives of numerical work related to CO 2 -water-rock interactions including a discussion of factors that influence the outcome of numerical simulations. Chapter 4 presents the main results from paper A to E. Chapter 5 give some details about further research that we propose based on the present work and related work in the project. Several new activities have emerged from research on CO 2 -water-rock interaction during the project. Several of the proposed activities are already initiated. Papers A to F are then listed in Part II of the thesis after the citation list. The thesis presents the first data on the reaction kinetics of dawsonite at different pH (Paper A), and comprehensive numerical simulations, both batch- and large scale 3D reactive transport, that illustrate the role different carbonates have for safe storage of CO 2 in geological formations (Papers C to F). The role of dawsonite in CO 2 storage settings is treated throughout the study (Papers A to E) After the main part of the thesis (Part I and II), two appendices are included: Appendix A lists reactions that are included in the

  17. What does CO2 geological storage really mean?

    International Nuclear Information System (INIS)

    2008-01-01

    It is now accepted that human activities are disturbing the carbon cycle of the planet. CO 2 , a greenhouse gas, has accumulated in the atmosphere where it contributes to climate change. Amongst the spectrum of short term measures that need to be urgently implemented to mitigate climate change, CO 2 capture and storage can play a decisive role as it could contribute 33% of the CO 2 reduction needed by 2050. This document aims to explain this solution by answering the following questions: where and how much CO 2 can we store underground, How can we transport and inject large quantities of CO 2 , What happens to the CO 2 once in the storage reservoir? Could CO 2 leak from the reservoir and if so, what might be the consequences? How can we monitor the storage site at depth and at the surface? What safety criteria need to be imposed and respected? (A.L.B.)

  18. Capture and geologic storage of carbon dioxide (CO2)

    International Nuclear Information System (INIS)

    2004-11-01

    This dossier about carbon sequestration presents: 1 - the world fossil fuels demand and its environmental impact; 2 - the solutions to answer the climatic change threat: limitation of fossil fuels consumption, development of nuclear and renewable energies, capture and storage of CO 2 (environmental and industrial advantage, cost); 3 - the CO 2 capture: post-combustion smokes treatment, oxi-combustion techniques, pre-combustion techniques; 4 - CO 2 storage: in hydrocarbon deposits (Weyburn site in Canada), in deep saline aquifers (Sleipner and K12B (North Sea)), in non-exploitable coal seams (Recopol European project); 5 - international and national mobilization: IEA R and D program, USA (FutureGen zero-emission coal-fired power plant, Carbon Sequestration Leadership forum), European Union (AZEP, GRACE, GESTCO, CO2STORE, NASCENT, RECOPOL, Castor, ENCAP, CO2sink etc programs), French actions (CO 2 club, network of oil and gas technologies (RTPG)), environmental stake, competitiveness, research stake. (J.S.)

  19. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Selecci0n de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Martinez, R; Recreo, F; Prado, P; Campos, R; Pelayo, M; Losa, A de la; Hurtado, A; Lomba, L; Perez del Villar, L; Ortiz, G; Sastre, J; Zapatero, M A; Suarez, I; Arenillas, A

    2007-09-18

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs.

  20. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Seleccion de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Martinez, R; Recreo, F; Prado, P; Campos, R; Pelayo, M; Losa, A de la; Hurtado, A; Lomba, L; Perez del Villar, L; Ortiz, G; Sastre, J

    2006-07-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref.

  1. Microorganisms implication in the CO2 geologic storage processes

    International Nuclear Information System (INIS)

    Dupraz, S.

    2008-01-01

    A first result of this thesis is the building and validation of a circulation reactor named BCC (Bio-mineralization Control Cell). The reactor has the functionality of a biological reactor and allows a monitoring of physico-chemical characteristics such as Eh, pH, electrical conductivity, spectro-photochemical parameters. It also has a capability of percolation through rock cores. It is a first step toward an analogical modeling of interactions between injected CO 2 and deep bio-spheric components. Moreover, a new spectro-photochemical method for monitoring reduced sulfur species has been developed which allows efficient monitoring of sulfate-reducing metabolisms. In the thesis, we have tested four metabolisms relevant to bio-mineralisation or biological assimilation of CO 2 : a reference ureolytic aerobic strain, Bacillus pasteurii, a sulfate-reducing bacterium, Desulfovibrio longus, a sulfate-reducing consortium (DVcons) and an homoacetogenic bacterium, Acetobacterium carbinolicum. In the case of Bacillus pasteurii, which is considered as a model for non photosynthetic prokaryotic carbonate bio-mineralization, we have demonstrated that the biological basification and carbonate bio-mineralization processes can be modelled accurately both analogically and numerically under conditions relevant to deep CO 2 storage, using a synthetic saline groundwater. We have shown that salinity has a positive effect on CO 2 mineral trapping by this bacterium; we have measured the limits of the system in terms of CO 2 pressure and we have shown that the carbonates that nucleate on intracellular calcium phosphates have specific carbon isotope signatures. The studied deep-subsurface strains (Desulfovibrio longus and Acetobacterium carbinolicum) as well as the sulfate-reducing consortium also have capabilities of converting CO 2 into solid carbonates, much less efficient though than in the case of Bacillus pasteurii. However, once inoculated in synthetic saline groundwater and

  2. Numerical Simulation of Natural Convection in Heterogeneous Porous media for CO2 Geological Storage

    NARCIS (Netherlands)

    Ranganathan, P.; Farajzadeh, R.; Bruining, J.; Zitha, P.L.J.

    2012-01-01

    We report a modeling and numerical simulation study of density-driven natural convection during geological CO2 storage in heterogeneous formations. We consider an aquifer or depleted oilfield overlain by gaseous CO2, where the water density increases due to CO2 dissolution. The heterogeneity of the

  3. Residual and Solubility trapping during Geological CO2 storage : Numerical and Experimental studies

    OpenAIRE

    Rasmusson, Maria

    2018-01-01

    Geological storage of carbon dioxide (CO2) in deep saline aquifers mitigates atmospheric release of greenhouse gases. To estimate storage capacity and evaluate storage safety, knowledge of the trapping mechanisms that retain CO2 within geological formations, and the factors affecting these is fundamental. The objective of this thesis is to study residual and solubility trapping mechanisms (the latter enhanced by density-driven convective mixing), specifically in regard to their dependency on ...

  4. Capture and geological storage of CO2. Innovation, industrial stakes and realizations

    International Nuclear Information System (INIS)

    Lavergne, R.; Podkanski, J.; Rohner, H.; Otter, N.; Swift, J.; Dance, T.; Vesseron, Ph.; Reich, J.P.; Reynen, B.; Wright, L.; Marliave, L. de; Stromberg, L.; Aimard, N.; Wendel, H.; Erdol, E.; Dino, R.; Renzenbrink, W.; Birat, J.P.; Czernichowski-Lauriol, I.; Christensen, N.P.; Le Thiez, P.; Paelinck, Ph.; David, M.; Pappalardo, M.; Moisan, F.; Marston, Ph.; Law, M.; Zakkour, P.; Singer, St.; Philippe, Th.; Philippe, Th.

    2007-01-01

    : the ULCOS program; CO 2 capture technologies: road-maps and potential cost abatement; membranes: oxygen production and hydrogen separation; CO2GeoNet: integration of European research for the establishment of confidence in CO 2 geologic storage; CO2SINK, CO 2 geologic storage test at the European pilot site of Ketzin (Germany); storage in aquifers for European industrial projects: AQUA CO2; the US approach: US standards for the qualification of a CO 2 storage in agreement with federal and state regulations; legal and regulatory aspects; societal acceptation; CO 2 capture, geologic storage and carbon market; economic aspects of CO 2 capture and storage; an experience of implementation of 'clean development mechanisms' in an industrial strategy; closing talk. (J.S.)

  5. Predicting capillarity of mudrocks for geological storage of CO2

    Science.gov (United States)

    Busch, Andreas; Amann-Hildenbrand, Alexandra

    2013-04-01

    Various rock types were investigated, with the main focus on the determination and prediction of the capillary breakthrough and snap-off pressure in mudrocks (e.g. shales, siltstones, mudstones). Knowledge about these two critical pressures is important for the prediction of the capillary sealing capacity of CO2 storage sites. Capillary pressure experiments, when performed on low-permeable core plugs, are difficult and time consuming. Laboratory measurements on core plugs under in-situ conditions are mostly performed using nitrogen, but also with methane and carbon dioxide. Therefore, mercury porosimetry measurements (MIP) are preferably used in the industry to determine an equivalent value for the capillary breakthrough pressure. These measurements have the advantage to be quick and cheap and only require cuttings or trim samples. When evaluating the database in detail we find that (1) MIP data plot well with the drainage breakthrough pressures determined on sample plugs, while the conversion of the system Hg/air to CO2/brine using interfacial and wettability data does not provide a uniform match, potentially caused by non fully water-wet conditions; (2) brine permeability versus capillary breakthrough pressure determined on sample plugs shows a good match and could provide a first estimate of Pc-values since permeability is easier to determine than capillary breakthrough pressures. For imbibition snap-off pressures a good correlation was found for CH4 measured on sample plugs only; (3) porosity shows a fairly good correlation with permeability for sandstone only, and with plug-derived capillary breakthrough pressures for sandstones, carbonates and evaporates. No such correlations exist for mudrocks; (4) air and brine-derived permeabilities show an excellent correlation and (5) from the data used we do not infer any direct correlations between specific surface area (SSA), mineralogy or organic carbon content with permeability or capillary pressure however were

  6. International and European legal aspects on underground geological storage of CO2

    International Nuclear Information System (INIS)

    Wall, C.; Olvstam, M.-L.; Bernstone, C.

    2005-01-01

    The often disconnected international and European legal rules regarding carbon dioxide (CO 2 ) storage in geological formations create legal uncertainty and a slow down in investments. Existing rules for waste dumping, such as the OSPAR and London Conventions implies that CO 2 storage in sub seabed geological formations is not permitted for climate change mitigating purposes. This paper emphasized that even in cases when complete certainty about the exact application of a legal rule is not possible, it is necessary to know if an activity is lawful. It also emphasized that CO 2 storage should be a priority in the international agenda. The current gaps in knowledge concerning the relevant international and European legislation directly related to CO 2 storage were identified in this paper, including long-term liability for risk of damages caused during the injection phase of the well. The current relevant legislation that is not directly concerned with CO 2 storage but which might have an impact on future legislation was also discussed along with relevant legal principles that might influence future legislation. Some of the many ongoing projects concerning CO 2 storage were reviewed along with papers and reports on regulating CO 2 storage. It was concluded that if CO 2 capture and storage is going to be a large-scale concept for mitigating climate change, the legal issues and requirements need to be an area of priority. 16 refs

  7. Reduction of emissions and geological storage of CO2. Innovation an industrial stakes

    International Nuclear Information System (INIS)

    Mandil, C.; Podkanski, J.; Socolow, R.; Dron, D.; Reiner, D.; Horrocks, P.; Fernandez Ruiz, P.; Dechamps, P.; Stromberg, L.; Wright, I.; Gazeau, J.C.; Wiederkehr, P.; Morcheoine, A.; Vesseron, P.; Feron, P.; Feraud, A.; Torp, N.T.; Christensen, N.P.; Le Thiez, P.; Czernichowski, I.; Hartman, J.; Roulet, C.; Roberts, J.; Zakkour, P.; Von Goerne, G.; Armand, R.; Allinson, G.; Segalen, L.; Gires, J.M.; Metz, B.; Brillet, B.

    2005-01-01

    An international symposium on the reduction of emissions and geological storage of CO 2 was held in Paris from 15 to 16 September 2005. The event, jointly organized by IFP, ADEME and BRGM, brought together over 400 people from more than 25 countries. It was an opportunity to review the international stakes related to global warming and also to debate ways of reducing CO 2 emissions, taking examples from the energy and transport sectors. The last day was dedicated to technological advances in the capture and geological storage of CO 2 and their regulatory and economic implications. This document gathers the available transparencies and talks presented during the colloquium: Opening address by F. Loos, French Minister-delegate for Industry; Session I - Greenhouse gas emissions: the international stakes. Outlook for global CO 2 emissions. The global and regional scenarios: Alternative scenarios for energy use and CO 2 emissions until 2050 by C. Mandil and J. Podkanski (IEA), The stabilization of CO 2 emissions in the coming 50 years by R. Socolow (Princeton University). Evolution of the international context: the stakes and 'factor 4' issues: Costs of climate impacts and ways towards 'factor 4' by D. Dron (ENS Mines de Paris), CO 2 emissions reduction policy: the situation in the United States by D. Reiner (MIT/Cambridge University), Post-Kyoto scenarios by P. Horrocks (European Commission), Possibilities for R and D in CO 2 capture and storage in the future FP7 program by P. Fernandez Ruiz and P. Dechamps (European Commission). Session II - CO 2 emission reductions in the energy and transport sectors. Reducing CO 2 emissions during the production and conversion of fossil energies (fixed installations): Combined cycles using hydrogen by G. Haupt (Siemens), CO 2 emission reductions in the oil and gas industry by I. Wright (BP). Reducing CO 2 emissions in the transport sector: Sustainable transport systems by P. Wiederkehr (EST International), The prospects for reducing

  8. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  9. Australia's CO2 geological storage potential and matching of emission sources to potential sinks

    International Nuclear Information System (INIS)

    Bradshaw, J.; Bradshaw, B.E.; Wilson, P.; Spencer, L.; Allinson, G.; Nguyen, V.

    2004-01-01

    Within the GEODISC program of the Australian Petroleum Cooperative Research Centre (APCRC), Geoscience Australia (GA) and the University of New South Wales (UNSW) have completed an analysis of the potential for the geological storage of CO 2 . The geological analysis assessed over 100 potential environmentally sustainable sites for CO 2 injection (ESSCIs) by applying a deterministic risk assessment based on the five factors of: storage capacity, injectivity potential, site details, containment and natural resources. Utilising a risked storage capacity suggests that at a regional scale Australia has a CO 2 storage potential in excess of 1600 years of current annual total net emissions. Whilst this estimate does give an idea of the enormous magnitude of the geological storage potential of CO 2 in Australia, it does not account for various factors that are evident in source to sink matching. If preferences due to source to sink matching are incorporated, and an assumption is made that some economic imperative will apply to encourage geological storage of CO 2 , then a more realistic analysis can be derived. In such a case, Australia may have the potential to store a maximum of 25% of our total annual net emissions, or approximately 100-115 Mt CO 2 per year. (author)

  10. Numerical simulation of CO2 geological storage in saline aquifers – case study of Utsira formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheming; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    CO2 geological storage (CGS) is one of the most promising technologies to address the issue of excessive anthropogenic CO2 emissions in the atmosphere due to fossil fuel combustion for electricity generation. In order to fully exploit the storage potential, numerical simulations can help in determining injection strategies before the deployment of full scale sequestration in saline aquifers. This paper presents the numerical simulations of CO2 geological storage in Utsira saline formation where the sequestration is currently underway. The effects of various hydrogeological and numerical factors on the CO2 distribution in the topmost hydrogeological layer of Utsira are discussed. The existence of multiple pathways for upward mobility of CO2 into the topmost layer of Utsira as well as the performance of the top seal are also investigated.

  11. Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage

    NARCIS (Netherlands)

    Jones, D.G.; Beaubien, S.E.; Blackford, J.C.; Foekema, E.M.; Lions, J.; Vittor, de C.; West, J.M.; Widdicombe, S.; Hauton, C.; Queiros, A.M.

    2015-01-01

    This paper reviews research into the potential environmental impacts of leakage from geological storage of CO2 since the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage in 2005. Possible impacts are considered on onshore (including drinking water aquifers) and offshore

  12. Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security

    Science.gov (United States)

    Pawar, R.

    2017-12-01

    Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.

  13. Leakage of CO2 from geologic storage: Role of secondaryaccumulation at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2007-05-31

    Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."

  14. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage.

    Science.gov (United States)

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue

    2017-09-19

    Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO 2 transforms from a separate phase to CO 2 (aq) and HCO 3 - by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO 2 (aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO 2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO 2 and formation water. A better understanding of these effects on the CO 2 -water two-phase flow will improve predictions of the long-term CO 2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO 2 exsolution and mineral dissolution/precipitation on CO 2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO 2 (sc/g), CO 2 (aq), HCO 3 - , and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO 2 dissolved water is

  15. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    DEFF Research Database (Denmark)

    Patil, Ravi; Colls, Jeremy J; Steven, Michael D

    2010-01-01

    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response...... detection field facility developed at the University of Nottingham was used to inject CO2 gas at a controlled flow rate (1 l min-1) into soil to simulate build-up of soil CO2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO2....... This study showed adverse effects of CO2 gas on agro-ecosystem in case of leakage from storage sites to surface....

  16. Gas-water-rock interactions induced by reservoir exploitation, CO2 sequestration, and other geological storage

    International Nuclear Information System (INIS)

    Lecourtier, J.

    2005-01-01

    Here is given a summary of the opening address of the IFP International Workshop: 'gas-water-rock interactions induced by reservoir exploitation, CO 2 sequestration, and other geological storage' (18-20 November 2003). 'This broad topic is of major interest to the exploitation of geological sites since gas-water-mineral interactions determine the physicochemical characteristics of these sites, the strategies to adopt to protect the environment, and finally, the operational costs. Modelling the phenomena is a prerequisite for the engineering of a geological storage, either for disposal efficiency or for risk assessment and environmental protection. During the various sessions, several papers focus on the great achievements that have been made in the last ten years in understanding and modelling the coupled reaction and transport processes occurring in geological systems, from borehole to reservoir scale. Remaining challenges such as the coupling of mechanical processes of deformation with chemical reactions, or the influence of microbiological environments on mineral reactions will also be discussed. A large part of the conference programme will address the problem of mitigating CO 2 emissions, one of the most important issues that our society must solve in the coming years. From both a technical and an economic point of view, CO 2 geological sequestration is the most realistic solution proposed by the experts today. The results of ongoing pilot operations conducted in Europe and in the United States are strongly encouraging, but geological storage will be developed on a large scale in the future only if it becomes possible to predict the long term behaviour of stored CO 2 underground. In order to reach this objective, numerous issues must be solved: - thermodynamics of CO 2 in brines; - mechanisms of CO 2 trapping inside the host rock; - geochemical modelling of CO 2 behaviour in various types of geological formations; - compatibility of CO 2 with oil-well cements

  17. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  18. CO 2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage

    KAUST Repository

    Espinoza, D. Nicolas

    2017-10-23

    Small pores in high specific surface clay-rich caprocks give rise to high capillary entry pressures and high viscous drag that hinder the migration of buoyant carbon dioxide CO2. We measured the breakthrough pressure and ensuing CO2 permeability through sediment plugs prepared with sand, silt, kaolinite and smectite, and monitored their volumetric deformation using high-pressure oedometer cells. The data show water expulsion and volumetric contraction prior to CO2 breakthrough, followed by preferential CO2 flow thereafter. Our experimental results and data gathered from previous studies highlight the inverse relationship between breakthrough pressure and pore size, as anticipated by Laplace’s equation. In terms of macro-scale parameters, the breakthrough pressure increases as the sediment specific surface increases and the porosity decreases. The breakthrough pressure is usually lower than the values predicted with average pore size estimations; it can reach ∼6.2MPa in argillaceous formations, and 11.2MPa in evaporites. The CO2 permeability after breakthrough is significantly lower than the absolute permeability, but it may increase in time due to water displacement and desiccation. Leakage will be advection-controlled once percolation takes place at most storage sites currently being considered. Diffusive and advective CO2 leaks through non-fractured caprocks will be minor and will not compromise the storage capacity at CO2 injection sites. The “sealing number” and the “stability number” combine the initial fluid pressure, the buoyant pressure caused by the CO2 plume, the capillary breakthrough pressure of the caprock, and the stress conditions at the reservoir depth; these two numbers provide a rapid assessment of potential storage sites. Unexpected CO2 migration patterns emerge due to the inherent spatial variability and structural discontinuities in geological formations; sites with redundant seal layers should be sought for the safe and long

  19. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    International Nuclear Information System (INIS)

    Patil, Ravi H.; Colls, Jeremy J.; Steven, Michael D.

    2010-01-01

    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO 2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response detection field facility developed at the University of Nottingham was used to inject CO 2 gas at a controlled flow rate (1 l min -1 ) into soil to simulate build-up of soil CO 2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO 2 concentrations was significantly higher in gassed pasture plots than in gassed fallow plots. Germination of winter bean sown in gassed fallow plots was severely hindered and the final crop stand was reduced to half. Pasture grass showed stress symptoms and above-ground biomass was significantly reduced compared to control plot. A negative correlation (r = -0.95) between soil CO 2 and O 2 concentrations indicated that injected CO 2 displaced O 2 from soil. Gassing CO 2 reduced soil pH both in grass and fallow plots (p = 0.012). The number of earthworm castings was twice as much in gassed plots than in control plots. This study showed adverse effects of CO 2 gas on agro-ecosystem in case of leakage from storage sites to surface.

  20. Southern Adriatic sea as a potential area for CO2 geological storage

    International Nuclear Information System (INIS)

    Volpi, V.; Forlin, F.; Donda, F.; Civile, D.; Facchin, L.; Sauli, L.; Merson, B.; Sinza-Mendieta, K.; Shams, A.

    2015-01-01

    The Southern Adriatic Sea is one of the five prospective areas for CO 2 storage being evaluated under the three year (FP7) European SiteChar project dedicated to the characterization of European CO 2 storage sites. The potential reservoir for CO 2 storage is represented by a carbonate formation, the wackstones and packstones of the Scaglia Formation (Upper Cretaceous-Paleogene). In this paper, we present the geological characterization and the 3D modeling that led to the identification of three sites, named Grazia, Rovesti and Grifone, where the Scaglia Formation, with an average thickness of 50 m, reveals good petrophysical characteristics and is overlain by an up to 1 200 thick cap-rock. The vicinity of the selected sites to the Enel - Federico II power plant (one of the major Italian CO 2 emitter) where a pilot plant for CO 2 capture has been already started in April 2010, represents a good opportunity to launch the first Carbon Capture and Storage (CCS) pilot project in Italy and to apply this technology at industrial level, strongly contributing at the same time at reducing the national CO 2 emissions. (authors)

  1. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    Science.gov (United States)

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  2. A methodology for the geological and numerical modelling of CO2 storage in deep saline formations

    Science.gov (United States)

    Guandalini, R.; Moia, F.; Ciampa, G.; Cangiano, C.

    2009-04-01

    Several technological options have been proposed to stabilize and reduce the atmospheric concentrations of CO2 among which the most promising are the CCS technologies. The remedy proposed for large stationary CO2 sources as thermoelectric power plants is to separate the flue gas, capturing CO2 and to store it into deep subsurface geological formations. In order to support the identification of potential CO2 storage reservoirs in Italy, the project "Identification of Italian CO2 geological storage sites", financed by the Ministry of Economic Development with the Research Fund for the Italian Electrical System under the Contract Agreement established with the Ministry Decree of march 23, 2006, has been completed in 2008. The project involves all the aspects related to the selection of potential storage sites, each carried out in a proper task. The first task has been devoted to the data collection of more than 6800 wells, and their organization into a geological data base supported by GIS, of which 1911 contain information about the nature and the thickness of geological formations, the presence of fresh, saline or brackish water, brine, gas and oil, the underground temperature, the seismic velocity and electric resistance of geological materials from different logs, the permeability, porosity and geochemical characteristics. The goal of the second task was the set up of a numerical modelling integrated tool, that is the in order to allow the analysis of a potential site in terms of the storage capacity, both from solubility and mineral trapping points of view, in terms of risk assessment and long-term storage of CO2. This tool includes a fluid dynamic module, a chemical module and a module linking a geomechanical simulator. Acquirement of geological data, definition of simulation parameter, run control and final result analysis can be performed by a properly developed graphic user interface, fully integrated and calculation platform independent. The project is then

  3. Applications of geological labs on chip for CO_2 storage issues

    International Nuclear Information System (INIS)

    Morais, Sandy

    2016-01-01

    CO_2 geological storage in deep saline aquifers represents a mediation solution for reducing the anthropogenic CO_2 emissions. Consequently, this kind of storage requires adequate scientific knowledge to evaluate injection scenarios, estimate reservoir capacity and assess leakage risks. In this context, we have developed and used high pressure/high temperature micro-fluidic tools to investigate the different mechanisms associated with CO_2 geological storage in deep saline aquifers. The silicon-Pyrex 2D porous networks (Geological Labs On Chips) can replicate the reservoir p,T conditions (25 ≤ T ≤ 50 C, 50 ≤ p ≤ 10 MPa), geological and topological properties. This thesis manuscript first highlights the strategies developed during this work to fabricate the GLoCs and to access to global characteristics of our porous media such as porosity and permeability, which are later compared to numerical modelling results. The carbon dioxide detection in GLoCs mimicking p,T conditions of geological reservoirs by using the direct integration of optical fiber for IR spectroscopy is presented. I then detail the strategies for following the dissolution of carbonates in GLoCs with X-rays laminography experiments.Then, the manuscript focuses on the use of GLoCs to investigate each CO_2 trapping mechanism at the pore scale. The direct optical visualization and image processing allow us to follow the evolution of the injected CO_2/aqueous phase within the reservoir, including displacement mechanisms and pore saturation levels. Eventually, I present the ongoing works such as experiments with reactive brines and hydrates formations in porous media [fr

  4. Geological storage of CO2: risks analysis, monitoring and measures. Final report

    International Nuclear Information System (INIS)

    Abou Akar, A.; Audibert, N.; Audigane, P.; Baranger, P.; Bonijoly, D.; Carnec, C.; Czernichowski, I.; Debeglia, N.; Fabriol, H.; Foerster, E.; Gaus, I.; Le Nindre, Y.; Michel, K.; Morin, D.; Roy, S.; Sanjuan, B.; Sayedi, D.

    2005-01-01

    To use the CO 2 geological storage as a coherent solution in the greenhouse gases reduction it needs to answer to safety and monitoring conditions. In this framework the BRGM presents this study in six chapters: risks analysis, the monitoring methods (geochemistry, geophysics, aerial monitoring, biochemistry, hydrogeology), the metrology, the corrosion problems, the thermal, hydrodynamical, geochemical and mechanical simulation and the today and future regulations. (A.L.B.)

  5. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  6. The potential of geological storage of CO2 in Austria: a techno-economic assessment

    Science.gov (United States)

    Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy

    2014-05-01

    An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a combined emission of just over 20Mt/y. According to the IEA, CO2 capture and geological storage (CCS) can reduce the global CO2 emission until 2050 by 17%. A correct assessment of CCS needs to start with the storage potential. Prior to this study, only general estimates of the theoretical capacity of Austrian reservoirs were available, thus, up until now, the realistic potential for CCS technology has not been assessed. Both for policy and industry, an assessment of the matched capacity is required, which is the capacity that actually will be used in CCS projects. This hurdle can be taken by applying a recently developed methodology (Welkenhuysen et al., 2013). This policy support system (PSS) consists of two parts, PSS Explorer and PSS III simulator. In brief, the methodology is based on expert judgements of potential reservoirs. These assessments can provide the best available data, including the expert's experience and possibly confidential data, without disclosing specific data. The geo-techno-economic calculation scheme PSS Explorer uses the expert input to calculate for each individual reservoir an assessment of the practical capacity (as probability density functions), in function of an acceptable price for storage. This practical capacity can then be used by the techno-economic PSS III simulator to perform advanced source-sink matching until 2050 and thus provide the matched reservoir capacity. The analysed reservoirs are 7 active or abandoned oil and gas reservoirs in Austria. The simulation of the electricity and iron & steel sector of Austria resulted in the estimation of the geological storage potential, taking into account geological, technological and

  7. Assessment of the potential for geological storage of CO2 in the vicinity of Moneypoint, Co. Clare, Ireland

    NARCIS (Netherlands)

    Farrelly, I.; Loske, B.; Neele, F.; Holdstock, M.

    2011-01-01

    The largest single point CO2 emitter in Ireland, the Moneypoint Power Station (3.95 Mt CO2 per annum), is located in Co. Clare and geologically lies within the Clare Basin. In terms of the economics of transportation of CO2 from Moneypoint, a possible local storage site would be favoured. The study

  8. A laboratory study of supercritical CO2 adsorption on cap rocks in the geological storage conditions

    Science.gov (United States)

    Jedli, Hedi; Jbara, Abdessalem; Hedfi, Hachem; Bouzgarrou, Souhail; Slimi, Khalifa

    2017-04-01

    In the present study, various cap rocks have been experimentally reacted in water with supercritical CO2 in geological storage conditions ( P = 8 × 106 Pa and T = 80 °C) for 25 days. To characterize the potential CO2-water-rock interactions, an experimental setup has been built to provide additional information concerning the effects of structure, thermal and surface characteristics changes due to CO2 injection with cap rocks. In addition, CO2 adsorption capacities of different materials (i.e., clay evaporate and sandstone) are measured. These samples were characterized by XRD technique. The BET specific surface area was determined by nitrogen isotherms. In addition, thermal characteristics of untreated adsorbents were analyzed via TGA method and topography surfaces are identified by Scanning Electron Microscope (SEM). Taking into account pressure and temperature, the physical as well as chemical mechanisms of CO2 retention were determined. Isotherm change profiles of samples for relative pressure range indicate clearly that CO2 was adsorbed in different quantities. In accordance with the X-ray diffraction, a crystalline phase was formed due to the carbonic acid attack and precipitation of some carbonate.

  9. Simplified models of rates of CO2 mineralization in Geologic Carbon Storage

    Science.gov (United States)

    DePaolo, D. J.; Zhang, S.

    2017-12-01

    Geologic carbon storage (GCS) reverses the flow of carbon to the atmosphere, returning the carbon to long-term geologic storage. Models suggest that most of the injected CO2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO3. The transformation of CO2 to carbonate minerals requires supply of divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are difficult to predict. We show that the chemical kinetic observations and experimental results, when reduced to a single timescale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior that the rates of mineralization can be estimated with reasonable certainty. Rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released by dissolution into pore fluid that has been acidified with dissolved CO2. Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when evaluated in the context of reservoir-scale reactive transport simulations, this range becomes much smaller. Reservoir scale simulations indicate that silicate mineral dissolution and subsequent carbonate mineral precipitation occur at pH 4.5 to 6, fluid flow velocity less than 5m/yr, and 50-100 years or more after the start of injection. These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals (ca. 20%), and confirms that when reservoir rock mineralogy is not favorable the fraction of CO2 converted to carbonate minerals is minimal over 104 years. A sufficient amount of reactive minerals represents the condition by which the available cations per volume of rock plus pore

  10. Probabilistic modelling of rock damage: application to geological storage of CO2

    International Nuclear Information System (INIS)

    Guy, N.

    2010-01-01

    The storage of CO 2 in deep geological formations is considered as a possible way to reduce emissions of greenhouse gases in the atmosphere. The condition of the rocks constituting the reservoir is a key parameter on which rely both storage safety and efficiency. The objective of this thesis is to characterize the risks generated by a possible change of mechanical and transfer properties of the material of the basement after an injection of CO 2 . Large-scale simulations aiming at representing the process of injection of CO 2 at the supercritical state into an underground reservoir were performed. An analysis of the obtained stress fields shows the possibility of generating various forms of material degradation for high injection rates. The work is devoted to the study of the emergence of opened cracks. Following an analytical and simplified study of the initiation and growth of opened cracks based on a probabilistic model, it is shown that the formation of a crack network is possible. The focus is then to develop in the finite element code Code Aster a numerical tool to simulate the formation of crack networks. A nonlocal model based on stress regularization is proposed. A test on the stress intensity factor is used to describe crack propagation. The initiation of new cracks is modeled by a Poisson-Weibull process. The used parameters are identified by an experimental campaign conducted on samples from an actual geological site for CO 2 storage. The model developed is then validated on numerical cases, and also against experimental results carried out herein. (author)

  11. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    Science.gov (United States)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These

  12. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  13. Geoelectric Monitoring of geological CO2 storage at Ketzin, Germany (CO2SINK project): Downhole and Surface-Downhole measurements

    Science.gov (United States)

    Kiessling, D.; Schuett, H.; Schoebel, B.; Krueger, K.; Schmidt-Hattenberger, C.; Schilling, F.

    2009-04-01

    Numerical models of the CO2 storage experiment CO2SINK (CO2 Storage by Injection into a Natural Saline Aquifer at Ketzin), where CO2 is injected into a deep saline aquifer at roughly 650 m depth, yield a CO2 saturation of approximately 50% for large parts of the plume. Archie's equation predicts an increase of the resistivity by a factor of approximately 3 to 4 for the reservoir sandstone, and laboratory tests on Ketzin reservoir samples support this prediction. Modeling results show that tracking the CO2 plume may be doable with crosshole resistivity surveys under these conditions. One injection well and two observation wells were drilled in 2007 to a depth of about 800 m and were completed with "smart" casings, arranged L-shaped with distances of 50 m and 100 m. 45 permanent ring-shaped steel electrodes were attached to the electrically insulated casings of the three Ketzin wells at 590 m to 735 m depth with a spacing of about 10 m. It is to our knowledge the deepest permanent vertical electrical resistivity array (VERA) worldwide. The electrodes are connected to the current power supply and data registration units at the surface through custom-made cables. This deep electrode array allows for the registration of electrical resistivity tomography (ERT) data sets at basically any desired repetition rate and at very low cost, without interrupting the injection operations. The installation of all 45 electrodes succeeded. The electrodes are connected to the electrical cable, and the insulated casing stood undamaged. Even after 2-odd years under underground conditions only 6 electrodes are in a critical state now, caused by corrosion effects. In the framework of the COSMOS project (CO2-Storage, Monitoring and Safety Technology), supported by the German "Geotechnologien" program, the geoelectric monitoring has been performed. The 3D crosshole time-laps measurements are taken using dipole-dipole configurations. The data was inverted using AGI EarthImager 3D to obtain 3D

  14. A Framework to Estimate CO2 Leakage associated with Geological Storage in Mature Sedimentary Basins

    Science.gov (United States)

    Celia, M. A.; Bachu, S.; Gasda, S.

    2002-12-01

    Geological storage of carbon dioxide requires careful risk analysis to avoid unintended consequences associated with the subsurface injection. Most negative consequences of subsurface injection are associated with leakage of the injected CO2 out of the geological formation into which it is injected. Such leakage may occur through natural geological features, including fractures and faults, or it may occur through human-created pathways such as existing wells. Possible leakage of CO2 through existing wells appears to be especially important in mature sedimentary basins that have been explored intensively and exploited for hydrocarbon production. In the Alberta Basin of western Canada, more than 300,000 oil and gas wells have been drilled, while in the state of Texas in the United States, more than 1,500,000 wells have been drilled. Many of these wells have been abandoned, and the information available to describe their current state is highly variable and sometimes nonexistent. Because these wells represent possible direct conduits from the injection zone to the land surface, a comprehensive assessment of leakage potential associated with these wells needs to be pursued. Analysis of leakage potential associated with existing wells must combine a data mining component with a multi-level modeling effort to assess leakage potential in a probabilistic framework. Information available for existing wells must be categorized and analyzed, and general leakage characteristics associated with wells of varying properties must be quantified. One example of a realistic target formation is the Viking Formation in Alberta, which is overlain by a thick shale layer and contains hydrocarbon in some locations. The existence of hydrocarbon in the formation indicates that the overlying shale layer is an effective barrier to flow, and therefore this is a good candidate formation for CO2 storage. However, the formation and its cap rock are punctured by approximately 180,000 wells, with

  15. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO2 Storage Reservoirs.

    Science.gov (United States)

    Carroll, Susan A; Iyer, Jaisree; Walsh, Stuart D C

    2017-08-15

    Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids from the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The

  16. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yujie Diao

    2017-01-01

    Full Text Available In China, south of the Yangtze River, there are a large number of carbon sources, while the Sichuan Basin is the largest sedimentary basin; it makes sense to select the targets for CO2 geological storage (CGUS early demonstration. For CO2 enhanced oil and gas, coal bed methane recovery (CO2-EOR, EGR, and ECBM, or storage in these depleted fields, the existing oil, gas fields, or coal seams could be the target areas in the mesoscale. This paper proposed a methodology of GIS superimposed multisource information assessment of geological suitability for CO2 enhanced water recovery (CO2-EWR or only storage in deep saline aquifers. The potential per unit area of deep saline aquifers CO2 storage in Central Sichuan is generally greater than 50 × 104 t/km2 at P50 probability level, with Xujiahe group being the main reservoir. CO2 storage potential of depleted gas fields is 53.73 × 108 t, while it is 33.85 × 108 t by using CO2-EGR technology. This paper recommended that early implementation of CGUS could be carried out in the deep saline aquifers and depleted gas fields in the Sichuan Basin, especially that of the latter because of excellent traps, rich geological data, and well-run infrastructures.

  17. Geological storage of CO2 : Mechanical and chemical effects on host and seal formations

    NARCIS (Netherlands)

    Hangx, Suzanne

    2009-01-01

    The socio-economic impact of global warming resulting from anthropogenic CO2 emissions has lead to much attention for carbon mitigation strategies in recent years. One of the most promising ways of disposing of CO2 is through Carbon Capture and Storage (CCS), entailing CO2 capture at source,

  18. The effect of CO2 on the mechanical properties of the Captain Sandstone: Geological storage of CO2 at the Goldeneye field (UK)

    NARCIS (Netherlands)

    Hangx, Suzanne|info:eu-repo/dai/nl/30483579X; van der Linden, A.; Marcelis, F.; Bauer, A.

    2013-01-01

    Geological storage of CO2 in clastic reservoirs is expected to have a variety of coupled chemical-mechanical effects, which may damage the overlying caprock and/or the near-wellbore area. We performed conventional triaxial creep experiments, combined with fluid flow-through experiments (brine and

  19. Uncertainty studies and risk assessment for CO2 storage in geological formations

    International Nuclear Information System (INIS)

    Walter, Lena Sophie

    2013-01-01

    Carbon capture and storage (CCS) in deep geological formations is one possible option to mitigate the greenhouse gas effect by reducing CO 2 emissions into the atmosphere. The assessment of the risks related to CO 2 storage is an important task. Events such as CO 2 leakage and brine displacement could result in hazards for human health and the environment. In this thesis, a systematic and comprehensive risk assessment concept is presented to investigate various levels of uncertainties and to assess risks using numerical simulations. Depending on the risk and the processes, which should be assessed, very complex models, large model domains, large time scales, and many simulations runs for estimating probabilities are required. To reduce the resulting high computational costs, a model reduction technique (the arbitrary polynomial chaos expansion) and a method for model coupling in space are applied. The different levels of uncertainties are: statistical uncertainty in parameter distributions, scenario uncertainty, e.g. different geological features, and recognized ignorance due to assumptions in the conceptual model set-up. Recognized ignorance and scenario uncertainty are investigated by simulating well defined model set-ups and scenarios. According to damage values, which are defined as a model output, the set-ups and scenarios can be compared and ranked. For statistical uncertainty probabilities can be determined by running Monte Carlo simulations with the reduced model. The results are presented in various ways: e.g., mean damage, probability density function, cumulative distribution function, or an overall risk value by multiplying the damage with the probability. If the model output (damage) cannot be compared to provided criteria (e.g. water quality criteria), analytical approximations are presented to translate the damage into comparable values. The overall concept is applied for the risks related to brine displacement and infiltration into drinking water

  20. Simple dielectric mixing model in the monitoring of CO2 leakage from geological storage aquifer

    Science.gov (United States)

    Abidoye, L. K.; Bello, A. A.

    2017-03-01

    The principle of the dielectric mixing for multiphase systems in porous media has been employed to investigate CO2-water-porous media system and monitor the leakage of CO2, in analogy to scenarios that can be encountered in geological carbon sequestration. A dielectric mixing model was used to relate the relative permittivity for different subsurface materials connected with the geological carbon sequestration. The model was used to assess CO2 leakage and its upward migration, under the influences of the depth-dependent characteristics of the subsurface media as well as the fault-connected aquifers. The results showed that for the upward migration of CO2 in the subsurface, the change in the bulk relative permittivity (εb) of the CO2-water-porous media system clearly depicts the leakage and movement of CO2, especially at depth shallower than 800 m. At higher depth, with higher pressure and temperature, the relative permittivity of CO2 increases with pressure, while that of water decreases with temperature. These characteristics of water and supercritical CO2, combine to limit the change in the εb, at higher depth. Furthermore, it was noted that if the pore water was not displaced by the migrating CO2, the presence of CO2 in the system increases the εb. But, with the displacement of pore water by the migrating CO2, it was shown how the εb profile decreases with time. Owing to its relative simplicity, composite dielectric behaviour of multiphase materials can be effectively deployed for monitoring and enhancement of control of CO2 movement in the geological carbon sequestration.

  1. ULTimateCO2 - State of the art report. Dealing with uncertainty associated with long-term CO2 geological storage

    International Nuclear Information System (INIS)

    2014-01-01

    ULTimateCO2, a four-year collaborative project financed by the 7. Framework Programme and coordinated by BRGM, aims to shed more light on the long-term processes associated with the geological storage of CO 2 . ULTimateCO2 unites 12 partners (research institutes, universities, industrialists) and a varied panel of experts (NGOs, national authority representatives, IEAGHG,...). Based on a multidisciplinary approach, and bringing together laboratory experiments, numerical modelling and natural analogue field studies, ULTimateCO2 will increase our understanding of the long-term effects of CO 2 Capture and Storage (CCS) in terms of hydrodynamics, geochemistry, mechanics of the storage formations and their vicinity. The report contains the partners' pooled knowledge and provides a view of the current state-of-the-art for the issues addressed by this project: - The long-term reservoir trapping efficiency (WP3); - The long-term sealing integrity of faulted and fractured cap-rock (WP4); - The near-well leakage characterisation and chemical processes (WP5); - The long-term behavior of stored CO 2 looking at the basin scale (WP2); - Uncertainty assessment (WP6). Each chapter is divided into two sections: (i) a summary which explains in 'simple words' the main issues and objectives of the WP, and (ii) a current state of the art section which provides a more sound review on the specific studied processes. The aim is to provide answers to pertinent questions from a variety of users, particularly project owners, site operators and national authorities, about their exposure to uncertainty downstream of closure of a CO 2 geological storage site

  2. Methods to Assess Geological CO2 Storage Capacity: Status and Best Practice

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    To understand the emission reduction potential of carbon capture and storage (CCS), decision makers need to understand the amount of CO2 that can be safely stored in the subsurface and the geographical distribution of storage resources. Estimates of storage resources need to be made using reliable and consistent methods. Previous estimates of CO2 storage potential for a range of countries and regions have been based on a variety of methodologies resulting in a correspondingly wide range of estimates. Consequently, there has been uncertainty about which of the methodologies were most appropriate in given settings, and whether the estimates produced by these methods were useful to policy makers trying to determine the appropriate role of CCS. In 2011, the IEA convened two workshops which brought together experts for six national surveys organisations to review CO2 storage assessment methodologies and make recommendations on how to harmonise CO2 storage estimates worldwide. This report presents the findings of these workshops and an internationally shared guideline for quantifying CO2 storage resources.

  3. Mathematical programming (MP) model to determine optimal transportation infrastructure for geologic CO2 storage in the Illinois basin

    Science.gov (United States)

    Rehmer, Donald E.

    Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic

  4. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee

    2015-08-19

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  5. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee; Santamarina, Carlos

    2015-01-01

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  6. Caprock and overburden processes in geological CO2 storage: An experimental study on sealing efficiency and mineral alterations

    NARCIS (Netherlands)

    Wollenweber, J.; Alles, S.a.; Kronimus, A.; Busch, A.; Stanjek, H.; Krooss, B.M.

    2009-01-01

    A comprehensive set of experimental and analytical methods has been used to characterise the sealing and fluid -transport properties of fine-grained (pelitic) sedimentary rocks under the pressure and temperature conditions of geological CO2 storage. The flow experiments were carried out on

  7. Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects

    International Nuclear Information System (INIS)

    Torp, T.A.; Gale, J.

    2004-01-01

    At the Sleipner gas field in the North Sea, CO 2 has been stripped from the produced natural gas and injected into a sand layer called the Utsira formation. Injection started in October 1996, to date nearly 8 million tonnes of CO 2 have been injected without any significant operational problems observed in the capture plant or in the injection well. The Sleipner project is the first commercial application of CO 2 storage in deep saline aquifers in the world. To monitor the injected CO 2 , a separate project called the saline aquifer CO 0 2 storage (SACS) project was established in 1998. As part of the SACS project, 3D seismic surveying has been used to successfully monitor the CO 2 in the Utsira formation, an industry first. Repeat seismic surveys have successfully imaged movement of the injected CO 2 within the reservoir. Reservoir simulation tools have been successfully adapted to describe the migration of the CO 2 in the reservoir. The simulation packages have been calibrated against the repeat seismic surveys and shown themselves to be capable of replicating the position of the CO 2 in the reservoir. The possible reactions between minerals within the reservoir sand and the injected CO 2 have been studied by laboratory experiments and simulations. The cumulative experiences of the Sleipner and SACS projects will be embodied in a Best Practice Manual to assist other organisations planning CO 2 injection projects to take advantage of the learning processes undertaken and to assist in facilitating new projects of this type. (author)

  8. Experiment and simulation study on the effects of cement minerals on the water-rock-CO2 interaction during CO2 geological storage

    Science.gov (United States)

    Liu, N.; Cheng, J.

    2016-12-01

    The CO2 geological storage is one of the most promising technology to mitigate CO2 emission. The fate of CO2 underground is dramatically affected by the CO2-water-rock interaction, which are mainly dependent on the initial aquifer mineralogy and brine components. The cement minerals are common materials in sandstone reservoir but few attention has been paid for its effects on CO2-water-rock interaction. Five batch reactions, in which 5% cement minerals were assigned to be quartz, calcite, dolomite, chlorite and Ca-montmorillonite, respectively, were conducted to understanding the cement minerals behaviors and its corresponding effects on the matrix minerals alterations during CO2 geological storage. Pure mineral powders were selected to mix and assemble the 'sandstone rock' with different cement components meanwhile keeping the matrix minerals same for each group as 70% quartz, 20% K-feldspar and 5% albite. These `rock' reacted with 750ml deionized water and CO2 under 180° and 18MPa for 15 days, during which the water chemistry evolution and minerals surface micromorphology changes has been monitored. The minerals saturation indexes calculation and phase diagram as well as the kinetic models were made by PHREEQC to uncover the minerals reaction paths. The experiment results indicated that the quartz got less eroded, on the contrary, K-feldspar and albite continuously dissolved to favor the gibbsite and kaolinite precipitations. The carbonates cement minerals quickly dissolved to reach equilibrium with the pH buffered and in turn suppressed the alkali feldspar dissolutions. No carbonates minerals precipitations occurred until the end of reactions for all groups. The simulation results were basically consistent with the experiment record but failed to simulate the non-stoichiometric reactions and the minerals kinetic rates seemed underestimated at the early stage of reactions. The cement minerals significantly dominated the reaction paths during CO2 geological

  9. Could a geological storage of the CO2 emissions from Romanian power plants become a joint implementation project?

    International Nuclear Information System (INIS)

    Matei, Magdalena; Ene, Simona; Necula, Catalina; Matei, Lucian; Marinescu, Mihai

    2006-01-01

    Full text: Emissions trading is a solution that is most compatible with deregulated electricity markets. The Directive 2003/87/CE referring to CO 2 emission trading within Europe entered into force and till 31 March 2004 all the countries had to present to the Commission their national plan to comply with Directive's rules. Recent predictions of the Intergovernmental Panel on Climate Change indicate that global warming will accelerate within this century. CO 2 emitted by the burning of fossil fuels is thought to be a main driving factor of climate change. With the potential to produce power without releasing CO 2 into the atmosphere, CO 2 capturing may become an important part of the post- Kyoto strategies of many countries. Underground storage of CO 2 seems to be one of the most attractive alternative. Potential targets for CO 2 injection are: - depleted oil reservoirs, possibly in combination with enhanced oil recovery - former gas fields, possibly with additional gas production - deep aquifers containing saline, non-drinkable water - deep and unminable coal seams (exchange of absorbed methane by CO 2 with simultaneous gas production) - geothermal wells, after heat extraction from the aquifers - residual volumes of former deep coal and salt mines. An environmental political decision about the option of CO 2 underground storage has to consider forecasts about developments of global climate, societies, and economics. Due to the forthcoming emission trading there is a growing interest in underground storage options for CO 2 in Europe now. Flexible mechanisms agreed by Kyoto Protocol, namely the Project-based Joint Implementation (Art. 6) and the Emission Trading (Art. 17) could help Romania to attract investment with a long term impact on emissions reduction. The brief identification of major CO 2 emissions sources and of possible CO 2 geological storage capacities (coal mines, aquifers, geothermal wells, oil and gas fields) shows that it is very probable to

  10. Preliminary Safety and Risk HSE Assessment. Application to the Potential Locations of a CO2 Geological Storage Pilot

    International Nuclear Information System (INIS)

    Recreo, F.; Eguilior, S.; Ruiz, C.; Lomba, L.; Hurtado, A.

    2015-01-01

    The location of a site safe and able to sequester CO2 for long periods of time is essential to gain public acceptance. This requires a long-term safety assessment developed in a robust and reliable framework. Site selection is the first step and requires specific research. This paper describes the application of the Selection and Classification Method of Geological Formations (SCF) developed to assess the potential of geological formations to CO2 storage. This assessment is based in the analysis of risks to Health, Safety and Environment (HSE) derived from potential CO2 leakage. Comparisons of the results obtained from a number of potential sites can help to select the best candidate for CO2 injection. The potential impact will be related to three key potential features of CO2 geological storage: the potential of the target geological formation for long term CO2 containment; the potential for secondary containment on containment failure of the target formation; and the site's potential to mitigate and/or disperse CO2 leakage if the primary and secondary containments fail. The methodology assesses each of these three characteristics through an analysis and assessment of properties of certain attributes of them. Uncertainty will remain as an input and output value of the methodology due to the usual lack of data in most site selection processes. The global uncertainty reports on the trust on the knowledge of the site characteristics. Therefore, the methodology enables comparing sites taking into account both the HSE risk expectation and the estimation of the quality of knowledge concerning such risk. The objective is to contribute to the selection of potential sites for a CO2 injection pilot plant in the Iberian Peninsula from the perspective of Safety and Risk Analysis.

  11. Geological storage of CO2: What do we know, where are the gaps and what more needs to be done?

    International Nuclear Information System (INIS)

    Gale, John

    2004-01-01

    If deep reductions in anthropogenic greenhouse gas emissions are to be achieved, the introduction of CO 2 capture and storage in geological reservoirs is likely to be necessary. The technology would be deployed alongside other mitigation measures such as renewables, energy efficiency and fuel switching. Currently, research programmes on the geological storage of CO 2 are underway in the United States, the European Union, Australia and Japan. The aim of this paper is to present an overview of the research work that is currently underway and provide an analysis of the current state of knowledge on geological storage of CO 2. The analysis will be broken down to address the key geological storage options: deep coal seams, depleted hydrocarbon reservoirs and deep saline aquifers. In each case, areas of uncertainty will be highlighted as well as areas where it is considered that further work will be needed so that the technology can be accepted by Governments and the general public as a mitigation option suitable for wide-scale application throughout the world

  12. Geological storage of CO2: what do we know, where are the gaps and what more needs to be done?

    International Nuclear Information System (INIS)

    Gale, J.

    2004-01-01

    If deep reductions in anthropogenic greenhouse gas emissions are to be achieved, the introduction of CO 2 capture and storage in geological reservoirs is likely to be necessary. The technology would be deployed alongside other mitigation measures such as renewables, energy efficiency and fuel switching. Currently, research programmes on the geological storage of CO 2 are underway in the United States, the European Union, Australia and Japan. The aim of this paper is to present an overview of the research work that is currently underway and provide an analysis of the current state of knowledge on geological storage of CO 2 . The analysis will be broken down to address the key geological storage options: deep coal seams, depleted hydrocarbon reservoirs and deep saline aquifers. In each case, areas of uncertainty will be highlighted as well as areas where it is considered that further work will be needed so that the technology can be accepted by Governments and the general public as a mitigation option suitable for wide-scale application throughout the world. (author)

  13. Clean coal technologies. The capture and geological storage of CO2 - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    There is no longer any doubt about the connection between carbon dioxide emissions of human origin and global warming. Nearly 40% of world CO 2 emissions are generated by the electricity production sector, in which the combustion of coal - developing at a roaring pace, especially in China - accounts for a good proportion of the total. At a time when the reduction of greenhouse gases has become an international priority, this growth is a problem. Unless CO 2 capture and storage technologies are implemented, it will be very difficult to contain global warming

  14. Coupled Model for CO2 Leaks from Geological Storage: Geomechanics, Fluid Flow and Phase Transitions

    Science.gov (United States)

    Gor, G.; Prevost, J.

    2013-12-01

    Deep saline aquifers are considered as a promising option for long-term storage of carbon dioxide. However, risk of CO2 leakage from the aquifers through faults, natural or induced fractures or abandoned wells cannot be disregarded. Therefore, modeling of various leakage scenarios is crucial when selecting a site for CO2 sequestration and choosing proper operational conditions. Carbon dioxide is injected into wells at supercritical conditions (t > 31.04 C, P > 73.82 bar), and these conditions are maintained in the deep aquifers (at 1-2 km depth) due to hydrostatic pressure and geothermal gradient. However, if CO2 and brine start to migrate from the aquifer upward, both pressure and temperature will decrease, and at the depth of 500-750 m, the conditions for CO2 will become subcritical. At subcritical conditions, CO2 starts boiling and the character of the flow changes dramatically due to appearance of the third (vapor) phase and latent heat effects. When modeling CO2 leaks, one needs to couple the multiphase flow in porous media with geomechanics. These capabilities are provided by Dynaflow, a finite element analysis program [1]; Dynaflow has already showed to be efficient for modeling caprock failure causing CO2 leaks [2, 3]. Currently we have extended the capabilities of Dynaflow with the phase transition module, based on two-phase and three-phase isenthalpic flash calculations [4]. We have also developed and implemented an efficient method for solving heat and mass transport with the phase transition using our flash module. Therefore, we have developed a robust tool for modeling CO2 leaks. In the talk we will give a brief overview of our method and illustrate it with the results of simulations for characteristic test cases. References: [1] J.H. Prevost, DYNAFLOW: A Nonlinear Transient Finite Element Analysis Program. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ. http://www.princeton.edu/~dynaflow/ (last update 2013

  15. The Baltic Basin: structure, properties of reservoir rocks, and capacity for geological storage of CO2

    Directory of Open Access Journals (Sweden)

    Vaher, Rein

    2009-12-01

    Full Text Available Baltic countries are located in the limits of the Baltic sedimentary basin, a 700 km long and 500 km wide synclinal structure. The axis of the syneclise plunges to the southwest. In Poland the Precambrian basement occurs at a depth of 5 km. The Baltic Basin includes the Neoproterozoic Ediacaran (Vendian at the base and all Phanerozoic systems. Two aquifers, the lower Devonian and Cambrian reservoirs, meet the basic requirements for CO2 storage. The porosity and permeability of sandstone decrease with depth. The average porosity of Cambrian sandstone at depths of 80–800, 800–1800, and 1800–2300 m is 18.6, 14.2, and 5.5%, respectively. The average permeability is, respectively, 311, 251, and 12 mD. Devonian sandstone has an average porosity of 26% and permeability in the range of 0.5–2 D. Prospective Cambrian structural traps occur only in Latvia. The 16 largest ones have CO2 storage capacity in the range of 2–74 Mt, with total capacity exceeding 400 Mt. The structural trapping is not an option for Lithuania as the uplifts there are too small. Another option is utilization of CO2 for enhanced oil recovery (EOR. The estimated total EOR net volume of CO2 (part of CO2 remaining in the formation in Lithuania is 5.6 Mt. Solubility and mineral trapping are a long-term option. The calculated total solubility trapping capacity of the Cambrian reservoir is as high as 11 Gt of CO2 within the area of the supercritical state of carbon dioxide.

  16. Towards a sustainable mining law: geothermal, CO2 capture and geological storage?

    International Nuclear Information System (INIS)

    Lanoy, Laurence

    2013-01-01

    The author comments how the French mining code has been able to adapt itself to the development of new techniques such as geothermal power, CO 2 capture and storage in a context of environmental concerns. She comments how the mining code evolved towards a new concept of soil use and valorisation in relationship with the development of these techniques, and how the mining code has thus become a new actor in the field of renewable energies. Its reform is briefly discussed

  17. Intelligent monitoring system for real-time geologic CO2 storage, optimization and reservoir managemen

    Science.gov (United States)

    Dou, S.; Commer, M.; Ajo Franklin, J. B.; Freifeld, B. M.; Robertson, M.; Wood, T.; McDonald, S.

    2017-12-01

    Archer Daniels Midland Company's (ADM) world-scale agricultural processing and biofuels production complex located in Decatur, Illinois, is host to two industrial-scale carbon capture and storage projects. The first operation within the Illinois Basin-Decatur Project (IBDP) is a large-scale pilot that injected 1,000,000 metric tons of CO2 over a three year period (2011-2014) in order to validate the Illinois Basin's capacity to permanently store CO2. Injection for the second operation, the Illinois Industrial Carbon Capture and Storage Project (ICCS), started in April 2017, with the purpose of demonstrating the integration of carbon capture and storage (CCS) technology at an ethanol plant. The capacity to store over 1,000,000 metric tons of CO2 per year is anticipated. The latter project is accompanied by the development of an intelligent monitoring system (IMS) that will, among other tasks, perform hydrogeophysical joint analysis of pressure, temperature and seismic reflection data. Using a preliminary radial model assumption, we carry out synthetic joint inversion studies of these data combinations. We validate the history-matching process to be applied to field data once CO2-breakthrough at observation wells occurs. This process will aid the estimation of permeability and porosity for a reservoir model that best matches monitoring observations. The reservoir model will further be used for forecasting studies in order to evaluate different leakage scenarios and develop appropriate early-warning mechanisms. Both the inversion and forecasting studies aim at building an IMS that will use the seismic and pressure-temperature data feeds for providing continuous model calibration and reservoir status updates.

  18. Probabilistic modeling and global sensitivity analysis for CO 2 storage in geological formations: a spectral approach

    KAUST Repository

    Saad, Bilal Mohammed

    2017-09-18

    This work focuses on the simulation of CO2 storage in deep underground formations under uncertainty and seeks to understand the impact of uncertainties in reservoir properties on CO2 leakage. To simulate the process, a non-isothermal two-phase two-component flow system with equilibrium phase exchange is used. Since model evaluations are computationally intensive, instead of traditional Monte Carlo methods, we rely on polynomial chaos (PC) expansions for representation of the stochastic model response. A non-intrusive approach is used to determine the PC coefficients. We establish the accuracy of the PC representations within a reasonable error threshold through systematic convergence studies. In addition to characterizing the distributions of model observables, we compute probabilities of excess CO2 leakage. Moreover, we consider the injection rate as a design parameter and compute an optimum injection rate that ensures that the risk of excess pressure buildup at the leaky well remains below acceptable levels. We also provide a comprehensive analysis of sensitivities of CO2 leakage, where we compute the contributions of the random parameters, and their interactions, to the variance by computing first, second, and total order Sobol’ indices.

  19. Probabilistic modeling and global sensitivity analysis for CO 2 storage in geological formations: a spectral approach

    KAUST Repository

    Saad, Bilal Mohammed; Alexanderian, Alen; Prudhomme, Serge; Knio, Omar

    2017-01-01

    This work focuses on the simulation of CO2 storage in deep underground formations under uncertainty and seeks to understand the impact of uncertainties in reservoir properties on CO2 leakage. To simulate the process, a non-isothermal two-phase two-component flow system with equilibrium phase exchange is used. Since model evaluations are computationally intensive, instead of traditional Monte Carlo methods, we rely on polynomial chaos (PC) expansions for representation of the stochastic model response. A non-intrusive approach is used to determine the PC coefficients. We establish the accuracy of the PC representations within a reasonable error threshold through systematic convergence studies. In addition to characterizing the distributions of model observables, we compute probabilities of excess CO2 leakage. Moreover, we consider the injection rate as a design parameter and compute an optimum injection rate that ensures that the risk of excess pressure buildup at the leaky well remains below acceptable levels. We also provide a comprehensive analysis of sensitivities of CO2 leakage, where we compute the contributions of the random parameters, and their interactions, to the variance by computing first, second, and total order Sobol’ indices.

  20. Clayey cap-rocks reactivity in presence of CO2 in deep geological storage conditions: experimentation/modeling integrated approach

    International Nuclear Information System (INIS)

    Credoz, A.

    2009-10-01

    CO 2 capture, transport and geological storage is one of the main solutions considered in the short and medium term to reduce CO 2 and others greenhouse gases emissions towards the atmosphere, by storing CO 2 in deeper geological reservoirs during 100 to 10 000 years. This Ph-D study offers a multi-scale vision of complex clayey cap-rocks reactivity and evolution. These formations are identified for the CO 2 containment and sealing into the reservoir. From the experimental scale on purified clay minerals to integrative modeling at high space and time scales, the strategy developed allowed identifying the main geochemical processes, to check the good agreement between experiment and modeling, and to lay emphasis the operational impacts on long-term cap-rocks integrity. Carbonated cements alteration is likely to open cap-rock porosity and to create preferential reactive pathway for reactive fluid flow. Besides, this could alter the cap-rock structure and the global geo-mechanic properties. Clay minerals alteration, including the illitization process, reduces the clay fraction volume but considerably limits the porosity increase. The illitization process in acidic conditions determined experimentally and by modeling at low and high scale, is coupled with silica precipitation. The final porosity increase control results of these two reactive processes balance. By a fundamental side, this study reveals new kinetic parameters of clay minerals and highlights new structural transformations. By an operational side, this study contributes to the acquisition of qualitative data (long-term reactive pathways of clayey cap-rocks, coupled reactivity carbonates/clays) and quantitative data (CO 2 penetration distance into the cap-rock) to partly answer to the performance and safety assessment CO 2 capture and geological storage. (author)

  1. Adaptive management for subsurface pressure and plume control in application to geological CO2 storage

    Science.gov (United States)

    Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.

    2016-12-01

    Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.

  2. The European FP7 ULTimateCO2 project: A comprehensive approach to study the long term fate of CO2 geological storage sites

    Science.gov (United States)

    Audigane, P.; Brown, S.; Dimier, A.; Pearce, J.; Frykman, P.; Maurand, N.; Le Gallo, Y.; Spiers, C. J.; Cremer, H.; Rutters, H.; Yalamas, T.

    2013-12-01

    The European FP7 ULTimateCO2 project aims at significantly advance our knowledge of specific processes that could influence the long-term fate of geologically stored CO2: i) trapping mechanisms, ii) fluid-rock interactions and effects on mechanical integrity of fractured caprock and faulted systems and iii) leakage due to mechanical and chemical damage in the well vicinity, iv) brine displacement and fluid mixing at regional scale. A realistic framework is ensured through collaboration with two demonstration sites in deep saline sandstone formations: the onshore former NER300 West Lorraine candidate in France (ArcelorMittal GeoLorraine) and the offshore EEPR Don Valley (former Hatfield) site in UK operated by National Grid. Static earth models have been generated at reservoir and basin scale to evaluate both trapping mechanisms and fluid displacement at short (injection) and long (post injection) time scales. Geochemical trapping and reservoir behaviour is addressed through experimental approaches using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions and through geochemical simulations. Collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland) (OPA), an analogue for caprock well investigated in the past for nuclear waste disposal purpose: - Characterization of elastic parameters in intact samples by measuring strain during an axial experiment, - A recording of hydraulic fracture flow properties by loading and shearing samples in order to create a 'realistic

  3. A contribution to risk analysis for leakage through abandoned wells in geological CO2 storage

    DEFF Research Database (Denmark)

    Kopp, Andreas; Binning, Philip John; Johannsen, K.

    2010-01-01

    2 leakage from subsurface reservoirs. The amounts of leaking CO2 are estimated by evaluating the extent of CO2 plumes after numerically simulating a large number of reservoir realizations with a radially symmetric, homogeneous model To conduct the computationally very expensive simulations, the 'CO2...

  4. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael

    2004-07-01

    This study considers options, that could be feasible for Sweden, to transport and geologically store CO 2 , providing that technology for electricity production with CO 2 capture will be available in the future and also acceptable from cost- and reliability point of view. As a starting point, it is assumed that a new 600-1000 MW power plant, fired with coal or natural gas, will be constructed with CO 2 capture and localised to the Stockholm, Malmoe or Goeteborg areas. Of vital importance for storage of carbon dioxide in a reservoir is the possibility to monitor its distribution, i.e. its migration within the reservoir. It has been shown in the SACS-project that the distribution of carbon dioxide within the reservoir can be monitored successfully, mainly by seismic methods. Suitable geologic conditions and a large storage potential seems to exist mainly in South West Scania, where additional knowledge on geology/hydrogeology has been obtained since the year 2000 in connection to geothermal energy projects, and in the Eastern part of Denmark, bordering on South West Scania. Storage of carbon dioxide from the Stockholm area should not be excluded, but more studies are needed to clarify the storage options within this area. The possibilities to use CO 2 for enhanced oil recovery, EOR, in i.a. the North Sea should be investigated, in order to receive incomes from the CO 2 and shared costs for infrastructure, and by this also make the CO 2 regarded as a trading commodity, and thereby achieving a more favourable position concerning acceptance, legal issues and regulations. The dimensions of CO 2 -pipelines should be similar to those for natural natural gas, although regarding some aspects they have different design and construction prerequisites. To obtain cost efficiency, the transport distances should be kept short, and possibilities for co-ordinated networks with short distribution pipelines connected to common main pipelines, should be searched for. Also, synergies

  5. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    quantify leakages from the subsurface, to improve storage efficiency, and for other storage characterizations [5-8]. In this presentation, the latest regulatory and methodological updates are provided regarding atmospheric monitoring of the injected CO2 behavior using flux stations. These include 2013 improvements in methodology, as well as the latest literature, including regulatory documents for using the method and step-by-step instructions on implementing it in the field. Updates also include 2013 development of a fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CO2 emission rates in a similar manner as a standard weather station outputs weather parameters. References: [1] Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences; 2013. [2] International Energy Agency. Quantification techniques for CO2 leakage. IEA-GHG; 2012. [3] US Department of Energy. Best Practices for Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations. US DOE; 2012. [4] Liu G. (Ed.). Greenhouse Gases: Capturing, Utilization and Reduction. Intech; 2012. [5] Finley R. et al. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin - Phase III. DOE-MGSC; DE-FC26-05NT42588; 2012. [6] LI-COR Biosciences. Surface Monitoring for Geologic Carbon Sequestration. LI-COR, 980-11916, 2011. [7] Eggleston H., et al. (Eds). IPCC Guidelines for National Greenhouse Gas Inventories, IPCC NGGI P, WMO/UNEP; 2006-2011. [8] Burba G., Madsen R., Feese K. Eddy Covariance Method for CO2 Emission Measurements in CCUS Applications: Principles, Instrumentation and Software. Energy Procedia, 40C: 329-336; 2013.

  6. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2006-01-23

    As part of the Department of Energy's (DOE) initiative on developing new technologies for storage of carbon dioxide in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, The Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the October through December 2005 period of the project. As discussed in the following report, the main field activity was reservoir testing in the Copper Ridge ''B-zone'' in the AEP No.1 well. In addition reservoir simulations were completed to assess feasibility of CO{sub 2} injection for the Mountaineer site. These reservoir testing and computer simulation results suggest that injection potential may be substantially more than anticipated for the Mountaineer site. Work also continued on development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. Overall, the current design feasibility phase project is proceeding according to plans.

  7. A Dynamic Programming Model for Optimizing Frequency of Time-Lapse Seismic Monitoring in Geological CO2 Storage

    Science.gov (United States)

    Bhattacharjya, D.; Mukerji, T.; Mascarenhas, O.; Weyant, J.

    2005-12-01

    Designing a cost-effective and reliable monitoring program is crucial to the success of any geological CO2 storage project. Effective design entails determining both, the optimal measurement modality, as well as the frequency of monitoring the site. Time-lapse seismic provides the best spatial coverage and resolution for reservoir monitoring. Initial results from Sleipner (Norway) have demonstrated effective monitoring of CO2 plume movement. However, time-lapse seismic is an expensive monitoring technique especially over the long term life of a storage project and should be used judiciously. We present a mathematical model based on dynamic programming that can be used to estimate site-specific optimal frequency of time-lapse surveys. The dynamics of the CO2 sequestration process are simplified and modeled as a four state Markov process with transition probabilities. The states are M: injected CO2 safely migrating within the target zone; L: leakage from the target zone to the adjacent geosphere; R: safe migration after recovery from leakage state; and S: seepage from geosphere to the biosphere. The states are observed only when a monitoring survey is performed. We assume that the system may go to state S only from state L. We also assume that once observed to be in state L, remedial measures are always taken to bring it back to state R. Remediation benefits are captured by calculating the expected penalty if CO2 seeped into the biosphere. There is a trade-off between the conflicting objectives of minimum discounted costs of performing the next time-lapse survey and minimum risk of seepage and its associated costly consequences. A survey performed earlier would spot the leakage earlier. Remediation methods would have been utilized earlier, resulting in savings in costs attributed to excessive seepage. On the other hand, there are also costs for the survey and remedial measures. The problem is solved numerically using Bellman's optimality principal of dynamic

  8. CO 2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage

    KAUST Repository

    Espinoza, D. Nicolas; Santamarina, Carlos

    2017-01-01

    Small pores in high specific surface clay-rich caprocks give rise to high capillary entry pressures and high viscous drag that hinder the migration of buoyant carbon dioxide CO2. We measured the breakthrough pressure and ensuing CO2 permeability

  9. Providing adequate economic incentives for bioenergies with CO2 capture and geological storage

    International Nuclear Information System (INIS)

    Ricci, Olivia

    2012-01-01

    Knowing that carbon capture and storage (CCS) could play an important role in reducing emissions, it is important to have a good understanding of this role and the importance of environmental policies to support carbon capture and geological storage from bioenergies (BECCS). To date CCS technologies are not deployed on a commercial level, and policy instruments should be used to provide incentives to firms to use these technologies to reduce pollution. The aim of this paper is to compare the cost-efficiency of several incentive-based instruments (a fossil fuel tax, an emissions tax, a cap and trade system, and a subsidy on captured emissions) needed to spur the adoption of CCS and BECCS, using a dynamic general equilibrium model. This type of model has become the standard for assessing economy-wide impacts of environmental and technological policies. The study shows that BECCS will be deployed only if a specific subsidy per unit of biomass emissions captured with a CCS technology is available. We show also that the two most cost-efficient instruments for achieving a given emissions reduction target are a specific subsidy that rewards captured emissions and a carbon tax whose revenues are recycled to subsidize BECCS. - Highlights: ► We investigate the suitability of economic instruments to support CCS and BECCS. ► We model CCS and BECCS in a dynamic general equilibrium model. ► We compare the cost-efficiency of economic instruments to reduce emissions. ► A subsidy that rewards biomass captured emissions is appropriate to encourage BECCS. ► A carbon tax whose revenues are recycled to subsidize BECCS is cost-efficient.

  10. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    settings such as the carbonate reservoirs in the North Sea. The final aim of our project is to find out how to control the evolution of petrophysical parameters during CO2 injection using an optimal combination of flow rate, injection pressure and chemical composition of the influent. The first step...... to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection...

  11. The potential of geological storage of CO2 in Austria: a techno-economic assessment

    NARCIS (Netherlands)

    Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy

    An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a

  12. Global Sensitivity Analysis to Assess Salt Precipitation for CO2 Geological Storage in Deep Saline Aquifers

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2017-01-01

    Full Text Available Salt precipitation is generated near the injection well when dry supercritical carbon dioxide (scCO2 is injected into saline aquifers, and it can seriously impair the CO2 injectivity of the well. We used solid saturation (Ss to map CO2 injectivity. Ss was used as the response variable for the sensitivity analysis, and the input variables included the CO2 injection rate (QCO2, salinity of the aquifer (XNaCl, empirical parameter m, air entry pressure (P0, maximum capillary pressure (Pmax, and liquid residual saturation (Splr and Sclr. Global sensitivity analysis methods, namely, the Morris method and Sobol method, were used. A significant increase in Ss was observed near the injection well, and the results of the two methods were similar: XNaCl had the greatest effect on Ss; the effect of P0 and Pmax on Ss was negligible. On the other hand, with these two methods, QCO2 had various effects on Ss: QCO2 had a large effect on Ss in the Morris method, but it had little effect on Ss in the Sobol method. We also found that a low QCO2 had a profound effect on Ss but that a high QCO2 had almost no effect on the Ss value.

  13. Tagging CO2 to Enable Quantitative Inventories of Geological Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Klaus; Matter, Juerg; Park, Ah-Hyung; Stute, Martin; Carson, Cantwell; Ji, Yinghuang

    2014-06-30

    In the wake of concerns about the long term integrity and containment of sub-surface CO2 sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO2. Our project aimed to demonstrate the feasibility of a system designed to tag CO2 with carbon isotope 14C immediately prior to sequestration to a level that is normal on the surface (one part per trillion). Because carbon found at depth is naturally free of 14C, this tag would easily differentiate pre-existing carbon from anthropogenic injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count 14C atoms. Accordingly, we have developed a 14C tagging system suitable for use at the part-per-trillion level. This system consists of a gas-exchange apparatus to make disposable cartridges ready for controlled injection into a fast flowing stream of pressurized CO2. We built a high-pressure injection and tagging system, and a 14C detection system. The disposable cartridge and injection system have been successfully demonstrated in the lab with a high-pressure flow reactor, as well as in the field at the CarbFix CO2 sequestration site in Iceland. The laser-based 14C detection system originally conceived has been shown to possess inadequate sensitivity for ambient levels. Alternative methods for detecting 14C, such as saturated cavity absorption ringdown spectroscopy and scintillation counting, may still be suitable. KEYWORDS

  14. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection....... The advance in lab source based micro-CT has made it capable of in situ experiments. We used a commercial bench top micro-CT (Zeiss Versa XRM410) to study the microstructure changes of chalk during liquid injection. Flexible temporal CT resolution is essential in this study because that the time scales...... of coupled physical and chemical processes can be very different. The results validated the feasibility of using a bench top CT system with a pressure cell to monitor the mesoscale multiphase interactions in chalk....

  15. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    Science.gov (United States)

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  16. Probabilistic risk assessment for CO2 storage in geological formations: robust design and support for decision making under uncertainty

    Science.gov (United States)

    Oladyshkin, Sergey; Class, Holger; Helmig, Rainer; Nowak, Wolfgang

    2010-05-01

    CO2 storage in geological formations is currently being discussed intensively as a technology for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis and for stochastic approaches based on brute-force repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a orthogonal basis of higher-order polynomials to approximate dependence on uncertain parameters (porosity, permeability etc.) and design parameters (injection rate, depth etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs of the non-linear system that minimize failure probability and provide valuable support for risk-informed management decisions. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al. Computational Geosciences 13, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speedup by a factor of 100 compared to Monte Carlo simulation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis

  17. A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.

    2006-02-23

    Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture

  18. Monitoring of injected CO2 at two commercial geologic storage sites with significant pressure depletion and/or re-pressurization histories: A case study

    Directory of Open Access Journals (Sweden)

    Dayanand Saini

    2017-03-01

    The monitoring technologies that have been used/deployed/tested at both the normally pressured West Hastings and the subnormally pressured Bell Creek storage sites appear to adequately address any of the potential “out of zone migration” of injected CO2 at these sites. It would be interesting to see if any of the collected monitoring data at the West Hastings and the Bell Creek storage sites could also be used in future to better understand the viability of initially subnormally pressured and subsequently depleted and re-pressurized oil fields as secure geologic CO2 storage sites with relatively large storage CO2 capacities compared to the depleted and re-pressurized oil fields that were initially discovered as normally pressured.

  19. Modeling of CO2 storage in aquifers

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Santos, Juan E

    2011-01-01

    Storage of CO 2 in geological formations is a means of mitigating the greenhouse effect. Saline aquifers are a good alternative as storage sites due to their large volume and their common occurrence in nature. The first commercial CO 2 injection project is that of the Sleipner field in the Utsira Sand aquifer (North Sea). Nevertheless, very little was known about the effectiveness of CO 2 sequestration over very long periods of time. In this way, numerical modeling of CO 2 injection and seismic monitoring is an important tool to understand the behavior of CO 2 after injection and to make long term predictions in order to prevent CO 2 leaks from the storage into the atmosphere. The description of CO 2 injection into subsurface formations requires an accurate fluid-flow model. To simulate the simultaneous flow of brine and CO 2 we apply the Black-Oil formulation for two phase flow in porous media, which uses the PVT data as a simplified thermodynamic model. Seismic monitoring is modeled using Biot's equations of motion describing wave propagation in fluid-saturated poroviscoelastic solids. Numerical examples of CO 2 injection and time-lapse seismics using data of the Utsira formation show the capability of this methodology to monitor the migration and dispersal of CO 2 after injection.

  20. Evolution of the Petrophysical and Mineralogical Properties of Two Reservoir Rocks Under Thermodynamic Conditions Relevant for CO2 Geological Storage at 3 km Depth

    International Nuclear Information System (INIS)

    Rimmel, G.; Barlet-Gouedard, V.; Renard, F.

    2010-01-01

    Injection of carbon dioxide (CO 2 ) underground, for long-term geological storage purposes, is considered as an economically viable option to reduce greenhouse gas emissions in the atmosphere. The chemical interactions between supercritical CO 2 and the potential reservoir rock need to be thoroughly investigated under thermodynamic conditions relevant for geological storage. In the present study, 40 samples of Lavoux limestone and Adamswiller sandstone, both collected from reservoir rocks in the Paris basin, were experimentally exposed to CO 2 in laboratory autoclaves specially built to simulate CO 2 -storage-reservoir conditions. The two types of rock were exposed to wet supercritical CO 2 and CO 2 -saturated water for one month, at 28 MPa and 90 C, corresponding to conditions for a burial depth approximating 3 km. The changes in mineralogy and micro-texture of the samples were measured using X-ray diffraction analyses, Raman spectroscopy, scanning-electron microscopy, and energy-dispersion spectroscopy microanalysis. The petrophysical properties were monitored by measuring the weight, density, mechanical properties, permeability, global porosity, and local porosity gradients through the samples. Both rocks maintained their mechanical and mineralogical properties after CO 2 exposure despite an increase of porosity and permeability. Microscopic zones of calcite dissolution observed in the limestone are more likely to be responsible for such increase. In the sandstone, an alteration of the petro-fabric is assumed to have occurred due to clay minerals reacting with CO 2 . All samples of Lavoux limestone and Adamswiller sandstone showed a measurable alteration when immersed either in wet supercritical CO 2 or in CO 2 -saturated water. These batch experiments were performed using distilled water and thus simulate more severe conditions than using formation water (brine). (authors)

  1. A workflow for handling heterogeneous 3D models with the TOUGH2 family of codes: Applications to numerical modeling of CO 2 geological storage

    Science.gov (United States)

    Audigane, Pascal; Chiaberge, Christophe; Mathurin, Frédéric; Lions, Julie; Picot-Colbeaux, Géraldine

    2011-04-01

    This paper is addressed to the TOUGH2 user community. It presents a new tool for handling simulations run with the TOUGH2 code with specific application to CO 2 geological storage. This tool is composed of separate FORTRAN subroutines (or modules) that can be run independently, using input and output files in ASCII format for TOUGH2. These modules have been developed specifically for modeling of carbon dioxide geological storage and their use with TOUGH2 and the Equation of State module ECO2N, dedicated to CO 2-water-salt mixture systems, with TOUGHREACT, which is an adaptation of TOUGH2 with ECO2N and geochemical fluid-rock interactions, and with TOUGH2 and the EOS7C module dedicated to CO 2-CH 4 gas mixture is described. The objective is to save time for the pre-processing, execution and visualization of complex geometry for geological system representation. The workflow is rapid and user-friendly and future implementation to other TOUGH2 EOS modules for other contexts (e.g. nuclear waste disposal, geothermal production) is straightforward. Three examples are shown for validation: (i) leakage of CO 2 up through an abandoned well; (ii) 3D reactive transport modeling of CO 2 in a sandy aquifer formation in the Sleipner gas Field, (North Sea, Norway); and (iii) an estimation of enhanced gas recovery technology using CO 2 as the injected and stored gas to produce methane in the K12B Gas Field (North Sea, Denmark).

  2. Stress history influence on sedimentary rock porosity estimates: Implications for geological CO2 storage in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Jie Wu

    2017-01-01

    Full Text Available We established a stress-history-dependent porosity model of potential target rocks for CO2 geosequestration based on rock sample porosity measurements under various effective stresses (5 - 120 MPa. The measured samples were collected from shallow boreholes (< 300 m depth drilled at the frontal fold in northern Taiwan. The lithology, density, and the stress-history-dependent porosity derived from shallow boreholes enabled us to predict the porosity-depth relationship of given rock formations at (burial depths of approximately 3170 - 3470 m potential sites for CO2 geosequestration located near the Taoyuan Tableland coastline. Our results indicate that the porosity of samples derived from laboratory tests under atmospheric pressure is significantly greater than the porosity measured under stress caused by sediment burial. It is therefore strongly recommended that CO2 storage capacity assessment not be estimated from the porosity measured under atmospheric pressure. Neglecting the stress history effect on the porosity of compacted and uplifted rocks may induce a percentage error of 7.7% at a depth of approximately 1000 m, where the thickness of the eroded, formerly overlying formation is 2.5 km in a synthetic case. The CO2 injection pressure effect on the porosity was also evaluated using the stress-history-dependent porosity model. As expected, the pore pressure buildup during CO2 injection will induce an increase in the rock porosity. For example, a large injection pressure of 13 MPa at a depth of approximately 1000 m will increase the rock porosity by a percentage error of 6.7%. Our results have implications for CO2 storage capacity injection pressure estimates.

  3. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    Science.gov (United States)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The

  4. CO2 Injectivity in Geological Storages: an Overview of Program and Results of the GeoCarbone-Injectivity Project

    International Nuclear Information System (INIS)

    Lombard, J.M.; Egermann, P.; Azaroual, M.; Pironon, J.; Broseta, D.; Egermann, P.; Munier, G.; Mouronval, G.

    2010-01-01

    The objective of the GeoCarbone-Injectivity project was to develop a methodology to study the complex phenomena involved in the near well bore region during CO 2 injection. This paper presents an overview of the program and results of the project, and some further necessary developments. The proposed methodology is based on experiments and simulations at the core scale, in order to understand (physical modelling and definition of constitutive laws) and quantify (calibration of simulation tools) the mechanisms involved in injectivity variations: fluid/rock interactions, transport mechanisms, geomechanical effects. These mechanisms and the associated parameters have then to be integrated in the models at the well bore scale. The methodology has been applied for the study of a potential injection of CO 2 in the Dogger geological formation of the Paris Basin, in collaboration with the other ANR GeoCarbone projects. (authors)

  5. Increasing CO2 storage in oil recovery

    International Nuclear Information System (INIS)

    Jessen, K.; Kovscek, A.R.; Orr, F.M. Jr.

    2005-01-01

    Oil fields offer a significant potential for storing CO 2 and will most likely be the first large scale geological targets for sequestration as the infrastructure, experience and permitting procedures already exist. The problem of co-optimizing oil production and CO 2 storage differs significantly from current gas injection practice due to the cost-benefit imbalance resulting from buying CO 2 for enhanced oil recovery projects. Consequently, operators aim to minimize the amount of CO 2 required to sweep an oil reservoir. For sequestration purposes, where high availability of low cost CO 2 is assumed, the design parameters of enhanced oil recovery processes must be re-defined to optimize the amount of CO 2 left in the reservoir at the time of abandonment. To redefine properly the design parameters, thorough insight into the mechanisms controlling the pore scale displacement efficiency and the overall sweep efficiency is essential. We demonstrate by calculation examples the different mechanisms controlling the displacement behavior of CO 2 sequestration schemes, the interaction between flow and phase equilibrium and how proper design of the injection gas composition and well completion are required to co-optimize oil production and CO 2 storage. [Author

  6. Increasing CO2 storage in oil recovery

    International Nuclear Information System (INIS)

    Jessen, Kristian; Kovscek, Anthony R.; Orr, Franklin M.

    2005-01-01

    Oil fields offer a significant potential for storing CO 2 and will most likely be the first large scale geological targets for sequestration as the infrastructure, experience and permitting procedures already exist. The problem of co-optimizing oil production and CO 2 storage differs significantly from current gas injection practice due to the cost-benefit imbalance resulting from buying CO 2 for enhanced oil recovery projects. Consequently, operators aim to minimize the amount of CO 2 required to sweep an oil reservoir. For sequestration purposes, where high availability of low cost CO 2 is assumed, the design parameters of enhanced oil recovery processes must be re-defined to optimize the amount of CO 2 left in the reservoir at the time of abandonment. To redefine properly the design parameters, thorough insight into the mechanisms controlling the pore scale displacement efficiency and the overall sweep efficiency is essential. We demonstrate by calculation examples the different mechanisms controlling the displacement behavior of CO 2 sequestration schemes, the interaction between flow and phase equilibrium and how proper design of the injection gas composition and well completion are required to co-optimize oil production and CO 2 storage

  7. Status of knowledge on risks related to CO2 geological storage. Report nr 1: risks during the injection phase. Investigation report

    International Nuclear Information System (INIS)

    Gombert, Philippe; Thoraval, Alain

    2010-01-01

    Carbon capture and storage (CCS) is considered as a possibility to struggle against greenhouse effect and therefore against climate change. This process is here presented as comprising three main periods: exploitation during 40 to 50 years which itself comprises three phases (design, injection and closure), memory during about 300 years, and a long term period (700 to 800 years during which the existence of the storage and its associated risks will be forgotten). This study concerns the injection phase of the first period and some of its associated risks: leakages, thermal-hydro-mechanical-chemical disturbances at the vicinity of the storage. The report gives an overview of CO 2 geological capture and storage (capture, transport, injection, storage, foreseen storage media, nature of the injected fluid, regulations, returns on experience), identifies the associated risks, discusses issues of assessment of risks related to well leakages and to disturbances at the vicinity of the well (mechanical, physical and chemical, bacteriological risks)

  8. Risk Assessment and Management for Long-Term Storage of CO2 in Geologic Formations — United States Department of Energy R&D

    Directory of Open Access Journals (Sweden)

    Dawn Deel

    2007-02-01

    Full Text Available Concern about increasing atmospheric concentrations of carbon dioxide (CO2 and other greenhouse gases (GHG and their impact on the earth's climate has grown significantly over the last decade. Many countries, including the United States, wrestle with balancing economic development and meeting critical near-term environmental goals while minimizing long-term environmental risks. One promising solution to the buildup of GHGs in the atmosphere, being pursued by the U.S. Department of Energy's (DOE National Energy Technology Laboratory (NETL and its industrial and academic partners, is carbon sequestration—a process of permanent storage of CO2 emissions in underground geologic formations, thus avoiding CO2 release to the atmosphere. This option looks particularly attractive for point source emissions of GHGs, such as fossil fuel fired power plants. CO2 would be captured, transported to a sequestration site, and injected into an appropriate geologic formation. However, sequestration in geologic formations cannot achieve a significant role in reducing GHG emissions unless it is acceptable to stakeholders, regulators, and the general public, i.e., unless the risks involved are judged to be acceptable. One tool that can be used to achieve acceptance of geologic sequestration of CO2 is risk assessment, which is a proven method to objectively manage hazards in facilities such as oil and natural gas fields, pipelines, refineries, and chemical plants. Although probabilistic risk assessment (PRA has been applied in many areas, its application to geologic CO2 sequestration is still in its infancy. The most significant risk from geologic carbon sequestration is leakage of CO2. Two types of CO2 releases are possible—atmospheric and subsurface. High concentrations of CO2 caused by a release to the atmosphere would pose health risks to humans and animals, and any leakage of CO2 back into the atmosphere negates the effort expended to sequester the CO2

  9. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

    2008-10-01

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water

  10. Petrophysical Characterization of Arroyal Antiform Geological Formations (Aguilar de Campoo, Palencia) as a Storage and Seal Rocks in the Technology Development Plant for Geological CO2 Storage (Hontomin, Burgos)

    International Nuclear Information System (INIS)

    Campos, R.; Barrios, I.; Gonzalez, A. M.; Pelayo, M.; Saldana, R.

    2011-01-01

    The geological storage program of Energy City Foundation is focusing its research effort in the Technological Development and Research Plant in Hontomin (Burgos) start off. The present report shows the petrophysical characterization of of the Arroyal antiform geological formations since they are representatives, surface like, of the storage and seal formations that will be found in the CO 2 injection plant in Hontomin. In this petrophysics characterization has taken place the study of matrix porosity, specific surface and density of the storage and seal formations. Mercury intrusion porosimetry, N 2 adsorption and He pycnometry techniques have been used for the characterization. Furthermore, it has carried out a mineralogical analysis of the seal materials by RX diffraction. (Author) 26 refs.

  11. Comparison of Dry Gas Seasonal Storage with CO2 Storage and Re-Use Potential

    OpenAIRE

    Killerud, Marie

    2013-01-01

    To make large-scale CO2 storage economic, many groups have proposed using CO2in EOR projects to create value for CO2 storage. However, CO2 EOR projectsgenerally require a large and variable supply of CO2 and consequently may requiretemporary storage of CO2 in geological formations. In order to store CO2 atoffshore sites as a source for CO2 EOR projects, the CO2 needs to be extractedfrom a storage site to a certain extent. Alternatively, CO2 EOR projects maybe developed alongside saline aquife...

  12. Risk assessment-led characterisation of the SiteChar UK north sea site for the geological storage of CO2

    International Nuclear Information System (INIS)

    Akhurst, Maxine; Hannis, Sarah D.; Quinn, Martyn F.; Long, David; Shi, Ji-Quan; Koenen, Marielle; Pluymaekers, Maarten; Delprat-Jannaud, Florence; Lecomte, Jean-Claude; Bossie-Codreanu, Daniel; Nagy, Stanislaw; Klimkowski, Lukas; Gei, Davide

    2015-01-01

    Risk assessment-led characterisation of a site for the geological storage of CO 2 in the UK northern North Sea was performed for the EU SiteChar research project as one of a portfolio of sites. Implementation and testing of the SiteChar project site characterisation work-flow has produced a 'dry-run' storage permit application that is compliant with regulatory requirements. A site suitable for commercial-scale storage was characterised, compatible with current and future industrial carbon dioxide (CO 2 ) sources in the northern UK. Pre-characterisation of the site, based on existing information acquired during hydrocarbon exploration and production, has been achieved from publicly available data. The project concept is to store captured CO 2 at a rate of 5 Mt per year for 20 years in the Blake Oil Field and surrounding Captain Sandstone saline aquifer. This commercial-scale storage of 100 Mt CO 2 can be achieved through a storage scenario combining injection of CO 2 into the oil field and concurrent water production down-dip of the field. There would be no encroachment of supercritical phase CO 2 for more than two kilometres beyond the field boundary and no adverse influence on operating hydrocarbon fields provided there is pressure management. Components of a storage permit application for the site are presented, developed as far as possible within a research project. Characterisation and technical investigations were guided by an initial assessment of perceived risks to the prospective site and a need to provide the information required for the storage permit application. The emphasis throughout was to reduce risks and uncertainty on the subsurface containment of stored CO 2 , particularly with respect to site technical performance, monitoring and regulatory issues, and effects on other resources. The results of selected risk assessment-led site characterisation investigations and the subsequent risk reassessments are described together with their

  13. Experimental Studies on the Interaction of scCO2 and scCO2-SO2 With Rock Forming Minerals at Conditions of Geologic Carbon Storages - First Results

    Science.gov (United States)

    Erzinger, J.; Wilke, F.; Wiersberg, T.; Vasquez Parra, M.

    2010-12-01

    Co-injection of SO2 (plus possibly NOx and O2) during CO2 storage in deep saline aquifers may cause stronger brine acidification than CO2 alone. Because of that, we investigate chemical corrosion of rocks and rock-forming minerals with impure supercritical CO2 (scCO2) at possible storage conditions of >73.7 bar and >31°C. Contaminates were chosen with respect to the composition of CO2 captured industrially from coal-fired power plants using the oxyfuel technology. The resulting data should build a base for the long-term prediction of the behavior of CO2 in geologic storage reservoirs. Experiments of up to 1000 hrs duration have been performed with 10 natural mineral concentrates (calcite, dolomite, siderite, anhydrite, hematite, albite, microcline, kaolinite, muscovite, biotite) in 3n NaCl solution and pure scCO2 or scCO2+SO2 (99.5+0.5 vol%). The NaCl reaction fluid resembles the average salinity of deep formation waters of the North German Basin and is not free of oxygen. To increase reaction rates all minerals were ground and the reagents agitated either by stirring or shaking in autoclaves of about one liter in volume. The autoclaves consist of Hastelloy™ or ferromagnetic stainless steel fully coated with PTFE. We used in average 15 g of solids, 700 ml liquid, and the vessels were pressurized up to 100 bars with CO2 or CO2-SO2 mixture. Experiments were run at temperatures up to 90°C. Before, during and after the experiments small amounts fluids were sampled and analyzed for dissolved constituents and pH. Solid phases were characterized by XRF, XRD, and EMPA before and after the experiments. Pure scCO2 corrodes all carbonates, reacts only slightly with anhydrite, albite, and microcline at a minimum pH of 4, and does not recognizably interact with the others. After the experiment, albite has gained in a, not yet fully identified, carbonate phase which might be dawsonite. Reaction fluids of the experiments with scCO2+SO2 have mostly lower pH than using scCO2

  14. Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-09-30

    Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along

  15. Reactive transport at the pore-scale: Geological Labs on Chip studies (GLoCs) for CO2 storage in saline aquifers

    Science.gov (United States)

    Azaroual, M. M.; Lassin, A., Sr.; André, L., Sr.; Devau, N., Sr.; Leroy, P., Sr.

    2017-12-01

    The near well bore of CO2 injection in saline aquifer is the main sensitive part of the targeted carbone storage reservoirs. The recent development of microfluidics tools mimicking porous media of geological reservoirs allowed studying physical, physico-chemical and thermodynamic mechanisms. We used the GLoCs "Geological Labs on Chip" to study dynamic and reactive transport processes at the pore scale induced by the CO2 geological storage. The present work is a first attempt to reproduce, by reactive transport modeling, an experiment of calcium carbonate precipitation during the co-injection of two aqueous solutions in a GLoC device. For that purpose, a new kinetics model, based on the transition-state-theory and on surface complexation modeling, was developed to describe the co-precipitation of amorphous calcium carbonate (ACC) and calcite. ACC precipitates and creates surface complexation sites from which calcite can nucleate and create new surface complexation sites. When the kinetics of calcite precipitation are fast enough, the consumption of matter leads to the dissolution of ACC. The modeling results were first compared to batch experiments (from the literature) and then applied with success to dynamic experiment observations carried out on a GLoC device (from the literature). On the other hand, we evaluated the solubility of CO2 in capillary waters that increases between 5 to 10 folds for reservoir conditions (200 bar and 100°C) compared to the bulk water. The GLoCs tools started to address an excellent and much finer degree of processes control (reactive transport processes, mixing effects, minerals precipitation and dissolution kinetics, etc.) thanks to in situ analysis and characterization techniques, allowing access in real time to relevant properties. Current investigations focus on key parameters influencing the flowing dynamics and trapping mechanisms (relative permeability, capillary conditions, kinetics of dissolution and precipitation of minerals).

  16. Inverse Problem for 3D coupled Flow-Geomechanics Models and Induced Seismicity: Application to Subsurface Characterization and Seismicity Forecasting in Geologic CO2 Storage

    Science.gov (United States)

    Castineira, D.; Jha, B.; Juanes, R.

    2016-12-01

    Carbon Capture and Sequestration (CCS) is regarded as a promising technology to mitigate rising CO2 concentrations in the atmosphere from industrial emissions. However, as a result of the inherent uncertainty that is present in geological structures, assessing the stability of geological faults and quantifying the potential for induced seismicity is a fundamental challenge for practical implementation of CCS. Here we present a formal framework for the solution of the inverse problem associated with coupled flow and geomechanics models of CO2 injection and subsurface storage. Our approach builds from the application of Gaussian Processes, MCMC and posterior predictive analysis to evaluate relevant earthquake attributes (earthquake time, location and magnitude) in 3D synthetic models of CO2 storage under geologic, observational and operational uncertainty. In our approach, we first conduct hundreds of simulations of a high-fidelity 3D computational model for CO2 injection into a deep saline aquifer, dominated by an anticline structure and a fault. This ensemble of realizations accounts for uncertainty in the model parameters (including fault geomechanical and rock properties) and observations (earthquake time, location and magnitude). We apply Gaussian processes (GP) to generate a valid surrogate that closely approximates the behavior of the high fidelity (and computationally intensive) model, and apply hyperparameter optimization and cross-validation techniques in the solution of this multidimensional data-fit problem. The net result of this process is the generation of a fast model that can be effectively used for Bayesian analysis. We then implement Markov chain Monte Carlo (MCMC) to determine the posterior distribution of the model uncertain parameters (given some prior distributions for those parameters and given the likelihood defined in this case by the GP model). Our results show that the resulting posterior distributions correctly converge towards the "true

  17. Simulation of CO2–water–rock interactions on geologic CO2 sequestration under geological conditions of China

    International Nuclear Information System (INIS)

    Wang, Tianye; Wang, Huaiyuan; Zhang, Fengjun; Xu, Tianfu

    2013-01-01

    Highlights: • We determined the feasibilities of geologic CO 2 sequestration in China. • We determined the formation of gibbsite suggested CO 2 can be captured by rocks. • We suggested the mechanisms of CO 2 –water–rock interactions. • We found the corrosion and dissolution of the rock increased as temperature rose. -- Abstract: The main purpose of this study focused on the feasibility of geologic CO 2 sequestration within the actual geological conditions of the first Carbon Capture and Storage (CCS) project in China. This study investigated CO 2 –water–rock interactions under simulated hydrothermal conditions via physicochemical analyses and scanning electron microscopy (SEM). Mass loss measurement and SEM showed that corrosion of feldspars, silica, and clay minerals increased with increasing temperature. Corrosion of sandstone samples in the CO 2 -containing fluid showed a positive correlation with temperature. During reaction at 70 °C, 85 °C, and 100 °C, gibbsite (an intermediate mineral product) formed on the sample surface. This demonstrated mineral capture of CO 2 and supported the feasibility of geologic CO 2 sequestration. Chemical analyses suggested a dissolution–reprecipitation mechanism underlying the CO 2 –water–rock interactions. The results of this study suggested that mineral dissolution, new mineral precipitation, and carbonic acid formation-dissociation are closely interrelated in CO 2 –water–rock interactions

  18. Capture, transport and storage of CO2

    International Nuclear Information System (INIS)

    De Boer, B.

    2008-01-01

    The emission of greenhouse gas CO2 in industrial processes and electricity production can be reduced on a large scale. Available techniques include post-combustion, pre-combustion, the oxy-fuel process, CO2 fixation in industrial processes and CO2 mineralization. In the Netherlands, plans for CO2 capture are not developing rapidly (CCS - carbon capture and storage). [mk] [nl

  19. Reservoir Characterization and CO2 Plume Migration Modeling Based on Bottom-hole Pressure Data: An Example from the AEP Mountaineer Geological Storage Project

    Science.gov (United States)

    Mishra, Srikanta; Kelley, Mark; Oruganti, YagnaDeepika; Bhattacharya, Indra; Spitznogle, Gary

    2014-05-01

    We present an integrated approach for formation permeability estimation, front tracking, reservoir model calibration, and plume migration modeling based on injection rate and down-hole pressure data from CO2 geologic sequestration projects. The data are taken from the 20 MW CO2 capture and storage project at American Electric Power's Mountaineer Plant in West Virginia, USA. The Mountaineer CO2 injection system consists of two injection wells - one in the Copper Ridge Dolomite formation and one in the Rose Run sandstone formation, and three deep observation wells that were operational between October 2009 and May 2011. Approximately 27000 MT and 10000 MT were injected into the Copper Ridge dolomite formation and Rose Run sandstone formation, respectively. A wealth of pressure and rate data from injection and observation wells is available covering a series of injection and pressure falloff events. The methodology developed and applied for interpreting and integrating the data during reservoir analysis and modeling from the Rose Run formation is the subject of this paper. For the analysis of transient pressure data at the injection and observation wells, the CO2 storage reservoir is conceptualized as a radial composite system, where the inner (invaded) zone consists of both supercritical CO2 and brine, and the outer (uninvaded) zone consists of undisturbed brine. Using established analytical solutions for analyzing fluid injection problems in the petroleum reservoir engineering literature, we show how the late-time pressure derivative response from both injection and observation wells will be identical - reflecting the permeability-thickness product of the undisturbed brine-filled formation. We also show how the expanding CO2 plume affects the "effective" compressibility that can be estimated by history matching injection-falloff data and how this can be used to develop a relationship between the plume radius and "effective" compressibility. This provides a novel non

  20. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry

    Science.gov (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.

    2016-12-01

    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  1. Technical support for an enabling policy framework for carbon dioxide capture and geological storage. Task 3. Incentivising CO2 capture and storage in the EU

    International Nuclear Information System (INIS)

    De Coninck, H.; Groenenberg, H.

    2007-03-01

    To date CO2 capture and storage (CCS) is not deployed at a commercial scale, and a range of policy instruments could be used to provide adequate incentives for large scale deployment of CCS in the European Union. Five groups of incentives are discussed: (1) the EU Emissions Trading Scheme (weak and strong version); (2) Member-State-based public financial support through investment support, feed-in subsidies or a CO2 price guarantee; (3) an EU-level low-carbon portfolio standard with tradable certificates; (4) an EU-wide CCS obligation for all new fossil-fuel-based power capacity, and (5) public-private partnerships for realizing a CO2 pipeline infrastructure. The nature of the policy, mainly in case the scale of the instrument matters and much public financial is involved, determines whether it will be implemented by the EU or at the Member-State level. Support for CCS projects at the Member-State level, however, will require amendment of the Community Guidelines for State Aid for Environmental Protection

  2. Experimental simulation of the geological storage of CO2: particular study of the interfaces between well cement, cap-rock and reservoir rock

    International Nuclear Information System (INIS)

    Jobard, Emmanuel

    2013-01-01

    The geological storage of the CO 2 is envisaged to mitigate the anthropogenic greenhouse gas emissions in the short term. CO 2 is trapped from big emitters and is directly injected into a reservoir rock (mainly in deep salty aquifers, depleted hydrocarbon oil fields or unexploited charcoal lodes) located at more than 800 m deep. In the framework of the CO 2 storage, it is crucial to ensure the integrity of the solicited materials in order to guarantee the permanent confinement of the sequestrated fluids. Using experimental simulation the purpose of this work is to study the mechanisms which could be responsible for the system destabilization and could lead CO 2 leakage from the injection well. The experimental simulations are performed under pressure and temperature conditions of the geological storage (100 bar and from 80 to 100 deg. C). The first experimental model, called COTAGES (for 'Colonne Thermoregulee A Grains pour Gaz a Effet de Serre') allows studying the effects of the thermal destabilisation caused by the injection of a fluid at 25 deg. C in a hotter reservoir (submitted to the geothermal gradient). This device composed of an aqueous saline solution (4 g.L -1 of NaCl), crushed rock (Lavoux limestone or Callovo-Oxfordian argillite) and gas (N 2 or CO 2 ) allows demonstrating an important matter transfer from the cold area (30 deg. C) toward the hot area (100 deg. C). The observed dissolution/precipitation phenomena leading to changes of the petro-physical rocks properties occur in presence of N 2 or CO 2 but are significantly amplified by the presence of CO 2 . Concerning the experiments carried out with Lavoux limestone, the dissolution in the cold zone causes a raise of porosity of about 2% (initial porosity of 8%) due to the formation of about 500 pores/mm 2 with a size ranging between 10 and 100 μm 2 . The precipitation in the hot zone forms a micro-calcite fringe on the external part of the grains and fills the intergrain porosity

  3. Managing geological uncertainty in CO2-EOR reservoir assessments

    Science.gov (United States)

    Welkenhuysen, Kris; Piessens, Kris

    2014-05-01

    Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are

  4. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  5. CO2 sequestration: Storage capacity guideline needed

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.

    2006-01-01

    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  6. CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway

    International Nuclear Information System (INIS)

    Boee, Reidulv; Magnus, Christian; Osmundsen, Per Terje; Rindstad, Bjoern Ivar

    2002-01-01

    The GESTCO project comprises a study of the distribution and coincidence of thermal CO 2 emission sources and location/quality of geological storage capacity in Europe. Four of the most promising types of geological storage are being studied. 1. Onshore/offshore saline aquifers with or without lateral seal. 2. Low entalpy geothermal reservoirs. 3. Deep methane-bearing coal beds and abandoned coal and salt mines. 4. Exhausted or near exhausted hydrocarbon structures. In this report we present an inventory of CO 2 point sources in Norway (1999) and the results of the work within Study Area C: Deep saline aquifers offshore/near shore Northern and Central Norway. Also offshore/near shore Southern Norway has been included while the Barents Sea is not described in any detail. The most detailed studies are on the Tilje and Aare Formations on the Troendelag Platform off Mid-Norway and on the Sognefjord, Fensfjord and Krossfjord Formations, southeast of the Troll Field off Western Norway. The Tilje Formation has been chosen as one of the cases to be studied in greater detail (numerical modelling) in the project. This report shows that offshore Norway, there are concentrations of large CO 2 point sources in the Haltenbanken, the Viking Graben/Tampen Spur area, the Southern Viking Graben and the central Trough, while onshore Norway there are concentrations of point sources in the Oslofjord/Porsgrund area, along the coast of western Norway and in the Troendelag. A number of aquifers with large theoretical CO 2 storage potential are pointed out in the North Sea, the Norwegian Sea and in the Southern Barents Sea. The storage capacity in the depth interval 0.8 - 4 km below sea level is estimated to be ca. 13 Gt (13000000000 tonnes) CO 2 in geological traps (outside hydrocarbon fields), while the storage capacity in aquifers not confined to traps is estimated to be at least 280 Gt CO 2 . (Author)

  7. From Injectivity to Integrity Studies of CO2 Geological Storage Caractérisation de l’injectivité et de l’intégrité d’un stockage géologique de CO2

    Directory of Open Access Journals (Sweden)

    Bemer E.

    2009-07-01

    Full Text Available The technical and economical success of a CO2 geological storage project requires the preservation of the site injectivity and integrity properties over its lifetime. Unlike conventional hydrocarbon gas injection, CO2 injection implies geochemical reactions between the reactive brine and the in situ formations (reservoir and cap rock leading to modifications of their petrophysical and geomechanical properties. This paper underlines the experimental difficulties raised by the low permeability of samples representative either of the cap rock itself or at least of transition zones between the reservoir and the effective cap rock. Acidification effects induced by CO2 injection have been studied using an experimental procedure of chemical alteration, which ensures a homogeneous dissolution pattern throughout the rock sample and especially avoids any wormholing process that would lead to erroneous measurements at the core scale. Porosity, permeability and geomechanical properties of outcrop and field carbonate samples of various permeability levels have been measured under their native state and different levels of alteration. The present work has been conducted within the framework of ANR GeoCarbone-INJECTIVITY and GeoCarbone-INTEGRITY projects. Each experimental step: chemical alteration, petrophysical measurements and geomechanical testing, is considered from the point of view of injectivity and integrity issues. The obtained experimental data show clear trends of chemically induced mechanical weakening. La réussite technique et économique d’un projet de stockage géologique de CO2 repose sur le maintien des propriétés d’injectivité et d’intégrité du site pendant sa durée de vie. Contrairement à l’injection d’un gaz d’hydrocarbure standard, l’injection de CO2 implique des réactions géochimiques entre la saumure réactive mobile et les roches en place (réservoir et couverture conduisant à des modifications de leurs propri

  8. Have We Overestimated Saline Aquifer CO2 Storage Capacities?

    International Nuclear Information System (INIS)

    Thibeau, S.; Mucha, V.

    2011-01-01

    During future, large scale CO 2 geological storage in saline aquifers, fluid pressure is expected to rise as a consequence of CO 2 injection, but the pressure build up will have to stay below specified values to ensure a safe and long term containment of the CO 2 in the storage site. The pressure build up is the result of two different effects. The first effect is a local overpressure around the injectors, which is due to the high CO 2 velocities around the injectors, and which can be mitigated by adding CO 2 injectors. The second effect is a regional scale pressure build up that will take place if the storage aquifer is closed or if the formation water that flows away from the pressurised area is not large enough to compensate volumetrically the CO 2 injection. This second effect cannot be mitigated by adding additional injectors. In the first section of this paper, we review some major global and regional assessments of CO 2 storage capacities in deep saline aquifers, in term of mass and storage efficiency. These storage capacities are primarily based on a volumetric approach: storage capacity is the volumetric sum of the CO 2 that can be stored through various trapping mechanisms. We then discuss in Section 2 storage efficiencies derived from a pressure build up approach, as stated in the CO2STORE final report (Chadwick A. et al. (eds) (2008) Best Practice for the Storage of CO 2 in Saline Aquifers, Observations and Guidelines from the SACS and CO2STORE Projects, Keyworth, Nottingham, BGS Occasional Publication No. 14) and detailed by Van der Meer and Egberts (van der Meer L.G.H., Egberts P.J.P. (2008) A General Method for Calculating Subsurface CO 2 Storage Capacity, OTC Paper 19309, presented at the OTC Conference held in Houston, Texas, USA, 5-8 May). A quantitative range of such storage efficiency is presented, based on a review of orders of magnitudes of pore and water compressibilities and allowable pressure increase. To illustrate the relevance of this

  9. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  10. CO2, the promises of geological sequestration

    International Nuclear Information System (INIS)

    Rouat, S.

    2006-01-01

    Trapping part of the world CO 2 effluents in the deep underground is a profitable and ecological way to limit the global warming. This digest paper presents the different ways of CO 2 sequestration (depleted oil and gas fields, unexploited coal seams, saline aquifers), the other possible solutions for CO 2 abatement (injection in the bottom of the ocean, conversion into carbonates by injection into basic rocks, fixation by photosynthesis thanks to micro-algae cultivation), and takes stock of the experiments in progress (Snoehvit field in Norway, European project Castor). (J.S.)

  11. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    Science.gov (United States)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  12. Assessing reservoir performance risk in CO2 storage projects

    International Nuclear Information System (INIS)

    Bowden, A.R.; Rigg, A.

    2005-01-01

    One of the main issues for researchers involved with geological storage of carbon dioxide (CO 2 ) has been the development of a proper methodology to assess and compare alternative CO 2 injection projects on the basis of risk. Consideration needs to be given to technical aspects, such as the risk of leakage and the effectiveness of the intended reservoir, as well as less tangible aspects such as the value and safety of geological storage of CO 2 , and potential impacts on the community and environment. The Geological Disposal of Carbon Dioxide (GEODISC), was a research program of the Australian Petroleum Cooperative Research Centre which identified 56 potential environmentally sustainable sites for CO 2 injection (ESSCIs) within Australia. Several studies were carried out, involving detailed evaluation of the suitability of 4 selected sites, including Dongara, Petrel, Gippsland and Carnarvon. The GEODISC program included a risk assessment research module which required a complete and quantified risk assessment of CO 2 injection as a storage option. Primary goals were to assess the risk of leakage, to assess the effectiveness of the intended reservoir, and to assess negative consequences to facilitate comparison of alternative sites. This paper discussed the background and risk assessment model. Key performance indicators (KPIs) were also developed to address the purpose of risk assessment. It was concluded that the RISQUE method is an appropriate approach and that potential injection projects can be measured against six KPIs including containment; effectiveness; self-funding potential; wider community benefits; community safety and community amenity. 6 refs., 3 tabs., 3 figs

  13. Shaft sealing issue in CO2 storage sites

    Science.gov (United States)

    Dieudonné, A.-C.; Charlier, R.; Collin, F.

    2012-04-01

    Carbon capture and storage is an innovating approach to tackle climate changes through the reduction of greenhouse gas emissions. Deep saline aquifers, depleted oil and gas reservoirs and unmineable coal seams are among the most studied reservoirs. However other types of reservoir, such as abandonned coal mines, could also be used for the storage of carbon dioxide. In this case, the problem of shaft sealing appears to be particularly critical regarding to the economic, ecologic and health aspects of geological storage. The purpose of the work is to study shaft sealing in the framework of CO2 storage projects in abandoned coal mines. The problem of gas transfers around a sealing system is studied numerically using the finite elements code LAGAMINE, which has been developped for 30 years at the University of Liege. A coupled hydro-mechanical model of unsaturated geomaterials is used for the analyses. The response of the two-phase flow model is first studied through a simple synthetic problem consisting in the injection of gas in a concrete-made column. It stands out of this first modeling that the advection of the gas phase represents the main transfer mechanism of CO2 in highly unsaturated materials. Furthermore the setting of a bentonite barrier seal limits considerably the gas influx into the biosphere. A 2D axisymetric hydromechanical modeling of the Anderlues natural gas storage site is then performed. The geological and hydrogeological contexts of the site are used to define the problem, for the initial and boundary conditions, as well as the material properties. In order to reproduce stress and water saturation states in the shale before CO2 injection in the mine, different phases corresponding to the shaft sinking, the mining and the set up of the sealing system are simulated. The system efficiency is then evaluated by simulating the CO2 injection with the imposed pressure at the shaft wall. According to the modeling, the low water saturation of concrete and

  14. Interfacial Interactions and Wettability Evaluation of Rock Surfaces for CO2 Storage

    NARCIS (Netherlands)

    Shojai Kaveh, N.

    2014-01-01

    To reduce CO2 emissions into the atmosphere, different scenarios are proposed to capture and store carbon dioxide (CO2) in geological formations (CCS). Storage strategies include CO2 injection into deep saline aquifers, depleted gas and oil reservoirs, and unmineable coal seams. To identify a secure

  15. A sensitivity analysis on seismic tomography data with respect to CO2 saturation of a CO2 geological sequestration field

    Science.gov (United States)

    Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook

    2013-04-01

    Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution

  16. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  17. Strategic use of the underground for an energy mix plan, synergies among CO2 and CH4 Geological Storage and Geothermal Energy: Italian Energy review and Latium case study

    Science.gov (United States)

    Procesi, M.; Cantucci, B.; Buttinelli, M.; Armezzani, G.; Quattrocchi, F.

    2012-04-01

    Since the world-wide energy demand has been growing so much in the last years, it is necessary to develop a strategic mix-energy plan to supply low GHG (GreenHouseGas) emissions energy and solve the problem of CO2 emission increasing. A recent study published by European Commission shows that, if existing trends continue, by 2050 CO2 emissions will be unsustainably high: 900-1000 parts per million by volume. The European Commission in 2007 underline the necessity to elaborate, at European level, a Strategic Energy Technology Plan focused on non-carbon or reduced-carbon sources of energy, as renewable energies, CO2 capture and storage technologies, smart energy networks and energy efficiency and savings. Future scenarios for 2030 elaborated by the International Energy Agency (IEA) shows as a mix energy plan could reduce the global CO2 emissions from 27Gt to 23 Gt (about 15%). A strategic use of the underground in terms of: - development of CCS (Carbon dioxide Capture and Storage) associated to fossil fuel combustion; - increase of CH4 geological storage sites; - use of renewable energies as geothermic for power generation; could open a new energy scenario, according to the climate models published by IPCC. Nowadays CCS market is mainly developed in USA and Canada, but still not much accounted in Europe. In Italy there aren't active CCS projects, even if potential areas have been already identified. Many CH4 storage sites are located in Northern America, while other are present in Europe and Italy, but the number of sites is limited despite the huge underground potentiality. In Italy the power generation from geothermal energy comes exclusively from Tuscany (Larderello-Travale and Mt. Amiata geothermal fields) despite the huge potentiality of other regions as Latium, Campania and Sicily (Central and South Italy). The energy deficit and the relevant CO2 emissions represent a common status for many Italian regions, especially for the Latium Region. This suggests that a

  18. Some geomechanical aspects of geological CO2 sequestration

    NARCIS (Netherlands)

    Orlic, B.

    2008-01-01

    Reservoir depletion and subsequent CO 2 injection into the depleted geological reservoir induce stress changes that may mechanically damage top seal and wells, or trigger existing faults, creating the leakage pathways for CO 2 escape from the reservoir. The role of geomechanics is to assess the

  19. Some geomechanical aspects of geological CO2 sequestration

    NARCIS (Netherlands)

    Orlic, B.

    2009-01-01

    Reservoir depletion and subsequent CO2 injection into the depleted geological reservoir induce stress changes that may mechanically damage top seal and wells, or trigger existing faults, creating the leakage pathways for CO2 escape from the reservoir. The role of geomechanics is to assess the

  20. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  1. Subsurface impact of CO2: Response of carbonate rocks and wellbore cement to supercritical CO2 injection and long-term storage. Geologica Ultraiectina (310)

    NARCIS (Netherlands)

    Liteanu, E.

    2009-01-01

    Capture of CO2 at fossil fuel power station coupled with geological storage in empty oil and gas reservoirs is widely viewed as the most promising option for reducing CO2 emissions to the atmosphere, i.e. for climate change mitigation. Injection of CO2 into such reservoirs will change their chemical

  2. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO 2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO 2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO 2 transport options, the geological storage of the CO 2 and Total commitments in the domain. (A.L.B.)

  3. Opportunities for low-cost CO2 storage demonstration projects in China

    International Nuclear Information System (INIS)

    Meng, Kyle C.; Williams, Robert H.; Celia, Michael A.

    2007-01-01

    Several CO 2 storage demonstration projects are needed in a variety of geological formations worldwide to prove the viability of CO 2 capture and storage as a major option for climate change mitigation. China has several low-cost CO 2 sources at sites that produce NH 3 from coal via gasification. At these plants, CO 2 generated in excess of the amount needed for other purposes (e.g., urea synthesis) is vented as a relatively pure stream. These CO 2 sources would potentially be economically interesting candidates for storage demonstration projects if there are suitable storage sites nearby. In this study a survey was conducted to estimate CO 2 availability at modern Chinese coal-fed ammonia plants. Results indicate that annual quantities of available, relatively pure CO 2 per site range from 0.6 to 1.1 million tonnes. The CO 2 source assessment was complemented by analysis of possible nearby opportunities for CO 2 storage. CO 2 sources were mapped in relation to China's petroliferous sedimentary basins where prospective CO 2 storage reservoirs possibly exist. Four promising pairs of sources and sinks were identified. Project costs for storage in deep saline aquifers were estimated for each pairing ranging from $15-21/t of CO 2 . Potential enhanced oil recovery and enhanced coal bed methane recovery opportunities near each prospective source were also considered

  4. Feasibility of CO2 storage in geothermal reservoirs example of the Paris Basin - France. Final report

    International Nuclear Information System (INIS)

    Barbier, J.; Robelin, C.; Kervevan, C.; Thiery, D.; Menjoz, A.; Matray, J.M.; Cotiche, C.; Herbrich, B.

    2003-01-01

    This study is realized in the framework of GESCO project, which aims to provide the first documentation that, for emission sources within selected key areas, sufficient geological storage capacity is available. Then the BRGM/ANTEA/CFG took care to provide: an inventory of the CO 2 emitters in France, an inventory of the main deep aquifers present in the Paris basin, an evaluation of the storage capacities of CO 2 in one of the four principal case-study, technical solutions for CO 2 injection in geothermal aquifers and an evaluation of the cost of CO 2 storage in such an aquifer. (A.L.B.)

  5. Integrated path towards geological storage

    International Nuclear Information System (INIS)

    Bouchard, R.; Delaytermoz, A.

    2004-01-01

    Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these

  6. Numerical investigation of CO2 storage in hydrocarbon field using a geomechanical-fluid coupling model

    Directory of Open Access Journals (Sweden)

    Guang Li

    2016-09-01

    Full Text Available Increasing pore pressure due to CO2 injection can lead to stress and strain changes of the reservoir. One of the safely standards for long term CO2 storage is whether stress and strain changes caused by CO2 injection will lead to irreversible mechanical damages of the reservoir and impact the integrity of caprock which could lead to CO2 leakage through previously sealing structures. Leakage from storage will compromise both the storage capacity and the perceived security of the project, therefore, a successful CO2 storage project requires large volumes of CO2 to be injected into storage site in a reliable and secure manner. Yougou hydrocarbon field located in Orods basin was chosen as storage site based on it's stable geological structure and low leakage risks. In this paper, we present a fluid pressure and stress-strain variations analysis for CO2 geological storage based on a geomechanical-fluid coupling model. Using nonlinear elasticity theory to describe the geomechanical part of the model, while using the Darcy's law to describe the fluid flow. Two parts are coupled together using the poroelasticity theory. The objectives of our work were: 1 evaluation of the geomechanical response of the reservoir to different CO2 injection scenarios. 2 assessment of the potential leakage risk of the reservoir caused by CO2 injection.

  7. Use of comparative assessment framework for comparison of geological nuclear waste and CO2 disposal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Streimikiene, Dalia

    2010-09-15

    Comparative assessment of few future energy and climate change mitigation options for Lithuania in 2020 performed indicated that nuclear and combined cycle gas turbine technologies are very similar energy options in terms of costs taking into account GHG emission reduction costs. Comparative assessment of these energy options requires evaluation of the potentials and costs for geological CO2 and nuclear waste storage as the main uncertainties in comparative assessment of electricity generation technologies are related with these back-end technologies. The paper analyses the main characteristics of possible geological storage of CO2 and NW options in Lithuania.

  8. Techno-Economic Assessment of Four CO2 Storage Sites

    Directory of Open Access Journals (Sweden)

    Gruson J.-F.

    2015-04-01

    Full Text Available Carbon Capture and Storage (CCS should be a key technology in order to achieve a decline in the CO2 emissions intensity of the power sector and other intensive industry, but this potential deployment could be restricted by cost issues as the International Energy Agency (IEA in their last projections (World Energy Outlook 2013 has considered only around 1% of global fossil fuel-fired power plants could be equipped with CCS by 2035. The SiteChar project funded by 7th Framework Programme of European Commission gives the opportunity to evaluate the most influential parameters of techno-economic evaluations of four feasible European projects for CO2 geological storage located onshore and offshore and related to aquifer storage or oil and gas reservoirs, at different stages of characterization. Four potential CO2 storage sites have been assessed in terms of storage costs per tonne of CO2 permanently stored (equivalent cost based. They are located offshore UK, onshore Denmark, offshore Norway and offshore Italy. The four SiteChar techno-economic evaluations confirm it is not possible to derive any meaningful average cost for a CO2 storage site. The results demonstrate that the structure of costs for a project is heterogeneous and the storage cost is consequently site dependent. The strategy of the site development is fundamental, the technical choices such as the timing, rate and duration of injection are also important. The way monitoring is managed, using observation wells and logging has a strong impact on the estimated monitoring costs. Options to lower monitoring costs, such as permanent surveys, exist and should be further investigated. Table 1 below summarizes the cost range in Euro per tonne (Discount Rate (DR at 8% for the different sites, which illustrates the various orders of magnitude due to the specificities of each site. These figures have how to be considered with care. In particular the Italian and Norwegian sites present very specific

  9. GHGT-10 : Assessing the integrity of fault- and top seals at CO2 storage sites

    NARCIS (Netherlands)

    Orlic, B.; Heege J.H. ter; Wassing, B.

    2011-01-01

    Induced stress changes due to CO2 injection into geological reservoirs can mechanically damage bounding fault- and top seals creating preferential pathways for CO2 migration from the containment or trigger existing faults causing seismic activity at storage sites. In this paper we present

  10. Influence of methane in CO2 transport and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2012-12-04

    CO(2) Capture and Storage (CCS) is a good strategy to mitigate levels of atmospheric greenhouse gases. The type and quantity of impurities influence the properties and behavior of the anthropogenic CO(2), and so must be considered in the design and operation of CCS technology facilities. Their study is necessary for CO(2) transport and storage, and to develop theoretical models for specific engineering applications to CCS technology. In this work we determined the influence of CH(4), an important impurity of anthropogenic CO(2), within different steps of CCS technology: transport, injection, and geological storage. For this, we obtained new pressure-density-temperature (PρT) and vapor-liquid equilibrium (VLE) experimental data for six CO(2) + CH(4) mixtures at compositions which represent emissions from the main sources in the European Union and United States. The P and T ranges studied are within those estimated for CO(2) pipelines and geological storage sites. From these data we evaluated the minimal pressures for transport, regarding the density and pipeline's capacity requirements, and values for the solubility parameter of the mixtures, a factor which governs the solubility of substances present in the reservoir before injection. We concluded that the presence of CH(4) reduces the storage capacity and increases the buoyancy of the CO(2) plume, which diminishes the efficiency of solubility and residual trapping of CO(2), and reduces the injectivity into geological formations.

  11. Geomechanical Modeling for Improved CO2 Storage Security

    Science.gov (United States)

    Rutqvist, J.; Rinaldi, A. P.; Cappa, F.; Jeanne, P.; Mazzoldi, A.; Urpi, L.; Vilarrasa, V.; Guglielmi, Y.

    2017-12-01

    This presentation summarizes recent modeling studies on geomechanical aspects related to Geologic Carbon Sequestration (GCS,) including modeling potential fault reactivation, seismicity and CO2 leakage. The model simulations demonstrates that the potential for fault reactivation and the resulting seismic magnitude as well as the potential for creating a leakage path through overburden sealing layers (caprock) depends on a number of parameters such as fault orientation, stress field, and rock properties. The model simulations further demonstrate that seismic events large enough to be felt by humans requires brittle fault properties as well as continuous fault permeability allowing for the pressure to be distributed over a large fault patch to be ruptured at once. Heterogeneous fault properties, which are commonly encountered in faults intersecting multilayered shale/sandstone sequences, effectively reduce the likelihood of inducing felt seismicity and also effectively impede upward CO2 leakage. Site specific model simulations of the In Salah CO2 storage site showed that deep fractured zone responses and associated seismicity occurred in the brittle fractured sandstone reservoir, but at a very substantial reservoir overpressure close to the magnitude of the least principal stress. It is suggested that coupled geomechanical modeling be used to guide the site selection and assisting in identification of locations most prone to unwanted and damaging geomechanical changes, and to evaluate potential consequence of such unwanted geomechanical changes. The geomechanical modeling can be used to better estimate the maximum sustainable injection rate or reservoir pressure and thereby provide for improved CO2 storage security. Whether damaging geomechanical changes could actually occur very much depends on the local stress field and local reservoir properties such the presence of ductile rock and faults (which can aseismically accommodate for the stress and strain induced by

  12. Biomass burial and storage to reduce atmospheric CO2

    Science.gov (United States)

    Zeng, N.

    2012-04-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a theoretical carbon sequestration potential for wood burial is 10 ± 5 GtC/y, but probably 1-3 GtC/y can be realized in practice. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from forest industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  13. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  14. Preliminary Study of Favourable Formations for CO2 Subsurface Storage in Spain

    International Nuclear Information System (INIS)

    Zapatero, M. A.; Reyes, J. L.; Martinez, R.; Suarez, I.; Arenillas, A.; Perucha, M. A.

    2009-01-01

    This report is a synthesis of the possibilities of CO 2 storage in the Spanish subsurface. Compilation and analysis of geological information has been carried out, looking at surface and subsurface, in order to make a pre-selection of potential favourable units for CO 2 storage, taking in account that each of this storages needs a confining formation to seal the storage. Before the storage selection, a general description of the great geological units of the Iberian Peninsula is done. Afterwards, borehole logging from petroleum exploration is analysed in these units, formations and areas of interest. The aim is to finally obtain a description of selected units and their possibilities of CO 2 storage. (Author) 17 refs

  15. Underground storage touted as CO2 solution

    International Nuclear Information System (INIS)

    Kishewitsch, S.

    2000-01-01

    As power generating companies weigh the merits of switching from coal to natural gas in order to reduce carbon dioxide emissions into the atmosphere, energy analysts predict that coal will remain a major contributor to world energy supplies well into the 21st century. For example, the Electric Power Institute estimates that a new 1,000 MW power plant need to be built somewhere in the world every two days for the next fifty years to meet the global demand for energy, and that in major emerging economies such as India and China, many of those plants will be fueled by coal. Various methods already are being tried to safely contain the carbon dioxide resulting from this vastly carbon-intensive economy. One of the more promising approaches involves burying the gas deep in the ground where it will stay safely for hundreds, if not thousands of years. Burial underground may take the form of burial in deep exhausted oil or gas formations, or burial in the deep ocean. Injection into exhausted oil and gas formations is favoured because of the ready availability of thousands of gigatonnes of underground formations and because of the extensive knowledge base already in existence regarding the size and geological properties of oil and gas reservoirs and the behaviour of carbon dioxide under these conditions. Injecting carbon dioxide into unmineable coal seams could replace methane bound to the coal; it is already being done in Alberta as one of the two pilot projects in North America, the other being in Mexico. Carbon dioxide injection to stimulate enhanced oil recovery is also being experimented with, among others by PanCanadian Resources Ltd at its Weyburn reservoir in Saskatchewan. Injection into salt domes and deep saline aquifers is another alternative. Sequestration in the ocean in a variety of forms is also the subject of several experiments. To illustrate the attractiveness of deep ocean storage, it is stated that the ocean contains at least 50 times more carbon than the

  16. Potential hazards of CO2 leakage in storage systems : learning from natural systems

    International Nuclear Information System (INIS)

    Beaubien, S.E.; Lombardi, S.; Ciotoli, G.; Annunziatellis, A.; Hatziyannis, G.; Metaxas, A.; Pearce, J.M.

    2005-01-01

    The Natural Analogues for the Storage of CO2 in the Geological Environment (NASCENT) Project has examined several naturally occurring carbon dioxide (CO 2 ) deposits throughout Europe to better understand the possible long term geological effects of a man-made CO 2 storage reservoir. Natural geological accumulations of CO 2 also occur widely throughout the world, some of which leak CO 2 to the surface, while others are effectively sealed. It is important to understanding the characteristics of both types of deposits in order to select and design underground storage sites for CO 2 storage. Four naturally occurring CO 2 sites were reviewed in this paper with reference to issues related to risk assessment, such as migration pathways; the speed of migration and mass flux rates; changes in groundwater chemistry; and, the effects these emissions may have on local populations and ecosystems. One site was located in northern Greece, near the Florina CO 2 gas field. The other three sites were in central Italy, including a selected area of the Latera geothermal complex, where natural deep CO 2 migrates upwards along faults and is emitted to the atmosphere; the San Vittorino intermontane basin where CO 2 -charged groundwaters cause the dissolution of limestone to form large sinkholes; and, the Ciampino area southeast of Rome, where CO 2 from deep-seated volcanism migrates along faults in a residential area. Work performed on these sites included soil gas, CO 2 flux and aqueous geochemical surveys. A GIS based model was also developed for the Latera site to assesses the risk of deep gas migration to surface. It was emphasized that these 4 sites are extreme cases compared to a man-made CO 2 geological storage site. For example all sites have an essentially infinite supply of deep CO 2 as the result of the thermo-metamorphic reactions forming this gas, whereas a man-made storage site would have a finite volume of gas which would be limited in its mass transfer out of the

  17. Canadian CO2 Capture and Storage Technology Network : promoting zero emissions technologies

    International Nuclear Information System (INIS)

    2004-11-01

    This brochure provided information on some Canadian initiatives in carbon dioxide (CO 2 ) capture and storage. There has been growing interest in the implementation of components of CO 2 capture, storage and utilization technologies in Canada. Technology developments by the CANMET Energy Technology Centre concerning CO 2 capture using oxy-fuel combustion and amine separation were examined. Techniques concerning gasification of coal for electricity production and CO 2 capture were reviewed. Details of a study of acid gas underground injection were presented. A review of monitoring technologies in CO 2 storage in enhanced oil recovery was provided. Issues concerning the enhancement of methane recovery through the monitoring of CO 2 injected into deep coal beds were discussed. Storage capacity assessment of Canadian sedimentary basins, coal seams and oil and gas reservoirs were reviewed, in relation to their suitability for CO 2 sequestration. Details of the International Test Centre for Carbon Dioxide Capture in Regina, Saskatchewan were presented, as well as issues concerning the sequestration of CO 2 in oil sands tailings streams. A research project concerning the geologic sequestration of CO 2 and simultaneous CO 2 and methane production from natural gs hydrate reservoirs was also discussed. 12 figs.

  18. Application of simplified models to CO2 migration and immobilization in large-scale geological systems

    KAUST Repository

    Gasda, Sarah E.

    2012-07-01

    Long-term stabilization of injected carbon dioxide (CO 2) is an essential component of risk management for geological carbon sequestration operations. However, migration and trapping phenomena are inherently complex, involving processes that act over multiple spatial and temporal scales. One example involves centimeter-scale density instabilities in the dissolved CO 2 region leading to large-scale convective mixing that can be a significant driver for CO 2 dissolution. Another example is the potentially important effect of capillary forces, in addition to buoyancy and viscous forces, on the evolution of mobile CO 2. Local capillary effects lead to a capillary transition zone, or capillary fringe, where both fluids are present in the mobile state. This small-scale effect may have a significant impact on large-scale plume migration as well as long-term residual and dissolution trapping. Computational models that can capture both large and small-scale effects are essential to predict the role of these processes on the long-term storage security of CO 2 sequestration operations. Conventional modeling tools are unable to resolve sufficiently all of these relevant processes when modeling CO 2 migration in large-scale geological systems. Herein, we present a vertically-integrated approach to CO 2 modeling that employs upscaled representations of these subgrid processes. We apply the model to the Johansen formation, a prospective site for sequestration of Norwegian CO 2 emissions, and explore the sensitivity of CO 2 migration and trapping to subscale physics. Model results show the relative importance of different physical processes in large-scale simulations. The ability of models such as this to capture the relevant physical processes at large spatial and temporal scales is important for prediction and analysis of CO 2 storage sites. © 2012 Elsevier Ltd.

  19. Corrosion studies on casing steel in CO2 storage environments

    NARCIS (Netherlands)

    Zhang, X.; Zevenbergen, J.F.; Benedictus, T.

    2013-01-01

    The corrosion behavior of casing steel N80 in brine plus CO2 was studied in autoclave to simulate the CO2 storage environment. The brine solution used in the study contained 130 g/l NaCl, 22.2 g/l CaCl2 and 4 g/l MgCl2. The CO2 was charged in the autoclave at different pressures (60, 80 and 100 bar)

  20. Possible impacts of CO2 storage on the marine environment

    International Nuclear Information System (INIS)

    Poremski, H.J.

    2005-01-01

    This study examined the potential impacts of deep-sea carbon dioxide (CO 2 ) sequestration on the marine environment. The upper layers of oceans are currently saturated with CO 2 , while deeper ocean waters remain undersaturated. Arctic and Antarctic waters have higher uptake rates of CO 2 due to their lower temperatures. CO 2 deposited in Arctic and Antarctic waters sinks to the bottom of the ocean, and is then transported to equatorial latitudes, where stored amounts of CO 2 that are not fixed by biochemical processes will be released and enter the atmosphere again after a period of approximately 1000 years. Nearly 50 per cent of CO 2 fixation occurs as a result of phytoplankton growth, which is dependent on the availability of a range of nutrients, essential trace metals, and optimal physical conditions. Fertilization-induced CO 2 fixation in the sediments of southern oceans will result in nutrient depletion of bottom layers, which will in turn result in lower primary production levels at equatorial latitudes. Current modelling approaches to CO 2 injection assume that the injected CO 2 will dissolve in a plume extending 100 m around a riser. Retention times of several hundred years are anticipated. However, further research is needed to investigate the efficacy of CO 2 deep ocean storage technologies. Increased CO 2 uptake can also increase the formation of bicarbonate (HCO 3 ) acidification, decrease pH values, and inhibit the formation of biomass in addition to impacting on the calcification of many organisms. It was concluded that ocean storage by injection or deep storage is an untenable option at present due to the fact that the effects of excessive CO 2 in marine environments are not fully understood. 22 refs., 2 tabs

  1. Comparison of monitoring technologies for CO2 storage and radioactive waste disposal

    International Nuclear Information System (INIS)

    Ryu, Jihun; Koh, Yongkwon; Choi, Jongwon; Lee, Jongyoul

    2013-01-01

    The monitoring techniques used in radioactive waste disposal have fundamentals of geology, hydrogeology, geochemistry etc, which could be applied to CO 2 sequestration. Large and diverse tools are available to monitoring methods for radioactive waste and CO 2 storage. They have fundamentals on geophysical and geochemical principles. Many techniques are well established while others are both novel and at an early stage of development. Reliable and cost-effective monitoring will be an important part of making geologic sequestration a safe, effective and acceptable method for radioactive waste disposal and CO 2 storage. In study, we discuss the monitoring techniques and the role of these techniques in providing insight in the risks of radioactive waste disposal and CO 2 sequestration

  2. Assessment of Ademe's R and D actions for the CO2 capture and storage sector

    International Nuclear Information System (INIS)

    2015-05-01

    This publication presents research actions and projects supported by the ADEME in the field of CO 2 capture and storage. This programme aims at promoting the emergence of significant innovations, at developing the national technology portfolio, at identifying and reducing uncertainties related to exploitation, and at developing and strengthening its technological integration in manufacturing industry and energy sectors. While indicating the invested amount, research demonstrator projects are mentioned. Results obtained between 2007 and 2013 in different fields are briefly described: technical-economic studies or pre-feasibility studies, CO 2 capture (capture in post-combustion or in oxy-combustion), CO 2 geological storage (site selection, knowledge development on storage site sustainability, safety of CO 2 storage sites, monitoring of CO 2 storage sites, environmental impacts of storage sites), and issue of social feasibility of CO 2 capture and storage

  3. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    International Nuclear Information System (INIS)

    Han, Weon Shik; McPherson, Brian J.

    2009-01-01

    The purpose of this research is to present a best-case paradigm for geologic CO 2 storage: CO 2 injection and sequestration in saline formations below oil reservoirs. This includes the saline-only section below the oil-water contact (OWC) in oil reservoirs, a storage target neglected in many current storage capacity assessments. This also includes saline aquifers (high porosity and permeability formations) immediately below oil-bearing formations. While this is a very specific injection target, we contend that most, if not all, oil-bearing basins in the US contain a great volume of such strata, and represent a rather large CO 2 storage capacity option. We hypothesize that these are the best storage targets in those basins. The purpose of this research is to evaluate this hypothesis. We quantitatively compared CO 2 behavior in oil reservoirs and brine formations by examining the thermophysical properties of CO 2 , CO 2 -brine, and CO 2 -oil in various pressure, temperature, and salinity conditions. In addition, we compared the distribution of gravity number (N), which characterizes a tendency towards buoyancy-driven CO 2 migration, and mobility ratio (M), which characterizes the impeded CO 2 migration, in oil reservoirs and brine formations. Our research suggests competing advantages and disadvantages of CO 2 injection in oil reservoirs vs. brine formations: (1) CO 2 solubility in oil is significantly greater than in brine (over 30 times); (2) the tendency of buoyancy-driven CO 2 migration is smaller in oil reservoirs because density contrast between oil and CO 2 is smaller than it between brine and oil (the approximate density contrast between CO 2 and crude oil is ∼100 kg/m 3 and between CO 2 and brine is ∼350 kg/m 3 ); (3) the increased density of oil and brine due to the CO 2 dissolution is not significant (about 7-15 kg/m 3 ); (4) the viscosity reduction of oil due to CO 2 dissolution is significant (from 5790 to 98 mPa s). We compared these competing

  4. Geomechanical Response of Jointed Caprock During CO2 Geological Sequestration

    Science.gov (United States)

    Newell, P.; Martinez, M. J.; Bishop, J. E.

    2014-12-01

    Geological sequestration of CO2 refers to the injection of supercritical CO2 into deep reservoirs trapped beneath a low-permeability caprock formation. Maintaining caprock integrity during the injection process is the most important factor for a successful injection. In this work we evaluate the potential for jointed caprock during injection scenarios using coupled three-dimensional multiphase flow and geomechanics modeling. Evaluation of jointed/fractured caprock systems is of particular concern to CO2 sequestration because creation or reactivation of joints (mechanical damage) can lead to enhanced pathways for leakage. In this work, we use an equivalent continuum approach to account for the joints within the caprock. Joint's aperture and non-linear stiffness of the caprock will be updated dynamically based on the effective normal stress. Effective permeability field will be updated based on the joints' aperture creating an anisotropic permeability field throughout the caprock. This feature would add another coupling between the solid and fluid in addition to basic Terzaghi's effective stress concept. In this study, we evaluate the impact of the joint's orientation and geometry of caprock and reservoir layers on geomechanical response of the CO2 geological systems. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Selection and Characterization of Geological Sites able to Host a Pilot-Scale CO2 Storage in the Paris Basin (GéoCarbone-PICOREF Choix et caractérisation de sites géologiques propices à l’installation d’un pilote pour le stockage de CO2 dans le bassin de Paris (GéoCarbone-PICOREF

    Directory of Open Access Journals (Sweden)

    Brosse É.

    2010-06-01

    Full Text Available The objective of the GéoCarbone-PICOREF project was to select and characterize geological sites where CO2 storage in permeable reservoir could be tested at the pilot scale. Both options of storage in deep saline aquifer and in depleted hydrocarbon field were considered. The typical size envisioned for the pilot was 100 kt CO2 per year. GéoCarbone-PICOREF initially focused on a “Regional Domain”, ca. 200 × 150 km, in the Paris Basin. It was attractive for the following reasons: detailed geological data is available, due to 50 years of petroleum exploration; basin-scale deep saline aquifers are present, with a preliminary estimate of storage capacity which is at the Gt CO2 level, namely the carbonate Oolithe Blanche Formation, of Middle Jurassic age, generally located between 1500 and 1800 m depths in the studied area, and several sandstone formations of Triassic age, located between 2000 and 3000 m; several depleted oil fields exist: although offering storage capacities at a much lower level, they do represent very well constrained geological environments, with proven sealing properties; several sources of pure CO2 were identified in the area, at a flow rate compatible with the pilot size, that would avoid capture costs. 750 km of seismic lines were reprocessed and organized in six sections fitted on well logs. This first dataset provided improved representations of: the gross features of the considered aquifers in the Regional Domain; the structural scheme; lateral continuity of the sealing cap rocks. An inventory of the environmental characteristics was also made, including human occupancy, protected areas, water resource, natural hazards, potential conflicts of use with other resources of the subsurface, etc. From all these criteria, a more restricted geographical domain named the “Sector”, ca. 70 × 70 km, was chosen, the most appropriate for further selection of storage site(s. The geological characterization of the Sector has

  6. Large temporal scale and capacity subsurface bulk energy storage with CO2

    Science.gov (United States)

    Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.

    2017-12-01

    Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.

  7. The environmental impact and risk assessment of CO2 capture, transport and storage - an evaluation of the knowledge base

    NARCIS (Netherlands)

    Koornneef, J.M.; Ramirez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2012-01-01

    In this study, we identify and characterize known and new environmental consequences associated with CO2 capture from power plants, transport by pipeline and storage in geological formations. We have reviewed (analogous) environmental impact assessment procedures and scientific literature on

  8. Impact of CO_2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO_2 Leakage

    International Nuclear Information System (INIS)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    2016-01-01

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO_2) emissions to the atmosphere. During this process, CO_2 is injected as super critical carbon dioxide (SC-CO_2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO_2 in subsurface geologic formations could unintentionally lead to CO_2 leakage into overlying freshwater aquifers. Introduction of CO_2 into these subsurface environments will greatly increase the CO_2 concentration and will create CO_2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO_2 gradients will impact these communities. The overarching goal of this project is to understand how CO_2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO_2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO_2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO_2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO_2 injection/leakage plume where CO_2 concentrations are highest. At CO_2 exposures expected downgradient from the CO_2 plume, selected microorganisms emerged as dominant in the CO_2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site

  9. Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration

    Science.gov (United States)

    McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.

    2006-12-01

    Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.

  10. Experimental Investigations into CO2 Interactions with Injection Well Infrastructure for CO2 Storage

    Science.gov (United States)

    Syed, Amer; Shi, Ji-Quan; Durucan, Sevket; Nash, Graham; Korre, Anna

    2013-04-01

    Wellbore integrity is an essential requirement to ensure the success of a CO2 Storage project as leakage of CO2 from the injection or any other abandoned well in the storage complex, could not only severely impede the efficiency of CO2 injection and storage but also may result in potential adverse impact on the surrounding environment. Early research has revealed that in case of improper well completions and/or significant changes in operating bottomhole pressure and temperature could lead to the creation of microannulus at cement-casing interface which may constitute a preferential pathway for potential CO2 leakage during and post injection period. As a part of a European Commission funded CO2CARE project, the current research investigates the sealing behaviour of such microannulus at the cement-casing interface under simulated subsurface reservoir pressure and temperature conditions and uses the findings to develop a methodology to assess the overall integrity of CO2 storage. A full scale wellbore experimental test set up was constructed for use under elevated pressure and temperature conditions as encountered in typical CO2 storage sites. The wellbore cell consists of an assembly of concentric elements of full scale casing (Diameter= 0.1524m), cement sheath and an outer casing. The stainless steel outer ring is intended to simulate the stiffness offered by the reservoir rock to the displacement applied at the wellbore. The Central Loading Mechanism (CLM) consists of four case hardened shoes that can impart radial load onto the well casing. The radial movement of the shoes is powered through the synchronised movement of four precision jacks controlled hydraulically which could impart radial pressures up to 15 MPa. The cell body is a gas tight enclosure that houses the wellbore and the central loading mechanism. The setup is enclosed in a laboratory oven which acts both as temperature and safety enclosure. Prior to a test, cement mix is set between the casing and

  11. Aluminosilicate Dissolution and Silicate Carbonation during Geologic CO2 Sequestration

    Science.gov (United States)

    Min, Yujia

    Geologic CO2 sequestration (GCS) is considered a promising method to reduce anthropogenic CO2 emission. Assessing the supercritical CO2 (scCO2) gas or liquid phase water (g, l)-mineral interactions is critical to evaluating the viability of GCS processes. This work contributes to our understanding of geochemical reactions at CO 2-water (g, l)-mineral interfaces, by investigating the dissolution of aluminosilicates in CO2-acidified water (l). Plagioclase and biotite were chosen as model minerals in reservoir rock and caprock, respectively. To elucidate the effects of brine chemistry, first, the influences of cations in brine including Na, Ca, and K, have been investigated. In addition to the cations, the effects of abundant anions including sulfate and oxalate were also examined. Besides the reactions in aqueous phase, we also examine the carbonation of silicates in water (g)-bearing supercritical CO2 (scCO2) under conditions relevant to GCS. For the metal carbonation, in particular, the effects of particle sizes, water, temperature, and pressure on the carbonation of wollastonite were systematically examined. For understanding the cations effects in brine, the impacts of Na concentrations up to 4 M on the dissolution of plagioclase and biotite were examined. High concentrations of Na significantly inhibited plagioclase dissolution by competing adsorption with proton and suppressing proton-promoted dissolution. Ca has a similar effect to Na, and their effects did not suppress each other when Na and Ca co-existed. For biotite, the inhibition effects of Na coupled with an enhancing effect due to ion exchange reaction between Na and interlayer K, which cracked the basal surfaces of biotite. The K in aqueous phase significantly inhibited the dissolution. If the biotite is equilibrated with NaCl solutions initially, the biotite dissolved faster than the original biotite and the dissolution was inhibited by Na and K in brine. The outcomes improve our current knowledge of

  12. Soil gas (222Rn, CO2, 4He) behaviour over a natural CO2 accumulation, Montmiral area (Drome, France): geographical, geological and temporal relationships

    International Nuclear Information System (INIS)

    Gal, Frederick; Joublin, Franck; Haas, Hubert; Jean-prost, Veronique; Ruffier, Veronique

    2011-01-01

    The south east basin of France shelters deep CO 2 reservoirs often studied with the aim of better constraining geological CO 2 storage operations. Here we present new soil gas data, completing an existing dataset (CO 2 , 222 Rn, 4 He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO 2 reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO 2 concentrations. Fine grained clayey soils preferentially favoured the existence of 222 Rn but not CO 2 . Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO 2 and 222 Rn concentrations still exist, it is suggested that 222 Rn migration is also CO 2 dependent in non-leaking areas - diffusion dominated systems.

  13. Large-scale CO2 storage — Is it feasible?

    Directory of Open Access Journals (Sweden)

    Johansen H.

    2013-06-01

    Full Text Available CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit. The large-scale storage challenge (several Gigatons of CO2 per year is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1 finding reservoirs with adequate storage capacity, 2 make sure that the sealing capacity above the reservoir is sufficient, 3 build the infrastructure for transport, drilling and injection, and 4 set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1 the storage activity results in pressure increase in the subsurface, 2 there is no production of fluids that give important feedback on reservoir performance, and 3 the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples

  14. Large-scale CO2 storage — Is it feasible?

    Science.gov (United States)

    Johansen, H.

    2013-06-01

    CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit). The large-scale storage challenge (several Gigatons of CO2 per year) is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1) finding reservoirs with adequate storage capacity, 2) make sure that the sealing capacity above the reservoir is sufficient, 3) build the infrastructure for transport, drilling and injection, and 4) set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1) the storage activity results in pressure increase in the subsurface, 2) there is no production of fluids that give important feedback on reservoir performance, and 3) the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples close to the

  15. Screening and ranking framework (SRF) for geologic CO2 storagesite selection on the basis of HSE risk

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.

    2006-11-27

    A screening and ranking framework (SRF) has been developedto evaluate potential geologic carbon dioxide (CO2) storage sites on thebasis of health, safety, and environmental (HSE) risk arising from CO2leakage. The approach is based on the assumption that CO2 leakage risk isdependent on three basic characteristics of a geologic CO2 storage site:(1) the potential for primary containment by the target formation; (2)the potential for secondary containment if the primary formation leaks;and (3) the potential for attenuation and dispersion of leaking CO2 ifthe primary formation leaks and secondary containment fails. Theframework is implemented in a spreadsheet in which users enter numericalscores representing expert opinions or published information along withestimates of uncertainty. Applications to three sites in Californiademonstrate the approach. Refinements and extensions are possible throughthe use of more detailed data or model results in place of propertyproxies.

  16. CO2 Storage Feasibility: A Workflow for Site Characterisation

    Directory of Open Access Journals (Sweden)

    Nepveu Manuel

    2015-04-01

    Full Text Available In this paper, we present an overview of the SiteChar workflow model for site characterisation and assessment for CO2 storage. Site characterisation and assessment is required when permits are requested from the legal authorities in the process of starting a CO2 storage process at a given site. The goal is to assess whether a proposed CO2 storage site can indeed be used for permanent storage while meeting the safety requirements demanded by the European Commission (EC Storage Directive (9, Storage Directive 2009/31/EC. Many issues have to be scrutinised, and the workflow presented here is put forward to help efficiently organise this complex task. Three issues are highlighted: communication within the working team and with the authorities; interdependencies in the workflow and feedback loops; and the risk-based character of the workflow. A general overview (helicopter view of the workflow is given; the issues involved in communication and the risk assessment process are described in more detail. The workflow as described has been tested within the SiteChar project on five potential storage sites throughout Europe. This resulted in a list of key aspects of site characterisation which can help prepare and focus new site characterisation studies.

  17. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  18. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  19. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    Science.gov (United States)

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  20. Carbon dioxide (CO2) capture and storage : Canadian market development

    International Nuclear Information System (INIS)

    Hendriks, A.

    2006-01-01

    Carbon dioxide (CO 2 ) enhanced oil recovery (EOR) is used to extend the life of light oil reservoirs in Canada. An additional 13 per cent of original oil in place is typically recovered using CO 2 flooding processes. However, a carbon capture and storage (CCS) market is needed in order to commercialize CO 2 flooding technologies. CO 2 can be obtained from naturally-occurring accumulations in underground reservoirs, electrical and coal-fired generation plants, petrochemical facilities, and upstream oil and gas processing facilities. CO 2 is sequestered in EOR processes, in sour gas disposal processes, solvent recovery processes, and in coalbed methane (CBM) extraction. It is also disposed in depleted fields and aquifers. While CCS technologies are mature, project economics remain marginal. However, CCS in EOR is commercially feasible at current high oil prices. No transportation infrastructure is in place to transport sources of CO 2 in the high volumes needed to establish a market. While governments have created a favourable public policy environment for CCS, governments will need to address issues related to infrastructure, public perception of CCS, and stakeholder engagement with CCS projects. It was concluded that CCS and CO 2 flooding techniques have the capacity to reduce greenhouse gas (GHG) emissions while helping to sustain light oil production. tabs., figs

  1. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    Science.gov (United States)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now

  2. European resource assessment for geothermal energy and CO2 storage

    NARCIS (Netherlands)

    Wees, J.D. van; Neele, F.

    2013-01-01

    Geothermal Energy and CO2 Capture and Storage (CCS) are both considered major contributors to the global energy transition. Their success critically depends on subsurface resource quality, which in turn depends on specific subsurface parameters. For CCS and Geothermal Energy these in some respect

  3. Gas geochemistry of natural analogues for the studies of geological CO2 sequestration

    International Nuclear Information System (INIS)

    Voltattorni, N.; Sciarra, A.; Caramanna, G.; Cinti, D.; Pizzino, L.; Quattrocchi, F.

    2009-01-01

    Geological sequestration of anthropogenic CO 2 appears to be a promising method for reducing the amount of greenhouse gases released to the atmosphere. Geochemical modelling of the storage capacity for CO 2 in saline aquifers, sandstones and/or carbonates should be based on natural analogues both in situ and in the laboratory. The main focus of this paper has been to study natural gas emissions representing extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO 2 (i.e., the return to surface, potentially causing localised environmental problems). These include a comparison among three different Italian case histories: (i) the Solfatara crater (Phlegraean Fields caldera, southern Italy) is an ancient Roman spa. The area is characterised by intense and diffuse hydrothermal activity, testified by hot acidic mud pools, thermal springs and a large fumarolic field. Soil gas flux measurements show that the entire area discharges between 1200 and 1500 tons of CO 2 per day; (ii) the Panarea Island (Aeolian Islands, southern Italy) where a huge submarine volcanic-hydrothermal gas burst occurred in November, 2002. The submarine gas emissions chemically modified seawater causing a strong modification of the marine ecosystem. All of the collected gases are CO 2 -dominant (maximum value: 98.43 vol.%); (iii) the Tor Caldara area (Central Italy), located in a peripheral sector of the quiescent Alban Hills volcano, along the faults of the Ardea Basin transfer structure. The area is characterised by huge CO 2 degassing both from water and soil. Although the above mentioned areas do not represent a storage scenario, these sites do provide many opportunities to study near-surface processes and to test monitoring methodologies.

  4. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Thermo-hydro-chemical performance assessment of CO2 storage in saline aquifer

    International Nuclear Information System (INIS)

    Le Gallo, Y.; Trenty, L.; Michel, A.

    2007-01-01

    Research and development methodologies for the storage of CO 2 in geological formation are in developing over the last 10 years. In this context, numerical simulators are the practical tools to understand the physical processes involved by acid gas injection and evaluate the long term stability of the storage. CO 2 storage models can be seen as a mix between two types of models: a reservoir model coupling multiphase flow in porous media with local phase equilibrium and a hydrogeochemical model coupling transport in aqueous phase with local chemical equilibrium and kinetic reaction laws. A 3D-multiphase model, COORES, was built to assess the influence of different driving forces both hydrodynamic and geomechanics as well as geochemical on the CO 2 plume behavior during injection and storage (1000 years). Different coupling strategies were used to model these phenomena: - pressure, temperature and diffusion are solved implicitly for better numerical stability; - geochemical reactions involve heterogeneous kinetically-controlled reactions between the host rock and the CO 2 -rich aqueous phase which imply an implicit coupling with fluid flow; From the assumed initial mineral composition (6 minerals), aqueous species (10 chemical elements and 37 aqueous species), the geochemical alteration of the host rocks (sand and shale) is directly linked with the CO 2 plume evolution. A performance assessment using an experimental design approach is used to quantify the different driving forces and parameter influences. In the case of CO 2 injection in a saline quartz rich aquifer used to illustrate the model capabilities, the geochemical changes of the host rock have a small influence on the CO 2 distribution at the end of storage life (here 1000 years) compared to the other hydrodynamic mechanisms: free CO 2 (gas or supercritical), or trapped (capillary and in-solution). (authors)

  6. Tackling CO2 reduction in India through use of CO2 capture and storage (CCS): Prospects and challenges

    International Nuclear Information System (INIS)

    Shackley, Simon; Verma, Preeti

    2008-01-01

    CO 2 capture and storage (CCS) is not currently a priority for the Government of India (GOI) because, whilst a signatory to the UNFCCC and Kyoto Protocol, there are no existing greenhouse gas emission reduction targets and most commentators do not envisage compulsory targets for India in the post-2012 phase. The overwhelming priority for the GOI is to sustain a high level of economic growth (8%+) and provision of secure, reliable energy (especially electricity) is one of the widely recognised bottlenecks in maintaining a high growth rate. In such a supply-starved context, it is not easy to envisage adoption of CCS-which increases overall generation capacity and demand for coal without increasing actual electricity supply-as being acceptable. Anything which increases costs-even slightly-is very unlikely to happen, unless it is fully paid for by the international community. The majority viewpoint of the industry and GOI interviewees towards CCS appears to be that it is a frontier technology, which needs to be developed further in the Annex-1 countries to bring down the cost through RD and D and deployment. More RD and D is required to assess in further detail the potential for CO 2 storage in geological reservoirs in India and the international community has an important role to play in cultivating such research

  7. 3rd Sino-German Conference “Underground Storage of CO2 and Energy”

    CERN Document Server

    Xie, Heping; Were, Patrick

    2013-01-01

    Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group “Underground Storage of CO2 and Energy”, is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme “Clean Energy Systems in the Subsurface: Production, Storage and Conversion”.   This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coa...

  8. CO2 capture and storage: Another Faustian Bargain?

    International Nuclear Information System (INIS)

    Spreng, Daniel; Marland, Gregg; Weinberg, Alvin M.

    2007-01-01

    A quarter-century ago, one of us termed the use of nuclear energy a Faustian Bargain. In this paper, we discuss what a Faustian Bargain means, how the expression has been used in characterizing other technologies, and in what measure CO 2 capture and storage is a Faustian Bargain. If we are about to enter into another Faustian Bargain, we should understand the contract

  9. Environmental Assessment for Potential Impacts of Ocean CO2 Storage on Marine Biogeochemical Cycles

    Science.gov (United States)

    Yamada, N.; Tsurushima, N.; Suzumura, M.; Shibamoto, Y.; Harada, K.

    2008-12-01

    Ocean CO2 storage that actively utilizes the ocean potential to dissolve extremely large amounts of CO2 is a useful option with the intent of diminishing atmospheric CO2 concentration. CO2 storage into sub-seabed geological formations is also considered as the option which has been already put to practical reconnaissance in some projects. Direct release of CO2 in the ocean storage and potential CO2 leakage from geological formations into the bottom water can alter carbonate system as well as pH of seawater. It is essential to examine to what direction and extent chemistry change of seawater induced by CO2 can affect the marine environments. Previous studies have shown direct and acute effects by increasing CO2 concentrations on physiology of marine organisms. It is also a serious concern that chemistry change can affect the rates of chemical, biochemical and microbial processes in seawater resulting in significant influences on marine biogeochemical cycles of the bioelements including carbon, nutrients and trace metals. We, AIST, have conducted a series of basic researches to assess the potential impacts of ocean CO2 storage on marine biogeochemical processes including CaCO3 dissolution, and bacterial and enzymatic decomposition of organic matter. By laboratory experiments using a special high pressure apparatus, the improved empirical equation was obtained for CaCO3 dissolution rate in the high CO2 concentrations. Based on the experimentally obtained kinetics with a numerical simulation for a practical scenario of oceanic CO2 sequestration where 50 Mton CO2 per year is continuously injected to 1,000-2,500 m depth within 100 x 333 km area for 30 years, we could illustrate precise 3-D maps for the predicted distributions of the saturation depth of CaCO3, in situ Ω value and CaCO3 dissolution rate in the western North Pacific. The result showed no significant change in the bathypelagic CaCO3 flux due to chemistry change induced by ocean CO2 sequestration. Both

  10. Model for CO2 leakage including multiple geological layers and multiple leaky wells.

    Science.gov (United States)

    Nordbotten, Jan M; Kavetski, Dmitri; Celia, Michael A; Bachu, Stefan

    2009-02-01

    Geological storage of carbon dioxide (CO2) is likely to be an integral component of any realistic plan to reduce anthropogenic greenhouse gas emissions. In conjunction with large-scale deployment of carbon storage as a technology, there is an urgent need for tools which provide reliable and quick assessments of aquifer storage performance. Previously, abandoned wells from over a century of oil and gas exploration and production have been identified as critical potential leakage paths. The practical importance of abandoned wells is emphasized by the correlation of heavy CO2 emitters (typically associated with industrialized areas) to oil and gas producing regions in North America. Herein, we describe a novel framework for predicting the leakage from large numbers of abandoned wells, forming leakage paths connecting multiple subsurface permeable formations. The framework is designed to exploit analytical solutions to various components of the problem and, ultimately, leads to a grid-free approximation to CO2 and brine leakage rates, as well as fluid distributions. We apply our model in a comparison to an established numerical solverforthe underlying governing equations. Thereafter, we demonstrate the capabilities of the model on typical field data taken from the vicinity of Edmonton, Alberta. This data set consists of over 500 wells and 7 permeable formations. Results show the flexibility and utility of the solution methods, and highlight the role that analytical and semianalytical solutions can play in this important problem.

  11. Evaluating Potential for Large Releases from CO2 Storage Reservoirs: Analogs, Scenarios, and Modeling Needs

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Tsang, Chin-Fu; Karimjee, Anhar

    2005-01-01

    While the purpose of geologic storage of CO 2 in deep saline formations is to trap greenhouse gases underground, the potential exists for CO 2 to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO 2 is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO 2 were to occur at the land surface, especially where CO 2 could accumulate. In this paper, we develop possible scenarios for large CO 2 fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies

  12. CO2 emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress

    International Nuclear Information System (INIS)

    2005-01-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO 2 emissions abatement and geological sequestration: technological advances of CO 2 capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO 2 emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO 2 abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO 2 emissions abatement, Ademe's actions in CO 2 abatement and sequestration, and BRGM's experience in CO 2 sequestration and climatic change expertise. (J.S.)

  13. Next generation of CO2 enhanced water recovery with subsurface energy storage in China

    Science.gov (United States)

    Li, Qi; Kühn, Michael; Ma, Jianli; Niu, Zhiyong

    2017-04-01

    ., Nakaten N., Kempka T., Kühn M. (2013) Analysis of an integrated carbon cycle for storage of renewables. Energy Procedia 40, 202-211. doi: 10.1016/j.egypro.2013.08.024. [3] Li Q, Wei Y-N, Liu G, Lin Q (2014) Combination of CO2 Geological Storage with Deep Saline Water Recovery in Western China: Insights from Numerical Analyses. Applied Energy 116:101-110. doi:10.1016/j.apenergy.2013.11.050 [4] Wei N, Li X, Fang Z, Bai B, Li Q, Liu S, Jia Y (2015) Regional Resource Distribution of Onshore Carbon Geological Utilization in China. Journal of CO2 Utilization 11:20-30. doi:10.1016/j.jcou.2014.12.005 [5] Li Q, Wei Y-N, Chen Z-A (2016) Water-CCUS Nexus: Challenges and Opportunities of China's Coal Chemical Industry. Clean Technologies and Environmental Policy 18 (3):775-786. doi:10.1007/s10098-015-1049-z

  14. CO2 capture and geological storage: The BRGM, sixteen years of involvement in major research projects. The contribution of technical abilities and expertise in Earth Sciences to the work of national and international authorities

    International Nuclear Information System (INIS)

    2009-01-01

    This press document presents the abilities and the activities of the French BRGM (Bureau de Recherches Geologiques et Minieres, Office for geological and mining researches) in developing knowledge on storage capacities and on the behaviour of deep aquifers, in contributing to the main national and European research programs, in actively participating to European and international networks, in being an expert for the MEEDDM (the French ministry of energy, ecology, sustainable development and sea) and the ADEME (the French agency for energy conservation), and as the French representative in several international authorities

  15. Your View or Mine: Spatially Quantifying CO2 Storage Risk from Various Stakeholder Perspectives

    Science.gov (United States)

    Bielicki, J. M.; Pollak, M.; Wilson, E.; Elliot, T. R.; Guo, B.; Nogues, J. P.; Peters, C. A.

    2011-12-01

    CO2 capture and storage involves injecting captured CO2 into geologic formations, such as deep saline aquifers. This injected CO2 is to be "stored" within the rock matrix for hundreds to thousands of years, but injected CO2, or the brine it displaces, may leak from the target reservoir. Such leakage could interfere with other subsurface activities-water production, energy production, energy storage, and waste disposal-or migrate to the surface. Each of these interferences will incur multiple costs to a variety of stakeholders. Even if injected or displaced fluids do not interfere with other subsurface activities or make their way to the surface, costs will be incurred to find and fix the leak. Consequently, the suitability of a site for CO2 storage must therefore include an assessment of the risk of leakage and interference with various other activities within a three-dimensional proximity of where CO2 is being injected. We present a spatial analysis of leakage and interference risk associated with injecting CO2 into a portion of the Mount Simon sandstone in the Michigan Basin. Risk is the probability of an outcome multiplied by the impact of that outcome (Ro=po*Io). An outcome is the result of the leakage (e.g., interference with oil production), and the impact is the cost associated with the outcome. Each outcome has costs that will vary by stakeholder. Our analysis presents CO2 storage risk for multiple outcomes in a spatially explicit manner that varies by stakeholder. We use the ELSA semi-analytical model for estimating CO2 and brine leakage from aquifers to determine plume and pressure front radii, and CO2 and brine leakage probabilities for the Mount Simon sandstone and multiple units above it. Results of ELSA simulations are incorporated into RISCS: the Risk Interference Subsurface CO2 Storage model. RISCS uses three-dimensional data on subsurface geology and the locations of wells and boreholes to spatially estimate risks associated with CO2 leakage from

  16. Ganglion dynamics and its implications to geologic carbon dioxide storage.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Dewers, Thomas; Heath, Jason E; Jove-Colon, Carlos

    2013-01-02

    Capillary trapping of a nonwetting fluid phase in the subsurface has been considered as an important mechanism for geologic storage of carbon dioxide (CO(2)). This mechanism can potentially relax stringent requirements for the integrity of cap rocks for CO(2) storage and therefore can significantly enhance storage capacity and security. We here apply ganglion dynamics to understand the capillary trapping of supercritical CO(2) (scCO(2)) under relevant reservoir conditions. We show that, by breaking the injected scCO(2) into small disconnected ganglia, the efficiency of capillary trapping can be greatly enhanced, because the mobility of a ganglion is inversely dependent on its size. Supercritical CO(2) ganglia can be engineered by promoting CO(2)-water interface instability during immiscible displacement, and their size distribution can be controlled by injection mode (e.g., water-alternating-gas) and rate. We also show that a large mobile ganglion can potentially break into smaller ganglia due to CO(2)-brine interface instability during buoyant rise, thus becoming less mobile. The mobility of scCO(2) in the subsurface is therefore self-limited. Vertical structural heterogeneity within a reservoir can inhibit the buoyant rise of scCO(2) ganglia. The dynamics of scCO(2) ganglia described here provides a new perspective for the security and monitoring of subsurface CO(2) storage.

  17. SUBTASK 2.19 – OPERATIONAL FLEXIBILITY OF CO2 TRANSPORT AND STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Melanie; Schlasner, Steven; Sorensen, James; Hamling, John

    2014-12-31

    experts represented a range of disciplines and hailed from North America and Europe. Major findings of the study are that compression and transport of CO2 for enhanced oil recovery (EOR) purposes in the United States has shown that impurities are not likely to cause transport problems if CO2 stream composition standards are maintained and pressures are kept at 10.3 MPa or higher. Cyclic, or otherwise intermittent, CO2 supplies historically have not impacted in-field distribution pipeline networks, wellbore integrity, or reservoir conditions. The U.S. EOR industry has demonstrated that it is possible to adapt to variability and intermittency in CO2 supply through flexible operation of the pipeline and geologic storage facility. This CO2 transport and injection experience represents knowledge that can be applied in future CCS projects. A number of gaps in knowledge were identified that may benefit from future research and development, further enhancing the possibility for widespread application of CCS. This project was funded through the Energy & Environmental Research Center–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.

  18. CO2 geological sequestration: state of art in Italy and abroad

    International Nuclear Information System (INIS)

    Quattrocchi, Fedora; Bencini, Roberto

    2005-01-01

    This paper proposes a wide scenario on the state of art in Italy and abroad of industrial CO 2 geological sequestration, with particular attention to Weyburn Project. Geochemical monitoring techniques are described, mentioning also geophysical monitoring techniques for CO 2 injected into the soil. Critical choices and objections in Italy to a complete use of clean fossil fuels, hydrogen carrier, clean coal technologies: all of these approaches require geological sequestration of CO 2 [it

  19. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    Science.gov (United States)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    Carbon capture and storage is one solution to reducing CO2 emissions in the atmosphere. The long-term geological storage of buoyant supercritical CO2 requires high integrity cap rock. Some of the risk associated with CO2 buoyancy can be overcome by dissolving CO2 into water during its injection, thus eliminating its buoyancy. This enables injection into fractured rocks, such as basaltic rocks along oceanic ridges and on continents. Basaltic rocks are rich in divalent cations, Ca2+, Mg2+ and Fe2+, which react with CO2 dissolved in water to form stable carbonate minerals. This possibility has been successfully tested as a part of the CarbFix CO2storage pilot project at the Hellisheiði geothermal power plant in Iceland, where they have shown mineralization occurs in less than two years [1, 2]. Reykjavik Energy and the CarbFix group has been injecting a mixture of CO2 and H2S at 750 m depth and 240-250°C since June 2014; by 1 January 2016, 6290 tons of CO2 and 3530 tons of H2S had been injected. Once in the geothermal reservoir, the heat exchange and sufficient dissolution of the host rock neutralizes the gas-charged water and saturates the formation water respecting carbonate and sulfur minerals. A thermally stable inert tracer was also mixed into the stream to monitor the subsurface transport and to assess the degree of subsurface carbonation and sulfide precipitation [3]. Water and gas samples have been continuously collected from three monitoring wells and geochemically analyzed. Based on the results, mineral saturation stages have been defined. These results and tracer mass balance calculations are used to evaluate the rate and magnitude of CO2 and H2S mineralization in the subsurface, with indications that mineralization of carbon and sulfur occurs within months. [1] Gunnsarsson, I., et al. (2017). Rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur. Manuscript submitted for publication. [2] Matter, J., et al. (2016). Rapid

  20. A CO2-storage supply curve for North America and its implications for the deployment of carbon dioxide capture and storage systems

    International Nuclear Information System (INIS)

    Dooley, J.J.; Bachu, S.; Gupta, N.; Gale, J.

    2005-01-01

    This paper presented a highly disaggregated estimate of carbon dioxide (CO 2 )-storage capacity of more than 330 onshore geological reservoirs across the United States and Canada. The demand placed upon these reservoirs by thousands of existing large anthropogenic CO 2 point sources was also reviewed based on a newly developed methodology for estimating the effective storage capacities of deep saline formations, depleted oil and gas reservoirs, and deep unmineable coal seams. This analysis was based on matching the identified point sources with candidate storage reservoirs. By incorporating the updated source and reservoir data into the Battelle CO 2 -GIS, a series of pairwise costs for transporting CO 2 from sites of anthropogenic CO 2 sources was calculated along with the net cost of storing it in each of the candidate reservoirs within a specified distance of the point source. Results indicate a large and variably distributed North American storage capacity of at least 3,800 gigatonnes of CO 2 , with deep saline formations accounting for most of this capacity. A geospatial and techno-economic database of 2,082 anthropogenic CO 2 point sources in North America, each with annual emissions greater than 100,000 tonnes of CO 2 , was also refined. Sensitivities examined for the CO 2 -storage cost curve focused on high/low oil and gas prices; the maximum allowed distance between source and reservoir; and, the infrastructure costs associated with CO 2 -driven hydrocarbon recovery. 20 refs., 5 figs

  1. Monitoring CO2 penetration and storage in the brine-saturated low permeable sandstone by the geophysical exploration technologies

    Science.gov (United States)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Imasato, M.

    2017-12-01

    Carbon dioxide (CO2) capture and storage (CCS) plays a vital role in reducing greenhouse gas emissions. In the northern part of Kyushu region of Japan, complex geological structure (Coalfield) is existed near the CO2 emission source and has 1.06 Gt of CO2 storage capacity. The geological survey shows that these layers are formed by low permeable sandstone. It is necessary to monitor the CO2 behavior and clear the mechanisms of CO2 penetration and storage in the low permeable sandstone. In this study, measurements of complex electrical impedance (Z) and elastic wave velocity (P-wave velocity: Vp) were conducted during the supercritical CO2 injection experiment into the brine-saturated low permeable sandstone. The experiment conditions were as follows; Confining pressure: 20 MPa, Initial pore pressure: 10 MPa, 40 °, CO2 injection rate: 0.01 to 0.5 mL/min. Z was measured in the center of the specimen and Vp were measured at three different heights of the specimen at constant intervals. In addition, we measured the longitudinal and lateral strain at the center of the specimen, the pore pressure and CO2 injection volume (CO2 saturation). During the CO2 injection, the change of Z and Vp were confirmed. In the drainage terms, Vp decreased drastically once CO2 reached the measurement cross section.Vp showed the little change even if the flow rate increased (CO2 saturation increased). On the other hand, before the CO2 front reached, Z decreased with CO2-dissolved brine. After that, Z showed continuously increased as the CO2 saturation increased. From the multi-parameter (Hydraulic and Rock-physics parameters), we revealed the detail CO2 behavior in the specimen. In the brine-saturated low permeable sandstone, the slow penetration of CO2 was observed. However, once CO2 has passed, the penetration of CO2 became easy in even for brine-remainded low permeable sandstone. We conclude low permeable sandstone has not only structural storage capacity but also residual tapping

  2. WEB-GIS Decision Support System for CO2 storage

    Science.gov (United States)

    Gaitanaru, Dragos; Leonard, Anghel; Radu Gogu, Constantin; Le Guen, Yvi; Scradeanu, Daniel; Pagnejer, Mihaela

    2013-04-01

    Environmental decision support systems (DSS) paradigm evolves and changes as more knowledge and technology become available to the environmental community. Geographic Information Systems (GIS) can be used to extract, assess and disseminate some types of information, which are otherwise difficult to access by traditional methods. In the same time, with the help of the Internet and accompanying tools, creating and publishing online interactive maps has become easier and rich with options. The Decision Support System (MDSS) developed for the MUSTANG (A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) project is a user friendly web based application that uses the GIS capabilities. MDSS can be exploited by the experts for CO2 injection and storage in deep saline aquifers. The main objective of the MDSS is to help the experts to take decisions based large structured types of data and information. In order to achieve this objective the MDSS has a geospatial objected-orientated database structure for a wide variety of data and information. The entire application is based on several principles leading to a series of capabilities and specific characteristics: (i) Open-Source - the entire platform (MDSS) is based on open-source technologies - (1) database engine, (2) application server, (3) geospatial server, (4) user interfaces, (5) add-ons, etc. (ii) Multiple database connections - MDSS is capable to connect to different databases that are located on different server machines. (iii)Desktop user experience - MDSS architecture and design follows the structure of a desktop software. (iv)Communication - the server side and the desktop are bound together by series functions that allows the user to upload, use, modify and download data within the application. The architecture of the system involves one database and a modular application composed by: (1) a visualization module, (2) an analysis module, (3) a guidelines module

  3. Current Travertines Precipitation from CO2-rich Groundwaters as an alert of CO2 Leakages from a Natural CO2 Storage at Ganuelas-Mazarron Tertiary Basin (Murcia, Spain)

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Delgado, A.; Herrero, M. J.; Granados, A.; Perez del Villar, L.

    2013-01-01

    Carbon capture and storage technologies represent the most suitable solutions related to the high anthropogenic CO 2 emissions to the atmosphere. As a consequence, monitoring of the possible CO 2 leakages from an artificial deep geological CO 2 storage is indispensable to guarantee its safety. Fast surficial travertine precipitation related to these CO 2 leakages can be used as an alert for these escapes. Since few studies exist focusing on the long-term behaviour of an artificial CO 2 DGS, natural CO 2 storage affected by natural or artificial escapes must be studied as natural analogues for predicting the long-term behaviour of an artificial CO 2 storage. In this context, a natural CO 2 reservoir affected by artificial CO 2 escapes has been studied in this work. This study has mainly focused on the current travertines precipitation associated with the upwelling CO 2 -rich waters from several hydrogeological wells drilled in the Ganuelas-Mazarron Tertiary basin (SE Spain), and consists of a comprehensive characterisation of parent-waters and their associated carbonates, including elemental and isotopic geochemistry, mineralogy and petrography. Geochemical characterisation of groundwaters has led to recognise 4 hydrofacies from 3 different aquifers. These groundwaters have very high salinity and electrical conductivity; are slightly acid; present high dissolved inorganic carbon (DIC) and free CO 2 ; are oversaturated in both aragonite and calcite; and dissolve, mobilize and transport low quantities of heavy and/or toxic elements. Isotopic values indicate that: i) the origin of parent-waters is related to rainfalls from clouds originated in the Mediterranean Sea or continental areas; ii) the origin of C is mainly inorganic; and iii) sulphate anions come mainly from the dissolution of the Messinian gypsum from the Tertiary Basin sediments. Current travertines precipitation seems to be controlled by a combination of several factors, such as: i) a fast decrease of the

  4. CO2 Capture and Storage in Coal Gasification Projects

    Science.gov (United States)

    Rao, Anand B.; Phadke, Pranav C.

    2017-07-01

    In response to the global climate change problem, the world community today is in search for an effective means of carbon mitigation. India is a major developing economy and the economic growth is driven by ever-increasing consumption of energy. Coal is the only fossil fuel that is available in abundance in India and contributes to the major share of the total primary energy supply (TPES) in the country. Owing to the large unmet demand for affordable energy, primarily driven by the need for infrastructure development and increasing incomes and aspirations of people, as well as the energy security concerns, India is expected to have continued dependence on coal. Coal is not only the backbone of the electric power generation, but many major industries like cement, iron and steel, bricks, fertilizers also consume large quantities of coal. India has very low carbon emissions (˜ 1.5 tCO2 per capita) as compared to the world average (4.7 tCO2 per capita) and the developed world (11.2 tCO2 per capita). Although the aggregate emissions of the country are increasing with the rising population and fossil energy use, India has a very little contribution to the historical GHG accumulation in the atmosphere linked to the climate change problem. However, a large fraction of the Indian society is vulnerable to the impacts of climate change - due to its geographical location, large dependence on monsoon-based agriculture and limited technical, financial and institutional capacity. Today, India holds a large potential to offer cost-effective carbon mitigation to tackle the climate change problem. Carbon Capture and Storage (CCS) is the process of extraction of Carbon Dioxide (CO2) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is a technology that has been developed in recent times and is considered as a bridging technology as we move towards carbon-neutral energy sources in response to the growing

  5. Directed technical change and the adoption of CO2 abatement technology. The case of CO2 capture and storage

    International Nuclear Information System (INIS)

    Otto, Vincent M.; Reilly, John

    2008-01-01

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO 2 -trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO 2 abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO 2 emissions associated with energy use, directed technical change and the economy. We specify CO 2 capture and storage (CCS) as a discrete CO 2 abatement technology. We find that combining CO 2 -trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  6. Discussion of the influence of CO and CH4 in CO2 transport, injection, and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Bravo, Ramón; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2014-09-16

    This paper discusses the influence of the noncondensable impurities CO and CH4 on Carbon Capture and Storage (CCS) technology. We calculated and drew conclusions about the impact of both impurities in the CO2 on selected transport, injection, and storage parameters (pipeline pressure drop, storage capacity, etc.), whose analysis is necessary for the safe construction and operation of CO2 pipelines and for the secure long-term geological storage of anthropogenic CO2. To calculate these parameters, it is necessary to acquire data on the volumetric properties and the vapor-liquid equilibrium of the fluid being subjected to CCS. In addition to literature data, we used new experimental data, which are presented here and were obtained for five mixtures of CO2+CO with compositions characteristic of the typical emissions of the E.U. and the U.S.A. Temperatures and pressures are based on relevant CO2 pipeline and geological storage site values. From our experimental results, Peng-Robinson, PC-SAFT, and GERG Equations of State for were validated CO2+CO under the conditions of CCS. We conclude that the concentration of both impurities strongly affects the studied parameters, with CO being the most influential and problematic. The overall result of these negative effects is an increase in the difficulties, risks, and overall costs of CCS.

  7. CO2 storage in saline aquifers: In the Southern North Sea and Northern Germany

    NARCIS (Netherlands)

    Weijer, V. van de; Meer, B. van der; Kramers, L.; Neele, F.; Maurand, N.; Gallo, Y. le; Bossie-Codré, D.; Schäfer, F.; Evans, D.; Kirk, K.; Bernstone, C.; Stiff, S.; Hull, W.

    2009-01-01

    CO2 storage in depleted gas fields is attractive but gas fields are unequally distributed geographically and can be utilized only within a restricted window of opportunity. Therefore, CO2 storage in saline aquifers can be expected to become an important element of CO2 capture and storage (CCS)

  8. Transport Mechanisms for CO2-CH4 Exchange and Safe CO2 Storage in Hydrate-Bearing Sandstone

    Directory of Open Access Journals (Sweden)

    Knut Arne Birkedal

    2015-05-01

    Full Text Available CO2 injection in hydrate-bearing sediments induces methane (CH4 production while benefitting from CO2 storage, as demonstrated in both core and field scale studies. CH4 hydrates have been formed repeatedly in partially water saturated Bentheim sandstones. Magnetic Resonance Imaging (MRI and CH4 consumption from pump logs have been used to verify final CH4 hydrate saturation. Gas Chromatography (GC in combination with a Mass Flow Meter was used to quantify CH4 recovery during CO2 injection. The overall aim has been to study the impact of CO2 in fractured and non-fractured samples to determine the performance of CO2-induced CH4 hydrate production. Previous efforts focused on diffusion-driven exchange from a fracture volume. This approach was limited by gas dilution, where free and produced CH4 reduced the CO2 concentration and subsequent driving force for both diffusion and exchange. This limitation was targeted by performing experiments where CO2 was injected continuously into the spacer volume to maintain a high driving force. To evaluate the effect of diffusion length multi-fractured core samples were used, which demonstrated that length was not the dominating effect on core scale. An additional set of experiments is presented on non-fractured samples, where diffusion-limited transportation was assisted by continuous CO2 injection and CH4 displacement. Loss of permeability was addressed through binary gas (N2/CO2 injection, which regained injectivity and sustained CO2-CH4 exchange.

  9. The Value of CO2-Geothermal Bulk Energy Storage to Reducing CO2 Emissions Compared to Conventional Bulk Energy Storage Technologies

    Science.gov (United States)

    Ogland-Hand, J.; Bielicki, J. M.; Buscheck, T. A.

    2016-12-01

    Sedimentary basin geothermal resources and CO2 that is captured from large point sources can be used for bulk energy storage (BES) in order to accommodate higher penetration and utilization of variable renewable energy resources. Excess energy is stored by pressurizing and injecting CO2 into deep, porous, and permeable aquifers that are ubiquitous throughout the United States. When electricity demand exceeds supply, some of the pressurized and geothermally-heated CO2 can be produced and used to generate electricity. This CO2-BES approach reduces CO2 emissions directly by storing CO2 and indirectly by using some of that CO2 to time-shift over-generation and displace CO2 emissions from fossil-fueled power plants that would have otherwise provided electricity. As such, CO2-BES may create more value to regional electricity systems than conventional pumped hydro energy storage (PHES) or compressed air energy storage (CAES) approaches that may only create value by time-shifting energy and indirectly reducing CO2 emissions. We developed and implemented a method to estimate the value that BES has to reducing CO2 emissions from regional electricity systems. The method minimizes the dispatch of electricity system components to meet exogenous demand subject to various CO2 prices, so that the value of CO2 emissions reductions can be estimated. We applied this method to estimate the performance and value of CO2-BES, PHES, and CAES within real data for electricity systems in California and Texas over the course of a full year to account for seasonal fluctuations in electricity demand and variable renewable resource availability. Our results suggest that the value of CO2-BES to reducing CO2 emissions may be as much as twice that of PHES or CAES and thus CO2-BES may be a more favorable approach to energy storage in regional electricity systems, especially those where the topography is not amenable to PHES or the subsurface is not amenable to CAES.

  10. The Géocarbone-Monitoring Project: Main Results and Recommendations for Monitoring Deep Geological CO2 Storage in the Paris Basin Le projet de recherche Géocarbone-Monitoring : principaux résultats et recommandations pour le monitoring des stockages géologiques profonds de CO2 dans le bassin Parisien

    Directory of Open Access Journals (Sweden)

    Fabriol H.

    2010-07-01

    Full Text Available The aim of the Géocarbone-Monitoring research project was the evaluation and testing, as far as possible, of the different monitoring methods that might be applied in the specific context of the Paris Basin. Their main objectives are to: detect and map CO2 in the reservoir rocks; detect and quantify possible leaks between the reservoir and the surface. The partners developed several thoughts and research concerning the various monitoring methods. This enabled drawing up a critical overview of existing methods and proposing leads for further work. At the end of the project, recommendations were made for the stakeholders of CO2 storage, i.e. the government departments regulating storage, decision-makers, and future site operators. In addition, a proposal was made for the general design and implementation of a monitoring programme of an injection test in the Paris Basin, within a depleted reservoir or a deep aquifer. Le projet de recherche Géocarbone-Monitoring avait pour but principal d’évaluer et de tester, le cas échéant, les différentes méthodes de surveillance qui pourraient être appliquées au contexte géologique spécifique du Bassin Parisien. Les objectifs principaux de celles-ci sont de : détecter et cartographier le CO2 dans le réservoir ; détecter les fuites éventuelles entre le réservoir et la surface et être en mesure de les quantifier. Les recherches et les réflexions menées par les partenaires sur les méthodes de surveillance et de monitoring ont permis de dresser une vision critique des méthodologies existantes et de proposer des pistes de progrès. À l’issue du projet, des recommandations ont été rédigées à l’intention des parties prenantes du stockage de CO2 (administration chargée de mettre en oeuvre la réglementation des stockages, décideurs et futurs opérateurs de site et un schéma général pour la conception et la mise en oeuvre d’un programme de monitoring pour un test d’injection dans

  11. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Science.gov (United States)

    Morales, Sergio E; Holben, William E

    2013-01-01

    Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2) emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA) and activity (mRNA) of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface) CO2 using FACE (Free-Air CO2 Enrichment) systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  12. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  13. Geochemical monitoring for detection of CO_{2} leakage from subsea storage sites

    Science.gov (United States)

    García-Ibáñez, Maribel I.; Omar, Abdirahman M.; Johannessen, Truls

    2017-04-01

    Carbon Capture and Storage (CCS) in subsea geological formations is a promising large-scale technology for mitigating the increases of carbon dioxide (CO2) in the atmosphere. However, detection and quantification of potential leakage of the stored CO2 remains as one of the main challenges of this technology. Geochemical monitoring of the water column is specially demanding because the leakage CO2 once in the seawater may be rapidly dispersed by dissolution, dilution and currents. In situ sensors capture CO2 leakage signal if they are deployed very close to the leakage point. For regions with vigorous mixing and/or deep water column, and for areas far away from the leakage point, a highly sensitive carbon tracer (Cseep tracer) was developed based on the back-calculation techniques used to estimate anthropogenic CO2 in the water column. Originally, the Cseep tracer was computed using accurate discrete measurements of total dissolved inorganic carbon (DIC) and total alkalinity (AT) in the Norwegian Sea to isolate the effect of natural submarine vents in the water column. In this work we assess the effect of measurement variables on the performance of the method by computing the Cseep tracer twice: first using DIC and AT, and second using partial pressure of CO2 (pCO2) and pH. The assessment was performed through the calculation of the signal to noise ratios (STNR). We found that the use of the Cseep tracer increases the STNR ten times compared to the raw measurement data, regardless of the variables used. Thus, while traditionally the pH-pCO2 pair generates the greatest uncertainties in the oceanic CO2 system, it seems that the Cseep technique is insensitive to that issue. On the contrary, the use of the pCO2-pH pair has the highest CO2 leakage detection and localization potential due to the fact that both pCO2 and pH can currently be measured at high frequency and in an autonomous mode.

  14. Assessing European capacity for geological storage of carbon dioxide-the EU GeoCapacity project

    NARCIS (Netherlands)

    Vangkilde-Pedersen, T.; Anthonsen, K.L.; Smith, N.; Kirk, K.; Neele, F.; Meer, B. van der; Le Gallo, Y. le; Bossie-Codreanu, D.; Wojcicki, A.; Nindre, Y.-M. le; Hendriks, C.; Dalhoff, F.; Peter Christensen, N.

    2009-01-01

    The focus of the GeoCapacity project is GIS mapping of CO2 point sources, infrastructure and geological storage in Europe. The main objective is to assess the European capacity for geological storage of CO2 in deep saline aquifers, oil and gas structures and coal beds. Other priorities are further

  15. Change in cap rock porosity triggered by pressure and temperature dependent CO2–water–rock interactions in CO2 storage systems

    Directory of Open Access Journals (Sweden)

    Christina Hemme

    2017-03-01

    Full Text Available Carbon capture and storage in deep geological formations is a method to reduce greenhouse gas emissions. Supercritical CO2 is injected into a reservoir and dissolves in the brine. Under the impact of pressure and temperature (P–T the aqueous species of the CO2-acidified brine diffuse through the cap rock where they trigger CO2–water–rock interactions. These geochemical reactions result in mineral dissolution and precipitation along the CO2 migration path and are responsible for a change in porosity and therefore for the sealing capacity of the cap rock. This study focuses on the diffusive mass transport of CO2 along a gradient of decreasing P–T conditions. The process is retraced with a one-dimensional hydrogeochemical reactive mass transport model. The semi-generic hydrogeochemical model is based on chemical equilibrium thermodynamics. Based on a broad variety of scenarios, including different initial mineralogical, chemical and physical parameters, the hydrogeochemical parameters that are most sensitive for safe long-term CO2 storage are identified. The results demonstrate that P–T conditions have the strongest effect on the change in porosity and the effect of both is stronger at high P–T conditions because the solubility of the mineral phases involved depends on P–T conditions. Furthermore, modeling results indicate that the change in porosity depends strongly on the initial mineralogical composition of the reservoir and cap rock as well as on the brine compositions. Nevertheless, a wide range of conditions for safe CO2 storage is identified.

  16. Physicochemical effects of discrete CO2-SO2 mixtures on injection and storage in a sandstone aquifer

    NARCIS (Netherlands)

    Waldmann, S.; Hofstee, C.; Koenen, M.; Loeve, D.

    2016-01-01

    Geological storage of captured CO2, which typically will contain certain amounts of impurities, in salineaquifers is of potential to reduce greenhouse gas emissions into the atmosphere. The co-injection of theimpurity SO2has an effect on the chemical reactivity of the fluid and solid phases as well

  17. The Tiehchanshan structure of NW Taiwan: A potential geological reservoir for CO2 sequestration

    Directory of Open Access Journals (Sweden)

    Kenn-Ming Yang

    2017-01-01

    Full Text Available The Tiehchanshan structure is the largest gas-field in the outer foothills of northwestern Taiwan and has been regarded as the best site for CO2 sequestration. This study used a grid of seismic sections and wellbore data to establish a new 3-D geometry of subsurface structure, which was combined with lithofacies characters of the target reservoir rock, the Yutengping Sandstone, to build a geological model for CO2 sequestration. On the surface, the Tiehchanshan structure is characterized by two segmented anticlines offset by a tear fault. The subsurface geometry of the Tiehchanshan structure is, however, composed of two thrust-related anticlines with opposite vergence and laterally increasing fold symmetry toward each other. The folds are softly linked via the transfer zone in the subsurface, implying that the suspected tear fault in the surface transfer zone may not exist in the subsurface. The Yutengping Sandstone is composed of several sandstone units characterized by coarsening-upward cycles. The sandstone member can be further divided into four well-defined sandstone layers, separated by laterally continuous shale layers. In view of the structural and stratigraphic characteristics, the optimum area for CO2 injection and storage is in the structurally high in the northern part of the Tiehchanshan structure. The integrity of the closure and the overlying seal are not disrupted by the pre-orogenic high-angle faults. On the other hand, a thick continuous shale layer within the Yutengping Sandstone isolates the topmost sandy layer from the underlying ones and gives another important factor to the CO2 injection simulation.

  18. Potential impacts on groundwater resources of deep CO2 storage: natural analogues for assessing potential chemical effects

    Science.gov (United States)

    Lions, J.; Gale, I.; May, F.; Nygaard, E.; Ruetters, H.; Beaubien, S.; Sohrabi, M.; Hatzignatiou, D. G.; CO2GeoNet Members involved in the present study Team

    2011-12-01

    Carbon dioxide Capture and Storage (CCS) is considered as one of the promising options for reducing atmospheric emissions of CO2 related to human activities. One of the main concerns associated with the geological storage of CO2 is that the CO2 may leak from the intended storage formation, migrate to the near-surface environment and, eventually, escape from the ground. This is a concern because such leakage may affect aquifers overlying the storage site and containing freshwater that may be used for drinking, industry and agriculture. The IEA Greenhouse Gas R&D Programme (IEAGHG) recently commissioned the CO2GeoNet Association to undertake a review of published and unpublished literature on this topic with the aim of summarizing 'state of the art' knowledge and identifying knowledge gaps and research priorities in this field. Work carried out by various CO2GeoNet members was also used in this study. This study identifies possible areas of conflict by combining available datasets to map the global and regional superposition of deep saline formations (DSF) suitable for CO2 storage and overlying fresh groundwater resources. A scenario classification is developed for the various geological settings where conflict could occur. The study proposes two approaches to address the potential impact mechanisms of CO2 storage projects on the hydrodynamics and chemistry of shallow groundwater. The first classifies and synthesizes changes of water quality observed in natural/industrial analogues and in laboratory experiments. The second reviews hydrodynamic and geochemical models, including coupled multiphase flow and reactive transport. Various models are discussed in terms of their advantages and limitations, with conclusions on possible impacts on groundwater resources. Possible mitigation options to stop or control CO2 leakage are assessed. The effect of CO2 pressure in the host DSF and the potential effects on shallow aquifers are also examined. The study provides a review of

  19. Application of simplified models to CO2 migration and immobilization in large-scale geological systems

    KAUST Repository

    Gasda, Sarah E.; Nordbotten, Jan M.; Celia, Michael A.

    2012-01-01

    Long-term stabilization of injected carbon dioxide (CO 2) is an essential component of risk management for geological carbon sequestration operations. However, migration and trapping phenomena are inherently complex, involving processes that act

  20. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    Science.gov (United States)

    Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.

    2014-12-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.

  1. Quantification of oil recovery efficiency, CO 2 storage potential, and fluid-rock interactions by CWI in heterogeneous sandstone oil reservoirs

    DEFF Research Database (Denmark)

    Seyyedi, Mojtaba; Sohrabi, Mehran; Sisson, Adam

    2017-01-01

    Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO2 concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO2 in oil reservoirs is appealing and can be achieved by carbonated (CO...... for oil recovery and CO2 storage potential on heterogeneous cores. Since not all the oil reservoirs are homogenous, understanding the potential of CWI as an integrated EOR and CO2 storage scenario in heterogeneous oil reservoirs is essential....

  2. Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis

    NARCIS (Netherlands)

    Castellani, Beatrice; Gambelli, Alberto Maria; Morini, Elena; Nastasi, B.; Presciutti, Andrea; Filipponi, Mirko; Nicolini, Andrea; Rossi, Federico

    2017-01-01

    The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and

  3. Measurements of capillary pressure and electric permittivity of gas-water systems in porous media at elevated pressures : Application to geological storage of CO2 in aquifers and wetting behavior in coal

    NARCIS (Netherlands)

    Plug, W.J.

    2007-01-01

    Sequestration of CO2 in aquifers and coal layers is a promising technique to reduce greenhouse gas emissions. Considering the reservoir properties, e.g. wettability, heterogeneity and the caprocks sealing capacity, the capillary pressure is an important measure to evaluate the efficiency, the

  4. Framing and bias in CO2 capture and storage communication films: Reflections from a CO2 capture and storage research group.

    Science.gov (United States)

    Maynard, Carly M; Shackley, Simon

    2017-03-01

    There has been a growing trend towards incorporating short, educational films as part of research funding and project proposals. Researchers and developers in CO 2 capture and storage are using films to communicate outcomes, but such films can be influenced by experiences and values of the producers. We document the content and presentation of seven online CO 2 capture and storage films to determine how framing occurs and its influence on the tone of films. The core frame presents CO 2 capture and storage as a potential solution to an imminent crisis in climatic warming and lack of a sustainable energy supply. Three subsidiary frames represent CO 2 capture and storage as (1) the only option, (2) a partial option or (3) a scientific curiosity. The results demonstrate that an understanding of the nuanced explicit and implicit messages portrayed by films is essential both for effective framing according to one's intention and for wider public understanding of a field.

  5. Research and development of methods and technologies for CO2 capture in fossil fuel power plants and storage in geological formations in the Czech Republic, stage 1.6. Research into methods and technologies for CO2 treatment and compression. Revision 0

    International Nuclear Information System (INIS)

    Dupal, Tomas

    2010-12-01

    Czech brown coal contain many components which complicate the technological process of CO 2 separation a treatment. A system coping with this problem is proposed. The following topics are treated: Specification of the flue gas at the boiler outlet; Requirements for CO 2 purity; Purification of the flue gases (Denitrificatio; Dust removal; Flue gas fan; Desuphurisation; Flue gas condenser); CO 2 purification and compression; Expected purification process; and Effect of the purification on the power plant unit. (P.A.)

  6. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.

    Science.gov (United States)

    Franks, Peter J; Beerling, David J

    2009-06-23

    Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.

  7. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    Science.gov (United States)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios

  8. Impact of Three-Phase Relative Permeability and Hysteresis Models on Forecasts of Storage Associated With CO2-EOR

    Science.gov (United States)

    Jia, Wei; McPherson, Brian; Pan, Feng; Dai, Zhenxue; Moodie, Nathan; Xiao, Ting

    2018-02-01

    Geological CO2 sequestration in conjunction with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 storage in deep saline aquifers. Two of the most important factors affecting multiphase flow in CO2-EOR are three-phase relative permeability and associated hysteresis, both of which are difficult to measure and are usually represented by numerical interpolation models. The purpose of this study is to improve understanding of (1) the relative impacts of different three-phase relative permeability models and hysteresis models on CO2 trapping mechanisms, and (2) uncertainty associated with these two factors. Four different three-phase relative permeability models and three hysteresis models were applied to simulations of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters, we utilized a sequential Gaussian simulation technique to generate 50 realizations to describe heterogeneity of porosity and permeability, based on data obtained from well logs and seismic survey. Simulation results of forecasted CO2 storage suggested that (1) the choice of three-phase relative permeability model and hysteresis model led to noticeable impacts on forecasted CO2 sequestration capacity; (2) impacts of three-phase relative permeability models and hysteresis models on CO2 trapping are small during the CO2-EOR injection period, and increase during the post-EOR CO2 injection period; (3) the specific choice of hysteresis model is more important relative to the choice of three-phase relative permeability model; and (4) using the recommended three-phase WAG (Water-Alternating-Gas) hysteresis model may increase the impact of three-phase relative permeability models and uncertainty due to heterogeneity.

  9. Numerical simulation of CO2 leakage from a geologic disposal reservoir, including transitions from super- to sub-critical conditions, and boiling of liquid of CO2

    International Nuclear Information System (INIS)

    Pruess, Karsten

    2003-01-01

    The critical point of CO 2 is at temperature and pressure conditions of T crit = 31.04 C, P crit = 73.82 bar. At lower (subcritical) temperatures and/or pressures, CO 2 can exist in two different phase states, a liquid and a gaseous state, as well as in two-phase mixtures of these states. Disposal of CO 2 into brine formations would be made at supercritical pressures. However, CO 2 escaping from the storage reservoir may migrate upwards towards regions with lower temperatures and pressures, where CO 2 would be in subcritical conditions. An assessment of the fate of leaking CO 2 requires a capability to model not only supercritical but also subcritical CO 2 , as well as phase changes between liquid and gaseous CO 2 in sub-critical conditions. We have developed a methodology for numerically simulating the behavior of water-CO 2 mixtures in permeable media under conditions that may include liquid, gaseous, and supercritical CO 2 . This has been applied to simulations of leakage from a deep storage reservoir in which a rising CO 2 plume undergoes transitions from supercritical to subcritical conditions. We find strong cooling effects when liquid CO 2 rises to elevations where it begins to boil and evolve a gaseous CO 2 phase. A three-phase zone forms (aqueous - liquid - gas), which over time becomes several hundred meters thick as decreasing temperatures permit liquid CO 2 to advance to shallower elevations. Fluid mobilities are reduced in the three-phase region from phase interference effects. This impedes CO 2 upflow, causes the plume to spread out laterally, and gives rise to dispersed CO 2 discharge at the land surface. Our simulation suggests that temperatures along a CO 2 leakage path may decline to levels low enough so that solid water ice and CO 2 hydrate phases may be formed

  10. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    Science.gov (United States)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    The injection of CO2 into geological formations at quantities necessary to significantly reduce CO2 emissions will represent an environmental perturbation on a continental scale. The extent to which biological processes may play a role in the fate and transport of CO2 injected into geological formations has remained an open question due to the fact that at temperatures and pressures associated with reservoirs targeted for sequestration CO2 exists as a supercritical fluid (scCO2), which has generally been regarded as a sterilizing agent. Natural subsurface accumulations of CO2 serve as an excellent analogue for studying the long-term effects, implications and benefits of CO2 capture and storage (CCS). While several geologic formations bearing significant volumes of nearly pure scCO2 phases have been identified in the western United States, no study has attempted to characterize the microbial community present in these systems. Because the CO2 in the region is thought to have first accumulated millions of years ago, it is reasonable to assume that native microbial populations have undergone extensive and unique physiological and behavioral adaptations to adjust to the exceedingly high scCO2 content. Our study focuses on the microbial communities associated with the dolomite limestone McElmo Dome scCO2 Field in the Colorado Plateau region, approximately 1,000 m below the surface. Fluid samples were collected from 10 wells at an industrial CO2 production facility outside Cortez, CO. Subsamples preserved on site in 3.7% formaldehyde were treated in the lab with Syto 9 green-fluorescent nucleic acid stain, revealing 3.2E6 to 1.4E8 microbial cells per liter of produced fluid and 8.0E9 cells per liter of local pond water used in well drilling fluids. Extracted DNAs from sterivex 0.22 um filters containing 20 L of sample biomass were used as templates for PCR targeting the 16S rRNA gene. 16S rRNA amplicons from these samples were cloned, sequenced and subjected to microbial

  11. Capture and geological sequestration of CO2: fighting against global warming

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2006-01-01

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO 2 sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO 2 emissions between today and 2050. The CO 2 capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  12. CO2 storage. An internet study by order of the city of Barendrecht, Netherlands; CO2 opslag. Een internet onderzoek in opdracht van Gemeente Barendrecht

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, T.

    2010-06-15

    The Dutch cabinet has decided that a pilot for CO2 storage will be conducted in the city of Barendrecht. This study has examined how the inhabitants of municipalities that quality for CO2 storage feel about this. [Dutch] Het kabinet heeft besloten dat in Barendrecht een proef wordt uitgevoerd met CO2 opslag. In dit onderzoek is nagegaan hoe inwoners van gemeenten die potentieel in aanmerking komen voor CO2 opslag daarover denken.

  13. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    Energy Technology Data Exchange (ETDEWEB)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  14. Integrated Reservoir Modeling of CO2-EOR Performance and Storage Potential in the Farnsworth Field Unit, Texas.

    Science.gov (United States)

    Ampomah, W.; Balch, R. S.; Cather, M.; Dai, Z.

    2017-12-01

    We present a performance assessment methodology and storage potential for CO2 enhanced oil recovery (EOR) in partially depleted reservoirs. A three dimensional heterogeneous reservoir model was developed based on geological, geophysics and engineering data from Farnsworth field Unit (FWU). The model aided in improved characterization of prominent rock properties within the Pennsylvanian aged Morrow sandstone reservoir. Seismic attributes illuminated previously unknown faults and structural elements within the field. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). Datasets including net-to-gross ratio, volume of shale, permeability, and burial history were used to model initial fault transmissibility based on Sperivick model. An improved history match of primary and secondary recovery was performed to set the basis for a CO2 flood study. The performance of the current CO2 miscible flood patterns was subsequently calibrated to historical production and injection data. Several prediction models were constructed to study the effect of recycling, addition of wells and /or new patterns, water alternating gas (WAG) cycles and optimum amount of CO2 purchase on incremental oil production and CO2 storage in the FWU. The history matching study successfully validated the presence of the previously undetected faults within FWU that were seen in the seismic survey. The analysis of the various prediction scenarios showed that recycling a high percentage of produced gas, addition of new wells and a gradual reduction in CO2 purchase after several years of operation would be the best approach to ensure a high percentage of recoverable incremental oil and sequestration of anthropogenic CO2 within the Morrow reservoir. Larger percentage of stored CO2 were dissolved in residual oil and less amount existed as supercritical free CO2. The geomechanical analysis on the caprock proved to an

  15. Research and development of methods and technologies for CO2 capture in fossil fuel power plants and storage in geological formations in the Czech Republic. Substage E2.1: Methods of and technologies for post-combustion CO2 capture from the flue gas. Substage E2.3: Selection of a chemical absorption based method for post-combustion CO2 capture. Revision 0

    International Nuclear Information System (INIS)

    Vavrova, Jana

    2010-12-01

    The following topics are described: Overview of CO 2 capture methods; Overview of absorption technologies (Amine technologies; Ammonia technologies); and the Research & Development stage (Absorption processes, chemical/carbonate loop; Membranes). (P.A.)

  16. A Hydromechanic-Electrokinetic Model for CO2 Sequestration in Geological Formations

    NARCIS (Netherlands)

    Al-Khoury, R.I.N.; Talebian, M.; Sluys, L.J.

    2013-01-01

    In this contribution, a finite element model for simulating coupled hydromechanic and electrokinetic flow in a multiphase domain is outlined. The model describes CO2 flow in a deformed, unsaturated geological formation and its associated streaming potential flow. The governing field equations are

  17. Economic Operation of Supercritical CO2 Refrigeration Energy Storage Technology

    Science.gov (United States)

    Hay, Ryan

    With increasing penetration of intermittent renewable energy resources, improved methods of energy storage are becoming a crucial stepping stone in the path toward a smarter, greener grid. SuperCritical Technologies is a company based in Bremerton, WA that is developing a storage technology that can operate entirely on waste heat, a resource that is otherwise dispelled into the environment. The following research models this storage technology in several electricity spot markets around the US to determine if it is economically viable. A modification to the storage dispatch scheme is then presented which allows the storage unit to increase its profit in real-time markets by taking advantage of extreme price fluctuations. Next, the technology is modeled in combination with an industrial load profile on two different utility rate schedules to determine potential cost savings. The forecast of facility load has a significant impact on savings from the storage dispatch, so an exploration into this relationship is then presented.

  18. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making

  19. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  20. Research and development of methods and technologies for CO2 capture in fossil fuel power plants and storage in geological formations in the Czech Republic, stage E2: Methods of and technologies for CO2 capture from flue gas and a draft conceptual design of 2 selected variants of a CO2 capture system for a Czech coal fired power plant unit. Final report for Stage 2. Revision 0

    International Nuclear Information System (INIS)

    Ubra, Olga

    2010-12-01

    The following topics are summarised: Aim and scope of Stage 2. List of research reports developed within Stage 2. Stage 2.1: Methods of and technologies for post-combustion CO 2 capture from the flue gas. Status of research and development worldwide. Stage 2.2: Oxyfuel method and technology. Status of research and development worldwide. Stage 2.3: Selection of a chemical absorption based method for post-combustion CO 2 separation; and Stage 2.4: Conceptual proposals for a technological solution for the selected chemical absorption based method and for application of the oxyfuel method. (P.A.)

  1. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  2. Effects of elevated atmospheric CO2 on dissolution of geological fluorapatite in water and soil.

    Science.gov (United States)

    Li, Zhen; Su, Mu; Tian, Da; Tang, Lingyi; Zhang, Lin; Zheng, Yangfan; Hu, Shuijin

    2017-12-01

    Most of phosphorus (P) is present as insoluble phosphorus-bearing minerals or organic forms in soil. Geological fluorapatite (FAp) is the dominant mineral-weathering source of P. In this study, FAp was added into water and soil under elevated CO 2 to investigate the pathway of P release. Two types of soils (an acidic soil from subtropical China and a saline-alkali soil from Tibet Plateau, China) with similar total P content were studied. In the solution, increased CO 2 in air enhanced the dissolution of FAp, i.e., from 0.04 to 1.18ppm for P and from 2.48 to 13.61ppm for Ca. In addition, release of Ca and P from FAp reached the maximum (2.14ppm for P and 13.84ppm for Ca) under the combination of elevated CO 2 and NaCl due to the increasing ion exchange. Consistent with the results from the solution, CO 2 elevation promoted P release more significantly (triple) in the saline-alkali soil than in the acidic soil. Therefore, saline-alkali soils in Tibet Plateau would be an important reservoir of available P under the global CO 2 rise. This study sheds the light on understanding the geological cycle of phosphorus. Copyright © 2017. Published by Elsevier B.V.

  3. Reactivity of micas and cap-rock in wet supercritical CO_2 with SO_2 and O_2 at CO_2 storage conditions

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Dawson, Grant K.W.; Law, Alison C.K.; Biddle, Dean; Golding, Suzanne D.

    2016-01-01

    Seal or cap-rock integrity is a safety issue during geological carbon dioxide capture and storage (CCS). Industrial impurities such as SO_2, O_2, and NOx, may be present in CO_2 streams from coal combustion sources. SO_2 and O_2 have been shown recently to influence rock reactivity when dissolved in formation water. Buoyant water-saturated supercritical CO_2 fluid may also come into contact with the base of cap-rock after CO_2 injection. Supercritical fluid-rock reactions have the potential to result in corrosion of reactive minerals in rock, with impurity gases additionally present there is the potential for enhanced reactivity but also favourable mineral precipitation. The first observation of mineral dissolution and precipitation on phyllosilicates and CO_2 storage cap-rock (siliciclastic reservoir) core during water-saturated supercritical CO_2 reactions with industrial impurities SO_2 and O_2 at simulated reservoir conditions is presented. Phyllosilicates (biotite, phlogopite and muscovite) were reacted in contact with a water-saturated supercritical CO_2 containing SO_2, or SO_2 and O_2, and were also immersed in the gas-saturated bulk water. Secondary precipitated sulfate minerals were formed on mineral surfaces concentrated at sheet edges. SO_2 dissolution and oxidation resulted in solution pH decreasing to 0.74 through sulfuric acid formation. Phyllosilicate dissolution released elements to solution with ∼50% Fe mobilized. Geochemical modelling was in good agreement with experimental water chemistry. New minerals nontronite (smectite), hematite, jarosite and goethite were saturated in models. A cap-rock core siltstone sample from the Surat Basin, Australia, was also reacted in water-saturated supercritical CO_2 containing SO_2 or in pure supercritical CO_2. In the presence of SO_2, siderite and ankerite were corroded, and Fe-chlorite altered by the leaching of mainly Fe and Al. Corrosion of micas in the cap-rock was however not observed as the pH was

  4. High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers

    International Nuclear Information System (INIS)

    Lu, C; Lichtner, P C

    2007-01-01

    CO 2 sequestration (capture, separation, and long term storage) in various geologic media including depleted oil reservoirs, saline aquifers, and oceanic sediments is being considered as a possible solution to reduce green house gas emissions. Dissolution of supercritical CO 2 in formation brines is considered an important storage mechanism to prevent possible leakage. Accurate prediction of the plume dissolution rate and migration is essential. Analytical analysis and numerical experiments have demonstrated that convective instability (Rayleigh instability) has a crucial effect on the dissolution behavior and subsequent mineralization reactions. Global stability analysis indicates that a certain grid resolution is needed to capture the features of density-driven fingering phenomena. For 3-D field scale simulations, high resolution leads to large numbers of grid nodes, unfeasible for a single workstation. In this study, we investigate the effects of convective instability on geologic sequestration of CO 2 by taking advantage of parallel computing using the code PFLOTRAN, a massively parallel 3-D reservoir simulator for modeling subsurface multiphase, multicomponent reactive flow and transport based on continuum scale mass and energy conservation equations. The onset, development and long-term fate of a supercritical CO 2 plume will be resolved with high resolution numerical simulations to investigate the rate of plume dissolution caused by fingering phenomena

  5. Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery

    International Nuclear Information System (INIS)

    Iribarren, Diego; Petrakopoulou, Fontina; Dufour, Javier

    2013-01-01

    This study evaluates the environmental and thermodynamic performance of six coal-fired power plants with CO 2 capture and storage. The technologies examined are post-combustion capture using monoethanolamine, membrane separation, cryogenic fractionation and pressure swing adsorption, pre-combustion capture through coal gasification, and capture performing conventional oxy-fuel combustion. The incorporation of CO 2 capture is evaluated both on its own and in combination with CO 2 transport and geological storage, with and without beneficial use. Overall, we find that pre-combustion CO 2 capture and post-combustion through membrane separation present relatively low life-cycle environmental impacts and high exergetic efficiencies. When accounting for transport and storage, the environmental impacts increase and the efficiencies decrease. However, a better environmental performance can be achieved for CO 2 capture, transport and storage when incorporating beneficial use through enhanced oil recovery. The performance with enhanced coal-bed methane recovery, on the other hand, depends on the impact categories evaluated. The incorporation of methane recovery results in a better thermodynamic performance, when compared to the incorporation of oil recovery. The cumulative energy demand shows that the integration of enhanced resource recovery strategies is necessary to attain favourable life-cycle energy balances. - Highlights: ► Evaluation of six different CO 2 capture technologies for coal-fired power plants. ► Calculation of life-cycle environmental impacts and exergetic efficiencies. ► Suitability of post-combustion capture with membrane separation. ► Suitability of pre-combustion capture through coal gasification. ► Improved performance when incorporating enhanced resource recovery

  6. Numerical modeling of CO2 mineralisation during storage in deep saline aquifers

    NARCIS (Netherlands)

    Ranganathan, P.; Van Hemert, P.; Rudolph, S.J.; Zitha, P.L.J.

    2011-01-01

    Simulations are performed to evaluate the feasibility of a potential site within the Rotliegend sandstone formation in the Dutch subsurface at a depth of around 3000 m for CO2 sequestration using the numerical simulator CMG-GEM. Three CO2 storage trapping mechanisms are studied: (1) mobility

  7. Electrokinetic and Poroelastic Characterization of Porous Media : Application to CO2 storage monitoring

    NARCIS (Netherlands)

    Kirichek, O.J.

    2018-01-01

    Monitoring the properties of a CO2 storage reservoir is important for two main reasons: firstly, to verify that the injected CO2 is safely contained in the reservoir rock as planned, and secondly, to provide data which can be used to update the existing reservoir models and support eventual

  8. Second Generation CO2 FEP Analysis: CASSIF - Carbon Storage Scenario Identification Framework

    NARCIS (Netherlands)

    Yavuz, F.; Tilburg, T. van; David, P.; Spruijt, M.; Wildenborg, T.

    2009-01-01

    Carbon dioxide Capture and Storage (CCS) is a promising contribution to reduce further increase of atmospheric CO2 emissions from fossil fuels. The CCS concept anticipates that large amounts of CO2 are going to be stored in the subsurface for the long term. Since CCS is a rather new technology,

  9. Numerical assessments of geological CO2 sequestration in the Changhua Coastal Industrial Park, Central Taiwan

    Science.gov (United States)

    Sung, R.; Li, M.

    2012-12-01

    Coal-fired power plants of the Taiwan Power Company are the main sources of CO2 emission in Taiwan. Due to the importation of coal mine and the need of cooling water circulation, power plants were built on the coast. Geological CO2 sequestration has been recognized as one of solutions for reducing anthropogenic CO2 emission by injecting CO2 captured from fossil fuel power plants into deep saline geologic formations. The Changhua Coastal Industrial Park (CCIP; 120.38° E, 24.11° N) in central Taiwan has been preliminary evaluated as one of potential sites for geological CO2 sequestration. The CCIP site has a sloping, layered heterogeneity formation with stagnant groundwater flow. Layers of sandstone and shale sequentially appeared to be the major components of geological formations with seaward transgression. Thickness of sedimentary formations gradually becomes thinner from east to west. Previous investigations [Chiao et al., 2010; Yu et al, 2011] did not find significant faults around this site. The TOUGHREACT/ECO2N model was employed with external mesh generator developed in this study to proceed to comprehensive assessments for CO2 injection into deep saline aquifers (salinity of 3%, pH of 7.2) at the CCIP site. A series of numerical experiments for investigating the physical, geochemical and its interactions included the deep saline-aquifer responses, CO2 plume migration, leakage risks, hydrogeochemistry processes, reservoir capacity and trapping mechanisms (i.e. hydrodynamics, capillarity, solubility, and mineral trapping) during and post CO2 injection were assessed. A 3-D lithological model applied in this study was conceptualized with two seismic profiles (along shore and cross shore) and one geological well nearby the study area. A total of 32 vertical layers was built with different porosities and permeabilities estimated from the TCDP-A borehole log samples adjusted with effects in geopressure differences. Cross-platform open source libraries of the CGAL

  10. Comparison of Pore-scale CO2-water-glass System Wettability and Conventional Wettability Measurement on a Flat Plate for Geological CO2 Sequestration

    Science.gov (United States)

    Jafari, M.; Cao, S. C.; Jung, J.

    2017-12-01

    Goelogical CO2 sequestration (GCS) has been recently introduced as an effective method to mitigate carbon dioxide emission. CO2 from main producer sources is collected and then is injected underground formations layers to be stored for thousands to millions years. A safe and economical storage project depends on having an insight of trapping mechanisms, fluids dynamics, and interaction of fluids-rocks. Among different forces governing fluids mobility and distribution in GCS condition, capillary pressure is of importance, which, in turn, wettability (measured by contact angel (CA)) is the most controversial parameters affecting it. To explore the sources of discrepancy in the literature for CA measurement, we conducted a series of conventional captive bubble test on glass plates under high pressure condition. By introducing a shape factor, we concluded that surface imperfection can distort the results in such tests. Since the conventional methods of measuring the CA is affected by gravity and scale effect, we introduced a different technique to measure pore-scale CA inside a transparent glass microchip. Our method has the ability to consider pore sizes and simulate static and dynamics CA during dewetting and imbibition. Glass plates shows a water-wet behavior (CA 30° - 45°) by a conventional experiment consistent with literature. However, CA of miniature bubbles inside of the micromodel can have a weaker water-wet behavior (CA 55° - 69°). In a more realistic pore-scale condition, water- CO2 interface covers whole width of a pore throats. Under this condition, the receding CA, which is used for injectability and capillary breakthrough pressure, increases with decreasing pores size. On the other hand, advancing CA, which is important for residual or capillary trapping, does not show a correlation with throat sizes. Static CA measured in the pores during dewetting is lower than static CA on flat plate, but it is much higher when measured during imbibition implying

  11. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  12. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    Science.gov (United States)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  13. Multiphase, multicomponent simulations and experiments of reactive flow, relevant for combining geologic CO2 sequestration with geothermal energy capture

    Science.gov (United States)

    Saar, Martin O.

    2011-11-01

    Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.

  14. Relationship between sea level and climate forcing by CO2 on geological timescales.

    Science.gov (United States)

    Foster, Gavin L; Rohling, Eelco J

    2013-01-22

    On 10(3)- to 10(6)-year timescales, global sea level is determined largely by the volume of ice stored on land, which in turn largely reflects the thermal state of the Earth system. Here we use observations from five well-studied time slices covering the last 40 My to identify a well-defined and clearly sigmoidal relationship between atmospheric CO(2) and sea level on geological (near-equilibrium) timescales. This strongly supports the dominant role of CO(2) in determining Earth's climate on these timescales and suggests that other variables that influence long-term global climate (e.g., topography, ocean circulation) play a secondary role. The relationship between CO(2) and sea level we describe portrays the "likely" (68% probability) long-term sea-level response after Earth system adjustment over many centuries. Because it appears largely independent of other boundary condition changes, it also may provide useful long-range predictions of future sea level. For instance, with CO(2) stabilized at 400-450 ppm (as required for the frequently quoted "acceptable warming" of 2 °C), or even at AD 2011 levels of 392 ppm, we infer a likely (68% confidence) long-term sea-level rise of more than 9 m above the present. Therefore, our results imply that to avoid significantly elevated sea level in the long term, atmospheric CO(2) should be reduced to levels similar to those of preindustrial times.

  15. Assessment of Dynamic Flow, Pressure and Geomechanical Behaviour of a CO2 Storage Complex

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Frykman, Peter

    dioxide (CO2) is the primary greenhouse gas emitted through human activities. Over 7,500 large CO2 emission sources (above 0.1 million tons CO2 year-1) have been identified (IPCC, 2005). These sources are distributed geographically around the world but four clusters of emissions can be observed: in North......-fired power plants) and injecting it into deep formations (e.g., saline aquifers, oil and gas reservoirs, and coalbeds) for storage. This process has drawn increasing consideration as a promising mitigation method that is economically possible. Deep saline aquifers offer the largest storage potential of all...

  16. Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America

    International Nuclear Information System (INIS)

    Oldenburg, C.; Birkholzer, J.T.

    2010-01-01

    Aside from the target storage regions being underground, geologic carbon sequestration and radioactive waste disposal share little in common in North America. The large volume of carbon dioxide (CO 2 ) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste. There is well-documented capacity in North America for 100 years or more of sequestration of CO 2 from coal-fired power plants. Aside from economics, the challenges of geologic carbon sequestration include lack of fully established legal and regulatory framework for ownership of injected CO 2 , the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for radioactive waste, the U.S. has proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level radioactive waste disposal site. The Canadian radioactive waste program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the U.S. and Canada have established legal and regulatory frameworks for radioactive waste disposal. The most challenging technical issue for radioactive waste disposal is the need to predict repository performance on extremely long time scales (10 4 - 10 6 years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening radioactive waste repositories. Because of the many significant differences between radioactive waste disposal and geologic carbon sequestration, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both geologic carbon sequestration and radioactive waste disposal

  17. SiteChar – Methodology for a Fit-for-Purpose Assessment of CO2 Storage Sites in Europe

    Directory of Open Access Journals (Sweden)

    Delprat-Jannaud F.

    2015-04-01

    Full Text Available The FP7-funded SiteChar project examined the entire CO2 geological storage site characterisation process, from the initial feasibility studies through to the final stage of application for a CO2 storage permit based on criteria defined by the relevant European legislation. The SiteChar workflow for CO2 geological storage site characterisation provides a description of all elements of a site characterisation study, as well as guidance to streamline the site characterisation process and make sure that the output covers the aspects mentioned in the European Community (EC Storage Directive. Five potential European storage sites, representative of prospective geological contexts, were considered as test sites for the research work: a North Sea multi-store site (hydrocarbon field and aquifer offshore Scotland; an onshore aquifer in Denmark; an onshore gas field in Poland; an aquifer offshore in Norway; and an aquifer in the Southern Adriatic Sea. This portfolio combines complementary sites that allowed to encompass the different steps of the characterisation workflow. A key innovation was the development of internal ‘dry-run’ permit applications at the Danish and Scottish sites and their review by relevant regulatory authorities. This process helped to refine the site characterisation workflow, and aimed to identify remaining gaps in site-specific characterisation, needed to secure storage permits under the EC Storage Directive as implemented in ‘host’ Member States. SiteChar considered the important aspect of the public awareness and public opinions of these new technologies, in parallel to technical issues, on the onshore Polish and offshore Scottish sites. A new format to assist public opinion-forming processes was tested involving a small sample of local communities. Generic as well as site-specific information was made available to the general and local public via the internet and at information meetings. These exercises provide insight

  18. Geological storage of carbon dioxide: the role of sedimentary basins

    International Nuclear Information System (INIS)

    Gunter, W.D.; Bachu, S.

    2001-01-01

    Sedimentary basins, occuring throughout the world, are thick piles of geologically deposited sediments that are the hosts for fossil fuel deposits. They may become even more important in the future if their large storage capacity is utilized for disposing of carbon dioxide. Sedimentary basins are dynamic, in the sense that they have an intricate plumbing system defined by the location of high and low permeability strata that control the flow of fluids throughout the basins and define 'hydrogeological' traps. The most secure type of hydrogeological trapping is found in oil and gas reservoirs in the form of 'structural' or 'stratigraphic' traps, termed 'closed' hydrogeological traps which have held oil and gas for millions of years. Obviously, these would be very attractive for CO 2 storage due to their long history of containment. A second type of hydrogeological trapping has been recognized in aquifers of sedimentary basins that have slow flow rates. The pore space in such 'open' hydrogeological traps is usually filled with saline ground or formation water. A volume of CO 2 injected into a deep open hydrogeological trap can take over a million years to travel updip to reach the surface and be released to the atmosphere. Although the capacity of structural/stratigraphic traps for CO 2 storage is small relative to open hydrogeological traps in deep sedimentary basins, they are likely to be used first as they are known to be secure, having held oil and gas for geological time. As the capacity of closed traps is exhausted and more is learned about geochemical trapping, the large storage capacity available in open hydrogeological traps will be utilized where security of the geological storage of CO 2 can be enhanced by geochemical reactions of the CO 2 with basic silicate minerals to form carbonates. Potential short circuits to the surface through faults or abandoned wells must be located and their stability evaluated before injection of CO 2 . In any event, a

  19. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    KAUST Repository

    Gasda, S. E.

    2009-04-23

    Large-scale implementation of geological CO2 sequestration requires quantification of risk and leakage potential. One potentially important leakage pathway for the injected CO2 involves existing oil and gas wells. Wells are particularly important in North America, where more than a century of drilling has created millions of oil and gas wells. Models of CO 2 injection and leakage will involve large uncertainties in parameters associated with wells, and therefore a probabilistic framework is required. These models must be able to capture both the large-scale CO 2 plume associated with the injection and the small-scale leakage problem associated with localized flow along wells. Within a typical simulation domain, many hundreds of wells may exist. One effective modeling strategy combines both numerical and analytical models with a specific set of simplifying assumptions to produce an efficient numerical-analytical hybrid model. The model solves a set of governing equations derived by vertical averaging with assumptions of a macroscopic sharp interface and vertical equilibrium. These equations are solved numerically on a relatively coarse grid, with an analytical model embedded to solve for wellbore flow occurring at the sub-gridblock scale. This vertical equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid refinement for sub-scale features. Through a series of benchmark problems, we show that VESA compares well with traditional numerical simulations and to a semi-analytical model which applies to appropriately simple systems. We believe that the VESA model provides the necessary accuracy and efficiency for applications of risk analysis in many CO2 sequestration problems. © 2009 Springer Science+Business Media B.V.

  20. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock

    International Nuclear Information System (INIS)

    Streit, J.E.; Hillis, R.R.

    2004-01-01

    Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)

  1. Isotopic tracers of sources, wells and of CO2 reactivity in geological reservoirs

    International Nuclear Information System (INIS)

    Assayag, N.

    2006-12-01

    The aim of this research works consisted in studying the behaviour of the carbonate system (dissolved inorganic carbon: DIC) following a CO 2 injection (artificial or natural), in geological reservoirs. One part of the study consisted in improving an analytical protocol for the measurement of δ 13 C DIC and DIC, using a continuous flow mass spectrometer. As a first study, we have focused our attention on the Pavin Lake (Massif Central, France). Owing to its limnologic characteristics (meromictic lake) and a deep volcanic CO 2 contribution, it can be viewed as a natural analogue of reservoir storing important quantities of CO 2 in the bottom part. Isotopic measurements (δ 18 O, δ 13 C DIC) allowed to better constrain the dynamics of the lake (stratification, seasonal variations), the magnitudes of biological activities (photosynthesis, organic matter decay, methane oxidation, methano-genesis), carbon sources (magmatic, methano-genetic), and the hydrological budgets (sub-lacustrine inputs). The second study was conducted on the Lamont-Doherty test well site (NY, USA). It includes an instrumental borehole which cuts through most of the section of the Palisades sill and into the Newark Basin sediments. Single well push-pull tests were performed: a test solution containing conservative tracers and a reactive tracer (CO 2 ) was injected at a permeable depth interval located in basaltic and meta sedimentary rocks. After an incubation period, the test solution/groundwater mixture was extracted from the hydraulically isolated zone. Isotopic measurements (δ 18 O, δ 13 C DIC) confronted to chemical data (major elements) allowed to investigate the extent of in-situ CO 2 -water-rock interactions: essentially calcite dissolution and at a lesser extend silicate dissolution...and for one of the test, CO 2 degassing. (author)

  2. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  3. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  4. Surface-downhole and crosshole geoelectrics for monitoring of brine injection at the Ketzin CO2 storage site

    Science.gov (United States)

    Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia

    2016-04-01

    et al., 2012). During the brine injection, usage of a new data acquisition unit allowed the daily collection of an extended crosshole data set. This data set was complemented by an alternative surface-downhole acquisition geometry, which for the first time allowed for regular current injections from three permanent surface electrodes into the existing electrical resistivity downhole array without the demand of an extensive field survey. This alternative surface-downhole acquisition geometry is expected to be characterized by good data quality and well confined sensitivity to the target storage zone. Time-lapse geoelectrical tomographies have been derived from both surface-downhole and crosshole data and show a conductive signature around the injection well associated with the displacement of CO2 by the injected brine. In addition to the above mentioned objectives of this brine injection experiment, comparative analysis of the surface-downhole and crosshole data provides the opportunity to evaluate the alternative surface-downhole acquisition geometry with respect to its resolution within the target storage zone and its ability to quantitatively constrain the displacement of CO2 during the brine injection. These results will allow for further improvement of the deployed alternative surface-downhole acquisition geometries. References Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., Rücker, C., Labitzke, T., Henninges, J., Baumann, G., Schütt, H. (2012). Surface-Downhole Electrical Resistivity Tomography applied to Monitoring of the CO2 Storage Ketzin (Germany). Geophysics, 77, B253-B267. Kiessling, D., Schmidt-Hattenberger, C., Schuett, H., Schilling, F., Krueger, K., Schoebel, B., Danckwardt, E., Kummerow, J., CO2SINK Group (2010). Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). International Journal of Greenhouse Gas Control, 4(5), 816

  5. Using noble gas fingerprints at the Kerr Farm to assess CO2 leakage allegations linked to the Weyburn-Midale CO2 Monitoring and Storage Project

    OpenAIRE

    Gilfillan, Stuart; Sherk, George Williams; Poreda, Robert J.; Haszeldine, Robert

    2017-01-01

    For carbon capture and storage technology to successfully contribute to climate mitigation efforts, the stored CO2 must be securely isolated from the atmosphere and oceans. Hence, there is a need to establish and verify monitoring techniques that can detect unplanned migration of injected CO2 from a storage site to the near surface. Noble gases are sensitive tracers of crustal fluid input in the subsurface due to their low concentrations and unreactive nature. Several studies have identified ...

  6. S-CO2 for efficient power generation with energy storage

    OpenAIRE

    Cerio Vera, Marta

    2016-01-01

    Supercritical CO2 (s-CO2) power cycle has gained interest for concentrating solar power (CSP) application in the last decade to overcome the current low efficiency and high costs of the plants. This cycle is a potential option to replace the steam Rankine cycle due to its higher efficiency, more compact turbomachinery and possibility of including heat storage and direct heating. The purpose of this project is to determine the suitability of integrating s-CO2 power cycle into CSP plants with e...

  7. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  8. PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models

    International Nuclear Information System (INIS)

    Li, Hailong; Jakobsen, Jana P.; Wilhelmsen, Oivind; Yan, Jinyue

    2011-01-01

    Highlights: → Accurate knowledge about the thermodynamic properties of CO 2 is essential in the design and operation of CCS systems. → Experimental data about the phase equilibrium and density of CO 2 -mixtures have been reviewed. → Equations of state have been reviewed too regarding CO 2 -mixtures. None has shown any clear advantage in CCS applications. → Identified knowledge gaps suggest to conducting more experiments and developing novel models. -- Abstract: The knowledge about pressure-volume-temperature-composition (PVTxy) properties plays an important role in the design and operation of many processes involved in CO 2 capture and storage (CCS) systems. A literature survey was conducted on both the available experimental data and the theoretical models associated with the thermodynamic properties of CO 2 mixtures within the operation window of CCS. Some gaps were identified between available experimental data and requirements of the system design and operation. The major concerns are: for the vapour-liquid equilibrium, there are no data about CO 2 /COS and few data about the CO 2 /N 2 O 4 mixture. For the volume property, there are no published experimental data for CO 2 /O 2 , CO 2 /CO, CO 2 /N 2 O 4 , CO 2 /COS and CO 2 /NH 3 and the liquid volume of CO 2 /H 2 . The experimental data available for multi-component CO 2 mixtures are also scarce. Many equations of state are available for thermodynamic calculations of CO 2 mixtures. The cubic equations of state have the simplest structure and are capable of giving reasonable results for the PVTxy properties. More complex equations of state such as Lee-Kesler, SAFT and GERG typically give better results for the volume property, but not necessarily for the vapour-liquid equilibrium. None of the equations of state evaluated in the literature show any clear advantage in CCS applications for the calculation of all PVTxy properties. A reference equation of state for CCS should, thus, be a future goal.

  9. Characterisation, quantification and modelling of CO2 transport and interactions in a carbonate vadose zone: application to a CO2 diffusive leakage in a geological sequestration context

    International Nuclear Information System (INIS)

    Cohen, Gregory

    2013-01-01

    Global warming is related to atmospheric greenhouse gas concentration increase and especially anthropogenic CO 2 emissions. Geologic sequestration has the potential capacity and the longevity to significantly diminish anthropogenic CO 2 emissions. This sequestration in deep geological formation induces leakage risks from the geological reservoir. Several leakage scenarios have been imagined. Since it could continue for a long period, inducing environmental issues and risks for human, the scenario of a diffusive leakage is the most worrying. Thus, monitoring tools and protocols are needed to set up a near-surface monitoring plan. The present thesis deals with this problematic. The aims are the characterisation, the quantification and the modelling of transport and interactions of CO 2 in a carbonate unsaturated zone. This was achieved following an experimental approach on a natural pilot site in Saint-Emilion (Gironde, France), where diffusive gas leakage experiments were set up in a carbonate unsaturated zone. Different aspects were investigated during the study: natural pilot site description and instrumentation; the physical and chemical characterisation of carbonate reservoir heterogeneity; the natural functioning of the carbonate unsaturated zone and especially the set-up of a CO 2 concentrations baseline; the characterisation of gas plume extension following induced diffusive leakage in the carbonate unsaturated zone and the study of gas-water-rock interactions during a CO 2 diffusive leakage in a carbonate unsaturated zone through numerical simulations. The results show the importance of the carbonate reservoir heterogeneity characterisation as well as the sampling and analysing methods for the different phases. The baseline set-up is of main interest since it allows discrimination between the induced and the natural CO 2 concentrations variations. The transfer of CO 2 in a carbonate unsaturated zone is varying in function of physical and chemical properties

  10. Dynamic Fluid Flow and Geomechanical Coupling to Assess the CO2 Storage Integrity in Faulted Structures

    Directory of Open Access Journals (Sweden)

    Baroni A.

    2015-04-01

    Full Text Available The SiteChar research on the Southern Adriatic Sea site focused on the investigation of the geomechanical and hydrodynamic behaviour of the storage complex in the case of CO2 injection in a reservoir consisting of fractured carbonate formations. Special attention was paid to the effects that natural faults and fractures might have on CO2 migration, and the effects that injection might have on the stability of faults. This assessment was originally performed via a hydro-geomechanical one-way coupling which relies on an adequate representation of faults in the model, allowing one to simulate fluid flow along the fault plane and inside faults as well as evolution of the stress state due to CO2 injection. The geological model was populated with petrophysical and geomechanical parameters derived either from laboratory measurements performed on samples from a reservoir analogue, or published literature. Since only sparse data were available, various scenarios were simulated to take into account the uncertainties in the fluid flow and geomechanical properties of the model: the different state of faults (i.e., open or closed and various in situ stress state, commonly named geostatic stresses as the earth’s crust deformation is assumed to be slow regarding the short-term study. Various fluid flow parameters were also considered, although only one set of petrophysical data corresponding to the most realistic ones is considered here. Faults modeled as volumetric elements behave as flow pathways for fluids when they are conductive. The injected CO2 migrates inside and through the Rovesti fault, which is located near the injection well. The fluid flow also induces overpressure in the faults. The overpressure in the Rovesti fault reaches 2.2 MPa while it reaches 4.4 MPa at the bottom hole of the injector. Extending to about 30 km, the pore pressure field reaches the Gondola fault located at 15 km from the injection zone but the overpressure does not exceed

  11. Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project.

    Science.gov (United States)

    White, Joshua A; Chiaramonte, Laura; Ezzedine, Souheil; Foxall, William; Hao, Yue; Ramirez, Abelardo; McNab, Walt

    2014-06-17

    Almost 4 million metric tons of CO2 were injected at the In Salah CO2 storage site between 2004 and 2011. Storage integrity at the site is provided by a 950-m-thick caprock that sits above the injection interval. This caprock consists of a number of low-permeability units that work together to limit vertical fluid migration. These are grouped into main caprock units, providing the primary seal, and lower caprock units, providing an additional buffer and some secondary storage capacity. Monitoring observations at the site indirectly suggest that pressure, and probably CO2, have migrated upward into the lower portion of the caprock. Although there are no indications that the overall storage integrity has been compromised, these observations raise interesting questions about the geomechanical behavior of the system. Several hypotheses have been put forward to explain the measured pressure, seismic, and surface deformation behavior. These include fault leakage, flow through preexisting fractures, and the possibility that injection pressures induced hydraulic fractures. This work evaluates these hypotheses in light of the available data. We suggest that the simplest and most likely explanation for the observations is that a portion of the lower caprock was hydrofractured, although interaction with preexisting fractures may have played a significant role. There are no indications, however, that the overall storage complex has been compromised, and several independent data sets demonstrate that CO2 is contained in the confinement zone.

  12. Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands

    International Nuclear Information System (INIS)

    Vijgen, L.; Nitert, M.; Buijtendijk, B.; Van Dalen, A.

    2009-10-01

    The DCMR Environmental Protection Agency Rijnmond in the Netherlands conducted an Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands, in cooperation with the involved safety and supervision authorities. The following aspects of the entire storage project and its safety issues have been examined: the compressor station in Pernis; the underground pipes between the compressor station and the injection locations; and the injection locations Barendrecht-Ziedewij and Barendrecht. [nl

  13. Element mobilization and immobilization from carbonate rocks between CO 2 storage reservoirs and the overlying aquifers during a potential CO 2 leakage

    Energy Technology Data Exchange (ETDEWEB)

    Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew; Kukkadapu, Ravi K.; Qafoku, Odeta; Bacon, Diana H.; Brown, Christopher F.

    2018-04-01

    Despite the numerous studies on changes within the reservoir following CO2 injection and the effects of CO2 release into overlying aquifers, little or no literature is available on the effect of CO2 release on rock between the storage reservoirs and subsurface. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO2, liquid analysis showed an increase of major elements (e.g., Ca, and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower concentrations were observed in N2 controls. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.

  14. Geochemical modelling of CO2-water-rock interactions for carbon storage : data requirements and outputs

    International Nuclear Information System (INIS)

    Kirste, D.

    2008-01-01

    A geochemical model was used to predict the short-term and long-term behaviour of carbon dioxide (CO 2 ), formation water, and reservoir mineralogy at a carbon sequestration site. Data requirements for the geochemical model included detailed mineral petrography; formation water chemistry; thermodynamic and kinetic data for mineral phases; and rock and reservoir physical characteristics. The model was used to determine the types of outputs expected for potential CO 2 storage sites and natural analogues. Reaction path modelling was conducted to determine the total reactivity or CO 2 storage capability of the rock by applying static equilibrium and kinetic simulations. Potential product phases were identified using the modelling technique, which also enabled the identification of the chemical evolution of the system. Results of the modelling study demonstrated that changes in porosity and permeability over time should be considered during the site selection process.

  15. Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites

    Science.gov (United States)

    Aubinet, M.; Berbigier, P.; Bernhofer, Ch.; et al.

    Anemometer and CO2 concentration data from temporary campaigns performed at six CARBOEUROFLUX forest sites were used to estimate the importance of non-turbulent fluxes in nighttime conditions. While storage was observed to be significant only during periods of both low turbulence and low advection, the advective fluxes strongly influence the nocturnal CO2 balance, with the exception of almost flat and highly homogeneous sites. On the basis of the main factors determining the onset of advective fluxes, the ‘advection velocity’, which takes net radiation and local topography into account, was introduced as a criterion to characterise the conditions of storage enrichment/depletion. Comparative analyses of the six sites showed several common features of the advective fluxes but also some substantial differences. In particular, all sites where advection occurs show the onset of a boundary layer characterised by a downslope flow, negative vertical velocities and negative vertical CO2 concentration gradients during nighttime. As a consequence, vertical advection was observed to be positive at all sites, which corresponds to a removal of CO2 from the ecosystem. The main differences between sites are the distance from the ridge, which influences the boundary-layer depth, and the sign of the mean horizontal CO2 concentration gradients, which is probably determined by the source/sink distribution. As a consequence, both positive and negative horizontal advective fluxes (corresponding respectively to CO2 removal from the ecosystem and to CO2 supply to the ecosystem) were observed. Conclusive results on the importance of non-turbulent components in the mass balance require, however, further experimental investigations at sites with different topographies, slopes, different land covers, which would allow a more comprehensive analysis of the processes underlying the occurrence of advective fluxes. The quantification of these processes would help to better quantify nocturnal

  16. Frictional and transport properties of simulated faults in CO2 storage reservoirs and clay-rich caprocks

    NARCIS (Netherlands)

    Bakker, Elisenda

    2017-01-01

    In order to mitigate and meet CO2 emission regulations, long-term CO2 storage in hydrocarbon reservoirs is one of the most attractive large-scale options. To ensure save anthropogenic storage, it is important to maintain the sealing integrity of potential storage complexes. It is therefore

  17. Comparing CO2 storage and advection conditions at night at different carboeuroflux sites

    Czech Academy of Sciences Publication Activity Database

    Aubinet, M.; Berbigier, P.; Bernhofer, Ch.; Cescatti, A.; Feigenwinter, C.; Granier, A.; Grunwald, TH; Havránková, Kateřina; Heinesch, B.; Longdoz, B.; Marcolla, B.; Montagnani, L.; Sedlák, Pavel

    2005-01-01

    Roč. 116, č. 1 (2005), s. 63-94 ISSN 0006-8314 Institutional research plan: CEZ:AV0Z60870520 Keywords : advection * CO2 storage * forest ecosystems Subject RIV: GK - Forestry Impact factor: 1.414, year: 2005

  18. Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)

    International Nuclear Information System (INIS)

    Garg, Amit; Shukla, P.R.

    2009-01-01

    Coal is the abundant domestic energy resource in India and is projected to remain so in future under a business-as-usual scenario. Using domestic coal mitigates national energy security risks. However coal use exacerbates global climate change. Under a strict climate change regime, coal use is projected to decline in future. However this would increase imports of energy sources like natural gas (NG) and nuclear and consequent energy security risks for India. The paper shows that carbon dioxide (CO 2 ) capture and storage (CCS) can mitigate CO 2 emissions from coal-based large point source (LPS) clusters and therefore would play a key role in mitigating both energy security risks for India and global climate change risks. This paper estimates future CO 2 emission projections from LPS in India, identifies the potential CO 2 storage types at aggregate level and matches the two into the future using Asia-Pacific Integrated Model (AIM/Local model) with a Geographical Information System (GIS) interface. The paper argues that clustering LPS that are close to potential storage sites could provide reasonable economic opportunities for CCS in future if storage sites of different types are further explored and found to have adequate capacity. The paper also indicates possible LPS locations to utilize CCS opportunities economically in future, especially since India is projected to add over 220,000 MW of thermal power generation capacity by 2030.

  19. Climate, CO2 storage, biofuels and nuclear energy. Media analysis April 2010

    International Nuclear Information System (INIS)

    Siraa, T.

    2010-01-01

    This media analysis focuses on the discussions that are held about climate policy, CO2 storage, biofuels and nuclear energy in the written press in the month of April. It is a qualitative analysis that focuses on the viewpoints of various social actors as expressed in the media. The sources used include the daily newspapers and opinion newspapers. [nl

  20. An innovative European integrated project: Castor-CO2 from capture to storage

    NARCIS (Netherlands)

    Thiez, P.L.; Mosditchian, G.; Torp, T.; Feron, P.; Ritsema, I.; Zweigel, P.; Lindeberg, E.

    2005-01-01

    This chapter gives an overview of the CASTOR (CO2, from Capture to Storage) R and D project, funded by the European Union (EU) under the 6th Framework Program. With a partnership involving Industry and Research organizations, CASTOR aims at developing new technologies for post-combustion capture and

  1. Leak detection of CO2 pipelines with simple atmospheric CO2 sensors for carbon capture and storage

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Hensen, Arjan; Meijer, Harro A. J.

    2013-01-01

    This paper presents a field test performed with five relatively simple CO2 sensors (Vaisala Carbocap GMP343) that were placed for more than one year in a field in Ten Post, Groningen, The Netherlands. Aim was to investigate their potential use in monitoring pipelines transporting CO2 for carbon

  2. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea

    Science.gov (United States)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae

    2015-04-01

    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also

  3. Diverse perspectives on governance on the very long term. Biodiversity, climatic change, CO2 storage, radioactive wastes, space wastes

    International Nuclear Information System (INIS)

    Boeuf, Gilles; Gouyon, Pierre Henry; Rollinger, Francois; Besnus, Francois; Heriard Dubreuil, Gilles; Dahan, Amy; Alby, Fernand; Arnould, Jacques; Fabriol, Hubert; Hoummady, Moussa; Demarcq, Francois; Farret, Regis; Hubert, Philippe; Weber, Jacques; Charton, Patrick; Boissier, Fabrice; Lopez, Mirelle; Devisse, Jean-Jacques; Mathy, Sandrine; Hourcade, Jean-Charles; Le Roux, Xavier; Bourcier, Danielle; Roure, Francoise; Henry, Claude; Bartet, Jean Hughes; Calame, Mathieu; Biteau, Benoit; Kastler, Guy; Ducret, Pierre; Berest, Pierre; Charron, Sylvie; Clin, Francois; Gadbois, Serge; Gueritte, Michel; Heriard-Dubreuil, Bertrand; Laville, Bettina; Marie, Michel; Marignac, Yves; Ollagnon, Henry; Pelegrin, Flora; Roure, Francoise; Rouyer, Michel; Schellenberger, Thomas; Toussaint, Jean-Francois

    2013-03-01

    This bibliographical note contains the program of a workshop and a presentation of a book based on the contributions to this workshop proposed by experts, representatives of institutional bodies and associations, or local representatives. This workshop addressed the issue of the governance on the very long term with respect to the management of resources such as climate, geology, biodiversity or space. How to make a possible usage of these resources while ensuring their protection and durability? What are the solutions or new challenges are raising these usages on the very long term? The first part addresses the main challenges and ethical issues for governance on the very long term for each of the examined topics: biodiversity, climatic change, CO 2 storage, radioactive waste storage, and space debris). The next parts propose contributions from different origins and disciplines, present relevant data, and report evidences

  4. Sensitivity of CO2 storage performance to varying rates and dynamic injectivity in the Bunter Sandstone, UK

    Science.gov (United States)

    Kolster, C.; Mac Dowell, N.; Krevor, S. C.; Agada, S.

    2016-12-01

    Carbon capture and storage (CCS) is needed for meeting legally binding greenhouse gas emissions targets in the UK (ECCC 2016). Energy systems models have been key to identifying the importance of CCS but they tend to impose few constraints on the availability and use of geologic CO2 storage reservoirs. Our aim is to develop simple models that use dynamic representations of limits on CO2 storage resources. This will allow for a first order representation of the storage reservoir for use in systems models with CCS. We use the ECLIPSE reservoir simulator and a model of the Southern North Sea Bunter Sandstone saline aquifer. We analyse reservoir performance sensitivities to scenarios of varying CO2 injection demand for a future UK low carbon energy market. With 12 injection sites, we compare the impact of injecting at a constant 2MtCO2/year per site and varying this rate by a factor of 1.8 and 0.2 cyclically every 5 and 2.5 years over 50 years of injection. The results show a maximum difference in average reservoir pressure of 3% amongst each case and a similar variation in plume migration extent. This suggests that simplified models can maintain accuracy by using average rates of injection over similar time periods. Meanwhile, by initiating injection at rates limited by pressurization at the wellhead we find that injectivity steadily increases. As a result, dynamic capacity increases. We find that instead of injecting into sites on a need basis, we can strategically inject the CO2 into 6 of the deepest sites increasing injectivity for the first 15 years by 13%. Our results show injectivity as highly dependent on reservoir heterogeneity near the injection site. Injecting 1MTCO2/year into a shallow, low permeability and porosity site instead of into a deep injection site with high permeability and porosity reduces injectivity in the first 5 years by 52%. ECCC. 2016. Future of Carbon Capture and Storage in the UK. UK Parliament House of Commons, Energy and Climate Change

  5. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    Science.gov (United States)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could

  6. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari

    2017-12-01

    Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a

  7. Science in bullet points: How to compile scientific results to underpin guidelines for CO2 storage for the German transposition of the European CCS Directive

    Science.gov (United States)

    Streibel, Martin

    2015-04-01

    In 2012 the German Parliament passed the transposition of the EC Directive 2009/31/EC the "Carbon Dioxide Storage Law" (KSpG). The law focuses on the demonstration of the CO2 storage technology and mainly regulates the storage part of the Carbon Capture and Storage (CCS) chain. As the law has a conceptual character, appendix 1 provides a description of criteria for the characterisation and assessment of a potential CO2 storage site starting with field data ending with requirements for dynamic modelling of the storage complex. Appendix 2 describes the expected monitoring system during all relevant phases of a life cycle of a CO2 storage site. The criteria given in the appendices are of general nature, which reflects on one hand that the CO2 storage technology is still being developed and on the other hand that site specific aspects needs to be considered. In 2004 the Federal Ministry of Education and Research of Germany launched the programme GEOTECHNOLOGIEN with one key aspect being the development of technologies for a sustainable storage of carbon dioxide in geological formations. Within this research field more than 30 projects in three phases have been funded until the end of 2014. In order to benefit from the gathered knowledge and use the experiences for the policy/law making process the umbrella project AUGE has been launched in October 2012 with a life time of three years. The aim of the project is to review and compile all results of projects funded during the three phases to underpin the appendices of the KSpG. In the first part of the paper the most important findings of the project with regard to the overall risk of a geological CO2 storage and the procedure of compiling the guidance document will be discussed. Milestones of this project were • the compilation of the results of national, European and international projects; • interviews with stakeholders; • a workshops to define state of the art for certain involved technologies and existing gaps

  8. Prediction of rate of CO2 assimilation of leaf lettuce under low light irradiation during storage

    International Nuclear Information System (INIS)

    Uchino, T.; Harada, F.; Hu, W.

    2003-01-01

    The rate of CO 2 assimilation of leaf lettuce changed with its respiration rate and gas constitution in a storage chamber. The optimum irradiance on the surface of leaf lettuce during storage using low light irradiation can be obtained by the prediction of the rate of CO 2 assimilation. For the above mentioned purpose the following equation were derived. -kd[C]/dt=0.5(1-f)I([C]-Γ/4.5[C]+10.5Γ)-ae -bt where, k: proportional constant (4.87×10 -3 mol⋅m -2 ) [C]: CO 2 concentration (ppm), t: time (h), f: fraction of light not absorbed by chloroplasts (0.23), I: irradiance (μmol⋅m-2⋅s -1 ), Γ: CO 2 compensation point without respiration (21.5ppm), a, b: parameters (0.308μmol⋅m -2 ⋅s -1 , 0.010h -1 ). Calculated values of rate of CO 2 assimilation by the equation agreed well with experimental ones at 3.4 and 6.5μmol⋅m -2 ⋅s -1 of irradiance, so it appeared that the assimilation rate could be sufficiently predicted

  9. Efficient parallel simulation of CO2 geologic sequestration in saline aquifers

    International Nuclear Information System (INIS)

    Zhang, Keni; Doughty, Christine; Wu, Yu-Shu; Pruess, Karsten

    2007-01-01

    An efficient parallel simulator for large-scale, long-term CO2 geologic sequestration in saline aquifers has been developed. The parallel simulator is a three-dimensional, fully implicit model that solves large, sparse linear systems arising from discretization of the partial differential equations for mass and energy balance in porous and fractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics and thermophysical properties of H2O-NaCl- CO2 mixtures, modeling single and/or two-phase isothermal or non-isothermal flow processes, two-phase mixtures, fluid phases appearing or disappearing, as well as salt precipitation or dissolution. The new parallel simulator uses MPI for parallel implementation, the METIS software package for simulation domain partitioning, and the iterative parallel linear solver package Aztec for solving linear equations by multiple processors. In addition, the parallel simulator has been implemented with an efficient communication scheme. Test examples show that a linear or super-linear speedup can be obtained on Linux clusters as well as on supercomputers. Because of the significant improvement in both simulation time and memory requirement, the new simulator provides a powerful tool for tackling larger scale and more complex problems than can be solved by single-CPU codes. A high-resolution simulation example is presented that models buoyant convection, induced by a small increase in brine density caused by dissolution of CO2

  10. Brine/CO2 Interfacial Properties and Effects on CO2 Storage in Deep Saline Aquifers Propriétés interfaciales saumure/CO2 et effets sur le stockage du CO2 dans des aquifères salins profonds

    Directory of Open Access Journals (Sweden)

    Chalbaud C.

    2010-05-01

    Full Text Available It has been long recognized that interfacial interactions (interfacial tension, wettability, capillarity and interfacial mass transfer govern fluid distribution and behaviour in porous media. Therefore the interfacial interactions between CO2, brine and reservoir oil and/or gas have an important influence on the effectiveness of any CO2 storage operation. There is a lack of experimental data related to interfacial properties for all the geological storage options (oil & gas reservoirs, coalbeds, deep saline aquifers. In the case of deep saline aquifers, there is a gap in data and knowledge of brine-CO2 interfacial properties at storage conditions. More specifically, experimental interfacial tension values and experimental tests in porous media are necessary to better understand the wettability evolution as a function of thermodynamic conditions and it’s effects on fluid flow in the porous media. In this paper, a complete set of experimental values of brine-CO2 Interfaciale Tension (IFT at pressure, temperature and salt concentration conditions representative of those of a CO2 storage operation. A correlation is derived from experimental data published in a companion paper [Chalbaud C., Robin M., Lombard J.-M., Egermann P., Bertin H. (2009 Interfacial Tension Measurements and Wettability Evaluation for Geological CO2 Storage, Adv. Water Resour. 32, 1, 1-109] to model IFT values. This paper pays particular attention to coreflooding experiments showing that the CO2 partially wets the surface in a Intermediate-Wet (IW or Oil-Wet (OW limestone rock. This wetting behavior of CO2 is coherent with observations at the pore scale in glass micromodels and presents a negative impact on the storage capacity of a given site. Il est admis depuis longtemps que les propriétés interfaciales (tension interfaciale, mouillabilité, capillarité et transfert de masse régissent la distribution et le comportement des fluides au sein des milieux poreux. Par cons

  11. Simplified models of transport and reactions in conditions of CO2 storage in saline aquifers

    Science.gov (United States)

    Suchodolska, Katarzyna; Labus, Krzysztof

    2016-04-01

    Simple hydrogeochemical models may serve as tools of preliminary assessment of CO2 injection and sequestraton impact on the aquifer and cap-rocks. In order to create models of reaction and transport in conditions of CO2 injection and storage, the TOUGHREACT simulator, and the Geochemist's Workbench software were applied. The chemical composition of waters for kinetic transport models based on the water - rock equilibrium calculations. Analyses of reaction and transport of substances during CO2 injection and storage period were carried out in three scenarios: one-dimensional radial model, and two-dimensional model of CO2 injection and sequestration, and one-dimensional model of aquifer - cap-rock interface. Modeling was performed in two stages. The first one simulated the immediate changes in the aquifer and insulating rocks impacted by CO2 injection (100 days in case of reaction model and 30 years in transport and reaction model), the second - enabled assessment of long-term effects of sequestration (20000 years). Reactions' quality and progress were monitored and their effects on formation porosity and sequestration capacity in form of mineral, residual and free phase of CO2 were calculated. Calibration of numerical models (including precipitation of secondary minerals, and correction of kinetics parameters) describing the initial stage of injection, was based on the experimental results. Modeling allowed to evaluate the pore space saturation with gas, changes in the composition and pH of pore waters, relationships between porosity and permeability changes and crystallization or dissolution minerals. We assessed the temporal and spatial extent of crystallization processes, and the amount of carbonates trapping. CO2 in mineral form. The calculated sequestration capacity of analyzed formations reached n·100 kg/m3 for the: dissolved phase - CO(aq), gas phase - CO2(g) and mineral phase, but as much as 101 kg/m3 for the supercritical phase - SCCO2. Processes of gas

  12. Practical modeling approaches for geological storage of carbon dioxide.

    Science.gov (United States)

    Celia, Michael A; Nordbotten, Jan M

    2009-01-01

    The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.

  13. The sequestration of CO2

    International Nuclear Information System (INIS)

    Le Thiez, P.

    2004-01-01

    The reduction of greenhouse gas emissions, especially CO 2 , represents a major technological and societal challenge in the fight against climate change. Among the measures likely to reduce anthropic CO 2 emissions, capture and geological storage holds out promise for the future. (author)

  14. The DELPHI expert process of the German umbrella project AUGE as basis for recommendations to CO2 storage in Germany

    Science.gov (United States)

    Pilz, Peter; Schoebel, Birgit; Liebscher, Axel

    2016-04-01

    Within the GEOTECHNOLOGIEN funding scheme for geological CO2 storage by the Federal Ministry of Education and Research (BMBF) in Germany 33 projects (135 subprojects) have been funded with a total budget of 58 Mio € (excluding industry funds) from 2005 to 2014. In 2012, the German parliament passed the transposition of the EU CCS Directive 2009/31/EG into the national "Carbon Dioxide Storage Law" (KSpG). Annex 1 of the KSpG provides a description of criteria for the characterization and assessment of a potential CO2 storage site. Annex 2 describes the expected monitoring system of a CO2 storage site. The criteria given in the appendices are of general nature, which reflects (1) that the CO2 storage technology is still being developed and (2) that site specific aspects needs to be considered. In 2012 an umbrella project called AUGE has been launched in order to compile and summarize the results of the GEOTECHNOLOGIEN projects to underpin the two Annexes scientifically. By integration of the individual project results AUGE aims at derive recommendations for the review and implementation of the KSpG. The recommendations shall be drafted based on a common ground of science, public authorities and industry. Therefore, the AUGE project includes a Delphi expert process as an essential part. It is realized in cooperation with the company COMPARE Consulting, Göppingen. The implementation of the Delphi-Process is organized in three steps: • After the technical preparation of a standardized questionnaire (2014/2015) it was sent to 129 experts from science, industry and public authorities in Germany. After a few weeks of consideration time, 40 persons (30 %) had decided to participate actively in this inquiry. • Following the results of the first interrogation campaign, the second survey campaign started at the end of 2015. The same list of questions was used, complemented with the results of the first inquiry campaign. The intention is reduce the variance of the

  15. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    Science.gov (United States)

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  16. CO2 capture and storage in the subsurface - A technological pathway for combating climate change

    International Nuclear Information System (INIS)

    2007-10-01

    The Earth is warning abnormally. The guilty parties are so-called 'greenhouse gases' (GHG), the main one being carbon dioxide (CO 2 ). Produced in large quantities by human activities such as transportation, domestic uses and industry, this gas is essentially given off when fossil fuels - coal, oil or gas - are burned. In addition to efforts to reduce energy consumption and develop renewable energy sources, CO 2 capture and storage emerges as an option insofar as fossil fuels will continue to be exploited. Since release of the IPCC special report in 2005, mobilization has flourished worldwide for the development of this technological pathway enabling the use of fossil fuels without CO 2 emissions, thus biding time until the arrival of alternate energy resources. This brochure goes back over the context of greenhouse gas emissions reductions and addresses at length the achievements and projects in the field of CO 2 capture and storage. It also provides a detailed description of on-going technological research and development programmes, highlighting both accomplishments and orientations where progress is expected. It takes stock of recent progress, particularly in France and Europe: - the consideration by political bodies of this option that contributes to reducing greenhouse gas emissions, - the first industrial operations worldwide, - the new European demonstration projects in Europe to generate electricity and produce hydrogen or steam, - the mounting interest amongst France's industry outside the energy sector: steel sector, cement production, waste processing, bio-fuel production, - the most pertinent achievements and new research initiatives in Europe for CO 2 capture, transport and storage, - the appropriate regulations and legal framework as well as economic incentives for cutting the costs and increasing the commitments of States

  17. Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves

    International Nuclear Information System (INIS)

    Doughty, Christine

    2007-01-01

    Numerical models of geologic storage of carbon dioxide (CO 2 ) in brine-bearing formations use characteristic curves to represent the interactions of non-wetting-phase CO 2 and wetting-phase brine. When a problem includes both injection of CO 2 (a drainage process) and its subsequent post-injection evolution (a combination of drainage and wetting), hysteretic characteristic curves are required to correctly capture the behavior of the CO 2 plume. In the hysteretic formulation, capillary pressure and relative permeability depend not only on the current grid-block saturation, but also on the history of the saturation in the grid block. For a problem that involves only drainage or only wetting, a non-hysteretic formulation, in which capillary pressure and relative permeability depend only on the current value of the grid-block saturation, is adequate. For the hysteretic formulation to be robust computationally, care must be taken to ensure the differentiability of the characteristic curves both within and beyond the turning-point saturations where transitions between branches of the curves occur. Two example problems involving geologic CO 2 storage are simulated with TOUGH2, a multiphase, multicomponent code for flow and transport through geological media. Both non-hysteretic and hysteretic formulations are used, to illustrate the applicability and limitations of non-hysteretic methods. The first application considers leakage of CO 2 from the storage formation to the ground surface, while the second examines the role of heterogeneity within the storage formation

  18. Reactive Transport Analysis of Fault 'Self-sealing' Associated with CO2 Storage

    Science.gov (United States)

    Patil, V.; McPherson, B. J. O. L.; Priewisch, A.; Franz, R. J.

    2014-12-01

    We present an extensive hydrologic and reactive transport analysis of the Little Grand Wash fault zone (LGWF), a natural analog of fault-associated leakage from an engineered CO2 repository. Injecting anthropogenic CO2 into the subsurface is suggested for climate change mitigation. However, leakage of CO2 from its target storage formation into unintended areas is considered as a major risk involved in CO2 sequestration. In the event of leakage, permeability in leakage pathways like faults may get sealed (reduced) due to precipitation or enhanced (increased) due to dissolution reactions induced by CO2-enriched water, thus influencing migration and fate of the CO2. We hypothesize that faults which act as leakage pathways can seal over time in presence of CO2-enriched waters. An example of such a fault 'self-sealing' is found in the LGWF near Green River, Utah in the Paradox basin, where fault outcrop shows surface and sub-surface fractures filled with calcium carbonate (CaCO3). The LGWF cuts through multiple reservoirs and seal layers piercing a reservoir of naturally occurring CO2, allowing it to leak into overlying aquifers. As the CO2-charged water from shallower aquifers migrates towards atmosphere, a decrease in pCO2 leads to supersaturation of water with respect to CaCO3, which precipitates in the fractures of the fault damage zone. In order to test the nature, extent and time-frame of the fault sealing, we developed reactive flow simulations of the LGWF. Model parameters were chosen based on hydrologic measurements from literature. Model geochemistry was constrained by water analysis of the adjacent Crystal Geyser and observations from a scientific drilling test conducted at the site. Precipitation of calcite in the top portion of the fault model led to a decrease in the porosity value of the damage zone, while clay precipitation led to a decrease in the porosity value of the fault core. We found that the results were sensitive to the fault architecture

  19. Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites

    Czech Academy of Sciences Publication Activity Database

    Aubinet, M.; Berbigier, P.; Bernhofer, C.; Cescatti, A.; Feigenwinter, C.; Granier, A.; Grünwald, T.; Havránková, Kateřina; Heinesch, B.; Longdoz, B.; Marcolla, B.; Montagnani, L.; Sedlák, Pavel

    2005-01-01

    Roč. 116, - (2005), s. 63-94 ISSN 0006-8314 R&D Projects: GA AV ČR(CZ) KJB3087301 Grant - others:Carboeuroflux(XE) EVK-2-CT-1999-00032 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z6087904 Keywords : Advection * CO2 storage * Forest ecosystems Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.414, year: 2005

  20. Techno-economic assessment of four CO2 storage sites = Évaluation technico-économique de quatre sites de stockage de CO2

    NARCIS (Netherlands)

    Gruson, J.F.; Serbutoviez, S.; Delprat-Jannaud, F.; Akhurst, M.; Nielsen, C.; Dalhoff, F.; Bergmo, P.; Bos, C.; Volpi, V.; Iacobellis, S.

    2015-01-01

    Carbon Capture and Storage (CCS) should be a key technology in order to achieve a decline in the CO2 emissions intensity of the power sector and other intensive industry, but this potential deployment could be restricted by cost issues as the International Energy Agency (IEA) in their last

  1. The Ca-looping process for CO2 capture and energy storage: role of nanoparticle technology

    Science.gov (United States)

    Valverde, Jose Manuel

    2018-02-01

    The calcium looping (CaL) process, based on the cyclic carbonation/calcination of CaO, has come into scene in the last years with a high potential to be used in large-scale technologies aimed at mitigating global warming. In the CaL process for CO2 capture, the CO2-loaded flue gas is used to fluidize a bed of CaO particles at temperatures around 650 °C. The carbonated particles are then circulated into a calciner reactor wherein the CaO solids are regenerated at temperatures near 950 °C under high CO2 concentration. Calcination at such harsh conditions causes a marked sintering and loss of reactivity of the regenerated CaO. This main drawback could be however compensated from the very low cost of natural CaO precursors such as limestone or dolomite. Another emerging application of the CaL process is thermochemical energy storage (TCES) in concentrated solar power (CSP) plants. Importantly, carbonation/calcination conditions to maximize the global CaL-CSP plant efficiency could differ radically from those used for CO2 capture. Thus, carbonation could be carried out at high temperatures under high CO2 partial pressure for maximum efficiency, whereas the solids could be calcined at relatively low temperatures in the absence of CO2 to promote calcination. Our work highlights the critical role of carbonation/calcination conditions on the performance of CaO derived from natural precursors. While conditions in the CaL process for CO2 capture lead to a severe CaO deactivation with the number of cycles, the same material may exhibit a high and stable conversion at optimum CaL-CSP conditions. Moreover, the type of CaL conditions influences critically the reaction kinetics, which plays a main role on the optimization of relevant operation parameters such as the residence time in the reactors. This paper is devoted to a brief review on the latest research activity in our group concerning these issues as well as the possible role of nanoparticle technology to enhance the

  2. Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. Palmiéri

    2015-02-01

    Full Text Available Constraints on the Mediterranean Sea's storage of anthropogenic CO2 are limited, coming only from data-based approaches that disagree by more than a factor of two. Here we simulate this marginal sea's anthropogenic carbon storage by applying a perturbation approach in a high-resolution regional model. Our model simulates that, between 1800 and 2001, basin-wide CO2 storage by the Mediterranean Sea has increased by 1.0 Pg C, a lower limit based on the model's weak deep-water ventilation, as revealed by evaluation with CFC-12. Furthermore, by testing a data-based approach (transit time distribution in our model, comparing simulated anthropogenic CO2 to values computed from simulated CFC-12 and physical variables, we conclude that the associated basin-wide storage of 1.7 Pg, published previously, must be an upper bound. Out of the total simulated storage of 1.0 Pg C, 75% comes from the air–sea flux into the Mediterranean Sea and 25% comes from net transport from the Atlantic across the Strait of Gibraltar. Sensitivity tests indicate that the Mediterranean Sea's higher total alkalinity, relative to the global-ocean mean, enhances the Mediterranean's total inventory of anthropogenic carbon by 10%. Yet the corresponding average anthropogenic change in surface pH does not differ significantly from the global-ocean average, despite higher total alkalinity. In Mediterranean deep waters, the pH change is estimated to be between −0.005 and −0.06 pH units.

  3. Value chain analysis of CO2 storage by using the Ecco tool: Storage economics

    NARCIS (Netherlands)

    Loeve, D.; Bos, C.; Chitu, A.; Loveseth, S.; Wahl, P.E.; Coussy, P.; Eickhoff, C.

    2013-01-01

    The ECCO Tool [1, 2] has been developed in the “ECCO – European value chain for CO2” project [3]. ECCO was a collaborating project under the 7th framework programme for research of the EU. The ECCO Tool is a software program designed to evaluate quantitatively the post-tax economics of Carbon

  4. Vertically averaged approaches for CO 2 migration with solubility trapping

    KAUST Repository

    Gasda, S. E.; Nordbotten, J. M.; Celia, M. A.

    2011-01-01

    The long-term storage security of injected carbon dioxide (CO2) is an essential component of geological carbon sequestration operations. In the postinjection phase, the mobile CO2 plume migrates in large part because of buoyancy forces, following

  5. Density-Driven Flow Simulation in Anisotropic Porous Media: Application to CO2 Geological Sequestration

    KAUST Repository

    Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu

    2014-01-01

    Carbon dioxide (CO2) sequestration in saline aquifers is considered as one of the most viable and promising ways to reduce CO2 concentration in the atmosphere. CO2 is injected into deep saline formations at supercritical state where its density

  6. The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints

    NARCIS (Netherlands)

    Van Den Broek, Machteld; Berghout, Niels; Rubin, Edward S.

    2015-01-01

    The costs of intermittent renewable energy systems (IRES) and power storage technologies are compared on a level playing field to those of natural gas combined cycle power plants with CO2 capture and storage (NGCC-CCS). To account for technological progress over time, an "experience

  7. Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus-prokaryote interactions and functions.

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2015-01-01

    Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning, and human life. Among the proposed mitigation strategies, CO2 capture and storage, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus-host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality (VIPM). We found that exposure to levels of CO2 in the overlying seawater from 1,000 to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of VIPM, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems.

  8. Remaining gaps for "safe" CO2 storage: the INGV CO2GAPS vision of "learning by doing" monitoring geogas leakage, reservoirs contamination/mixing and induced/triggered seismicity

    Science.gov (United States)

    Quattrocchi, F.; Vinciguerra, S.; Chiarabba, C.; Boschi, E.; Anselmi, M.; Burrato, P.; Buttinelli, M.; Cantucci, B.; Cinti, D.; Galli, G.; Improta, L.; Nazzari, M.; Pischiutta, M.; Pizzino, L.; Procesi, M.; Rovelli, A.; Sciarra, A.; Voltattorni, N.

    2012-12-01

    The CO2GAPS project proposed by INGV is intended to build up an European Proposal for a new kind of research strategy in the field of the geogas storage. Aim of the project would be to fill such key GAPS concerning the main risks associated to CO2 storage and their implications on the entire Carbon Capture and Storage (CCS) process, which are: i) the geogas leakage both in soils and shallow aquifers, up to indoor seepage; ii) the reservoirs contamination/mixing by hydrocarbons and heavy metals; iii) induced or triggered seismicity and microseismicity, especially for seismogenic blind faults. In order to consider such risks and make the CCS public acceptance easier, a new kind of research approach should be performed by: i) a better multi-disciplinary and "site specific" risk assessment; ii) the development of more reliable multi-disciplinary monitoring protocols. In this view robust pre-injection base-lines (seismicity and degassing) as well as identification and discrimination criteria for potential anomalies are mandatory. CO2 injection dynamic modelling presently not consider reservoirs geomechanical properties during reactive mass-transport large scale simulations. Complex simulations of the contemporaneous physic-chemical processes involving CO2-rich plumes which move, react and help to crack the reservoir rocks are not totally performed. These activities should not be accomplished only by the oil-gas/electric companies, since the experienced know-how should be shared among the CCS industrial operators and research institutions, with the governments support and overview, also flanked by a transparent and "peer reviewed" scientific popularization process. In this context, a preliminary and reliable 3D modelling of the entire "storage complex" as defined by the European Directive 31/2009 is strictly necessary, taking into account the above mentioned geological, geochemical and geophysical risks. New scientific results could also highlighting such opportunities

  9. CO2. Separation, storage, use. Holistic assessment in the range of energy sector and industry

    International Nuclear Information System (INIS)

    Fischedick, Manfred; Goerner, Klaus

    2015-01-01

    The technology for CO 2 capture and storage (CCS) and CO 2 usage (CCR) is illuminated in this reference book comprehensively and from different perspectives. Experts from research and industry present the CCS and CCR technology based on the scientific and technical foundations and describe the state-of-the-art. They compare energy balances for different techniques and discuss legal, economic and socio-political aspects. In scenario analyzes they demonstrate the future contribution of the technologies and present the views of the different stakeholder groups. The authors claim to inform value-free. They disclose the criteria for the assessment of individual perspectives. An important work on a current and controversial discussed technology. [de

  10. The public perspective of carbon capture and storage for CO2 emission reductions in China

    International Nuclear Information System (INIS)

    Duan Hongxia

    2010-01-01

    To explore public awareness of carbon capture and storage (CCS), attitudes towards the use of CCS and the determinants of CCS acceptance in China, a study was conducted in July 2009 based on face-to-face interviews with participants across the country. The result showed that the awareness of CCS was low among the surveyed public in China, compared to other clean energy technologies. Respondents indicated a slightly supportive attitude towards the use of CCS as an alternative technology to CO 2 emission reductions. The regression model revealed that in addition to CCS knowledge, respondents' understanding of the characteristics of CCS, such as the maturity of the technology, risks, capability of CO2 emission reductions, and CCS policy were all significant factors in predicting the acceptance of CCS. The findings suggest that integrating public education and communication into CCS development policy would be an effective strategy to overcome the barrier of low public acceptance.

  11. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    DEFF Research Database (Denmark)

    Plampin, Michael R.; Lassen, Rune Nørbæk; Sakaki, Toshihiro

    2014-01-01

    sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2......, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been...... quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test...

  12. Predicting long-term performance of engineered geologic carbon dioxide storage systems to inform decisions amidst uncertainty

    Science.gov (United States)

    Pawar, R.

    2016-12-01

    Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management

  13. How to characterize a potential site for CO2 storage with sparse data coverage - a Danish onshore site case

    International Nuclear Information System (INIS)

    Nielsen, Carsten Moller; Frykman, Peter; Dalhoff, Finn

    2015-01-01

    The paper demonstrates how a potential site for CO 2 storage can be evaluated up to a sufficient level of characterization for compiling a storage permit application, even if the site is only sparsely explored. The focus of the paper is on a risk driven characterization procedure. In the initial state of a site characterization process with sparse data coverage, the regional geological and stratigraphic understanding of the area of interest can help strengthen a first model construction for predictive modeling. Static and dynamic modeling in combination with a comprehensive risk assessment can guide the different elements needed to be evaluated for fulfilling a permit application. Several essential parameters must be evaluated; the storage capacity for the site must be acceptable for the project life of the operation, the trap configuration must be efficient to secure long term containment, the injectivity must be sufficient to secure a longstanding stable operation and finally a satisfactory and operational measuring strategy must be designed. The characterization procedure is demonstrated for a deep onshore aquifer in the northern part of Denmark, the Vedsted site. The site is an anticlinal structural closure in an Upper Triassic - Lower Jurassic sandstone formation at 1 800-1 900 m depth. (authors)

  14. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    Science.gov (United States)

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    commercial CO2 capture facilities at electric power-generating stations based on the use of monoethanolamine are described, as is the Rectisol process used by Dakota Gasification to separate and capture CO2 from a coal gasifier. Two technologies for storage of the captured CO2 are reviewed--sequestration in deep unmineable coalbeds with concomitant recovery of CH4 and sequestration in deep saline aquifers. Key issues for both of these techniques include estimating the potential storage capacity, the storage integrity, and the physical and chemical processes that are initiated by injecting CO2 underground. Recent studies using computer modeling as well as laboratory and field experimentation are presented here. In addition, several projects have been initiated in which CO2 is injected into a deep coal seam or saline aquifer. The current status of several such projects is discussed. Included is a commercial-scale project in which a million tons of CO2 are injected annually into an aquifer under the North Sea in Norway. The review makes the case that this can all be accomplished safely with off-the-shelf technologies. However, substantial research and development must be performed to reduce the cost, decrease the risks, and increase the safety of sequestration technologies. This review also includes discussion of possible problems related to deep injection of CO2. There are safety concerns that need to be addressed because of the possibilities of leakage to the surface and induced seismic activity. These issues are presented along with a case study of a similar incident in the past. It is clear that monitoring and verification of storage will be a crucial part of all geological sequestration practices so that such problems may be avoided. Available techniques include direct measurement of CO2 and CH4 surface soil fluxes, the use of chemical tracers, and underground 4-D seismic monitoring. Ten new hypotheses were formulated to describe what happens when CO2 is pumped into a coal

  15. Correction: Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2017-01-01

    Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479.......Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479....

  16. CO2 Storage Potential of the Eocene Tay Sandstone, Central North Sea, UK

    Science.gov (United States)

    Gent, Christopher; Williams, John

    2017-04-01

    Carbon Capture and Storage (CCS) is crucial for low-carbon industry, climate mitigation and a sustainable energy future. The offshore capacity of the UK is substantial and has been estimated at 78 Gt of CO2 in saline aquifers and hydrocarbon fields. The early-mid Eocene Tay Sandstone Member of the Central North Sea (CNS) is a submarine-fan system and potential storage reservoir with a theoretical capacity of 123 Mt of CO2. The Tay Sandstone comprises of 4 sequences, amalgamating into a fan complex 125km long and 40 km at a minimum of 1500 m depth striking NW-SE, hosting several hydrocarbon fields including Gannett A, B, D and Pict. In order to better understand the storage potential and characteristics, the Tay Sandstone over Quadrant 21 has been interpreted using log correlation and 3D seismic. Understanding the internal and external geometry of the sandstone as well as the lateral extent of the unit is essential when considering CO2 vertical and horizontal fluid flow pathways and storage security. 3D seismic mapping of a clear mounded feature has revealed the youngest sequence of the Tay complex; a homogenous sand-rich channel 12 km long, 1.5 km wide and on average 100 m thick. The sandstone has porosity >35%, permeability >5 D and a net to gross of 0.8, giving a total pore volume of 927x106 m3. The remaining three sequences are a series of stacked channels and interbedded mudstones which are more quiescent on the seismic, however, well logs indicate each subsequent sequence reduce in net to gross with age as mud has a greater influence in the early fan system. Nevertheless, the sandstone properties remain relatively consistent and are far more laterally extensive than the youngest sequence. The Tay Sandstone spatially overlaps several other potential storage sites including the older Tertiary sandstones of the Cromarty, Forties and Mey Members and deeper Jurassic reservoirs. This favours the Tay Sandstone to be considered in a secondary or multiple stacked

  17. Performance Analysis of Cold Energy Recovery from CO2 Injection in Ship-Based Carbon Capture and Storage (CCS

    Directory of Open Access Journals (Sweden)

    Hwalong You

    2014-11-01

    Full Text Available Carbon capture and storage (CCS technology is one of the practical solutions for mitigating the effects of global warming. When captured CO2 is injected into storage sites, the CO2 is subjected to a heating process. In a conventional CO2 injection system, CO2 cold energy is wasted during this heating process. This study proposes a new CO2 injection system that takes advantage of the cold energy using the Rankine cycle. The study compared the conventional system with the new CO2 injection system in terms of specific net power consumption, exergy efficiency, and life-cycle cost (LCC to estimate the economic effects. The results showed that the new system reduced specific net power consumption and yielded higher exergy efficiency. The LCC of the new system was more economical. Several cases were examined corresponding to different conditions, specifically, discharge pressure and seawater temperature. This information may affect decision-making when CCS projects are implemented.

  18. Natural CO2 migrations in the South-Eastern Basin of France: implications for the CO2 storage in sedimentary formations

    International Nuclear Information System (INIS)

    Rubert, Y.

    2009-03-01

    Study of natural CO 2 analogues brings key informations on the factors governing the long term stability/instability of future anthropogenic CO 2 storages. The main objective of this work, through the study of cores from V.Mo.2 well crosscutting the Montmiral natural reservoir (Valence Basin, France), is to trace the deep CO 2 migrations in fractures. Petrographic, geochemical and micro-thermometric studies of the V.Mo.2 cores were thus performed in order: 1) to describe the reservoir filling conditions and 2) to detect possible CO 2 -leakage through the sediments overlying the reservoir. Fluid inclusions from the Paleozoic crystalline basement record the progressive unmixing of a hot homogeneous aquo-carbonic fluid. The Montmiral reservoir was therefore probably fed by a CO 2 -enriched gas component at the Late Cretaceous-Paleogene. The study of the sedimentary column in V.Mo.2 well, demonstrates that the CO 2 did not migrate towards the surface through the thick marly unit (Domerian-Middle Oxfordian). These marls have acted as an impermeable barrier that prevented the upward migration of fluids. Two main stages of fluid circulation have been recognized: 1) an ante- Callovian one related to the Tethysian extension 2) a tertiary stage during which the upper units underwent a karstification, with CO 2 leakage related but which remained confined into the deeper parts of the Valence Basin. Since the Paleogene, the Montmiral reservoir has apparently remained stable, despite the Pyrenean and alpine orogeneses. This is mainly due to the efficient seal formed by the thick marly levels and also to the local structuration in faulted blocks which apparently acted as efficient lateral barriers. (author)

  19. The role of optimality in characterizing CO2 seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Oldenburg, Curtis M.; Benson, Sally M.

    2008-09-15

    Storage of large amounts of carbon dioxide (CO{sub 2}) in deep geological formations for greenhouse gas mitigation is gaining momentum and moving from its conceptual and testing stages towards widespread application. In this work we explore various optimization strategies for characterizing surface leakage (seepage) using near-surface measurement approaches such as accumulation chambers and eddy covariance towers. Seepage characterization objectives and limitations need to be defined carefully from the outset especially in light of large natural background variations that can mask seepage. The cost and sensitivity of seepage detection are related to four critical length scales pertaining to the size of the: (1) region that needs to be monitored; (2) footprint of the measurement approach, and (3) main seepage zone; and (4) region in which concentrations or fluxes are influenced by seepage. Seepage characterization objectives may include one or all of the tasks of detecting, locating, and quantifying seepage. Each of these tasks has its own optimal strategy. Detecting and locating seepage in a region in which there is no expected or preferred location for seepage nor existing evidence for seepage requires monitoring on a fixed grid, e.g., using eddy covariance towers. The fixed-grid approaches needed to detect seepage are expected to require large numbers of eddy covariance towers for large-scale geologic CO{sub 2} storage. Once seepage has been detected and roughly located, seepage zones and features can be optimally pinpointed through a dynamic search strategy, e.g., employing accumulation chambers and/or soil-gas sampling. Quantification of seepage rates can be done through measurements on a localized fixed grid once the seepage is pinpointed. Background measurements are essential for seepage detection in natural ecosystems. Artificial neural networks are considered as regression models useful for distinguishing natural system behavior from anomalous behavior

  20. The international race for CO2 capture and storage. And the winner is ...?

    International Nuclear Information System (INIS)

    De Coninck, H.C.

    2008-06-01

    Ever since CO2 capture and storage (CCS) has gained prominence among greenhouse gas reduction alternatives, researchers, policymakers, and industry have speculated about who would become the technology leader in this field. Will it be a technology that follows in the footsteps of solar and wind energy and sees European companies as market leaders benefiting from an early mover advantage, strengthened by a favorable internal market? Will the enormous investments of the U.S. government in R and D combined with its greater entrepreneurial power and better investment climate pay off? Or will other countries - like Australia which is very active in this area, or maybe China - become the world's market leader in CO2 capture installations, a highly capital-intensive technology? Given exploding world energy demand, climate-friendly technologies will be indispensable for stabilizing greenhouse gas concentrations. Thus, countries being able to develop and maintain themselves as technology leaders are likely to benefit from the deep reductions in CO2 emissions that we will need to achieve in the near future

  1. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  2. Assessing the Potential of Utilization and Storage Strategies for Post-Combustion CO2 Emissions Reduction

    International Nuclear Information System (INIS)

    Armstrong, Katy; Styring, Peter

    2015-01-01

    The emissions reduction potential of three carbon dioxide handling strategies for post-combustion capture is considered. These are carbon capture and sequestration/storage (CCS), enhanced hydrocarbon recovery (EHR), and carbon dioxide utilization (CDU) to produce synthetic oil. This is performed using common and comparable boundary conditions including net CO 2 sequestered based on equivalent boundary conditions. This is achieved using a “cradle to grave approach” where the final destination and fate of any product is considered. The input boundary is pure CO 2 that has been produced using a post-combustion capture process as this is common between all processes. The output boundary is the emissions resulting from any product produced with the assumption that the majority of the oil will go to combustion processes. We also consider the “cradle to gate” approach where the ultimate fate of the oil is not considered as this is a boundary condition often applied to EHR processes. Results show that while CCS can make an impact on CO 2 emissions, CDU will have a comparable effect whilst generating income while EHR will ultimately increase net emissions. The global capacity for CDU is also compared against CCS using data based on current and planned CCS projects. Analysis shows that current CDU represent a greater volume of capture than CCS processes and that this gap is likely to remain well beyond 2020 which is the limit of the CCS projects in the database.

  3. Experimental characterization and modelling of the alteration of fractured cement under CO2 storage conditions

    International Nuclear Information System (INIS)

    Abdoulghafour, Halidi

    2012-01-01

    The main purpose of this thesis was to characterize and to model the hydrodynamic and thermochemical processes leading to the alteration of the wellbore cement materials under borehole conditions. Percolation experiments were performed on fractured cement samples under CO 2 storage conditions (60 C and 10 MPa). Injection flow rate was dictated by the fracture aperture of each sample. CO 2 enriched brine was flowed along the fracture aperture, and permeability changes as well as chemical evolution of major cations were continuously acquired during the experiment time. Reaction paths developed by the alteration of the cement were characterized using microtomography and ESEM images. The experiments conducted using samples presenting large fracture apertures during 5 h showed that permeability was maintained constant during the experiment time. Three reacted layers were displaying by the alteration of portlandite and CSH. Long term experiment (26 h) conducted with large initial fracture aperture showed a decrease of the permeability after 15 hours of CO 2 exposure. Otherwise, experiments performed on samples presenting narrow apertures indicated the conversion of portlandite and CSH to calcite leading to the permeability reduction and the fracture clogging. Assemblages of phases and chemical changes were modelled using GEMS-PSI speciation code. We studied also using a coupled transport-reactive model the conditions leading to the cement alteration and the formation of associated layers. (author)

  4. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage

    International Nuclear Information System (INIS)

    Rashidi, Ali Morad; Kazemi, Davood; Izadi, Nosrat; Pourkhalil, Mahnaz; Jorsaraei, Abbas; Lotfi, Roghayeh; Ganji, Enseyeh

    2016-01-01

    Nanoporous activated carbons, as adsorbent for CO 2 storage, were prepared from walnut shells via two chemical processes including phosphoric acid treatment and KOH activation at high temperature. Specific surface area and porosities were controlled by KOH concentration and activation temperature. The obtained adsorbents were characterized by N2 adsorption at 77.3 K. Their carbon dioxide adsorption capacities were measured at different pressures at 290 K by using volumetric adsorption equipment. The KOH-treated nanoporous carbons typically led to the production of high specific surface areas and high micropore volumes and showed better performance for CO 2 adsorptions. The maximum experimental value for adsorption capacity happened when pressure increased from 5 to 10 bar (1.861- 2.873mmol·g -1 ). It was found that in order to improve the highest capacity of CO 2 adsorption for KOH-modified carbon (9.830-18.208mmol·g -1 ), a KOH: C weight ratio of 3.5 and activation temperature of 973 K were more suitable for pore development and micro-mesopore volume enhancement.

  5. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2

    Science.gov (United States)

    Sulman, Benjamin N.; Phillips, Richard P.; Oishi, A. Christopher; Shevliakova, Elena; Pacala, Stephen W.

    2014-12-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which root-microbe interactions induce SOC losses (through accelerated decomposition or `priming') or indirectly promote SOC gains (via `protection' through interactions with mineral particles). We developed a new SOC model to examine priming and protection responses to rising atmospheric CO2. The model captured disparate SOC responses at two temperate free-air CO2 enrichment (FACE) experiments. We show that stabilization of `new' carbon in protected SOC pools may equal or exceed microbial priming of `old' SOC in ecosystems with readily decomposable litter and high clay content (for example, Oak Ridge). In contrast, carbon losses induced through priming dominate the net SOC response in ecosystems with more resistant litters and lower clay content (for example, Duke). The SOC model was fully integrated into a global terrestrial carbon cycle model to run global simulations of elevated CO2 effects. Although protected carbon provides an important constraint on priming effects, priming nonetheless reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from enhanced ecosystem productivity.

  6. Public Responses to CO2 Storage Sites. Lessons from Five European Cases

    Energy Technology Data Exchange (ETDEWEB)

    Oltra, C.; Boso, A. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas CIEMAT, Madrid (Spain); Upham, P. [Finnish Environment Institute, Helsinki and Centre for Integrated Energy Research, University of Leeds, Leeds (United Kingdom); Riesch, H. [Centre for Environmental Policy, Imperial College London, London (United Kingdom); Brunsting, S. [ECN Policy Studies, Energy Research Centre of the Netherlands ECN, Amsterdam (Netherlands); Duetschke, E. [Fraunhofer-Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Lis, A. [Department of Sociology and Social Anthropology, Central European University, Budapest (Hungary)

    2012-05-24

    Studies of the factors involved in public perceptions of CO2 storage projects reveal a level of complexity and diversity that arguably confounds a comprehensive theoretical account. To some extent, a conceptual approach that simply organises the relevant social scientific knowledge thematically, rather than seeking an integrated explanation, is as useful as any single account that fails to do justice to the contingencies involved. This paper reviews and assembles such knowledge in terms of six themes and applies these themes to five European cases of carbon capture and storage (CCS) implementation. We identify the main factors involved in community responses to CCS as relating to: the characteristics of the project; the engagement process; risk perceptions; the actions of the stakeholders; the characteristics of the community, and the socio-political context.

  7. Characterization of the Helderberg Group as a geologic seal for CO 2 sequestration

    Science.gov (United States)

    Lewis, J.E.; McDowell, R.R.; Avary, K.L.; Carter, K.M.

    2009-01-01

    The Midwest Regional Carbon Sequestration Partnership recognizes that both the Devonian Oriskany Sandstone and the Silurian Salina Group offer potential for subsurface carbon dioxide storage in northern West Virginia. The Silurian-Devonian Helderberg Group lies stratigraphically between these two units, and consequendy, its potential as a geologic seal must be evaluated. Predominantly a carbonate interval with minor interbedded siliciclastics and chert, the Helderberg Group was deposited in an ancient epeiric sea. Although most previous investigations of this unit have concentrated on outcrops in eastern West Virginia, new information is available from an injection well drilled along the Ohio River at First Energy's R. E. Burger electric power plant near Shadyside, Ohio. Geophysical, seismic, and core data from this well have been combined with existing outcrop information to evaluate the Helderberg Group's potential as a seal. The data collected suggest that only secondary porosity remains, and permeability, if it exists, most likely occurs along faults or within fractures. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  8. Transcriptome changes in apple peel tissues during CO2 injury?symptom development under controlled atmosphere storage regimens

    OpenAIRE

    Johnson, Franklin T; Zhu, Yanmin

    2015-01-01

    Apple (Malus ? domestica Borkh.) is one of the most widely cultivated tree crops, and fruit storability is vital to the profitability of the apple fruit industry. Fruit of many apple cultivars can be stored for an extended period due to the introduction of advanced storage technologies, such as controlled atmosphere (CA) and 1-methylcyclopropane (1-MCP). However, CA storage can cause external CO2 injury for some apple cultivars. The molecular changes associated with the development of CO2 inj...

  9. Ground deformation monitoring using RADARSAT-2 DInSAR-MSBAS at the Aquistore CO2 storage site in Saskatchewan (Canada)

    OpenAIRE

    Czarnogorska, M.; Samsonov, S.; White, D.

    2014-01-01

    The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in s...

  10. Acceptability of CO2 capture and storage. A review of legal, regulatory, economic and social aspects of CO2 capture and storage

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Groenenberg, H.; Anderson, J.; Curnow, P.; Flach, T.; Flagstad, O.A.; Norton, C.; Reiner, D.; Shackley, S.

    2006-05-01

    Capture and storage of CO2 (CCS) has been studied as an option in the portfolio of climate change mitigation strategies for about 20 years. Although the technical maturity of CCS is generally less than other mitigation options, such as renewable energy or energy efficiency, many of the CCS components are generally regarded as mature enough for deployment. CCS, however, has a number of other aspects that may inhibit its deployment. The aim of the ACCSEPT project is to identify the main gaps in knowledge in the non-technical aspects of CCS, to research them, and to propose recommendations to address them. Although in the recent past several large and influential reports have been published in the field of CCS, many of them have focussed on the technical aspects of CCS. The IPCC Special Report on CCS did not have the mandate to address policy aspects and could only touch upon public perception issues. An IEA report focussed on the costs and economic aspects of CCS and touched upon regulatory and risk issues, but was at the time of publication unable to dive deep into it. This report provides a critical literature review for the non-technical aspects of CCS in the following categories: (a) Legal issues: National and international legislation relevant to CCS. Examples include national drinking water and mining laws, and the London Convention (Chapter 2). (b) Regulatory issues: National and international policies in the field of energy or climate change that can act as support mechanisms for CCS (Chapter 3). (c) Costs and economics: Addresses the question whether the current costs assumed for CCS are interpreted correctly, and reviews the assumptions made in economic models informing the policymaking process (Chapter 4). (d) Social and acceptability issues: A review of all studies currently done that focus on public perception of CCS. Methods used are questionnaires with lay public, focal group discussions, and expert polls (Chapter 5). (e) Crosscutting issues: CCS as a

  11. New concept for energy storage: Microwave-induced carbon gasification with CO2

    International Nuclear Information System (INIS)

    Bermúdez, J.M.; Ruisánchez, E.; Arenillas, A.; Moreno, A.H.; Menéndez, J.A.

    2014-01-01

    Highlights: • A new system for energy storage based in microwave-induced gasification is proposed. • From the carbonaceous materials tested, charcoal yielded the best results. • The systems achieved energy efficiencies of about 45% without any optimization. • The system is competitive in terms of efficiency with some conventional systems. - Abstract: Energy storage is a topic of great importance for the development of renewable energy, since it appears to be the only solution to the problem of intermittency of production, inherent to such technologies. In this paper, a new technology for energy storage, based on microwave-induced CO 2 gasification of carbon materials is proposed. The tests carried out in this study on different carbon materials showed that charcoal consumes the least amount of energy. Two microwave heating mechanisms, a single-mode oven and a multimode device, were evaluated with the latter proving itself to be the more efficient in terms of energy consumption and recovery. The initial results obtained showed that this technology is able to achieve energy efficiencies of 45% at laboratory scale with every indication that these results can be improved upon to make this approach highly competitive against other energy storage technologies

  12. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  13. Monitoring of the microbial community composition of the saline aquifers during CO2 storage by fluorescence in situ hybridisation

    OpenAIRE

    Daria Morozova; M. Wandrey; Mashal Alawi; Martin Zimmer; Andrea Vieth-Hillebrand [Vieth; M. Zettlitzer; Hilke Würdemann

    2010-01-01

    This study reveals the first analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer. Microbial monitoring during CO2 injection has been reported. By using fluorescence in situ hybridisation (FISH), we have shown that the microbial community was strongly influenced by the CO2 injection. Before CO2 arrival, up to 6 × 106 cells ml−1 were detected by DAPI staining at a depth of 647 m below the surface. The microbial community was dominated by the dom...

  14. The feasibility of TEA CO2 laser-induced plasma for spectrochemical analysis of geological samples in simulated Martian conditions

    Science.gov (United States)

    Savovic, Jelena; Stoiljkovic, Milovan; Kuzmanovic, Miroslav; Momcilovic, Milos; Ciganovic, Jovan; Rankovic, Dragan; Zivkovic, Sanja; Trtica, Milan

    2016-04-01

    The present work studies the possibility of using pulsed Transversely Excited Atmospheric (TEA) carbon dioxide laser as an energy source for laser-induced breakdown spectroscopy (LIBS) analysis of rocks under simulated Martian atmospheric conditions. Irradiation of a basaltic rock sample with the laser intensity of 56 MW cm- 2, in carbon-dioxide gas at a pressure of 9 mbar, created target plasma with favorable conditions for excitation of all elements usually found in geological samples. Detection limits of minor constituents (Ba, Cr, Cu, Mn, Ni, Sr, V, and Zr) were in the 3 ppm-30 ppm range depending on the element. The precision varied between 5% and 25% for concentration levels of 1% to 10 ppm, respectively. Generally, the proposed relatively simple TEA CO2 laser-LIBS system provides good sensitivity for geological studies under reduced CO2 pressure.

  15. Portable laser spectrometer for airborne and ground-based remote sensing of geological CO2 emissions.

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio

    2017-07-15

    A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.

  16. Density-Driven Flow Simulation in Anisotropic Porous Media: Application to CO2 Geological Sequestration

    KAUST Repository

    Negara, Ardiansyah

    2014-04-21

    Carbon dioxide (CO2) sequestration in saline aquifers is considered as one of the most viable and promising ways to reduce CO2 concentration in the atmosphere. CO2 is injected into deep saline formations at supercritical state where its density is smaller than the hosting brine. This motivates an upward motion and eventually CO2 is trapped beneath the cap rock. The trapped CO2 slowly dissolves into the brine causing the density of the mixture to become larger than the host brine. This causes gravitational instabilities that is propagated and magnified with time. In this kind of density-driven flows, the CO2-rich brines migrate downward while the brines with low CO2 concentration move upward. With respect to the properties of the subsurface aquifers, there are instances where saline formations can possess anisotropy with respect to their hydraulic properties. Such anisotropy can have significant effect on the onset and propagation of flow instabilities. Anisotropy is predicted to be more influential in dictating the direction of the convective flow. To account for permeability anisotropy, the method of multipoint flux approximation (MPFA) in the framework of finite differences schemes is used. The MPFA method requires more point stencil than the traditional two-point flux approximation (TPFA). For example, calculation of one flux component requires 6-point stencil and 18-point stencil in 2-D and 3-D cases, respectively. As consequence, the matrix of coefficient for obtaining the pressure fields will be quite complex. Therefore, we combine the MPFA method with the experimenting pressure field technique in which the problem is reduced to solving multitude of local problems and the global matrix of coefficients is constructed automatically, which significantly reduces the complexity. We present several numerical scenarios of density-driven flow simulation in homogeneous, layered, and heterogeneous anisotropic porous media. The numerical results emphasize the

  17. Integrative Modeling of cap-rock Integrity in the Context of CO2 Storage: Evolution of Transport and Geochemical Properties and Impact on Performance and Safety Assessment

    International Nuclear Information System (INIS)

    Bildstein, O.; Credoz, A.; Jullien, M.; Kervevan, C.; Audigane, P.; Jacquemet, N.; Lagneau, V.; Delaplace, P.; Perfetti, E.

    2010-01-01

    The objective of the 'Geocarbone-INTEGRITE' project (2005-2008) was to develop a methodology to assess the integrity of the cap-rock involved in the geological storage of CO 2 . A specific work package of the project (WP5) was dedicated to the integration of (1) the phenomenology describing the evolution of the storage system with a focus on the mechanisms occurring in the cap-rock and at the interface with the cap-rock, and (2) the data obtained from the investigation of petrographical, geomechanical, and geochemical properties, before and after reaction with CO 2 -rich solutions, performed in the other work packages (WP1 to WP4). This knowledge was introduced in numerical models and specific safety scenarios were defined in order to assess the performance of the CO 2 storage system. The results of the modeling show that the injection of CO 2 can potentially have a significant effect on the cap-rock by changing the porosity due to the dissolution and precipitation of minerals, but that the impact is limited to a zone from several decimeters to several meters of the cap-rock close to the interface with the reservoir depending on whether the supercritical carbon dioxide (SC-CO 2 ) plume enters into the cap-rock and if fractures are present at this location. The methodology used in this project can be applied to a pilot site for the injection of CO 2 in the Paris Basin. A key aspect of the safety of such a facility will be to look at the coupling of geochemical alteration and the evolution of geomechanical properties in the short and medium terms (several hundreds of years). The challenge for the future will be to structure and apply the safety assessment methodology with an operational finality, in order to support the robustness of the transition step to CGS projects at the industrial scale. (authors)

  18. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre

  19. The global carbon nation: Status of CO2 capture, storage and utilization

    Science.gov (United States)

    Kocs, Elizabeth A.

    2017-07-01

    As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS) plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG) emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today's global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  20. The global carbon nation: Status of CO2 capture, storage and utilization

    Directory of Open Access Journals (Sweden)

    Kocs Elizabeth A.

    2017-01-01

    Full Text Available As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today’s global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  1. Stakeholder perceptions of CO2 capture and storage in Europe: Results from a survey

    International Nuclear Information System (INIS)

    Shackley, Simon; Waterman, Holly; Godfroij, Per; Reiner, David; Anderson, Jason; Draxlbauer, Kathy; Flach, Todd

    2007-01-01

    During 2006, a survey was conducted of European energy stakeholders (industry, government, environmental non-governmental organizations (NGOs), researchers and academicians and parliamentarians). A total of 512 responses was received from 28 countries as follows: industry (28%), research (34%), government (13%), NGOs (5%) and parliamentarians (4%). Three-quarters of the sample thought that widespread use of CO 2 capture and storage (CCS) was 'definitely' or 'probably necessary' to achieve deep reductions in CO 2 emissions between now and 2050 in their own country. Only one in eight considered that CCS was 'probably' or 'definitely not necessary'. For a range of 12 identified risks, 20-40% thought that they would be 'moderate' or 'very serious', whilst 60-80% thought that there would be no risks or that the risks would be 'minimal'. A particular risk identified by nearly half the sample is the additional use of fossil fuels due to the 'energy penalty' incurred by CCS. Further concerns are that development of CCS would detract from investment in renewable energy technologies. Half of the respondents thought that incentives for CCS should be set either at the same level as those for renewables or at a higher level. Environmental NGOs were consistently less enthusiastic about CCS than the energy industry

  2. Kalundborg case study, a feasibility study of CO{sub 2} storage in onshore saline aquifers. CO2STORE[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Michael; Bech, N.; Bidstrup, T.; Christensen, Niels Peter; Vangkilde-Pedersen, T. [GEUS (Denmark); Biede, O. [ENERGI E2 (Denmark)

    2007-06-15

    The Danish case-study of the CO2STORE project comprises the potential future capture and underground storage of CO{sub 2} from two point sources. These are the coal fired power plant Asnaesvaerket and the Statoil refinery both located in the city of Kalundborg, Denmark. Initial mapping of the storage structure was conducted as part of the EU funded research project GESTCO that was concluded in 2003. The study identified a large underground structure forming a potential, future storage site 15 km to the northeast of the city. Porous sandstones filled with saline water at a depth of approximately 1.500 m form the reservoir. The structure covers approximately 160 km{sup 2} and a preliminary calculation suggests a storage capacity of nearly 900 million tonnes of CO2 equal to more than 150 years of CO{sub 2} emissions from the two point sources. In the Kalundborg case-study, a fictive capture and storage scenario will be formulated and modelled. The scenario is based on experiences learned through the SACS and GESTCO projects. Detailed geological modelling, reservoir simulation, reservoir and cap rock characterisation and risk assessment will be important issues for the case-study. The Geological Survey of Denmark and Greenland (GEUS) is project leader for the Kalundborg case-study. Information on CO{sub 2} emissions from the point sources and technical and economical input for the three scenarios is provided by the industrial partners; ENERGI E2 and Statoil ASA. The scenario is designed only for this case study and does not reflect the strategic plans of ENERGI E2 nor Statoil ASA. Geochemical simulation and modelling studies on reservoir and cap rock were performed at Bureau de Recherches Geologiques et Minieres (BRGM) in France. The CO2STORE project is performed within the European Community supported 5th Framework Programme. (au)

  3. ‘Fuji’ apple (Malus domestica Borkh) volatile production during high pCO2 controlled atmosphere storage

    Science.gov (United States)

    ‘Fuji’apple [Malus sylvestris var. domestica (Borkh.) Mansf.] volatile compound dynamics were characterized during cold storage in air or at low pO2 controlled atmosphere (CA) with up to 5 kPa CO2. Volatile compounds in storage chambers were adsorbed onto solid sorbent traps and analyzed by GC-MS....

  4. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2

    Science.gov (United States)

    Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.

    2013-01-01

    Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).

  5. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  6. Investigation on CO2 property and its geological disposal in coal bed

    International Nuclear Information System (INIS)

    Liang Weiguo; Wu Di; Hao Shuping

    2008-01-01

    Carbon dioxide is main green house gas, and it has been increased greatly in the atmosphere since the industrial revolution. The human living environment has been worsened with more and more carbon dioxide in the air. In this paper, the authors analyzed the physical property of carbon dioxide and green house gas effect, then studied the disposal measures for carbon dioxide. At last it was pointed out that various measures should be taken to carry out the carbon dioxide disposal, more economic benefit can be anticipated along with carbon dioxide disposal by EOR, CO 2 -ECBM, CAES, et al, of which CO 2 -ECBM is one of the way with best benefits. (authors)

  7. Mineralogical controls on porosity and water chemistry during O_2-SO_2-CO_2 reaction of CO_2 storage reservoir and cap-rock core

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Golab, Alexandra; Dawson, Grant K.W.; Knuefing, Lydia; Goodwin, Carley; Golding, Suzanne D.

    2016-01-01

    Reservoir and cap-rock core samples with variable lithology's representative of siliciclastic reservoirs used for CO_2 storage have been characterized and reacted at reservoir conditions with an impure CO_2 stream and low salinity brine. Cores from a target CO_2 storage site in Queensland, Australia were tested. Mineralogical controls on the resulting changes to porosity and water chemistry have been identified. The tested siliciclastic reservoir core samples can be grouped generally into three responses to impure CO_2-brine reaction, dependent on mineralogy. The mineralogically clean quartzose reservoir cores had high porosities, with negligible change after reaction, in resolvable porosity or mineralogy, calculated using X-ray micro computed tomography and QEMSCAN. However, strong brine acidification and a high concentration of dissolved sulphate were generated in experiments owing to minimal mineral buffering. Also, the movement of kaolin has the potential to block pore throats and reduce permeability. The reaction of the impure CO_2-brine with calcite-cemented cap-rock core samples caused the largest porosity changes after reaction through calcite dissolution; to the extent that one sample developed a connection of open pores that extended into the core sub-plug. This has the potential to both favor injectivity but also affect CO_2 migration. The dissolution of calcite caused the buffering of acidity resulting in no significant observable silicate dissolution. Clay-rich cap-rock core samples with minor amounts of carbonate minerals had only small changes after reaction. Created porosity appeared mainly disconnected. Changes were instead associated with decreases in density from Fe-leaching of chlorite or dissolution of minor amounts of carbonates and plagioclase. The interbedded sandstone and shale core also developed increased porosity parallel to bedding through dissolution of carbonates and reactive silicates in the sandy layers. Tight interbedded cap

  8. On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    Directory of Open Access Journals (Sweden)

    Van Pham Thi

    2012-06-01

    Full Text Available Abstract Continental flood basalts (CFB are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass and the local equilibrium assumption for secondary phases (weathering products. The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C, magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present

  9. Supercritical Fluid Behavior at Nanoscale Interfaces: Implications for CO2 Sequestration in Geologic Formations

    Czech Academy of Sciences Publication Activity Database

    Cole, D.R.; Chialvo, A. A.; Rother, G.; Vlček, Lukáš; Cummings, P. T.

    2010-01-01

    Roč. 90, 17-18 (2010), s. 2329-2363 ISSN 1478-6435 Institutional research plan: CEZ:AV0Z40720504 Keywords : sequestration * nanostructures * supercritical CO2 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.302, year: 2010

  10. Preliminary reactive geochemical transport simulation study on CO2 geological sequestration at the Changhua Coastal Industrial Park Site, Taiwan

    Science.gov (United States)

    Sung, R.; Li, M.

    2013-12-01

    Mineral trapping by precipitated carbonate minerals is one of critical mechanisms for successful long-term geological sequestration (CGS) in deep saline aquifer. Aquifer acidification induced by the increase of carbonic acid (H2CO3) and bicarbonate ions (HCO3-) as the dissolution of injected CO2 may induce the dissolution of minerals and hinder the effectiveness of cap rock causing potential risk of CO2 leakage. Numerical assessments require capabilities to simulate complicated interactions of thermal, hydrological, geochemical multiphase processes. In this study, we utilized TOUGHREACT model to demonstrate a series of CGS simulations and assessments of (1) time evolution of aquifer responses, (2) migration distance and spatial distribution of CO2 plume, (3) effects of CO2-saline-mineral interactions, and (4) CO2 trapping components at the Changhua Costal Industrial Park (CCIP) Site, Taiwan. The CCIP Site is located at the Southern Taishi Basin with sloping and layered heterogeneous formations. At this preliminary phase, detailed information of mineralogical composition of reservoir formation and chemical composition of formation water are difficult to obtain. Mineralogical composition of sedimentary rocks and chemical compositions of formation water for CGS in deep saline aquifer from literatures (e.g. Xu et al., 2004; Marini, 2006) were adopted. CGS simulations were assumed with a constant CO2 injection rate of 1 Mt/yr at the first 50 years. Hydrogeological settings included porosities of 0.103 for shale, 0.141 for interbedding sandstone and shale, and 0.179 for sandstone; initial pore pressure distributions of 24.5 MPa to 28.7 MPa, an ambient temperature of 70°C, and 0.5 M of NaCl in aqueous solution. Mineral compositions were modified from Xu et al. (2006) to include calcite (1.9 vol. % of solid), quartz (57.9 %), kaolinite (2.0 %), illite (1.0 %), oligoclase (19.8 %), Na-smectite (3.9 %), K-feldspar (8.2 %), chlorite (4.6 %), and hematite (0.5 %) and were

  11. A method for examining the geospatial distribution of CO2 storage resources applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin, U.S.A

    Science.gov (United States)

    Roberts-Ashby, Tina; Brandon N. Ashby,

    2016-01-01

    This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.

  12. CO2 Plant Extracts Reduce Cholesterol Oxidation in Fish Patties during Cooking and Storage.

    Science.gov (United States)

    Tarvainen, Marko; Quirin, Karl-Werner; Kallio, Heikki; Yang, Baoru

    2016-12-28

    Cholesterol oxidation products (COPs) in foods may pose risks for human health. Suitable antioxidants can reduce the formation of COPs in industrial products. Consumer awareness of food additives has brought a need for more natural alternatives. This is the first study on the effects of supercritical CO 2 extracts of rosemary, oregano, and an antimicrobial blend of seven herbs, tested at two levels (1 and 3 g/kg fish), against cholesterol oxidation in patties made of a widely consumed fish species, Atlantic salmon (Salmo salar), during baking and storage. Cholesterol oxidation was reduced by the extracts as indicated by lowered levels of 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol, which were quantified by GC-MS. The total amount of COPs was smaller in all of the cooked samples containing the plant extracts (<1 μg/g extracted fat) than in the cooked control (14 μg/g). Furthermore, the plant extracts exhibited protective effects also during cold storage for up to 14 days.

  13. Armazenamento refrigerado de morango submetido a altas concentrações de CO2 Cold storage of strawberries under high CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Luis C Cunha Junior

    2012-12-01

    strawberries. However, fruits and vegetables are not currently handled under cold chain in Brazil and, when it happens, it used to be at 10 to 15ºC. The goal of this work was to evaluate the quality and the shelf life of 'Oso Grande' strawberry at 10ºC associated to high carbon dioxide concentrations. Strawberries were randomized, chilled and stored at 10ºC in hermetic mini-chambers to apply the CO2 concentrations (0.03, 10, 20, 40 and 80% plus 20% O2. Strawberries were analyzed every two days while they were proper to consumption. The shelf life for strawberries at 20 and 40% CO2 was 8 days, while those at 0.03% CO2 lasted only two days. Strawberries at 80% CO2 maintained good appearance for 6 days, but they were considered unsuitable for consumption due to high levels of acetaldehyde (40.92 µg g-1 and ethanol (1,053 µg g-1 that gave evidence of fermentation process. The weight loss was less than 2% showing how efficient was the method used to control the relative humidity during the storage. Strawberries at 0.03 and 80% CO2 levels showed higher firmness loss. Those fruits lost 40% of the initial firmness. Strawberries at 20 and 40% CO2 lost only 28% of initial firmness. Despite of the statistical effect of the treatments in the external color it was not visually perceptible. Strawberries stored at 10ºC and 40% CO2 plus 20% O2 kept the marketable quality during 8 days.

  14. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    KAUST Repository

    Gasda, S. E.; Nordbotten, J. M.; Celia, M. A.

    2009-01-01

    equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid

  15. Carbon Storage in Soils: Climate vs. Geology

    International Nuclear Information System (INIS)

    Doetterl, Sebastian; Boeckx, Pascal; Stevens, Antoine; Van Oost, Kristof; Six, Johan; Merckx, Roel; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Zagal Venegas, Erick; Boudin, Mathieu

    2016-01-01

    In a recently published Nature Geoscience article, scientists took a closer look at the much-discussed topic of carbon storage in soils under Climate Change. In a large-scale study across Chile and the Antarctic Peninsula, they showed that the role of precipitation and temperature in controlling carbon dynamics in soils is less than currently considered in Global Ecosystem Models. Soils are important for carbon (C) storage and thus for atmospheric CO 2 concentrations. Whether soils act as a sink or source for atmospheric C generally depend on climatic factors, as they control plant growth (driving the incorporation of C into the soil), the activity of soil microorganism (driving the release of C from the soil to the atmosphere), as well as several other chemical processes in soils. However, we still do not fully understand the response of soil C to Climate Change. An international team of researchers led by Pascal Boeckx and Sebastian Doetterl from Ghent University, Belgium and Erick Zagal from University of Concepcion in Chile, have been investigating the interaction between climate, different types of soil minerals, and soil as sink or source for C. They studied this interaction by sampling soils from numerous locations representing different vegetation types in Chile and the Antarctic Peninsula

  16. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    Science.gov (United States)

    Tian, H.; Melillo, J. M.; Kicklighter, D. W.; McGuire, A. D.; Helfrich, J.

    1999-04-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900 1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2Pg C) and soil organic carbon decreasing by 1.9% (1.1Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7Pg C

  17. Cost and performance of fossil fuel power plants with CO2 capture and storage

    International Nuclear Information System (INIS)

    Rubin, Edward S.; Chen, Chao; Rao, Anand B.

    2007-01-01

    CO 2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO 2 (typically by 85-90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15-30% for current CCS systems. To characterize such impacts, an alternative definition of the 'energy penalty' is proposed in lieu of the

  18. Leakage Risk Assessment for a Potential CO2 Storage Project in Saskatchewan, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Houseworth, J.E.; Oldenburg, C.M.; Mazzoldi, A.; Gupta, A.K.; Nicot, J.-P.; Bryant, S.L.

    2011-05-01

    A CO{sub 2} sequestration project is being considered to (1) capture CO{sub 2} emissions from the Consumers Cooperative Refineries Limited at Regina, Saskatchewan and (2) geologically sequester the captured CO{sub 2} locally in a deep saline aquifer. This project is a collaboration of several industrial and governmental organizations, including the Petroleum Technology Research Centre (PTRC), Sustainable Development Technology Canada (SDTC), SaskEnvironment Go Green Fund, SaskPower, CCRL, Schlumberger Carbon Services, and Enbridge. The project objective is to sequester 600 tonnes CO{sub 2}/day. Injection is planned to start in 2012 or 2013 for a period of 25 years for a total storage of approximately 5.5 million tonnes CO{sub 2}. This report presents an assessment of the leakage risk of the proposed project using a methodology known as the Certification Framework (CF). The CF is used for evaluating CO{sub 2} leakage risk associated with geologic carbon sequestration (GCS), as well as brine leakage risk owing to displacement and pressurization of brine by the injected CO{sub 2}. We follow the CF methodology by defining the entities (so-called Compartments) that could be impacted by CO{sub 2} leakage, the CO{sub 2} storage region, the potential for leakage along well and fault pathways, and the consequences of such leakage. An understanding of the likelihood and consequences of leakage forms the basis for understanding CO{sub 2} leakage risk, and forms the basis for recommendations of additional data collection and analysis to increase confidence in the risk assessment.

  19. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from the exhaust gas, contacting the separated CO2 with one or more of a second MOF composition sufficient to store the CO2 and wherein the one or more first MOF composition comprises one or more SIFSIX-n-M MOF and wherein M is a metal and n is 2 or 3. Embodiments also describe an apparatus or system for capturing and storing CO2 onboard a vehicle.

  20. Social Site Characterisation for CO2 storage operations to inform public engagement in Poland and Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; Pol, M.; Mastop, J. [Energy research Centre of the Netherlands ECN, Policy Studies, Petten (Netherlands); Kaiser, M.; Zimmer, R. [UfU - Independent Institute for Environmental Issues, Berlin (Germany); Shackley, S.; Mabon, L.; Howell, R. [The University of Edinburgh - School of Geosciences, Edinburgh, Scotland (United Kingdom); Hepplewhite, F.; Loveridge, R. [Scottish Government, Edinburgh, Scotland (United Kingdom); Mazurowski, M. [PGNiG - Polskie Gornictwo Naftowe i Gazownictwo SA, Warszawa (Poland); Rybicki, C. [AGH - University of Science and Technology, Krakow (Poland)

    2013-05-01

    Public support has proven crucial to the implementation of CO2 capture and storage (CCS) demonstration projects. Whereas no method exists to guarantee local public acceptability of any project, a constructive stakeholder engagement process does increase the likelihood thereof. Social site characterisation can be used as an instrument to plan and evaluate an approach for actively engaging local stakeholders. Social site characterisation is the process of repeatedly investigating local public awareness and opinions of a specific CCS project, changes therein over time, and underlying factors shaping public opinion as a parallel activity to technical site characterization. This paper presents results from the EU FP7 SiteChar project in which social site characterisation (a.o. surveys) and public participation activities (focus conferences) were conducted by a multidisciplinary team at two prospective CCS sites in in Poland (onshore) and Scotland (offshore). Results demonstrate that social site characterization and focus conferences are powerful tools to raise public awareness about complex issues such as CCS and to initiate local discussion and planning processes with the appropriate type of information, through appropriate media, and involving all relevant stakeholders. Application and the duration of effects in real-life project settings will be discussed.

  1. Geophysical Research in the Ganuelas-Mazarron Tertiary Basin (Murcia, Spain), as a Natural Analogue of CO2 Storage and Leakage

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Aracil, E.; Perez del Villar, L.

    2013-01-01

    In order to determine the depth, morphology and extent of the CO 2 -enriched deep saline aquifer in the Ganuelas-Mazarron Tertiary basin (Murcia, Spain), it was necessary reprocessing the vertical electrical soundings performed by IGME-ADARO in the eighties and to perform several geophysical campaigns by means of electrical tomography, time domain electromagnetic surveys and gravimetry. Densities of the outcropping lithologies in the studied basin were also determined in order to refine the model obtained from gravimetric data. The geophysical results, particularly from gravimetric data, seem to indicate that the CO 2 -enriched deep saline aquifer, located in the contact or within the carbonate materials of the Nevado-Filabride Complex, could reach a depth greater than 800 m. For this reason, the possibility that this CO 2 is in supercritical state in certain areas of the aquifer, is not discardable. Thus, the studied basin would be an excellent natural analogue of a CO 2 -deep geological storage in a deep saline aquifer in volcanic and/or carbonate rocks, anthropogenically perturbed by geothermal exploration wells (La Ermita de El Saladillo and El Alto de El Reventon) and hydrogeological wells for agricultural purposes. (Author)

  2. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  3. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    Science.gov (United States)

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  4. CO2 abatement in the iron and steel industry - the case for carbon capture and storage (CCS

    Directory of Open Access Journals (Sweden)

    A.V. Todorut

    2017-01-01

    Full Text Available The steel industry is amongst the most energy-intensive industries also consuming large amounts of coal and emitting significant volumes of carbon dioxide (CO2. Studies indicate that steelmaking accounts for 6 - 7 % of world anthropogenic CO2 emissions, and 27 % of the total emissions of the world’s manufacturing sector. Steel manufacturers have responded to sustainable resource use and development adopting several measures attaining a reduction in energy consumption of 60 % in the last 50 years. The paper discusses Carbon Capture and Storage (CCS as a CO2 mitigation option, after the 2015 Paris Climate Conference (COP 21 and in relation to the European Regulation for CO2 measurement, reporting and verification.

  5. CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments.

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2016-12-01

    Carbon dioxide capture and storage (CCS), involving the injection of CO 2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO 2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO 2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO 2 -enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO 2 -enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO 2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO 2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO 2 . Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO 2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO 2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be

  6. CO2 enhanced oil recovery and storage in the North Sea - a UK perspective

    International Nuclear Information System (INIS)

    Beckly, Andy; Hughes, David S.

    2006-01-01

    Considerable technical and economic challenges must be overcome if the potential for CO 2 injection and sequestration is to be fully realised. However, there is an opportunity to exploit the synergy between the need to reduce CO 2 emissions and the potential to use CO 2 to increase North Sea oil reserves and extend the life of the basin. This opportunity is available now, while the infrastructure remains in place

  7. One strategy for estimating the potential soil carbon storage due to CO2 fertilization

    International Nuclear Information System (INIS)

    Harrison, K.G.; Bonani, G.

    1994-01-01

    Soil radiocarbon measurements can be used to estimate soil carbon turnover rates and inventories. A labile component of soil carbon has the potential to respond to perturbations such as CO 2 fertilization, changing climate, and changing land use. Soil carbon has influenced past and present atmospheric CO 2 levels and will influence future levels. A model is used to calculate the amount of additional carbon stored in soil because of CO 2 fertilization

  8. Effects of elevated CO2 and trace ethylene present throughout the storage season on the processing colour of stored potatoes

    NARCIS (Netherlands)

    Daniels-Lake, B.J.

    2012-01-01

    Previous short-term trials (9-week duration) have shown that the fry colour of stored potatoes (Solanum tuberosum L.) can be negatively affected by simultaneous exposure to elevated CO2 plus a trace concentration of ethylene gas. In the present study, trials were conducted during each of two storage

  9. A coupled geochemical-transport-geomechanical model to address caprock integrity during long-term CO2 storage

    NARCIS (Netherlands)

    Veer, E.F. van der; Waldmann, S.; Fokker, P.A.

    2015-01-01

    Underground storage of CO2 will lead to chemical fluid-rock interactions which may potentially alter the porosity and the flow patterns in faults. In this study, we present a coupled numerical model combining chemical fluid-rock interactions, aqueous diffusion, fluid flow, and mechanical processes,

  10. CO2 storage in deep aquifers. Study in real conditions of cap-rock confinement properties and of their alteration

    International Nuclear Information System (INIS)

    Bachaud, P.

    2010-01-01

    A promising solution to reduce anthropogenic emissions of greenhouse effect gases consists in the injection and long-term storage of a part of the industrial carbon dioxide discharges in underground formations. These formations must be composed of a reservoir surrounded by tight cap-rocks, which represent the first barrier preventing fluids migration. The characterization of their confining properties and of their evolution in presence of CO 2 is thus a key element regarding a storage site security. This work presents a methodology allowing the measurement of cap-rocks transport parameters and the consequences of an alteration under representative conditions of deep aquifers storage. This methodology was applied to carbonate rocks from the Paris basin. The breakthrough pressure, the diffusion coefficient of CO 2 dissolution products,and the permeability, controlling parameters of leakage mechanisms, were measured before and after alteration of the materials by reaction with a CO 2 -saturated brine under reservoir thermodynamic conditions (about 80 C and 100 bar). Results revealed a satisfactory global behaviour under these aggressive conditions, but also a strong diminution of the confinement potential in presence of initial structural faults (sealed fractures, large-diameter pores...) forming higher-permeability zones. A numeric simulation describing the evolution of a homogeneous rock formation during 1000 years was also realized based on parameters directly measured or obtained by modelling of the alteration experiments. It showed that the transformations brought by the CO 2 storage under a rock formation with no initial faults remain very localized spatially. (author)

  11. Mars - CO2 adsorption and capillary condensation on clays: Significance for volatile storage and atmospheric history

    Science.gov (United States)

    Fanale, F. P.; Cannon, W. A.

    1979-01-01

    Results on the adsorbate-adsorbent system CO2-nontronite are reported at 230, 196, and 158 deg K, covering the range of subsurface regolith temperature on Mars. A three-part regolith-atmosphere-cap model reveals that cold nontronite, and expanding clays in general, are far better but far more complex CO2 adsorbers than cold pulverized basalt. In addition, the layered terrain, and possibly the adjacent debris mantle, contains about 2% or more by mass of atmosphere-exchangeable CO2 and the total regolith inventory of available adsorbed CO2 is estimated to be 400 g/ sq cm.

  12. Petrophysical laboratory invertigations of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK

    Science.gov (United States)

    Zemke, K.; Kummmerow, J.; Wandrey, M.; Co2SINK Group

    2009-04-01

    Since June of 2008 carbon dioxide has been injected into a saline aquifer at the Ketzin test site [Würdemann et al., this volume]. The food grade CO2 is injected into a sandstone zone of the Stuttgart formation at ca. 650 m depth at 35°C reservoir temperature and 62 bar reservoir pressure. With the injection of CO2 into the geological formation, chemical and physical reservoir characteristics are changed depending on pressure, temperature, fluid chemistry and rock composition. Fluid-rock interaction could comprise dissolution of non-resistant minerals in CO2-bearing pore fluids, cementing of the pore space by precipitating substances from the pore fluid, drying and disintegration of clay minerals and thus influence of the composition and activities of the deep biosphere. To testing the injection behaviour of CO2 in water saturated rock and to evaluate the geophysical signature depending on the thermodynamic conditions, flow experiments with water and CO2 have been performed on cores of the Stuttgart formation from different locations including new wells of ketzin test site. The studied core material is an unconsolidated fine-grained sandstone with porosity values from 15 to 32 %. Permeability, electrical resistivity, and sonic wave velocities and their changes with pressure, saturation and time have been studied under simulated in situ conditions. The flow experiments conducted over several weeks with brine and CO2 showed no significant changes of resistivity and velocity and a slightly decreasing permeability. Pore fluid analysis showed mobilization of clay and some other components. A main objective of the CO2Sink laboratory program is the assessment of the effect of long-term CO2 exposure on reservoir rocks to predict the long-term behaviour of geological CO2 storage. For this CO2 exposure experiments reservoir rock samples were exposed to CO2 saturated reservoir fluid in corrosion-resistant high pressure vessels under in situ temperature and pressure

  13. Carbon and oxygen isotope analysis of leaf biomass reveals contrasting photosynthetic responses to elevated CO2 near geologic vents in Yellowstone National Park

    Directory of Open Access Journals (Sweden)

    D. G. Williams

    2009-01-01

    Full Text Available In this study we explore the use of natural CO2 emissions in Yellowstone National Park (YNP in Wyoming, USA to study responses of natural vegetation to elevated CO2 levels. Radiocarbon (14C analysis of leaf biomass from a conifer (Pinus contortus; lodgepole pine and an invasive, non-native herb (Linaria dalmatica; Dalmation toadflax was used to trace the inputs of vent CO2 and quantify assimilation-weighted CO2 concentrations experienced by individual plants near vents and in comparable locations with no geologic CO2 exposure. The carbon and oxygen isotopic composition and nitrogen percent of leaf biomass from the same plants was used to investigate photosynthetic responses of these plants to naturally elevated atmospheric CO2 concentrations. The coupled shifts in carbon and oxygen isotope values suggest that dalmation toadflax responded to elevated CO2 exposure by increasing stomatal conductance with no change in photosynthetic capacity and lodgepole pine apparently responded by decreasing stomatal conductance and photosynthetic capacity. Lodgepole pine saplings exposed to elevated levels of CO2 likewise had reduced leaf nitrogen concentrations compared to plants with no enhanced CO2 exposure, further suggesting widespread and dominant conifer down-regulated photosynthetic capacity under elevated CO2 levels near geologic vents.

  14. Integrated underground gas storage of CO2 and CH4 to decarbonize the "power-to-gas-to-gas-to-power" technology

    Science.gov (United States)

    Kühn, Michael; Streibel, Martin; Nakaten, Natalie; Kempka, Thomas

    2014-05-01

    Massive roll-out of renewable energy production units (wind turbines and solar panels) leads to date to excess energy which cannot be consumed at the time of production. So far, long-term storage is proposed via the so called 'power-to-gas' technology. Energy is transferred to methane gas and subsequently combusted for power production - 'power-to-gas-to-power' (PGP) - when needed. PGP profits from the existing infrastructure of the gas market and could be deployed immediately. However, major shortcoming is the production of carbon dioxide (CO2) from renewables and its emission into the atmosphere. We present an innovative idea which is a decarbonised extension of the PGP technology. The concept is based on a closed carbon cycle: (1) Hydrogen (H2) is generated from renewable energy by electrolysis and (2) transformed into methane (CH4) with CO2 taken from an underground geological storage. (3) CH4 produced is stored in a second storage underground until needed and (4) combusted in a combined-cycled power plant on site. (5) CO2 is separated during energy production and re-injected into the storage formation. We studied a show case for the cities Potsdam and Brandenburg/Havel in the Federal State of Brandenburg in Germany to determine the energy demand of the entire process chain and the costs of electricity (COE) using an integrated techno-economic modelling approach (Nakaten et al. 2014). Taking all of the individual process steps into account, the calculation shows an overall efficiency of 27.7 % (Streibel et al. 2013) with total COE of 20.43 euro-cents/kWh (Kühn et al. 2013). Although the level of efficiency is lower than for pump and compressed air storage, the resulting costs are similar in magnitude, and thus competitive on the energy storage market. The great advantage of the concept proposed here is that, in contrast to previous PGP approaches, this process is climate-neutral due to CO2 utilisation. For that purpose, process CO2 is temporally stored in an

  15. Removal of CO2 by storage in the deep underground, chemical utilization and biofixation. Options for the Netherlands

    International Nuclear Information System (INIS)

    Over, J.A.; De Vries, J.E.; Stork, J.

    1999-07-01

    The Utrecht University in Utrecht, Netherlands, initially put the subject of CO2-storage on the agenda as a possible necessary policy element. During 1990/1991 a number of research institutes and engineering consultants carried out several studies. Also in 1991 the lEA Greenhouse Gas Group (IEA GHG) was initiated, including participation from The Netherlands. The Netherlands Agency for Energy and the Environment (Novem) and the Dutch Ministry of Economic Affairs both attended the meetings of the Executive Committee (ExCo) from the start. This Group started paying attention to the subject of CO2-capturing at large point sources (electricity stations). They then went subsequently from capturing from other (smaller and/or more diffuse) sources, ranking relative to other large scale options to combat or reduce CO2-emissions (i.e. vast areas of forest) to influence and controlling other 'greenhouse gases' such as methane. During 1992/1993 Novem prepared - on request of the Ministry of Economic Affairs - research proposals for investigations and demonstration projects, having a 10 to 15 year horizon, with regard to CO2-capturing technologies. In the beginning of 1994, the Dutch Ministry of Environment (VROM) put more emphasis on demonstration of the feasibility of CO2-storage. When the first 'Kok-government' (the so-called 'Purple Cabinet') came into being, attention shifted to studies on CO2-storage; the central question being whether there would be sufficient potential capacity if the necessity to store CO2 would ever occur. Within this framework Novem was authorized by the Ministry of Economic Affairs to carry out an investigation program on possibilities of CO2-storage. The present publication deals with the results of these studies. The main subject of investigation were: Storage in underground formations (depleted gas fields and aquifers) and the conditions under which this is feasible; Possibilities for enhanced gas recovery by carbon dioxide injection and its

  16. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef; Shekhah, Osama

    2016-01-01

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from

  17. Probabilistic Assessment of Above Zone Pressure Predictions at a Geologic Carbon Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    Namhata, Argha; Oladyshkin, Sergey; Dilmore, Robert M.; Zhang, Liwei; Nakles, David V.

    2016-12-01

    Carbon dioxide (CO2) storage into geological formations is regarded as an important mitigation strategy for anthropogenic CO2 emissions to the atmosphere. This study first simulates the leakage of CO2 and brine from a storage reservoir through the caprock. Then, we estimate the resulting pressure changes at the zone overlying the caprock also known as Above Zone Monitoring Interval (AZMI). A data-driven approach of arbitrary Polynomial Chaos (aPC) Expansion is then used to quantify the uncertainty in the above zone pressure prediction based on the uncertainties in different geologic parameters. Finally, a global sensitivity analysis is performed with Sobol indices based on the aPC technique to determine the relative importance of different parameters on pressure prediction. The results indicate that there can be uncertainty in pressure prediction locally around the leakage zones. The degree of such uncertainty in prediction depends on the quality of site specific information available for analysis. The scientific results from this study provide substantial insight that there is a need for site-specific data for efficient predictions of risks associated with storage activities. The presented approach can provide a basis of optimized pressure based monitoring network design at carbon storage sites.

  18. Verification of geomechanical integrity and prediction of long-term mineral trapping for the Ketzin CO2 storage pilot site

    Science.gov (United States)

    Kempka, Thomas; De Lucia, Marco; Kühn, Michael

    2014-05-01

    Static and dynamic numerical modelling generally accompany the entire CO2 storage site life cycle. Thereto, it is required to match the employed models with field observations on a regular basis in order to predict future site behaviour. We investigated the coupled processes at the Ketzin CO2 storage pilot site [1] using a model coupling concept focusing on the temporal relevance of processes involved (hydraulic, chemical and mechanical) at given time-scales (site operation, abandonment and long-term stabilization). For that purpose, long-term dynamic multi-phase flow simulations [2], [3] established the basis for all simulations discussed in the following. Hereby, pressure changes resulting in geomechanical effects are largest during site operation, whereas geochemical reactions are governed by slow kinetics resulting in a long-term stabilization. To account for mechanical integrity, which may be mainly affected during site operation, we incorporated a regional-scale coupled hydro-mechanical model. Our simulation results show maximum ground surface displacements of about 4 mm, whereas shear and tensile failure are not observed. Consequently, the CO2 storage operation at the Ketzin pilot site does not compromise reservoir, caprock and fault integrity. Chemical processes responsible for mineral trapping are expected to mainly occur during long-term stabilization at the Ketzin pilot site [4]. Hence, our previous assessment [3] was extended by integrating two long-term mineral trapping scenarios. Thereby, mineral trapping contributes to the trapping mechanisms with 11.7 % after 16,000 years of simulation in our conservative and with 30.9 % in our maximum reactivity scenarios. Dynamic flow simulations indicate that only 0.2 % of the CO2 injected (about 67,270 t CO2 in total) is in gaseous state, but structurally trapped after 16,000 years. Depending on the studied long-term scenario, CO2 dissolution is the dominating trapping mechanism with 68.9 % and 88

  19. Laboratory simulation system, using Carcinus maenas as the model organism, for assessing the impact of CO2 leakage from sub-seabed injection and storage.

    Science.gov (United States)

    Rodríguez-Romero, Araceli; Jiménez-Tenorio, Natalia; Riba, Inmaculada; Blasco, Julián

    2016-01-01

    The capture and storage of CO2 in sub-seabed geological formations has been proposed as one of the potential options to decrease atmospheric CO2 concentrations in order to mitigate the abrupt and irreversible consequences of climate change. However, it is possible that CO2 leakages could occur during the injection and sequestration procedure, with significant repercussions for the marine environment. We investigate the effects of acidification derived from possible CO2 leakage events on the European green crab, Carcinus maenas. To this end, a lab-scale experiment involving direct release of CO2 was conducted at pH values between 7.7 and 6.15. Female crabs were exposed for 10 days to sediment collected from two different coastal areas, one with relatively uncontaminated sediment (RSP) and the other with known contaminated sediment (MZ and ML), under the pre-established seawater pH conditions. Survival rate, histopathological damage and metal (Fe, Mn, Cu, Zn, Cr, Cd and Pb) and As accumulation in gills and hepatopancreas tissue were employed as endpoints. In addition, the obtained results were compared with the results of the physico-chemical characterization of the sediments, which included the determination of the metals Fe, Mn, Cu, Zn, Cr, Pb and Cd, the metalloid As, certain polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), as well as nonchemical sediment properties (grain size, organic carbon and total organic matter). Significant associations were observed between pH and the histological damage. Concentrations of Fe, Mn, Cr, Pb, Cd and PAHs in sediment, presented significant negative correlations with the damage to gills and hepatopancreas, and positive correlations with metal accumulation in both tissues. The results obtained in this study reveal the importance of sediment properties in the biological effects caused by possible CO2 leakage. However, a clear pattern was not observed between metal accumulation in tissues and p

  20. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    Science.gov (United States)

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  1. Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system

    International Nuclear Information System (INIS)

    Li, H.; Yan, J.; Yan, J.; Anheden, M.

    2009-01-01

    Based on the requirements of CO 2 transportation and storage, non-condensable gases, such as O 2 , N 2 and Ar should be removed from the CO 2 -stream captured from an oxy-fuel combustion process. For a purification process, impurities have great impacts on the design, operation and optimization through their impacts on the thermodynamic properties of CO 2 -streams. Study results show that the increments of impurities will make the energy consumption of purification increase; and make CO 2 purity of separation product and CO 2 recovery rate decrease. In addition, under the same operating conditions, energy consumptions have different sensitivities to the variation of the impurity mole fraction of feed fluids. The isothermal compression work is more sensitive to the variation of SO 2 ; while the isentropic compression work is more sensitive to the variation of Ar. In the flash system, the energy consumption of condensation in is more sensitive to the variation of Ar; but in the distillation system, the energy consumption of condensation is more sensitive to the variation of SO 2 , and CO 2 purity of separation is more sensitive to the variation of SO 2 . (author)

  2. CO2 dissolution and its impact on reservoir pressure behavior

    NARCIS (Netherlands)

    Peters, E.; Egberts, P.J.P.; Loeve, D.; Hofstee, C.

    2015-01-01

    Geological storage of CO2 in large, saline aquifers needs to be monitored for safety purposes. In particular the observation of the pressure behavior of a storage site is relevant for the indication of CO2 leakage. However, interpretation of observed pressure is not straightforward in these systems,

  3. Onshore/ Offshore Geologic Assessment for Carbon Storage in the Southeastern United States

    Science.gov (United States)

    Knapp, C. C.; Knapp, J. H.; Brantley, D.; Lakshmi, V.; Almutairi, K.; Almayahi, D.; Akintunde, O. M.; Ollmann, J.

    2017-12-01

    Eighty percent of the world's energy relies on fossil fuels and under increasingly stricter national and international regulations on greenhouse gas emissions storage of CO2 in geologic repositories seems to be not only a feasible, but also and vital solution for near/ mid-term reduction of carbon emissions. We have evaluated the feasibility of CO2 storage in saline formations of the Eastern North American Margin (ENAM) including (1) the Jurassic/Triassic (J/TR) sandstones of the buried South Georgia Rift (SGR) basin, and (2) the Mesozoic and Cenozoic geologic formations along the Mid- and South Atlantic seaboard. These analyses have included integration of subsurface geophysical data (2- and 3-D seismic surveys) with core samples, well logs as well as uses of geological databases and geospatial analysis leading to CO2 injection simulation models. ENAM is a complex and regionally extensive mature Mesozoic passive margin rift system encompassing: (1) a large volume and regional extent of related magmatism known as the Central Atlantic Magmatic Province (CAMP), (2) a complete stratigraphic column that records the post-rift evolution in several basins, (3) preserved lithospheric-scale pre-rift structures including Paleozoic sutures, and (4) a wide range of geological, geochemical, and geophysical studies both onshore and offshore. While the target reservoirs onshore show heterogeneity and a highly complex geologic evolution they also show promising conditions for significant safe CO2 storage away from the underground acquifers. Our offshore study (the Southeast Offshore Storage Resource Assessment - SOSRA) is focused on the outer continental shelf from North Carolina to the southern tip of Florida. Three old exploration wells are available to provide additional constraints on the seismic reflection profiles. Two of these wells (TRANSCO 1005-1 and COST GE-1) penetrate the pre-rift Paleozoic sedimentary formations while the EXXON 564-1 well penetrates the post

  4. Biosurfactant as an Enhancer of Geologic Carbon Storage: Microbial Modification of Interfacial Tension and Contact Angle in Carbon dioxide/Water/Quartz Systems.

    Science.gov (United States)

    Park, Taehyung; Joo, Hyun-Woo; Kim, Gyeong-Yeong; Kim, Seunghee; Yoon, Sukhwan; Kwon, Tae-Hyuk

    2017-01-01

    Injecting and storing of carbon dioxide (CO 2 ) in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO 2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO 2 storage capacity in the target reservoirs. The question as to the extent of microbial CO 2 wettability alteration under reservoir conditions still warrants further investigation. This study investigated the effect of a lipopeptide biosurfactant-surfactin, on interfacial tension (IFT) reduction and contact angle alteration in CO 2 /water/quartz systems under a laboratory setup simulating in situ reservoir conditions. The temporal shifts in the IFT and the contact angle among CO 2 , brine, and quartz were monitored for different CO 2 phases (3 MPa, 30°C for gaseous CO 2 ; 10 MPa, 28°C for liquid CO 2 ; 10 MPa, 37°C for supercritical CO 2 ) upon cultivation of Bacillus subtilis strain ATCC6633 with induced surfactin secretion activity. Due to the secreted surfactin, the IFT between CO 2 and brine decreased: from 49.5 to 30 mN/m, by ∼39% for gaseous CO 2 ; from 28.5 to 13 mN/m, by 54% for liquid CO 2 ; and from 32.5 to 18.5 mN/m, by ∼43% for supercritical CO 2 , respectively. The contact angle of a CO 2 droplet on a quartz disk in brine increased: from 20.5° to 23.2°, by 1.16 times for gaseous CO 2 ; from 18.4° to 61.8°, by 3.36 times for liquid CO 2 ; and from 35.5° to 47.7°, by 1.34 times for supercritical CO 2 , respectively. With the microbially altered CO 2 wettability, improvement in sweep efficiency of injected and displaced CO 2 was evaluated using 2-D pore network model simulations; again the increment in sweep efficiency was the greatest in liquid CO 2 phase due to the largest reduction in capillary factor. This result provides novel insights as to the role of naturally occurring biosurfactants in CO 2

  5. Biosurfactant as an Enhancer of Geologic Carbon Storage: Microbial Modification of Interfacial Tension and Contact Angle in Carbon dioxide/Water/Quartz Systems

    Directory of Open Access Journals (Sweden)

    Taehyung Park

    2017-07-01

    Full Text Available Injecting and storing of carbon dioxide (CO2 in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO2 storage capacity in the target reservoirs. The question as to the extent of microbial CO2 wettability alteration under reservoir conditions still warrants further investigation. This study investigated the effect of a lipopeptide biosurfactant—surfactin, on interfacial tension (IFT reduction and contact angle alteration in CO2/water/quartz systems under a laboratory setup simulating in situ reservoir conditions. The temporal shifts in the IFT and the contact angle among CO2, brine, and quartz were monitored for different CO2 phases (3 MPa, 30°C for gaseous CO2; 10 MPa, 28°C for liquid CO2; 10 MPa, 37°C for supercritical CO2 upon cultivation of Bacillus subtilis strain ATCC6633 with induced surfactin secretion activity. Due to the secreted surfactin, the IFT between CO2 and brine decreased: from 49.5 to 30 mN/m, by ∼39% for gaseous CO2; from 28.5 to 13 mN/m, by 54% for liquid CO2; and from 32.5 to 18.5 mN/m, by ∼43% for supercritical CO2, respectively. The contact angle of a CO2 droplet on a quartz disk in brine increased: from 20.5° to 23.2°, by 1.16 times for gaseous CO2; from 18.4° to 61.8°, by 3.36 times for liquid CO2; and from 35.5° to 47.7°, by 1.34 times for supercritical CO2, respectively. With the microbially altered CO2 wettability, improvement in sweep efficiency of injected and displaced CO2 was evaluated using 2-D pore network model simulations; again the increment in sweep efficiency was the greatest in liquid CO2 phase due to the largest reduction in capillary factor. This result provides novel insights as to the role of naturally occurring biosurfactants in CO2 storage and

  6. MUFITS Code for Modeling Geological Storage of Carbon Dioxide at Sub- and Supercritical Conditions

    Science.gov (United States)

    Afanasyev, A.

    2012-12-01

    liquid and gaseous CO2. We consider CO2 injection into highly heterogeneous the 10th SPE reservoir. We provide analysis of physical phenomena that have control temperature distribution in the reservoir. The distribution is non-monotonic with regions of high and low temperature. The main phenomena responsible for considerable temperature decline around CO2 injection point is the liquid CO2 evaporation process. We also apply the code to real-scale 3D simulations of CO2 geological storage at supercritical conditions in Sleipner field and Johansen formation (Fig). The work is supported financially by the Russian Foundation for Basic Research (12-01-31117) and grant for leading scientific schools (NSh 1303.2012.1). CO2 phase saturation in Johansen formation after 50 years of injection and 1000 years of rest period

  7. Optimization of CO2 Storage in Saline Aquifers Using Water-Alternating Gas (WAG) Scheme - Case Study for Utsira Formation

    Science.gov (United States)

    Agarwal, R. K.; Zhang, Z.; Zhu, C.

    2013-12-01

    For optimization of CO2 storage and reduced CO2 plume migration in saline aquifers, a genetic algorithm (GA) based optimizer has been developed which is combined with the DOE multi-phase flow and heat transfer numerical simulation code TOUGH2. Designated as GA-TOUGH2, this combined solver/optimizer has been verified by performing optimization studies on a number of model problems and comparing the results with brute-force optimization which requires a large number of simulations. Using GA-TOUGH2, an innovative reservoir engineering technique known as water-alternating-gas (WAG) injection has been investigated to determine the optimal WAG operation for enhanced CO2 storage capacity. The topmost layer (layer # 9) of Utsira formation at Sleipner Project, Norway is considered as a case study. A cylindrical domain, which possesses identical characteristics of the detailed 3D Utsira Layer #9 model except for the absence of 3D topography, was used. Topographical details are known to be important in determining the CO2 migration at Sleipner, and are considered in our companion model for history match of the CO2 plume migration at Sleipner. However, simplification on topography here, without compromising accuracy, is necessary to analyze the effectiveness of WAG operation on CO2 migration without incurring excessive computational cost. Selected WAG operation then can be simulated with full topography details later. We consider a cylindrical domain with thickness of 35 m with horizontal flat caprock. All hydrogeological properties are retained from the detailed 3D Utsira Layer #9 model, the most important being the horizontal-to-vertical permeability ratio of 10. Constant Gas Injection (CGI) operation with nine-year average CO2 injection rate of 2.7 kg/s is considered as the baseline case for comparison. The 30-day, 15-day, and 5-day WAG cycle durations are considered for the WAG optimization design. Our computations show that for the simplified Utsira Layer #9 model, the

  8. Characterization of Qatar's surface carbonates for CO2 capture and thermochemical energy storage

    Science.gov (United States)

    Kakosimos, Konstantinos E.; Al-Haddad, Ghadeer; Sakellariou, Kyriaki G.; Pagkoura, Chrysa; Konstandopoulos, Athanasios G.

    2017-06-01

    Samples of surface carbonates were collected from three different areas of the Qatar peninsula. We employed material characterization techniques to examine the morphology and composition of the samples, while their CO2 capture capacity was assessed via multiple successive calcination-carbonation cycles. Our samples were mainly calcite and dolomite based. Calcite samples showed higher initial capacity of around 11 mmol CO2 g-1 which decayed rapidly to less than 2 mmol CO2 g-1. On the other hand, dolomite samples showed an excellent stability (˜15 cycles) with a capacity of 6 mmol CO2 g-1. The performance of the dolomite samples is better compared to other similar natural samples, from literature. A promising result for future studies towards improving their performance by physical and chemical modification.

  9. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part B: Chain analysis of promising CCS options

    NARCIS (Netherlands)

    Damen, K.J.; van Troost, M.M.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355

    2007-01-01

    Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is

  10. Measuring permanence of CO2 storage in saline formations: The Frio experiment

    Science.gov (United States)

    Hovorka, Susan D.; Benson, Sally M.; Doughty, Christine; Freifeild, Barry M.; Sakurai, Shinichi; Daley, Thomas M.; Kharaka, Yousif K.; Holtz, Mark H.; Trautz, Robert C.; Nance, H. Seay; Myer, Larry R.; Knauss, Kevin G.

    2006-01-01

    If CO2 released from fossil fuel during energy production is returned to the subsurface, will it be retained for periods of time significant enough to benefit the atmosphere? Can trapping be assured in saline formations where there is no history of hydrocarbon accumulation? The Frio experiment in Texas was undertaken to provide answers to these questions.One thousand six hundred metric tons of CO2 were injected into the Frio Formation, which underlies large areas of the United States Gulf Coast. Reservoir characterization and numerical modeling were used to design the experiment, as well as to interpret the results through history matching. Closely spaced measurements in space and time were collected to observe the evolution of immiscible and dissolved CO2 during and after injection. The high-permeability, steeply dipping sandstone allowed updip flow of supercritical CO2 as a result of the density contrast with formation brine and absence of a local structural trap.The front of the CO2 plume moved more quickly than had been modeled. By the end of the 10-day injection, however, the plume geometry in the plane of the observation and injection wells had thickened to a distribution similar to the modeled distribution. As expected, CO2 dissolved rapidly into brine, causing pH to fall and calcite and metals to be dissolved.Postinjection measurements, including time-lapse vertical seismic profiling transects along selected azimuths, cross-well seismic topography, and saturation logs, show that CO2 migration under gravity slowed greatly 2 months after injection, matching model predictions that significant CO2 is trapped as relative permeability decreases.

  11. State of the art and risk analysis for CO2 storage in a saline aquifer. Investigation report

    International Nuclear Information System (INIS)

    Farret, R.; Gombert, P.; Hulot, C.; BOUR, Olivier; Thoraval, Alain

    2010-01-01

    This study deals with the impact of supercritical CO 2 injection in deep saline aquifer, but also addresses the case of depleted hydrocarbons fields. After a general presentation of the carbon capture and storage (CCS) technique, this report presents the main principles of risk analysis and defines an analysis method applicable to the whole CCS sector. It is based on practices coming from the field of industrial risk analysis, on the knowledge of underground processes, and on the state of the art of health risk analysis in the case of chemical species. The main considered risks are hydraulic risks (fluid pressurization), mechanical risks (cracking, soil rising and induced seismicity), CO 2 migration or leakages towards aquifers and surface, and migration of other species than CO 2 . The report addresses the characterisation of fluids and of possible geochemical evolutions, the characterisation of scenarios of fluid migration, and the hierarchy of health impacts related to fluid leakages

  12. Public acceptance of CO2 capture and storage technology : a survey of public opinion to explore influential factors

    International Nuclear Information System (INIS)

    Itaoka, K.; Saito, A.; Akai, M.

    2005-01-01

    A potentially effective tool in managing carbon emissions is carbon capture and storage technology (CCS). However, its effectiveness depends on its acceptability by the public, and very little is known about how willing the general public will accept various options of CCS. This paper presented the results of a study that assessed general perceptions of various forms of CCS and identified various factors that influence public acceptance of CCS. Two versions of a survey were administered and conducted in Tokyo and Sapporo, Japan in December 2003. The paper discussed the design of the questionnaire as well as the administration of the survey. One version of the survey provided limited education about CCS, while another version, provided more extensive information about CCS. The data analysis methodology was also described with reference to factor analysis, comparisons of means and rank order distributions, and multiple regression. Last, the study findings and results were presented. The findings suggest that the general public was supportive of CCS as part of a larger national climate policy, although it was opposed to the implementation of specific CCS options involving deep-sea dilution option of ocean storage, lake type option of ocean storage, onshore option of geological storage, and offshore option of geological storage. In addition, it was found that education about CCS affected public acceptance. The more information respondents obtained about CCS, the more likely they were to be supportive of those storage options, except for onshore option of geological storage. 4 refs., 3 tabs

  13. Ground deformation monitoring using RADARSAT-2 DInSAR-MSBAS at the Aquistore CO2 storage site in Saskatchewan (Canada)

    Science.gov (United States)

    Czarnogorska, M.; Samsonov, S.; White, D.

    2014-11-01

    The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in southeastern Saskatchewan, Canada. Several monitoring techniques were employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) technique, GPS, tiltmeters and piezometers. The targeted CO2 injection zones are within the Winnipeg and Deadwood formations located at > 3000 m depth. An array of monitoring techniques was employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) with established corner reflectors, GPS, tiltmeters and piezometers stations. We used airborne LIDAR data for topographic phase estimation, and DInSAR product geocoding. Ground deformation maps have been calculated using Multidimensional Small Baseline Subset (MSBAS) methodology from 134 RADARSAT-2 images, from five different beams, acquired during 20120612-20140706. We computed and interpreted nine time series for selected places. MSBAS results indicate slow ground deformation up to 1 cm/year not related to CO2 injection but caused by various natural and anthropogenic causes.

  14. Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.

    Science.gov (United States)

    Peng, Cheng; Anabaraonye, Benaiah U; Crawshaw, John P; Maitland, Geoffrey C; Trusler, J P Martin

    2016-10-20

    We report experimental measurements of the dissolution rate of several carbonate minerals in CO 2 -saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO 2 -saturated NaCl brines with molalities of up to 5 mol kg -1 . The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO 2 -saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO 2 -saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO 2 -injection into carbonate-mineral saline aquifers.

  15. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume

  16. Microbiological monitoring of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK

    Science.gov (United States)

    Wandrey, M.; Morozova, D.; Zemke, K.; Lerm, S.; Scherf, A.-K.; Vieth, A.; Würdemann, H.; Co2SINK Group

    2009-04-01

    Within the scope of the EU project CO2SINK (www.co2sink.org) a research facility in Ketzin (Germany, west of Berlin) is operated to store CO2 in a saline subsurface aquifer (Würdemann et al., EGU General Assembly 2009). In order to examine the influence of CO2 storage on the environment a comprehensive monitoring program is applied at this site including molecular and microbiological investigations. With the injection of CO2 into the geological formation chemical and physical reservoir characteristics are changed. This may influence the composition and activities of the deep biosphere at the storage horizon. Mineral precipitation, dissolution and corrosion of reservoir casing may be consequences, influencing permeability and long-term stability of the reservoir. The objective of the microbial monitoring program is the characterisation of the microbial community (biocenosis) in fluid samples, as well as in samples from reservoir and cap rock before and during CO2storage using molecular biological methods. 16S rRNA taxonomic studies, Fluorescence in situ hybridisation (FISH), and RealTime PCR are used to examine the composition of the biocenosis. First results of fluid sampling revealed that the microbial community of the saline aquifer is dominated by haloalkaliphilic fermentative bacteria and extremophilic organisms, coinciding with reduced conditions, high salinity and pressure. RealTime RT-PCR of selected genes and the creation and analysis of cDNA libraries will allow the prediction of microbial metabolic activities. In addition, the analysis of organic and inorganic components of the samples will add to the knowledge of possible metabolic shifts during CO2 storage. In order to simulate the storage conditions in situ, long term laboratory experiments in high pressure incubators have been set up using original rock cores from Ketzin. Since DNA and RNA analysis techniques are very sensitive, contamination entries from the adjacent environment have to be excluded

  17. Modelling forest growth and carbon storage in response to increasing CO2 and temperature

    Science.gov (United States)

    Kirschbaum, Miko U. F.

    1999-11-01

    The response of plant growth to increasing climate change remains one of the unresolved issues in understanding the future of the terrestrial biosphere. It was investigated here by using the comprehensive forest growth model CenW 1.0.5 which integrates routines for the fluxes of carbon and water, interception of radiation and the cycling of nutrients. It was run with water and/or nutrient limitations on a background of naturally observed climate at Canberra, Australia. It was parameterised for Pinus radiata, the commercially most important plantation species in Australia. The simulations showed that under water-limited conditions, forest growth was highly sensitive to doubling CO2,with growth increases of over 50% on average and even greater increases in dry years. In contrast, when water supply was adequate, but nutrients were limiting, growth increases were smaller, with an initial increase of about 15% during the first year after CO2 was doubled. This growth increase diminished further over subsequent years so that after 20years, there was virtually no remaining effect. This diminishing response was due to developing nutrient limitations caused by extra carbon input which immobilised nutrients in the soil. When both water and nutrients were adequate, growth was increased by about 15 20% with no decrease over time. Increasing ambient temperature had a positive effect on growth under nutrient limited conditions by stimulating nitrogen mineralisation rates, but had very little effect when nutrients were non-limiting. Responses were qualitatively similar when conditions were changed gradually. In response to increasing CO2 by 2µmol mol1year1 over 50years, growth was increased by only 1% under nutrient-limited condition but by 16% under water-limited conditions. When temperature and CO2 were both changed to emulate conditions between 1950 and 2030, growth was enhanced between 5 and 15% over the 80-year period due to the effect of CO2 on photosynthesis and water

  18. Feasibility of 4D multicomponent seismic methods for monitoring CO2 storage in the Redwater Leduc Reef, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Sodagar, Taher M.; Lawton, Don C. [University of Calgary, Calgary, Alberta (Canada)], email: tmysodag@ucalgary.ca

    2011-07-01

    The study area lies northeast of Edmonton, Alberta, in the Redwater region. The Redwater reef complex is roughly triangular and has an area of about 527 km2. It is found at a depth of about 1000 m and its thickness varies from 160 to 300 m. The main task of the study was a mapping, based on seismic character, of the facies variations that are found in the Redwater Leduc reef and a characterization of the reef members and formations below the reef with the help of a 3D geological model of the southern margin of the Redwater reef. A major goal targeted the Upper Leduc member interval, where time-lapse 3D multicomponent seismic modeling with 40% CO2 saturation was performed. Results showed fairly good amplitude differences at the top and base of this interval; this confirmed that the CO2 saturation within the Redwater reef can be monitored by repeated 3D multicomponent seismic surveys.

  19. Quantifying the benefit of wellbore leakage potential estimates for prioritizing long-term MVA well sampling at a CO2 storage site.

    Science.gov (United States)

    Azzolina, Nicholas A; Small, Mitchell J; Nakles, David V; Glazewski, Kyle A; Peck, Wesley D; Gorecki, Charles D; Bromhal, Grant S; Dilmore, Robert M

    2015-01-20

    This work uses probabilistic methods to simulate a hypothetical geologic CO2 storage site in a depleted oil and gas field, where the large number of legacy wells would make it cost-prohibitive to sample all wells for all measurements as part of the postinjection site care. Deep well leakage potential scores were assigned to the wells using a random subsample of 100 wells from a detailed study of 826 legacy wells that penetrate the basal Cambrian formation on the U.S. side of the U.S./Canadian border. Analytical solutions and Monte Carlo simulations were used to quantify the statistical power of selecting a leaking well. Power curves were developed as a function of (1) the number of leaking wells within the Area of Review; (2) the sampling design (random or judgmental, choosing first the wells with the highest deep leakage potential scores); (3) the number of wells included in the monitoring sampling plan; and (4) the relationship between a well’s leakage potential score and its relative probability of leakage. Cases where the deep well leakage potential scores are fully or partially informative of the relative leakage probability are compared to a noninformative base case in which leakage is equiprobable across all wells in the Area of Review. The results show that accurate prior knowledge about the probability of well leakage adds measurable value to the ability to detect a leaking well during the monitoring program, and that the loss in detection ability due to imperfect knowledge of the leakage probability can be quantified. This work underscores the importance of a data-driven, risk-based monitoring program that incorporates uncertainty quantification into long-term monitoring sampling plans at geologic CO2 storage sites.

  20. Identification and determination of trapping parameters as key site parameters for CO2 storage for the active CO2 storage site in Ketzin (Germany) - Comparison of different experimental approaches and analysis of field data

    Science.gov (United States)

    Zemke, Kornelia; Liebscher, Axel

    2015-04-01

    Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. The accurate quantification of residual trapping is difficult, but very important for both storage containment security and storage capacity; it is also an important parameter for dynamic simulation. The German CO2 pilot storage in Ketzin is a Triassic saline aquifer with initial conditions of the target sandstone horizon of 33.5 ° C/6.1 MPa at 630 m. One injection and two observation wells were drilled in 2007 and nearly 200 m of core material was recovered for site characterization. From June 2008 to September 2013, slightly more than 67 kt food-grade CO2