WorldWideScience

Sample records for co2 emissions reduction

  1. Smart Transportation CO2 Emission Reduction Strategies

    Science.gov (United States)

    Tarulescu, S.; Tarulescu, R.; Soica, A.; Leahu, C. I.

    2017-10-01

    Transport represents the sector with the fastest growing greenhouse gas emissions around the world. The main global objective is to reduce energy usage and associated greenhouse gas emissions from the transportation sector. For this study it was analyzed the road transportation system from Brasov Metropolitan area. The study was made for the transportation route that connects Ghimbav city to the main surrounding objectives. In this study ware considered four optimization measures: vehicle fleet renewal; building the detour belt for the city; road increasing the average travel speed; making bicycle lanes; and implementing an urban public transport system for Ghimbav. For each measure it was used a mathematical model to calculate the energy consumption and carbon emissions from the road transportation sector. After all four measures was analyzed is calculated the general energy consumption and CO2 reduction if this are applied from year 2017 to 2020.

  2. CO2 Emission Reduction in Energy Sector

    International Nuclear Information System (INIS)

    Bole, A.; Sustersic, A.; Voncina, R.

    2013-01-01

    Due to human activities, concentrations of the greenhouse gases increase in the atmosphere much quicker than they naturally would. Today it is clear that climate change is the result of human activities. With the purpose of preventing, reducing and mitigating of climate change, the EU, whose member is also Slovenia, set ambitious goals. In order to keep rise of the global atmosphere temperature below 2 degrees of C, the European Council set an objective of reducing greenhouse gas emissions by 80 - 95 % by 2050 compared to 1990. It is important that every single individual is included in achieving of these goals. Certainly, the most important role is assumed by individual sectors especially Public Electricity and Heat Production sector as one of the greatest emitters of the greenhouse gases. As a possible solution of radical reduction of the greenhouse gases emission from mentioned sector Carbon Capture and Storage (CCS) technology is implemented. In the article the range of CO 2 reduction possibilities, technology demands and environmental side effects of CCS technology are described. Evaluation of CCS implementation possibilities in Slovenia is also included.(author)

  3. Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2015-01-01

    Estimating potential of CO 2 emission reduction of non-capture CO 2 utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue gas. For the estimating the CO 2 emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO 2 of 100 tons per day was performed, Also for the estimation of the indirect CO 2 reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO 2 emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO 3 (7.4 GJ/tNaHCO 3 ). While for the NCCU technology, the direct CO 2 reduction through the CO 2 carbonation was estimated as 36,500 ton per year and the indirect CO 2 reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue was energy efficient and could be one of the promising technology for the low CO 2 emission technology.

  4. Climate change and CO2 emission reductions

    International Nuclear Information System (INIS)

    Ha Duong, M.; Campos, A.S.

    2007-04-01

    This paper presents the results of an opinion poll performed on a representative sample of 1000 persons about their sensitivity to climate change and to environment protection, their knowledge about technologies which are useful for environment protection, their opinion about geological CO 2 sequestration, and technologies to be developed to struggle against climate warming

  5. Achieving CO2 Emissions Reduction Goals with Energy Infrastructure Projects

    International Nuclear Information System (INIS)

    Eberlinc, M.; Medved, K.; Simic, J.

    2013-01-01

    The EU has set its short-term goals in the Europe 2020 Strategy (20% of CO 2 emissions reduction, 20% increase in energy efficiency, 20% share of renewables in final energy). The analyses show that the EU Member States in general are on the right track of achieving these goals; they are even ahead (including Slovenia). But setting long-term goals by 2050 is a tougher challenge. Achieving CO 2 emissions reduction goes hand in hand with increasing the share of renewables and strategically planning the projects, which include exploiting the potential of renewable sources of energy (e.g. hydropower). In Slovenia, the expected share of hydropower in electricity production from large HPPs in the share of renewables by 2030 is 1/3. The paper includes a presentation of a hydro power plants project on the middle Sava river in Slovenia and its specifics (influenced by the expansion of the Natura 2000 protected sites and on the other hand by the changes in the Environment Protection Law, which implements the EU Industrial Emissions Directive and the ETS Directive). Studies show the importance of the HPPs in terms of CO 2 emissions reduction. The main conclusion of the paper shows the importance of energy infrastructure projects, which contribute to on the one hand the CO 2 emissions reduction and on the other the increase of renewables.(author)

  6. Estimate of Possible CO2 Emission Reduction in Slovenia

    International Nuclear Information System (INIS)

    Plavcak, V.-P.; Jevsek, F.; Tirsek, A.

    1998-01-01

    The first estimation of possible CO 2 emission reduction, according to the obligations from Kyoto Protocol, is prepared. The results show that the required 8% reduction of greenhouses gases in Slovenia in the period from 2008 to 2012 with regard to year 1986 will require a through analytical treatment not only in electric power sector but also in transport and industry sectors, which are the main pollutants. (author)

  7. Assesment of Energy Options for CO2 Emission Reduction

    International Nuclear Information System (INIS)

    Cavlina, Nikola

    2014-01-01

    Since the 1992 Earth Summit in Rio de Janeiro, global anthropogenic CO 2 emissions grew by 52% which caused an increase in 10.8% in the CO 2 concentration in the atmosphere, and it tipped the 400 ppm mark in May 2013. The Fifth Assessment Report on climate impacts from the Intergovernmental Panel on Climate Change (IPCC) confirmed earlier warnings that climate change is already stressing human communities, agriculture, and natural ecosystems, and the effects are likely to increase in the future. While European Union has long been committed to lowering carbon emissions, this places additional pressure on current EU goals for energy sector that includes significant reduction of CO 2 emissions. Current EU commitment has been formalized in so-called '20-20-20' plan, reducing carbon emissions, increasing energy efficiency and increasing energy production from renewables by 20% by 2020. Some EU member states are even more ambitious, like United Kingdom, planning to reduce carbon emissions by 80% by 2050. Bulk of carbon reduction will have to be achived in energy sector. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. In this invited lecture, predicted cost of energy production for newly bulit nuclear power plant and newly built combination of wind or solar and gas-fired power plant are compared. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarious. (author)

  8. CO2 emissions and reduction potential in China's chemical industry

    International Nuclear Information System (INIS)

    Zhu, Bing; Zhou, Wenji; Hu, Shanying; Li, Qiang; Griffy-Brown, Charla; Jin, Yong

    2010-01-01

    GHG (Increasing greenhouse gas) emissions in China imposes enormous pressure on China's government and society. The increasing GHG trend is primarily driven by the fast expansion of high energy-intensive sectors including the chemical industry. This study investigates energy consumption and CO 2 emissions in the processes of chemical production in China through calculating the amounts of CO 2 emissions and estimating the reduction potential in the near future. The research is based on a two-level perspective which treats the entire industry as Level one and six key sub-sectors as Level two, including coal-based ammonia, calcium carbide, caustic soda, coal-based methanol, sodium carbonate, and yellow phosphorus. These two levels are used in order to address the complexity caused by the fact that there are more than 40 thousand chemical products in this industry and the performance levels of the technologies employed are extremely uneven. Three scenarios with different technological improvements are defined to estimate the emissions of the six sub-sectors and analyze the implied reduction potential in the near future. The results highlight the pivotal role that regulation and policy administration could play in controlling the CO 2 emissions by promoting average technology performances in this industry.

  9. Study on CO2 emission reduction using ENPEP in Korea

    International Nuclear Information System (INIS)

    Moon, K. H.; Kim, S. S.; Song, K. D.; Im, C. Y.

    2003-01-01

    ENPEP was used to analyze the role of nuclear power in mitigating carbon emission in power generation sector. In this study, base scenario reflects business as usual case in Korea. Additional two scenarios were established. One stands for fuel switch scenario, where nuclear power plants scheduled to be introduced after 2008 were assumed to be replaced by Coal Power Plant, the other one is established to see the impact of carbon tax. In this scenario carbon tax(50$/ton-C0 2 ) is imposed on coal power plants from 2008. It is resulted that fuel switch from nuclear to coal in power generation sector has a great effect on CO 2 emission, while carbon tax imposition makes a slight contribution to the reduction of CO 2 emission. These findings mean that the role of nuclear power in Korea is important in view of the GHG mitigation

  10. Uncertainty quantification of CO2 emission reduction for maritime shipping

    International Nuclear Information System (INIS)

    Yuan, Jun; Ng, Szu Hui; Sou, Weng Sut

    2016-01-01

    The International Maritime Organization (IMO) has recently proposed several operational and technical measures to improve shipping efficiency and reduce the greenhouse gases (GHG) emissions. The abatement potentials estimated for these measures have been further used by many organizations to project future GHG emission reductions and plot Marginal Abatement Cost Curves (MACC). However, the abatement potentials estimated for many of these measures can be highly uncertain as many of these measures are new, with limited sea trial information. Furthermore, the abatements obtained are highly dependent on ocean conditions, trading routes and sailing patterns. When the estimated abatement potentials are used for projections, these ‘input’ uncertainties are often not clearly displayed or accounted for, which can lead to overly optimistic or pessimistic outlooks. In this paper, we propose a methodology to systematically quantify and account for these input uncertainties on the overall abatement potential forecasts. We further propose improvements to MACCs to better reflect the uncertainties in marginal abatement costs and total emissions. This approach provides a fuller and more accurate picture of abatement forecasts and potential reductions achievable, and will be useful to policy makers and decision makers in the shipping industry to better assess the cost effective measures for CO 2 emission reduction. - Highlights: • We propose a systematic method to quantify uncertainty in emission reduction. • Marginal abatement cost curves are improved to better reflect the uncertainties. • Percentage reduction probability is given to determine emission reduction target. • The methodology is applied to a case study on maritime shipping.

  11. Reduction of CO2 emissions by influencing fuel prices

    International Nuclear Information System (INIS)

    Keller, M.; Zbinden, R.; Haan, P.; Gruetter, J.; Ott, W.

    2002-01-01

    The CO 2 law stipulates quantitative targets for CO 2 emissions (reductions of 10% by 2010 compared with 1990, 15% for heating fuels, 8% for motor fuels). For motor fuels, it is currently estimated that the target will be missed by about 15%, or 2 to 2.5 million tonnes of CO 2 . In order to reach the targets, therefore, all measures that can be taken to reduce emissions are to be checked out and, where sensible and possible, implemented too. The subject of this study is the preferential treatment of diesel, natural gas, liquefied gas and bio-fuels as far as taxation is concerned, with compensation of tax losses on the petrol side. Also, the possibilities for promoting energy-efficient cars are looked at. The reduction of the price for diesel (at least 25 Swiss cents when compensated for via the petrol price) is considered to be unsuitable for reaching the targets because, in the final analysis, fuel sales - the determining factor for the CO 2 emissions that are charged to Switzerland - will increase instead of decreasing. Also, reservations are expressed from the environmental point of view (increased NO x emissions and, in particular, emissions of particulate matter). The modified measure proposed (fixed difference between the prices for petrol and diesel of 25 Swiss cents, for example) is looked at less critically, because it does actually lead to a reduction of CO 2 , even if only a modest one (approx. 10% of the gap to be bridged). On the environmental side, the same reservations apply. Bonus-malus systems, on the other hand, permit a selective choice of the objects of promotion (efficient and, possibly, low-emission vehicles), avoid the unjust preferential treatment of goods traffic and can be implemented without disturbing international price structures (fuel tourism). A bonus-malus system applied at purchase (e.g. different levels of car taxation) is considered to be more efficient than a differentiation in vehicle (road) tax. The promotion of gas is a

  12. A multinational model for CO2 reduction: defining boundaries of future CO2 emissions in nine countries

    International Nuclear Information System (INIS)

    Kram, Tom; Hill, Douglas.

    1996-01-01

    A need to make substantial future reductions in greenhouse gas emissions would require major changes in national energy systems. Nine industrialized countries have explored the technical boundaries of CO 2 emission restrictions during the next 40 to 50 years using comparable scenario assumptions and a standard model, MARKAL. Quantitative results for the countries are shown side by side in a set of energy maps that compare the least-cost evolution of the national energy systems by the main factors that contribute to CO 2 emissions. The ability to restrict future CO 2 emissions and the most cost-effective measures for doing so differ among the countries; an international agreement that would mandate substantial emission restrictions among countries by an equal percentage reduction is clearly impossible. The results are a first step toward a basis for allocating such international reductions, and the multinational process by which they were produced provides an example for further international greenhouse gas abatement costing studies. (Author)

  13. Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach

    International Nuclear Information System (INIS)

    Mustapa, Siti Indati; Bekhet, Hussain Ali

    2016-01-01

    The demand for transport services is expected to rise, causing the CO 2 emissions level to increase as well. In Malaysia, the transportation sector accounts for 28% of total CO 2 emissions, of which 85% comes from road transport. By 2020, Malaysia is targeting a reduction in CO 2 emissions intensity by up to 40% and in this effort the role of road transport is paramount. This paper attempts to investigate effective policy options that can assist Malaysia in reducing the CO 2 emissions level. An Optimisation model is developed to estimate the potential CO 2 emissions mitigation strategies for road transport by minimising the CO 2 emissions under the constraint of fuel cost and demand travel. Several mitigation strategies have been applied to analyse the effect of CO 2 emissions reduction potential. The results demonstrate that removal of fuel price subsidies can result in reductions of up to 652 ktonnes of fuel consumption and CO 2 emissions can be decreased by 6.55%, which would enable Malaysia to hit its target by 2020. CO 2 emissions can be reduced significantly, up to 20%, by employing a combination of mitigation policies in Malaysia. This suggests that appropriate mitigation policies can assist the country in its quest to achieve the CO 2 emissions reduction target. - Highlights: • An optimisation model for CO 2 emissions reduction in Malaysia's road transport is formulated. • Sensible policy options to achieve the CO 2 emissions reduction target are provided. • Increase in fuel price has induced shift towards fuel efficient vehicles. • The CO 2 emissions can be reduced up to 5.7 MtCO 2 with combination of mitigation policies.

  14. The improvement of CO2 emission reduction policies based on system dynamics method in traditional industrial region with large CO2 emission

    International Nuclear Information System (INIS)

    Li, Fujia; Dong, Suocheng; Li, Zehong; Li, Yu; Li, Shantong; Wan, Yongkun

    2012-01-01

    Some traditional industrial regions are characterized by high industrial proportion and large CO 2 emission. They are facing dual pressures of maintaining economic growth and largely reducing CO 2 emission. From the perspective of study of typological region, taking the typical traditional industrial region—Liaoning Province of China as a case, this study establishes a system dynamics model named EECP and dynamically simulates CO 2 emission trends under different conditions. Simulation results indicate, compared to the condition without CO 2 emission reduction policies, CO 2 emission intensity under the condition of implementing CO 2 emission reduction policies of “Twelfth Five-Year Plan” is decreased by 11% from 2009 to 2030, but the economic cost is high, making the policies implementation faces resistance. Then some improved policies are offered and proved by EECP model that they can reduce CO 2 emission intensity after 2021 and decrease the negative influence to GDP, realizing the improvement objects of reducing CO 2 emission and simultaneously keeping a higher economy growth speed. The improved policies can provide reference for making and improving CO 2 emission reduction policies in other traditional industrial regions with large CO 2 emission. Simultaneously, EECP model can provide decision-makers with reference and help for similar study of energy policy. - Highlights: ► We build EECP model for CO 2 emission reduction study in traditional industry region. ► By the model, we simulate CO 2 emission trend and improve emission reduction policy. ► By improvement, both CO 2 emission intensity and economic cost can be largely reduced. ► Besides CO 2 emission is reduced effectively, higher GDP increment speed is kept. ► EECP model can be widely used for making and improving regional energy policies.

  15. A supply chain optimization framework for CO2 emission reduction : Case of the Netherlands

    NARCIS (Netherlands)

    Kalyanarengan Ravi, N.; Zondervan, E.; van Sint Annaland, M.; Fransoo, J.C.; Grievink, J.; Claus, T.; Herrmann, F.; Manitz, M.; Rose, O.

    2016-01-01

    A major challenge for the industrial deployment of a CO2 emission reduction methodology is to reduce the overall cost and the integration of all the nodes in the supply chain for CO2 emission reduction. In this work, we develop a mixed integer linear optimization model that selects appropriate

  16. A supply chain optimization framework for CO2 emission reduction: Case of the Netherlands

    OpenAIRE

    Kalyanarengan Ravi, N.; Zondervan, E.; van Sint Annaland, M.; Fransoo, J.C.; Grievink, J.; Claus, T.; Herrmann, F.; Manitz, M.; Rose, O.

    2016-01-01

    A major challenge for the industrial deployment of a CO2 emission reduction methodology is to reduce the overall cost and the integration of all the nodes in the supply chain for CO2 emission reduction. In this work, we develop a mixed integer linear optimization model that selects appropriate sources, capture process, transportation network and CO2 storage sites and optimize for a minimum overall cost. Initially, we screen the sources and storage options available in the Netherlands at diffe...

  17. CO2 sequestration. World CO2 emission reduction by forest plantations on agricultural land up to 2050

    International Nuclear Information System (INIS)

    Dameron, V.; Barbier, C.; Riedacker, A.

    2005-01-01

    The main objective of this study was to determine the possible contribution on CO 2 emission reductions of new forest plantations on agricultural land which may become available in the world from now to 2050. Emission reductions have been calculated by taking into account potential changes in carbon stocks on afforested land (in biomass and soil) and replacement with biomass of fossil fuel and material such as steel, aluminium or concrete. Increase of carbon stocks in wood as building material and final conversion of wood recycled from buildings into energy to replace fossil fuel have also been taken into account. CO 2 emission reductions (or carbon benefits) from afforested agricultural land become significant only after 2030 or 2050, and even at a later stage with long rotations. In the case of the latter, about 100 years are needed to get the full benefits. Forest plantations can therefore only be considered as long term options

  18. Strategic research on CO2 emission reduction for China. Application of MARKAL to China energy system

    International Nuclear Information System (INIS)

    Wang Yongping

    1995-09-01

    MARKAL was applied to the energy system for analyzing the CO 2 emission reduction in China over the time period from 1990 to 2050. First the Chinese Reference Energy System (CRES) was established based on the framework of MARKAL model. The following conclusions can be drawn from this study. When shifting from scenario LH (low useful energy demand and high import fuel prices) to HL (high demand and low prices), another 33 EJ of primary energy will be consumed and another 2.31 billion tons of CO 2 will be emitted in 2050. Detailed analyses on the disaggregation of CO 2 emissions by Kaya Formula show. The energy intensity (primary energy/GDP) decreases much faster in scenario HL, but the higher growth rate of GDP per capita is the overwhelming factor that results in higher CO 2 emission per capita in the baseline case of scenario HL in comparison with LH. When the carbon taxes are imposed on CO 2 emissions, the residential sector will make the biggest contribution to CO 2 emission abatement from a long-term point of view. However, it's difficult to stabilize CO 2 emission per capita before 2030 in both scenarios even with heavy carbon taxes. When nuclear moratorium occurs, more 560 million tons of CO 2 will be emitted to the atmosphere in 2050 under the same CO 2 tax regime. From the analysis of value flow, CO 2 emission reduction depends largely on new or advanced technologies particularly in the field of electricity generation. The competent technologies switch to those CO 2 less-emitting technologies when surcharging CO 2 emissions. Nuclear power shows significant potential in saving fossil energy resources and reducing CO 2 emissions. (J.P.N.)

  19. Reduction of emissions and geological storage of CO2. Innovation an industrial stakes

    International Nuclear Information System (INIS)

    Mandil, C.; Podkanski, J.; Socolow, R.; Dron, D.; Reiner, D.; Horrocks, P.; Fernandez Ruiz, P.; Dechamps, P.; Stromberg, L.; Wright, I.; Gazeau, J.C.; Wiederkehr, P.; Morcheoine, A.; Vesseron, P.; Feron, P.; Feraud, A.; Torp, N.T.; Christensen, N.P.; Le Thiez, P.; Czernichowski, I.; Hartman, J.; Roulet, C.; Roberts, J.; Zakkour, P.; Von Goerne, G.; Armand, R.; Allinson, G.; Segalen, L.; Gires, J.M.; Metz, B.; Brillet, B.

    2005-01-01

    An international symposium on the reduction of emissions and geological storage of CO 2 was held in Paris from 15 to 16 September 2005. The event, jointly organized by IFP, ADEME and BRGM, brought together over 400 people from more than 25 countries. It was an opportunity to review the international stakes related to global warming and also to debate ways of reducing CO 2 emissions, taking examples from the energy and transport sectors. The last day was dedicated to technological advances in the capture and geological storage of CO 2 and their regulatory and economic implications. This document gathers the available transparencies and talks presented during the colloquium: Opening address by F. Loos, French Minister-delegate for Industry; Session I - Greenhouse gas emissions: the international stakes. Outlook for global CO 2 emissions. The global and regional scenarios: Alternative scenarios for energy use and CO 2 emissions until 2050 by C. Mandil and J. Podkanski (IEA), The stabilization of CO 2 emissions in the coming 50 years by R. Socolow (Princeton University). Evolution of the international context: the stakes and 'factor 4' issues: Costs of climate impacts and ways towards 'factor 4' by D. Dron (ENS Mines de Paris), CO 2 emissions reduction policy: the situation in the United States by D. Reiner (MIT/Cambridge University), Post-Kyoto scenarios by P. Horrocks (European Commission), Possibilities for R and D in CO 2 capture and storage in the future FP7 program by P. Fernandez Ruiz and P. Dechamps (European Commission). Session II - CO 2 emission reductions in the energy and transport sectors. Reducing CO 2 emissions during the production and conversion of fossil energies (fixed installations): Combined cycles using hydrogen by G. Haupt (Siemens), CO 2 emission reductions in the oil and gas industry by I. Wright (BP). Reducing CO 2 emissions in the transport sector: Sustainable transport systems by P. Wiederkehr (EST International), The prospects for reducing

  20. Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors

    OpenAIRE

    Fujii, Hidemichi; Managi, Shunsuke

    2015-01-01

    To mitigate the effects of climate change, countries worldwide are advancing technologies to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal production resource reallocation on CO2 emissions reduction, focusing on regional and industrial characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 countries from...

  1. Role of nuclear energy in CO2 emissions reduction

    International Nuclear Information System (INIS)

    Schaefer, H.

    1995-01-01

    Between 1675 and 1992 worldwide primary energy consumption has been multiplied by about 100 and has reached about 11 billions of tons of equivalent weight of coal, while human population has been multiplied by 8 and will probably reach 9 billions in 2030. The increase of atmospheric CO 2 production due to fossil fuel burn up will become a critical pollution and climatic problem which can be significantly reduced by a more widely use of nuclear energy in replacement of primary energies. However, perspectives of nuclear energy depend principally on the safety improvements of nuclear plants and on the solutions found to solve the management of radioactive waste. Renewable energies sources such as photovoltaic plants, wind engines, hydraulic plants have not yet been used at a large scale because they require large surfaces for their installation. To avoid any monolithic solution to solve the energy and environmental problems, a combination of renewable and nuclear energies seems to be a good compromise. For instance, the conception of a safety non-refueling nuclear reactor with an overheating hybrid system combining solar and fossil fuel energies should be conceivable. (J.S.)

  2. Investigation of CO2 emission reduction strategy from in-use gasoline vehicle

    Science.gov (United States)

    Choudhary, Arti; Gokhale, Sharad

    2016-04-01

    On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.

  3. Reduction of CO2 emissions by reduction of paper use for publication applications

    Energy Technology Data Exchange (ETDEWEB)

    Van den Reek, J.A.

    1999-10-01

    The main research question of this study is as follows: What is the technical potential for reducing paper use in the field of publication applications in Western Europe within a time frame of 10-20 years, and what will the consequences for CO2 emissions be? To answer this central question we have defined the next four subquestions, all related to Western Europe: (1) How were the historical trends for the consumption figures of publication papers?; (2) What will be the expected publication paper consumption the next 10-20 years based on the historical trends, and what will be the influence on the related CO2 emissions?; (3) What technical opportunities do we see to reduce the future paper consumption trend for publication applications and what will be the individual and cumulative technical potential of these innovations?; (4) Does implementation of the technical opportunities lead to a significant dematerialization effect? Chapter 2 describes the chosen research method. In Chapter 3 we will introduce and define the paper types studied. Furthermore, Chapter 3 describes the detailed division of publication papers we have used in this study and the relationship with pulp and papermaking. After reading this chapter it has to be clear which paper production methods and paper types are (per ton) responsible for how much CO2 emissions. To get an overall-impression of the relevance of certain papers for CO2 emission numbers it is important to have insight into the historical consumption patterns of publication papers. Chapter 4 pays attention to these consumption patterns. Chapter 5 describes the most important trend factors that may influence future paper consumption patterns and in Chapter 6 this is translated into three possible consumption growth scenarios. The first and second growth scenarios are only based on extrapolations from historical figures, the third scenario is based on some of the most significant potential reduction measures. Furthermore, Chapter 6 gives

  4. Estimation and reduction of CO2 emissions from crude oil distillation units

    International Nuclear Information System (INIS)

    Gadalla, M.; Olujic, Z.; Jobson, M.; Smith, R.

    2006-01-01

    Distillation systems are energy-intensive processes, and consequently contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide (CO 2 ). A simple model for the estimation of CO 2 emissions associated with operation of heat-integrated distillation systems as encountered in refineries is introduced. In conjunction with a shortcut distillation model, this model has been used to optimize the process conditions of an existing crude oil atmospheric tower unit aiming at minimization of CO 2 emissions. Simulation results indicate that the total CO 2 emissions of the existing crude oil unit can be cut down by 22%, just by changing the process conditions accordingly, and that the gain in this respect can be doubled by integrating a gas turbine. In addition, emissions reduction is accompanied by substantial profit increase due to utility saving and/or export

  5. Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki

    OpenAIRE

    Hashimoto, Shizuka; Fujita, Tsuyoshi; Geng, Yong; Nagasawa, Emiri

    2010-01-01

    This article is one effort to examine the present and potential performances of CO2 emission reduction though industrial symbiosis by employing a case study approach and life cycle CO2 analysis for alternative industrial symbiosis scenarios. As one of the first and the best-known eco-town projects, Kawasaki Eco-town was chosen as a case study area. First, the current industrial symbiosis practices in this area are introduced. To evaluate the potential of reducing the total CO2 emission throug...

  6. Transition paths towards CO2 emission reduction in the steel industry

    NARCIS (Netherlands)

    Daniëls, Berend Wilhelm

    2002-01-01

    Radiative forcing, better known as the Greenhouse Effect, is probably the major 21st century environmental problem. Its probable cause is the anthropogenic emission of greenhouse gases, especially CO2. The Kyoto agreement enforces considerable reductions of the GHG emissions in 2010, with 6 to 8% of

  7. Potential energy savings and CO2 emissions reduction of China's cement industry

    International Nuclear Information System (INIS)

    Ke, Jing; Zheng, Nina; Fridley, David; Price, Lynn; Zhou, Nan

    2012-01-01

    This study analyzes current energy and carbon dioxide (CO 2 ) emission trends in China's cement industry as the basis for modeling different levels of cement production and rates of efficiency improvement and carbon reduction in 2011–2030. Three cement output projections are developed based on analyses of historical production and physical and macroeconomic drivers. For each of these three production projections, energy savings and CO 2 emission reduction potentials are estimated in a best practice scenario and two continuous improvement scenarios relative to a frozen scenario. The results reveal the potential for cumulative final energy savings of 27.1 to 37.5 exajoules and energy-related direct emission reductions of 3.2 to 4.4 gigatonnes in 2011–2030 under the best practice scenarios. The continuous improvement scenarios produce cumulative final energy savings of 6.0 to 18.9 exajoules and reduce CO 2 emissions by 1.0 to 2.4 gigatonnes. This analysis highlights that increasing energy efficiency is the most important policy measure for reducing the cement industry's energy and emissions intensity, given the current state of the industry and the unlikelihood of significant carbon capture and storage before 2030. In addition, policies to reduce total cement production offer the most direct way of reducing total energy consumption and CO 2 emissions. - Highlights: ► This study models output and efficiency improvements in Chinese cement industry from 2011–2030. ► Energy savings and CO 2 emission reductions estimated for 3 scenarios relative to frozen scenario. ► Results reveal cumulative final energy savings potential of 27.1–37.5 EJ and 3.2–4.4 Gt CO 2 reductions. ► Increasing efficiency is the most important policy for reducing cement energy and emissions intensity.

  8. CO_2 emissions and energy intensity reduction allocation over provincial industrial sectors in China

    International Nuclear Information System (INIS)

    Wu, Jie; Zhu, Qingyuan; Liang, Liang

    2016-01-01

    Highlights: • DEA is used to evaluate the energy and environmental efficiency of 30 provincial industrial sector in China. • A new DEA-based model is proposed to allocate the CO_2 emissions and energy intensity reduction targets. • The context-dependent DEA is used to characterize the production plans. - Abstract: High energy consumption by the industry of developing countries has led to the problems of increasing emission of greenhouse gases (GHG) (primarily CO_2) and worsening energy shortages. To address these problems, many mitigation measures have been utilized. One major measure is to mandate fixed reductions of GHG emission and energy consumption. Therefore, it is important for each developing country to disaggregate their national reduction targets into targets for various geographical parts of the country. In this paper, we propose a DEA-based approach to allocate China’s national CO_2 emissions and energy intensity reduction targets over Chinese provincial industrial sectors. We firstly evaluate the energy and environmental efficiency of Chinese industry considering energy consumption and GHG emissions. Then, considering the necessity of mitigating GHG emission and energy consumption, we develop a context-dependent DEA technique which can better characterize the changeable production with reductions of CO_2 emission and energy intensity, to help allocate the national reduction targets over provincial industrial sectors. Our empirical study of 30 Chinese regions for the period 2005–2010 shows that the industry of China had poor energy and environmental efficiency. Considering three major geographical areas, eastern China’s industrial sector had the highest efficiency scores while in this aspect central and western China were similar to each other at a lower level. Our study shows that the most effective allocation of the national reduction target requires most of the 30 regional industrial to reduce CO_2 emission and energy intensity, while a

  9. Energy-related CO_2 emission in European Union agriculture: Driving forces and possibilities for reduction

    International Nuclear Information System (INIS)

    Li, Tianxiang; Baležentis, Tomas; Makutėnienė, Daiva; Streimikiene, Dalia; Kriščiukaitienė, Irena

    2016-01-01

    behind declines in CO_2 emission. According to the SBM, the lowest carbon shadow prices are observed in France, Finland, Sweden, Denmark, the Netherlands, Poland, and Belgium. These countries thus have the highest potential for reduction in CO_2 emission. The results imply that measures to increase energy efficiency are a more effective means to reduce CO_2 emissions than are changes in the fuel-mix.

  10. Incentives for subcontractors to adopt CO2 emission reporting and reduction techniques

    International Nuclear Information System (INIS)

    Scholtens, Bert; Kleinsmann, Renske

    2011-01-01

    We investigate the incentives for subcontractors (couriers) of a transport and logistics company to report about their CO 2 emissions and to implement CO 2 reducing technologies. Furthermore, we try to find out whether these incentives differ between British and Dutch couriers. We find that several incentives play a significant role. Subcontractors in the Netherlands predominantly are extrinsically motivated to engage in CO 2 reporting and reduction techniques. This is because they are mainly driven by regulatory compliance, energy costs and implementation costs. In contrast, British subcontractors are much more intrinsically motivated to comply. They are predominantly driven by energy costs, environmental awareness, relationship building and reputation building. The contractor will have to account for these differences in making its policies work. - Research highlights: → We investigate incentives for couriers to report CO 2 emissions and to implement CO 2 reduction techniques. → We compare couriers in the Netherlands and the United Kingdom. → Several incentives are significant for the adoption of CO 2 reporting and reduction measures. → There are significant differences in the sensitivity for incentives in the Netherlands and the UK.

  11. An analysis of energy strategies for CO2 emission reduction in China. Case studies by MARKAL model

    International Nuclear Information System (INIS)

    Li Guangya

    1994-12-01

    The China's energy system has been analyzed by using the MARKAL model in this study and the time period is from the year 1990 to 2050. The MARKAL model is applied here to evaluate the cost effective energy strategies for CO 2 emission reduction in China. Firstly the Reference Energy System (RES) of China and its database were established, and the useful energy demand was projected on the basis of China's economic target and demographic forecasting. Four scenarios, BASE1-BASE4 were defined with different assumptions of crude oil and natural uranium availability. Analytical results show that without CO 2 emission constrains coal consumption will continue to hold a dominant position in primary energy supply, and CO 2 emissions in 2050 will be 9.55 BtCO 2 and 10.28 BtCO 2 with different natural uranium availability. Under the CO 2 emission constraints, nuclear and renewable energy will play important roles in CO 2 emission reduction, and feasible maximum CO 2 emission reduction estimated by this study is 3.16 BtCO 2 in 2050. The cumulative CO 2 emission from 1990 to 2050 will be 418.25 BtCO 2 and 429.16 BtCO 2 with different natural uranium availability. Total feasible maximum CO 2 emission reduction from 1990 to 2050 is 95.97 BtCO 2 . (author)

  12. Reduction of CO2 emissions during cement clinker burning : Part 2 = Ein Beitrag zur Reduzierung der CO2-Emissionen beim Zementklinkerbrand; Teil 2

    NARCIS (Netherlands)

    Vogel, S.; Kolditz, K.; Beilmann, F.; Finger, F.A.; Ott-Reinhardt, D.; Kralisch, D.

    2013-01-01

    The aim of the research project entitled "New technology in cement production for reducing CO2 emissions" sponsored by the German Federal Environmental Foundation was to lower the CO2 emissions during clinker burning. A possible reduction, relative to an industrial example, of up to 21 % in the

  13. Reduction of CO2 emissions during cement clinker burning; part 1 = Ein Beitrag zur Reduzierung der CO2-Emissionen beim Zementklinkerbrand; Teil 1

    NARCIS (Netherlands)

    Vogel, S.; Kolditz, K.; Bellmann, F.; Ott-Reinhardt, D.; Kralisch, D.

    2013-01-01

    The aim of the research project entitled "New technology in cement production for reducing CO2 emissions" sponsored by the German Federal Environmental Foundation was to lower the CO2 emissions during clinker burning. A possible reduction, relative to an industrial example, of up to 21 % in the

  14. Energy efficiency and reduction of CO2 emissions from campsites management in a protected area.

    Science.gov (United States)

    Del Moretto, Deny; Branca, Teresa Annunziata; Colla, Valentina

    2018-06-02

    Campsites can be a pollution source, mainly due to the energy consumption. In addition, the green areas, thanks to the direct CO 2 sequestration and the shading, indirectly prevent the CO 2 emissions related to energy consumption. The methodology presented in this paper allowed assessing the annual CO 2 emissions directly related to the campsite management and the consequent environmental impact in campsite clusters in Tuscany. The software i-Tree Canopy was exploited, enabling to evaluate in terms of "canopy" the tonnes of CO 2 sequestered by the vegetation within each campsite. Energy and water consumptions from 2012 to 2015 were assessed for each campsite. As far as the distribution of sequestered CO 2 is concerned, the campsites ranking was in accordance to their size. According to the indicator "T-Tree" or canopy cover, a larger area of the canopy cover allows using less outdoor areas covered by trees for the sequestration of the remaining amount of pollutants. The analysis shows that the considered campsites, that are located in a highly naturalistic Park, present significant positive aspects both in terms of CO 2 emission reductions and of energy efficiency. However, significant margins of improvement are also possible and they were analysed in the paper. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry

    International Nuclear Information System (INIS)

    Wang Ke; Wang Can; Lu Xuedu; Chen Jining

    2007-01-01

    The international climate community has begun to assess a range of possible options for strengthening the international climate change effort after 2012. Analysis of the potential for sector-based emissions reduction and relevant mitigation options will provide the necessary background information for the debate. In order to assess the CO 2 abatement potential of China's steel industry, a model was developed using LEAP software to generate 3 different CO 2 emission scenarios for the industry from 2000 to 2030. The abatement potentials of different scenarios were compared, and their respective feasibilities were assessed according to the cost information. High priority abatement measures were then identified. The results show that the average CO 2 abatement per year in the Recent Policy scenario and in the New Policy scenario, compared with the reference scenario, are 51 and 107 million tons, respectively. The corresponding total incremental costs are 9.34 and 80.95 billion dollars. It is concluded that there is great potential for CO 2 abatement in China's steel industry. Adjusting the structure of the industry and technological advancement will play an important role in emissions reduction. Successful implementation of current sustainable development policies and measures will result in CO 2 abatement at a low cost. However, to achieve higher levels of abatement, the cost will increase dramatically. In the near future, specific energy conservation technologies such as dry coke quenching, exhaust gas and heat recovery equipment will be of great significance. However, taking a long term perspective, emissions reduction will rely more on the adjustment of production processes and the application of more modern large scale plants. Advanced blast furnace technology will inevitably play an important role

  16. The public perspective of carbon capture and storage for CO2 emission reductions in China

    International Nuclear Information System (INIS)

    Duan Hongxia

    2010-01-01

    To explore public awareness of carbon capture and storage (CCS), attitudes towards the use of CCS and the determinants of CCS acceptance in China, a study was conducted in July 2009 based on face-to-face interviews with participants across the country. The result showed that the awareness of CCS was low among the surveyed public in China, compared to other clean energy technologies. Respondents indicated a slightly supportive attitude towards the use of CCS as an alternative technology to CO 2 emission reductions. The regression model revealed that in addition to CCS knowledge, respondents' understanding of the characteristics of CCS, such as the maturity of the technology, risks, capability of CO2 emission reductions, and CCS policy were all significant factors in predicting the acceptance of CCS. The findings suggest that integrating public education and communication into CCS development policy would be an effective strategy to overcome the barrier of low public acceptance.

  17. How to Achieve CO2 Emission Reduction Goals: What 'Jazz' and 'Symphony' Can Offer

    International Nuclear Information System (INIS)

    Rose, K.

    2013-01-01

    Achieving CO 2 emission reduction goals remains one of today's most challenging tasks. Global energy demand will grow for many decades to come. In many regions of the world cheap fossil fuels seem to be the way forward to meet ever growing energy demand. However, there are negative consequences to this, most notably increasing emission levels. Politicians and industry therefore must accept that make hard choices in this generation need to be made to bring about real changes for future generations and the planet to limit CO 2 emissions and climate change. In his presentation, prof. Rose will provide an insight into how CO 2 emission reduction goals can be set and achieved and how a balance between future energy needs and supply can be realised in the long run up to 2050 both globally and regionally. This will be done based on WEC's own leading analysis in this area, namely it recently launched World Energy Scenarios: composing energy futures to 2050 report and WEC's scenarios, Jazz and Symphony. WEC's full analysis, the complete report and supporting material is available online at: http://www.worldenergy.org/publications/2013/world-energy-scenarios-composing-energy-futures-to-2050.(author)

  18. What is a fair CO2 tax increase? On fair emission reductions in the transport sector

    International Nuclear Information System (INIS)

    Hammar, Henrik; Jagers, Sverker C.

    2007-01-01

    We examine how individual preferences for fair reductions of carbon dioxide (CO 2 ) emissions affect the support for increases in the CO 2 tax on gasoline and diesel. We assume that people not only care about their own material welfare, but also have preferences for fairness in policy design, and we explore the implications using original data from a mail questionnaire sent to a representative sample of the Swedish population. The main result is that fairness in policy design does matter. Those respondents who adhere to a fairness principle tend to be relatively more positive to increases in the CO 2 tax. One possible explanation for this result is that there is a relatively high degree of reciprocity regarding the origin of emissions and the fairness regarding who should bear the burden of CO 2 reductions. Via a split sample analysis, we also find that the relative importance of fairness principles is dependent upon whether one uses a car often or not. This sheds light on the potential goal conflict between the importance of fairness principles and self-interest in the form of a need for private car transportation. (author)

  19. The application of CFD modelling to support the reduction of CO2 emissions in cement industry

    International Nuclear Information System (INIS)

    Mikulčić, Hrvoje; Vujanović, Milan; Fidaros, Dimitris K.; Priesching, Peter; Minić, Ivica; Tatschl, Reinhard; Duić, Neven; Stefanović, Gordana

    2012-01-01

    The cement industry is one of the leading producers of anthropogenic greenhouse gases, of which CO 2 is the most significant. Recently, researchers have invested a considerable amount of time studying ways to improve energy consumption and pollutant formation in the overall cement manufacturing process. One idea involves dividing the calcination and clinkering processes into two separate furnaces. The calcination process is performed in a calciner while the clinkering process takes place in a rotary kiln. As this is new technology in the cement manufacturing process, calciners are still in the research and development phase. The purpose of this paper is to demonstrate the potential of CFD to support the design and optimization of calciners, whose use appears to be essential in reduction of CO 2 emission during cement production. The mathematical model of the calcination process was developed, validated and implemented into a commercial CFD code, which was then used for the analysis. From the results obtained by these simulations, researchers will gain an in-depth understanding of all thermo-chemical reactions in a calciner. This understanding can be used to optimize the calciner's geometry, to make production more efficient, to lower pollutant formation and to subsequently reduce greenhouse gas emissions. -- Highlights: ► The potential of CO 2 emissions reduction, by using a cement calciner was presented. ► When a cement calciner is used, CO 2 emissions reduction of 3–4% can be achieved. ► The calcination model was developed, validated, and then used for the analysis. ► Shown method can be applied for investigation and optimization of cement calciners.

  20. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    Science.gov (United States)

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. 2010 Elsevier Ltd. All rights reserved.

  1. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  2. Effects of Eco-Drive Education on the Reduction of Fuel Consumption and CO2 Emissions

    OpenAIRE

    Barić, Danijela; Zovak, Goran; Periša, Marko

    2013-01-01

    Sustainable mobility is the basic and long-term goal of the traffic policy. Eco-driving represents one of 40 measures that should by 2050 contribute to 60% of traffic-generated emission reduction. The paper presents the significance of educating the drivers about eco-driving as well as eco-drive training with the aim of reducing fuel consumption and CO2 emission. During research the drivers were tested in three cycles, prior to education, immediately following the education and eco-training a...

  3. Possibilities for the reduction of CO2- and CH4-emissions of natural gas

    International Nuclear Information System (INIS)

    Muessig, S.

    1994-01-01

    The use of fossil fuels increases the portion of greenhouse gases, especially CO 2 and CH 4 . In this paper firstly the specific emission rates of these greenhouse gases for the various fuels are compared. Secondly possibilities for the reduction of CO 2 and CH 4 for natural gas which are relatively small anyhow are discussed. Thirdly the use of renewable energy within the gas industry and the ocean and into depleted reservoirs are discussed. It is shown that the efficient use of energy of the fossil fuel natural gas is most successful in all branches of gas consumption to decrease emission. Combined-cycle processes, cogeneration as well as modern domestic heating systems are described. Fuel cells and the application of hydrogen is shortly discussed. (orig.)

  4. Assessing the Potential of Utilization and Storage Strategies for Post-Combustion CO2 Emissions Reduction

    International Nuclear Information System (INIS)

    Armstrong, Katy; Styring, Peter

    2015-01-01

    The emissions reduction potential of three carbon dioxide handling strategies for post-combustion capture is considered. These are carbon capture and sequestration/storage (CCS), enhanced hydrocarbon recovery (EHR), and carbon dioxide utilization (CDU) to produce synthetic oil. This is performed using common and comparable boundary conditions including net CO 2 sequestered based on equivalent boundary conditions. This is achieved using a “cradle to grave approach” where the final destination and fate of any product is considered. The input boundary is pure CO 2 that has been produced using a post-combustion capture process as this is common between all processes. The output boundary is the emissions resulting from any product produced with the assumption that the majority of the oil will go to combustion processes. We also consider the “cradle to gate” approach where the ultimate fate of the oil is not considered as this is a boundary condition often applied to EHR processes. Results show that while CCS can make an impact on CO 2 emissions, CDU will have a comparable effect whilst generating income while EHR will ultimately increase net emissions. The global capacity for CDU is also compared against CCS using data based on current and planned CCS projects. Analysis shows that current CDU represent a greater volume of capture than CCS processes and that this gap is likely to remain well beyond 2020 which is the limit of the CCS projects in the database.

  5. Steering levies on the purchase of new cars for the reduction of CO2 emissions

    International Nuclear Information System (INIS)

    Haan, P. de; Mueller, M.; Peters, A.; Hauser, A.

    2007-12-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at the background, mechanisms and prognoses for the reduction of CO 2 emissions of new cars. This report focuses on policy measures - specifically the collection of budget-neutral so-called 'feebates' - that aim to influence the behaviour of buyers of new cars as a means of enhancing energy efficiency and reducing CO 2 emissions. Both the European Union and Switzerland are pursuing a three-pillar strategy in which agreements with manufacturers and importers (pillar 1) are supplemented by the provision of more detailed information for customers in the form of energy labels for new vehicles as well as catalogues listing levels of fuel consumption (pillar 2). Pillar 3 concerns measures aimed at influencing car buying behaviour, generally based on the use of the energy label for new vehicles in order to realise the existing potentials for reducing CO 2 emissions. The report takes a look at Switzerland's car market, buying behaviour, information on efficient vehicles, acceptance factors and incentive schemes. The findings of the study are presented and commented on.

  6. Atmospheric stabilization of CO2 emissions: Near-term reductions and absolute versus intensity-based targets

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.

    2008-01-01

    This study analyzes CO 2 emissions reduction targets for various countries and geopolitical regions by the year 2030 to stabilize atmospheric concentrations of CO 2 at 450 ppm (550 ppm including non-CO 2 greenhouse gases) level. It also determines CO 2 intensity cuts that would be required in those countries and regions if the emission reductions were to be achieved through intensity-based targets without curtailing their expected economic growth. Considering that the stabilization of CO 2 concentrations at 450 ppm requires the global trend of CO 2 emissions to be reversed before 2030, this study develops two scenarios: reversing the global CO 2 trend in (i) 2020 and (ii) 2025. The study shows that global CO 2 emissions would be limited at 42 percent above 1990 level in 2030 if the increasing trend of global CO 2 emissions were to be reversed by 2020. If reversing the trend is delayed by 5 years, global CO 2 emissions in 2030 would be 52 percent higher than the 1990 level. The study also finds that to achieve these targets while maintaining expected economic growth, the global average CO 2 intensity would require a 68 percent drop from the 1990 level or a 60 percent drop from the 2004 level by 2030

  7. Assessment of CO2 emission reduction and identification of CDM potential in a township

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.; Aseri, Tarun Kumar; Jamuwa, Doraj Karnal [Department of Mechanical Engineering, Government Engineering College, Ajmer, Rajasthan (India); Bansal, V. [Department of Mechanical Engineering, Government Mahila Engineering College, Ajmer, Rajasthan (India)

    2012-11-15

    This paper presents the theoretical investigation of CDM opportunity in a township at Jaipur, India. The purpose of study is to identify and analyze the various opportunities viz., installation of solar water heater, energy efficient lighting, energy efficient air conditioners, and energy efficient submersible water pumps in desert coolers and thus achieve a considerable (65.7 %) reduction in GHG emissions. Out of the various opportunities considered, the retrofitting with solar water heater can be recommended for CDM. Though, the retrofitting with energy efficient lighting, energy efficient air conditioners and energy efficient submersible water pumps in desert coolers claimed CO2 emission reduction of 104.84, 25.92, and 36.94 tons per annum, respectively, but the only opportunity which got through CDM was retrofitting with solar water heater claiming 115.70 tCO2 (100 %) emission reductions per annum which could result into net earnings of 115.70 CERs. The simple and discounted payback period for all four project activities are also calculated with and without CDM and tax benefits.

  8. Reduction of CO2 Emissions in Houses of Historic and Visual Importance

    Directory of Open Access Journals (Sweden)

    Birgit Dulski

    2010-01-01

    Full Text Available According to the ‘Climate Programme’ the municipality of Amsterdam has the ambition to reduce the CO2 emissions within the city limits by 40% in the year 2025 compared to the year 1990. To realize this ambition substantial CO2 savings have to be realized at the 375,000 current houses in the city. A special challenge is formed by the houses of historic and visual importance, as the implementation of standard energy saving measures may conflict with the ambition to protect their cultural and historic values. Nyenrode Business University was asked to study the possibilities for a successful combination of ambitions in both fields. This article shows an overview of suggestions that focus on the combination of technical and process orientated innovations which can contribute to the acceleration of the reduction of CO2 emissions in houses of historic and visual importance. The article therefore addresses political and technical as well as financial and process related aspects in implementing energy saving measures in this category of buildings.

  9. Evaluating the CO 2 emissions reduction potential and cost of power sector re-dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Daniel C.; Bielen, David A.; Townsend, Aaron

    2018-01-01

    Prior studies of the U.S. electricity sector have recognized the potential to reduce carbon dioxide (CO2) emissions by substituting generation from coal-fired units with generation from under-utilized and lower-emitting natural gas-fired units; in fact, this type of 're-dispatch' was invoked as one of the three building blocks used to set the emissions targets under the Environmental Protection Agency's Clean Power Plan. Despite the existence of surplus natural gas capacity in the U.S., power system operational constraints not often considered in power sector policy analyses, such as transmission congestion, generator ramping constraints, minimum generation constraints, planned and unplanned generator outages, and ancillary service requirements, could limit the potential and increase the cost of coal-to-gas re-dispatch. Using a highly detailed power system unit commitment and dispatch model, we estimate the maximum potential for re-dispatch in the Eastern Interconnection, which accounts for the majority of coal capacity and generation in the U.S. Under our reference assumptions, we find that maximizing coal-to-gas re-dispatch yields emissions reductions of 230 million metric tons (Mt), or 13% of power sector emissions in the Eastern Interconnection, with a corresponding average abatement cost of $15-$44 per metric ton of CO2, depending on the assumed supply elasticity of natural gas.

  10. The development of the tertiary sector in the economy and the reduction in CO2 emissions

    International Nuclear Information System (INIS)

    Morvan, R.; Hubert, M.; Gregoire, P.; Lowezanin, Ch.

    2004-09-01

    The development of the tertiary sector appears to support sustainable development since it now accounts for almost two thirds of the national economy and is responsible for low CO 2 emission levels. Between 1980 and 1997, CO 2 emissions from the tertiary sector increased by 20 % compared with a 48 % rise in the sector value added. In terms of production, CO 2 levels in the tertiary sector are low, compared with 55 % for the secondary sector (industry). However, when trade between economic activities is taken into account, there is cause to qualify the assessment. This makes it possible to ascertain emissions from the point of view of satisfying final demand for products, and to identify direct and indirect emissions in each branch of activity. Thus, when emissions from certain industrial and agricultural activities are redistributed specifically to branches of activity in the tertiary sector, CO 2 emissions in this sector account for almost one-third of total emissions. (A.L.B.)

  11. Feasibility study on energy saving and reduction of CO2 emissions at Pertamina's Cilacap Refinery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of saving energy and reducing greenhouse gas emission, a basic survey has been performed on the atmospheric crude oil distillation units and the high vacuum distillation units at Cilacap Refinery in Indonesia. The first site survey in September 2000 has carried out a survey on the situation of the facilities and operation upon obtaining the facility data and operation information from Pertamina. As a result, it was revealed that there is a room of improvement in the heat recovery, whereas a modification design was executed on the improvement proposals on the heat exchanger system. However, the second site survey in November 2000 has revealed that Pertamina had executed in 1998 through 1999 the de-bottlenecking project on the crude oil atmospheric distillation units (two units) and the high vacuum distillation units (two units), by which the capability has been expanded, and the heat recovery rate has been increased. It is not possible to look for extremely large enhancement of the heat recovery rate beyond that point, and the reduction of CO2 emission would also be small. As a result of discussions, the present project was found capable of reducing annually the CO2 emission by 36,500 tons. (NEDO)

  12. Environment and mobility 2050: scenarios for a 75% reduction in CO2 emissions

    International Nuclear Information System (INIS)

    Lopez-Ruiz, H.G.

    2009-10-01

    In France an objective of dividing greenhouse gas emissions by four, from the 1990 level, by 2050 has been set. Are these ambitions out of our reach? What will the price to pay for this objective be? We have built a long-term back-casting transport demand model (TILT, Transport Issues in the Long Term) . This model is centered on defined behavior types - in which the speed-GDP elasticity plays a key role - in order to determine demand estimations. This model lets us understand past tendencies - the coupling between growth and personal and freight mobility and adapt behavioral hypothesis - linked to the evolution of public policies - in order to show how a 75% reduction objective can be attained. The main results are an estimation of CO 2 emissions for the transport sector taking into account technical progress and demand. These results are presented as three scenario families named: Pegasus, Chronos and Hestia. Each family corresponds to a growing degree of constraint on mobility. It is possible to divide greenhouse gas emissions in the transport sector by four. Technical progress is able to lead to more than half of these reductions. The interest of these scenarios is to show that there exist different paths - through organizational change - to getting the other half of the reductions. (author)

  13. Analysis of CO2, CO and HC emission reduction in automobiles

    Science.gov (United States)

    Balan, K. N.; Valarmathi, T. N.; Reddy, Mannem Soma Harish; Aravinda Reddy, Gireddy; Sai Srinivas, Jammalamadaka K. M. K.; Vasan

    2017-05-01

    In the present scenario, the emission from automobiles is becoming a serious problem to the environment. Automobiles, thermal power stations and Industries majorly constitute to the emission of CO2, CO and HC. Though the CO2 available in the atmosphere will be captured by oceans, grasslands; they are not enough to control CO2 present in the atmosphere completely. Also advances in engine and vehicle technology continuously to reduce the emission from engine exhaust are not sufficient to reduce the HC and CO emission. This work concentrates on design, fabrication and analysis to reduce CO2, CO and HC emission from exhaust of automobiles by using molecular sieve 5A of 1.5mm. In this paper, the details of the fabrication, results and discussion about the process are discussed.

  14. Reduction of CO2 emissions in houses of historic and visual importance

    NARCIS (Netherlands)

    Hal, van J.D.M. (Anke); Dulski, B.; Postel, A.M.

    2010-01-01

    According to the ‘Climate Programme’ the municipality of Amsterdam has the ambition to reduce the CO2 emissions within the city limits by 40% in the year 2025 compared to the year 1990. To realize this ambition substantial CO2 savings have to be realized at the 375,000 current houses in the city. A

  15. Reduction of CO2 Emissions in Houses of Historic and Visual Importance

    NARCIS (Netherlands)

    Van Hal, A.; Dulski, B.; Postel, A.M.

    2010-01-01

    According to the ‘Climate Programme’ the municipality of Amsterdam has the ambition to reduce the CO2 emissions within the city limits by 40% in the year 2025 compared to the year 1990. To realize this ambition substantial CO2 savings have to be realized at the 375,000 current houses in the city. A

  16. Willingness to engage in energy conservation and CO2 emissions reduction: An empirical investigation

    Science.gov (United States)

    Eluwa, S. E.; Siong, H. C.

    2014-02-01

    Africa's response to climate change has largely been focused on adaptation rather than mitigation. The reason for this is based on the fact that the continent contributes very little to global CO2 emission. Again, mitigation policies like carbon tax as being practised in developed countries may be costly and difficult to implement in a continent where most economies are fragile. Using behavioural change as an adaptation approach, we examined the opinion of Ibadan city residents towards energy conservation and CO2 emissions reduction. A total of 822 respondents were sampled across the three residential neighbourhoods of the city. Results from the study showed that female and male respondents differed in their opinion towards energy conservation. However, the female respondents tended to record higher mean scores on majority of the items used to capture energy conservation behaviour than their male counterparts. Also, those with higher level of education seemed to be more conscious of the environmental consequences arising from energy use at home than those with lower educational background. However, very slight variations were recorded in the mean value score across the different age groups, those respondents above 50 years scored a bit higher than other age groups.

  17. Scenarios in decision-making. An application to CO2 emission reduction strategies in passenger transport

    Energy Technology Data Exchange (ETDEWEB)

    Rienstra, S.A.; Vleugel, J.M; Nijkamp, P. [Department of Social Economics, Vrije Universiteit, Amsterdam (Netherlands)] Smokers, R.T.M. [ECN Policy Studies, Petten (Netherlands)

    1995-12-01

    The usefulness of scenarios for decision-makers is analyzed. First, a theoretical introduction to the scenario methodology is presented. Next, four energy scenarios for West-European passenger transport are developed. To start with, the present transport system as a baseline case is described and analysed. For each scenario it is outlined how the passenger transport system may look like in terms of the use of various existing and future transport technologies and the corresponding modal split. Expected energy consumption features of the various transport modes are described, data on the present fuel supply and electricity generation system are presented, as well as estimations of the future energy system. The energy consumption and CO2 emissions associated with the future passenger transport systems are assessed and these impacts are compared with the current system. The conclusion is that these scenarios provide interesting policy options for decision-makers. A large-scale reduction of CO2 emissions is possible in several ways, but each way will cause many problems, since drastic policy measures will have to be introduced, which may affect economic growth and the lifestyles of individuals. 5 figs., 11 tabs., 24 refs.

  18. Willingness to engage in energy conservation and CO2 emissions reduction: An empirical investigation

    International Nuclear Information System (INIS)

    Eluwa, S E; Siong, H C

    2014-01-01

    Africa's response to climate change has largely been focused on adaptation rather than mitigation. The reason for this is based on the fact that the continent contributes very little to global CO 2 emission. Again, mitigation policies like carbon tax as being practised in developed countries may be costly and difficult to implement in a continent where most economies are fragile. Using behavioural change as an adaptation approach, we examined the opinion of Ibadan city residents towards energy conservation and CO 2 emissions reduction. A total of 822 respondents were sampled across the three residential neighbourhoods of the city. Results from the study showed that female and male respondents differed in their opinion towards energy conservation. However, the female respondents tended to record higher mean scores on majority of the items used to capture energy conservation behaviour than their male counterparts. Also, those with higher level of education seemed to be more conscious of the environmental consequences arising from energy use at home than those with lower educational background. However, very slight variations were recorded in the mean value score across the different age groups, those respondents above 50 years scored a bit higher than other age groups

  19. Reduction of CO2 emission by INCAM model in Malaysia biomass power plants during the year 2016.

    Science.gov (United States)

    Amin, Nor Aishah Saidina; Talebian-Kiakalaieh, Amin

    2018-03-01

    As the world's second largest palm oil producer and exporter, Malaysia could capitalize on its oil palm biomass waste for power generation. The emission factors from this renewable energy source are far lower than that of fossil fuels. This study applies an integrated carbon accounting and mitigation (INCAM) model to calculate the amount of CO 2 emissions from two biomass thermal power plants. The CO 2 emissions released from biomass plants utilizing empty fruit bunch (EFB) and palm oil mill effluent (POME), as alternative fuels for powering steam and gas turbines, were determined using the INCAM model. Each section emitting CO 2 in the power plant, known as the carbon accounting center (CAC), was measured for its carbon profile (CP) and carbon index (CI). The carbon performance indicator (CPI) included electricity, fuel and water consumption, solid waste and waste-water generation. The carbon emission index (CEI) and carbon emission profile (CEP), based on the total monthly carbon production, were determined across the CPI. Various innovative strategies resulted in a 20%-90% reduction of CO 2 emissions. The implementation of reduction strategies significantly reduced the CO 2 emission levels. Based on the model, utilization of EFB and POME in the facilities could significantly reduce the CO 2 emissions and increase the potential for waste to energy initiatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. CO_2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index

    International Nuclear Information System (INIS)

    Emrouznejad, Ali; Yang, Guo-liang

    2016-01-01

    Climate change has become one of the most challenging issues facing the world. Chinese government has realized the importance of energy conservation and prevention of the climate changes for sustainable development of China's economy and set targets for CO_2 emissions reduction in China. In China industry contributes 84.2% of the total CO_2 emissions, especially manufacturing industries. Data envelopment analysis (DEA) and Malmquist productivity (MP) index are the widely used mathematical techniques to address the relative efficiency and productivity of a group of homogenous decision making units, e.g. industries or countries. However, in many real applications, especially those related to energy efficiency, there are often undesirable outputs, e.g. the pollutions, waste and CO_2 emissions, which are produced inevitably with desirable outputs in the production. This paper introduces a novel Malmquist–Luenberger productivity (MLP) index based on directional distance function (DDF) to address the issue of productivity evolution of DMUs in the presence of undesirable outputs. The new RAM (Range-adjusted measure)-based global MLP index has been applied to evaluate CO_2 emissions reduction in Chinese light manufacturing industries. Recommendations for policy makers have been discussed. - Highlights: •CO_2 emissions reduction in Chinese light manufacturing industries are measured. •A novel RAM based Malmquist–Luenberger productivity index has been developed. •Recommendation to policy makers for reducing CO_2 reduction in China are given.

  1. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Johansson, Maria T.

    2014-01-01

    Highlights: • Technologies for recovery and use of industrial excess heat were investigated. • Heat harvesting, heat storage, heat utilization, and heat conversion technologies. • Heat recovery potential for Gävleborg County in Sweden was calculated. • Effects on global CO 2 emissions were calculated for future energy market scenarios. - Abstract: Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO 2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO 2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO 2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gävleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO 2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO 2 emissions when the CO 2 emission charge is low

  2. CO2 emission reduction strategy and roles of nuclear energy in Japan

    International Nuclear Information System (INIS)

    Sato, Osamu; Shimoda, Makoto; Takematsu, Kenji; Tadokoro, Yoshihiro

    1999-03-01

    An analysis was made on the potential and cost of reducing carbon dioxide (CO 2 ) emissions from Japan's long-term energy systems by using the MARKAL model, developed in the Energy Technology Systems Analysis Programme (ETSAP) of International Energy Agency (IEA). Assuming future growths of GDP, the demand for energy services was estimated for the analytical time horizon 1990-2050. Assumptions were made also on prices and availability of fossil fuels, and on availability of nuclear and renewable energy. CO 2 emissions and system costs were compared between energy demand and supply scenarios defined with different assumptions on nuclear energy, a CO 2 disposal option, and natural gas imports. Main results were as follows. Without nuclear energy, the CO 2 emissions will hardly be reduced because of the increases of coal utilization. CO 2 disposal will be effective in reducing the emissions, however at much higher costs than the case with nuclear energy. The expansion of natural gas imports alone will not reduce the emissions at enough low levels. (author)

  3. Emissions of CO2 from road freight transport in London: Trends and policies for long run reductions

    International Nuclear Information System (INIS)

    Zanni, Alberto M.; Bristow, Abigail L.

    2010-01-01

    Freight transport has been receiving increasing attention in both literature and practice following the growing recognition of its importance in urban transport planning. This paper analyses historical and projected road freight CO 2 emissions in the city of London and explores the potential mitigation effect of a set of freight transport policies and logistics solutions. Findings indicate a range of policies with potential to reduce emissions in the period up to 2050. However, this reduction would appear to only be capable of partly counterbalancing the projected increase in freight traffic. More profound behavioural measures therefore appear to be necessary for London's CO 2 emissions reduction targets to be met.

  4. The contribution of energy efficiency and renewability to the reduction of CO2 emissions

    International Nuclear Information System (INIS)

    Paredes, J.A.; Mateo, I.

    1995-01-01

    The European Commission has proposed a series of measures, among which the imposition of a tax on the consumption of energy and CO 2 emissions. Different organizations, among them Eurelectric, have opposed this tax, arguing that there exist alternative solutions, such as the adoption of voluntary commitments between companies/national governments, to reduce CO 2 emissions and which at the same time have a much lower cost/benefit ratio: the effects of the increased use of natural gas in electricity generation, improvements in energy efficiency and the promotion and development of cogeneration and renewable energies on CO 2 emissions on a national level (Spain), as well as applications of the same principles within a particular company (Union Fenosa). 3 tabs

  5. A Consideration on Service Business Model for Saving Energy and Reduction of CO2 Emissions Using Inverters

    Science.gov (United States)

    Kosaka, Michitaka; Yabutani, Takashi

    This paper considers the effectiveness of service business approach for reducing CO2 emission. “HDRIVE” is a service business using inverters to reduce energy consumption of motor drive. The business model of this service is changed for finding new opportunities of CO2 emission reduction by combining various factors such as financial service or long-term service contract. Risk analysis of this business model is very important for giving stable services to users for long term. HDRIVE business model is found to be suitable for this objective. This service can be applied to the industries such as chemical or steel industry effectively, where CO2 emission is very large, and has the possibility of creating new business considering CDM or trading CO2 emission right. The effectiveness of this approach is demonstrated through several examples in real business.

  6. CO2 reduction by dematerialization

    Energy Technology Data Exchange (ETDEWEB)

    Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute, Utrecht University, Utrecht (Netherlands)

    2002-04-01

    Current policy for the reduction of greenhouse gases is mainly concerned with a number of types of solutions: energy saving, shifting to the use of low-carbon fuels and the implementation of sustainable energy technologies. Recent research has shown that a strategy directed at a more efficient use of materials could make a considerable contribution to reducing CO2 emissions. Moreover, the costs to society as a whole of such a measure appear to be very low.

  7. Research on CO2 Emission Reduction Mechanism of China’s Iron and Steel Industry under Various Emission Reduction Policies

    Directory of Open Access Journals (Sweden)

    Ye Duan

    2017-12-01

    Full Text Available In this paper, a two-stage dynamic game model of China’s iron and steel industry is constructed. Carbon tax levy, product subsidy, carbon capture and sequestration (CCS and other factors are included in the emission reduction mechanism. The effects of emissions reduction and the economic impact of China’s overall steel industry (and that of its six main regions are investigated for the first time under different scenarios. As new findings, we report the following: (1 Not all factors declined. The overall social welfare, consumer surplus, output and emissions decrease with a gradual increase in the reduction target, whereas the carbon tax value, unit value of product subsidies and total subsidies show a rising trend; (2 A combination of multiple emissions reduction policies is more effective than a single policy. With the implementation of a combined policy, regional output polarization has eased; (3 Steel output does not exceed 950 million tons, far below the current peak. These results will help the industry to formulate reasonable emissions reduction and output targets. In short, in effort to eliminate industry poverty and to alleviate overcapacity, the industry should not only adopt the various coordinated reduction policies, but also fully consider regional differences and reduction needs.

  8. Accelerating CO2-Emission Reductions via Corporate Programmes; Analysis of an Existing Corporate Programme

    NARCIS (Netherlands)

    Manser, J.; Handgraaf, M.J.J.; Schubert, R.; Gsottbauer, E.; Cornielje, M.; Lede, E.

    2013-01-01

    This working paper analyzes and assesses the COYou2 Program of the company Swiss Re. This corporate program allows employees to claim subsidies for the realization of various activities reducing their energy consumption and CO2-emissions at home. Examples of such activities are the purchase of a

  9. An Incentive-Based Solution of Sustainable Mobility for Economic Growth and CO2 Emissions Reduction

    Directory of Open Access Journals (Sweden)

    Manuel Herrador

    2015-05-01

    Full Text Available “Incentivized Sustainable Mobility” is a conceptual business model which involves four stakeholders: citizens, municipalities, commerce and mobility services. A platform named “ISUMO” (Incentivized Sustainable Mobility provides technological support to this business model, integrating a set of metaservices that unifies the existing ICTs of transportation plus a unique patented QR-based (Quick Response low-cost charging device for electric vehicles. Essentially, the system tracks and registers citizens’ transportation activities (anonymously and voluntarily and evaluates each through a scoring system while their ecological footprint is calculated. Afterwards, citizens are able to exchange their accumulated points for discount QR coupons, to be redeemed in the associated commerce in order to purchase their products or services. The breakthrough of this business model is that it enhances awareness of sustainable mobility practices, increasing their attractiveness as perceived by the stakeholders with diverse benefits; citizens (and indirectly, the municipalities initiate a new consumption pattern of “coupons culture” linked to sustainable mobility, the urban economy is stimulated, and the use of mobility services grows, providing a new business opportunity regarding electric vehicles. It is expected that continuous exploration of the model and implementation will contribute to sustainable social and economic development aiming at CO2 emissions reduction, headline targets of the Europe 2020 strategy.

  10. Possible pathways for dealing with Japan's post-Fukushima challenge and achieving CO2 emission reduction targets in 2030

    International Nuclear Information System (INIS)

    Su, Xuanming; Zhou, Weisheng; Sun, Faming; Nakagami, Ken'Ichi

    2014-01-01

    Considering the unclear nuclear future of Japan after Fukushima Dai-ichi nuclear power plant accident since Mar. 11, 2011, this study assesses a series of energy consumption scenarios including the reference scenario, nuclear limited scenarios and current nuclear use level scenario for Japan in 2030 by the G-CEEP (Glocal Century Energy Environment Planning) model. The simulation result for each scenario is firstly presented in terms of primary energy consumption, electricity generation, CO 2 emission, marginal abatement cost and GDP (gross domestic product) loss. According to the results, energy saving contributes the biggest share in total CO 2 emission reduction, regardless of different nuclear use levels and different CO 2 emission reduction levels. A certain amount of coal generation can be retained in the nuclear limited scenarios due to the applying of CCS (carbon capture and storage). The discussion indicates that Japan needs to improve energy use efficiency, increase renewable energy and introduce CCS in order to reduce the dependence on nuclear power and to achieve CO 2 emission reduction target in 2030. In addition, it is ambitious for Japan to achieve the zero nuclear scenario with 30% CO 2 emission reduction which will cause a marginal abatement cost of 383 USD/tC and up to −2.54% GDP loss from the reference scenario. Dealing with the nuclear power issue, Japan is faced with a challenge as well as an opportunity. - Highlights: • Nuclear use limited and carbon emission reduction scenarios for Japan in 2030. • Contributions of different abatement options to carbon emissions. • CCS for reducing dependence on nuclear power

  11. Allocation of CO2 emission permits-Economic incentives for emission reductions in developing countries

    International Nuclear Information System (INIS)

    Persson, Tobias A.; Azar, Christian; Lindgren, Kristian

    2006-01-01

    The economic impacts on developing regions following a global cap and trade system for carbon dioxide are assessed through the use of an energy-economy systems model. Both an equal per capita allocation and a contraction and convergence allocation with convergence of the per capita emissions by 2050 are shown to offer economic incentive for Africa, India and probably also Latin America to accept binding emissions commitments under a 450 ppm carbon dioxide stabilization scenario. The gain for Latin America is mainly a result of increased export revenues from sales of bio-fuels as a result of the climate policy. It is, on the other hand, unlikely that these allocation approaches would offer an economic incentive for China to join the regime because of its high economic growth, present higher per capita emissions than India and Africa, and more costly mitigation options than Latin America. A more stringent allocation for developing countries such as contraction with convergence of the per capita emissions by the end of this century is estimated to generate reduced net gains or increased net losses for the developing regions (though Africa is still expected to gain)

  12. Chinese Public’s Willingness to Pay for CO2 Emissions Reductions: A Case Study from Four Provinces/Cities

    Directory of Open Access Journals (Sweden)

    Duan Hong-Xia

    2014-01-01

    Citation: Duan, H.-X., Lü, Y.-L., Li, Y., 2014. Chinese public’s willingness to pay for CO2 emissions reductions: A case study from four provinces/cities. Adv. Clim. Change Res. 5(2, doi: 10.3724/SP.J.1248.2014.100.

  13. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China

    International Nuclear Information System (INIS)

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2013-01-01

    China's annual cement production (i.e., 1868 Mt) in 2010 accounted for nearly half of the world's annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in China's cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using bottom–up CSC models, the cumulative cost-effective and technical electricity and fuel savings, as well as the CO 2 emission reduction potentials for the Chinese cement industry for 2010–2030 are estimated. By comparison, the total final energy saving achieved by the implementation of these 23 efficiency measures in the Chinese cement industry over 20 years (2010–2030) is equal to 30% of the total primary energy supply of Latin America or Middle East or around 71% of primary energy supply of Brazil in 2007. In addition, a sensitivity analysis with respect to the discount rate is conducted to assess its effect on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost. - Highlights: ► Estimation of energy saving potential in the entire Chinese cement industry. ► Development of the bottom–up technology-rich Conservation Supply Curve models. ► Discussion of different approaches for developing conservation supply curves. ► Primary energy saving over 20 years equal to 33% of primary energy of Latin America

  14. Technology priorities for transport in Asia: assessment of economy-wide CO2 emissions reduction for Lebanon

    DEFF Research Database (Denmark)

    Dhar, Subash; Marpaung, Charles O. P.

    2015-01-01

    mitigations actions (NAMA) given their strong contribution for development and therefore a methodology based on in-put out-put decomposition analysis is proposed for analysing economy wide CO2 emissions reductions. The methodology has been applied for the transport sector of Lebanon where alternative fuels...... of technologies and availability of technology characteristics. Non-motorized transport, mass transit and technologies that improve vehicle energy efficiency emerged as the three most preferred technology choices for the countries. These technology choices can be appropriate candidates for nationally appropriate......,improvement to cars (private and taxis) and buses for public transport were prioritized by stakeholders. The economy-wide CO2 emission reduce by 2,269 thousand tons by 2020 if the prioritized technologies are implemented in Lebanon. Fuel mix effect and structural effect would reduce CO2 emission by 2,611 thousand...

  15. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, III, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-03

    India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.

  16. Carbon dioxide sequestration by mineral carbonation. Feasibility of enhanced natural weathering as a CO2 emission reduction technology

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.

    2007-01-01

    A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonates. Potential advantages of mineral CO2 sequestration compared to, e.g., geological CO2 storage include (1) the permanent and inherently safe sequestration of CO2, due to the thermodynamic stability of the carbonate product formed and (2) the vast potential sequestration capacity, because of the widespread and abundant occurrence of suitable feedstock. In addition, carbonation is an exothermic process, which potentially limits the overall energy consumption and costs of CO2 emission reduction. However, weathering processes are slow, with timescales at natural conditions of thousands to millions of years. For industrial implementation, a reduction of the reaction time to the order of minutes has to be achieved by developing alternative process routes. The aim of this thesis is an investigation of the technical, energetic, and economic feasibility of CO2 sequestration by mineral carbonation. In Chapter 1 the literature published on CO2 sequestration by mineral carbonation is reviewed. Among the potentially suitable mineral feedstock for mineral CO2 sequestration, Ca-silicates, more particularly wollastonite (CaSiO3), a mineral ore, and steel slag, an industrial alkaline solid residue, are selected for further research. Alkaline Ca-rich residues seem particularly promising, since these materials are inexpensive and available near large industrial point sources of CO2. In addition, residues tend to react relatively rapidly with CO2 due to their (geo)chemical instability. Various process routes have been proposed for mineral carbonation, which often include a pre-treatment of the solid feedstock (e.g., size reduction and

  17. Climate Change Mitigation Pathways for Southeast Asia: CO2 Emissions Reduction Policies for the Energy and Transport Sectors

    Directory of Open Access Journals (Sweden)

    Lew Fulton

    2017-07-01

    Full Text Available As of June 2017, 150 countries have ratified the Paris Climate Agreement. This agreement calls for, among other things, strong reductions in CO2 emissions by 2030 and beyond. This paper reviews the Nationally Determined Contribution (NDCs plans of six Association of Southeast Asian Nations (ASEAN countries and compares their current and projected future CO2 levels across sectors, and their stated targets in the context of their economic and demographic situations. This comparison reveals wide variations in the types of targets, with the “ambition” level changing as the perspective changes from total CO2 to CO2/capita and per unit gross domestic product (GDP. We also review national plans as stated in NDCs and find that while there are many types of policies listed, few are quantified and no attempts are made to score individual or groups of policies for their likelihood in achieving stated targets. We conclude that more analysis is needed to better understand the possible impacts of current policies and plans on CO2 emissions, and whether current plans are adequate to hit targets. Considerations on better aligning targets are also provided.

  18. Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas

    International Nuclear Information System (INIS)

    Jou, Chih-Ju G.; Wu, Chung-Rung; Lee, Chien-Li

    2010-01-01

    In this research, the waste tail gas emitted from petrochemical processes, e.g. catalytic reforming unit, catalytic cracking unit and residue desulfurization unit, was recovered and reused as a replacement of natural gas (NG). On-site experimental results show that both the flame length and orange-yellowish brightness decrease with more proportion of waste gas fuel added to the natural gas, and that the adiabatic temperature of the mixed fuel is greater than 1800 o C. A complete replacement of natural gas by the recovered waste gas fuel will save 5.8 x 10 6 m 3 of natural gas consumption, and 3.5 x 10 4 tons of CO 2 emission annually. In addition, the reduction of residual O 2 concentration in flue gases from 4% to 3% will save 1.1 x 10 6 m 3 of natural gas consumption, reduce 43.0% of NO x emission, and 1.3 x 10 3 tons of CO 2 emission annually. Thus, from the viewpoint of the overall economics and sustainable energy policy, recovering the waste tail gas energy as an independent fuel source to replace natural gas is of great importance for saving energy, reducing CO 2 emission reduction, and lowering environmental impact.

  19. Developments in greenhouse gas emissions and net energy use in Danish agriculture - How to achieve substantial CO2 reductions?

    International Nuclear Information System (INIS)

    Dalgaard, T.; Olesen, J.E.; Petersen, S.O.; Petersen, B.M.; Jorgensen, U.; Kristensen, T.; Hutchings, N.J.; Gyldenkaerne, S.; Hermansen, J.E.

    2011-01-01

    Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance. - Highlights: → GHG emissions from Danish agriculture 1990-2010 are calculated, including carbon sequestration. → Effects of measures to further reduce GHG emissions are listed. → Land use scenarios for a substantially reduced GHG emission by 2050 are presented. → A 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable. → Via bioenergy production Danish agriculture could achieve a positive energy balance. - Scenario studies of greenhouse gas mitigation measures illustrate the possible realization of CO 2 reductions for Danish agriculture by 2050, sustaining current food production.

  20. Reduction of CO2 emissions from road transport in cities impact of dynamic route guidance system on greenhouse gas emission

    CERN Document Server

    Markiewicz, Michal

    2017-01-01

    Michal Markiewicz presents the outcomes of his research regarding the influence of dynamic route guidance system on overall emission of carbon dioxide from road transport in rural areas. Sustainable transportation in smart cities is a big challenge of our time, but before electric vehicles replace vehicles that burn fossil fuels we have to think about traffic optimization methods that reduce the amount of greenhouse gas emissions. Contents Comparison of Travel Time Measurements Using Floating Car Data and Intelligent Infrastructure Integration of Cellular Automata Traffic Simulator with CO2 Emission Model Impact of Dynamic Route Guidance System on CO2 Emission Naxos Vehicular Traffic Simulator Target Groups Lecturers and students of computer science, transportation and logistics Traffic engineers The Author Dr. Michal Markiewicz defended his PhD thesis in computer science at the University of Bremen,TZI Technologie-Zentrum Informatik und Informationstechnik, Germany. Currently, he is working on commercializat...

  1. Effects of wind intermittency on reduction of CO2 emissions: The case of the Spanish power system

    International Nuclear Information System (INIS)

    Gutiérrez-Martín, F.; Da Silva-Álvarez, R.A.; Montoro-Pintado, P.

    2013-01-01

    Renewable energy sources are believed to reduce drastically greenhouse gas emissions that would otherwise be generated from fossil fuels used to generate electricity. This implies that a unit of renewable energy will replace a unit of fossil-fuel, with its CO 2 emissions, on an equivalent basis – with no other effects on the grid. But, the fuel economy and emissions in the existing power systems are not proportional with the electricity production of intermittent sources due to cycling of the fossil-fuel plants that make up the balance of the grid (i.e. changing the power output makes thermal units to operate less efficiently). This study focuses in the interactions between wind generation and thermal plants cycling, by establishing the levels of extra fuel use caused by decreased efficiencies of fossil back-up for wind electricity in Spain. We analyze the production of all thermal plants in 2011, studying scenarios where wind penetration causes major deviations in programming and we define a procedure for quantifying CO 2 reductions using emission factors and efficiency curves from existing installations; the objective is to discuss the real contribution of renewable energy to the environmental targets: the results show that CO 2 reductions are still relevant at high wind penetration, whilst we also suggest alternatives to improve reliability of the power system. - Highlights: ► Comprehensive analysis of interactions of wind and fuel utilities in the power system. ► Fuel economy is not proportional with wind generation due to cycling of fossil plants. ► The results show that CO 2 reductions are still relevant even at high wind penetration. ► Alternatives to improve reliability of future power systems are also pointed out

  2. Reduction of electricity use in Swedish industry and its impact on national power supply and European CO2 emissions

    International Nuclear Information System (INIS)

    Henning, Dag; Trygg, Louise

    2008-01-01

    Decreased energy use is crucial for achieving sustainable energy solutions. This paper presents current and possible future electricity use in Swedish industry. Non-heavy lines of business (e.g. food, vehicles) that use one-third of the electricity in Swedish industry are analysed in detail. Most electricity is used in the support processes pumping and ventilation, and manufacturing by decomposition. Energy conservation can take place through e.g. more efficient light fittings and switching off ventilation during night and weekends. By energy-carrier switching, electricity used for heat production is replaced by e.g. fuel. Taking technically possible demand-side measures in the whole lines of business, according to energy audits in a set of factories, means a 35% demand reduction. A systems analysis of power production, trade, demand and conservation was made using the MODEST energy system optimisation model, which uses linear programming and considers the time-dependent impact on demand for days, weeks and seasons. Electricity that is replaced by district heating from a combined heat and power (CHP) plant has a dual impact on the electricity system through reduced demand and increased electricity generation. Reduced electricity consumption and enhanced cogeneration in Sweden enables increased electricity export, which displaces coal-fired condensing plants in the European electricity market and helps to reduce European CO 2 emissions. Within the European emission trading system, those electricity conservation measures should be taken that are more cost-efficient than other ways of reducing CO 2 emissions. The demand-side measures turn net electricity imports into net export and reduce annual operation costs and net CO 2 emissions due to covering Swedish electricity demand by 200 million euros and 6 Mtonne, respectively. With estimated electricity conservation in the whole of Swedish industry, net electricity exports would be larger and net CO 2 emissions would be

  3. Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Wu, Jung-Hua

    2013-01-01

    Between 1996 and 2006, CO 2 emissions in Taiwan increased by approximately 60%, with the industrial sector accounting for 50% of that increase. Among all industrial sectors, iron and steel, petrochemicals, electronics, textiles, pulp and paper and cement accounted for approximately three-quarters of the total industrial CO 2 emissions. Identifying the driving forces behind increased CO 2 emissions in these six sectors could be valuable for the development of effective environmental policy. This study used two-tier KLEM input–output structural decomposition analysis (I-O SDA) to analyze the factors that lead to changes in CO 2 emissions. Empirical results obtained in Taiwan reveal that increased exports level and elevated domestic autonomous final demand level were the main reasons for increases in CO 2 emissions. Technological changes in materials and labor tended to decrease CO 2 emissions, while the power generation mix contributed significantly to the increase. Relevant strategies for reducing CO 2 emissions from energy-intensive sectors are also highlighted. - Highlights: • Identifying the driving forces behind increased CO 2 emissions is important. • This study uses two-tier KLEM I-O SDA to analyze the changes in CO 2 emissions. • Three issues are identified to achieve future CO 2 emissions reduction in Taiwan

  4. Dominant superiority of nuclear power in the reduction of CO2 emissions. Part 2

    International Nuclear Information System (INIS)

    Kase, Susumu

    2011-01-01

    Soon after the oil crisis in 1973, then French president Giscard d'Estaing and his administration very strongly persuaded the French people to make the nation's electrical power consist mainly of nuclear power. As a result, by the beginning of 1990's, as high as 80% of electric power generated in France became nuclear (30% in Japan). Add the share 9% of hydroelectric power, 89% of electric power generated in France is now free of fossil fuel, and emission of green house gases per capita in France is now 42% less than in Japan. What Japan should do first of all in the coming future is to emulate the French experience. That should result in a 35% reduction in green house gas emission by 2030 at an acceptable cost. To put that in practice we first must overcome the now considerably weakened but still stubbornly remaining national sentiment against nuclear power. It will take a very strong top to bottom persuasion by the leading sector of the society. As to this matter the author stressed in a separate paper that mankind, like in the instinctive language capability, possesses a born instinctive way of life to believe in and live by the dominant spirit of the time. And unfortunately the current spirit of the time still is tainted with irrational dislike of nuclear power which can be weakened by strong and persistent persuasion. (author)

  5. Efficiency potentials of heat pumps with combined heat and power. For maximum reduction of CO2 emissions and for electricity generation from fossil fuels with CO2 reduction in Switzerland

    International Nuclear Information System (INIS)

    Rognon, F.

    2005-06-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at how the efficiency potential of heat pumps together with combined heat and power systems can help provide a maximum reduction of CO 2 emissions and provide electricity generation from fossil fuel in Switzerland together with reductions in CO 2 emissions. In Switzerland, approximately 80% of the low-temperature heat required for space-heating and for the heating-up of hot water is produced by burning combustibles. Around a million gas and oil boilers were in use in Switzerland in 2000, and these accounted for approximately half the country's 41.1 million tonnes of CO 2 emissions. The authors state that there is a more efficient solution with lower CO 2 emissions: the heat pump. With the enormous potential of our environment it would be possible to replace half the total number of boilers in use today with heat pumps. This would be equivalent to 90 PJ p.a. of useful heat, or 500,000 systems. The power source for heat pumps should come from the substitution of electric heating systems (electric resistor-based systems) and from the replacement of boilers. This should be done by using combined heat and power systems with full heat utilisation. This means, according to the authors, that the entire required power source can be provided without the need to construct new electricity production plants. The paper examines and discusses the theoretical, technical, market and realisable potentials

  6. Liberalised electricity markets, new bioenergy technologies, and GHG emission reductions: interactions and CO2 mitigation costs

    International Nuclear Information System (INIS)

    Gustavsson, L.; Madlener, R.

    1999-01-01

    We contrast recent developments in power and heat production with bioenergy, and natural-gas-fired condensing plants with and without decarbonisation, in the light of electricity market liberalisation. Our main focus is on CO 2 mitigation costs and carbon tax sensitivity of production costs. We find that CO 2 mitigation costs are lower for biomass systems using IGCC technology than for natural gas system using decarbonisation. However, based on current fuel prices natural-gas fired co-generation plants have the lowest production costs. Hence energy policy measures will be needed to promote biomass technologies and decarbonisation options on a liberalised market. (author)

  7. The influence of biopreparations on the reduction of energy consumption and CO2 emissions in shallow and deep soil tillage.

    Science.gov (United States)

    Naujokienė, Vilma; Šarauskis, Egidijus; Lekavičienė, Kristina; Adamavičienė, Aida; Buragienė, Sidona; Kriaučiūnienė, Zita

    2018-06-01

    The application of innovation in agriculture technologies is very important for increasing the efficiency of agricultural production, ensuring the high productivity of plants, production quality, farm profitability, the positive balance of used energy, and the requirements of environmental protection. Therefore, it is a scientific problem that solid and soil surfaces covered with plant residue have a negative impact on the work, traction resistance, energy consumption, and environmental pollution of tillage machines. The objective of this work was to determine the dependence of the reduction of energy consumption and CO 2 gas emissions on different biopreparations. Experimental research was carried out in a control (SC1) and seven different biopreparations using scenarios (SC2-SC8) using bacterial and non-bacterial biopreparations in different consistencies (with essential and mineral oils, extracts of various grasses and sea algae, phosphorus, potassium, humic and gibberellic acids, copper, zinc, manganese, iron, and calcium), estimating discing and plowing as the energy consumption parameters of shallow and deep soil tillage machines, respectively. CO 2 emissions were determined by evaluating soil characteristics (such as hardness, total porosity and density). Meteorological conditions such average daily temperatures (2015-20.3 °C; 2016-16.90 °C) and precipitations (2015-6.9 mm; 2016-114.9 mm) during the month strongly influenced different results in 2015 and 2016. Substantial differences between the averages of energy consumption identified in approximately 62% of biological preparation combinations created usage scenarios. Experimental research established that crop field treatments with biological preparations at the beginning of vegetation could reduce the energy consumption of shallow tillage machines by up to approximately 23%, whereas the energy consumption of deep tillage could be reduced by up to approximately 19.2% compared with the control

  8. CO2 emissions reduction using energy conservation measures: EPA Region IV's experience

    International Nuclear Information System (INIS)

    Berish, C.; Day, R.; Sibold, K.; Tiller, J.

    1994-01-01

    EPA Region 4 concluded in a recent comparative environmental risk evaluation that global climate change could substantially impact the Southeast. To address this risk, Region 4 developed an action plan to promote cost-effective pollution prevention and reduce greenhouse gas emissions, The regional plan contains programs that aye specific to Region 4 as well as geographic components of the national Climate Change Action Plan. Sources of carbon dioxide emissions were targeted for pollution prevention based on an energy model that allows the user to create energy efficiency scenarios in four sectors: residential, commercial, industrial, and transportation. Activities were selected using the modeled information on sector reduction potentials and resource and cost-effectiveness criteria. Given the high level of uncertainty associated with climate change projections, the programs developed are all cost effective, prevent pollution and/or result in sound adaptation policies. Currently, policy makers at national, regional, and local levels are deciding on what types of energy efficiency programs to implement. The region's action plan is composed of several programs and approaches. The authors have developed implemented, and/or participated in the following: energy scenario model. EARTHWALK (residential energy conservation); energy conservation in affordable homes (new residences); Cool Communities Program (strategic tree planting and light colored surfaces); EPA's Green Lights Program; WAVE (water conservation), the Plant Protection Center; QUEST TO SAVE THE EARTH (outreach tools); energy and water use planning for the 1996 Olympic Games, and planning for sea-level rise. Reviewing the practices of the above programs will be the focus of this paper

  9. Feasibility study on energy saving and reduction of CO2 emissions at Pertamina's Cilacap Refinery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of saving energy and reducing greenhouse gas emission, a basic survey has been performed on the atmospheric crude oil distillation units and the high vacuum distillation units at Cilacap Refinery in Indonesia. The first site survey in September 2000 has carried out a survey on the situation of the facilities and operation upon obtaining the facility data and operation information from Pertamina. As a result, it was revealed that there is a room of improvement in the heat recovery, whereas a modification design was executed on the improvement proposals on the heat exchanger system. However, the second site survey in November 2000 has revealed that Pertamina had executed in 1998 through 1999 the de-bottlenecking project on the crude oil atmospheric distillation units (two units) and the high vacuum distillation units (two units), by which the capability has been expanded, and the heat recovery rate has been increased. It is not possible to look for extremely large enhancement of the heat recovery rate beyond that point, and the reduction of CO2 emission would also be small. As a result of discussions, the present project was found capable of reducing annually the CO2 emission by 36,500 tons. (NEDO)

  10. Combining IPPC and emission trading: An assessment of energy efficiency and CO2 reduction potentials in the Austrian paper industry

    International Nuclear Information System (INIS)

    Starzer, Otto; Dworak, Oliver

    2005-01-01

    In the frame of an innovative project partnership E.V.A. - the Austrian Energy Agency accompanied the Austrian paper industry for the last 2.5 years in developing a branch specific climate change strategy. Within the scope of this project an assessment of the energy efficiency status of the branch was carried out as well as an evaluation of still realisable energy savings and CO 2 reduction potentials. The paper presents the methodology applied, which combines a top down approach (benchmarking and best practice) with a bottom up approach (on-site interviews and energy audits), supported by a huge data collection process. Within the benchmarking process all Austrian paper industry installations affected by the EU emission trading directive were benchmarked against their respective IPPC/BAT values. Furthermore an extensive list of best practice examples derived from existing or ongoing studies was compared with the energy efficiency measures already carried out by the companies ('early actions'). These theory-oriented findings were complemented by several on-site interviews with the respective energy managers as well as by detailed energy audits carried out by a consulting company, covering in total more than 80% of the Austrian paper industry's CO 2 emissions. The paper concludes with the main results of the project, presenting the pros and cons of working with IPPC documents and BAT values in terms of energy efficiency assessments. Recommendations are presented on how to improve the allocation exercise for the next emission trading period from 2008 to 2012

  11. Implications of the recent reductions in natural gas prices for emissions of CO2 from the US power sector.

    Science.gov (United States)

    Lu, Xi; Salovaara, Jackson; McElroy, Michael B

    2012-03-06

    CO(2) emissions from the US power sector decreased by 8.76% in 2009 relative to 2008 contributing to a decrease over this period of 6.59% in overall US emissions of greenhouse gases. An econometric model, tuned to data reported for regional generation of US electricity, is used to diagnose factors responsible for the 2009 decrease. More than half of the reduction is attributed to a shift from generation of power using coal to gas driven by a recent decrease in gas prices in response to the increase in production from shale. An important result of the model is that, when the cost differential for generation using gas rather than coal falls below 2-3 cents/kWh, less efficient coal fired plants are displaced by more efficient natural gas combined cycle (NGCC) generation alternatives. Costs for generation using NGCC decreased by close to 4 cents/kWh in 2009 relative to 2008 ensuring that generation of electricity using gas was competitive with coal in 2009 in contrast to the situation in 2008 when gas prices were much higher. A modest price on carbon could contribute to additional switching from coal to gas with further savings in CO(2) emissions.

  12. Trading CO2 emission; Verhandelbaarheid van CO2-emissies

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.F.; Looijenga, A.; Moor, R.; Wissema, E.W.J. [Afdeling Energie, Ministerie van VROM, The Hague (Netherlands)

    2000-06-01

    Systems for CO2-emission trading can take many shapes as developments in Europe show. European developments for emission trading tend to comprehend cap and-trade systems for large emission sources. In the Netherlands a different policy is in preparation. A trading system for sheltered sectors with an option to buy reductions from exposed sectors will be further developed by a Commission, appointed by the minister of environment. Exposed sectors are committed to belong to the top of the world on the area of energy-efficiency. The authors point out that a cap on the distribution of energy carriers natural gas, electricity and fuel seems to be an interesting option to shape the trade scheme. A cap on the distribution of electricity is desirable, but not easy to implement. The possible success of the system depends partly on an experiment with emission reductions. 10 refs.

  13. Economic efficiency of CO2 reduction programs

    International Nuclear Information System (INIS)

    Tahvonen, O.; Storch, H. von; Storch, J. von

    1993-01-01

    A highly simplified time-dependent low-dimensional system has been designed to describe conceptually the interaction of climate and economy. Enhanced emission of carbon dioxide (CO 2 ) is understood as the agent that not only favors instantaneous consumption but also causes unfavorable climate changes at a later time. The problem of balancing these two counterproductive effects of CO 2 emissions on a finite time horizon is considered. The climate system is represented by just two parameters, namely a globally averaged near-surface air-temperature and a globally averaged troposheric CO 2 concentration. The costs of abating CO 2 emissions are monitored by a function which depends quadratically on the percentage reduction of emission compared to an 'uncontrolled emission' scenario. Parameters are fitted to historical climate data and to estimates from studies of CO 2 abatement costs. Two optimization approaches, which differ from earlier attempts to describe the interaction of economy and climate, are discussed. In the 'cost oriented' strategy an optimal emission path is identified which balances the abatement costs and explicitly formulated damage costs. These damage costs, whose estimates are very uncertain, are hypothesized to be a linear function of the time-derivative of temperature. In the 'target oriented' strategy an emission path is chosen so that the abatement costs are minimal while certain restrictions on the terminal temperature and concentration change are met. (orig.)

  14. Scenario analysis of energy saving and CO_2 emissions reduction potentials to ratchet up Japanese mitigation target in 2030 in the residential sector

    International Nuclear Information System (INIS)

    Wakiyama, Takako; Kuramochi, Takeshi

    2017-01-01

    This paper assesses to what extent CO_2 emissions from electricity in the residential sector can be further reduced in Japan beyond its post-2020 mitigation target (known as “Intended Nationally Determined Contribution (INDC)”). The paper examines the reduction potential of electricity demand and CO_2 emissions in the residential sector by conducting a scenario analysis. Electricity consumption scenarios are set up using a time-series regression model, and used to forecast the electricity consumption patterns to 2030. The scenario analysis also includes scenarios that reduce electricity consumption through enhanced energy efficiency and energy saving measures. The obtained results show that Japan can reduce electricity consumption and CO_2 emissions in the residential sector in 2030 more than the Japanese post-2020 mitigation target indicates. At the maximum, the electricity consumption could be reduced by 35 TWh, which contributes to 55.4 MtCO_2 of emissions reduction in 2030 compared to 2013 if the voluntarily targeted CO_2 intensity of electricity is achieved. The result implies that Japan has the potential to ratchet up post-2020 mitigation targets discussed under the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). - Highlights: • Further reduction of electricity consumption is possible beyond Japan's post-2020 mitigation target. • Energy saving efforts by households and incentives to reduce electricity demands are required. • Improvement of CO_2 intensity from electricity is a key factor in the reduction of CO_2 emissions.

  15. Temporal and Spatial Variations in Provincial CO2 Emissions in China from 2005 to 2015 and Assessment of a Reduction Plan

    Directory of Open Access Journals (Sweden)

    Xuankai Deng

    2015-05-01

    Full Text Available This study calculated the provincial carbon dioxide (CO2 emissions in China, analyzed the temporal and spatial variations in emissions, and determined the emission intensity from 2005 to 2015. The total emissions control was forecasted in 2015, and the reduction pressure of the 30 provinces in China was assessed based on historical emissions and the 12th five-year (2011–2015 reduction plan. Results indicate that CO2 emissions eventually increased and gradually decreased from east to west, whereas the emission intensity ultimately decreased and gradually increased from south to north. By the end of 2015, the total control of provincial emissions will increase significantly compared to the 2010 level, whereas the emission intensity will decrease. The provinces in the North, East, and South Coast regions will maintain the highest emission levels. The provinces in the Southwest and Northwest regions will experience a rapid growth rate of emissions. However, the national emission reduction target will nearly be achieved if all provinces can implement reduction targets as planned. Pressure indices show that the South Coast and Northwest regions are confronted with a greater reduction pressure of emission intensity. Finally, policy implications are provided for CO2 reductions in China.

  16. The empirical effects of a gasoline tax on CO2 emissions reductions from transportation sector in Korea

    International Nuclear Information System (INIS)

    Kim, Young-Duk; Han, Hyun-Ok; Moon, Young-Seok

    2011-01-01

    The introduction of carbon tax is expected to mitigate GHG emissions cost-effectively. With this expectation identifying the impacts of carbon tax on energy demand and GHG emission reductions is an interesting issue. One of the basic methods of estimating these impacts is using the price elasticity. There are, however, some unanswered questions regarding the use of price elasticity. First, which elasticity estimates are appropriate to measure the impacts of carbon tax on energy demand? The existing estimates are estimated in the presence of a substitute. To assess the impact of carbon tax could we use these estimates? Second, how can we compromise the differences among the existing estimates depending on estimation methods and specifications? For example, how can we accommodate the difference in the estimates from the regional panel specification and the aggregate specification? This paper tries to answer these questions with the price elasticity of gasoline demand. With an appropriate price elasticity, we show how much gasoline consumption and GHG emissions are reduced by carbon tax for different scenarios of carbon tax rate. - Research highlights: →We offer an appropriate estimate for evaluating the effects of carbon tax. →We estimate the price elasticity of gasoline with instrument variables. →We measure the tax effects on CO 2 emissions from transportation sector.

  17. Direct reduction process using fines and with reduced CO2 emission

    CSIR Research Space (South Africa)

    Morrison, A

    2004-08-01

    Full Text Available , of which there is an abundant supply in South Africa. The rotary hearth process is one and two such units are currently in operation in Japan: one at Nippon Steel and another at Kobe Steel.3 Direct reduction for ferroalloy production offers...

  18. What determines urban households' willingness to pay for CO2 emission reductions in Turkey: A contingent valuation survey

    International Nuclear Information System (INIS)

    Adaman, Fikret; Karali, Nihan; Kumbaroglu, Guerkan; Or, Ilhan; Ozkaynak, Beguem; Zenginobuz, Unal

    2011-01-01

    This paper explores Turkish urban households' willingness to pay (WTP) for CO 2 emission reductions expected to result from improvements in power production. A face-to-face questionnaire, with a Contingent valuation (CV) module prepared using the double-bounded dichotomous choice elicitation framework, was administered to 2422 respondents representative of urban Turkey-a developing country with low but rapidly increasing greenhouse gas emissions. The determinants of WTP were identified by considering not only the impact of standard socio-economic factors but also the effects of environmental knowledge, attitudes and behaviour, the relevance of the identity of the collection agent (national versus international institutions) in terms of trust people have towards them, and the degree of perceived participation of others in the realization of the project. Our study confirms the existing literature in demonstrating that WTP figures reported by young and educated people that are active on environmental issues, and who also possess material security and environmental knowledge, are more likely to be high. However, their willingness to make contributions is hampered significantly by their belief that their fellow citizens will not contribute and the general lack of trust in institutions. Overall, this study may be taken as a call to eliminate governance-related uncertainties in climate change deals. - Research Highlights: → We explored the determinants of households' willingness to pay for CO 2 reductions. → We administered a contingent valuation survey to 2422 respondents in urban Turkey. → Young, educated, environmentally-knowledgeable and activist people contribute more. → Income is also found to be significant in increasing willingness to contribute. → Lack of trust in institutions and in other's participation hampers the contributions.

  19. Formulation of a Network and the Study of Reaction Paths for the Sustainable Reduction of CO2 Emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Kongpanna, Pichayapan; Roh, Kosan

    and commercial processes. Within these there are high-purity emissions and low-purity emissions. Rather than sending these to the atmosphere, it is possible to collect them and use them for other purposes. Targeting some of the largest contributors: power generation, manufacturing, chemical industry...... amounts of CO2 and other greenhouse gases, and creating more energy efficient processes....

  20. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that

  1. Consequences of Market-Based Measures CO2-emission Reduction Maritime Transport for the Netherlands; Gevolgen Market Based Measures CO2-emissiereductie zeevaart voor Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Wortelboer-van Donselaar, P.; Kansen, M.; Moorman, S. [Kennisinstituut voor Mobiliteitsbeleid KiM, Den Haag (Netherlands); Faber, J.; Koopman, M.; Smit, M. [CE Delft, Delft (Netherlands)

    2013-11-15

    The introduction of Market Based Measures (MBMs) to reduce the CO2 emissions of international sea shipping will have relatively limited economic effects for the Netherlands. Moreover, these effects are largely in line with those in other countries. For the Netherlands, however, the manner in which MBMS are organised and enforced is likely to be particularly important, given the importance of ports to the Dutch economy, the country's relatively large bunker sector, and the fact that Dutch shipowners operate relatively small vessels and on a relatively small scale. MBMs include pricing measures in the form of tax or trade systems, as well as other market-related proposals. In this research study, the consequences are analysed of four international MBM proposals for the Netherlands [Dutch] Om de CO2-uitstoot van de internationale zeevaartsector terug te dringen worden momenteel zogeheten Market Based Measures (MBMs), zoals bijvoorbeeld het veilen van emissierechten of het invoeren van een heffing, overwogen. De invoering van de MBMs zal voor Nederland relatief beperkte economische effecten hebben. Deze effecten wijken bovendien niet bijzonder af van die voor andere landen. De wijze waarop de MBMs worden georganiseerd en gehandhaafd, is voor Nederland mogelijk wel van onderscheidend belang. Dit gezien het belang van de havens voor de Nederlandse economie, de relatief grote bunkersector, en de relatief kleine schepen en kleinschaligheid van de Nederlandse reders.

  2. Potential of plug-in hybrid electric vehicle for reduction of CO2 emission and role of non-fossil power plant

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Yamamoto, H.

    2009-01-01

    A method to analyze the demand of electricity and the reduction of CO 2 emission and oil consumption by PHEV is established. Using the performance of PHEV optimized by EPRI and an estimation on the pattern of driving and charging in Japan, the following results are obtained. The electric demand for PHEV60(which has 60mile EV range) and PHEV20(which has 20mile EV range) is evaluated at 79.3 billion kWh and 41.2 billion kWh, respectively, in case that all vehicles in Japan (80 million cars) would be replaced by PHEV. The load leveling effect on the Japanese grid, which is hypothetically considered as one electric grid system, is evaluated at about 30 million kW, in case that all vehicles in Japan are replaced by PHEV60 and charged in the midnight. However, when the charge of PHEVs starts in the evening, that effect is not obtained. The reduction of CO 2 emission results in 64 million ton by the averaged CO 2 emissions intensity (emissions per unit of user end electricity) in Japan, and 98 million ton by electricity from the non-fossil power plant such as nuclear energy or renewable one. Those values are equivalent to 25% and 38% of CO 2 emission from the transport sector in Japan in 2003. Hence, non-fossil power plant enhances the reduction of CO 2 emission by the PHEV introduction. (author)

  3. Localized innovation, localized diffusion and the environment : an analysis of reductions of CO(2) emissions by passenger cars

    NARCIS (Netherlands)

    Los, B.; Verspagen, B.

    We investigate technological change with regard to CO(2) emissions by passenger cars, using a Free Disposal Hull methodology to estimate technological frontiers. We have a sample of cars available in the UK market in the period 2000-2007. Our results show that the rates of technological change

  4. Problem shifting in transport systems. Analysing and balancing unintended consequences of CO2 emission reduction in Dutch transport.

    NARCIS (Netherlands)

    Gebler, Malte

    2013-01-01

    Summary Transport systems face significant input- and output-related challenges in the upcoming decades. To tackle climate change – the major output challenge - an 80% CO2 reduction has to be achieved by 2050 (base year 1990). This requires a sustainabi

  5. CO2 emission reduction policies in the greek residential sector: a methodological framework for their economic evaluation

    International Nuclear Information System (INIS)

    Mirasgedis, S.; Georgopoulou, E.; Sarafidis, Y.; Balaras, C.; Gaglia, A.; Lalas, D.P.

    2004-01-01

    This paper outlines a methodological framework for the economic evaluation of CO 2 emissions abatement policies and measures in the residential sector, taking into consideration both economic and social costs/benefits. The approach includes two stages: first, the measures under consideration are evaluated on the basis of a cost effectiveness analysis, which takes into account only the related net financial costs, thus highlighting win-win actions (i.e. measures presenting an economic benefit for end users without the provision of any economic subsidies or other similar policies); and second, the measures are re-evaluated using an integrated cost benefit analysis (where both the private and external costs/benefits are taken into account). The economic performance of the measures examined incorporates the effects of a variety of parameters, such as the region's climate, size and age of buildings, etc., which significantly affect the resulting ranking. The implementation of this framework in the Greek residential sector identified and prioritized a significant emissions reduction potential, which could be achieved with win-win measures and/or interventions that present a net social benefit. Measures with negative economic cost but positive net social benefit for the majority of the buildings examined include: (i) regular inspection of central heating boilers, (ii) use of thermostats in central heating boilers, (iii) sealing of openings, (iv) installation of solar collectors for hot water etc. The monetization of environmental benefits is shown to provide a powerful tool for highlighting priority actions in the context of a climate change mitigation policy

  6. National energy policies: Obstructing the reduction of global CO2 emissions? An analysis of Swedish energy policies for the district heating sector

    International Nuclear Information System (INIS)

    Difs, Kristina

    2010-01-01

    The effect of national energy policies on a local Swedish district heating (DH) system has been studied, regarding the profitability of new investments and the potential for climate change mitigation. The DH system has been optimised regarding three investments: biomass-fuelled CHP (bio CHP), natural gas-fuelled combined cycle CHP (NGCC CHP) and biomass-fuelled heat-only boiler (bio HOB) in two scenarios (with or without national taxes and policy instruments). In both scenarios EU's tradable CO 2 emission permits are included. Results from the study show that when national policies are included, the most cost-effective investment option is the bio CHP technology. However, when national taxes and policy instruments are excluded, the DH system containing the NGCC CHP plant has 30% lower system cost than the bio CHP system. Regardless of the scenario and when coal condensing is considered as marginal electricity production, the NGCC CHP has the largest global CO 2 reduction potential, about 300 ktonne CO 2 . However, the CO 2 reduction potential is highly dependent on the marginal electricity production. Demonstrated here is that national policies such as tradable green certificates can, when applied to DH systems, contribute to investments that will not fully utilise the DH systems' potential for global CO 2 emissions reductions. - Research highlights: →Swedish energy policies are promoting biomass fuelled electricity generating technologies over efficient fossil fuel electricity generating technologies. →An efficient fossil fuel technology like the natural gas combine cycle CHP technology with high power-to-heat ratio has potential to reduce the global CO 2 emissions more than a biomass fuelled electricity generating technology. →Swedish energy policies such as tradable green certificates for renewable electricity can, when applied to district heating systems, contribute to investments that will not fully utilise the district heating systems potential for

  7. Localized Innovation, Localized Diffusion and the Environment: An Analysis of CO2 Emission Reductions by Passenger Cars, 2000-2007

    OpenAIRE

    Los, Bart; Verspagen, Bart

    2008-01-01

    We investigate technological change with regard to CO2 emissions by passenger cars, using a Free Disposal Hull methodology to estimate technological frontiers. We have a sample of cars available in the UK market in the period 2000 – 2007. Our results show that the rates of technological change (frontier movement) and diffusion (distance to frontier at the car brand level) differ substantial between segments of the car market. We conclude that successful policies should be aimed at diffusion o...

  8. Long term energy and materials strategies for reduction of industrial CO2 emissions. A case study for the iron and steel industry

    International Nuclear Information System (INIS)

    Gielen, D.J.

    1997-01-01

    Greenhouse gas emissions emerged in the last decade as a key environmental problem on the political agenda. The most important greenhouse gas is carbon dioxide (CO 2 ). This gas results from the combustion of fossil fuels (natural gas, oil and coal). As a consequence, greenhouse gas emission reduction is closely related to energy policies. Even a stabilization of the atmospheric CO 2 concentrations at a level of 750 ppm (parts per million), more than twice the current level, implies a reduction of global emissions by 50% in the next century. The world population will simultaneously double and the capita energy consumption will increase. As a consequence, the Western industrialized countries will have to reduce their per capita emissions by more than a factor four. Such a policy goal will significantly affect the future industrial production structure. Approximately 4% of the global CO 2 emissions can be attributed to the production of iron and steel. This sector is the most important industrial source of CO 2 . The case study for the iron and steel industry will be discussed in this paper in order to illustrate the impact of significant CO 2 emission mitigation on the industry. The goal is to show the consequences of CO 2 policies for R and D planning and investment decisions. The notion that the iron and steel industry will be affected by CO 2 policies is not new; a number of studies have addressed this issue before. These studies have compared steel production technologies and emission reduction options within the iron and steel production sector. In this paper, the emission reduction in the iron and steel industry is analyzed within the framework of the changing (inter-)national energy and materials system configuration. This includes all production, conversion and consumption processes. The impact of CO 2 policies on the optimal choice of steel production technologies and on the competitiveness of steel compared to other materials will be discussed. This paper

  9. Managing CO2 emissions in Nigeria

    International Nuclear Information System (INIS)

    Obioh, I.B.; Oluwole, A.F.; Akeredolu, F.A.

    1994-01-01

    The energy resources in Nigeria are nearly equally divided between fossil fuels and biofuels. The increasing pressure on them, following expected increased population growth, may lead to substantial emissions of carbon into the atmosphere. Additionally agricultural and forestry management practices in vogue are those related to savannah burning and rotational bush fallow systems, which have been clearly implicated as important sources of CO 2 and trace gases. An integrated model for the prediction of future CO 2 emissions based on fossil fuels and biomass fuels requirements, rates of deforestation and other land-use indices is presented. This is further based on trends in population and economic growth up to the year 2025, with a base year in 1988. A coupled carbon cycle-climate model based on the contribution of CO 2 and other trace gases is established from the proportions of integrated global warming effects for a 20-year averaging time using the product of global warming potential (GWP) and total emissions. An energy-technology inventory approach to optimal resources management is used as a tool for establishing the future scope of reducing the CO 2 emissions through improved fossil fuel energy efficiencies. Scenarios for reduction based on gradual to swift shifts from biomass to fossil and renewable fuels are presented together with expected policy options required to effect them

  10. Towards Verifying National CO2 Emissions

    Science.gov (United States)

    Fung, I. Y.; Wuerth, S. M.; Anderson, J. L.

    2017-12-01

    With the Paris Agreement, nations around the world have pledged their voluntary reductions in future CO2 emissions. Satellite observations of atmospheric CO2 have the potential to verify self-reported emission statistics around the globe. We present a carbon-weather data assimilation system, wherein raw weather observations together with satellite observations of the mixing ratio of column CO2 from the Orbiting Carbon Observatory-2 are assimilated every 6 hours into the NCAR carbon-climate model CAM5 coupled to the Ensemble Kalman Filter of DART. In an OSSE, we reduced the fossil fuel emissions from a country, and estimated the emissions innovations demanded by the atmospheric CO2 observations. The uncertainties in the innovation are analyzed with respect to the uncertainties in the meteorology to determine the significance of the result. The work follows from "On the use of incomplete historical data to infer the present state of the atmosphere" (Charney et al. 1969), which maps the path for continuous data assimilation for weather forecasting and the five decades of progress since.

  11. CO2 reduction through energy conservation

    International Nuclear Information System (INIS)

    1991-05-01

    A study was carried out of the potential to economically reduce carbon dioxide emissions through energy conservation in the petroleum and natural gas industry. The study examined current and projected emissions levels, cogeneration at gas plants, flaring, economics, regulation, reporting requirements, implementation, and research and development. Economically attractive energy conservation measures can reduce oil and gas industry, exclusive of Athabasca oil sands operations, CO 2 emissions by 6-7%. The energy conservation options identified range from field energy awareness committees through to equipment retrofits and replacement. At ca 3 million tonnes/y, these reductions will not offset the increases in oil and gas related CO 2 emissions anticipated by producers and Alberta government agencies. There will be increasing emphasis on in-situ bitumen production, more energy intensive light crude oil production and increasing natural gas sales, increasing energy inputs in excess of reductions. Cogeneration of electricity for utility company distribution and for internally required steam at gas plants and in-situ production sites is not economic due to low electricity prices. 8 tabs

  12. Reduction of CO2 emission from transportation activities in the area of Pasar Besar in Malang City

    Science.gov (United States)

    Sari, K. E.; Sulistyo, D. E.; Utomo, D. M.

    2017-06-01

    The number of vehicles increases every year. Where vehicles are the largest contributor to air pollution up to 70%-80%, while 20%-30% caused by industrial activities. The increasing number of vehicles which perform movements will result in more emissions of vehicles in the free air of the city. Traffic is also influenced by the presence of land use. One of the types of land use that have considerable influence against the movement of traffic is trade. Along with the development of transport activities in the area of Pasar Besar Malang city (the Biggest Traditional Market in Malang), it will cause problems such as traffic jam and air pollution. Therefore, the need for proper handling of the problem of traffic jam and air pollution in the area of Pasar Besar that is to identify the performance of road traffic around area of Pasar Besar and calculate the quantity of CO2 emissions based on the footprint of transport on the area of Pasar Besar. Where is produced that level of service roads on its way around area of Pasar Besar have an average value between LOS A and B, while the quantity of CO2 emissions is based on the footprint of transport on area of Pasar Besar that is amounting to 4,551.42 tons/year. The magnitude of the emissions have exceeded the standard of composition in the air so that the need for recommendations. Recommendations in this research is in the form of simulated users of private vehicle redirects to public transportation based on the level of willingness to switch by the users of private vehicles. The selected simulation that is the second of four simulations with the output of emissions amounting to 3,952.91 tons/year in which can reduce emissions amounting to 598.51 tons/year or approximately 13.15%.

  13. Actions conducted in Switzerland for energy conservation and CO2 emission reduction, particularly in the transport sector

    International Nuclear Information System (INIS)

    Cattin, J.

    1991-01-01

    The aim of Switzerland is to stabilize the CO 2 emissions by year 2000 and to reduce them from 20 pc by 2005 and from 50 pc by 2025. In order to attain these objectives, several measures should be taken: in the residential sector, the heating appliances (space heating and hot water production) should be efficiency-enhanced and an individual counting system should be used; energy audits should be enforced in industry; in the transportation sector, railway transportation should be enhanced and a pollution tax on automobile fuel should be applied

  14. Potential reduction of CO2 emissions and low carbon scenario for the Brazilian industrial sector for 2030; Potencial de reducao de emissoes de Co2 e cenario de baixo carbono para o setor industrial brasileiro para 2030

    Energy Technology Data Exchange (ETDEWEB)

    Henriques Junior, Mauricio F. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil)], email: mauricio.henriques@int.gov.br; Schaeffer, Roberto [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil)], email: roberto@ppe.ufrj.br

    2010-07-01

    This study discusses the potential for reducing carbon dioxide (CO2) emissions from energy use by the Brazilian industrial sector in a low-carbon scenario over a horizon until 2030. It evaluates the main mitigation measures, the quantities of this gas avoided and the respective abatement costs. In relation to a benchmark scenario projected for 2030, the reduction of CO2 emissions estimated here can reach 40% by adopting energy efficiency measures, materials recycling, cogeneration, shifting from fossil fuels to renewable or less carbon content sources, and eliminating the use of biomass from deforestation. The set of measures studied here would bring cumulative emissions reductions of nearly 1.5 billion tCO2 over a period of 20 years (2010-2030). This would require huge investments, but the majority of them would have significant economic return and negative abatement costs. However, in the cases there would be low economic attractiveness and higher abatement costs, thus requiring more effective incentives and a collective effort, from both the public and private sectors. (author)

  15. Least cost planning for CO2-reduction strategies

    International Nuclear Information System (INIS)

    Seifritz, W.

    1990-01-01

    A first recommendation for the determination of the minimum costs for a carbon-dioxide reduction strategy is presented. For this, the tabulation of so-called, 'CO 2 -ranking-lists', containing the relationship between the costs of a distinct measure to avoid the emission of certain amount of CO 2 (in dollar/t CO 2 ) versus its potential (in t CO 2 /yr), is indispensable. Some basic aspects of this approach are discussed and a first guess of the costs of some measures to avoid CO 2 -emissions into the atmosphere is presented. (orig.) [de

  16. Potential for energy conservation and reduction of CO2 emissions in the Brazilian cement industry through 2015

    International Nuclear Information System (INIS)

    Soares, J.B.; Tolmasquim, M.T.

    1999-01-01

    The cement industry is characterized by intensive energy consumption throughout its production stages which, together with the calcination of its raw materials, accounts for significant amounts of greenhouse gases (GHG) emissions. In 1996, the Brazilian cement industry consumed 4.3% of the energy required by the industrial sector, contributing over 22 Mtons (Million of tons) of CO 2 . The prospects for growth in this sector in Brazil indicate rising demands for fossil fuels, with a consequent upsurge in emissions. The purpose of this article is to present the prospects for energy conservation in the Brazilian cement industry through to 2015, taking into account the introduction of new production technologies in this sector, the use of waste and low-grade fuels, cogeneration, the use of additives, and other measures, based on a technical and economic energy demand simulation model

  17. Economic effects on taxing CO2 emissions

    International Nuclear Information System (INIS)

    Haaparanta, P.; Jerkkola, J.; Pohjola, J.

    1996-01-01

    The CO 2 emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO 2 taxation. First one was the economic effects of increasing CO 2 tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  18. Climate Change and employment. Impact on employment in the European Union-25 of climate change and CO2 emission reduction measures by 2030

    Energy Technology Data Exchange (ETDEWEB)

    Dupressoir, S.; Belen Sanchez, A.; Bobe, P.; Hoefele, V. (and others)

    2007-05-15

    This study was intended provide an analysis of the potential costs and benefits for employment of the policies and measures against climate change as well as of the manifestations of the consequences of climate change in Europe. This report comprises two divisions. The first, entitled 'Impact of climate change', attempts to determine the potential impact on employment in Europe of the consequences of climate change (Part 1). The second, entitled 'Impact of CO2 emission reduction measures', analyses the potential implications for employment of climate-change prevention policies in the EU with time-horizons of 2012 and 2030 (Parts 2 to 4). The conclusions and recommendations of the study appear in four parts : Part 1 analyses the potential consequences for employment of climatic warming in Europe; Part 2 presents the objectives, the hypotheses and the methodology of the 'impact of CO2 emission reduction measures' division; Part 3 analyses the foreseeable effects of CO2 emission reduction measures on employment in Europe; Part 4 offers general (or sector-wide) recommendations for measures and policies to promote positive effects and prevent negative effects. The concluding part discusses the uncertainties and identifies the questions deserving further investigation.

  19. Fairness and cost-effectiveness of CO2 emission reduction targets in the European Union member states. An analysis based on scenario studies

    International Nuclear Information System (INIS)

    Kram, T.; Ybema, J.R.; Vos, D.

    1997-06-01

    The Member States of the European Union (EU) have agreed upon a common position in the international negotiations on the limitation of greenhouse gas emissions. The total commitment of the EU is the result of differentiated emission targets for the individual Member States. In this study the results of 4 recent scenario studies on CO2 emission reduction are used to assess the fairness and the cost-effectiveness of the differentiated targets. Here, fairness is measured by the average cost per capita in a country to reach the emission target. Cost-effectiveness is based on the marginal cost of emission reduction. It is noted that there are limitations in the comparability of the country results. Further, the coverage of the EU Member States is not complete in all 4 studies. Robust conclusions could thus not be drawn for all countries. Nonetheless, there are strong indications that the efforts to achieve the emission reduction targets are not evenly distributed. Based on the results the countries can be divided into four groups with different burdens to achieve reduction of CO2 emissions: (a) countries that will probably be faced with above average burdens: Sweden, Italy and the Netherlands; (b) countries that will presumably be faced with above average burdens but for which limited information is available: Austria and Denmark; (c) countries that will probably be faced with average burdens or for which the relative efforts are indistinct: Germany, Portugal, Belgium, Finland and Luxembourg; and (d) countries that will probably be faced with below average burdens: United Kingdom, France, Spain, Ireland and Greece. 1 fig., 12 tabs., 6 refs

  20. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  1. CO2 emissions: a peak level in 2010

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    After a reduction of CO 2 emissions in 2009 due to the financial crisis, these emissions have again reached a peak in 2010: 30.6 Gt, it means an increase by 5% compared to the previous peak. According to IEA (International Energy Agency): 44% of the emissions come from coal, 36% from oil and 20% from natural gas, and OECD countries are responsible of 40% of the CO 2 global emissions but only of 25% of their increase since 2009. For China and India the emissions of CO 2 have increased sharply due to their strong economic growth. (A.C.)

  2. Feasibility study on energy saving and the reduction of CO2 emission at Petrochemical Corporation of Singapore

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A feasibility study has been executed on energy conservation and greenhouse gas emission reduction, taking up as the objects the first-period crackers and their utility related facilities at Petrochemical Corporation of Singapore (PCS). In the study, discussions were given on restructuring of the overall energy balance by using the pinch technology, adoption of the advanced recovery system (ARS) made by S and W, and a cogeneration system using gas turbine generators. As a result of the discussions for the case of using the pinch technology, ARS, and 45-MW gas turbines, the annual reduction in the fuel consumption was found to correspond to crude oil of 5.1, 3.1 and 39.0 kt, respectively. Furthermore, the annual greenhouse gas emission reduction would be 15.8, 9.7 and 120.6 kt. The total required fund for modification construction of the naphtha crackers for energy conservation would be 460 million yen, 3,700 million yen, and 5,460 million yen respectively for the pinch technology, ARS and 45-MW gas turbines. The internal profitability of the total investment would be 19% for the pinch technology, and 27% for the 45-MW gas turbines. (NEDO)

  3. Electricity market deregulation and CO2 emissions reduction : dancing at different tunes across Canada and U.S. border

    International Nuclear Information System (INIS)

    Bernard, J.T.; Clavet, F.; Ondo, J.C.

    2003-07-01

    Industrial producers are concerned that Canada's decision to ratify the Kyoto Protocol will have a negative impact on competitiveness programs with its main trading partner, the United States, which has not ratified the Protocol. This paper discusses the concerns expressed by Canadian industrial producers regarding the negative impact of Canada's proposed policy actions to lower carbon dioxide equivalent emissions by 100 Mt, of which 55 Mt are to be realized by large industrial emitters such as oil and gas production, electricity generation from fossil fuels, and a few heterogeneous industries. The power generators' share is approximately 20 Mt. In response to these concerns, the Government of Canada has proposed a ceiling on the price of emissions permits paid by industrial users. It has proposed that no measure that costs more than $15 per tonne of carbon dioxide equivalent should be undertaken by industries. In addition, Canadian industries will not be required to make carbon dioxide equivalent emissions reductions that exceed 15 per cent of their emissions associated with the business as usual scenario in 2010. This study evaluated how such a scheme would affect electricity production and trade between Ontario, Quebec, New Brunswick, New England and New York. It was shown that the scheme has nearly no influence on electricity production and trade flows. As such, it is very effective in protecting the competitive position of electricity products, but it does little to reduce greenhouse gases. 4 refs., 14 tabs., 1 fig

  4. Basic investigation on promotion of joint implementation in fiscal 2000. Survey on energy saving and CO2 emission reduction in Cilacap Refinery; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Cilacap seiyusho ni okeru shoene CO2 sakugen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of saving energy and reducing greenhouse gas emission, a basic survey has been performed on the atmospheric crude oil distillation units and the high vacuum distillation units at Cilacap Refinery in Indonesia. The first site survey in September 2000 has carried out a survey on the situation of the facilities and operation upon obtaining the facility data and operation information from Pertamina. As a result, it was revealed that there is a room of improvement in the heat recovery, whereas a modification design was executed on the improvement proposals on the heat exchanger system. However, the second site survey in November 2000 has revealed that Pertamina had executed in 1998 through 1999 the de-bottlenecking project on the crude oil atmospheric distillation units (two units) and the high vacuum distillation units (two units), by which the capability has been expanded, and the heat recovery rate has been increased. It is not possible to look for extremely large enhancement of the heat recovery rate beyond that point, and the reduction of CO2 emission would also be small. As a result of discussions, the present project was found capable of reducing annually the CO2 emission by 36,500 tons. (NEDO)

  5. Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction

    DEFF Research Database (Denmark)

    Babaie, Meisam; Davari, Pooya; Talebizadeh, Poyan

    2015-01-01

    This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2...

  6. Energy consumption and CO2 emissions in Iran, 2025

    International Nuclear Information System (INIS)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-01-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO 2 emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  7. Electrocatalytic Alloys for CO2 Reduction.

    Science.gov (United States)

    He, Jingfu; Johnson, Noah J J; Huang, Aoxue; Berlinguette, Curtis P

    2018-01-10

    Electrochemically reducing CO 2 using renewable energy is a contemporary global challenge that will only be met with electrocatalysts capable of efficiently converting CO 2 into fuels and chemicals with high selectivity. Although many different metals and morphologies have been tested for CO 2 electrocatalysis over the last several decades, relatively limited attention has been committed to the study of alloys for this application. Alloying is a promising method to tailor the geometric and electric environments of active sites. The parameter space for discovering new alloys for CO 2 electrocatalysis is particularly large because of the myriad products that can be formed during CO 2 reduction. In this Minireview, mixed-metal electrocatalyst compositions that have been evaluated for CO 2 reduction are summarized. A distillation of the structure-property relationships gleaned from this survey are intended to help in the construction of guidelines for discovering new classes of alloys for the CO 2 reduction reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. How to Achieve CO2 Emission Reduction Goals by 2050. Abstracts of the 22nd Forum: Energy Day in Croatia

    International Nuclear Information System (INIS)

    2013-01-01

    This years' annual Forum is held twenty-two years in a row. Analysing the energy development to 2050 takes into consideration the nature and complexity of the energy development, a long period of preparing plants and facilities, a long service life of plants, dimensions of technological development and continuous growth of energy demand. New reasons for a long-term observation of the energy development, at least by 2050, are climate change and radical reducing emissions of carbon dioxide and other greenhouse gases according to the EU Energy Policy to 2050. The impact of permitted level of carbon dioxide emissions on the energy production and consumption is drastic and fundamentally changes the structure of energy production and consumption. The new legal and economical approach as well as the new technological development and and political determination are required for the implementation of energy policy which should lead to radical reduction of carbon dioxide emissions. The time is also an important factor because postponement of defining the new approach of energy policy decreases the possibility of its realisation. An additional argument for a new technological development is the mobilization of the science and industry for achieving that new step in technological development. This development is required in order to develop the energy industry without or with minimal greenhouse gas emissions. Furthermore, it is very important for renewable energy, at the carbon dioxide capture and storage, at the energy efficiency in the whole range of activities, from the production, transmission and distribution to the consumption of devices and equipment used by consumers, at smart grids, at the energy storage and vehicles. Reducing the energy consumption in buildings is energy, economical, architectual and organizational project which has to include every commercial and residential building. It is important to eliminate all disadvantages that incurred in the period when

  9. Geothermal energy of Slovakia - CO2 emissions reduction contribution potential (background study for conservative and non-conservative approach

    Directory of Open Access Journals (Sweden)

    Branislav Fričovský

    2012-12-01

    Full Text Available Total geothermal energy potential is estimated for 209 714 TJ per year or 6 650 MWth. Natural conditions define a use of thermalwaters for heat generation only. Accepting proportion of real achievable output of geothermal projects in the non-conservative scenarioat a rate of 1 861 MWth or 13 440 TJ per year, yearly carbon dioxide savings are up to reach 0,357 MtCO2.yr-1 or 12,5 of cumulativeMtCO2 in 35 years. By a contrast, introduction of conservative approach points to increase in a geothermal heat production from 145 to243 TJ per period or 6 944 TJ of cumulative 35 years production, with a real outcome of 0,45 MtCO2 cumulative carbon dioxidesavings, corresponding to yearly real savings from 9,4 .10-3 to 15,8 .10-3 MtCO2.

  10. Corn residue removal and CO2 emissions

    Science.gov (United States)

    Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) are the primary greenhouse gases (GHG) emitted from the soil due to agricultural activities. In the short-term, increases in CO2 emissions indicate increased soil microbial activity. Soil micro-organisms decompose crop residues and release...

  11. Eindhoven Airport : towards zero CO2 emissions

    NARCIS (Netherlands)

    Jorge Simoes Pedro, Joana

    2015-01-01

    Eindhoven airport is growing and it is strongly committed to take this opportunity to invest in innovative solutions for a sustainable development. Therefore, this document proposes a strategic plan for reaching Zero CO2 emissions at Eindhoven airport. This document proposes to reduce the CO2

  12. CO2 emission calculations and trends

    International Nuclear Information System (INIS)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-01-01

    Evidence that the atmospheric CO 2 concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO 2 is believed to result from CO 2 releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO 2 concentration and its potential impact on climate. One of the convention's stated objectives was the ''stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. '' Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO 2 as a greenhouse gas, the relationship between CO 2 emissions and increases in atmospheric CO 2 levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO 2 emissions records be compiled, maintained, updated, and documented

  13. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  14. Report of fiscal 1999 basic survey for joint implementation, etc. Feasibility study on energy conservation and reduction of CO2 emission at Omsk Refinery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper explains fiscal 1999 survey on energy conservation and reduction of CO2 at Omsk Refinery in the Russian Federation for the purpose of making the project tied to the COP3 joint implementation. This refinery is the largest class refinery in Russia having a capacity of 600,000 BPSD. The atmospheric distillation unit AVT-10, which emits 470,000 t-CO2/year, was selected for the object of the survey. As the modification plans, optimization of process system, modification of waste heat boiler and installation of new furnaces were considered. The plans 1, 2 are possible due to their low investment costs. The plan 3 to install new furnaces is able to reduce the large volume of CO2 emission though its investment cost is higher. For each modification plan, estimation was made for the investment cost, the benefit by energy saving and the volume of reduction of CO2 emission. The results for each of the plans 1, 2 and 3 were 907x10{sup 3}, 3,377x10{sup 3}, 50,400x10{sup 3} in US$; 535x10{sup 3}, 928x10{sup 3}, 1,407x10{sup 3} in US$; and 36.1x10{sup 3}, 68.2x10{sup 3}, 86.6x10{sup 3} tons/year. The Russian side showed their satisfaction of the results and keen interest in the energy saving effect. For the purpose of realizing this plan, financial assistance and technological cooperation are essential. Russia shows their great expectations for the Japanese government. (NEDO)

  15. CO2 emissions of nuclear power supply

    International Nuclear Information System (INIS)

    Wissel, S.; Mayer-Spohn, O.; Fahl, U.; Voss, A.

    2007-01-01

    Increasingly, supported by the recent reports of the IPCC (International Panel on Climate Change), political, social and scientific institutions call for the use of atomic energy for reducing CO2 emissions. In Germany, the discussion is highly controversial. A life-cycle balance of nuclear power shows that its CO2 emissions are much lower than those of other technologies, even if changes in the nuclear fuel cycle are taken into account. (orig.)

  16. A human development framework for CO2 reductions.

    Directory of Open Access Journals (Sweden)

    Luís Costa

    Full Text Available Although developing countries are called to participate in CO(2 emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI and per capita CO(2 emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO(2 emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU. If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8. In particular, 300 Gt of cumulative CO(2 emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20 % to 30 % of previously calculated CO(2 budgets limiting global warming to 2 °C. These constraints and results are incorporated into a CO(2 reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2 °C target after a particular development threshold is reached. For example, in each time step of five years, countries with an HDI of 0.85 would need to reduce their per capita emissions by approx. 17% and countries with an HDI of 0.9 by 33 %. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100 Gt of CO(2. These values are within the uncertainty range of emissions to limit global temperatures to 2 °C.

  17. A human development framework for CO2 reductions.

    Science.gov (United States)

    Costa, Luís; Rybski, Diego; Kropp, Jürgen P

    2011-01-01

    Although developing countries are called to participate in CO(2) emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO(2) emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO(2) emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300 Gt of cumulative CO(2) emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20 % to 30 % of previously calculated CO(2) budgets limiting global warming to 2 °C. These constraints and results are incorporated into a CO(2) reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2 °C target after a particular development threshold is reached. For example, in each time step of five years, countries with an HDI of 0.85 would need to reduce their per capita emissions by approx. 17% and countries with an HDI of 0.9 by 33 %. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100 Gt of CO(2). These values are within the uncertainty range of emissions to limit global temperatures to 2 °C. © 2011 Costa et al.

  18. Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.

    Science.gov (United States)

    Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng

    2017-11-01

    Climate change, caused by heavy CO 2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO 2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO 2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO 2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO 2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO 2 reduction. In order to achieve high selectivity for CO 2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO 2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Developments in greenhouse gas emissions and net energy use in Danish agriculture - How to achieve substantial CO2 reduction?

    DEFF Research Database (Denmark)

    Dalgaard, Tommy; Olesen, Jørgen E; Petersen, Søren O

    2011-01-01

    Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG e...

  20. CO2 emissions of installations concerned by the directive quotas 2003/87/CE

    International Nuclear Information System (INIS)

    2003-01-01

    This document provides data on the the carbon dioxide emissions: emissions of reference for the allocation (t CO 2 ), annual allocation of quotas (t CO 2 ), % of reduction for 2005-2007 against reference emissions, % of reduction for 2005-2007 against the 2002 emissions, allocation of quotas for the period 2005-2007 (t CO 2 ). (A.L.B.)

  1. The Reduction of CO2 Emissions by Application of High-Strength Reinforcing Bars to Three Different Structural Systems in South Korea

    Directory of Open Access Journals (Sweden)

    Seungho Cho

    2017-09-01

    Full Text Available The architecture, engineering, and construction (AEC industry consume approximately 23% of the national energy annually, and are considered among the highest energy consuming industries. Recently, several studies have focused on establishing strategies to reduce the emissions of carbon dioxide in the AEC industry by utilisation of low-carbon materials, material reuse, recycling and minimal usage; selection of an optimal structural system and structural optimisation; and optimisation of construction operations. While several studies examined material selection and replacement in concrete, there is a paucity of studies investigating the replacement and implementation of high-strength re-bars to lower the carbon dioxide emissions in buildings. To fill this research gap, the purpose of this study involves calculating the emissions of carbon dioxide by applying high-strength reinforcement bars in three different types of buildings. The input–output analysis method was adopted to compute the emissions of carbon dioxide by using the yield strength and size. This study showed that the application of the high-strength re-bars is beneficial in reducing the input amount of materials, although the quantity of reinforcing bars on the development and splice increased. Furthermore, the application of high-strength deformed bars is also advantageous as a means of carbon dioxide reduction in the studied structural systems. In this study, the CO2 emissions of three different structural systems indicated that implementing SD500 re-bars is the most effective method to reduce carbon dioxide emissions.

  2. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima

    2016-12-01

    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  3. Social Learning and the Mitigation of Transport CO2 Emissions

    OpenAIRE

    Maha Al Sabbagh

    2017-01-01

    Social learning, a key factor in fostering behavioural change and improving decision making, is considered necessary for achieving substantial CO2 emission reductions. However, no empirical evidence exists on how it contributes to mitigation of transport CO2 emissions, or the extent of its influence on decision making. This paper presents evidence addressing these knowledge gaps. Social learning-oriented workshops were conducted to gather the views and preferences of participants from the gen...

  4. Households' direct CO-2 emissions according to location

    International Nuclear Information System (INIS)

    Cavailhes, Jean; Hilal, Mohamed; Moreau, Sylvain; Bottin, Anne; Reperant, Patricia

    2012-08-01

    Limiting direct emissions of carbon dioxide (CO 2 ) by households is an important factor for achieving reductions in greenhouse gas emissions in compliance with the Kyoto Protocol and European policy. The two main sources of emissions are, in descending order, housing and commuting between home and the workplace or place of study. Average housing-related emissions are 3, 150 kg of CO 2 per year, reaching 4, 200 kg of CO 2 per year in mountain and semi-continental climates. Individual houses in urban centres, often old and with fuel-oil heating, emit more CO 2 than peri-urban dwellings, which are more recent and often have 100% electric heating. Conversely, emissions from commuting are higher in peri-urban areas, where the needs for transport are greater but less transport services are on offer. (authors)

  5. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  6. Feasibility of biodiesel production and CO2 emission reduction by Monoraphidium dybowskii LB50 under semi-continuous culture with open raceway ponds in the desert area.

    Science.gov (United States)

    Yang, Haijian; He, Qiaoning; Hu, Chunxiang

    2018-01-01

    Compared with other general energy crops, microalgae are more compatible with desert conditions. In addition, microalgae cultivated in desert regions can be used to develop biodiesel. Therefore, screening oil-rich microalgae, and researching the algae growth, CO 2 fixation and oil yield in desert areas not only effectively utilize the idle desertification lands and other resources, but also reduce CO 2 emission. Monoraphidium dybowskii LB50 can be efficiently cultured in the desert area using light resources, and lipid yield can be effectively improved using two-stage induction and semi-continuous culture modes in open raceway ponds (ORPs). Lipid content (LC) and lipid productivity (LP) were increased by 20% under two-stage industrial salt induction, whereas biomass productivity (BP) increased by 80% to enhance LP under semi-continuous mode in 5 m 2 ORPs. After 3 years of operation, M. dybowskii LB50 was successfully and stably cultivated under semi-continuous mode for a month during five cycles of repeated culture in a 200 m 2 ORP in the desert area. This culture mode reduced the supply of the original species. The BP and CO 2 fixation rate were maintained at 18 and 33 g m -2  day -1 , respectively. Moreover, LC decreased only during the fifth cycle of repeated culture. Evaporation occurred at 0.9-1.8 L m -2  day -1 , which corresponded to 6.5-13% of evaporation loss rate. Semi-continuous and two-stage salt induction culture modes can reduce energy consumption and increase energy balance through the energy consumption analysis of life cycle. This study demonstrates the feasibility of combining biodiesel production and CO 2 fixation using microalgae grown as feedstock under culture modes with ORPs by using the resources in the desert area. The understanding of evaporation loss and the sustainability of semi-continuous culture render this approach practically viable. The novel strategy may be a promising alternative to existing technology for CO 2 emission

  7. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential

    International Nuclear Information System (INIS)

    Walle, Inge van de; Camp, Nancy van; Casteele, Liesbet van de; Verheyen, Kris; Lemeur, Raoul

    2007-01-01

    Belgium, being an EU country, has committed itself to a 7.5% reduction of greenhouse gas emissions during the first commitment period of the Kyoto Protocol. Within this framework, the Flemish government aims at reaching a share of 6% of renewable electricity in the total electricity production by 2010. In this work, the biomass production of birch, maple, poplar and willow in a short-rotation forestry (SRF) plantation after a 4-year growth period served as the base to calculate the amount of (electrical) energy that could be produced by this type of bioenergy crop in Flanders. The maximum amount of electricity that could be provided by SRF biomass was estimated at 72.9 GWh e year -1 , which only accounts for 0.16% of the total electricity production in this region. Although the energy output was rather low, the bioenergy production process under consideration appeared to be more energy efficient than energy production processes based on fossil fuels. The high efficiency of birch compared to the other species was mainly due to the high calorific value of the birch wood. The maximum CO 2 emission reduction potential of SRF plantations in Flanders was estimated at only 0.09% of the total annual CO 2 emission. The most interesting application of SRF in Flanders seemed to be the establishment of small-scale plantations, linked to a local combined heat and power plant. These plantations could be established on marginal arable soils or on polluted sites, and they could be of importance in the densely populated area of Flanders because of other environmental benefits, among which their function as (temporary) habitat for many species

  8. Economic Growth and CO2 Emissions in the European Union

    International Nuclear Information System (INIS)

    Bengochea-Morancho, A.; Martinez-Zarzoso, I.; Higon-Tamarit, F.

    2001-01-01

    This paper examines the relationship between economic growth and CO 2 emissions in the European Union. A panel data analysis for the period 1981 to 1995 is applied in order to estimate the relationship between Gross Domestic Product (GDP) growth and CO 2 emissions in ten selected European countries. The analysis shows important disparities between the most industrialised countries and the rest. The results do not seem to support a uniform policy to control emissions; they rather indicate that a reduction in emissions should be achieved by taking into account the specific economic situation and the industrial structure of each EU member state. 20 refs

  9. China CO2 emission accounts 1997–2015

    Science.gov (United States)

    Shan, Yuli; Guan, Dabo; Zheng, Heran; Ou, Jiamin; Li, Yuan; Meng, Jing; Mi, Zhifu; Liu, Zhu; Zhang, Qiang

    2018-01-01

    China is the world’s top energy consumer and CO2 emitter, accounting for 30% of global emissions. Compiling an accurate accounting of China’s CO2 emissions is the first step in implementing reduction policies. However, no annual, officially published emissions data exist for China. The current emissions estimated by academic institutes and scholars exhibit great discrepancies. The gap between the different emissions estimates is approximately equal to the total emissions of the Russian Federation (the 4th highest emitter globally) in 2011. In this study, we constructed the time-series of CO2 emission inventories for China and its 30 provinces. We followed the Intergovernmental Panel on Climate Change (IPCC) emissions accounting method with a territorial administrative scope. The inventories include energy-related emissions (17 fossil fuels in 47 sectors) and process-related emissions (cement production). The first version of our dataset presents emission inventories from 1997 to 2015. We will update the dataset annually. The uniformly formatted emission inventories provide data support for further emission-related research as well as emissions reduction policy-making in China. PMID:29337312

  10. China CO2 emission accounts 1997-2015

    Science.gov (United States)

    Shan, Yuli; Guan, Dabo; Zheng, Heran; Ou, Jiamin; Li, Yuan; Meng, Jing; Mi, Zhifu; Liu, Zhu; Zhang, Qiang

    2018-01-01

    China is the world's top energy consumer and CO2 emitter, accounting for 30% of global emissions. Compiling an accurate accounting of China's CO2 emissions is the first step in implementing reduction policies. However, no annual, officially published emissions data exist for China. The current emissions estimated by academic institutes and scholars exhibit great discrepancies. The gap between the different emissions estimates is approximately equal to the total emissions of the Russian Federation (the 4th highest emitter globally) in 2011. In this study, we constructed the time-series of CO2 emission inventories for China and its 30 provinces. We followed the Intergovernmental Panel on Climate Change (IPCC) emissions accounting method with a territorial administrative scope. The inventories include energy-related emissions (17 fossil fuels in 47 sectors) and process-related emissions (cement production). The first version of our dataset presents emission inventories from 1997 to 2015. We will update the dataset annually. The uniformly formatted emission inventories provide data support for further emission-related research as well as emissions reduction policy-making in China.

  11. Catholyte-Free Electrocatalytic CO2 Reduction to Formate.

    Science.gov (United States)

    Lee, Wonhee; Kim, Young Eun; Youn, Min Hye; Jeong, Soon Kwan; Park, Ki Tae

    2018-04-16

    Electrochemical reduction of carbon dioxide (CO 2 ) into value-added chemicals is a promising strategy to reduce CO 2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO 2 reduction (CO 2 R) is the low solubility of CO 2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte-free electrocatalytic CO 2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm -2 , despite the decrease in CO 2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L -1 is obtained as a one-path product at 343 K with high PCD (51.7 mA cm -2 ) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  13. Estimating marginal CO2 emissions rates for national electricity systems

    International Nuclear Information System (INIS)

    Hawkes, A.D.

    2010-01-01

    The carbon dioxide (CO 2 ) emissions reduction afforded by a demand-side intervention in the electricity system is typically assessed by means of an assumed grid emissions rate, which measures the CO 2 intensity of electricity not used as a result of the intervention. This emissions rate is called the 'marginal emissions factor' (MEF). Accurate estimation of MEFs is crucial for performance assessment because their application leads to decisions regarding the relative merits of CO 2 reduction strategies. This article contributes to formulating the principles by which MEFs are estimated, highlighting the strengths and weaknesses in existing approaches, and presenting an alternative based on the observed behaviour of power stations. The case of Great Britain is considered, demonstrating an MEF of 0.69 kgCO 2 /kW h for 2002-2009, with error bars at +/-10%. This value could reduce to 0.6 kgCO 2 /kW h over the next decade under planned changes to the underlying generation mix, and could further reduce to approximately 0.51 kgCO 2 /kW h before 2025 if all power stations commissioned pre-1970 are replaced by their modern counterparts. Given that these rates are higher than commonly applied system-average or assumed 'long term marginal' emissions rates, it is concluded that maintenance of an improved understanding of MEFs is valuable to better inform policy decisions.

  14. Costs of mitigating CO2 emissions from passenger aircraft

    Science.gov (United States)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  15. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion

    Science.gov (United States)

    Saeki, Tazu; Patra, Prabir K.

    2017-12-01

    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  16. Nuclear power and its role in limiting CO2 emissions

    International Nuclear Information System (INIS)

    Suparman

    2012-01-01

    The objective of this study is to analyze the proper role of nuclear power in the long term energy planning by comparing different type of scenarios in terms of CO2 emission reduction, based on the Business-as-Usual (BAU) scenario. For this purpose, a MESSAGE (Model of Energy Supply Systems and their General Environmental impacts) was used to develop energy planning as well as CO2 emission projection. A sensitivity analysis for CO2 reduction rates of 2.%, 3%, 4% and 5% have been done. From this sensitivity analysis, it can be concluded that nuclear will be a part of optimum solution under CO2 limitation of at least 3% from BAU condition. The more the environmental standards are tightened and enforced the more and the earlier nuclear power becomes part of the optimum generation mix. (author)

  17. Energy consumption and CO2 emissions in Iran, 2025.

    Science.gov (United States)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-04-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  19. Report on basic survey project for promoting joint implementation in 1999. Feasibility study on energy conservation and reduction of CO2 emission at Balikpapan Refinery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective of implementation as the clean development mechanism (CDM), a survey was performed on energy conservation and CO2 reduction at Balikpapan Refinery in Indonesia with respect to reducing emission of greenhouse effect gases. A crude oil atmospheric distillation unit with a capacity of 200,000 BPSD, and a vacuum distillation unit with a capacity of 81,000 BPSD are in operation, which emit carbon dioxide of about 470,000 tons annually from fuels burned and consumed by these units. The result of the survey revealed that there is a room for improvement in heat recovery, and that these units are separated into two groups located far away with each other in distance, resulting in low thermal efficiency and wastes in fuel. Increase in heat recovery should be achieved, and fuel consumption in the heating furnace should be reduced. Energy saving technologies owned by JGC were applied to establish a modification plan. The plan calls for maximum annual reduction of carbon dioxide of about 61,000 tons at a reduction rate of 13%, and maximum annual fuel conservation of 190 times 10{sup 9} kcal at a saving rate of 13%. PERTAMINA also desires the realization thereof if technical and financial assistance is made available. The project has a significance that it would give a great impetus to the entire regions and industries. (NEDO)

  20. CO2 substitution potential and CO2 reduction costs of an energetic exploitation of solid biomasses in Germany

    International Nuclear Information System (INIS)

    Becher, S.

    1995-01-01

    For the reduction of the anthropogenic greenhouse effect, the CO 2 , emissions are clearly to be reduced in future, according to the resolution made by the Federal Republic. Against the background of this objective, possible contributions of the biogenous solid fuels for the reduction of the CO 2 release of fossil origin are presented and discussed. For that, first the existing potentials of biomass in Germany and their present use are shown. Based on this, the CO 2 emissions by the present use already avoided, as well as the existing unexploited potentials of the CO 2 reduction potentials still to be exploited are determined. In accordance with an 'integral' starting point, thereby all pre- and post-positioned processes are considered. Finally, the specific CO 2 reduction costs are analysed and compared with other options. (orig.) [de

  1. Achieving Negative CO2 Emissions by Protecting Ocean Chemistry

    Science.gov (United States)

    Cannara, A.

    2016-12-01

    Industrial Age CO2 added 1.8 trillion tons to the atmosphere. About ¼ has dissolved in seas. The rest still dissolves, bolstered by present emissions of >30 gigatons/year. Airborne & oceanic CO2 have induced sea warming & ocean acidification*. This paper suggests a way to induce a negative CO2-emissions environment for climate & oceans - preserve the planet`s dominant CO2-sequestration system ( 1 gigaton/year via calcifying sea life**) by promptly protecting ocean chemistry via expansion of clean power for both lime production & replacement of CO2-emitting sources. Provide natural alkali (CaO, MgO…) to oceans to maintain average pH above 8.0, as indicated by marine biologists. That alkali (lime) is available from past calcifying life's limestone deposits, so can be returned safely to seas once its CO2 is removed & permanently sequestered (Carbfix, BSCP, etc.***). Limestone is a dense source of CO2 - efficient processing per mole sequestered. Distribution of enough lime is possible via cargo-ship transits - 10,000 tons lime/transit, 1 million transits/year. New Panamax ships carry 120,000 tons. Just 10,000/transit allows gradual reduction of present & past CO2 emissions effects, if coupled with combustion-power reductions. CO2 separation from limestone, as in cement plants, consumes 400kWHrs of thermal energy per ton of output lime (or CO2). To combat yearly CO2 dissolution in seas, we must produce & distribute about 10gigatons of lime/year. Only nuclear power produces the clean energy (thousands of terawatt hours) to meet this need - 1000 dedicated 1GWe reactors, processing 12 cubic miles of limestone/year & sequestering CO2 into a similar mass of basalt. Basalt is common in the world. Researchers*** report it provides good, mineralized CO2 sequestration. The numbers above allow gradual CO2 reduction in air and seas, if we return to President Kennedy's energy path: http://tinyurl.com/6xgpkfa We're on an environmental precipice due to failure to eliminate

  2. Peak energy consumption and CO2 emissions in China

    International Nuclear Information System (INIS)

    Yuan, Jiahai; Xu, Yan; Hu, Zheng; Zhao, Changhong; Xiong, Minpeng; Guo, Jingsheng

    2014-01-01

    China is in the processes of rapid industrialization and urbanization. Based on the Kaya identity, this paper proposes an analytical framework for various energy scenarios that explicitly simulates China's economic development, with a prospective consideration on the impacts of urbanization and income distribution. With the framework, China's 2050 energy consumption and associated CO 2 reduction scenarios are constructed. Main findings are: (1) energy consumption will peak at 5200–5400 million tons coal equivalent (Mtce) in 2035–2040; (2) CO 2 emissions will peak at 9200–9400 million tons (Mt) in 2030–2035, whilst it can be potentially reduced by 200–300 Mt; (3) China's per capita energy consumption and per capita CO 2 emission are projected to peak at 4 tce and 6.8 t respectively in 2020–2030, soon after China steps into the high income group. - Highlights: • A framework for modeling China's energy and CO 2 emissions is proposed. • Scenarios are constructed based on various assumptions on the driving forces. • Energy consumption will peak in 2035–2040 at 5200–5400 Mtce. • CO 2 emissions will peak in 2030–2035 at about 9300 Mt and be cut by 300 Mt in a cleaner energy path. • Energy consumption and CO 2 emissions per capita will peak soon after China steps into the high income group

  3. Toxic emissions and devalued CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    With reference to the paradigme shift regarding the formation of dioxins in municiplan solid waste incinerators experimental results are taken into account which lead to the suspicion that the same mechanism of de-novo-synthesis also applies to fireplace chimneys. This can explain the dioxin...... friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  4. Feasibility study on energy conservation and reduction of CO2 emissions using RDF (refused derived fuel) at a Chinese cement plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The feasibility study was conducted on a project in China for energy saving and greenhouse gas emission reduction by introducing the energy-saving and alternative energy technologies in cement plants. The cement plant selected for the feasibility study is Shanghai Plant of Shanghai Allied Cement Co., Ltd. (SAC), for RDF receive and supply facility, chlorine bypass facility, exhaust heat power generation facility and RDF production facility. The study results indicate that the exhaust power generation can save energy of 4,700 tons/y as crude, or energy saving rate of 25.5%, and that replacing part of coal by RDF and exhaust power generation can reduce CO2 emissions by 25,500 and 18,500 tons/y, respectively. For the investment recovery, it is estimated that the investment can be recovered in 9 years, and the project value is 81.399 million Yuan with the initial investment and project profit in each year discounted to the present value. These results fail to satisfy the SAC's investment standards. (NEDO)

  5. Feasibility study on energy conservation and reduction of CO2 emissions using RDF (refused derived fuel) at a Chinese cement plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The feasibility study was conducted on a project in China for energy saving and greenhouse gas emission reduction by introducing the energy-saving and alternative energy technologies in cement plants. The cement plant selected for the feasibility study is Shanghai Plant of Shanghai Allied Cement Co., Ltd. (SAC), for RDF receive and supply facility, chlorine bypass facility, exhaust heat power generation facility and RDF production facility. The study results indicate that the exhaust power generation can save energy of 4,700 tons/y as crude, or energy saving rate of 25.5%, and that replacing part of coal by RDF and exhaust power generation can reduce CO2 emissions by 25,500 and 18,500 tons/y, respectively. For the investment recovery, it is estimated that the investment can be recovered in 9 years, and the project value is 81.399 million Yuan with the initial investment and project profit in each year discounted to the present value. These results fail to satisfy the SAC's investment standards. (NEDO)

  6. CO2 emissions from the transport of China's exported goods

    International Nuclear Information System (INIS)

    Andersen, Otto; Goessling, Stefan; Simonsen, Morten; Walnum, Hans Jakob; Peeters, Paul; Neiberger, Cordula

    2010-01-01

    Emissions of greenhouse gases in many European countries are declining, and the European Union (EU) believes it is on track in achieving emission reductions as agreed upon in the Kyoto Agreement and the EU's more ambitious post-Kyoto climate policy. However, a number of recent publications indicate that emission reductions may also have been achieved because production has been shifted to other countries, and in particular China. If a consumption perspective is applied, emissions in industrialized countries are substantially higher, and may not have declined at all. Significantly, emissions from transports are omitted in consumption-based calculations. As all trade involves transport, mostly by cargo ship, but also by air, transports add considerably to overall emissions growth incurred in production shifts. Consequently, this article studies the role of transports in creating emissions of CO 2 , based on the example of exports from China. Results are discussed with regard to their implications for global emission reductions and post-Kyoto negotiations.

  7. The CO2-tax and its ability to reduce CO2 emissions related to oil and gas production in Norway

    International Nuclear Information System (INIS)

    Roemo, F.; Lund, M.W.

    1994-01-01

    The primary ambition of the paper is to illustrate some relevant effects of the CO 2 -tax, and draw the line from company adaptation via national ambitions and goals to global emission consequences. The CO 2 -tax is a success for oil and gas production only to the extent that the CO 2 emission per produced unit oil/gas is reduced as a consequence of the tax. If not, the CO 2 -tax is a pure fiscal tax and has no qualitative impact on the CO 2 emissions. The reduction potential is then isolated to the fact that some marginal fields will not be developed, and the accelerated close down of fields in production. The paper indicates that a significant replacement of older gas turbines at a certain level of the CO 2 -tax could be profitable for the companies. This is dependent on change in turbine energy utilization, and the investment cost. The CO 2 -tax is a political success for the nation if it is a significant contributor to achieve national emission goals. Furthermore, is the CO 2 -tax an environmental success only to the extent it contributes to reductions in the CO 2 emissions globally. The paper indicates that there are possibilities for major suboptimal adaptations in connection with national CO 2 -taxation of the oil and gas production. 13 refs., 6 figs

  8. New fuel consumption standards for Chinese passenger vehicles and their effects on reductions of oil use and CO2 emissions of the Chinese passenger vehicle fleet

    International Nuclear Information System (INIS)

    Wang Zhao; Jin Yuefu; Wang Michael; Wei Wu

    2010-01-01

    A new fuel consumption standard for passenger vehicles in China, the so-called Phase 3 standard, was approved technically in 2009 and will take effect in 2012. This standard aims to introduce advanced energy-saving technologies into passenger vehicles and to reduce the average fuel consumption rate of Chinese new passenger vehicle fleet in 2015 to 7 L/100 km. The Phase 3 standard follows the evaluating system by specifying fuel consumption targets for sixteen individual mass-based classes. Different from compliance with the Phases 1 and 2 fuel consumption standards, compliance of the Phase 3 standard is based on corporate average fuel consumption (CAFC) rates for individual automobile companies. A transition period from 2012 to 2014 is designed for manufacturers to gradually adjust their production plans and introduce fuel-efficient technologies. In this paper, we, the designers of the Phase 3 standard, present the design of the overall fuel consumption reduction target, technical feasibility, and policy implications of the Phase 3 standard. We also explore several enforcement approaches for the Phase 3 standard with financial penalties of non-compliance as a priority. Finally, we estimate the overall effect of the Phase 3 standard on oil savings and CO 2 emission reductions.

  9. European Community Can Reduce CO2 Emissions by Sixty Percent : A Feasibility Study

    NARCIS (Netherlands)

    Mot, E.; Bartelds, H.; Esser, P.M.; Huurdeman, A.J.M.; Laak, P.J.A. van de; Michon, S.G.L.; Nielen, R.J.; Baar, H.J.W. de

    1993-01-01

    Carbon dioxide (CO2) emissions in the European Community (EC) can be reduced by roughly 60 percent. A great many measures need to be taken to reach this reduction, with a total annual cost of ECU 55 milliard. Fossil fuel use is the main cause of CO2 emissions into the atmosphere; CO2 emissions are

  10. Toxic emissions and devaluated CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    Environmental, energy and climate policies need fresh reflections. In order to evaluate toxics reduction policies the Stockholm Convention on Persistent Organic Pollutants is mandatory. Denmark's function as lead country for dioxin research in the context of the OSPAR Convention is contrasted...... with a climate policy whose goals of CO2-reduction were made operational by green-wash. Arguments are given for the devaluation of CO2- neutrality in case of burning wood. Alternative practices as storing C in high quality wood products and/or leaving wood in the forest are recommended. A counter......-productive effect of dioxin formation in the cooling phase of wood burning appliances has been registered akin to de-novo-synthesis in municipal solid waste incinerators. Researchers, regulators and the public are, however, still preoccupied by notions of oven design and operation parameters, assuming that dioxin...

  11. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  12. Energy development and CO2 emissions in China

    International Nuclear Information System (INIS)

    Xiaolin Xi

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO 2 emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO 2 emissions from burning fossil fuels and projects future energy use and resulting CO 2 emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO 2 emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO 2 emissions reduction in China during the 1985-2020 period are examined

  13. CO2 reduction strategies for the Czech Republic

    International Nuclear Information System (INIS)

    De Kruijk, H.; Van den Broek, M.A.; Van Harmelen, T.; Van Oostvoorn, F.; Maly, M.

    1994-08-01

    Reduction of CO 2 emissions now has high priority on the international political agenda. The UN Convention on Climate Change provides countries the option for fulfilling the CO 2 reduction obligations individually or jointly. But before identifying opportunities, a reference path or scenario is needed to indicate how emissions will vary without joint implementation of projects or policies. This paper looks at the situation in the Czech Republic. First objective of the study concerns collecting information on CO 2 emissions in the Czech Republic, a reference scenario for CO 2 developments, and the reduction scope till the year 2015. Second objective is development of CEC energy/environmental model EFOM-ENV (Energy Flow and Optimization Model - ENVironment) for the Czech Republic. In the new orientation towards a market economy it is important to start preparing policy recommendations for energy and environmental needs based on the least cost approach. Presently the energy/environmental model EFOM-ENV is used for this type of studies by CEC, Directorate-General 12, and research institutes in almost all EC countries. It showed usefulness in EC countries for developing integrated energy /environmental strategies. Furthermore, based on its experience with this type of studies, the Netherlands Energy Research Foundation has the last years developed a GAMS PC-version of EFOM-ENV, very flexible and efficient to use. Increasing international cooperation in areas of energy and environmental policies requires a common analytical approach. Particularly for preparing harmonized emission control policies in Europe the use of the EC model EFOM-ENV for all Central European countries can provide comparable and useful insight in the relation between energy use and emissions in Central Europe. In fact similar studies have been and will be conducted for the Slovak Republic, Hungary, Bulgaria, other Central European countries. 4 figs., 5 tabs., 6 refs

  14. CO2 emission trade from a fiscal perspective

    International Nuclear Information System (INIS)

    Klaassen, F.A.H.; Derksen, R.T.; Keijel, J.J.C.

    2004-06-01

    The report gives answers to questions as 'are CO2 emission permits assets or supplies?'; how to deal with forward contracts and options in CO2 emission permits 'fiscal-wise'; and 'which are the consequences of CO2 emissions trade for the rebate of pre-taxes?' Als attention is paid to trading system for NOx emission [nl

  15. Influence of trade on national CO2 emissions

    International Nuclear Information System (INIS)

    Munksgaard, Jesper; Pade, Lise-Lotte; Minx, Jan; Lenzen, Manfred

    2005-01-01

    International trade has an impact on national CO 2 emissions and consequently on the ability to fulfil national CO 2 reduction targets. Through goods and services traded in a globally interdependent world, the consumption in each country is linked to greenhouse gas emissions in other countries. It has been argued that in order to achieve equitable reduction targets, international trade has to be taken into account when assessing nations' responsibility for abating climate change. Especially for open economies such as Denmark, greenhouse gases embodied in internationally traded commodities can have a considerable influence on the national 'greenhouse gas responsibility'. By using input-output modelling, we analyse the influence from international trade on national CO 2 emissions. The aim is to show that trade is the key to define CO 2 responsibility on a macroeconomic level and that imports should be founded in a multi-region model approach. Finally, the paper concludes on the need to consider the impact from foreign trade when negotiating reduction targets and base line scenarios. (Author)

  16. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  17. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  18. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  19. Utopia Switzerland (2) - A Country Without CO2 Emissions

    International Nuclear Information System (INIS)

    Streit, Marco

    2008-01-01

    Global warming and climate change are major themes in the today's energy policy discussion. Awarding Al Gore and the IPCC with the Nobel price in 2007 shows the importance of the climate change for the whole world. That we are running into climatic problems is already known since several decades and possibilities to solve the CO 2 emissions were proposed and discussed since years, but a reduction in the CO 2 emissions is not detectable. This might be due to the fact, that the major part of CO 2 production (traffic and heating) is not consequently touched. It seems to be easier to discuss about renewable energies in the electricity market than in other areas. And the consequences of discussing stepping out of nuclear all over the world, has enforced the problem. Although the renaissance of nuclear has started and the known positive impact to the climate from this energy source, it is not forced to be the solution for the biggest problem of the near future. There are only a few countries worldwide which produce electricity without or with only small amounts of CO 2 emissions like Norway or Switzerland. Those countries could be demonstration countries to show the possibilities for reducing and avoiding CO 2 emissions. Would it be possible to replace all fossil energy sources during a reasonable period of time by using nuclear energy and hydrogen as an energy storage system? Is this scenario technical feasible and of economic interest for a small, developed country like Switzerland? If yes, Switzerland might be a good candidate to establish the first CO 2 -free industrial developed state in the world. Looking much more ahead this study will discuss a simple but might be effective scenario for Switzerland. The study is based on a paper presented at IYNC 2006 and will update the used data as well as going in more details. (authors)

  20. China’s provincial CO2 emissions embodied in international and interprovincial trade

    International Nuclear Information System (INIS)

    Guo Ju’e; Zhang Zengkai; Meng Lei

    2012-01-01

    Trades create a mechanism of embodied CO 2 emissions transfer among regions, causing distortion on the total emissions. As the world’s second largest economy, China has a large scale of trade, which results in the serious problem of embodied CO 2 emissions transfer. This paper analyzes the characteristics of China’s CO 2 emissions embodied in international and interprovincial trade from the provincial perspective. The multi-regional Input–Output Model is used to clarify provincial CO 2 emissions from geographical and sectoral dimensions, including 30 provinces and 28 sectors. Two calculating principles (production accounting principle and consumption accounting principle, ) are applied. The results show that for international trade, the eastern area accounts for a large proportion in China’s embodied CO 2 emissions. The sectors as net exporters and importers of embodied CO 2 emissions belong to labor-intensive and energy-intensive industries, respectively. For interprovincial trade, the net transfer of embodied CO 2 emissions is from the eastern area to the central area, and energy-intensive industries are the main contributors. With the largest amount of direct CO 2 emissions, the eastern area plays an important role in CO 2 emissions reduction. The central and western areas need supportive policies to avoid the transfer of industries with high emissions. - Highlights: ► China’s embodied CO 2 emissions are analyzed from the provincial perspective. ► Eastern provinces have larger CO 2 emissions embodied in international trade. ► Embodied CO 2 emissions are mainly transferred from eastern area to central area. ► Coastal provinces play important roles in CO 2 emissions reduction. ► Inland provinces need supportive policies on emissions reduction.

  1. Some scenarios of CO2 emission from the energy system

    International Nuclear Information System (INIS)

    Liik, O.; Landsberg, M.

    1996-01-01

    After Estonia regained its independence, planning of energy policy became topical. Since 1989, several expert groups have worked on the urgent problems and developments of Estonia's power engineering. Comprehensive energy system planning by mathematical modeling was accomplished in 1994. Then Tallinn Technical University acquired the MARKAL model from the Swedish National Board for Industrial and Technical Development (NUTEK). The influence of air pollution constraints on energy system development was first investigated in 1995. At the end of 1995, under the U.S. Country Studies Program, a detailed analysis of future CO 2 emissions and their reduction options began. During 1990-1993, energy demand lowered due to economic decline and sharp rise in the fuel and energy prices as well as a decrease in electricity exports, has resulting in 50% reduction of CO 2 emissions. For the same reasons, Estonia has been able to meet the requirements set in the agreements on SO 2 and NO x emissions with no special measures or costs. To meet the rigid ing SO 2 restrictions and growing energy consumption in the future, Estonia must invest in abatement and in new clean and efficient oil-shale combustion technology. Along with the old oil-shale plants closing and electricity consumption growing, other fuels will be used. The increase in energy demand then should not be fast due to constantly rising prices and efficient energy use. Measures to reduce SO 2 , and NO x emissions will also reduce CO 2 . In MARKAL runs the 1990 level of CO 2 emissions will be exceeded only along with high demand growth and absence of emissions control. Restricted availability of imported fuels and nuclear power or enabling electricity import can change the results significantly. The results discussed here can also change because the data base is being improved (such as detailed description of energy networks, description of demand-side technologies, accounting of energy conservation measures, addition of

  2. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  3. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  4. Charcoal cuts the CO2-emissions

    International Nuclear Information System (INIS)

    Aakervik, Anne Lise.

    1999-01-01

    According to this article, bio carbon, or charcoal, may be the way out for the Norwegian processing industry in attempting to reduce the emission of carbon dioxide. Norwegian ferro-alloy plants emit 3 million ton carbon dioxide per year, which comes from the use of coal and coke as reducing agents in the smelting process. If the fraction of bio carbon is increased by 15%, the emission of CO 2 may be reduced by about 1/2 million tonne per year. But the price of charcoal is much greater than that of fix C from coal and coke. Research is in progress on trying to produce bio carbon cheaper. Charcoal can be produced from all types of forest by pyrolysis. Waste heat from the pyrolysis can be sold and used for district heating. The most expensive part in the use of bio carbon will be timber felling and transport to the log pile. Small-scale and large-scale tests will be made to see if it is possible to make adequate charcoal from subarctic timber

  5. Possibility of reducing CO2 emissions from internal combustion engines

    Science.gov (United States)

    Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof

    2017-10-01

    Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.

  6. The greenhouse effect and the amount of CO2 emissions in Romania

    International Nuclear Information System (INIS)

    Manea, Gh.

    1992-01-01

    In order to reduce the CO 2 emissions, responsible by the greenhouse effect on Terra, an international control for monitoring them is to be instated. The development of methods for reducing the CO 2 emissions, implies the identification and evaluation of the CO 2 sources, the forecasting of probable evolution of the CO 2 emissions, and also the assessment of the economic impact. This paper tries to accomplish such an evaluation and to draft several scenarios for reduction of the CO 2 emissions. Also considerations about the suitability of the Romanian adhesion to the international treaties regarding the greenhouse effect monitoring are presented. (author). 7 tabs

  7. Norwegian emissions of CO2 1987-1994. A study of some effects of the CO2 tax

    International Nuclear Information System (INIS)

    Larsen, B.M.; Nesbakken, R.

    1997-01-01

    Several countries have introduced taxes on fossil fuels with the aim of reducing atmospheric emissions, partly because of local environmental goals (SO2, NOx) and partly to participate in a global effort to reduce emissions of greenhouse gases. Many macroeconomic studies, based on both global and national models, have been made of how emissions can be reduced with the help of taxes and the consequent reduction in GDP following the introduction of such taxes. Norway has had a CO2 tax for five years, thereby providing a unique opportunity to evaluate the effects of this tax on emissions. The paper provides a counterfactual analysis of energy consumption and emissions if no CO2 taxes had been introduced, compared with the actual situation in which such taxes exist. The effect of a CO2 tax on oil consumption, and thus CO2 emissions, is studied on the basis of partial economic models for various sectors of the Norwegian economy. The study indicates that the CO2 tax has had an impact on CO2 emissions in Norway. 7 figs., 3 tabs., 17 refs

  8. CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy

    International Nuclear Information System (INIS)

    Ipek Tunc, G.; Tueruet-Asik, Serap; Akbostanci, Elif

    2007-01-01

    Recently, global warming (greenhouse effect) and its effects have become one of the hottest topics in the world agenda. There have been several international attempts to reduce the negative effects of global warming. The Kyoto Protocol can be cited as the most important agreement which tries to limit the countries' emissions within a time horizon. For this reason, it becomes important to calculate the greenhouse gas emissions of countries. The aim of this study is to estimate the amount of CO 2 -the most important greenhouse gas-emissions, for the Turkish economy. An extended input-output model is estimated by using 1996 data in order to identify the sources of CO 2 emissions and to discuss the share of sectors in total emission. Besides, 'CO 2 responsibility', which takes into account the CO 2 content of imports, is estimated for the Turkish economy. The sectoral CO 2 emissions and CO 2 responsibilities are compared and these two notions are linked to foreign trade volume. One of the main conclusions is that the manufacturing industry has the first place in both of the rankings for CO 2 emissions and CO 2 responsibilities, while agriculture and husbandry has the last place

  9. CO2 emissions in the World in 2013

    International Nuclear Information System (INIS)

    Ecoiffier, Mathieu

    2015-12-01

    This publication presents and comments data of CO 2 emissions in the world and their evolution. It more particularly addresses CO 2 emissions due to energy combustion which represent more than 80 per cent of these emissions or 62 per cent of greenhouse gas emissions, and which increased in 2013 with respect to 2012 (+ 2.2 pc). The distribution of CO 2 emissions due to energy combustion in different continents and regions is indicated (levels in 1990, 2012 and 2013, evolutions). The decrease of the CO 2 emission intensity with respect to the GDP is briefly commented (evolution since 1970), as well as the level of CO 2 emissions per inhabitant in China with respect to that in the EU (evolutions since 1970). The evolution of CO 2 emissions is then analysed with respect to different determining parameters according to the Kaya equation (population, GDP, primary energy consumption and their evolution or relationship one to each other)

  10. CO2 emissions resulting from the energy use

    International Nuclear Information System (INIS)

    2004-01-01

    This document brings statistical data on the carbon dioxide emissions resulting from the energy use only. Tables and charts present data for the CO 2 emissions in France, in the world (2001-2002), in the OECD (2000-2002), the CO 2 emissions from electric power plants and refineries in France (1996-1999) and archives of statistics on CO 2 emissions. (A.L.B.)

  11. Research concepts to reduce CO2 emissions at technical conditions

    International Nuclear Information System (INIS)

    Geigle, K.P.; Lammel, O.; Kutne, P.; Schutz, H.; Luckerath, R.; Aigner, M.

    2009-01-01

    Carbon dioxide (CO 2 ) emissions are thought to contribute to climate change and therefore, there is a significant motivation for current gas turbine burner development to reduce those emissions. In order to support burner development, the German Aerospace Center (DLR) utilizes high pressure testing in combination with optical diagnostics enabled by good optical access and numerical simulation. This paper discussed 3 primary activities on CO 2 reduction that have been accomplished recently, notably the simulation of burner development based on the flameless oxidation concept, characterization of syngas combustion behaviour and studying parameters influencing oxyfuel combustion. Enhanced FLOX burner development and flameless oxidation were illustrated and an experimental realization of DLR FLOX burner V1 for operation up to 30 bars was discussed. Several experiments were illustrated and outlined. Computational fluid dynamics and other simulation models were presented. It was concluded that optical diagnostics applicable to high pressure combustion and numerical simulation proved to be extremely helpful for design optimization. 14 refs., 9 figs.

  12. State of Energy Consumption and CO2 Emission in Bangladesh

    International Nuclear Information System (INIS)

    Azad, Abul K.; Nashreen, S.W.; Sultana, J.

    2006-01-01

    Carbon dioxide (CO 2 ) is one of the most important gases in the atmosphere, and is necessary for sustaining life on Earth. It is also considered to be a major greenhouse gas contributing to global warming and climate change. In this article, energy consumption in Bangladesh is analyzed and estimates are made of CO 2 emission from combustion of fossil fuel (coal, gas, petroleum products) for the period 1977 to 1995. International Panel for Climate Change guidelines for national greenhouse gas inventories were used in estimating CO 2 emission. An analysis of energy data shows that the consumption of fossil fuels in Bangladesh is growing by more than 5% per year. The proportion of natural gas in total energy consumption is increasing, while that of petroleum products and coal is decreasing. The estimated total CO 2 release from all primary fossil fuels used in Bangladesh amounted to 5,072 Gg in 1977, and 14,423 Gg in 1995. The total amounts of CO 2 released from petroleum products, natural gas, and coal in the period 1977-1995 were 83,026 Gg (50% of CO 2 emission), 72,541 Gg (44% of CO 2 emission), and 9,545 Gg (6% CO 2 emission), respectively. A trend in CO 2 emission with projections to 2070 is generated. In 2070, total estimated CO 2 emission will be 293,260 Gg with a current growth rate of 6.34%/y. CO 2 emission from fossil fuels is increasing. Petroleum products contribute the majority of CO 2 emission load, and although the use of natural gas is increasing rapidly, its contribution to CO 2 emission is less than that of petroleum products. The use of coal as well as CO 2 emission from coal is expected to gradually decrease

  13. Reduction of Energy Consumption and CO2 Emissions in Domestic Water Heating by Means of Direct Expansion Solar Assisted Heat Pump

    International Nuclear Information System (INIS)

    Baleta, J.; Curko, T.; Cutic, T.; Pasanec, J.; Soldo, V.

    2012-01-01

    Domestic water heating in households sector is usually performed by either fossil fuel fired or electric boilers. Both the combustion process of the former and large electricity consumption of the latter strongly influence overall greenhouse gas emissions. Moreover, very high specific heat of water requires large quantity of energy for water heating making a significant impact on the overall energy consumption in the households sector whose total consumption of 80,81 PJ equals to 19,6% of total primary energy supply in Croatia in 2010. Considering the mentioned impact on energy consumption and CO 2 emissions as well as goals set by European Commission (so called 20-20-20), new technologies based on renewable energy sources are more than welcome in the field of domestic water heating. Direct expansion solar assisted heat pump is presented in this paper. Its working principle is based on single-stage vapour-compression cycle. Representing a gradual step to commercial application with a water tank of 300 l, the developed mobile unit is designed as a test rig enabling all necessary measurements to evaluate potential of solar irradiation for domestic water heating on various locations. Besides the unit description, trial testing results are presented and analyzed as well as a basic comparison of CO 2 emissions between solar assisted heat pump and conventionally used water heating systems. Taking into account both the decentralized water heating and favourable climatic conditions (especially along the Croatian Adriatic coast) as well as rising fossil fuel prices, it is expected that solar assisted heat pumps will be commercialized in the near future.(author)

  14. CO2 emission reduction potential of large-scale energy efficiency measures in power generation from fossil fuels in China, India, Brazil, Indonesia and South Africa

    OpenAIRE

    Boehme, Benn J.; Krey, Matthias

    2005-01-01

    We quantify the theoretical potential for energy-efficiency CDM projects using best available technology in coal, natural gas or oil fuelled power generation in China, India, Brazil, Indonesia and South Africa, looking at new power plants or retrofit measures. We then discuss the likelihood of the potential emission reductions materialising under CDM. Our results are very sensitive to choices of baseline and project efficiencies and the level of electricity generation from potential emission ...

  15. CO2 emissions, nuclear energy, renewable energy and economic growth in the US

    International Nuclear Information System (INIS)

    Menyah, Kojo; Wolde-Rufael, Yemane

    2010-01-01

    This study explores the causal relationship between carbon dioxide (CO 2 ) emissions, renewable and nuclear energy consumption and real GDP for the US for the period 1960-2007. Using a modified version of the Granger causality test, we found a unidirectional causality running from nuclear energy consumption to CO 2 emissions without feedback but no causality running from renewable energy to CO 2 emissions. The econometric evidence seems to suggest that nuclear energy consumption can help to mitigate CO 2 emissions, but so far, renewable energy consumption has not reached a level where it can make a significant contribution to emissions reduction.

  16. CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C

    Science.gov (United States)

    Burke, Eleanor J.; Chadburn, Sarah E.; Huntingford, Chris; Jones, Chris D.

    2018-02-01

    Large amounts of carbon are stored in the permafrost of the northern high latitude land. As permafrost degrades under a warming climate, some of this carbon will decompose and be released to the atmosphere. This positive climate-carbon feedback will reduce the natural carbon sinks and thus lower anthropogenic CO2 emissions compatible with the goals of the Paris Agreement. Simulations using an ensemble of the JULES-IMOGEN intermediate complexity climate model (including climate response and process uncertainty) and a stabilization target of 2 °C, show that including the permafrost carbon pool in the model increases the land carbon emissions at stabilization by between 0.09 and 0.19 Gt C year-1 (10th to 90th percentile). These emissions are only slightly reduced to between 0.08 and 0.16 Gt C year-1 (10th to 90th percentile) when considering 1.5 °C stabilization targets. This suggests that uncertainties caused by the differences in stabilization target are small compared with those associated with model parameterisation uncertainty. Inertia means that permafrost carbon loss may continue for many years after anthropogenic emissions have stabilized. Simulations suggest that between 225 and 345 Gt C (10th to 90th percentile) are in thawed permafrost and may eventually be released to the atmosphere for stabilization target of 2 °C. This value is 60-100 Gt C less for a 1.5 °C target. The inclusion of permafrost carbon will add to the demands on negative emission technologies which are already present in most low emissions scenarios.

  17. An analysis of Chinas CO2 emission peaking target and pathways

    OpenAIRE

    He, Jian-Kun

    2017-01-01

    China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for Chinas resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the ...

  18. Reducing CO2 Emissions through Lightweight Design and Manufacturing

    Science.gov (United States)

    Carruth, Mark A.; Allwood, Julian M.; Milford, Rachel L.

    2011-05-01

    To meet targeted 50% reductions in industrial CO2 emissions by 2050, demand for steel and aluminium must be cut. Many steel and aluminium products include redundant material, and the manufacturing routes to produce them use more material than is necessary. Lightweight design and optimized manufacturing processes offer a means of demand reduction, whilst creating products to perform the same service as existing ones. This paper examines two strategies for demand reduction: lightweight product design; and minimizing yield losses through the product supply chain. Possible mass savings are estimated for specific case-studies on metal-intensive products, such as I-beams and food cans. These estimates are then extrapolated to other sectors to produce a global estimate for possible demand reductions. Results show that lightweight product design may offer potential mass savings of up to 30% for some products, whilst yield in the production of others could be improved by over 20%. If these two strategies could be combined for all products, global demand for steel and aluminium would be reduced by nearly 50%. The impact of demand reduction on CO2 emissions is presented, and barriers to the adoption of new, lightweight technologies are discussed.

  19. Financial development and sectoral CO2 emissions in Malaysia.

    Science.gov (United States)

    Maji, Ibrahim Kabiru; Habibullah, Muzafar Shah; Saari, Mohd Yusof

    2017-03-01

    The paper examines the impacts of financial development on sectoral carbon emissions (CO 2 ) for environmental quality in Malaysia. Since the financial sector is considered as one of the sectors that will contribute to Malaysian economy to become a developed country by 2020, we utilize a cointegration method to investigate how financial development affects sectoral CO 2 emissions. The long-run results reveal that financial development increases CO 2 emissions from the transportation and oil and gas sector and reduces CO 2 emissions from manufacturing and construction sectors. However, the elasticity of financial development is not significant in explaining CO 2 emissions from the agricultural sector. The results for short-run elasticities were also consistent with the long-run results. We conclude that generally, financial development increases CO 2 emissions and reduces environmental quality in Malaysia.

  20. CO2 emissions by the economic circuit in France

    International Nuclear Information System (INIS)

    Lenglart, F.; Lesieur, Ch.; Pasquier, J.L.

    2010-01-01

    Before commenting various statistical data on CO 2 emission in France, this report explains how these data have been established according to the 'Stiglitz' Commission recommendations, i.e. by integrating CO 2 emissions in the national accounts. While commenting the evolutions of CO 2 emissions in relationship with economic activity and giving table of world data, it outlines that France represents 3% of the World GDP, 1.3% of CO 2 emissions and 1% of the population. The relationship between standard of living and pollutant emissions are commented. As far as France is concerned and with a comparison with world data the shares of different sources of energy and of the different sectors in CO 2 emissions are indicated and commented. The report comments the influence of the domestic demand on foreign CO 2 emissions, the differences between households in terms of CO 2 emissions with respect to their revenues, the shares of household consumption and of CO 2 emissions among expense items, the influence of socio-professional, of age, and of household composition category on CO 2 emissions. Some methodological and computational aspects are given

  1. Factors influencing CO2 emissions in China's power industry: Co-integration analysis

    International Nuclear Information System (INIS)

    Zhao, Xiaoli; Ma, Qian; Yang, Rui

    2013-01-01

    More than 40% of China's total CO 2 emissions originate from the power industry. The realization of energy saving and emission reduction within China's power industry is therefore crucial in order to achieve CO 2 emissions reduction in this country. This paper applies the autoregressive-distributed lag (ARDL) co-integration model to study the major factors which have influenced CO 2 emissions within China's power industry from 1980 to 2010. Results have shown that CO 2 emissions from China's power industry have been increasing rapidly. From 1980 to 2010, the average annual growth rate was 8.5%, and the average growth rate since 2002 has amounted to 10.5%. Secondly, the equipment utilization hour (as an indicator of the power demand) has the greatest influence on CO 2 emissions within China's power industry. In addition, the impact of the industrial added value of the power sector on CO 2 emissions is also positive from a short-term perspective. Thirdly, the Granger causality results imply that one of the important motivators behind China's technological progress, within the power industry, originates from the pressures created by a desire for CO 2 emissions reduction. Finally, this paper provides policy recommendations for energy saving and emission reduction for China's power industry. - Highlights: ► We study the major factors influencing China's power industry CO 2 emissions. ► The average annual growth rate of CO 2 emission from power industry is calculated. ► Installed capacity has the greatest influence on power industry CO 2 emission. ► The Granger causality between CO 2 emission and its effecting factors is analyzed

  2. CO2 emission standards and investment in carbon capture

    International Nuclear Information System (INIS)

    Eide, Jan; Sisternes, Fernando J. de; Herzog, Howard J.; Webster, Mort D.

    2014-01-01

    Policy makers in a number of countries have proposed or are considering proposing CO 2 emission standards for new fossil fuel-fired power plants. The proposed standards require coal-fired power plants to have approximately the same carbon emissions as an uncontrolled natural gas-fired power plant, effectively mandating the adoption of carbon capture and sequestration (CCS) technologies for new coal plants. However, given the uncertainty in the capital and operating costs of a commercial scale coal plant with CCS, the impact of such a standard is not apparent a priori. We apply a stochastic generation expansion model to determine the impact of CO 2 emission standards on generation investment decisions, and in particular for coal plants with CCS. Moreover, we demonstrate how the incentive to invest in coal-CCS from emission standards depends on the natural gas price, the CO 2 price, and the enhanced oil recovery price, as well as on the level of the emission standard. This analysis is the first to consider the entire power system and at the same time allow the capture percentage for CCS plants to be chosen from a continuous range to meet the given standard at minimum cost. Previous system level studies have assumed that CCS plants capture 90% of the carbon, while studies of individual units have demonstrated the costs of carbon capture over a continuous range. We show that 1) currently proposed levels of emission standards are more likely to shift fossil fuel generation from coal to natural gas rather than to incentivize investment in CCS; 2) tighter standards that require some carbon reductions from natural gas-fired power plants are more likely than proposed standards to incentivize investments in CCS, especially on natural gas plants, but also on coal plants at high gas prices; and 3) imposing a less strict emission standard (emission rates higher than natural gas but lower than coal; e.g., 1500 lbs/MWh) is more likely than current proposals to incentivize

  3. CO2 reduction strategies for the Northern Netherlands

    NARCIS (Netherlands)

    Benders, Rene; Moll, Henk; Noorman, Klaas Jan; Wiersma, Gerwin

    2011-01-01

    The concern about global warming initiated ambitious CO2 reduction goals in cities and regions in the Netherlands. This article describes a study of such a local initiative for the Northern Netherlands. The research aimed to develop CO2 reduction scenarios for 2035 with national and international

  4. Evaluation system for CO2 emission of hot asphalt mixture

    Directory of Open Access Journals (Sweden)

    Bo Peng

    2015-04-01

    Full Text Available The highway construction industry plays an important role in economic and development, but is also a primary source of carbon emission. Accordingly, with the global climate change, energy conservation and reduction of carbon emissions have become critical issues in the highway construction industry. However, to date, a model for the highway construction industry has not been established. Hence, to implement a low-carbon construction model for highways, this study divided asphalt pavement construction into aggregate stacking, aggregate supply, and other stages, and compiled a list of energy consumption investigation. An appropriate calculation model of CO2 emission was then built. Based on the carbon emission calculation model, the proportion of carbon emissions in each stage was analyzed. The analytic hierarchy process was used to establish the system of asphalt pavement construction with a judgment matrix, thereby enabling calculation of the weight coefficient of each link. In addition, the stages of aggregate heating, asphalt heating, and asphalt mixture mixing were defined as key stages of asphalt pavement construction. Carbon emissions at these stages accounted for approximately 90% of the total carbon emissions. Carbon emissions at each stage and their impact on the environment were quantified and compared. The energy saving construction schemes as well as the environmental and socioeconomic benefits were then proposed. Through these schemes, significant reductions in carbon emissions and costs can be achieved. The results indicate that carbon emissions reduce by 32.30% and 35.93%, whereas costs reduce by 18.58% and 6.03%. The proposed energy-saving and emission reduction scheme can provide a theoretical basis and technical support for the development of low-carbon highway construction.

  5. CO2 extraction : turning emissions to profit

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J. [ConocoPhillips Canada Resources Corp., Calgary, AB (Canada)

    2005-07-01

    This presentation described how ConocoPhillips extracts carbon dioxide (CO{sub 2}) from waste gas from its natural gas processes and sells it to industrial users. By extracting carbon dioxide, the company saves money and reduces energy consumption through greenhouse gas and sulphur emission reductions. The presentation discussed the company's Empress Straddle Plant and provided a process flow diagram of the plant. It then discussed how CO{sub 2} and sulphur gas are removed. New plants were also discussed as were CO{sub 2} extraction plant processes such as sulphur gas treating, separation, storage and disposal; and CO{sub 2} compression, refrigeration, storage, and transportation. The resulting savings were also presented. tabs., figs.

  6. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico

    2005-01-01

    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  7. Stabilization of emission of CO2: A computable general equilibrium assessment

    International Nuclear Information System (INIS)

    Glomsroed, S.; Vennemo, H.; Johnsen, T.

    1992-01-01

    A multisector computable general equilibrium model is used to study economic development perspectives in Norway if CO 2 emissions were stabilized. The effects discussed include impacts on main macroeconomic indicators and economic growth, sectoral allocation of production, and effects on the market for energy. The impact of other pollutants than CO 2 on emissions is assessed along with the related impact on noneconomic welfare. The results indicate that CO 2 emissions might be stabilized in Norway without dramatically reducing economic growth. Sectoral allocation effects are much larger. A substantial reduction in emissions to air other than CO 2 is found, yielding considerable gains in noneconomic welfare. 25 refs., 6 tabs., 2 figs

  8. A Study on the Analysis of CO2 Emissions of Apartment Housing in the Construction Process

    Directory of Open Access Journals (Sweden)

    Jonggeon Lee

    2018-01-01

    Full Text Available Recent research in the construction industry has focused on the reduction of CO2 emission using quantitative assessment of building life. However, most of this research has focused on the operational stage of a building’s life cycle. Few comprehensive studies of CO2 emissions during building construction have been performed. The purpose of this study is to analyze the CO2 emissions of an apartment housing during the construction process. The quantity of CO2 emissions associated with the utilization of selected building materials and construction equipment were used to estimate the CO2 emissions related to the apartment housing life cycle. In order to set the system boundary for the construction materials, equipment, and transportation used, 13 types of construction work were identified; then the CO2 emissions produced by the identified materials were calculated for each type of construction work. The comprehensive results showed that construction work involving reinforced concrete accounted for more than 73% of the total CO2 emissions. The CO2 emissions related to reinforced concrete work was mainly due to transportation from the supplier to the construction site. Therefore, at the time that reinforced concrete is being supplied, shipping distance and fuel economy management of concrete transportation vehicles should be considered thoroughly for significant reduction of CO2 emissions.

  9. National CO2 emissions trading in European perspective; Nationale CO2-emissiehandel in Europees perspectief

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This report is the reaction of the Social and economic council (SER) in the Netherlands to the request of the Dutch Ministry of Housing, Spatial Planning en Environment (VROM) to formulate an advice on the final report of the Committee CO2 Trade (a.k.a the Vogtlander Committee). This Committee has drafted a proposal for a CO2 emission trade system in the Netherlands. The SER has also taken into account the proposal of the European Committee on a guideline for CO2 emission trade in the European Union (EU)

  10. Decoupling economic growth from CO2 emissions: A decomposition analysis of China's household energy consumption

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ma

    2016-09-01

    Full Text Available This paper analyzes Chinese household CO2 emissions in 1994–2012 based on the Logarithmic Mean Divisia Index (LMDI structure decomposition model, and discusses the relationship between household CO2 emissions and economic growth based on a decoupling indicator. The results show that in 1994–2012, household CO2 emissions grew in general and displayed an accelerated growth trend during the early 21st century. Economic growth leading to an increase in energy consumption is the main driving factor of CO2 emission growth (an increase of 1.078 Gt CO2 with cumulative contribution rate of 55.92%, while the decline in energy intensity is the main cause of CO2 emission growth inhibition (0.723 Gt CO2 emission reduction with cumulative contribution rate of 38.27%. Meanwhile, household CO2 emissions are in a weak state of decoupling in general. The change in CO2 emissions caused by population and economic growth shows a weak decoupling and expansive decoupling state, respectively. The CO2 emission change caused by energy intensity is in a state of strong decoupling, and the change caused by energy consumption structure fluctuates between a weak and a strong decoupling state.

  11. Social Learning and the Mitigation of Transport CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Maha Al Sabbagh

    2017-01-01

    Full Text Available Social learning, a key factor in fostering behavioural change and improving decision making, is considered necessary for achieving substantial CO2 emission reductions. However, no empirical evidence exists on how it contributes to mitigation of transport CO2 emissions, or the extent of its influence on decision making. This paper presents evidence addressing these knowledge gaps. Social learning-oriented workshops were conducted to gather the views and preferences of participants from the general public in Bahrain on selected transport CO2 mitigation measures. Social preferences were inputted into a deliberative decision-making model and then compared to a previously prepared participative model. An analysis of the results revealed that social learning could contribute to changes in views, preferences and acceptance regarding mitigation measures, and these changes were statistically significant at an alpha level of 0.1. Thus, while social learning evidently plays an important role in the decision-making process, the impacts of using other participatory techniques should also be explored.

  12. Swedish biomass strategies to reduce CO2 emission and oil use in an EU context

    International Nuclear Information System (INIS)

    Joelsson, Jonas; Gustavsson, Leif

    2012-01-01

    Swedish energy strategies for transportation, space heating and pulp industries were evaluated with a focus on bioenergy use. The aims were to 1) study trade-offs between reductions in CO 2 emission and oil use and between Swedish reductions and EU reductions, 2) compare the potential contributions of individual reduction measures, 3) quantify the total CO 2 emission and oil use reduction potentials. Swedish energy efficiency measures reduced EU CO 2 emission by 45–59 Mt CO 2 /a, at current biomass use and constant oil use. Doubling Swedish bioenergy use yielded an additional 40 Mt CO 2 /a reduction. Oil use could be reduced, but 36–81 kt of reductions in CO 2 emission would be lost per PJ of oil use reduction. Swedish fossil fuel use within the studied sectors could be nearly eliminated. The expansion of district heating and cogeneration of heat with a high electricity yield were important measures. Plug-in hybrid electric cars reduced CO 2 emission compared with conventional cars, and the difference was larger with increasing oil scarcity. The introduction of black liquor gasification in pulp mills also gave large CO 2 emission reduction. Motor fuel from biomass was found to be a feasible option when coal is the marginal fuel for fossil motor fuel production. -- Highlights: ► Bioenergy is compared to optimized fossil fuel use under different oil availability constraints. ► Swedish strategies are evaluated with respect to CO 2 emission and oil use reduction within Sweden and the EU. ► Efficiency measures give the largest reductions but increased bioenergy use is also important. ► District heating expansion, high electricity yield CHP, increased vehicle efficiency and PHEVs are important options. ► The studied sectors in Sweden could become nearly fossil-fuel free and yield an energy surplus.

  13. The oil market and international agreements on CO2 emissions

    International Nuclear Information System (INIS)

    Berger, K.; Fimreite, Oe.; Golombek, R.; Hoel, M.

    1991-01-01

    In order to avoid a relatively large risk of dramatic adverse climatic changes during the next century, greenhouse gas emissions must be reduced significantly relative to present emissions. CO 2 is the most important greenhouse gas, so any international agreement will certainly cover CO 2 emissions. Any international agreement to reduce emissions of CO 2 is going to have a significant impact on the markets for fossil fuels. The analysis shows that is not only the amount of CO 2 emissions permitted in an agreement which matters for fossil fuel prices, but also the type of agreement. Two obvious forms of agreements, which under certain assumptions both are cost efficient, are (a) tradeable emission permits, and (b) an international CO 2 tax. If the fossil fuel markets were perfectly competitive, these two types of agreements would have the same effect on the producer price of fossil fuels. However, fossil fuel markets are not completely competitive. It is shown that, under imperfect competition, direct regulation of the ''tradeable quotas'' type tends to imply higher producer prices than an international CO 2 tax giving the same total CO 2 emissions. A numerical illustration of the oil market indicates that the difference in producer prices for the two types of CO 2 agreements is quite significant. 6 refs., 2 figs., 1 tab

  14. Episodical CO2 emission during shoulder seasons in the arctic

    DEFF Research Database (Denmark)

    Friborg, Thomas; Elberling, Bo; Hansen, Birger

    soils. Our knowledge about the exchanges of CO2 and other trace gas fluxes in the arctic region has been constrained by the limited availability of measurements during the long winter season. For that reason only a small number of sites have been able to produce annual budgets of C exchange...... and the driving processes behind winter time exchange of CO2 are not fully understood. Here we present two very different examples of CO2 exchange from shoulder seasons in the Arctic. In an example from NE Greenland, eddy covariance measurements show that the snow cover has a significant effect on the release...... of CO2 during spring. The other example, from a study during late autumn and winter from high arctic Svalbard we found that episodical emissions of CO2 accounted for a significant part of the total CO2 emission form the site. The emission pattern could be associated with temperature variations...

  15. Use of California biomass in the production of transportation-fuel oxygenates: Estimates for reduction in CO2 emissions and greenhouse gas potential on a life cycle basis

    International Nuclear Information System (INIS)

    Kadam, K. L.; Camobreco, V. J.; Glazebrook, B. E.

    1999-01-01

    A set of environmental flows associated with two disposal options for thee types of California biomass - forest biomass, rice straw, chaparral - over their life cycles were studied, the emphasis being on energy consumption and greenhouse gas emissions. The two options studied were: producing ethyl-tertiary-butyl ether (ETBE) from biomass and biomass burning, and producing methyl-tertiary-butyl ether (MTBE) from natural gas. Results showed a lower (by 40 to 50 per cent) greenhouse effect impact, lower net values for carbon dioxide and fossil fuel energy consumption, and higher net values for renewable energy consumption for the ETBE option. Based on these results, the deployment of the biomass-to-ethanol ETBE option is recommended as the one that contributes most to the reduction of GHG emissions. 12 refs., 2 tabs., 5 figs

  16. CO2 Emissions From Fuel Combustion. Highlights. 2013 Edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    In the lead-up to the UN climate negotiations in Warsaw, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process, the IEA is making available for free download the ''Highlights'' version of CO2 Emissions from Fuel Combustion now for sale on IEA Bookshop. This annual publication contains, for more than 140 countries and regions: estimates of CO2 emissions from 1971 to 2011; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; a decomposition of CO2 emissions into driving factors; and CO2emissions from international marine and aviation bunkers, key sources, and other relevant information. The nineteenth session of the Conference of the Parties to the Climate Change Convention (COP-19), in conjunction with the ninth meeting of the Parties to the Kyoto Protocol (CMP 9), met in Warsaw, Poland from 11 to 22 November 2013. This volume of ''Highlights'', drawn from the full-scale study, was specially designed for delegations and observers of the meeting in Warsaw.

  17. Energy technology patents–CO2 emissions nexus: An empirical analysis from China

    International Nuclear Information System (INIS)

    Wang Zhaohua; Yang Zhongmin; Zhang Yixiang; Yin Jianhua

    2012-01-01

    Energy technology innovation plays a crucial role in reducing carbon emissions. This paper investigates whether there is relationship between energy technology patents and CO 2 emissions of 30 provinces in mainland China during 1997–2008. Gross domestic product (GDP) is included in the study due to its impact on CO 2 emissions and energy technology innovation, thus avoiding the problem of omitted variable bias. Furthermore, we investigate three cross-regional groups, namely eastern, central and western China. The results show that domestic patents for fossil-fueled technologies have no significant effect on CO 2 emissions reduction; however, domestic patents for carbon-free energy technologies appear to play an important role in reducing CO 2 emissions, which is significant in eastern China, but is not significant in central, western and national level of China. The results of this study enrich energy technology innovation theories and provide some implications for energy technology policy making. - Highlights: ► We studied the causality between energy technology patents and CO 2 emissions using dynamic panel data approach. ► There is a long-run equilibrium relationship among energy technology patents, CO 2 emissions and GDP. ► Domestic patents for fossil-fueled technologies have no significant effect on CO 2 emissions reduction. ► Domestic patents for carbon-free energy technologies appear to play an important role in reducing CO 2 emissions. ► This study provides some references for the future energy technology policy making.

  18. Analyses of CO2 emissions embodied in Japan-China trade

    International Nuclear Information System (INIS)

    Liu Xianbing; Ishikawa, Masanobu; Wang Can; Dong Yanli; Liu Wenling

    2010-01-01

    This paper examines CO 2 emissions embodied in Japan-China trade. Besides directly quantifying the flow of CO 2 emissions between the two countries by using a traditional input-output (IO) model, this study also estimates the effect of bilateral trade to CO 2 emissions by scenario analysis. The time series of quantifications indicate that CO 2 emissions embodied in exported goods from Japan to China increased overall from 1990 to 2000. The exported CO 2 emissions from China to Japan greatly increased in the first half of the 1990s. However, by 2000, the amount of emissions had reduced from 1995 levels. Regardless, there was a net export of CO 2 emissions from China to Japan during 1990-2000. The scenario comparison shows that the bilateral trade has helped the reduction of CO 2 emissions. On average, the Chinese economy was confirmed to be much more carbon-intensive than Japan. The regression analysis shows a significant but not perfect correlation between the carbon intensities at the sector level of the two countries. In terms of CO 2 emission reduction opportunities, most sectors of Chinese industry could benefit from learning Japanese technologies that produce lower carbon intensities.

  19. CO2 reduction: is increasing the diesel share the way to go?

    NARCIS (Netherlands)

    Rijkeboer, R.C.; Havenith, C.; Baarbe, H.L.

    1998-01-01

    Different scenarios have been compared for the future reduction of CO2-emission under real-world driving conditions. A significant shift towards diesel appears hardly to benefit the CO2 but would carry a real NOx penalty. Introduction of DI petrol engines and a shift towards gaseous fuels for s.i.

  20. Empirical Study of Decomposition of CO2 Emission Factors in China

    Directory of Open Access Journals (Sweden)

    Yadong Ning

    2013-01-01

    Full Text Available China’s CO2 emissions increase has attracted world’s attention. It is of great importance to analyze China’s CO2 emission factors to restrain the CO2 rapid growing. The CO2 emissions of industrial and residential consumption sectors in China during 1980–2010 were calculated in this paper. The expanded decomposition model of CO2 emissions was set up by adopting factor-separating method based on the basic principle of the Kaya identities. The results showed that CO2 emissions of industrial and residential consumption sectors increase year after year, and the scale effect of GDP is the most important factor affecting CO2 emissions of industrial sector. Decreasing the specific gravity of secondary industry and energy intensity is more effective than decreasing the primary industry and tertiary industry. The emissions reduction effect of structure factor is better than the efficiency factor. For residential consumption sector, CO2 emissions increase rapidly year after year, and the economy factor (the increase of wealthy degree or income is the most important factor. In order to slow down the growth of CO2 emissions, it is an important way to change the economic growth mode, and the structure factor will become a crucial factor.

  1. Decoupling of CO2-emissions from Energy Intensive Industries

    DEFF Research Database (Denmark)

    Andersen, M. S.; Enevoldsen, M. K.; Ryelund, A. V.

    and taxes on the trends in CO2 emissions on the basis of a novel method that relies on sector-specific energy prices. Whereas previous research has been unable to account for the implications of complex tax exemptions and price discounts, the present report bridges the gap and provides innovative estimates....... This finding suggests that price increases, whether induced by taxes or market fluctuations, can be effective in curbing CO2 emissions when they accurately reflect the CO2 burden. It also suggests that CO2-specific taxes on fuels are more effective than end-user electricity taxes which do not reflect actual...

  2. The oil market and international agreements on CO2 emissions

    International Nuclear Information System (INIS)

    Berger, K.; Fimreite, O.; Golombek, R.; Hoel, M.

    1992-01-01

    According to most scientists, greenhouse gas emissions must be reduced significantly relative to current trends to avoid dramatic adverse climatic changes during the next century. CO 2 is the most important greenhouse gas, so any international agreement will certainly cover CO 2 emissions. Any international agreement to reduce emissions of CO 2 is going to have a significant impact on the markets for fossil fuels. The analysis shows that it is not only the amount of CO 2 emissions permitted in an agreement which matters for fossil fuel prices, but also the type of agreement. Two obvious forms of agreements, which under certain assumptions both are cost efficient, are (a) tradeable emission permits, and (b) an international CO 2 tax. If the fossil fuel markets were perfectly competitive, these two types of agreements would have the same effect on the producer price of fossil fuels. However, fossil fuel markets are not completely competitive. It is shown that, under imperfect competition, direct regulation of the 'tradeable quotas' type tends to imply higher producer prices and a larger efficiency loss than an international CO 2 tax giving the same total CO 2 emissions. A numerical illustration of the oil market indicates that the difference in producer prices for the two types of CO 2 agreements is quite significant. 6 refs., 2 figs., 2 tabs

  3. Practical guidebook about the market of CO2 emission quotas

    International Nuclear Information System (INIS)

    2005-01-01

    Since January 1, 2005, the European directive about the trading of CO 2 emission quotas foresees the allocation of CO 2 emission quotas to the industrial sectors that generate huge amounts of greenhouse gases (energy generation, cement, glass, steel-making, mineral and paper industries). A system of trading of CO 2 quotas has been implemented and allows the companies to exchange, sale or purchase quotas in order to be conformable with the volume of CO 2 they have been authorized to release in the atmosphere. This guidebook is a vade mecum of the management of emission quotas. It explains the actions of the international community in favor of the fight against greenhouse emissions, the 3 flexibility mechanisms, the French environmental policy, the European system of fight against climatic change, the CO 2 quotas system and its practical implementation. (J.S.)

  4. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    Directory of Open Access Journals (Sweden)

    Bon-Min Koo

    2014-08-01

    Full Text Available In order to reduce carbon dioxide (CO2 emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC specimens cast with Hwangtoh admixtures (with and without PET fibers possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco

  5. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    Science.gov (United States)

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho

    2014-01-01

    In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete

  6. Redução da emissão de CO2, CH4 e H2S através da compostagem de dejetos suínos Reduction emissions of CO2, CH4 and H2S through composting of swine manure

    Directory of Open Access Journals (Sweden)

    Luana G. Sardá

    2010-09-01

    . The results have showed that composting reduces 7 times the CH4 emission comparing to deep pit, and emission of CO2 represented 78.5% of total mineralized carbon. Considering that the emission of H2S was significant only in the management of waste in liquid form, then management of waste in solid form can reduce the environmental impacts, which tends to be beneficial in terms of mitigation of greenhouse effect and may contribute to the reduction of odors.

  7. The Value of CO2-Geothermal Bulk Energy Storage to Reducing CO2 Emissions Compared to Conventional Bulk Energy Storage Technologies

    Science.gov (United States)

    Ogland-Hand, J.; Bielicki, J. M.; Buscheck, T. A.

    2016-12-01

    Sedimentary basin geothermal resources and CO2 that is captured from large point sources can be used for bulk energy storage (BES) in order to accommodate higher penetration and utilization of variable renewable energy resources. Excess energy is stored by pressurizing and injecting CO2 into deep, porous, and permeable aquifers that are ubiquitous throughout the United States. When electricity demand exceeds supply, some of the pressurized and geothermally-heated CO2 can be produced and used to generate electricity. This CO2-BES approach reduces CO2 emissions directly by storing CO2 and indirectly by using some of that CO2 to time-shift over-generation and displace CO2 emissions from fossil-fueled power plants that would have otherwise provided electricity. As such, CO2-BES may create more value to regional electricity systems than conventional pumped hydro energy storage (PHES) or compressed air energy storage (CAES) approaches that may only create value by time-shifting energy and indirectly reducing CO2 emissions. We developed and implemented a method to estimate the value that BES has to reducing CO2 emissions from regional electricity systems. The method minimizes the dispatch of electricity system components to meet exogenous demand subject to various CO2 prices, so that the value of CO2 emissions reductions can be estimated. We applied this method to estimate the performance and value of CO2-BES, PHES, and CAES within real data for electricity systems in California and Texas over the course of a full year to account for seasonal fluctuations in electricity demand and variable renewable resource availability. Our results suggest that the value of CO2-BES to reducing CO2 emissions may be as much as twice that of PHES or CAES and thus CO2-BES may be a more favorable approach to energy storage in regional electricity systems, especially those where the topography is not amenable to PHES or the subsurface is not amenable to CAES.

  8. Trends in global CO2 emissions. 2012 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy)

    2012-07-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2011 and updates last year's assessment. This assessment focusses on the changes in annual CO2 emissions from 2010 to 2011, and includes not only fossil fuel combustion on which the BP reports are based, but also incorporates all other relevant CO2 emissions sources including flaring of waste gas during oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. After a short description of the methods used (Chapter 2), we first present a summary of recent CO2 emission trends, by region and by country, and of the underlying trend of fossil fuel use, non-fossil energy and of other CO2 sources (Chapter 3). To provide a broader context of the global trends we also assess the cumulative global CO2 emissions of the last decade, i.e. since 2000, and compare it with scientific literature that analyse global emissions in relation to the target of 2C maximum global warming in the 21st century, which was adopted in the UN climate negotiations (Chapter 4). Compared to last year's report, Annex 1 includes a more detailed and updated discussion of the uncertainty in national and global CO2 emission estimates.

  9. Trends in global CO2 emissions. 2012 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J. G.J.; Peters, J. A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy)

    2012-07-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2011 and updates last year's assessment. This assessment focusses on the changes in annual CO2 emissions from 2010 to 2011, and includes not only fossil fuel combustion on which the BP reports are based, but also incorporates all other relevant CO2 emissions sources including flaring of waste gas during oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. After a short description of the methods used (Chapter 2), we first present a summary of recent CO2 emission trends, by region and by country, and of the underlying trend of fossil fuel use, non-fossil energy and of other CO2 sources (Chapter 3). To provide a broader context of the global trends we also assess the cumulative global CO2 emissions of the last decade, i.e. since 2000, and compare it with scientific literature that analyse global emissions in relation to the target of 2C maximum global warming in the 21st century, which was adopted in the UN climate negotiations (Chapter 4). Compared to last year's report, Annex 1 includes a more detailed and updated discussion of the uncertainty in national and global CO2 emission estimates.

  10. Electricity system planning under the CO2 emission restriction

    International Nuclear Information System (INIS)

    Lim, Chae Young; Lee, Man Ki; Roh, Jae Hyung; Kim, Eun Hwan

    2004-01-01

    Objective of this study is to analyze how the restriction of CO 2 emission from power generation will affect the national electricity supply system. The role of nuclear power is investigated under the restriction of CO 2 emission in Korea. A simplified electricity system was modeled for the analysis. To analyze the impact of CO 2 emission restriction, 2 different scenarios were established and compared with the base scenario. The first scenario was 'CO 2 emission restriction with new nuclear power installation'. In this scenario, a CO 2 emission restriction of 0.11kg-C/kWh was imposed and there was no restriction on the nuclear power construction. While, in the second scenario, 'CO 2 emission restriction without new nuclear power installation' the same amount of CO 2 restriction was imposed with no consideration of nuclear power installation. It is found out that the current national emission target(0.11kg- C/kWh) in the electricity sector can not be achieved without nuclear and renewable(wind power) options considered

  11. Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-07-01

    Full Text Available To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG emission reduction target of 37% (851 million tons of the business as usual (BAU rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code, there are also rising demands for the assessment on CO2 emissions during the life cycle in accordance with ISO (International Standardization Organization’s Standard 14040. At present, precast concrete (PC engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO2 emissions (including absorption throughout the PC life cycle by using a life cycle assessment (LCA method. Using the proposed assessment method, CO2 emissions during the life cycle of a precast concrete girder (PCG were assessed. In addition, CO2 absorption was assessed against a PCG using conventional carbonation and CO2 absorption-related models. As a result, the CO2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO2/1 PCG. The CO2 emissions during the production of raw materials among the CO2 emissions throughout the life cycle of the PCG were 1390 (kg-CO2/1 PCG, accounting for a high portion to total CO2 emissions (nearly 90%. In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO2 emissions. Among the use of the PCG, CO2 absorption was mostly decided by the CO2 diffusion coefficient and the amount of CO2 absorption by cement paste. The CO2 absorption by carbonation

  12. Framework for Assessing Biogenic CO2 Emissions from ...

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide emissions from stationary sources. EPA developed the revised report, Framework for Assessing Biogenic CO2 Emissions from Stationary Sources, to present a methodological framework for assessing the extent to which the production, processing, and use of biogenic material at stationary sources for energy production results in a net atmospheric contribution of biogenic CO2 emissions. Biogenic carbon dioxide emissions are defined as CO2 emissions related to the natural carbon cycle, as well as those resulting from the production, harvest, combustion, digestion, decomposition, and processing of biologically-based materials. The EPA is continuing to refine its technical assessment of biogenic CO2 emissions through another round of targeted peer review of the revised study with the EPA Science Advisory Board (SAB). This study was submitted to the SAB's Biogenic Carbon Emissions Panel in February 2015. http://yosemite.epa.gov/sab/sabproduct.nsf/0/3235dac747c16fe985257da90053f252!OpenDocument&TableRow=2.2#2 The revised report will inform efforts by policymakers, academics, and other stakeholders to evaluate the technical aspects related to assessments of biogenic feedstocks used for energy at s

  13. Norwegian gas sales and the impacts on European CO2 emissions

    International Nuclear Information System (INIS)

    Berg, E.; Boug, P.; Kverndokk, S.

    2001-01-01

    This paper has studied the impacts on Western European CO 2 emissions of a reduction in Norwegian gas sales. Such impacts are due to changes in energy demand, energy supply, and environmental and political regulations. The gas supply model DYNOPOLY was used to analyse the effects on Russian and Algerian gas exports of a reduction in Norwegian gas supply. The effects on the demand side and the effects of committing to CO 2 targets were analysed using the energy demand model SEEM. If Western European countries commit to their announced CO 2 emissions targets, reduced Norwegian gas sales will have no impact on emissions. The consumption of oil and coal will increase slightly, while the total energy consumption will go down. Also, a reduction in Norwegian gas sales will have only minor impacts on the CO 2 emissions from Western Europe when no emissions regulations are considered

  14. Grey forecasting model for CO2 emissions: A Taiwan study

    International Nuclear Information System (INIS)

    Lin, Chiun-Sin; Liou, Fen-May; Huang, Chih-Pin

    2011-01-01

    Highlights: → CO 2 is the most frequently implicated in global warming. → The CARMA indicates that the Taichung coal-fired power plants had the highest CO 2 emissions in the world. → GM(1,1) prediction accuracy is fairly high. → The results show that the average residual error of the GM(1,1) was below 10%. -- Abstract: Among the various greenhouse gases associated with climate change, CO 2 is the most frequently implicated in global warming. The latest data from Carbon Monitoring for Action (CARMA) shows that the coal-fired power plant in Taichung, Taiwan emitted 39.7 million tons of CO 2 in 2007 - the highest of any power plant in the world. Based on statistics from Energy International Administration, the annual CO 2 emissions in Taiwan have increased 42% from 1997 until 2006. Taiwan has limited natural resources and relies heavily on imports to meet its energy needs, and the government must take serious measures control energy consumption to reduce CO 2 emissions. Because the latest data was from 2009, this study applied the grey forecasting model to estimate future CO 2 emissions in Taiwan from 2010 until 2012. Forecasts of CO 2 emissions in this study show that the average residual error of the GM(1,1) was below 10%. Overall, the GM(1,1) predicted further increases in CO 2 emissions over the next 3 years. Although Taiwan is not a member of the United Nations and is not bound by the Kyoto Protocol, the findings of this study provide a valuable reference with which the Taiwanese government could formulate measures to reduce CO 2 emissions by curbing the unnecessary the consumption of energy.

  15. Cost of lower NO x emissions: Increased CO 2 emissions from heavy-duty diesel engines

    Science.gov (United States)

    Krishnamurthy, Mohan; Carder, Daniel K.; Thompson, Gregory; Gautam, Mridul

    This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared. The objective of this study was to determine the changes in brake-specific emissions of NO x as a result of emission regulations, and to highlight the effect these have had on brake-specific CO 2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO 2 and NO x. Comparison of on-road in-use emissions data suggests NO x reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995-2002. However, the results indicate that the fuel consumption; hence, CO 2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.

  16. Trends in global CO2 emissions. 2013 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy); Muntean, M. [Institute for Environment and Sustainability IES, Joint Research Centre JRC, Ispra (Italy)

    2013-10-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2012 and updates last year's assessment. This assessment focuses on the changes in annual CO2 emissions from 2011 to 2012, and includes not only fossil-fuel combustion on which the BP reports are based, but also incorporates other relevant CO2 emissions sources including flaring of waste gas during gas and oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. The report clarifies the CO2 emission sources covered, and describes the methodology and data sources. More details are provided in Annex 1 over the 2010-2012 period, including a discussion of the degree of uncertainty in national and global CO2 emission estimates. Chapter 2 presents a summary of recent CO2 emission trends, per main country or region, including a comparison between emissions per capita and per unit of Gross Domestic Product (GDP), and of the underlying trend in fossil-fuel production and use, non-fossil energy and other CO2 sources. Specific attention is given to developments in shale gas and oil production and oil sands production and their impact on CO2 emissions. To provide a broader context of global emissions trends, international greenhouse gas mitigation targets and agreements are also presented, including different perspectives of emission accounting per country. In particular, annual trends with respect to the Kyoto Protocol target and Cancun agreements and cumulative global CO2 emissions of the last decade are compared with scientific literature that analyses global emissions in relation to the target of 2{sup 0}C maximum global warming in the 21st century, which was adopted in the UN climate negotiations. In addition, we briefly discuss the rapid development and implementation of various emission trading schemes, because of their increasing importance as a cross-cutting policy instrument for mitigating

  17. Potential effects of emission taxes on CO2 emissions in OECD and LDC countries. Working paper

    International Nuclear Information System (INIS)

    Messner, S.; Strubegger, M.

    1990-12-01

    A set of existing optimization models representing the energy systems of the OECD and LDC countries (the LDC region covers all less developed countries excluding centrally planned economies) with a time horizon up to 2020 was applied to derive first-order estimates of the techno-economic potential for emission reduction. The driving force for the introduction of reduction measures was a scheme of taxes levied on the emissions of 6 relevant pollutants-including the greenhouse gases CO 2 and methane. The tax levels introduced are based on the taxes discussed by the Swedish government administration; they are the break-even point to test which measures are cost-effective and which emission levels can be reached at these costs. The regional models offer the choice between the following alternatives as response to increases in expenditures caused by emission taxes: (*) Reduction of final energy demand by supplying the requested services by other means (i.e., conservation). (*) Substitution of 'dirty' fuels by fuels entailing less pollution. (*) Introduction of 'clean' technologies for the same purposes (e.g., a combined cycle based on coal gasification is a much cleaner process for electricity generation from coal than conventional coal power plants). (*) For SO 2 and NO x emissions pollution reduction technologies (i.e., scrubbers and catalysts) can be added to existing technologies in order to reduce emissions. Alternative scenarios with emission taxes are compared to a base scenario without taxes related to pollutant emissions. The results indicate that an increase in CO 2 emissions in the OECD and LDC regions of 47% over the next 30 years in the base scenario would be changed into stabilization up to 2010 by measures induced by the tax levels introduced. Thereafter, however, energy consumption growth in the LDC area, in conjunction with the exhaustion of economically viable emission reduction measures, reverse this trend: CO 2 emissions start to increase again after

  18. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia

    International Nuclear Information System (INIS)

    Hooijer, A.; Silvius, M.; Woesten, H.; Page, S.

    2006-12-01

    Forested tropical peatlands in SE Asia store at least 42,000 Megatonnes of soil carbon. This carbon is increasingly released to the atmosphere due to drainage and fires associated with plantation development and logging. Peatlands make up 12% of the SE Asian land area but account for 25% of current deforestation. Out of 27 million hectares of peatland, 12 million hectares (45%) are currently deforested and mostly drained. One important crop in drained peatlands is palm oil, which is increasingly used as a biofuel in Europe. In the PEAT-CO2 project, present and future emissions from drained peatlands were quantified using the latest data on peat extent and depth, present and projected land use and water management practice, decomposition rates and fire emissions. It was found that current likely CO2 emissions caused by decomposition of drained peatlands amounts to 632 Mt/y (between 355 and 874 Mt/y). This emission will increase in coming decades unless land management practices and peatland development plans are changed, and will continue well beyond the 21st century. In addition, over 1997-2006 an estimated average of 1400 Mt/y in CO2 emissions was caused by peatland fires that are also associated with drainage and degradation. The current total peatland CO2 emission of 2000 Mt/y equals almost 8% of global emissions from fossil fuel burning. These emissions have been rapidly increasing since 1985 and will further increase unless action is taken. Over 90% of this emission originates from Indonesia, which puts the country in 3rd place (after the USA and China) in the global CO2 emission ranking. It is concluded that deforested and drained peatlands in SE Asia are a globally significant source of CO2 emissions and a major obstacle to meeting the aim of stabilizing greenhouse gas emissions, as expressed by the international community. It is therefore recommended that international action is taken to help SE Asian countries, especially Indonesia, to better conserve

  19. Changes in CO2 emission intensities in the Mexican industry

    International Nuclear Information System (INIS)

    González, Domingo; Martínez, Manuel

    2012-01-01

    A CO 2 emission intensity analysis in the Mexican industry from 1965 to 2010 is carried out by taking into consideration four stages: 1965–1982, 1982–1994, 1994–2003, and 2004–2010. Based on the LMDI decomposition methodology, three influencing factors are analyzed: energy intensity, CO 2 coefficient, and structure in terms of their contributions of each individual attributes to the overall percent change of them as it was proposed in Choi and Ang (2011). The energy intensity effect was the driving factor behind the main decreases of CO 2 intensity, the CO 2 coefficient effect contributed to less extent to mitigate it, and the structure effect tended to increased it. It is observed that CO 2 intensity declined by 26.2% from 1965 to 2003, but it increased by 10.1% from 2004 to 2010. In addition, the move of Mexico from an economic model based on import-substitution to an export-oriented economy brought more importance to the Mexican industry intended to export, thus maintaining high levels of activity of industries such as cement, iron and steel, chemical, and petrochemical, while industries such as automotive, and ‘other’ industries grown significantly not only as far their energy consumptions and related CO 2 emissions but they also increased their contributions to the national economy. - Highlights: ► Industrial CO 2 emission intensity was reduced by 26.2% from 1965 to 2003. ► Industrial CO 2 emission intensity was increased by 10.1% from 2003 to 2010. ► 1965–2003: Intensity effect took down CO 2 emission intensity. ► 2003–2010: Export-oriented industries raised CO 2 emission intensity.

  20. Influence of travel behavior on global CO2 emissions

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Vries, B. de

    2013-01-01

    Travel demand is rising steeply and its contribution to global CO2 emissions is increasing. Different studies have shown possible mitigation through technological options, but so far few studies have evaluated the implications of changing travel behavior on global travel demand, energy use and CO2

  1. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

    Science.gov (United States)

    Wang, Yilong; Broquet, Grégoire; Ciais, Philippe; Chevallier, Frédéric; Vogel, Felix; Wu, Lin; Yin, Yi; Wang, Rong; Tao, Shu

    2018-03-01

    Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75° × 2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low

  2. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-03-01

    Full Text Available Combining measurements of atmospheric CO2 and its radiocarbon (14CO2 fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2. In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75°  ×  2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty. The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 % in high emitting regions, but the performance of the inversion

  3. Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities.

    Science.gov (United States)

    Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi-Zhang

    2018-02-01

    Ever-increasing fossil-fuel combustion along with massive CO 2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO 2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO 2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO 2 conversion with an oxidative half reaction, e.g., H 2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO 2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO 2 reduction and H 2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO 2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO 2 -reduction cocatalysts for semiconductor-based photocatalytic CO 2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An instructive comparison of Denmark and Sweden CO2 emissions

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2007-02-01

    Denmark and Sweden are close neighbors, they have pretty much the same Climate, so that it is interesting to try to understand what makes them so different in their per capita GHG (Green House Gas) emissions from fuel combustion. Indeed, the CO 2 emissions of Denmark and Sweden are practically equal while the population of Sweden is much larger. Thus, the per capita CO 2 emissions of Denmark are 63 % larger than those of Sweden. Denmark resorts heavily to fossil fuels for its production of both its electric power and its industrial heat whereas Sweden resorts to other primary energy sources which are either renewable or do not emit CO 2 . True, Sweden is in a privileged situation for its access to hydro power and to biomass but Denmark could considerably reduce its CO 2 emissions if it were to call on nuclear power as Sweden has been doing. (A.L.B.)

  5. Reducing of CO2 emissions and its depositing into underground

    Directory of Open Access Journals (Sweden)

    Jaroslava Koudelková

    2005-11-01

    Full Text Available Increasing CO2 emissions caused especially by the combustion of fossil fuels rises a question of how this can be problem solved in the long term. There is several solutions which differ technically and financially. This paper deals with the CO2 capture from combustion processes or power plant processes, (CO2 can be captured from the flue gas, after combustion in oxygen and recirculated flue gas or from a synthesis gas before combustion. This paper presents possibilities of CO2 storagex captured in this way into underground (deep ocean, oil and gas fields, coal bed, aquifers.

  6. Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea

    International Nuclear Information System (INIS)

    Oh, Ilyoung; Wehrmeyer, Walter; Mulugetta, Yacob

    2010-01-01

    Energy-related CO 2 emissions in South Korea have increased substantially, outpacing those of Organisation for Economic Co-operation and Development (OECD) countries since 1990. To mitigate CO 2 emissions in South Korea, we need to understand the main contributing factors to rising CO 2 levels as part of the effort toward developing targeted policies. This paper aims to analyze the specific trends and influencing factors that have caused changes in emissions patterns in South Korea over a 15-year period. To this end, we employed the Log Mean Divisia index method with five energy consumption sectors and seven sub-sectors in terms of fuel mix (FM), energy intensity (EI), structural change (SC) and economic growth (EG). The results showed that EG was a dominant explanation for the increase in CO 2 emissions in all of the sectors. The results also demonstrated that FM causes CO 2 reduction across the array of sectors with the exception of the energy supply sector. CO 2 reduction as a function of SC was also observed in manufacturing, services and residential sectors. Furthermore, EI was an important driver of CO 2 reduction in most sectors except for several manufacturing sub-sectors. Based on these findings, it appears that South Korea should implement climate change policies that consider the specific influential factors associated with increasing CO 2 emissions in each sector.

  7. Macro economic analysis of CO2 emission limits for China

    International Nuclear Information System (INIS)

    Zhang, Z.X.; Folmer, H.; Van Beek, P.

    1995-01-01

    Using a newly developed time-recursive dynamic CGE model for energy and environmental policy analysis of the Chinese economy, a business-as-usual scenario is first developed assuming no specific policy intervention to limit the growth rate of CO2 emissions. Counter factual policy simulation is then carried out to compute the macroeconomic implications of a carbon tax to limit the Chinese energy-related CO2 emissions. 2 tabs., 5 refs

  8. Developing Benchmarking Criteria for CO2 Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, M.; Worrell, E.; Mueller, N.; Angelini, T. [Ecofys, Utrecht (Netherlands); Cremer, C.; Schleich, J.; Eichhammer, W. [The Fraunhofer Institute for Systems and Innovation research, Karlsruhe (Germany)

    2009-02-15

    A European Union (EU) wide greenhouse gas (GHG) allowance trading scheme (EU ETS) was implemented in the EU in 2005. In the first two trading periods of the scheme (running up to 2012), free allocation based on historical emissions was the main methodology for allocation of allowances to existing installations. For the third trading period (2013 - 2020), the European Commission proposed in January 2008 a more important role of auctioning of allowances rather then free allocation. (Transitional) free allocation of allowances to industrial sectors will be determined via harmonized allocation rules, where feasible based on benchmarking. In general terms, a benchmark based method allocates allowances based on a certain amount of emissions per unit of productive output (i.e. the benchmark). This study aims to derive criteria for an allocation methodology for the EU Emission Trading Scheme based on benchmarking for the period 2013 - 2020. To test the feasibility of the criteria, we apply them to four example product groups: iron and steel, pulp and paper, lime and glass. The basis for this study is the Commission proposal for a revised ETS directive put forward on 23 January 2008 and does not take into account any changes to this proposal in the co-decision procedure that resulted in the adoption of the Energy and Climate change package in December 2008.

  9. Ni–Fe–S Cubanes in CO2 Reduction Electrocatalysis

    DEFF Research Database (Denmark)

    Varley, J. B.; Hansen, H. A.; Ammitzbøll, Nadia Luciw

    2013-01-01

    In this work, we perform extensive mechanistic studies of CO2 (electro)reduction by analogs to the active sites of carbon monoxide dehydrogenase (CODH) enzymes. We explore structure–property relationships for different cluster compositions and interpret the results with a model for CO2...... electroreduction we recently developed and applied to transition metal catalysts. Our results validate the effectiveness of the CODH in catalyzing this important reaction and give insight into why specific cluster compositions were adopted by nature....

  10. Radon-calibrated emissions of CO2 from South Africa

    International Nuclear Information System (INIS)

    Gaudry, A.; Polian, G.; Ardouin, B.; Lambert, G.

    1990-01-01

    Atmospheric CO 2 and 222 Rn have been monitored at Amsterdam Island since 1980. Data were selected in order to eliminate any local influence. Typical CO 2 concentrations of the subantarctic marine atmosphere can be determined by selecting those values for which 222 Rn radioactivity was particularly low: less than 1 pCi m -3 . 222 Rn concentrations higher than 2 pCi m -3 are mainly due to injections into the subantarctic atmosphere from the continental source of South Africa. The passage of air masses under continental influence also shows typical CO 2 variations, well correlated with 222 Rn variations. From the knowledge of the global continental fluxes of 222 Rn, it has been possible to estimate CO 2 fluxes into the atmosphere from South Africa. The mean CO 2 flux corresponding to a 6-month period from May to October is about 5 millimole m -2 h -1 . Continental CO 2 emissions reach a maximum in August. (orig.)

  11. CO2 emissions embodied in international trade: evidence for Spain

    International Nuclear Information System (INIS)

    Sanchez-Choliz, Julio; Duarte, Rosa

    2004-01-01

    The objective of this paper is to analyse the sectoral impacts that Spanish international trade relations have on present levels of atmospheric pollution using an input-output model. We try to evaluate the exports and imports of the Spanish economy in terms of the direct and indirect CO 2 emissions (CO 2 embodied) generated in Spain and abroad. The results show a slightly exporting behaviour in the Spanish economy which, nevertheless, hides important pollution interchanges. Moreover, the sectors transport material, mining and energy, non-metallic industries, chemical and metals are the most relevant CO 2 exporters and other services, construction, transport material and food the biggest CO 2 importers, and those whose final demands also embody more than 70% of the CO 2 emissions

  12. Reducing CO2-Emission by using Eco-Cements

    Science.gov (United States)

    Voit, K.; Bergmeister, K.; Janotka, I.

    2012-04-01

    CO2 concentration in the air is rising constantly. Globally, cement companies are emitting nearly two billion tonnes/year of CO2 (or around 6 to 7 % of the planet's total CO2 emissions) by producing portland cement clinker. At this pace, by 2025 the cement industry will be emitting CO2 at a rate of 3.5 billion tones/year causing enormous environmental damage (Shi et al., 2011; Janotka et al., 2012). At the dawn of the industrial revolution in the mid-eighteenth century the concentration of CO2 was at a level of ca. 280 ppm. 200 years later at the time of World War II the CO2 level had risen to 310 ppm what results in a rate of increase of 0,15 ppm per year for that period (Shi et al., 2011). In November 2011 the CO2 concentration reached a value of 391 ppm (NOAA Earth System Research Laboratory, 2011), a rise of ca. 81 ppm in 66 years and an increased rate of around 1,2 ppm/year respectively. In the same period cement production in tons of cement has multiplied by a factor of ca. 62 (Kelly & Oss, US Geological Survey, 2010). Thus new CO2-saving eco-cement types are gaining in importance. In these cement types the energy-consuming portland cement clinker is partially replaced by latent hydraulic additives such as blast furnace slag, fly ash or zeolite. These hydraulic additives do not need to be fired in the rotary furnace. They ony need to be pulverized to the required grain size and added to the ground portland cement clinker. Hence energy is saved by skipping the engery-consuming firing process, in addition there is no CO2-degassing as there is in the case of lime burning. Therefore a research project between Austria and Slovakia, funded by the EU (Project ENVIZEO), was initiated in 2010. The main goal of this project is to develop new CEM V eco-types of cements and certificate them for common usage. CEM V is a portland clinker saving cement kind that allows the reduction of clinker to a proportion of 40-64% for CEM V/A and 20-39% for CEM V/B respectively by the

  13. Advances in Photocatalytic CO2 Reduction with Water: A Review

    Directory of Open Access Journals (Sweden)

    Samsun Nahar

    2017-06-01

    Full Text Available In recent years, the increasing level of CO2 in the atmosphere has not only contributed to global warming but has also triggered considerable interest in photocatalytic reduction of CO2. The reduction of CO2 with H2O using sunlight is an innovative way to solve the current growing environmental challenges. This paper reviews the basic principles of photocatalysis and photocatalytic CO2 reduction, discusses the measures of the photocatalytic efficiency and summarizes current advances in the exploration of this technology using different types of semiconductor photocatalysts, such as TiO2 and modified TiO2, layered-perovskite Ag/ALa4Ti4O15 (A = Ca, Ba, Sr, ferroelectric LiNbO3, and plasmonic photocatalysts. Visible light harvesting, novel plasmonic photocatalysts offer potential solutions for some of the main drawbacks in this reduction process. Effective plasmonic photocatalysts that have shown reduction activities towards CO2 with H2O are highlighted here. Although this technology is still at an embryonic stage, further studies with standard theoretical and comprehensive format are suggested to develop photocatalysts with high production rates and selectivity. Based on the collected results, the immense prospects and opportunities that exist in this technique are also reviewed here.

  14. Impact of Biogas Stations on CO2 Emission from Agriculture

    Directory of Open Access Journals (Sweden)

    Josef Slaboch

    2017-01-01

    Full Text Available This paper deals with the effects of biogas stations on CO2 emissions produced within agricultural sector. In last years, owing to a positive policy of renewable energy resources a number of biogas stations in the CR has rapidly increased – actually over 350 agricultural biogas stations with the total installed power 365 MW are in operation. Concerning CO2 emissions from the agricultural sector, there is a presumption of decrease in produced emissions owing to decrease of influence of animal wastes which are processed just in the biogas stations. From the results it is obvious that CO2 emissions produced by agriculture in the CR decrease by 93.7 thousand tonnes annually. A presumption P1 that building of biogas stations will further support this trend is documented with results of a simple dynamic linear regression model. Further, elasticities of particular variables influencing the total emission from agriculture are investigated in the paper.

  15. Modelling Energy Systems and International Trade in CO2 Emission Quotas - The Kyoto Protocol and Beyond

    International Nuclear Information System (INIS)

    Persson, Tobias A.

    2002-01-01

    administration has repudiated the Protocol under which the U.S. was expected to be a large purchaser of CO 2 emission permits. The CO 2 emission permit price could thus be expected to drop substantially were the U.S. to stay out of the Protocol. The second paper summarizes a model illuminating the technological and economical possibilities for abatement of CO 2 emissions from the energy system in India. An allocation of tradable emission allowances is suggested showing that there could be economic incentives for India to early join a protocol that requires reduction in global CO 2 emission. The same allocation approach is used in the third paper, which models the economic incentives for other developing regions to accept the allocation of emission rights

  16. Reaction mechanisms of CO2 activation and catalytic reduction

    International Nuclear Information System (INIS)

    Wolff, Niklas von

    2016-01-01

    The use of CO 2 as a C1 chemical feedstock for the fine chemical industry is interesting both economically and ecologically, as CO 2 is non-toxic, abundant and cheap. Nevertheless, transformations of CO 2 into value-added products is hampered by its high thermodynamic stability and its inertness toward reduction. In order to design new catalysts able to overcome this kinetic challenge, a profound understanding of the reaction mechanisms at play in CO 2 reduction is needed. Using novel N/Si+ frustrated Lewis pairs (FLPs), the influence of CO 2 adducts and different hydro-borane reducing agents on the reaction mechanism in the catalytic hydroboration of CO 2 were investigated, both by DFT calculations and experiments. In a second step, the reaction mechanism of a novel reaction for the creation of C-C bonds from CO 2 and pyridyl-silanes (C 5 H 4 N-SiMe 3 ) was analyzed by DFT calculations. It was shown that CO 2 plays a double role in this transformation, acting both as a catalyst and a C1-building block. The fine understanding of this transformation then led to the development of a novel approach for the synthesis of sulfones and sulfonamides. Starting from SO 2 and aromatic silanes/amine silanes, these products were obtained in a single step under metal-free conditions. Noteworthy, sulfones and sulfonamides are common motifs in organic chemistry and found in a variety of highly important drugs. Finally, this concept was extended to aromatic halides as coupling partners, and it was thus shown for the first time that a sulfonylative Hiyama reaction is a possible approach to the synthesis of sulfones. (author) [fr

  17. Throwing new light on the reduction of CO2.

    Science.gov (United States)

    Ozin, Geoffrey A

    2015-03-18

    While the chemical energy in fossil fuels has enabled the rapid rise of modern civilization, their utilization and accompanying anthropogenic CO2 emissions is occurring at a rate that is outpacing nature's carbon cycle. Its effect is now considered to be irreversible and this could lead to the demise of human society. This is a complex issue without a single solution, yet from the burgeoning global research activity and development in the field of CO2 capture and utilization, there is light at the end of the tunnel. In this article a couple of recent advances are illuminated. Attention is focused on the discovery of gas-phase, light-assisted heterogeneous catalytic materials and processes for CO2 photoreduction that operate at sufficiently high rates and conversion efficiencies, and under mild conditions, to open a new pathway for an energy transition from today's "fossil fuel economy" to a new and sustainable "CO2 economy". Whichever of the competing CO2 capture and utilization approaches proves to be the best way forward for the development of a future CO2-based solar fuels economy, hopefully this can occur in a period short enough to circumvent the predicted adverse consequences of greenhouse gas climate change. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Forgotten carbon: indirect CO2 in greenhouse gas emission inventories

    International Nuclear Information System (INIS)

    Gillenwater, Michael

    2008-01-01

    National governments that are Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit greenhouse gas (GHG) inventories accounting for the emissions and removals occurring within their geographic territories. The Intergovernmental Panel on Climate Change (IPCC) provides inventory methodology guidance to the Parties of the UNFCCC. This methodology guidance, and national inventories based on it, omits carbon dioxide (CO 2 ) from the atmospheric oxidation of methane, carbon monoxide, and non-methane volatile organic compounds emissions that result from several source categories. The inclusion of this category of 'indirect' CO 2 in GHG inventories increases global anthropogenic emissions (excluding land use and forestry) between 0.5 and 0.7%. However, the effect of inclusion on aggregate UNFCCC Annex I Party GHG emissions would be to reduce the growth of total emissions, from 1990 to 2004, by 0.2% points. The effect on the GHG emissions and emission trends of individual countries varies. The paper includes a methodology for calculating these emissions and discusses uncertainties. Indirect CO 2 is equally relevant for GHG inventories at other scales, such as global, regional, organizational, and facility. Similarly, project-based methodologies, such as those used under the Clean Development Mechanism, may need revising to account for indirect CO 2

  19. CO2 emissions and mitigation potential in China's ammonia industry

    International Nuclear Information System (INIS)

    Zhou Wenji; Zhu Bing; Li Qiang; Ma Tieju; Hu Shanying; Griffy-Brown, Charla

    2010-01-01

    Significant pressure from increasing CO 2 emissions and energy consumption in China's industrialization process has highlighted a need to understand and mitigate the sources of these emissions. Ammonia production, as one of the most important fundamental industries in China, represents those heavy industries that contribute largely to this sharp increasing trend. In the country with the largest population in the world, ammonia output has undergone fast growth spurred by increasing demand for fertilizer of food production since 1950s. However, various types of technologies implemented in the industry make ammonia plants in China operate with huge differences in both energy consumption and CO 2 emissions. With consideration of these unique features, this paper attempts to estimate the amount of CO 2 emission from China's ammonia production, and analyze the potential for carbon mitigation in the industry. Based on the estimation, related policy implications and measures required to realize the potential for mitigation are also discussed.

  20. Potential effects of emission taxes on CO2 emissions in the OECD and LDCs

    International Nuclear Information System (INIS)

    Messner, S.; Strubegger, M.

    1991-01-01

    A set of existing optimization models, which represent the energy systems of the OECD and LDCs (less developed countries excluding centrally planned economies) with a time horizon to 2020, has been applied to derive first-order estimates of the techno-economic potential for emission reduction. The driving force for the introduction of reduction measures is a scheme of taxes levied on the emission of six pollutants, including the greenhouse gases CO 2 and methane. The tax levels introduced are based on taxes discussed by the Swedish government: they are the break-even point to test which measures are cost-effective and which emission levels can be reached at these costs. The regional models include the following alternatives: (i) reduction of final energy demand by supplying the requested services by other means (i.e., conservation); (ii) substitution of new fuels for polluting fuels; (iii) introduction of clean technologies for the same purposes; (iv) additions of pollution-reduction technologies. Alternative scenarios with emission taxes are compared with a base scenario without taxes related to pollutant emissions. The results indicate that an increase in CO 2 emissions in the OECD and LDC regions of 47% over the next 30 yr in the base scenario would be changed to stable levels to 2010 by tax-induced measures. Thereafter, energy-consumption growth in the LDCs reverses this trend. (author)

  1. Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland

    International Nuclear Information System (INIS)

    Alam, Md. Saniul; Hyde, Bernard; Duffy, Paul; McNabola, Aonghus

    2017-01-01

    Highlights: • Integration of models provides a robust estimation of tailpipe CO 2 emissions. • Taxation impact of vehicle fleet dieselisation was modelled. • A scenario development approach was proposed for policy analysis. • EV provided the largest cost saving option than that of the other fuel technologies. - Abstract: This study modelled the Passenger (PC) fleet and other categories of road transport in Ireland from 2015 to 2035 to assess the impact of current and potential greenhouse gas mitigation policies on CO 2 emissions. Scenarios included the shift of purchasing towards diesel PCs over gasoline PCs. Scrappage rates were also calculated and applied to the fleet to predict future sales of PCs. Seven future policy scenarios were examined using different penetrations of PC sales for different vehicle technologies under current and alternative bio-fuel obligations. Tank to Wheel (T2W) tailpipe and Well to Wheel (W2W) CO 2 emissions, and energy demand were modelled using COPERT 4v11.3 and a recently published W2W CO 2 emissions model. A percentage reduction of conventional diesel and petrol vehicles, in different scenarios compared to a baseline scenario in the W2W model was applied to estimate the likely changes in T2W emissions at the tailpipe up to 2035. The results revealed that the biofuel policy scenario was insufficient in achieving a significant reduction of CO 2 emissions. However, without a fixed reduction target for CO 2 from the road transport sector, the success of policy scenarios in the long run is difficult to compare. The current Electric vehicle (EV) policy in Ireland is required to be implemented to reduce CO 2 emissions by a significant level. Results also show that a similar achievement of CO 2 emission reduction could be possible by using alternative vehicle technologies with higher abatement cost. However, as EV based policies have not been successful so far, Ireland may need to search for alternative pathways.

  2. Regional differences in the CO_2 emissions of China's iron and steel industry: Regional heterogeneity

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2016-01-01

    Identifying the key influencing factors of CO_2 emissions in China's iron and steel industry is vital for mitigating its emissions and formulating effective environmental protection measures. Most of the existing researches utilized time series data to investigate the driving factors of the industry's CO_2 emission at the national level, but regional differences have not been given appropriate attention. This paper adopts provincial panel data from 2000 to 2013 and panel data models to examine the key driving forces of CO_2 emissions at the regional levels in China. The results show that industrialization dominates the industry's CO_2 emissions, but its effect varies across regions. The impact of energy efficiency on CO_2 emissions in the eastern region is greater than in the central and western regions because of a huge difference in R&D investment. The influence of urbanization has significant regional differences due to the heterogeneity in human capital accumulation and real estate development. Energy structure has large potential to mitigate CO_2 emissions on account of increased R&D investment in energy-saving technology and expanded clean energy use. Hence, in order to effectively achieve emission reduction, local governments should consider all these factors as well as regional heterogeneity in formulating appropriate mitigation policies. - Highlights: • We explore the driving forces of CO_2 emissions in China's steel industry. • Industrialization dominates CO_2 emissions in the iron and steel industry. • Energy structure has large potential to mitigate CO_2 emissions in the steel industry. • The influence of urbanization has significant regional differences.

  3. Decoupling between CO2 emissions and economic growth in Brazil and in other countries

    Directory of Open Access Journals (Sweden)

    Carla Nogueira Patrão de Aquino

    2017-10-01

    Full Text Available The aim of this article is to examine the change in behavior between CO2 emissions and the world economic growth in the years 2013 and 2014 which may represent decoupling, and, thus,  contribute to the debate on alternative forms of reducing greenhouse effect. We established the 1990-2014 period as time axis because it presents two inflections in the growth curve of global CO2 emissions: one associated with the 2008 world crisis; and the other starting in 2013, discussed in this article. We selected six countries: the United States, Japan, Brazil, China, India, and Russia. In common, they share the same amount of CO2 emissions in world production. As a result, we identified changes related to the vectors gross domestic product and global CO2 emissions, favoring gas emissions reduction, as behavioral reflection of these two variables in the investigated countries which, if confirmed, points to structural changes between these two variables.

  4. CO2 emissions from soil incubated with sugarcane straw and ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... CO2 emissions peaked at 5.45, 10.82, 14.00, 11.92 and 11.20, 14.47, 15.98,and 14.74 µg mol of. CO2 g-1 s-1 within the ... of mineral N for plants and microorganisms. The .... incubation and were highest when incubated at 30°C with average daily ... because the majority of labile C had been consumed.

  5. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-01-01

    , especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys

  6. Anomalous CO2 Emissions in Different Ecosystems Around the World

    Science.gov (United States)

    Sanchez-Canete, E. P.; Moya Jiménez, M. R.; Kowalski, A. S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Oyonarte, C.; Domingo, F.

    2016-12-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data available, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aim of this study is: 1) to identify anomalous short term CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that are influencing these emissions, and 3) to explore the potential processes that can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database (version 2015) and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with quality control flag equal to 0 was used) and correlation analysis were performed with NEE and ancillary data. Preliminary results showed strong and highly significant correlations between meteorological variables and anomalous CO2 emissions. Correlation results showed clear differing behaviors between ecosystems types, which could be related to the different processes involved in the anomalous CO2 emissions. We suggest that anomalous CO2 emissions are happening globally and therefore, their contribution to the global net ecosystem carbon balance requires further investigation in order to better understand its drivers.

  7. ASSESSMENT OF CO2 EMISSION MITIGATION FOR A BRAZILIAN OIL REFINERY

    Directory of Open Access Journals (Sweden)

    W. N. Chan

    Full Text Available Abstract Currently the oil refining sector is responsible for approximately 5% of the total Brazilian energy related CO2 emissions. Possibilities to reduce CO2 emissions and related costs at the largest Brazilian refinery have been estimated. The abatement costs related to energy saving options are negative, meaning that feasibility exists without specific income due to emission reductions. The assessment shows that short-term mitigation options, i.e., fuel substitution and energy efficiency measures, could reduce CO2 emissions by 6% of the total current refinery emissions. It is further shown that carbon capture and storage offers the greatest potential for more significant emission reductions in the longer term (up to 43%, but costs in the range of 64 to162 US$/t CO2, depending on the CO2 emission source (regenerators of FCC units or hydrogen production units and the CO2 capture technology considered (oxyfuel combustion or post-combustion. Effects of uncertainties in key parameters on abatement costs are also evaluated via sensitivity analysis.

  8. The energy and CO2 emissions impact of renewable energy development in China

    International Nuclear Information System (INIS)

    Qi, Tianyu; Zhang, Xiliang; Karplus, Valerie J.

    2014-01-01

    China has adopted targets for developing renewable electricity that would require expansion on an unprecedented scale. During the period from 2010 to 2020, we find that current renewable electricity targets result in significant additional renewable energy installation and a reduction in cumulative CO 2 emissions of 1.8% relative to a No Policy baseline. After 2020, the role of renewables is sensitive to both economic growth and technology cost assumptions. Importantly, we find that the CO 2 emissions reductions due to increased renewables are offset in each year by emissions increases in non-covered sectors through 2050. We consider sensitivity to renewable electricity cost after 2020 and find that if cost falls due to policy or other reasons, renewable electricity share increases and results in slightly higher economic growth through 2050. However, regardless of the cost assumption, projected CO 2 emissions reductions are very modest under a policy that only targets the supply side in the electricity sector. A policy approach that covers all sectors and allows flexibility to reduce CO 2 at lowest cost – such as an emissions trading system – will prevent this emissions leakage and ensure targeted reductions in CO 2 emissions are achieved over the long term. - Highlights: • The 2020 targets and subsidies make renewable electricity economically viable in the short term. • Cumulative CO 2 emissions (2010-2020) are reduced by 1.8% in the Current Policy scenario. • Displacing fossil fuels from electricity leads to increases in other sectors, offsetting emissions reductions. • The expansion of renewables after 2020 depends on cost reductions achieved

  9. Radiolytic reduction of nifurtimose by CO2-· free radicals

    International Nuclear Information System (INIS)

    Filali-Mouhim, A.; Champion, B.; Jore, D.; Ferradini, C.; Hickel, B.

    1991-01-01

    Nifurtimox is an antiparasitic drug often used in the treatment of the Chagas disease. Its therapeutic action seems to involve its monoelectronic reduction leading to a reduced radical capable of providing superoxide anion by reaction with oxygen. The oxidation reduction mechanisms involved in this action have been studied by steady state and pulse radiolysis methods. This study is devoted to the monoelectronic exchanges observed in the absence of air, the reducing radicals being the CO 2 - · anions [fr

  10. Analysis of regional difference on impact factors of China’s energy – Related CO2 emissions

    International Nuclear Information System (INIS)

    Li, Huanan; Mu, Hailin; Zhang, Ming; Gui, Shusen

    2012-01-01

    With the intensification of global warming, the issue of carbon emissions causes more and more attention in recent years. In this paper, China’s 30 provincial-level administrative units are divided into five emission regions according to the annual average value of provincial CO 2 emissions per capita during 1990 and 2010. The regional differences in impact factors on CO 2 emissions are discussed using STIRPAT (stochastic impacts by regression on population, affluence, and technology) model. The results indicate that although GDP (Gross domestic product) per capita, industrial structure, population, urbanization and technology level have different impacts on CO 2 emissions in different emission regions, they are almost always the main factors in all emission regions. In most emission regions, urbanization and GDP per capita has a bigger impact on CO 2 emissions than other factors. Improving technology level produces a small reduction in CO 2 emissions in most emission regions, but it is still a primary way for CO 2 reduction in China. It’s noteworthy that industrial structure isn’t the main factor and improving technology level increases CO 2 emissions in high emission region. Different measures should be adopted for CO 2 reductions according to local conditions in different regions. -- Highlights: ► Regional differences of the impact factors on China’s CO 2 emissions are analyzed. ► Five macro factors like GDP per capita are almost always main influence factors in all regions. ► The impacts of different factors are different. ► Improving technology has no significant reduction on CO 2 emission in most regions. ► Policy on CO 2 reduction should be adapted to local conditions.

  11. Economic and game-theoretical analysis of CO2 reduction agreements

    International Nuclear Information System (INIS)

    Tahvonen, O.

    1994-01-01

    The possibility of climate change and suggestions to stabilize CO 2 emissions have led to several different fields of research in resource and environmental economics. These include: 1. Studies on country specific and global greenhouse gas abatement costs. 2. Studies on global and country specific adaptation costs. 3. Game-theoretical analysis of greenhouse gas reduction agreements. 4. Studies on the relationship between CO 2 accumulation and natural resource utilization. 5. Models of climate change and intertemporal efficiency and equity. 6. Studies on emissions taxes and emissions permit markets for greenhouse gas abatement. The aim of this project is to contribute to the economic literature in fields 3, and 4

  12. The effects of Norwegian gas export on the global CO2 emission

    International Nuclear Information System (INIS)

    1996-01-01

    This report analyses how a limitation of Norway's gas export might affect the global CO 2 emission. In principle, a reduction of this export can lead to decreased or increased CO 2 emission depending on changes in several conditions that individually have conflicting emission effects. What the total effect will be can only become clear after a thorough empirical analysis of the supply and demand structure. The model calculations presented in the report show that the global emission will probably increase if Norway reduces the gas export. A gas export reduction of 10 million tonne oil equivalents in 2015 will increase the global emission by 1.4 and 7.5 million tonne CO 2 depending on the assumption made for alternative gas supplies to the European market and for market conditions in the importing countries. 4 refs., 32 figs., 44 tabs

  13. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries

    International Nuclear Information System (INIS)

    Arouri, Mohamed El Hedi; Ben Youssef, Adel; M'henni, Hatem; Rault, Christophe

    2012-01-01

    This article extends the recent findings of , , and by implementing recent bootstrap panel unit root tests and cointegration techniques to investigate the relationship between carbon dioxide emissions, energy consumption, and real GDP for 12 Middle East and North African Countries (MENA) over the period 1981–2005. Our results show that in the long-run energy consumption has a positive significant impact on CO 2 emissions. More interestingly, we show that real GDP exhibits a quadratic relationship with CO 2 emissions for the region as a whole. However, although the estimated long-run coefficients of income and its square satisfy the EKC hypothesis in most studied countries, the turning points are very low in some cases and very high in other cases, hence providing poor evidence in support of the EKC hypothesis. CO 2 emission reductions per capita have been achieved in the MENA region, even while the region exhibited economic growth over the period 1981–2005. The econometric relationships derived in this paper suggest that future reductions in CO 2 emissions per capita might be achieved at the same time as GDP per capita in the MENA region continues to grow. - Highlights: ► We study the links between CO 2 emissions, energy consumption and GDP in MENA region. ► Energy consumption has a positive correlation with CO 2 emissions. ► GDP exhibits a quadratic relationship with CO 2 emissions for the region as a whole. ► However, the turning points are low in some cases and high in other cases. ► Thus, not all countries need to sacrifice economic growth to decrease CO 2 emissions.

  14. CO2 emissions embodied in China-US trade: Input-output analysis based on the emergy/dollar ratio

    International Nuclear Information System (INIS)

    Du Huibin; Guo Jianghong; Mao Guozhu; Smith, Alexander M.; Wang Xuxu; Wang, Yuan

    2011-01-01

    To gain insight into changes in CO 2 emissions embodied in China-US trade, an input-output analysis based on the emergy/dollar ratio (EDR) is used to estimate embodied CO 2 emissions; a structural decomposition analysis (SDA) is employed to analyze the driving factors for changes in CO 2 emissions embodied in China's exports to the US during 2002-2007. The results of the input-output analysis show that net export of CO 2 emissions increased quickly from 2002 to 2005 but decreased from 2005 to 2007. These trends are due to a reduction in total CO 2 emission intensity, a decrease in the exchange rate, and small imports of embodied CO 2 emissions. The results of the SDA demonstrate that total export volume was the largest driving factor for the increase in embodied CO 2 emissions during 2002-2007, followed by intermediate input structure. Direct CO 2 emissions intensity had a negative effect on changes in embodied CO 2 emissions. The results suggest that China should establish a framework for allocating emission responsibilities, enhance energy efficiency, and improve intermediate input structure. - Highlights: → An input-output analysis based on the emergy/dollar ratio estimated embodied CO 2 . → A structural decomposition analysis analyzed the driving factors. → Net export of CO 2 increased from 2002 to 2005 but decreased from 2005 to 2007. → Total export volume was the largest driving factor. → A framework for allocating emission responsibilities.

  15. ICT, openness and CO2 emissions in Africa.

    Science.gov (United States)

    Asongu, Simplice A

    2018-04-01

    This study investigates how information and communication technology (ICT) complements globalisation in order to influence CO 2 emissions in 44 Sub-Saharan African countries over the period 2000-2012. ICT is measured with internet penetration and mobile phone penetration whereas globalisation is designated in terms of trade and financial openness. The empirical evidence is based on the generalised method of moments. The findings broadly show that ICT can be employed to dampen the potentially negative effect of globalisation on environmental degradation like CO 2 emissions. Practical, policy and theoretical implications are discussed.

  16. Analysis on influence factors of China's CO2 emissions based on Path-STIRPAT model

    International Nuclear Information System (INIS)

    Li Huanan; Mu Hailin; Zhang Ming; Li Nan

    2011-01-01

    With the intensification of global warming and continued growth in energy consumption, China is facing increasing pressure to cut its CO 2 (carbon dioxide) emissions down. This paper discusses the driving forces influencing China's CO 2 emissions based on Path-STIRPAT model-a method combining Path analysis with STIRPAT (stochastic impacts by regression on population, affluence and technology) model. The analysis shows that GDP per capita (A), industrial structure (IS), population (P), urbanization level (R) and technology level (T) are the main factors influencing China's CO 2 emissions, which exert an influence interactively and collaboratively. The sequence of the size of factors' direct influence on China's CO 2 emission is A>T>P>R>IS, while that of factors' total influence is A>R>P>T>IS. One percent increase in A, IS, P, R and T leads to 0.44, 1.58, 1.31, 1.12 and -1.09 percentage change in CO 2 emission totally, where their direct contribution is 0.45, 0.07, 0.63, 0.08, 0.92, respectively. Improving T is the most important way for CO 2 reduction in China. - Highlights: → We analyze the driving forces influencing China's CO 2 emissions. → Five macro factors like per capita GDP are the main influencing factors. → These factors exert an influence interactively and collaboratively. → Different factors' direct and total influence on China's CO 2 emission is different. → Improving technology level is the most important way for CO 2 reduction in China.

  17. Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa; Bush, Richard T; Sullivan, Leigh A

    2015-04-01

    Controversy surrounds the green credentials of hydroelectricity because of the potentially large emission of greenhouse gases (GHG) from associated reservoirs. However, limited and patchy data particularly for China is constraining the current global assessment of GHG releases from hydroelectric reservoirs. This study provides the first evaluation of the CO2 and CH4 emissions from China's hydroelectric reservoirs by considering the reservoir water surface and drawdown areas, and downstream sources (including spillways and turbines, as well as river downstream). The total emission of 29.6 Tg CO2/year and 0.47 Tg CH4/year from hydroelectric reservoirs in China, expressed as CO2 equivalents (eq), corresponds to 45.6 Tg CO2eq/year, which is 2-fold higher than the current GHG emission (ca. 23 Tg CO2eq/year) from global temperate hydropower reservoirs. China's average emission of 70 g CO2eq/kWh from hydropower amounts to 7% of the emissions from coal-fired plant alternatives. China's hydroelectric reservoirs thus currently mitigate GHG emission when compared to the main alternative source of electricity with potentially far great reductions in GHG emissions and benefits possible through relatively minor changes to reservoir management and design. On average, the sum of drawdown and downstream emission including river reaches below dams and turbines, which is overlooked by most studies, represents the equivalent of 42% of the CO2 and 92% of CH4 that emit from hydroelectric reservoirs in China. Main drivers on GHG emission rates are summarized and highlight that water depth and stratification control CH4 flux, and CO2 flux shows significant negative relationships with pH, DO, and Chl-a. Based on our finding, a substantial revision of the global carbon emissions from hydroelectric reservoirs is warranted.

  18. Swedish CO2-emissions 1900-2010: an exploratory note

    International Nuclear Information System (INIS)

    Kristroem, Bengt; Lundgren, Tommy

    2005-01-01

    This paper projects Swedish CO 2 -emissions during the period 2000-2010 based on data covering 1900-1999. Swedish climate policy is currently based on the assumption that carbon emissions will increase, ceteris paribus, by 5-15% relative to the 1990 level. This forecast has motivated a number of policy measures, including carbon taxes, subsidies and an 'information package'. We find, however, that CO 2 -emissions may well be lower in the future. This outcome is broadly consistent with the literature on the Environmental Kuznets Curve, which portrays the relationship between emissions and GDP. The key contribution of this paper is that our analysis is based on a long time series. Current literature is invariably based on 'short' panel data sets, while we study a single country through several phases of development. Our analysis also sheds some light on the key importance played by nuclear power for carbon emission projections

  19. Essays on the Determinants of Energy Related CO2 Emissions =

    Science.gov (United States)

    Moutinho, Victor Manuel Ferreira

    Overall, amongst the most mentioned factors for Greenhouse Gases (GHG) growth are the economic growth and the energy demand growth. To assess the determinants GHG emissions, this thesis proposed and developed a new analysis which links the emissions intensity to its main driving factors. In the first essay, we used the 'complete decomposition' technique to examine CO2 emissions intensity and its components, considering 36 economic sectors and the 1996-2009 periods in Portugal. The industry (in particular 5 industrial sectors) is contributing largely to the effects of variation of CO2 emissions intensity. We concluded, among others, the emissions intensity reacts more significantly to shocks in the weight of fossil fuels in total energy consumption compared to shocks in other variables. In the second essay, we conducted an analysis for 16 industrial sectors (Group A) and for the group of the 5 most polluting manufacturing sectors (Group B) based on the convergence examination for emissions intensity and its main drivers, as well as on an econometric analysis. We concluded that there is sigma convergence for all the effects with exception to the fossil fuel intensity, while gamma convergence was verified for all the effects, with exception of CO2 emissions by fossil fuel and fossil fuel intensity in Group B. From the econometric approach we concluded that the considered variables have a significant importance in explaining CO2 emissions and CO2 emissions intensity. In the third essay, the Tourism Industry in Portugal over 1996-2009 period was examined, specifically two groups of subsectors that affect the impacts on CO2 emissions intensity. The generalized variance decomposition and the impulse response functions pointed to sectors that affect tourism more directly, i. e. a bidirectional causality between the intensity of emissions and energy intensity. The effect of intensity of emissions is positive on energy intensity, and the effect of energy intensity on

  20. Does Non-Fossil Energy Usage Lower CO2 Emissions? Empirical Evidence from China

    Directory of Open Access Journals (Sweden)

    Deshan Li

    2016-08-01

    Full Text Available This paper uses an autoregressive distributed lag model (ARDL to examine the dynamic impact of non-fossil energy consumption on carbon dioxide (CO2 emissions in China for a given level of economic growth, trade openness, and energy usage between 1965 and 2014. The results suggest that the variables are in a long-run equilibrium. ARDL estimation indicates that consumption of non-fossil energy plays a crucial role in curbing CO2 emissions in the long run but not in the short term. The results also suggest that, in both the long and short term, energy consumption and trade openness have a negative impact on the reduction of CO2 emissions, while gross domestic product (GDP per capita increases CO2 emissions only in the short term. Finally, the Granger causality test indicates a bidirectional causality between CO2 emissions and energy consumption. In addition, this study suggests that non-fossil energy is an effective solution to mitigate CO2 emissions, providing useful information for policy-makers wishing to reduce atmospheric CO2.

  1. Factor Decomposition Analysis of Energy-Related CO2 Emissions in Tianjin, China

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-07-01

    Full Text Available Tianjin is the largest coastal city in northern China with rapid economic development and urbanization. Energy-related CO2 emissions from Tianjin’s production and household sectors during 1995–2012 were calculated according to the default carbon-emission coefficients provided by the Intergovernmental Panel on Climate Change. We decomposed the changes in CO2 emissions resulting from 12 causal factors based on the method of Logarithmic Mean Divisia Index. The examined factors were divided into four types of effects: energy intensity effect, structure effect, activity intensity effect, scale effect and the various influencing factors imposed differential impacts on CO2 emissions. The decomposition outcomes indicate that per capita GDP and population scale are the dominant positive driving factors behind the growth in CO2 emissions for all sectors, while the energy intensity of the production sector is the main contributor to dampen the CO2 emissions increment, and the contributions from industry structure and energy structure need further enhancement. The analysis results reveal the reasons for CO2 emission changes in Tianjin and provide a solid basis upon which policy makers may propose emission reduction measures and approaches for the implementation of sustainable development strategies.

  2. Reducing CO2 emissions in Sierra Leone and Ghana

    International Nuclear Information System (INIS)

    Davidson, O.

    1991-01-01

    With soring population growth rates and minimal economic growth, the nations of Africa are afflicted with innumerable problems. Why then should Africa's developing countries worry about CO 2 emissions? First, because agricultural activities form the backbone of most African economies; thus, these nations may be particularly vulnerable to the negative impacts of climate change. Second, acting to reduce carbon emissions will bring about more efficient energy use. All of Africa could benefit from the improved use of energy. Finally, the accumulation of CO 2 in the atmosphere is a global problem with individual solutions; in order to reduce international emissions, all countries, including those in Africa, must contribute. Typical of many African countries, Ghana and Sierra Leone have among the lowest levels of energy demand per capita across the globe. primary energy demand per capita in these two West African nations equals about one quarter of the world's average and about one twentieth of the US average. This work summarizes the results of two long-term energy use and carbon emissions scenarios for Sierra Leone and Ghana. In the high emissions (HE) scenario for 2025, policy changes focused on galvanizing economic growth lead to significant increases in energy use and carbon emissions in Ghana and Sierra Leone between 1985 and 2025. In the low emissions (LE) scenario, the implementation of policies aimed specifically at curtailing CO 2 emissions significantly limits the increase in carbon in both nations by 2025

  3. Mastering the market of CO2 emission quotas

    International Nuclear Information System (INIS)

    2004-05-01

    On January 1, 2005, a system of trade of carbon dioxide emission quotas, also called 'market of tradable emission permits', will be implemented in the European Union. This system is one of the 3 flexibility mechanisms foreseen by the Kyoto protocol in order to reduce the global economic cost of the fight against climatic change. The aim of this seminar is to clarify the process of transfer of the European directive into French law. It comprises 8 presentations dealing with: the objectives of tradable emission quotas (greenhouse effect, Kyoto commitments, short and long term stakes); presentation of the European directive about the trade system of greenhouse gas emissions; transposition of the directive into French law (fields of application, sectors and facilities concerned, possible exemptions, first national plan of quotas allocation); voluntary emission abatement commitments by industrial companies member of the AERES; quotas recording and management, control of trades; companies strategy (investment for CO 2 abatement or purchase of quotas, impact on industries and competitiveness); experience feedback of emission quotas trading in foreign countries (international CO 2 market development); CO 2 emission quotas linked with cogeneration (emissions from cogeneration facilities, possible allocation, impact for cogeneration companies, approaches in other European countries in this domain); perspectives and conclusions. (J.S.)

  4. TIC and energy: Digital technologies and the environment; Understanding the energy challenges for technologies of information and communication; Data Centres; Energy savings and reduction of CO_2 emissions, objectives and action plan of the Orange Group

    International Nuclear Information System (INIS)

    Collet, Patrice; Gossart, Cedric; Garello, Rene; Richard, Philippe; Hauet, Jean-Pierre; Bourgoint, Jean-Claude; Zeddam, Ahmed

    2015-01-01

    This publication proposes a set of four articles which give an overview of the present situation of technologies of information and communication (TICs) in terms of energy consumption, and of their perspectives of evolution. More precisely, the authors propose an overview of negative and positive impacts of TICs on the environment (Digital technologies and the environment), discuss an analysis of energy consumption by the different components of the Internet (Understanding the energy challenges for technologies of information and communication), comment efforts which have been already achieved to reduce the energy consumed by data centre equipment (Data Centres), and present action developed and implemented by the Orange Group to manage its energy consumption in its networks and in its information system (Energy savings and reduction of CO_2 emissions, objectives and action plan of the Orange Group)

  5. Policy options to reduce passenger car CO2 emissions after 2020

    Energy Technology Data Exchange (ETDEWEB)

    De Wilde, H.P.J.; Kroon, P. [ECN Beleidsstudies, Petten (Netherlands)

    2013-02-15

    The EU has set emission targets for new cars up to 2020 and is now preparing the post 2020 legislation. The present study aims to give insight in the design of policies to further reduce passenger car emissions after 2020. Internal combustion engine (ICE) vehicles are now expected to enable deeper and less costly CO2 emission reductions than envisioned until recently. However, even advanced ICE vehicles will not enable to meet the very stringent long term emission reduction targets for passenger cars. Therefore transport policies need not only to reduce emissions of ICE vehicles, but also ensure that electric and hydrogen vehicles are phased in timely, along with low-CO2 electricity and hydrogen. Current legislation to regulate tank-to-wheel vehicle emissions is based on CO2-limits, expressed in g CO2/km. On the short term it is important to maximize the efficiency of conventional vehicles. At the same time it is essential to foster the market introduction of electric and hydrogen vehicles, given their potential to reach eventually much deeper overall CO2-reductions. When the market share of electric and hydrogen vehicles grows it becomes increasingly important to maximize their efficiency and to minimize their upstream CO2 emissions. Maximizing both efficiency and overall CO2-performance of all vehicle types - ICE, electric, and hydrogen - will be complicated to achieve with a single CO2-based standard. At this point an efficiency-based standard is more effective, and may offer some additional benefits too. The current report provides basic directions of how such legislation could be shaped.

  6. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure

    International Nuclear Information System (INIS)

    Choi, Yongrok; Zhang, Ning; Zhou, P.

    2012-01-01

    Highlights: ► We employ a slacks-based DEA model to estimate the energy efficiency and shadow prices of CO 2 emissions in China. ► The empirical study shows that China was not performing CO 2 -efficiently. ► The average of estimated shadow prices of CO 2 emissions is about $7.2. -- Abstract: This paper uses nonparametric efficiency analysis technique to estimate the energy efficiency, potential emission reductions and marginal abatement costs of energy-related CO 2 emissions in China. We employ a non-radial slacks-based data envelopment analysis (DEA) model for estimating the potential reductions and efficiency of CO 2 emissions for China. The dual model of the slacks-based DEA model is then used to estimate the marginal abatement costs of CO 2 emissions. An empirical study based on China’s panel data (2001–2010) is carried out and some policy implications are also discussed.

  7. The Potential for Forestry to Reduce Net CO2 Emissions

    International Nuclear Information System (INIS)

    Eriksson, Erik

    2006-01-01

    . However, the trees have to be grown on good sites; otherwise long rotations could be better options for broad-leaved stands. In coniferous stands, a shortened rotation period resulted in lower carbon stocks than a prolonged rotation period, but the amount of residues that could substitute fossil fuel increased with a shorter rotation. However, annual rates of carbon accumulation in biomass might decline in both short- and long-rotation stands in the future. If so, carbon sequestration in biomass would not be the best option. In a long-term perspective, wood products could have high potential to reduce net CO 2 emissions, since wood can replace energy-intensive materials like cement, plastics and aluminium. Intensively managed forests (e.g. fertilized forests or shortened rotation lengths) could contribute more to reductions in CO 2 emissions than current forest management. Using forest products (i.e. wood products and biofuel) is probably more important than storing carbon in biomass and soil, but it is necessary to conserve the existing stocks. Intensive forest management and increased use of biomass may, however, conflict with environmental quality objectives

  8. Atmospheric verification of anthropogenic CO2 emission trends

    Science.gov (United States)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  9. The global warming game - simulations of a CO2 reduction agreement

    International Nuclear Information System (INIS)

    Fankhauser, S.; Kverndokk, S.

    1992-06-01

    The paper analyses incentives for and the benefits of a possible international cooperation to reduce CO-2-emissions. The negotiations are modeled as a (static) reciprocal-externality-game in CO 2 -emissions between five world regions. CO 2 -emissions affect the players in two ways: First, each country's income depends (via energy inputs) on the amount of CO 2 emitted. On the other hand, emissions may cause future damage due to climate change. Without cooperation, each player maximizes its net benefits in setting marginal income equal to its marginal damage cost (Nash equilibrium). Under full cooperation marginal income equals the sum of the marginal damages (social optimum). The paper presents simulations of these two equilibria. Compared to the situation where no attention is paid to the greenhouse effect (the business as usual scenario), emission reductions under the Nash equilibrium can be interpreted as incentives for unilateral actions. According to the simulation results, this can only be expected from OECD countries. The results also imply that a socially optimal treaty, while clearly beneficial for the world in its entirety, may only be achieved if side payments are offered to at least China and the former Soviet Union, and probably the USA. The optimal global emission reductions in this study are on average lower than the reductions recommended by international conferences. 34 refs., 2 figs., 9 tabs

  10. Assessment of Alternative Scenarios for CO2 Reduction Potential in the Residential Building Sector

    Directory of Open Access Journals (Sweden)

    Young-Sun Jeong

    2017-03-01

    Full Text Available The South Korean government announced its goals of reducing the country’s CO2 emissions by up to 30% below the business as usual (BAU projections by 2020 in 2009 and 37% below BAU projections by 2030 in 2015. This paper explores the potential energy savings and reduction in CO2 emissions offered by residential building energy efficiency policies and plans in South Korea. The current and future energy consumption and CO2 emissions in the residential building were estimated using an energy–environment model from 2010 to 2030. The business as usual scenario is based on the energy consumption characteristic of residential buildings using the trends related to socio-economic prospects and the number of dwellings. The alternative scenarios took into account energy efficiency for new residential buildings (scenario I, refurbishment of existing residential buildings (scenario II, use of highly efficient boilers (scenario III, and use of a solar thermal energy system (scenario IV. The results show that energy consumption in the residential building sector will increase by 33% between 2007 and 2030 in the BAU scenario. Maximum reduction in CO2 emissions in the residential building sector of South Korea was observed by 2030 in scenario I. In each alternative scenario analysis, CO2 emissions were 12.9% lower than in the business as usual scenario by the year 2030.

  11. How much can wind reduce the French CO2 emissions?

    International Nuclear Information System (INIS)

    Flocard, H.

    2010-03-01

    This report analyses the information recently made available by the French electricity transport network RTE (Reseau de Transport d'Electricite). It consists in a detailed data set which gives the time evolution of the power either consumed by the country or generated with the diverse production modes exploited by utilities within France. For the first time the French public is also provided some analytical information on a major renewable energy: wind. Our analysis shows that the French wind-turbine-fleet efficiency over last fall-winter semester is 24.3%. The wind production displays the strong fluctuations expected for this intermittent non-controllable energy. It is observed that the time and energy distributions of the power delivered by the French wind turbines are not related to the increased electricity needs which occurred during a semester where a few cold waves hit the country. As a consequence, the controllable productions which already ensure the balance of consumption versus production had also to carry the extra load associated with the handling of wind fluctuations. In a second part of this report, based on the actual data provided by RTE, the report determines the maximal reduction of the CO 2 emissions which can be expected from the completion of the national wind energy program endorsed by the government. We conclude that in the absence of a significant strengthening of the electric network and an increase of the national energy storage capacity, the wind energy policy decided by the French government will only yield limited results on the reduction of both the GHG emissions and the country reliance on fossil fuel burning plants. (author)

  12. BRAZILIAN ECONOMIC GROWTH AND THE EMISSION OF CO2

    Directory of Open Access Journals (Sweden)

    Cleyzer Adrian Cunha

    2013-07-01

    Full Text Available The objective of paper is verifying empirically the relationship between GDP per capita and CO2 emissions in Brazil in the period 1980-2006. The scope of work was limited to this natural resource due to its role in economic activity, as an important input in the production process in the Brazilian energy matrix. Among the main results is that there is a long-term relationship and simultaneous causality between variables and GDP per capita CO2 emissions. This evidence, coupled with the fact that the series used were not stationary in level, impossible to estimate the Environmental Kuznets Curve (EKC, which is the main theoretical basis used in empirical work related to the theme. The VAR / VEC has been estimated and found elasticity between economic growth and CO2 emission was 7.32, ie, in the long run, we can infer that an increase of 1% in GDP per capita increases by 7, 32% CO2 emissions.

  13. CO2 emissions from Super-light Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Bagger, Anne

    2011-01-01

    CO2 emission from the construction of buildings is seldom taken into account because focus is primarily on building operation. New technologies have therefore mainly been developed to reduce the energy consumption connected to operation. Super-light technology is a new structural principle giving...

  14. Estimates of CO2 traffic emissions from mobile concentration measurements

    Science.gov (United States)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  15. Report on basic survey project for promoting joint implementation in 1999. Feasibility studies on reduction of CO2 emission by introduction of energy saving equipment in 3 major Philippine pulp and paper mills

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Feasibility studies were carried out on major Philippine pulp and paper mills to introduce energy saving technologies possessed by Japan and reduce emission of greenhouse effect gases. The studies are intended to be linked to the clean development mechanism (CDM) in the future. The factories chosen as the object of the studies are TIPCO, UPPC and CCP. The energy saving facilities to be introduced are the energy saving type screen, speed variable motors, power regenerative braking of winder roll-out section, installation of a dryer roll spoiler bar, and waste heat recovering devices. Therefore, it is necessary that Japan accept sharing the fund in return that this project is performed as a CDM, and credit on reduction of CO2 emission is transferred. Because of indistinctness in the CDM framework at the present as to the specific ratio of fund sharing, and of the value of the reduction quantity credit, further discussions will be required after these situations have been made clear. Since the Philippine government is not favorably disposed toward the CDM, agreement on this project as a CDM appears difficult. (NEDO)

  16. Economics and the refinery's CO2 emissions allocation problem

    International Nuclear Information System (INIS)

    Pierru, A.

    2007-01-01

    The establishment of a market for CO 2 emission rights in Europe leads oil-refining companies to add a cost associated with carbon emissions to the objective function of linear programming models used to manage refineries. These models may be used to compute the marginal contribution of each finished product to the CO 2 emissions of the refinery. Babusiaux (Oil. Gas Sci. Technol., 58, 2003, 685-692) has shown that, under some conditions, this marginal contribution is a relevant means of allocating the carbon emissions of the refinery. Thus, it can be used in a well-to-wheel Life Cycle Assessment. In fact, this result holds if the demand equations are the only binding constraints with a non-zero right-hand side coefficient. This is not the case for short-run models with fixed capacity. Then, allocating CO 2 emissions on a marginal basis tends to over-value (or undervalue) the total volume of emissions. In order to extend the existing methodology, we discuss two distinct solutions to this problem, inspired by economic theory: adapting either the Aumann-Shapley cost sharing method (Values of non-atomic games, 1974, Princeton University Press) or the Ramsey pricing formula (Econ. J., 37, 1927, 47-61; J. Econ. Theory, 3, 1971, 219-240). We compare these two solutions, with a strong argument in favour of Ramsey prices, based on the determination of the optimal environmental tax rate to which imported finished products should be subject. (author)

  17. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  18. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals.

    Science.gov (United States)

    Zhang, Wenjun; Hu, Yi; Ma, Lianbo; Zhu, Guoyin; Wang, Yanrong; Xue, Xiaolan; Chen, Renpeng; Yang, Songyuan; Jin, Zhong

    2018-01-01

    The worldwide unrestrained emission of carbon dioxide (CO 2 ) has caused serious environmental pollution and climate change issues. For the sustainable development of human civilization, it is very desirable to convert CO 2 to renewable fuels through clean and economical chemical processes. Recently, electrocatalytic CO 2 conversion is regarded as a prospective pathway for the recycling of carbon resource and the generation of sustainable fuels. In this review, recent research advances in electrocatalytic CO 2 reduction are summarized from both experimental and theoretical aspects. The referred electrocatalysts are divided into different classes, including metal-organic complexes, metals, metal alloys, inorganic metal compounds and carbon-based metal-free nanomaterials. Moreover, the selective formation processes of different reductive products, such as formic acid/formate (HCOOH/HCOO - ), monoxide carbon (CO), formaldehyde (HCHO), methane (CH 4 ), ethylene (C 2 H 4 ), methanol (CH 3 OH), ethanol (CH 3 CH 2 OH), etc. are introduced in detail, respectively. Owing to the limited energy efficiency, unmanageable selectivity, low stability, and indeterminate mechanisms of electrocatalytic CO 2 reduction, there are still many tough challenges need to be addressed. In view of this, the current research trends to overcome these obstacles in CO 2 electroreduction field are summarized. We expect that this review will provide new insights into the further technique development and practical applications of CO 2 electroreduction.

  19. Regional allocation of CO2 emissions allowance over provinces in China by 2020

    International Nuclear Information System (INIS)

    Wang, Ke; Zhang, Xian; Wei, Yi-Ming; Yu, Shiwei

    2013-01-01

    The mitigation efforts of China are increasingly important for meeting global climate target since the rapid economic growth of China has led to an increasing share in the world's total CO 2 emissions. This paper sets out to explore the approach for realizing China's national mitigation targets submitted to the UNFCCC as part of the Copenhagen Accord; that is, to reduce the intensity of CO 2 emissions per unit of GDP by 40–45% by 2020, as well as reducing the energy intensity and increasing the share of non-fossil fuel consumption, through regional allocation of emission allowance over China's provinces. Since the realization of China's mitigation target essentially represents a total amount emission allowance allocation problem, an improved zero sum gains data envelopment analysis optimization model, which could deal with the constant total amount resources allocation, is proposed in this study. By utilizing this model and based on several scenarios of China's economic growth, CO 2 emissions, and energy consumption, a new efficient emission allowance allocation scheme on provincial level for China by 2020 is proposed. The allocation results indicate that different provinces have to shoulder different mitigation burdens in terms of emission intensity reduction, energy intensity reduction, and share of non-fossil fuels increase. - Highlights: ► We explore the approach to realize national CO 2 emissions reduction target of China by 2020. ► The CO 2 emissions allowance is allocated over China's 30 administrative regions. ► Several scenarios of China's regional economy, emission, energy consumption are given. ► The zero sum gains data envelopment analysis model is applied in emission allowance allocation. ► An efficient emission allowance allocation scheme on provincial level is proposed

  20. Regional CO2 budget, countermeasures and reduction aims for the Alpine tourist region of Davos, Switzerland

    International Nuclear Information System (INIS)

    Walz, A.; Calonder, G.-P.; Hagedorn, F.; Lardelli, C.; Lundstroem, C.; Stoeckli, V.

    2008-01-01

    In its latest report, the Intergovernmental Panel on Climate Change (IPCC) concludes that global climate change can still be slowed down if greenhouse gas emissions are rapidly and strongly reduced. We present a detailed regional CO 2 budget for the Alpine tourist region of Davos, Switzerland, including emissions and potential sinks. The aim of the study was (1) to estimate the most important CO 2 sources and sinks, (2) to identify the most efficient reduction measures and (3) to assess the feasibility of different reduction targets. The results show that the emissions due to heating contribute to a proportion of 86.3% to the total budget, which is mainly due to the harsh local climate and the tourism-focused local economy. They also show that the yearly CO 2 emissions per capita in Davos exceed the Swiss average of 6 tonnes by 25%. The augmentation of the carbon pool through the natural environment compares to 10.3% of the total emissions, and further afforestation of the community forest can contribute to an improvement of the total budget by 2.6%. The reduction aim of -15% until 2015 (compared with 2004), as set by the municipality itself, could be easily reached through better building insulation and the use of renewable energy sources. More ambitious aims, such as a 2000 W-society or CO 2 neutrality, however, will not be realised without major drawbacks in living standards

  1. LMDI Decomposition of Energy-Related CO2 Emissions Based on Energy and CO2 Allocation Sankey Diagrams: The Method and an Application to China

    Directory of Open Access Journals (Sweden)

    Linwei Ma

    2018-01-01

    Full Text Available This manuscript develops a logarithmic mean Divisia index I (LMDI decomposition method based on energy and CO2 allocation Sankey diagrams to analyze the contributions of various influencing factors to the growth of energy-related CO2 emissions on a national level. Compared with previous methods, we can further consider the influences of energy supply efficiency. Two key parameters, the primary energy quantity converted factor (KPEQ and the primary carbon dioxide emission factor (KC, were introduced to calculate the equilibrium data for the whole process of energy unitization and related CO2 emissions. The data were used to map energy and CO2 allocation Sankey diagrams. Based on these parameters, we built an LMDI method with a higher technical resolution and applied it to decompose the growth of energy-related CO2 emissions in China from 2004 to 2014. The results indicate that GDP growth per capita is the main factor driving the growth of CO2 emissions while the reduction of energy intensity, the improvement of energy supply efficiency, and the introduction of non-fossil fuels in heat and electricity generation slowed the growth of CO2 emissions.

  2. CO2 emissions, natural gas and renewables, economic growth: Assessing the evidence from China.

    Science.gov (United States)

    Dong, Kangyin; Sun, Renjin; Dong, Xiucheng

    2018-05-31

    This study aims to test the environmental Kuznets curve (EKC) for carbon dioxide (CO 2 ) emissions in China by developing a new framework based on the suggestion of Narayan and Narayan (2010). The dynamic effect of natural gas and renewable energy consumption on CO 2 emissions is also analyzed. Considering the structural break observed in the sample, a series of econometric techniques allowing for structural breaks is utilized for the period 1965-2016. The empirical results confirm the existence of the EKC for CO 2 emissions in China. Furthermore, in both the long-run and the short-run, the beneficial effects of natural gas and renewables on CO 2 emission reduction are observable. In addition, the mitigation effect of natural gas on CO 2 emissions will be weakened over time, while renewables will become progressively more important. Finally, policy suggestions are highlighted not only for mitigating CO 2 emissions, but also for promoting growth in the natural gas and renewable energy industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Economics of the Nuclear Energy Considered CO2 Emission

    International Nuclear Information System (INIS)

    Kim, Su Jin; Kim, Yong Min

    2011-01-01

    The energy consumption in Korea has greatly increased along with its rapid economic growth and industrialization since the 1970s. Total energy consumption increased at an average annual growth rate. Due to the lack of domestic energy resources, however, the overseas dependence rate of energy consumption has continuously increased. Also Climate change, resulting from increases in greenhouse gas emissions (GHG), is considered one of the biggest environmental dangers facing the world today. The objective and approach of this study are to compare the different types of scenarios in terms of the power plant type and CO 2 emission from each power plant. We estimated cost of electricity generation using fuel cost, O and M cost(Operation and Maintenance Cost) and CO 2 emission

  4. The impact of CO2 emissions on economic growth: evidence from selected higher CO2 emissions economies.

    Science.gov (United States)

    Azam, Muhammad; Khan, Abdul Qayyum; Bin Abdullah, Hussin; Qureshi, Muhammad Ejaz

    2016-04-01

    The main purpose of this work is to analyze the impact of environmental degradation proxied by CO2 emissions per capita along with some other explanatory variables namely energy use, trade, and human capital on economic growth in selected higher CO2 emissions economies namely China, the USA, India, and Japan. For empirical analysis, annual data over the period spanning between 1971 and 2013 are used. After using relevant and suitable tests for checking data properties, the panel fully modified ordinary least squares (FMOLS) method is employed as an analytical technique for parameter estimation. The panel group FMOLS results reveal that almost all variables are statistically significant, whereby test rejects the null hypotheses of non cointegration, demonstrating that all variables play an important role in affecting the economic growth role across countries. Where two regressors namely CO2 emissions and energy use show significantly negative impacts on economic growth, for trade and human capital, they tend to show the significantly positive impact on economic growth. However, for the individual analysis across countries, the panel estimate suggests that CO2 emissions have a significant positive relationship with economic growth for China, Japan, and the USA, while it is found significantly negative in case of India. The empirical findings of the study suggest that appropriate and prudent policies are required in order to control pollution emerging from areas other than liquefied fuel consumption. The ultimate impact of shrinking pollution will help in supporting sustainable economic growth and maturation as well as largely improve society welfare.

  5. Strategies and costs for reducing CO2 emissions in Finland

    International Nuclear Information System (INIS)

    Lehtilae, A.; Pirilae, P.

    1993-01-01

    In this study cost-efficient measures for the abatement of energy-related CO 2 emissions in Finland are analyzed, and the direct costs of such measures are estimated. The time frame considered is the period up to the year 2010. Furthermore, the probable impacts of an energy/CO 2 -tax on the Finnish energy system are worked out, and an attempt is made to assess the effectiveness of a tax scheme as an economic instrument for achieving CO 2 emission targets. The primary methodological tool in the analyses has been the model of the Finnish energy system developed at the Technical Research Centre of Finland (VTT) within the project. The model facilitates the search for cost-efficient emission control strategies over a period of several decades. Structural and technological changes in the energy system, e.g. fuel and technology substitution, new technologies, efficiency improvements, and energy-saving measures have been allowed for in the model. The results of the analyses show that achieving the target of returning the CO 2 emissions to the 1990 level by the year 2000 would be very difficult and costly in Finland. In the case of a nuclear moratorium it would be reasonable to delay the target by ten years. Even in the delayed cases achieving the target would require extensive structural changes and substantial energy-saving measures in the absence of additional nuclear energy. Coal use would have to be severely restricted, whereas the use of biomass and natural gas should be more than doubled compared to the 1990 levels. According to the results, a CO 2 tax would clearly be a more efficient instrument than a tax based on the energy content of a fuel

  6. Abatement of CO2 emissions in the European Union

    International Nuclear Information System (INIS)

    Lesourne, J.; Keppler, J.H.; Jaureguy-Naudin, Maite; Smeers, Yves; Bouttes, Jean-Paul; Trochet, Jean-Michel; Dassa, Francois; Neuhoff, Karsten

    2008-01-01

    This first monograph of the Ifri program on European Governance and Geopolitics of Energy is devoted to the control of carbon dioxide emissions within the European Union. Since it is almost unanimously accepted that Greenhouse Gas emissions constitute the main cause of the observed increase of the world average temperature, the system implemented by the European Union to limit and decrease the CO 2 emissions is a significant pillar of the EU energy policy, the two others being the acceptance by the Member States of long-term commitments (for instance on the future share of renewable energy sources in their energy balance sheet) and the establishment of an internal market for electricity and gas. Though simple in principle, the European Union Greenhouse Gas Emission Trading Scheme (EU ETS) is in fact rather complex, and only experts really understand its merits and its deficiencies. These deficiencies are real and will have to be corrected in the future for the system to be effective. At this moment, when the 2005-2007 trial phase of the EU ETS is ending, the monograph has the purpose to stimulate the discussion between experts and to enable all those interested in the topic to understand the issues and to take part in the public debates on the subject. The monograph contains five papers: - 'An Overview of the CO 2 Emission Control System in the European Union' by Jacques Lesourne and Maite Jaureguy-Naudin. - 'Description and Assessment of EU CO 2 Regulations' by Yves Smeers. - 'Assessment of EU CO 2 Regulations' by Jean-Paul Bouttes, Jean-Michel Trochet and Francois Dassa. - 'Investment in Low Carbon Technologies, Policies for the Power Sector' by Karsten Neuhoff. - 'Lessons Learned from the 2005-2007 Trial Phase of the EU Emission Trading System' by Jan Horst Keppler

  7. H2 production by reforming route in reducing CO2 emissions

    International Nuclear Information System (INIS)

    Raphaelle Imbault

    2006-01-01

    Nowadays the most common way to produce hydrogen is the Steam Methane Reforming route from natural gas. With the pressure of new environmental rules, reducing CO 2 emissions becomes a key issue. The European project Ulcos (Ultra Low CO 2 Steelmaking) has targeted to reduce of at least 50% the CO 2 emissions in steelmaking. The H 2 route (and in particular the reforming process) is one of the solutions which have been explored. The results of this study have shown that the two main ways (which can be combined) of limiting CO 2 emissions in H 2 production are to improve the energetic efficiency of the plant or to capture CO 2 . With the first way, a reduction of 20% of emissions compared to conventional plant can be reached. The second one enables to achieve a decrease of 90%. However the CO 2 capture is much more expensive and this kind of solution can be economically competitive only if high CO 2 taxes are implemented (≥40 Euros/ton). (author)

  8. Controlling selectivities in CO2 reduction through mechanistic understanding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang; Shi, Hui; Szanyi, János

    2017-09-11

    Catalytic CO2 conversion to energy carriers and intermediates is of utmost importance to energy and environmental goals. However, the lack of fundamental understanding of the reaction mechanism renders designing a selective catalyst inefficient. We performed operando FTIR/SSITKA experiments to understand the correlation between the kinetics of product formation and that of surface species conversion during CO2 reduction over Pd/Al2O3 catalysts. We found that the rate-determining step for CO formation is the conversion of adsorbed formate, while that for CH4 formation is the hydrogenation of adsorbed carbonyl. The balance of the hydrogenation kinetics between adsorbed formates and carbonyls governs the selectivities to CH4 and CO. We demonstrated how this knowledge can be used to design catalysts to achieve high selectivities to desired products.

  9. Mesostructure-Induced Selectivity in CO2 Reduction Catalysis.

    Science.gov (United States)

    Hall, Anthony Shoji; Yoon, Youngmin; Wuttig, Anna; Surendranath, Yogesh

    2015-12-02

    Gold inverse opal (Au-IO) thin films are active for CO2 reduction to CO with high efficiency at modest overpotentials and high selectivity relative to hydrogen evolution. The specific activity for hydrogen evolution diminishes by 10-fold with increasing porous film thickness, while CO evolution activity is largely unchanged. We demonstrate that the origin of hydrogen suppression in Au-IO films stems from the generation of diffusional gradients within the pores of the mesostructured electrode rather than changes in surface faceting or Au grain size. For electrodes with optimal mesoporosity, 99% selectivity for CO evolution can be obtained at overpotentials as low as 0.4 V. These results establish electrode mesostructuring as a complementary method for tuning selectivity in CO2-to-fuels catalysis.

  10. Economics of reducing CO2 emissions from China

    International Nuclear Information System (INIS)

    Wu Zhongxin

    1991-01-01

    Relative to the nations of the industrialized world, developing countries emit far lower levels of CO 2 per capita. In coming years, however, as the developing world experiences more rapid rates of economic and population growth, their carbon emissions per capita inevitably will rise. Therefore, developing countries should be encouraged both to adopt more advanced energy technologies in order to improve the efficiency of energy exploration, transportation, generation and end-use and to replace carbon-intensive fuels sources with less carbon-intensive sources (non-fossil fuels and renewable energy). By incorporating methods aimed at curtailing carbon emissions into their energy development strategies, developing nations can reduce the risks posed by higher CO 2 emissions. However, adopting more advanced energy technologies generally entails high costs. These higher prices serve as a particularly large obstacle for developing nations. In order to serve the common interest of protecting the global environment, international funds should be devoted to cover the high costs of reducing developing world CO 2 emissions

  11. Impact of renewables deployment on the CO2 price and the CO2 emissions in the European electricity sector

    International Nuclear Information System (INIS)

    Van den Bergh, Kenneth; Delarue, Erik; D'haeseleer, William

    2013-01-01

    As of 2005, electricity generators in Europe operate under the European Union Emission Trading System (EU ETS). At the same time, European Member States have launched support mechanisms to stimulate the deployment of renewable electricity sources (RES-E). RES-E injections displace CO 2 emissions within the sectors operating under the EU ETS and they reduce the demand for European Union Allowances (EUAs), thereby reducing the EUA price. This paper presents the results of an ex post analysis to quantify the impact of RES-E deployment on the EUA price and CO 2 emissions in the Western and Southern European electricity sector during the period from 2007 to 2010, following from an operational partial equilibrium model of the electricity sector. This study shows that the CO 2 displacement from the electricity sector to other ETS sectors due to RES-E deployment can be up to more than 10% of historical CO 2 emissions in the electricity sector. The EUA price decrease caused by RES-E deployment turns out to be likely significant. - Author-Highlights: • We assessed the impact of renewables deployment in the period 2007–2010. • Impact on CO 2 emissions in the electricity sector and the CO 2 price is considered. • CO 2 emissions decreased by up to 10% of historical emissions. • CO 2 price decrease due to renewables turns out to be likely significant

  12. The economics of reducing CO2 emissions by solar thermal power plants

    International Nuclear Information System (INIS)

    Brakmann, G.

    1993-01-01

    The necessity to reduce CO 2 -emissions on a global scale is being recognized by scientists and politicians. If no scientific proof of a climate catastrophe due to CO 2 -emissions can be established, it would nevertheless be prudent to implement a form of global survival insurance policy, the premium of which is the required effort to reduce CO 2 -emissions. The implementation of such a policy without a considerable reduction in the living standard requires the replacement of fossil fuels by capital and/or know-how. It should be performed in the most economical manner. This leads to the replacement of the classical ''least cost power expansion strategy'' by the ''least cost power expansion/pollution limiting strategy''. Thereby projects have to compete no longer exclusively on low cost of energy production but on low cost of pollution reduction as well. (Author)

  13. Studies on CO2 removal and reduction. CO2 taisaku kenkyu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1993-02-01

    This paper summarizes study trends mainly in CO2 fixing processes. Underground CO2 storage is a most promising method because it can fix a huge amount of CO2 and has low effects on ecological systems. Storing CO2 in ocean includes such methods as storing it in deep oceans; storing it in deep ocean beds; dissolving it into sea water; neutralizing it with calcium carbonates; and precipitating it as dry ice. Japan, disposing CO2 in these ways, may create international problems. Separation of CO2 may use a chemical absorption process as a superior method. Other processes discussed include a physical adsorption method and a membrane separation method. A useful method for CO2 fixation using marine organisms is fixation using coral reefs. This process will require an overall study including circulation of phosphorus and nitrogen. Marine organisms may include planktons and algae. CO2 fixation using land plants may be able to fix one trillion and 8 hundred billion tons of CO2 as converted to carbon. This process would require forest protection, prevention of desertification, and tree planting. Discussions are being given also on improving power generation cycles, recovering CO2 from automotive exhausts, and backfilling carbons into ground by means of photosynthesis. 23 refs., 7 figs., 1 tab.

  14. CO2 emissions, energy usage, and output in Central America

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Payne, James E.

    2009-01-01

    This study extends the recent work of Ang (2007) [Ang, J.B., 2007. CO 2 emissions, energy consumption, and output in France. Energy Policy 35, 4772-4778] in examining the causal relationship between carbon dioxide emissions, energy consumption, and output within a panel vector error correction model for six Central American countries over the period 1971-2004. In long-run equilibrium energy consumption has a positive and statistically significant impact on emissions while real output exhibits the inverted U-shape pattern associated with the Environmental Kuznets Curve (EKC) hypothesis. The short-run dynamics indicate unidirectional causality from energy consumption and real output, respectively, to emissions along with bidirectional causality between energy consumption and real output. In the long-run there appears to be bidirectional causality between energy consumption and emissions.

  15. CO2 credit or energy credit in emission trading?

    International Nuclear Information System (INIS)

    Hu, E.

    2002-01-01

    Emission trading is a good concept and approach to tackle global warming. However, what ''currency'' or ''credit'' should be used in the trading has remained a debatable topic. This paper proposed an ''Energy Credit'' concept as an alternative to the ''CO 2 credit'' that is currently in place. From the thermodynamic point of view, the global warming problem is an ''energy balance'' problem. The energy credit concept is thought to be more thermodynamically correct and tackles the core of the global warming problem more directly. The Energy credit concept proposed can be defined as: the credit to offset the extra energy trapped/absorbed in the earth (and its atmosphere) due to the extra anthropogenic emission (or other activities) by a country or company. A couple of examples are given in the paper to demonstrate the concept of the Energy credit and its advantages over the CO 2 credit concept. (author)

  16. Environmental benefits from CO2 reduction, due to modal replacement: Case study on light rail vehicle in Brasilia City

    Energy Technology Data Exchange (ETDEWEB)

    Silva Costa, P.H. da; Alves Teixeira, L.M.; Cardoso Pinheiro, J.; Serra Arruda, F.; Mendonça Brasil, A.C.

    2016-07-01

    This work aims to measure the reduction of Carbon Dioxide (CO2) emissions in atmosphere by replacing the modal urban bus by Light Rail Vehicle (VLT). In order to accomplish this objective, a case study in Brasilia, Federal District, in the stretch of VLT which passes on Via W-3 South was conducted. The Theory of Externalities that discusses the right to ownership of private and public goods and responsibilities about the positive and negative externalities caused by the agents and individuals of society was used to support the analyses. It was used the Top-Down method, which allowed the calculation the direct emissions of CO2. The values obtained on the reduction of CO2 emissions were converted into values of carbon credits as a way to economically measure such reductions. The results showed a significant reduction in CO2 emissions per year and consequent environmental benefit. (Author)

  17. Impact of the economic recession on the European power sector's CO2 emissions

    International Nuclear Information System (INIS)

    Declercq, Bruno; Delarue, Erik; D'haeseleer, William

    2011-01-01

    This paper investigates the impact of the economic recession on CO 2 emissions in the European power sector, during the years 2008 and 2009. Three main determinants of the power sector's emissions are identified: the demand for electricity, the CO 2 price, and fuel prices. A counterfactual scenario has been set up for each of these, i.e., what these parameters would have been if not affected by the recession. A simulation model of the European power sector is then employed, comparing a historical reference simulation (taking the parameters as actually occurred) with the counterfactual scenarios. The lower electricity demand (due to the recession) is shown to have by far the largest impact, accounting for an emission reduction of about 175 Mton. The lower CO 2 price (due to the recession) resulted in an increase in emissions by about 30 Mton. The impact of fuel prices is more difficult to retrieve; an indicative reduction of about 17 Mton is obtained, mainly as a consequence of the low gas prices in 2009. The simulated combined impact of the parameters results in an emission reduction of about 150 Mton in the European power sector over the years 2008 and 2009 as a consequence of the recession. - Research highlights: → CO 2 emissions are simulated for the European power sector. → Emissions reduced drastically because of the economic recession in 2008 and 2009. → Lower electricity demand had highest impact and accounts for reduction of about 175 Mton. → Impact of different CO 2 and fuel prices on emissions is more limited.

  18. Calculation of CO2 emissions from the italian energy system

    International Nuclear Information System (INIS)

    Contaldi, M.; La Motta, S.

    2001-01-01

    The calculation of CO2 emissions from the Italian energy system is the object of this work. The inventory method used is the Reference Approach from the Intergovernmental Panel for Climate Change (IPCC, 1996 revised Guidelines for National Greenhouse Gas Inventories) and the energy consumption data are taken from the Italian Energy Balance edited by the Ministry of Industry. The years analysed are those from 1990 to 2000 [it

  19. Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis

    International Nuclear Information System (INIS)

    Lim, Hea-Jin; Yoo, Seung-Hoon; Kwak, Seung-Jun

    2009-01-01

    This paper attempts to quantify energy consumption and CO 2 emissions in the industrial sectors of Korea. The sources of the changes in CO 2 emissions for the years 1990-2003 are investigated, in terms of a total of eight factors, through input-output structural decomposition analysis: changes in emission coefficient (caused by shifts in energy intensity and carbon intensity); changes in economic growth; and structural changes (in terms of shifts in domestic final demand, exports, imports of final and intermediate goods, and production technology). The results show that the rate of growth of industrial CO 2 emissions has drastically decreased since the 1998 financial crisis in Korea. The effect on emission reductions due to changes in energy intensity and domestic final demand surged in the second period (1995-2000), while the impact of exports steeply rose in the third period (2000-2003). Of all the individual factors, economic growth accounted for the largest increase in CO 2 emissions. The results of this analysis can be used to infer the potential for emission-reduction in Korea

  20. Problems in the Relationship between CO2 Emissions and Global Warming

    Directory of Open Access Journals (Sweden)

    Ferenc Kovács

    2005-03-01

    Full Text Available In the analysis of environmental conditions and impacts, the viewpoint that greenhouse gases, primarily anthropogenic (industrial, human carbon dioxide, play a determining role in the change of global temperatures, ( the increase experienced in the last one and a half decade, has been given widespread publicity recently. Coal-fired power plants are the first to blame for the increase in atmospheric CO2 concentrations in the last two centuries. The study indicates possibilities to increase the efficiency of coal-fired power plants, which would involve a considerable reduction in CO2 emissions with an identical production volume of electrical energy. On the basis of the analysis of the amount of fossil fuels used, the amount of CO2 emissions and changes in the concentrations of atmospheric CO2, it is shown that no correlation can be proved between the factors investigated and changes in global temperatures.

  1. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution

    Science.gov (United States)

    Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun

    2014-01-01

    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  2. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2.

    Science.gov (United States)

    Favaro, Marco; Xiao, Hai; Cheng, Tao; Goddard, William A; Yano, Junko; Crumlin, Ethan J

    2017-06-27

    A national priority is to convert CO 2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO 2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO 2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO 2 in the presence of water as the first step toward CO 2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.

  3. Sectoral analysis of energy consumption and energy related CO2 emissions in Finland 1990-1999

    International Nuclear Information System (INIS)

    Kirjavainen, M.; Tamminen, E.

    2002-03-01

    This study describes the development of energy consumption and energy related CO 2 emissions in Finland between 1990-1999. For better understanding of the factors behind the development in main sectors, special indicators are calculated to evaluate how the overall development of the sector is affected by the general activity of the sector, changes in sectoral structure and changes in end-use intensities within the sector. The specific energy consumption of space heating reduced especially during the first half of the decade. Also the total CO 2 emissions caused by space heating reduced, in spite of the increase in the building stock. The main reason for this has been the reduction in specific CO 2 emissions in production of district heat. Regardless of the increased traffic and slightly increased use of passenger cars over public transport, the total energy consumption as well as total CO 2 emissions in passenger transport reduced during the decade. The main reason for this is that the specific fuel consumption of passenger cars has reduced significantly. Volumes in freight traffic increased rapidly after the recession, and as no significant changes have occurred in either specific consumptions or in shares of different transport modes, the total energy use as well as total CO 2 emissions of freight transport have increased. The major factors affecting the energy use and CO 2 emissions of the manufacturing sector have been changes in production volumes. After the recession, growth has been rapid and that has resulted in increased total energy use and CO 2 emissions. Anyway, the especially rapid growth of the less energy intensive electronics industry has resulted in downward overall energy intensity within manufacturing sector. Major factors affecting the specific CO 2 emissions in energy production have been changes in the primary energy supply mix. In electricity production, the major factors have been the increase in nuclear capacity and the variation in net

  4. Coal utilization in industrial boilers in China - a prospect for mitigating CO2 emissions

    International Nuclear Information System (INIS)

    Fang, J.; Zeng, T.; Yang, L.I.S.; Oye, K.A.; Sarofim, A.F.; Beer, J.M.

    1999-01-01

    It is estimated from GEF statistical data for 1991 that more than 500,000 industrial boilers (mostly stoker-fired) in China consume over 400 million tons of coal per year. Each year, because of low boiler efficiency, 75 million tons of coal is wasted and 130 million tons of excess CO 2 are emitted. An analysis of 250 boiler thermal-balance test certificates and 6 field visits in three provinces have shown that: (1) boilers with efficiencies of less than 70% account for 75% of the total boiler-population; (2) the main causes of the low efficiencies are high excess air and unburned carbon in the slag and fly ash. The effect of unburned carbon on CO 2 emission is a balance of positive and negative contributions: while the unburned carbon does not produce CO 2 emissions, its replacement carbon, burned at a low efficiency, contributes to a net increase in CO 2 emissions. It seems from the analysis that the average boiler efficiency can be raised to 73% by relatively simple means, such as the size grading of the coal, improved boiler operating practice and some inexpensive equipment modifications. This could then result in savings each year of 34 million tons of coal and a reduction in CO 2 emissions of 63 million tons at an estimated cost of $10 per ton of CO 2 . (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications

    International Nuclear Information System (INIS)

    Freitas, Luciano Charlita de; Kaneko, Shinji

    2011-01-01

    This study evaluates the changes in CO 2 emissions from energy consumption in Brazil for the period 1970-2009. Emissions are decomposed into production and consumption activities allowing computing the full set of energy sources consumed in the country. This study aims to develop a comprehensive and updated picture of the underlying determinants of emissions change from energy consumption in Brazil along the last four decades, including for the first time the recently released data for 2009. Results demonstrate that economic activity and demographic pressure are the leading forces explaining emission increase. On the other hand, carbon intensity reductions and diversification of energy mix towards cleaner sources are the main factors contributing to emission mitigation, which are also the driving factors responsible for the observed decoupling between CO 2 emissions and economic growth after 2004. The cyclical patterns of energy intensity and economy structure are associated to both increments and mitigation on total emission change depending on the interval. The evidences demonstrate that Brazilian efforts to reduce emissions are concentrated on energy mix diversification and carbon intensity control while technology intensive alternatives like energy intensity has not demonstrated relevant progress. Residential sector displays a marginal weight in the total emission change. - Research highlights: → Article provides an updated evaluation on the changes in CO 2 emissions from energy consumption in Brazil, including the recently released data for 2009. → Results demonstrate that progress in energy mix diversification and associated factors are the most important factors contributing to emission mitigation in Brazil. → Negligence in technology intensive factors, as energy intensity, has offset most efforts on emission mitigation related to energy consumption. → Paper announces a first episode of absolute decoupling between GDP growth and CO 2 emission

  6. Emission of CO2 from energy crop production

    International Nuclear Information System (INIS)

    Turhollow, A.F.

    1991-01-01

    The production of cellulosic energy crops (e.g., short rotation woody crops and herbaceous crops) make a net contribution of CO 2 to the atmosphere to the extent that fossil-fuel based inputs are used in their production. The CO 2 released from the use of the biomass is merely CO 2 that has recently been removed from the atmosphere by the plant growth process. Fossil inputs used in the production of energy corps include energy invested in fertilizers and pesticides, and petroleum fuels used for machinery operation such as site preparation, weed control, harvesting, and hauling. Fossil inputs used come from petroleum, natural gas, and electricity derived from fossil sources. No fossil inputs for the capital used to produce fertilizers, pesticides, or machinery is calculated in this analysis. In this paper calculations are made for the short rotation woody crop hybrid poplar (Populus spp.), the annual herbaceous crop sorghum (Sorghum biocolor [L.] Moench), and the perennial herbaceous crop switchgrass (Panicum virgatum L.). For comparison purposes, emissions of CO 2 from corn (Zea mays L.) are calculated

  7. An analysis of China's CO2 emission peaking target and pathways

    Directory of Open Access Journals (Sweden)

    Jian-Kun He

    2014-12-01

    Full Text Available China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for China's resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the developed countries. It is a necessity that the non-fossil energy supplies be able to meet all the increased energy demand for achieving CO2 emission peaking. Given that China's potential GDP annual increasing rate will be more than 4%, and China's total energy demand will continue to increase by approximately 1.0%–1.5% annually around 2030, new and renewable energies will need to increase by 6%–8% annually to meet the desired CO2 emission peak. The share of new and renewable energies in China's total primary energy supply will be approximately 20% by 2030. At that time, the energy consumption elasticity will decrease to around 0.3, and the annual decrease in the rate of CO2 intensity will also be higher than 4% to ensure the sustained growth of GDP. To achieve the CO2 emission peaking target and substantially promote the low-carbon development transformation, China needs to actively promote an energy production and consumption revolution, the innovation of advanced energy technologies, the reform of the energy regulatory system and pricing mechanism, and especially the construction of a national carbon emission cap and trade system.

  8. CO2 Emissions Generated by a Fall AGU Meeting

    Science.gov (United States)

    osborn, G.; Malowany, K. S.; Samolczyk, M. A.

    2011-12-01

    The process of reporting on and discussing geophysical phenomena, including emissions of greenhouse gases, generates more greenhouse gases. At the 2010 fall meeting of the AGU, 19,175 delegates from 81 countries, including, for example, Eritrea, Nepal, and Tanzania, traveled a total of 156,000,000 km to congregate in San Francisco for five days. With data on home bases of participants provided by AGU, we estimated the CO2 emissions generated by travel and hotel stays of those participants. The majority of the emissions from the meeting resulted from air travel . In order to estimate the footprint of such travel, (a) distances from the largest airport in each country and American state (except Canada and California) to San Francisco were tabulated , (b) basic distances were converted to emissions using the TerraPass (TRX Travel Analytics) carbon calculator, (c) it was assumed that half the California participants would fly and half would drive, (d) it was assumed that half of Canadians would fly out of Toronto and half out of Vancouver, and (e) a fudge factor of 10% was added to air travel emissions to account for connecting flights made by some participants to the main airports in the respective countries (connecting flights are disproportionately significant because of high output during takeoff acceleration). Driving impacts were estimated with a Transport Direct/RAC Motoring Services calculator using a 2006 Toyota Corolla as a standard car. An average driving distance of 50 km to the departure airport, and from the airport upon return, was assumed. Train impacts were estimated using the assumption that all flying participants would take BART from SFO. Accomodation impacts were estimated using an Environmental Protection Agency calculator, an assumed average stay of 3 nights, and the assumption that 500 participants commuted from local residences or stayed with friends. The above assumptions lead to an estimate, which we consider conservative, of 19 million kg of

  9. Benchmarking and the allocation of emission rights. European Parliament agreement on CO2 emission trade

    International Nuclear Information System (INIS)

    Harmsen, H.

    2003-01-01

    July 2, 2003, the Parliament of the European Union approved the directive for CO2 emission trade, which means that the energy-intensive industry and businesses in Europe have to deal with cost for CO2 emission from 2005 onwards. It is estimated that the Dutch government will have to distribute circa 90 million ton of CO2 emission rights (1.8 billion euro at a price of 20 euro per ton CO2). In order to realize a fair and transparent distribution of the rights use can be made of the Covenant Benchmarking for Energy Efficiency [nl

  10. Decomposition of CO2 Emission Factors in Baoding

    Science.gov (United States)

    Li, Wei; Wang, xuyang; Zhang, Hongzhi

    2018-01-01

    Baoding, as one of the first “five provinces and eight cities” low carbon pilot cities, undertakes an important task and mission. The urgent task is to explore a peak route and emission reduction path suitable for Baoding’s own development, so as to provide reference for the construction of low-carbon pilot cities. At present, the carbon emissions of Baoding city and its subordinate districts and counties are not clear, and the carbon emissions, change trends and emission characteristics of various industries have not been systematically studied. This lead researcherscan not carry out further attribution analysis, the prediction of future emissions trends and put forward specific measures to reduce emissions are impossible.If the government can not accurately and comprehensively understand the problems faced in the construction and development of low-carbon cities, it is difficult to fundamentally put forward effective emission reduction policies and measures.

  11. Tackling CO2 reduction in India through use of CO2 capture and storage (CCS): Prospects and challenges

    International Nuclear Information System (INIS)

    Shackley, Simon; Verma, Preeti

    2008-01-01

    CO 2 capture and storage (CCS) is not currently a priority for the Government of India (GOI) because, whilst a signatory to the UNFCCC and Kyoto Protocol, there are no existing greenhouse gas emission reduction targets and most commentators do not envisage compulsory targets for India in the post-2012 phase. The overwhelming priority for the GOI is to sustain a high level of economic growth (8%+) and provision of secure, reliable energy (especially electricity) is one of the widely recognised bottlenecks in maintaining a high growth rate. In such a supply-starved context, it is not easy to envisage adoption of CCS-which increases overall generation capacity and demand for coal without increasing actual electricity supply-as being acceptable. Anything which increases costs-even slightly-is very unlikely to happen, unless it is fully paid for by the international community. The majority viewpoint of the industry and GOI interviewees towards CCS appears to be that it is a frontier technology, which needs to be developed further in the Annex-1 countries to bring down the cost through RD and D and deployment. More RD and D is required to assess in further detail the potential for CO 2 storage in geological reservoirs in India and the international community has an important role to play in cultivating such research

  12. Main drivers of changes in CO_2 emissions in the Spanish economy: A structural decomposition analysis

    International Nuclear Information System (INIS)

    Cansino, José M.; Román, Rocío; Ordóñez, Manuel

    2016-01-01

    The aim of this paper is the analysis of structural decomposition of changes in CO_2 emissions in Spain by using an enhanced Structural Decomposition Analysis (SDA) supported by detailed Input–Output tables from the World Input–Output Database (2013) (WIOD) for the period 1995–2009. The decomposition of changes in CO_2 emissions at sectoral level are broken down into six effects: carbonization, energy intensity, technology, structural demand, consumption pattern and scale. The results are interesting, not only for researchers but also for utility companies and policy-makers as soon as past and current political mitigation measures are analyzed in line with such results. The results allow us to conclude that the implementation of the Kyoto Protocol together with European Directives related to the promotion of RES seem to have a positive impact on CO_2 emissions trends in Spain. After reviewing the current mitigation measures in Spain, one policy recommendation is suggested to avoid the rebound effect and to enhance the fight against Climate Change that is tax benefits for those companies that prove reductions in their energy intensity ratios. - Highlights: • Kyoto's Protocol and European Directives acted against CO_2 emissions in Spain. • Changes in primary energy mix acted against increasing CO_2 emissions. • Energy efficiency seems to have improved. • Historical analysis gives support for most mitigation measures currently in force.

  13. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    Science.gov (United States)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  14. Coalfire related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.

    2008-06-11

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  15. Coalfires related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.

    2008-06-11

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  16. Coalfire related CO2 emissions and remote sensing

    International Nuclear Information System (INIS)

    Gangopadhyay, P.K.

    2008-01-01

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  17. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors

    International Nuclear Information System (INIS)

    Andreoni, V.; Galmarini, S.

    2012-01-01

    A decomposition analysis is used to investigate the main factors influencing the CO 2 emissions of European transport activities for the period 2001–2008. The decomposition method developed by Sun has been used to investigate the carbon dioxide emissions intensity, the energy intensity, the structural changes and the economy activity growth effects for the water and the aviation transport sectors. The analysis is based on Eurostat data and results are presented for 14 Member States, Norway and EU27. Results indicate that economic growth has been the main factor behind the carbon dioxide emissions increase in EU27 both for water and aviation transport activities. -- Highlights: ► Decomposition analysis is used to investigate factors that influenced the energy-related CO 2 emissions of European transport. ► Economic growth has been the main factor affecting the energy-related CO 2 emissions increases. ► Investigating the CO 2 emissions drivers is the first step to define energy efficiency policies and emission reduction strategies.

  18. The spatial distribution of commuting CO2 emissions and the influential factors: A case study in Xi'an, China

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Liu

    2015-03-01

    Full Text Available As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job–housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.

  19. Urban CO2 emissions metabolism: The Hestia Project

    Science.gov (United States)

    Gurney, K. R.; Razlivanov, I.; Zhou, Y.; Song, Y.

    2011-12-01

    A central expression of urban metabolism is the consumption of energy and the resulting environmental impact, particularly the emission of CO2 and other greenhouse gases. Quantification of energy and emissions has been performed for numerous cities but rarely has this been done in explicit space/time detail. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain. A complete data product has been built for the city of Indianapolis and work is ongoing for the city of Los Angeles (Figure 1). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. For the buildings, we utilize an energy building model which we constrain through lidar data, county assessor parcel data and GIS layers. For onroad emissions, we use a combination of traffic data and GIS road layers maintaining vehicle class information. Finally, all pointwise data in the Vulcan Project are transferred to our urban landscape and additional time distribution is performed. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban environment. Next steps in this research from the metabolism perspective is to consider the carbon footprint of material goods and their lateral transfer in addition to the connection between electricity consumption and production.

  20. Model rules and regulations for a global CO2 emissions credit market

    International Nuclear Information System (INIS)

    Sandor, R.L.; Cole, J.B.; Kelly, M.E.

    1994-01-01

    On 21 April 1993, on the occasion of Earth Day, the United States affirmed its commitment to reducing emissions of greenhouse gases to their 1990 levels by the year 2000. In doing so, the United States joined the European Union (EU), Japan, and approximately 141 other countries that had either committed themselves to this international objective or subscribed to the general principles contained in the United Nations Framework Convention on Climate Change, signed at UNCED, Rio de Janeiro, June 1992. The commitment of these three trading groups provides the basis for recommending that a market for tradeable carbon dioxide (CO 2 ) emission entitlements among these groups be implemented as soon as an initial set of rules and regulations can be drafted. The goal of a tradeable CO 2 entitlement or credit market is to lower the cost of limiting emissions. The Costs of CO 2 emission abatement are lowered because the market encourages more emission reductions to be produced by the most efficient resources. The ability easily to selI CO 2 credits created through large emission cuts allows cost recovery by, and incentives for, the most efficient sources of emission reductions. The purpose of this paper is to stimulate debate by providing model rules and regulations for a tradeable CO 2 emission credit market. The trading rules and regulations proposed here are meant to initiate a process whereby participants will iterate toward a final set of rules and regulations. Therefore, our proposal should create a point of departure for further adjustments and transformation to the initial set of recommendations. A specific proposal will be advanced at this point in order to provide a basis for the conceptualization of this global market. Moreover, this specific proposal will help focus dialogue and may provide insight into the general recommendations presented in the balance of this paper

  1. Reducing CO2 emissions on the electric grid through a carbon disincentive policy

    International Nuclear Information System (INIS)

    Li, Chiao-Ting; Peng, Huei; Sun, Jing

    2013-01-01

    This paper studies the operation of an electric grid with renewable wind generation and plug-in electric vehicles (PEVs). In particular, PEVs will be the controllable demand that can mitigate the intermittency in wind generation and improve the capacity factors of the non-renewable generation assets on the grid. Optimization problems are formulated to minimize the costs of electricity generation, and two approaches are proposed to address the grid CO 2 emission in the optimization. The first approach directly penalizes CO 2 in the objective function, and the second approach adopts a carbon disincentive policy to alter the dispatch order of power plants, so that expensive low-CO 2 plants can replace cheap high-CO 2 plants. These two approaches result in very different outcomes: the first approach affects only the PEV charging demand on the grid and does not result in significant CO 2 reduction, whereas the second approach controls both the generation and load, and CO 2 can be reduced substantially. In addition, the carbon disincentive policy, unlike a carbon tax, does not collect any revenue; therefore, the increase in electricity cost is minimal. The effect of the proposed algorithms on the grid electricity cost and carbon emission is analyzed in details and reported. - Highlights: • We study the tradeoff between CO 2 emissions and generation cost on an electric grid. • The tradeoff was shown by Pareto fronts obtained from optimizations. • Pareto fronts shows that a carbon disincentive is effective in reducing emissions. • Controlling both supply and demand on the grid is necessary to reduce CO 2 and costs

  2. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Gao, Shan; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2014-01-01

    Highlights: • Superfine pulverized coal combustion in O 2 /CO 2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O 2 /CO 2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O 2 /CO 2 combustion. - Abstract: The combination of O 2 /CO 2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O 2 /CO 2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  3. National plan of allocation of CO2 emission quotas

    International Nuclear Information System (INIS)

    2006-01-01

    The directive 2003/87/CE of the European parliament and council from October 13, 2003 establishes a trading system of CO 2 emission quotas for some companies of the energy generation industry, of the manufacturing industry and of services. These quotas are tradable and negotiable and an initial amount of quotas is allocated to these companies according to their facilities in concern. The national plan of quotas allocation must precise the total amount of tradable emissions and its share among the different sectors of activity and facilities. The first project of allocation plan was transmitted to the European Commission on July 6, 2004 after its public consultation between June 8 and June 29 2004. Modifications have been added to meet the requests of the Commission and the French plan was finally approved on December 17, 2004 for an annual amount of 156.51 Mt of CO 2 quotas during the 2005-2007 period. This paper precises the modifications requested by the commission, the modifications of the French juridical system necessary to complete the implementation of the French part of the European quotas trading system, the elaboration of the next allocation plan for the 2008-2012 period, and the link between the European emissions trading system and the 'joint implementation' and 'clean development ' mechanisms implemented by the Kyoto protocol. (J.S.)

  4. The market of emission of CO2 and electric power industry

    International Nuclear Information System (INIS)

    Moso, A.

    2005-01-01

    With the coming into force, the first of January 2005, of the Emissions Trading Scheme Directive, it has been launched in Europe a mechanism that can be considered as the most flexible and efficient, from the economic point of view, aiming to the reduction of greenhouse gas emissions. Actually, by taking into account the CO 2 cost, the emissions reduction is optimised, enhancing the utilisation of the most competitive technology, considering the environmental cost, and also providing the appropriate signals leading new power plant investments to the most environmentally friendly technologies. (Author)

  5. Analyses on Cost Reduction and CO2 Mitigation by Penetration of Fuel Cells to Residential Houses

    Science.gov (United States)

    Aki, Hirohisa; Yamamoto, Shigeo; Kondoh, Junji; Murata, Akinobu; Ishii, Itaru; Maeda, Tetsuhiko

    This paper presents analyses on the penetration of polymer electrolyte fuel cells (PEFC) into a group of 10 residential houses and its effects of CO2 emission mitigation and consumers’ cost reduction in next 30 years. The price is considered to be reduced as the penetration progress which is expected to begin in near future. An experimental curve is assumed to express the decrease of the price. Installation of energy interchange systems which involve electricity, gas and hydrogen between a house which has a FC and contiguous houses is assumed to utilize both electricity and heat more efficiently, and to avoid start-stop operation of fuel processor (reformer) as much as possible. A multi-objective model which considers CO2 mitigation and consumers’ cost reduction is constructed and provided a Pareto optimum solution. A solution which simultaneously realizes both CO2 mitigation and consumers’ cost reduction appeared in the Pareto optimum solution. Strategies to reduce CO2 emission and consumers’ cost are suggested from the results of the analyses. The analyses also revealed that the energy interchange systems are effective especially in the early stage of the penetration.

  6. Responsible for 45 000 tons CO2 emissions

    International Nuclear Information System (INIS)

    Nedrelid, Ola N.

    2006-01-01

    Waste combustion has much better tax conditions in Sweden compared to Norway. Today waste is being transported from Norway to Sweden, resulting in a 45 000 ton emission of CO 2 every year, when the waste could have remained in Norway, utilized as regained energy in district heating. The tax regime, however, does not provide the conditions for a profitable use of the waste in Norway. The district heating association is disappointed with the new government's proposed fiscal budget, which only worsens the competitive situation for Norway handling its own waste (ml)

  7. Strategi for CO2-reduktion i den individuelle varmeforsyning: Strategy for CO2 reduction in the individual heat supply

    OpenAIRE

    Schjerling, Tina Gliese

    2008-01-01

    The project is made in cooperation with Lolland municipality, which has set a series of ambitious goals in relation to reducing the CO2 emissions in the municipality. One of the challenges faced by the municipality in this connection is to achieve a cleaner heat supply. The collective heat supply is almost 100% CO2-neutral, as the district heating plants primarily use CO2-neutral fuel. However, there are a great number of households outside the collective heat supply, which are heated by mean...

  8. The feasibility of domestic CO2 emissions trading in Poland

    International Nuclear Information System (INIS)

    Missfeldt, F.; Hauff, J.

    2000-09-01

    In early 2000, neither a comprehensive upstream system nor an all-encompassing downstream approach to CO 2 emissions permit trading seems feasible in Poland. However, a pilot emissions trading system in the power and Combined Heat and Power (CHP) sector is thought to be a realistic option in the near future. A comprehensive upstream approach would require permits for the carbon contained in fossil fuels produced or imported in Poland. It is ruled out due to the perceived difficulties of the inclusion of the coal sector in such a system. While inclusion of the gas sector, and especially of the oil sector, seems possible within a relatively short time, relying on an upstream approach without the coal sector is not advisable. Once the restructuring of the coal sector as well as the privatization of the gas and oil sector is advanced, an upstream approach might become an option again. A comprehensive downstream approach would regulate CO 2 emissions at their source, that is mostly at point of combustion of fossil fuels. A system which includes industry, households and transport can be assumed to be infeasible. Instead, a 'core program' was examined, which would focus on power and heat generation as well as energy intensive industries. Such an approach was found feasible in principle. Currently, however, only the largest emitters could be easily integrated in a reliable system. Drawing the line between those included and those excluded from such a partial system requires careful analysis. Including all enterprises in the relevant sectors would require significant improvements in monitoring and reporting reliability. A pilot emissions permit trading system could be introduced in the professional power and heat sector. Here, awareness concerning the instrument was found to be high and the system could be based on monitoring requirements already required by law. Gradual inclusion of more relevant sectors and eventual combination with an upstream component to include oil

  9. Effectiveness of state climate and energy policies in reducing power-sector CO2 emissions

    Science.gov (United States)

    Martin, Geoff; Saikawa, Eri

    2017-12-01

    States have historically been the primary drivers of climate change policy in the US, particularly with regard to emissions from power plants. States have implemented policies designed either to directly curb greenhouse gas (GHG) emissions from power plants, or to encourage energy efficiency and renewable energy growth. With the federal government withdrawing from the global climate agreement, understanding which state-level policies have successfully mitigated power-plant emissions is urgent. Past research has assessed policy effectiveness using data for periods before the adoption of many policies. We assess 17 policies using the latest data on state-level power-sector CO2 emissions. We find that policies with mandatory compliance are reducing power-plant emissions, while voluntary policies are not. Electric decoupling, mandatory GHG registry/reporting and public benefit funds are associated with the largest reduction in emissions. Mandatory GHG registry/reporting and public benefit funds are also associated with a large reduction in emissions intensity.

  10. Enhancement of farmland greenhouse gas emissions from leakage of stored CO2: simulation of leaked CO2 from CCS.

    Science.gov (United States)

    Zhang, Xueyan; Ma, Xin; Wu, Yang; Li, Yue

    2015-06-15

    The effects of leaked CO2 on plant and soil constitute a key objective of carbon capture and storage (CCS) safety. The effects of leaked CO2 on trace soil gas (e.g., methane (CH4) and nitrous oxide (N2O) emissions in farmlands are not well-understood. This study simulated the effects of elevated soil CO2 on CH4 and N2O through pot experiments. The results revealed that significant increases of CH4 and N2O emissions were induced by the simulated CO2 leakages; the emission rates of CH4 and N2O were substantial, reaching about 222 and 48 times than that of the control, respectively. The absolute global warming potentials (GWPs) of the additional CH4 and N2O are considerable, but the cumulative GWPs of the additional CH4 and N2O only accounted for 0.03% and 0.06%, respectively, of the cumulative amount of leaked CO2 under high leakage conditions. The results demonstrate that leakage from CCS projects may lead to additional greenhouse gas emissions from soil; however, in general, the amount of additional CH4 and N2O emissions is negligible when compared with the amount of leaked CO2. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Uncovering China’s transport CO2 emission patterns at the regional level

    International Nuclear Information System (INIS)

    Guo, Bin; Geng, Yong; Franke, Bernd; Hao, Han; Liu, Yaxuan; Chiu, Anthony

    2014-01-01

    With China’s rapid economic development, its transport sector has experienced a dramatic growth, leading to a large amount of related CO 2 emission. This paper aims to uncover China’s transport CO 2 emission patterns at the regional and provincial level. We first present the CO 2 emission features from transport sector in 30 Chinese provinces, including per capita emissions, emission intensities, and historical evolution of annual CO 2 emission. We then quantify the related driving forces by adopting both period-wise and time-series LMDI analysis. Results indicate that significant regional CO 2 emission disparities exist in China’s transport sector. The eastern region had higher total CO 2 emissions and per capita CO 2 emissions, but lower CO 2 emission intensities in its transport sector. The western region had higher CO 2 emission intensities and experienced a rapid CO 2 emission increase. The CO 2 emission increments in the eastern provinces were mainly contributed by both economic activity effect and population effect, while energy intensity partially offset the emission growth and energy structure had a marginal effect. However, in the central and western provinces, both economic activity effect and energy intensity effect induced the CO 2 emission increases, while the effects from population and energy structure change were limited. - Highlights: • The CO 2 emission features from transport sector in 30 Chinese provinces were presented. • The driving forces of CO 2 emissions from transport sector were quantified. • Regional disparities on China’s transport sector CO 2 emission exist. • Region-specific mitigation policies on transport sector CO 2 emission are needed

  12. Estimado de la reducción de la emisión de co2 por accione de ahorro de electricidad en las condiciones de Cuba;Estimation of reduction of CO2 emission by electric power saving project in the Cuba conditions

    Directory of Open Access Journals (Sweden)

    Irina Salazar - Fonseca et all.

    2010-11-01

    Full Text Available Este trabajo expone los resultados del estudio realizado a las numerosas vías que existen para el cálculo del factor de emisión de CO2 a nivel mundial. A partir de una amplia búsqueda de información, se obtuvo la metodología propuesta para el cálculo del factor de emisión de CO2 para proyectos de ahorro de energía eléctrica, teniendo en cuenta las particularidades de la matriz energética del país en cuestión. La metodología propuesta es el resultado de las modificaciones realizadas a la metodología ACM 0002, que es la aprobada por la Junta Ejecutiva del Mecanismo de Desarrollo Limpio (MDL. A partir de los datos reales del consumo de combustible para la electricidad en Cuba en los años 2007 y 2008, se calcula el factor de emisión de CO2, obteniéndose un valor igual a 0,795 y 0,794 t CO2/MWh, respectivamente. Estos resultados evidencian el paulatino desarrollo hacia fuentes de energía mas limpias que se ha realizado en ese periodo en el país, caracterizado por la entrada en funcionamiento de varios emplazamientos de Fuel-oil.This work exposes result of accomplished study to the many manners that exist for the calculation of CO2 emission factor in the world. Latter a ample quest of information, the proposed methodology was obtained for calculation of CO2 emission factor for electric power saving project, taking the particularities of electrical systems into account country. The proposed methodology is results of modifications realized to the methodology ACM 0002, this are the approved in Executive Board of the Clean Development Mechanism (CDM. Whit the real data of fuel consumption for the electricity in Cuba in the years 2007 and 2008, CO2 emission factor is calculated, obtained an equal value to 0.795 and 0.794 tCO2/MWh, respectively. These aftermath evidence the gradual development to cleaning sources of energy that success in period at the country, characterized for the entrance in functioning of several Fuel

  13. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China.

    Science.gov (United States)

    Wang, Shaojian; Li, Qiuying; Fang, Chuanglin; Zhou, Chunshan

    2016-01-15

    Following several decades of rapid economic growth, China has become the largest energy consumer and the greatest emitter of CO2 in the world. Given the complex development situation faced by contemporary China, Chinese policymakers now confront the dual challenge of reducing energy use while continuing to foster economic growth. This study posits that a better understanding of the relationship between economic growth, energy consumption, and CO2 emissions is necessary, in order for the Chinese government to develop the energy saving and emission reduction strategies for addressing the impacts of climate change. This paper investigates the cointegrating, temporally dynamic, and casual relationships that exist between economic growth, energy consumption, and CO2 emissions in China, using data for the period 1990-2012. The study develops a comprehensive conceptual framework in order to perform this analysis. The results of cointegration tests suggest the existence of long-run cointegrating relationship among the variables, albeit with short dynamic adjustment mechanisms, indicating that the proportion of disequilibrium errors that can be adjusted in the next period will account for only a fraction of the changes. Further, impulse response analysis (which describes the reaction of any variable as a function of time in response to external shocks) found that the impact of a shock in CO2 emissions on economic growth or energy consumption was only marginally significant. Finally, Granger casual relationships were found to exist between economic growth, energy consumption, and CO2 emissions; specifically, a bi-directional causal relationship between economic growth and energy consumption was identified, and a unidirectional causal relationship was found to exist from energy consumption to CO2 emissions. The findings have significant implications for both academics and practitioners, warning of the need to develop and implement long-term energy and economic policies in

  14. Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES

    International Nuclear Information System (INIS)

    Blesl, Markus; Das, Anjana; Fahl, Ulrich; Remme, Uwe

    2007-01-01

    Energy efficiency is widely viewed as an important element of energy and environmental policy. Applying the TIMES model, this paper examines the impacts of additional efficiency improvement measures (as prescribed by the ACROPOLIS project) over the baseline, at the level of individual sectors level as well as in a combined implementation, on the German energy system in terms of energy savings, technological development, emissions and costs. Implementing efficiency measures in all sectors together, CO 2 reduction is possible through substitution of conventional gas or oil boilers by condensing gas boilers especially in single family houses, shifting from petrol to diesel vehicles in private transport, increased use of electric vehicles, gas combined cycle power plants and CHP (combined heat and power production) etc. At a sectoral level, the residential sector offers double benefits of CO 2 reduction and cost savings. In the transport sector, on the other hand, CO 2 reduction is the most expensive, using bio-fuels and methanol to achieve the efficiency targets. An additional case is examined which assumes the CO 2 emissions in the combined efficiency measures case as the target. This case concludes that, with different options, the same amount of CO 2 reduction is possible together with cost reductions over the baseline, confirming that the specific sectoral efficiency targets prescribed by ACROPOLIS may not be the optimal one to mitigate CO 2 . It applies the same efficiency improvement targets in the residential and industrial sectors but scales down the target in the service sector and avoids any further efficiency improvement in the transport sector. It replaces electricity with heating fuel in final energy consumption, while further increasing the use of gas for power generation in 2030. In 2050, part of the electricity demand is met through the import of electricity from renewable sources

  15. CO2 capture by ionic liquids - an answer to anthropogenic CO2 emissions?

    Science.gov (United States)

    Sanglard, Pauline; Vorlet, Olivier; Marti, Roger; Naef, Olivier; Vanoli, Ennio

    2013-01-01

    Ionic liquids (ILs) are efficient solvents for the selective removal of CO2 from flue gas. Conventional, offthe-shelf ILs are limited in use to physisorption, which restricts their absorption capacity. After adding a chemical functionality like amines or alcohols, absorption of CO2 occurs mainly by chemisorption. This greatly enhances CO2 absorption and makes ILs suitable for potential industrial applications. By carefully choosing the anion and the cation of the IL, equimolar absorption of CO2 is possible. This paper reviews the current state of the art of CO2 capture by ILs and presents the current research in this field performed at the ChemTech Institute of the Ecole d'Ingénieurs et d'Architectes de Fribourg.

  16. Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions

    Science.gov (United States)

    Jenkins, S.; Millar, R. J.; Leach, N.; Allen, M. R.

    2018-03-01

    The relationship between cumulative CO2 emissions and CO2-induced warming is determined by the Transient Climate Response to Emissions (TCRE), but total anthropogenic warming also depends on non-CO2 forcing, complicating the interpretation of emissions budgets based on CO2 alone. An alternative is to frame emissions budgets in terms of CO2-forcing-equivalent (CO2-fe) emissions—the CO2 emissions that would yield a given total anthropogenic radiative forcing pathway. Unlike conventional "CO2-equivalent" emissions, these are directly related to warming by the TCRE and need to fall to zero to stabilize warming: hence, CO2-fe emissions generalize the concept of a cumulative carbon budget to multigas scenarios. Cumulative CO2-fe emissions from 1870 to 2015 inclusive are found to be 2,900 ± 600 GtCO2-fe, increasing at a rate of 67 ± 9.5 GtCO2-fe/yr. A TCRE range of 0.8-2.5°C per 1,000 GtC implies a total budget for 0.6°C of additional warming above the present decade of 880-2,750 GtCO2-fe, with 1,290 GtCO2-fe implied by the Coupled Model Intercomparison Project Phase 5 median response, corresponding to 19 years' CO2-fe emissions at the current rate.

  17. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Science.gov (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  18. COMPARISON OF CO2-EMISSIONS OF HOUSEHOLDS HEATED BY NATURAL GAS AND FIREWOOD

    Directory of Open Access Journals (Sweden)

    MÓNIKA PALÁDI

    2013-12-01

    Full Text Available In terms of climate protection, one of the most important questions is the reduction of the GHG emission. In this study, I compared CO2 -emission of households heated by natural gas and firewood, which had similar heated area and volume of air, considering the carbon-dioxide absorbing of forests of the households heated by firewood. Natural gas is a fossil fuel; however, the firewood (solid biomass is a renewable energy resource. One of the main features of renewable energy sources is to get into the atmosphere less CO2 than fossil fuels. The renewable energy resources emit into the air just as much CO2 as they absorb during their life cycle.

  19. A policy instruments working paper on reducing CO2 emissions from the transportation sector in Ontario

    International Nuclear Information System (INIS)

    1995-11-01

    The cost effectiveness of policy instruments for reducing CO 2 emissions from transportation was studied. Cost effectiveness analyzed the impact of the policy instruments in reducing CO 2 emissions against the costs that were incurred while obtaining CO 2 reductions. The approach to defining sustainable transportation was identified which integrates three different visions of the transportation challenge: (1) changing urban form to reduce the need for transportation, (2) advancing technology to reduce the ecological impact of transportation, and (3) changing prices of transportation so that users pay for the full social and environmental costs of their decisions. The general consensus was that while fuel tax on gasoline for automobiles appeared to be the most cost effective option available, all revenue generating options, (e.g.,parking pricing, reference energy factor-related rebates, full cost road pricing and taxation) rated higher on the cost effectiveness indexes than any of the other policy instruments considered. refs., tabs., figs

  20. CO2 removals and CO2 and non-CO2 trace gas emissions affected by human activity in the forests in the Republic of macedonia

    International Nuclear Information System (INIS)

    Grupche, Ljupcho; Lozanovski, Risto; Markovska, Natasha

    2001-01-01

    During 2000 and 2001 inventories of CO 2 removals and emissions caused by changes in forest and other woody biomass stocks, as well as the inventories of CO 2 and non-CO 2 trace gas emissions caused by forest conversions (accidental burning) were carried out. According to the forest area in ha, and depending on the differences between the annual biomass increment and annual biomass consumption, about 30-50% of total annual carbon uptake increment is released through the biomass consumption from stocks. 50-70% of the net annual carbon uptake converted to CO 2 identify the annual removals of this gas, which is on average 1805 Gg/yr, ranging between 1485 and 2243 Gg/yr. From 1990 to 1998 on average 4700 ha forest area (min. 110 ha in 1991, max. 14420 ha in 1993) was burned. Proportionally to the burned area, there was a release on average of 18.62 kt C annually (min. 0.42 kt C, max. 57.11 kt), related to 136.07 kt CO 2 on average (min. 1.5 kt CO 2 , max. 209.22 kt CO 2 ). (Original)

  1. Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Slavíková, Renata; Püschel, David; Janoušková, Martina; Hujslová, Martina; Konvalinková, Tereza; Gryndlerová, Hana; Gryndler, Milan; Weiser, Martin; Jansa, Jan

    2017-01-01

    Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13 CO 2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO 2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO 2 collection system is presented which allows assessment of gaseous CO 2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO 2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13 C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13 C allocation to mycorrhizal substrate) and 2.9% (reduction of 13 C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO 2 released belowground. These results advocate quantification of both above- and belowground CO 2 emissions in future studies.

  2. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Optional SO2, NOX, and CO2 emissions... § 75.19 Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units. (a... input, NOX, SO2, and CO2 mass emissions, and NOX emission rate under this part. If the owner or operator...

  3. Estimation and diminution of CO2 emissions by clean development mechanism option at power sector in Oman

    Energy Technology Data Exchange (ETDEWEB)

    Singh Solanki, Parmal; Sarma Mallela, Venkateswara [Caledonian (University) College of Engineering, Muscat (Oman); Zhou, Chengke [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom)

    2013-07-01

    Carbon dioxide (CO2) is one of the major pollutants among greenhouse gases emitted by fossil fuel based power plants and responsible for environmental tribulations. Therefore diminution of carbon dioxide level by Clean Development Mechanism (CDM) is now serious concern worldwide. This paper evaluates the emission factors of national electric grid in Oman and proposes a wind energy based CDM project to diminish the CO2 emissions. Estimations show that operating margin emission factors of national grid during five years lies in the range of 0.74 to 0.69 kg CO2/kWh. Further, proposed CDM project revealed the annual baseline emissions reduction of 45552 ton CO2 and able to earn the revenue of US$ 61.49 million by certify emission reductions in the first crediting period of project. Paper also critically analyse the opportunities for CDM project, its lucrative aspect, barrier and challenges.

  4. Implications of CO2 Emissions Trading for Short-run Electricity Outcomes in Northwest Europe

    International Nuclear Information System (INIS)

    Chen, Y.; Sijm, J.P.M.; Hobbs, B.F.; Lise, W.

    2008-02-01

    We examine the short-run implications of CO2 trading for power production, prices, emissions, and generator profits in northwest Europe in 2005. Simulation results from a transmission-constrained oligopoly model are compared with theoretical analyses to quantify price increases and windfall profits earned by generators. The analyses indicate that the rates at which CO2 costs are passed through to wholesale prices are affected by market competitiveness, merit order changes, and elasticities of demand and supply. Emissions trading results in large windfall profits, much but not all of which is due to free allocation of allowances. Profits also increase for some generators because their generation mix has low emissions, and so they benefit from electricity price increases. Most emission reductions appear to be due to demand response, not generation redispatch

  5. Implications of CO2 Emissions Trading for Short-run Electricity Outcomes in Northwest Europe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [School of Social Sciences, Humanities, and Arts and School of Engineering, Sierra Nevada Research Institute, University of California, Merced, 5200 N. Lake Rd., Merced, CA 95343 (United States); Sijm, J.P.M. [Policy Studies Unit, Energy Research Centre of the Netherlands ECN, P.O. Box 37154, 1020 Amsterdam (Netherlands); Hobbs, B.F. [Department of Geography and Environmental Engineering, The Johns Hopkins University, 3400 N. Charles St, Ames Hall, Baltimore, MD 21218 (United States); Lise, W. [IBS Research and Consultancy, Aga Hamami Caddesi, Aga Han 17/6, Cihangir, 34433 Beyoglu, Istanbul (Turkey)

    2008-02-15

    We examine the short-run implications of CO2 trading for power production, prices, emissions, and generator profits in northwest Europe in 2005. Simulation results from a transmission-constrained oligopoly model are compared with theoretical analyses to quantify price increases and windfall profits earned by generators. The analyses indicate that the rates at which CO2 costs are passed through to wholesale prices are affected by market competitiveness, merit order changes, and elasticities of demand and supply. Emissions trading results in large windfall profits, much but not all of which is due to free allocation of allowances. Profits also increase for some generators because their generation mix has low emissions, and so they benefit from electricity price increases. Most emission reductions appear to be due to demand response, not generation redispatch.

  6. International comparison of CO2 emission trends in the iron and steel industry

    International Nuclear Information System (INIS)

    Yeonbae, Kim; Worrell, E.

    2002-01-01

    In this paper, we present an in-depth decomposition analysis of trends in CO 2 emissions in the iron and steel industry using physical indicators. Physical indicators allow a detailed analysis of intra- sectoral trends, in contrast to the mostly used monetary indicators. Detailed decomposition analysis makes it possible to link developments in energy intensity to technology change and (indirectly) to policy. We present an analysis for the iron and steel industry in seven countries, i.e. Brazil, China, India (developing countries), Mexico and South Korea (newly industrialized countries) and the United States (industrialized country). We found substantial differences in energy efficiency among these countries. In most countries the increased (or decreased) production was the main contributor to changes in CO 2 emissions, while energy-efficiency was the main factor reducing emission intensities of steel production in almost all countries. Changes in power generation contributed to a reduction of specific emissions in the case of South Korea only. (Author)

  7. The design of renewable support schemes and CO_2 emissions in China

    International Nuclear Information System (INIS)

    Wu, Jie; Albrecht, Johan; Fan, Ying; Xia, Yan

    2016-01-01

    The renewable energy targets put forward by the Chinese government need comprehensive incentive schemes. This paper uses a multi-regional CGE model to evaluate two types of renewable support schemes; a subsidy scheme like a feed-in tariff (FIT) with a direct price impact for final consumers and a subsidy scheme without any price impact. We assess the CO_2 consequences of both approaches, as well as their impact on economic activity in terms of GDP, industrial structure, electricity generation structure, and regional final demand elasticities of electricity. We find that a support scheme with price impact is much more effective in reducing CO_2 emissions while the difference in GDP between the two policies is small. We estimate that the price implications of the support scheme allow for an additional emissions reduction of 113 Mt CO_2—or 0.07% of total emissions—in China during 2020–2035. The support scheme with a price impact does not lead to a negative impact on the Chinese economy although there are significant differences among regions. In addition, while the whole country faces an approximately unitary electricity elasticity demand, we find significant differences in electricity demand elasticities among Chinese regions. - Highlights: • Two types of FIT policies—with and without a price impact—are evaluated. • We assess the CO_2 emissions of both schemes and their impact on economic activity. • A support scheme with price impact is more effective in reducing CO_2 emissions. • The price impact allows for an additional reduction of 113 Mt CO_2 in China during 2020–2035. • Both of the FIT types have a very similar impact on coal consumption.

  8. The CO2 emissions bond to the energy combustion in the world during 2003-2004

    International Nuclear Information System (INIS)

    2006-11-01

    This analysis shows a stabilization of the CO 2 emissions in France (+0,3%), the continuous increase of the CO 2 emissions in the world (+5%), a chinese economic growth which generates many CO 2 and a gap of 1 to 20 of the emissions per inhabitant from the Africa to the United States. Data of CO 2 emissions are detailed for the countries and are given in function of the population and the gross domestic product. (A.L.B.)

  9. The relationship between economic growth, energy consumption, and CO_2 emissions: Empirical evidence from China

    International Nuclear Information System (INIS)

    Wang, Shaojian; Li, Qiuying; Fang, Chuanglin; Zhou, Chunshan

    2016-01-01

    Following several decades of rapid economic growth, China has become the largest energy consumer and the greatest emitter of CO_2 in the world. Given the complex development situation faced by contemporary China, Chinese policymakers now confront the dual challenge of reducing energy use while continuing to foster economic growth. This study posits that a better understanding of the relationship between economic growth, energy consumption, and CO_2 emissions is necessary, in order for the Chinese government to develop the energy saving and emission reduction strategies for addressing the impacts of climate change. This paper investigates the cointegrating, temporally dynamic, and casual relationships that exist between economic growth, energy consumption, and CO_2 emissions in China, using data for the period 1990–2012. The study develops a comprehensive conceptual framework in order to perform this analysis. The results of cointegration tests suggest the existence of long-run cointegrating relationship among the variables, albeit with short dynamic adjustment mechanisms, indicating that the proportion of disequilibrium errors that can be adjusted in the next period will account for only a fraction of the changes. Further, impulse response analysis (which describes the reaction of any variable as a function of time in response to external shocks) found that the impact of a shock in CO_2 emissions on economic growth or energy consumption was only marginally significant. Finally, Granger casual relationships were found to exist between economic growth, energy consumption, and CO_2 emissions; specifically, a bi-directional causal relationship between economic growth and energy consumption was identified, and a unidirectional causal relationship was found to exist from energy consumption to CO_2 emissions. The findings have significant implications for both academics and practitioners, warning of the need to develop and implement long-term energy and economic

  10. Impacts of potential CO2-reduction policies on air quality in the United States.

    Science.gov (United States)

    Trail, Marcus A; Tsimpidi, Alexandra P; Liu, Peng; Tsigaridis, Kostas; Hu, Yongtao; Rudokas, Jason R; Miller, Paul J; Nenes, Athanasios; Russell, Armistead G

    2015-04-21

    Impacts of emissions changes from four potential U.S. CO2 emission reduction policies on 2050 air quality are analyzed using the community multiscale air quality model (CMAQ). Future meteorology was downscaled from the Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM) to the regional scale using the Weather Research Forecasting (WRF) model. We use emissions growth factors from the EPAUS9r MARKAL model to project emissions inventories for two climate tax scenarios, a combined transportation and energy scenario, a biomass energy scenario and a reference case. Implementation of a relatively aggressive carbon tax leads to improved PM2.5 air quality compared to the reference case as incentives increase for facilities to install flue-gas desulfurization (FGD) and carbon capture and sequestration (CCS) technologies. However, less capital is available to install NOX reduction technologies, resulting in an O3 increase. A policy aimed at reducing CO2 from the transportation sector and electricity production sectors leads to reduced emissions of mobile source NOX, thus reducing O3. Over most of the U.S., this scenario leads to reduced PM2.5 concentrations. However, increased primary PM2.5 emissions associated with fuel switching in the residential and industrial sectors leads to increased organic matter (OM) and PM2.5 in some cities.

  11. CO2 reduction in the Danish transportation sector. Working paper 3: Tax differentiation and environmental tagging

    International Nuclear Information System (INIS)

    1997-03-01

    Tax differentiation for cars would mean a new structure of the buyer market as the decisive factor in new car price is its fuel efficiency and environmentally friendly low CO 2 emission. Reduction of fuel cost per kilometer can result in increased annual car use. On the other hand growing sales of cars in Denmark would give extra profit to the state as purchase taxation and weight-dependent tax are both extremely high. Environmental tagging can increase consumer awareness of fuel efficiency and emission control. (EG) Prepared for Trafikministeriet. 13 refs

  12. Mode selection of China's urban heating and its potential for reducing energy consumption and CO2 emission

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2014-01-01

    China's carbon dioxide (CO 2 ) emission ranks the highest in the world. CO 2 emission from urban central heating, which has an average annual growth rate of 10.3%, is responsible for 4.4% of China's total CO 2 emission. The current policy for improving urban central heating focuses on replacing coal with natural gas. This paper analyzes the existing situation and problems pertaining to urban heating, and evaluates the potential for reducing energy consumption and CO 2 emission by heat pump heating. The results show that the current policy of replacing coal with natural gas for urban central heating decreases energy consumption and CO 2 emission by 16.6% and 63.5%, respectively. On the other hand, replacing coal-based urban central heating with heat pump heating is capable of decreasing energy consumption and CO 2 emission by 57.6% and 81.4%, respectively. Replacing both urban central and decentralized heating with heat pump heating can lead to 67.7% and 85.8% reduction in energy consumption and CO 2 emission, respectively. The decreases in CO 2 emission will account for 24.5% of China's target to reduce total CO 2 emission by 2020. - Highlights: • Existing situation and problems of urban heating in China. • Feasibility of heat pump heating in China. • Potential of energy saving and emission reduction for heat pump heating. • China should adjust urban heating strategy. • Replacing urban central heating and decentralized heating with heat pump heating

  13. Energy solutions for CO2 emission peak and subsequent decline

    DEFF Research Database (Denmark)

    Risø International Energy Conference 2009 took place 14 – 16 September 2009. The conference focused on: • Future global energy development options Scenario and policy issues • Measures to achieve CO2 emission peak in 2015 – 2020 and subsequent decline • Renewable energy supply technologies...... such as bioenergy, wind and solar • Centralized energy technologies such as clean coal technologies • Energy conversion, energy carriers and energy storage, including fuel cells and hydrogen technologies • Providing renewable energy for the transport sector • Systems aspects for the various regions throughout...... the world • End-use technologies, efficiency improvements in supply and end use • Energy savings The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 3 August 2009....

  14. The urgent need to internalize CO2 emission costs

    International Nuclear Information System (INIS)

    Goodland, R.; El Serafy, S.

    1998-01-01

    Despite growing manifestations of global warming and the commitment of most nations to move towards reducing greenhouse gas (GHG) emissions, a simple device that can be effective in reducing GHG emissions continues to be overlooked or even rejected. This is to acknowledge the fact that carbon emissions inflict global costs that are not borne by emitters. This paper advocates that all activities emitting or saving carbon emissions should internalize the carbon cost inflicted or avoided by new projects involving CO 2 . Considering the current wide range of carbon cost estimates, the paper recommends that a two-stage approach be adopted. Firstly, incorporate carbon costs in project analysis only theoretically in order to differentiate objectively among alternative designs involving carbon emissions of varying degrees. Different estimates of the costs of a ton of carbon would be used in order to test the sensitivity of rates of return to alternative carbon costs. While this process would have the effect of screening the allocation of scarce investment funds among projects that affect global warming in different degrees, it should be viewed as only a first step. Secondly, we advocate a rigorous process of passing through estimated carbon costs to the ultimate users of the services of carbon-emitting projects and processes. It is this ultimate process that will secure the urgently needed transition from the current dependence on fossil fuels to more benign sources of energy that would reduce climate-change risks. Since the time available is limited, the paper points out the urgency of these proposals that are crucial for sustainability

  15. Comprehensive evaluation of industrial CO2 emission (1989-2004) in Taiwan by input-output structural decomposition

    International Nuclear Information System (INIS)

    Chang, Yih F.; Lewis, Charles; Lin, Sue J.

    2008-01-01

    Taiwan currently emits approximately 1% of the world's CO 2 - ranking it 22nd among nations. Herein, we use the input-output (I-O) structural decomposition method to examine the changes in CO 2 emission over a 15-year period. By decomposing the CO 2 emission changes into nine factors for the periods of 1989-1994, 1994-1999, and 1999-2004, we have identified the key factors causing the emission changes, as well as the most important trends regarding the industrial development process in Taiwan. The 5-year increment with the largest increase of CO 2 emission was that of 1999-2004, due to the rapid increase of electricity consumption. From the decomposition, the industrial energy coefficient and the CO 2 emission factors were identified as the most important parameters for the determination of the highway, petrochemical materials, iron and steel, the commercial sector, and electric machinery as the major sources of increased CO 2 emission during the past 15 years. From 1989 to 2004, the level of exports and the level of domestic final demand were the largest contributors to the increase in the total increment of CO 2 change. During 1989-2004, the industrial energy coefficient and CO 2 emission factors, being minimally significant during 1989-1994, became extremely important, joining the domestic final demand and the level of exports factors as the major causes of the increase increment of CO 2 . This indicates a heavy reliance upon high-energy (and CO 2 ) intensity for Taiwanese industries; therefore, continuous efforts to improve energy intensity and fuel mix toward lower carbon are important for CO 2 reduction, especially for the electricity and power generation sectors. Relevant strategies for reducing carbon dioxide emissions from major industries are also highlighted. (author)

  16. Worldwide CO2 emissions 2014. Shimmer of hope to turnaround reinforce - but no all-clear signal

    International Nuclear Information System (INIS)

    Ziesing, Hans-Joachim

    2015-01-01

    In 2014, global CO 2 emissions increase according to initial calculations by 0.5%. Apart from the two crisis years 2008/2009 was the weakest increase since the beginning of the century. As a result, CO 2 emissions reached about 32.6 billion tonnes a new climax. A turnaround this is not yet, but the CO 2 emissions in many countries, particularly in industrialized countries declined. Thus, the CO 2 emissions have declined in the Annex I countries overall by 1.8%. For this particular contributed the development in the EU, in almost without exception, all Member States have experienced an emission reduction. Of the major countries, this also applies to the Ukraine, Japan, Russia and Australia. In contrast, there was an increase in the US, although this turned out very moderate with an increase of just under 1%. If the global CO 2 emissions have increased despite the decline in the group of Annex I countries again, this is primarily a result of the increase in developing countries. Here, CO 2 emissions were by around the year 2014 415 million tons or 2.4% higher than 2013. Since 2008, China occupied top position ahead of the US in 2014 was not expanded because for many years here was the increase for the first time below 1%. By contrast, CO 2 emissions increased significantly in India by approx. 8% and in Brazil as in the Middle East by about 4%. [de

  17. CO2 emissions and economic development: China's 12th five-year plan

    International Nuclear Information System (INIS)

    Meng Ming; Niu Dongxiao; Shang Wei

    2012-01-01

    For the period of the 12th Five-Year Plan (2011–2015), the Chinese government has decided to reconsider and adjust its policies on economic development because of the pressures of CO 2 emissions and fossil energy consumption. The current paper adopts the logarithmic Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model to simulate the relationship between CO 2 emissions and other economic development factors in China. Three groups of outliers are found using samples from 1989 to 2008 and the Partial Least Square (PLS) regularity test method. The outlier analysis reveals three important areas for CO 2 reduction: (a) decreasing the share of coal to the total energy consumption and replacing it with non-fossil energies; (b) controlling vehicles used in the cities as well as (c) adjusting industrial structure. Furthermore, based on the social and economic realities of China, the current paper designs six feasible development scenarios for the period covered by the 12th Five-Year Plan and predicts the values of each factor in each scenario. The values can test the implementation of China's CO 2 control development concept. The experiences obtained by outlier analysis can be of significant reference value for realizing the predicted scenarios. - Highlights: ► Using STIRPAT to analyze China's CO 2 emissions and economic development factors. ► Using the PLS outlier test method, three groups of outliers are found. ► Outlier analysis reveals three important areas on reducing CO 2 emissions. ► We design six feasible scenarios for the period covered by the 12th Five-Year Plan. ► We predict the values of each factor in each scenario.

  18. Analysis of the international distribution of per capita CO2 emissions using the polarization concept

    International Nuclear Information System (INIS)

    Duro, Juan Antonio; Padilla, Emilio

    2008-01-01

    The concept of polarization is linked to the extent that a given distribution leads to the formation of homogeneous groups with opposing interests. This concept, which is basically different from the traditional one of inequality, is related to the level of inherent potential conflict in a distribution. The polarization approach has been widely applied in the analysis of income distribution. The extension of this approach to the analysis of international distribution of CO 2 emissions is quite useful as it gives a potent informative instrument for characterizing the state and evolution of the international distribution of emissions and its possible political consequences in terms of tensions and the probability of achieving agreements. In this paper we analyze the international distribution of per capita CO 2 emissions between 1971 and 2001 through the adaptation of the polarization concept and measures. We find that the most interesting grouped description deriving from the analysis is a two groups' one, which broadly coincide with Annex B and non-Annex B countries of the Kyoto Protocol, which shows the power of polarization analysis for explaining the generation of groups in the real world. The analysis also shows a significant reduction in international polarization in per capita CO 2 emissions between 1971 and 1995, but not much change since 1995, which might indicate that polarized distribution of emission is still one of the important factors leading to difficulties in achieving agreements for reducing global emissions. (author)

  19. Performance analysis of photocatalytic CO2 reduction in optical fiber monolith reactor with multiple inverse lights

    International Nuclear Information System (INIS)

    Yuan, Kai; Yang, Lijun; Du, Xiaoze; Yang, Yongping

    2014-01-01

    Highlights: • A new optical fiber monolith reactor model for CO 2 reduction was developed. • Methanol concentration versus fiber location and operation parameters was obtained. • Reaction efficiency increases by 31.1% due to the four fibers and inverse layout. • With increasing space of fiber and channel center, methanol concentration increases. • Methanol concentration increases as the vapor ratio and light intensity increase. - Abstract: Photocatalytic CO 2 reduction seems potential to mitigate greenhouse gas emissions and produce renewable energy. A new model of photocatalytic CO 2 reduction in optical fiber monolith reactor with multiple inverse lights was developed in this study to improve the conversion of CO 2 to CH 3 OH. The new light distribution equation was derived, by which the light distribution was modeled and analyzed. The variations of CH 3 OH concentration with the fiber location and operation parameters were obtained by means of numerical simulation. The results show that the outlet CH 3 OH concentration is 31.1% higher than the previous model, which is attributed to the four fibers and inverse layout. With the increase of the distance between the fiber and the monolith center, the average CH 3 OH concentration increases. The average CH 3 OH concentration also rises as the light input and water vapor percentage increase, but declines with increasing the inlet velocity. The maximum conversion rate and quantum efficiency in the model are 0.235 μmol g −1 h −1 and 0.0177% respectively, both higher than previous internally illuminated monolith reactor (0.16 μmol g −1 h −1 and 0.012%). The optical fiber monolith reactor layout with multiple inverse lights is recommended in the design of photocatalytic reactor of CO 2 reduction

  20. Outline for the Rotterdam Climate Initiative. CO2 emissions up to 2030; Verkenning voor Rotterdam Climate Initiative. CO2-emissies tot 2030

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, A.J.; Wetzels, W.; Seebregts, A.J.; Kroon, P [ECN Beleidsstudies, Petten (Netherlands)

    2013-04-15

    The Rotterdam Climate Initiative (RCI) aims to reduce the CO2 emissions within the city and port of Rotterdam by 50% in 2025 as compared to 1990. This target translates into a total emission of 12 Mton of CO2. In this study, Rotterdam's CO2 emissions have been estimated for the future years 2015, 2020, 2025 and 2030 based on autonomous developments combined with a policy framework that is assumed to be fixed. This study only explores the sectors Energy and Industry and Freight transport within Rotterdam. The results demonstrate that: (a) CO2 emissions resulting from the sector Energy and Industry increase from 26.5 Mton CO2 in 2011 to 33.8 Mton CO2 in 2020, and slightly decrease afterwards to 29.4 Mton CO2 in 2025 and 2030; and (b) CO2 emissions resulting from Freight transport increase from 1.0 Mton CO2 in 2011 to 1.4 Mton CO2 in 2025 and increase further to 1.6 Mton in 2030. This means that these sectors alone already exceed the emission target, and that substantial additional effort will be needed to attain the 50% CO2 reduction target. The estimated CO2 emissions are lower than those reported in the previous study that was published in 2010. Differences are mainly due to lower CO2 emissions from power plants as compared to the study in 2010. These are influenced by many different developments, such as high gas prices, low electricity prices and low CO2 prices. These estimates have been calculated bottom-up as much as possible and with the help of sector models. The realisation of Maasvlakte 2 has been taken into account in these results, which means more space for chemical plants and substantially more freight transfer and transport in Rotterdam [Dutch] Het Rotterdam Climate Initiative (RCI) heeft als doel om de CO2-emissie van de gemeente Rotterdam, inclusief de haven, in 2025 met 50% te reduceren ten opzichte van het basisjaar 1990. Deze doelstelling betekent een emissieniveau van 12 Mton CO2 in 2025 binnen de gemeente Rotterdam. In deze studie is de CO2

  1. Re-Examining Embodied SO2 and CO2 Emissions in China

    Directory of Open Access Journals (Sweden)

    Rui Huang

    2018-05-01

    Full Text Available CO2 and SO2, while having different environmental impacts, are both linked to the burning of fossil fuels. Research on joint patterns of CO2 emissions and SO2 emissions may provide useful information for decision-makers to reduce these emissions effectively. This study analyzes both CO2 emissions and SO2 emissions embodied in interprovincial trade in 2007 and 2010 using multi-regional input–output analysis. Backward and forward linkage analysis shows that Production and Supply of Electric Power and Steam, Non-metal Mineral Products, and Metal Smelting and Pressing are key sectors for mitigating SO2 and CO2 emissions along the national supply chain. The total SO2 emissions and CO2 emissions of these sectors accounted for 81% and 76% of the total national SO2 emissions and CO2 emissions, respectively.

  2. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks - A revision of global mangrove CO2 emissions

    Science.gov (United States)

    Rosentreter, Judith A.; Maher, D. T.; Erler, D. V.; Murray, R.; Eyre, B. D.

    2018-02-01

    Continuous high-resolution surface water pCO2 and δ13C-CO2 and 222Rn (dry season only) were measured over two tidal cycles in the wet and dry season in three tropical tidal mangrove creeks on the north-eastern coast of Queensland, Australia. Mangrove surface water pCO2 followed a clear tidal pattern (ranging from 387 to 13,031 μatm) with higher pCO2-values in the wet season than in the dry season. The δ13C-CO2 in the mangrove waters ranged from -21.7 to -8.8‰ and was rather indicative of a mixed source than a distinct mangrove signature. Surface water CO2 was likely driven by a combination of mangrove and external carbon sources, e.g. exchange with groundwater/pore water enriched in 13C, or terrestrial carbon inputs with a significant contribution of C4-vegetation (sugar cane) source. The kinetic and equilibrium fractionation during the gas exchange at the water-atmosphere interface may have further caused a 13C-enrichment of the CO2 pool in the mangrove surface waters. Average CO2 evasion rates (58.7-277.6 mmol m-2 d-1) were calculated using different empirical gas transfer velocity models. Using our high-resolution time series data and previously published data, the average CO2 flux rate in mangrove ecosystems was estimated to be 56.5 ± 8.9 mmol m-2 d-1, which corresponds to a revised global mangrove CO2 emission of 34.1 ± 5.4 Tg C per year.

  3. Inter-annual variability and trend detection of urban CO2, CH4 and CO emissions

    Science.gov (United States)

    Lauvaux, T.; Deng, A.; Gurney, K. R.; Nathan, B.; Ye, X.; Oda, T.; Karion, A.; Hardesty, M.; Harvey, R. M.; Richardson, S.; Whetstone, J. R.; Hutyra, L.; Davis, K. J.; Brewer, A.; Gaudet, B. J.; Turnbull, J. C.; Sweeney, C.; Shepson, P. B.; Miles, N.; Bonin, T.; Wu, K.; Balashov, N. V.

    2017-12-01

    The Indianapolis Flux (INFLUX) Experiment has conducted an unprecedented volume of atmospheric greenhouse gas measurements across the Indianapolis metropolitan area from aircraft, remote-sensing, and tower-based observational platforms. Assimilated in a high-resolution urban inversion system, atmospheric data provide an independent constraint to existing emission products, directly supporting the integration of economic data into urban emission systems. We present here the first multi-year assessment of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) emissions from anthropogenic activities in comparison to multiple bottom-up emission products. Biogenic CO2 fluxes are quantified using an optimized biogeochemical model at high resolution, further refined within the atmospheric inversion system. We also present the first sector-based inversion by jointly assimilating CO2 and CO mixing ratios to quantify the dominant sectors of emissions over the entire period (2012-2015). The detected trend in CO2 emissions over 2012-2015 from both bottom-up emission products and tower-based inversions agree within a few percent, with a decline in city emissions over the 3-year time period. Major changes occur at the primary power plant, suggesting a decrease in energy production within the city limits. The joint assimilation of CO2 and CO mixing ratios confirms the absence of trends in other sectors. However, top-down and bottom-up approaches tend to disagree annually, with a decline in urban emissions suggested by atmospheric data in 2014 that is several months earlier than is observed in the bottom-up products. Concerning CH4 emissions, the inversion shows a decrease since mid-2014 which may be due to lower landfill emissions or lower energy consumption (from coal and natural gas). This first demonstration of a high-accuracy long-term greenhouse gas measurement network merged with a high-resolution bottom-up information system highlights the potential for informing

  4. Assessment of the way of biomass transportation to the coal power plant with regard to the limitation of emissions of CO2

    International Nuclear Information System (INIS)

    Adamkiewicz, A.; Zenczak, W.

    2014-01-01

    One from the activities taken in Poland in aim of limitation of CO 2 , emission is coal and biomass combustion together in one boiler. Biomass is delivered to power station Dolna Odra in Szczecin by trucks, which are also a source of CO 2 , emission. The paper presents results of comparative analysis of CO 2 , emission from trucks during transportation of biomass to power station with actual reduction of emission through power station as result of substitution of part of coal by biomass.

  5. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?

    Science.gov (United States)

    Wu, Lin; Broquet, Grégoire; Ciais, Philippe; Bellassen, Valentin; Vogel, Felix; Chevallier, Frédéric; Xueref-Remy, Irène; Wang, Yilong

    2016-06-01

    Cities currently covering only a very small portion ( directly release to the atmosphere about 44 % of global energy-related CO2, but they are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by the monitoring, reporting, and verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we analyze the potential of a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. This monitoring tool is configured for the quantification of the total and sectoral CO2 emissions in the Paris metropolitan area (˜ 12 million inhabitants and 11.4 TgC emitted in 2010) during the month of January 2011. Its performances are evaluated in terms of uncertainty reduction based on observing system simulation experiments (OSSEs). They are analyzed as a function of the number of sampling sites (measuring at 25 m a.g.l.) and as a function of the network design. The instruments presently used to measure CO2 concentrations at research stations are expensive (typically ˜ EUR 50 k per sensor), which has limited the few current pilot city networks to around 10 sites. Larger theoretical networks are studied here to assess the potential benefit of hypothetical operational lower-cost sensors. The setup of our inversion system is based on a number of diagnostics and assumptions from previous city-scale inversion experiences with real data. We find that, given our assumptions underlying the configuration of the OSSEs, with 10 stations only the uncertainty for the total city CO2 emission during 1 month is significantly reduced by the inversion by ˜ 42 %. It can be further reduced by extending the

  6. Analysis on long-term change of energy system structure in Japan considering CO2 emission and domestic demand

    International Nuclear Information System (INIS)

    Kurokawa, Shingo; Tabe, Yutaka; Chikahisa, Takemi

    2011-01-01

    Long-term change of energy system structure in Japan was analyzed to investigate the effect of the CO 2 emission reduction level on the reduction cost using MARKAL model. The MARKAL is composed of energy resources, energy supply technologies, energy ultimate demand technologies and energy service demands with them connected by energy carriers. This paper presents analyses investigating the CO 2 reduction cost and the energy structure change until 2050. Here, we focused on the domestic investment to reduce CO 2 emission. It was shown that the CO 2 reduction until 40% level promotes the energy conversion from coal to natural gas and it causes the increase in total cost of the imported fuel. The higher CO 2 reduction, however, increases the domestic investment for low-emission vehicles, photovoltaic power generation and so on, and decreases the overseas investment, although the total CO 2 reduction cost is increased. This contributes to the revitalization of Japanese economy, together with the reduction of overseas investment. (author)

  7. Reducing CO2 Emissions in the Production of Porous Fired Clay Bricksks

    Directory of Open Access Journals (Sweden)

    Mikuláš ŠVEDA

    2017-08-01

    Full Text Available A plan to reduce CO2 emissions is a priority these days. Brick industry contributes to the increase of these emissions mainly through the use of combustible pore-forming agents such as sawdust, cellulose, and coal sludge. These agents are used to improve the thermal insulation properties of brick products, and the suppliers regularly increase the prices of these agents based on their high consumption. Therefore, in an effort to reduce raw material expenses and CO2 emissions, brick manufacturers are looking for new possibilities while maintaining the quality of their products. This article discusses the possibility of using industrially manufactured product Vuppor as an additive as a replacement for combustible pore-forming agents. The presence of this additive in the fired clay body increases the proportion of pores, especially with a size range between 0.1 and 5 µm, having a positive impact on the reduction of its thermal conductivity. With a 0.5 wt.% dose of Vuppor additive, the brick production costs and thermal conductivity can be reduced by 20 % and 12 %, respectively, while also achieving reductions in CO2 emissions over 60 %. Consequently, the combustible pore-forming agents can be used in a more environmentally friendly manner, for example in the furniture industry, the biogas production, and the like.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.15103

  8. Trend of CO2 emissions of the 30 largest power plants in Germany

    International Nuclear Information System (INIS)

    Hermann, Hauke

    2014-01-01

    The brochure on the trend of CO 2 emissions of the 30 largest power plants in Germany includes tables of the emissions of these power plants. The CO 2 emissions of these power plants in 2013 (25% of the total German greenhouse gas emissions) have increased by 5% compared to 2012. The total CO 2 emission sin Germany increased by 1.5%. The differences between brown coal and black coal fired power plants are discussed.

  9. China's transportation energy consumption and CO2 emissions from a global perspective

    International Nuclear Information System (INIS)

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-01-01

    Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO 2 ) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO 2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO 2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO 2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO 2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products. -- Highlights: •Transport sector in China are analyzed from a global perspective. •Passenger transport turnover reduction and modal shifts is less sensitive to carbon price. •Bio-fuel, electricity and H 2 will play an important role for carbon mitigation in transport sector. •The transport sector is more difficult to decarbonize than other sectors

  10. The influence of non-CO2 forcings on cumulative carbon emissions budgets

    Science.gov (United States)

    Tokarska, Katarzyna B.; Gillett, Nathan P.; Arora, Vivek K.; Lee, Warren G.; Zickfeld, Kirsten

    2018-03-01

    Carbon budgets provide a useful tool for policymakers to help meet the global climate targets, as they specify total allowable carbon emissions consistent with limiting warming to a given temperature threshold. Non-CO2 forcings have a net warming effect in the Representative Concentration Pathways (RCP) scenarios, leading to reductions in remaining carbon budgets based on CO2 forcing alone. Carbon budgets consistent with limiting warming to below 2.0 °C, with and without accounting for the effects of non-CO2 forcings, were assessed in inconsistent ways by the Intergovernmental Panel on Climate Change (IPCC), making the effects of non-CO2 forcings hard to identify. Here we use a consistent approach to compare 1.5 °C and 2.0 °C carbon budgets with and without accounting for the effects of non-CO2 forcings, using CO2-only and RCP8.5 simulations. The median allowable carbon budgets for 1.5 °C and 2.0 °C warming are reduced by 257 PgC and 418 PgC, respectively, and the uncertainty ranges on the budgets are reduced by more than a factor of two when accounting for the net warming effects of non-CO2 forcings. While our overall results are consistent with IPCC, we use a more robust methodology, and explain the narrower uncertainty ranges of carbon budgets when non-CO2 forcings are included. We demonstrate that most of the reduction in carbon budgets is a result of the direct warming effect of the non-CO2 forcings, with a secondary contribution from the influence of the non-CO2 forcings on the carbon cycle. Such carbon budgets are expected to play an increasingly important role in climate change mitigation, thus understanding the influence of non-CO2 forcings on these budgets and their uncertainties is critical.

  11. Dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria.

    Science.gov (United States)

    Ali, Hamisu Sadi; Law, Siong Hook; Zannah, Talha Ibrahim

    2016-06-01

    The objective of this paper is to examine the dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria based on autoregressive distributed lags (ARDL) approach for the period of 1971-2011. The result shows that variables were cointegrated as null hypothesis was rejected at 1 % level of significance. The coefficients of long-run result reveal that urbanization does not have any significant impact on CO 2 emissions in Nigeria, economic growth, and energy consumption has a positive and significant impact on CO 2 emissions. However, trade openness has negative and significant impact on CO 2 emissions. Consumption of energy is among the main determinant of CO 2 emissions which is directly linked to the level of income. Despite the high level of urbanization in the country, consumption of energy still remains low due to lower income of the majority populace and this might be among the reasons why urbanization does not influence emissions of CO 2 in the country. Initiating more open economy policies will be welcoming in the Nigerian economy as the openness leads to the reduction of pollutants from the environment particularly CO 2 emissions which is the major gases that deteriorate physical environment.

  12. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets

    International Nuclear Information System (INIS)

    Calderón, Silvia; Alvarez, Andrés Camilo; Loboguerrero, Ana María; Arango, Santiago; Calvin, Katherine; Kober, Tom; Daenzer, Kathryn; Fisher-Vanden, Karen

    2016-01-01

    In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increase in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. An assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper. - Highlights: • Four energy and economy-wide models under carbon mitigation scenarios are compared. • Baseline results show that CO

  13. Energy-saving behavior and marginal abatement cost for household CO2 emissions

    International Nuclear Information System (INIS)

    Hamamoto, Mitsutsugu

    2013-01-01

    This paper attempts to measure consumers' perceived net benefits (or net costs) of energy-saving measures in using energy-consuming durable goods. Using the estimated net costs and the volume of CO 2 reduced by the measures, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. An analysis using the curve suggests that in order to provide households with an incentive to take actions that can lead to CO 2 emission reductions in using energy-consuming durables, a high level of carbon price is needed. In addition, a regression analysis reveals that the net benefits of the measures are larger for households that put a higher priority on energy saving, for those living in detached houses, for those with a smaller number of persons living together, and for those with less income. The result of the analysis using the MAC curve may suggest that promoting energy-saving behavior will require not only a policy to provide economic incentives but also interventions to influence psychological factors of household behavior. - Highlights: • Consumers' perceived net costs of energy-saving measures in using energy-consuming durables are measured. • Using the estimated net costs, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. • A high carbon price is needed in order to provide households with an incentive to take actions for energy-savings. • Households' attributes affecting their energy-saving behavior are revealed by a regression analysis

  14. Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective

    International Nuclear Information System (INIS)

    Lin, Sue J.; Lu, I.J.; Lewis, Charles

    2006-01-01

    In this study we use Divisia index approach to identify key factors affecting CO 2 emission changes of industrial sectors in Taiwan. The changes of CO 2 emission are decomposed into emission coefficient, energy intensity, industrial structure and economic growth. Furthermore, comparisons with USA, Japan, Germany, the Netherlands and South Korea are made to have a better understanding of emission tendency in these countries and to help formulate our CO 2 reduction strategies for responding to the international calls for CO 2 cuts. The results show that economic growth and high energy intensity were two key factors for the rapid increase of industrial CO 2 emission in Taiwan, while adjustment of industrial structure was the main component for the decrease. Although economic development is important, Taiwan must keep pace with the international trends for CO 2 reduction. Among the most important strategies are continuous efforts to improve energy intensity, fuel mix toward lower carbon, setting targets for industrial CO 2 cuts, and advancing green technology through technology transfer. Also, the clean development mechanism (CDM) is expected to play an important role in the future

  15. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    Science.gov (United States)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  16. Energy use, cost and CO2 emissions of electric cars

    International Nuclear Information System (INIS)

    van Vliet, Oscar; Brouwer, Anne Sjoerd; Kuramochi, Takeshi; van den Broek, Machteld; Faaij, Andre

    2011-01-01

    We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles. GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0 g km -1 (using renewables) and 155 g km -1 (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 35-77 g CO 2 eq km -1 . We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 EUR year -1 . TCO of future wheel motor PHEV may become competitive when batteries cost 400 EUR kWh -1 , even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150 EUR kWh -1 in the future. Variations in driving cost from charging patterns have negligible influence on TCO. GHG abatement costs using plug-in hybrid cars are currently 400-1400 EUR tonne -1 CO 2eq and may come down to -100 to 300 EUR tonne -1 . Abatement cost using

  17. A Study on Life Cycle CO2 Emissions of Low-Carbon Building in South Korea

    Directory of Open Access Journals (Sweden)

    Su-Hyun Cho

    2016-06-01

    CO2 (LCCO2 per unit area. If diverse production technologies and sales routes are further developed for low-carbon construction materials, carbon emission reduction effects would considerably increase.

  18. Stockholm CHP potential - An opportunity for CO2 reductions?

    International Nuclear Information System (INIS)

    Danestig, Maria; Gebremehdin, Alemayehu; Karlsson, Bjoern

    2007-01-01

    The potential for combined heat and power (CHP) generation in Stockholm is large and a total heat demand of about 10 TWh/year can be met in a renewed large district heating system. This model of the Stockholm district heating system shows that CHP generation can increase from 8% in 2004 to 15.5% of the total electricity generation in Sweden. Increased electricity costs in recent years have awakened an interest to invest in new electricity generation. Since renewable alternatives are favoured by green certificates, bio-fuelled CHP is most profitable at low electricity prices. Since heat demand in the district heating network sets the limit for possible electricity generation, a CHP alternative with a high electricity to heat ratio will be more profitable at when electricity prices are high. The efficient energy use in CHP has the potential to contribute to reductions in carbon dioxide emissions in Europe, when they are required and the European electricity market is working perfectly. The potential in Stockholm exceeds Sweden's undertakings under the Kyoto protocol and national reduction goals. (author)

  19. Study of nuclear heat application systems for arresting CO2 emission

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogata, Kan; Yamada, Seiya.

    1996-11-01

    The objective of the paper is to investigate the systems for arresting CO 2 emission and for the effective utilization of fossil fuel. We studied the fossil fuel reforming systems to decrease the CO 2 emission rate per unit amount of heat generation by fossil fuel. Feed materials for reforming system were natural gas, crude oil, oil sand, oil shale and coal. Products by reforming were hydrogen, methane, methanol and gasoline. We examined CO 2 emission ratio of ten systems with different feed material and product. The CO 2 emission ratio was the ratio of CO 2 emission rate per unit amount of heat generation between the products and the feed materials, and was the important index. As the results, the CO 2 emission ratio for the coal to methane reforming system using steam gasifier had the lowest value of 51%. It means that the CO 2 emission rate of the product from the coal to methane reforming system was 51% of the emission rate of the feed material, that is, the system is very effective to arrest the CO 2 emission. The CO 2 emission ratio increases in the following order: the reforming systems from coal to methanol, heavy oil to hydrogen and natural gas to hydrogen. It was clarified that the system of coal to methane reforming was very effective for arresting CO 2 emission compared to the other systems, moreover the nuclear heat using rate and thermal efficiency of the plant of the system were the highest. (author)

  20. Energy saving and CO2-reduction potential of micro-cogeneration in the Netherlands (2010-2030). Update 2008

    International Nuclear Information System (INIS)

    Van Gastel, M.; De Jong, A.; Schlatmann, S.; Bakker, E.J.; Jeeninga, H.; Boerakker, Y.; Seebregts, A.; Menkveld, M.; Van Wolferen, H.; Turkstra, J.W.; Dam, J.; Harmsen, R.; Rooijers, F.; Koot, M.

    2008-05-01

    Various parties have been asked to come to a joint point of view with regard to establishing the potential of micro CHP for energy saving and CO2 emission reduction in the Netherlands from 2010 to 2030, assuming that micro CHP will have a successful market introduction. The result of this memo is a method for determining the technical potential of micro CHP for the reduction of energy use and CO2 emissions. This report is an update of the 2006 report [mk] [nl

  1. Energy use and CO2 emissions of China's industrial sector from a global perspective

    International Nuclear Information System (INIS)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-01-01

    The industrial sector has accounted for more than 50% of China's final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China's per-capita demands of basic industrial goods, industrial energy demand and CO 2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO 2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095. - Highlights: • Eleven industrial subsectors in China are detail analyzed from a global perspective. • Industrial energy use and CO 2 emissions will approach a plateau between 2030 and 2040. • Industrial CHP and CCS are truly encouraged by carbon tax. • Some degree of industrial sector electrification are observed by carbon tax

  2. HyGenSys: a Flexible Process for Hydrogen and Power Production with Reduction of CO2 Emission HyGenSys : un procédé flexible de production d’hydrogène et d’électricité avec réduction des émissions de CO2

    Directory of Open Access Journals (Sweden)

    Giroudière F.

    2010-09-01

    Full Text Available This paper presents the latest development of HyGenSys, a new sustainable process and technology for the conversion of natural gas to hydrogen and power. The concept combines a specific steam reforming reactor-exchanger with a gas turbine. The heat necessary for the steam reforming reaction comes from hot pressurized flue gases produced in a gas turbine instead of a conventional furnace. Thanks to this high level of heat integration, the overall efficiency is improved and the natural gas consumption is reduced which represents an advantage with regard to economics and CO2 emission reduction. In addition to the efficient HyGenSys process scheme itself, the technology of the reactorexchanger also offers a high level of heat integration for even more energy saving. Two main alternatives are examined in order to meet two different requirements. The first one, named HyGenSys-0, focuses on the hydrogen production for the refining and petrochemical application. The second one named HyGenSys-1, concerns the centralized power production with pre-combustion CO2capture. In that case, the produced hydrogen is fully used to fuel a power gas turbine. HyGenSys-1 has been developed and optimised in CACHET, a European Community funded project. The CACHET electrical power objective was 400 MW at the minimum. HyGenSys-0 and HyGenSys-1 are described in detail with challenges and advantages compared to existing technologies. For both alternatives, the heart of the technology is the reactor-exchanger. The reactor-exchanger design relies on an innovative arrangement of bayonet tubes that allows, at large scale, multiple heat exchanges between hot pressurized flue gas, natural gas feed and hydrogen rich stream produced. Cet article présente les développements récents d’HyGenSys, nouvel éco-procédé de conversion du gaz naturel en hydrogène et électricité. Le concept combine un réacteur-échangeur spécifique de reformage à la vapeur avec une turbine à gaz

  3. The relationship between CO2 emission, energy consumption and economic growth in Malaysia: a three-way linkage approach.

    Science.gov (United States)

    Sulaiman, Chindo; Abdul-Rahim, A S

    2017-11-01

    This study examines the three-way linkage relationships between CO 2 emission, energy consumption and economic growth in Malaysia, covering the 1975-2015 period. An autoregressive distributed lag approach was employed to achieve the objective of the study and gauged by dynamic ordinary least squares. Additionally, vector error correction model, variance decompositions and impulse response functions were employed to further examine the relationship between the interest variables. The findings show that economic growth is neither influenced by energy consumption nor by CO 2 emission. Energy consumption is revealed to be an increasing function of CO 2 emission. Whereas, CO 2 emission positively and significantly depends on energy consumption and economic growth. This implies that CO 2 emission increases with an increase in both energy consumption and economic growth. Conclusively, the main drivers of CO 2 emission in Malaysia are proven to be energy consumption and economic growth. Therefore, renewable energy sources ought to be considered by policy makers to curb emission from the current non-renewable sources. Wind and biomass can be explored as they are viable sources. Energy efficiency and savings should equally be emphasised and encouraged by policy makers. Lastly, growth-related policies that target emission reduction are also recommended.

  4. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  5. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  6. Incentive-based regulation of CO2 emissions from international aviation

    International Nuclear Information System (INIS)

    Carlsson, F.; Hammar, H.

    2002-01-01

    We explore the possibilities of using incentive-based environmental regulations of CO 2 emissions from international civil aviation. In theory incentive-based instruments such as an emission charge or a tradable emission permit system are better regulations than so-called command-and-control regulations such as emission limits or technology standards. However, the implementation of these instruments is a complex issue. We therefore describe and discuss how an emission charge and a tradable emission permit system for international aviation should be designed in order to improve efficiency. We also compare these two types of regulations. In brief, we find that an emission charge and a tradable emission permit system in which the permits are auctioned have more or less the same characteristics. The main advantage of a tradable emission permit system is that the effect, in terms of emission reductions, is known. On the other hand, we show that under uncertainty an emission charge is preferred. The choice of regulation is a political decision and it does not seem likely that an environmental charge or a tradable emission permit system would be implemented without consideration of the costs of the regulation. Revenue-neutral charges or gratis distribution of permits would, for this reason, be realistic choices of regulations. However, such actions are likely to result in less stringent regulations and other negative welfare effects.(author)

  7. More gas, less coal, and less CO2? Unilateral CO2 reduction policy with more than one carbon energy source

    DEFF Research Database (Denmark)

    Daubanes, Julien Xavier; Henriet, Fanny; Schubert, Katheline

    -productive, ultimately increasing world emissions. Thus, we establish testable conditions as to whether a governmental emission-reduction commitment warrants the exploitation of gas, and whether such a strategy increases global emissions. We also characterize the extent to which this unilateral policy makes the rest...... of the world’s emission commitments more difficult to meet. Finally, we apply our results to the case of the US....

  8. Comparison of CO2 Emissions Data for 30 Cities from Different Sources

    Science.gov (United States)

    Nakagawa, Y.; Koide, D.; Ito, A.; Saito, M.; Hirata, R.

    2017-12-01

    Many sources suggest that cities account for a large proportion of global anthropogenic greenhouse gas emissions. Therefore, in search for the best ways to reduce total anthropogenic greenhouse gas emissions, a focus on the city emission is crucial. In this study, we collected CO2 emissions data in 30 cities during 1990-2015 and evaluated the degree of variance between data sources. The CO2 emissions data were obtained from academic papers, municipal reports, and high-resolution emissions maps (CIDIACv2016, EDGARv4.2, ODIACv2016, and FFDASv2.0). To extract urban CO2 emissions from the high-resolution emissions maps, urban fraction ranging from 0 to 1 was calculated for each 1×1 degree grid cell using the global land cover data (SYNMAP). Total CO2 emissions from the grid cells in which urban fraction occupies greater than or equal to 0.9 were regarded as urban CO2 emissions. The estimated CO2 emissions varied greatly depending on the information sources, even in the same year. There was a large difference between CO2 emissions collected from academic papers, municipal reports, and those extracted from high-resolution emissions maps. One reason is that they use different city boundaries. That is, the city proper (i.e. the political city boundary) is often defined as the city boundary in academic papers and municipal reports, whereas the urban area is used in the high-resolution emissions maps. Furthermore, there was a large variation in CO2 emissions collected from academic papers and municipal reports. These differences may be due to the difference in the assumptions such as allocation ratio of CO2 emissions to producers and consumers. In general, the consumption-based assignment of emissions gives higher estimates of urban CO2 emission in comparison with production-based assignment. Furthermore, there was also a large variation in CO2 emissions extracted from high-resolution emissions maps. This difference would be attributable to differences in information used

  9. [Spatial temporal differentiation of product-based and consumption-based CO2 emissions and balance in the Beijing-Tianjin-Hebei region: an economic input- output analysis].

    Science.gov (United States)

    Wang, Hao; Chen, Cao-cao; Pan, Tao; Liu, Chun-lan; Chen, Long; Sun, Li

    2014-09-01

    Distinguishing product-based and consumption-based CO2 emissions in the open economic region is the basis for differentiating the emission responsibility, which is attracting increasing attention of decision-makers'attention. The spatial and temporal characteristics of product-based and consumption-based CO2 emissions, as well as carbon balance, in 1997, 2002 and 2007 of JING- JIN-JI region were analyzed by the Economic Input-Output-Life Cycle Assessment model. The results revealed that both the product- based and consumption-based CO2 emissions in the region have been increased by about 4% annually. The percentage of CO2 emissions embodied in trade was 30% -83% , to which the domestic trading added the most. The territorial and consumption-based CO2 emissions in Hebei province were the predominant emission in JING-JIN-JI region, and the increasing speed and emission intensity were stronger than those of Beijing and Tianjin. JING-JIN-JI region was a net inflow region of CO2 emissions, and parts of the emission responsibility were transferred. Beijing and Tianjin were the net importers of CO2 emissions, and Hebei was a net outflow area of CO2 emissions. The key CO2 emission departments in the region were concentrated, and the similarity was great. The inter-regional mechanisms could be set up for joint prevention and control work. - Production and distribution of electricity, gas and water and smelting and pressing of metals had the highest reliability on CO2 emissions, and took on the responsibility of other departments. The EIO-LCA model could be used to analyze the product-based and consumption-based CO2 emissions, which is helpful for the delicate management of regional CO2 emissions reduction and policies making, and stimulating the reduction cooperation at regional scale.

  10. Tradeable CO2 emission permits. A quantitative analysis of a TEP system between Annex I countries

    International Nuclear Information System (INIS)

    Koutstaal, P.R.; Kram, T.; Van Rooijen, S.N.M.

    1997-11-01

    Tradeable emission permits can be a cost-effective way to achieve emission reductions between countries or firms. In this study, the role of trading CO 2 emission permits between the Annex I countries of the FCCC is analysed. It is assumed that only countries are allowed to trade and that there is a perfect market without transaction costs and strategic behaviour. For several cases, the consequences for abatement costs, before and after trade, the volume of permits traded and emissions per capita are studied. Moreover, the gains from trade are determined. This study was undertaken before the Kyoto conference, therefore as a starting point for the different cases it was assumed that all countries should reduce their emissions with 10%. The cases studied are: a flat rate of 10% for each country; the differentiated EU distribution combined with a 10% reduction for the other OECD countries; and the so-called Triptych approach applied to all OECD countries. Two trading systems are considered, one covering only the OECD countries and one which also covers Middle and Eastern European countries (in a simplified way). Furthermore, two extreme cases are studied for the OECD trading scheme: equal costs (after trade) per unit of GNP and equal emission per capita (before trade). Tradeable emission permits will considerably reduce total costs compared with no trade by about 50%. The EU will considerably reduce total costs compared with no trade by about 50%. The EU will be a net exporter of permits in an OECD trading scheme (without Middle and Eastern Europe), mainly because the low costs possibilities for reduction of CO 2 emissions in Germany and the United Kingdom. 13 refs

  11. Near stabilisation of CO2 emissions in the world in 2014

    International Nuclear Information System (INIS)

    Ecoiffier, Mathieu

    2016-03-01

    This publication proposes discussions and comments of tables and graphs of statistics regarding evolutions of CO 2 emissions during the last decades. It is noticed that CO 2 emissions only had a 0.5 per cent increase in 2014, i.e. nearly stagnation. These variations and data are analysed with respect to countries and geographical regions. Thus, it is outlined that CO 2 emissions per inhabitant in China are higher than in Europe, that the intensity of CO 2 emission with respect to GDP is strongly decreasing (-4.4 per cent), that the decrease of energy intensity slowed down the growth of world emission since 1990

  12. Industrial CO2 emissions in China based on the hypothetical extraction method: Linkage analysis

    International Nuclear Information System (INIS)

    Wang, Yuan; Wang, Wenqin; Mao, Guozhu; Cai, Hua; Zuo, Jian; Wang, Lili; Zhao, Peng

    2013-01-01

    Fossil fuel-related CO 2 emissions are regarded as the primary sources of global climate change. Unlike direct CO 2 emissions for each sector, CO 2 emissions associated with complex linkages among sectors are usually ignored. We integrated the input–output analysis with the hypothetical extraction method to uncover the in-depth characteristics of the inter-sectoral linkages of CO 2 emissions. Based on China's 2007 data, this paper compared the output and demand emissions of CO 2 among eight blocks. The difference between the demand and output emissions of a block indicates that CO 2 is transferred from one block to another. Among the sectors analyzed in this study, the Energy industry block has the greatest CO 2 emissions with the Technology industry, Construction and Service blocks as its emission's primary destinations. Low-carbon industries that have lower direct CO 2 emissions are deeply anchored to high-carbon ones. If no effective measures are taken to limit final demand emissions or adjust energy structure, shifting to an economy that is low-carbon industries oriented would entail a decrease in CO 2 emission intensity per unit GDP but an increase in overall CO 2 emissions in absolute terms. The results are discussed in the context of climate-change policy. - Highlights: • Quantitatively analyze the characteristics of inter-industrial CO 2 emission linkages. • Propose the linkage measuring method of CO 2 emissions based on the modified HEM. • Detect the energy industry is a key sector on the output of embodied carbon. • Conclude that low-carbon industries are deeply anchored to high-carbon industries

  13. Estimation of CO2 emission for each process in the Japanese steel industry: a process analysis

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Tonooka, Y.

    2000-01-01

    The CO 2 emission for each process in the Japanese steel industry is estimated by a process analysis using statistical data in order to evaluate the possibility of reducing CO 2 emissions. The emission factor of CO 2 for each product and also for crude steel produced from an integrated steel plant route and an electric arc furnaces route is estimated and compared. The CO 2 emissions can be estimated from production amounts of products for each process and for crude steel. The CO 2 emission of blast furnaces is the largest and that of rolling and piping follows. The emission factor of CO 2 of crude steel produced from an integrated steel plant route is approximately 3.8 times as high as that produced via an electric arc furnace route. (Author)

  14. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China

    International Nuclear Information System (INIS)

    Wang, Zhaohua; Yin, Fangchao; Zhang, Yixiang; Zhang, Xian

    2012-01-01

    Highlights: ► We adapt STIRPAT model to regional context and conduct PLS regress analysis. ► Energy technology related patent is innovatively used to measure technical factors. ► Urbanization level has the greatest interpretative ability for CO 2 emissions. ► We do not find evidence of Environmental Kuznets Curve in Beijing. ► Beijing should focus more on tertiary industry and residential energy consumption. -- Abstract: In order to further study the realization of carbon intensity target, find the key influencing factors of CO 2 emissions, and explore the path of developing low-carbon economy, this paper empirically studied the influences of urbanization level, economic level, industry proportion, tertiary industry proportion, energy intensity and R and D output on CO 2 emissions in Beijing using improved STIRPAT (stochastic impacts by regression on population, affluence and technology) model. The model is examined using partial least square regression. Results show that urbanization level, economic level and industry proportion positively influence the CO 2 emissions, while tertiary industry proportion, energy intensity and R and D output negatively do. Urbanization level is the main driving factor of CO 2 emissions, and tertiary industry proportion is the main inhibiting factor. In addition, along with the growth of per capita GDP, the increase of CO 2 emissions does not follow the Environmental Kuznets Curve model. Based on these empirical findings and the specific circumstances of Beijing, we provide some policy recommendations on how to reduce carbon intensity. Beijing should pay more attention to tertiary industry and residential energy consumption for carbon emission reduction. It is necessary to establish a comprehensive evaluation index of social development. Investing more capital on carbon emission reduction science and technology, and promoting R and D output is also an efficient way to reduce CO 2 emissions.

  15. Carbon-14 based determination of the biogenic fraction of industrial CO2 emissions : Application and validation

    NARCIS (Netherlands)

    Palstra, S. W. L.; Meijer, H. A. J.

    The C-14 method is a very reliable and sensitive method for industrial plants, emission authorities and emission inventories to verify data estimations of biogenic fractions of CO2 emissions. The applicability of the method is shown for flue gas CO2 samples that have been sampled in I-h intervals at

  16. CO2 emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress

    International Nuclear Information System (INIS)

    2005-01-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO 2 emissions abatement and geological sequestration: technological advances of CO 2 capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO 2 emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO 2 abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO 2 emissions abatement, Ademe's actions in CO 2 abatement and sequestration, and BRGM's experience in CO 2 sequestration and climatic change expertise. (J.S.)

  17. Exploring the limits for CO2 emission abatement in the EU power and industry sectors—Awaiting a breakthrough

    International Nuclear Information System (INIS)

    Rootzén, Johan; Johnsson, Filip

    2013-01-01

    This study assesses the prospects for presently available abatement technologies to achieve significant reductions in CO 2 emissions from large stationary sources of CO 2 in the EU up to year 2050. The study covers power generation, petroleum refining, iron and steel, and cement production. By simulating capital stock turnover, scenarios that assume future developments in the technology stock, energy intensities, fuel and production mixes, and the resulting CO 2 emissions were generated for each sector. The results confirm that the EU goal for reductions in Greenhouse Gas Emission in the sectors covered by the EU Emission Trading System, i.e., 21% reduction by 2020 as compared to the levels in 2005, is attainable with the abatement measures that are already available. However, despite the optimism regarding the potential for, and implementation of, available abatement strategies within current production processes, our results indicate that the power and industrial sectors will fail to comply with more stringent reduction targets in both the medium term (2030) and long term (2050). Deliberate exclusion from the analysis of mitigation technologies that are still in the early phases of development (e.g., CO 2 capture and storage) provides an indirect measure of the requirements for novel low-carbon technologies and production processes. - Highlights: • Explore the limits for CO 2 emission abatement within current production processes. • Analysis of scenarios for CO 2 emissions from EU power and industrial sectors 2010–2050. • Short-term (2020) emission targets are attainable with available abatement measures. • Fail to comply with more stringent reduction targets in the long term (2050). • Efforts to develop new low-carbon production processes need to be accelerated

  18. Exploring the relation between urbanization and residential CO2 emissions in China: a PTR approach

    OpenAIRE

    Hu, Zongyi; Tang, Liwei

    2013-01-01

    Recent empirical work suggests that urbanization and residential CO2 emissions are related. This paper investigates the nonlinear impact of urbanization on residential CO2 emissions over the period 1997–2011 in China by applying the Candelon et al. (2012) methodology. The results show that the relationship between urbanization and residential CO2 emissions is negative over the sample which is inconsistent with the previous studies. In addition, we find the absolute difference of the estimated...

  19. International inequalities in per capita CO2 emissions: a decomposition methodology by Kaya factors

    International Nuclear Information System (INIS)

    Duro, J.A.; Universitat de Barcelona; Padilla, E.

    2006-01-01

    In this paper, we provide a methodology for decomposing international inequalities in per capita CO 2 emissions into Kaya (multiplicative) factors and two interaction terms. We use the Theil index of inequality and show that this decomposition methodology can be extended for analyzing between- and within-group inequality components. We can thus analyze the factors behind inequalities in per capita CO 2 emissions across countries, between groups of countries and within groups of countries. The empirical illustration for international data suggests some points. Firstly, international inequality in per capita CO 2 emissions is mainly attributable to inequalities in per capita income levels, which helps to explain its recent reduction, while differences in carbon intensity of energy and energy intensity have made a less significant contribution. This result is strongly influenced by the performance of China and India. Secondly, the between-group inequality component, which is the biggest component, is also largely explained by the income factor. Thirdly, the within-group inequality component increased slightly during the period, something mainly due to the change in the income factor and the interaction terms in a few regions. (author)

  20. Cost of power generation. The cost and uncertainties of nuclear power and other CO2-emission reduction techniques for large-scale power generation; Kosten van elektriciteitsopwekking. De kosten en onzekerheden van kernenergie en andere CO2-emissie reducerende technieken voor grootschalige elektriciteitsopwekking

    Energy Technology Data Exchange (ETDEWEB)

    Van Dril, A.W.N. [ECN Beleidsstudies, Petten (Netherlands); Verdonk, M. [Planbureau voor de Leefomgeving PBL, Bilthoven (Netherlands)

    2008-09-15

    In view of recent social and political discussions on nuclear energy, ECN and PBL have gathered and updated information on the cost of options for reducing CO2 emissions in large scale electricity generation. This memo compares the cost of nuclear energy with other large scale options for electricity generation. Special attention is paid to the uncertainties of the cost of nuclear energy. In addition, some external costs and benefits are examined. This memo does not provide a complete framework for comparing the options for generation of electricity, though. Aspects such as public support, various aspects of sustainability and risks are not addressed in this memo. [mk]. [Dutch] Naar aanleiding van de actuele maatschappelijke en politieke discussie over kernenergie hebben ECN en PBL kosteninformatie over opties om CO2-emissies te beperken bij grootschalige opwekking van elektriciteit verzameld en geactualiseerd. In deze notitie worden de kosten van kernenergie vergeleken met andere grootschalige opties van elektriciteitsopwekking. Daarbij wordt speciale aandacht besteed aan de onzekerheden over de kosten van kernenergie. Aanvullend zijn enkele externe kosten en baten beschouwd. Deze notitie geeft echter geen volledig kader om de opties voor de opwekking van elektriciteit met elkaar te vergelijken. Aspecten als draagvlak, diverse duurzaamheidaspecten en risico's zijn in deze notitie namelijk buiten beschouwing gelaten.

  1. Possibilities for reducing CO2 emissions by rational energy used as viewed by enterprises

    International Nuclear Information System (INIS)

    Preuss, H.J.

    1993-01-01

    From the view of the industry, energy conservation offers many options for CO 2 reduction. CO 2 reduction in electric power generation is particularly important. The global CO 2 problem cannot be solved by any single measure, but international efforts are required in all production and consumption sectors. Providing energy for the growing world population while at the same time reducing CO 2 is one of the biggest challenges ever faced by mankind. (orig./UA) [de

  2. Fuel specification, energy consumption and CO2 emission in oil refineries

    International Nuclear Information System (INIS)

    Szklo, Alexandre; Schaeffer, Roberto

    2007-01-01

    The more stringent environmental quality specifications for oil products worldwide are tending to step up energy use and, consequently, CO 2 emissions at refineries. In Brazil, for example, the stipulated reduction in the sulfur content of diesel and gasoline between 2002 and 2009 should increase the energy use of Brazil's refining industry by around 30%, with effects on its CO 2 emissions. Thus, the world refining industry must deal with trade-offs between emissions of pollutants with local impacts (due to fuel specifications) and emissions of pollutants with global impacts (due to the increased energy use at refineries to remove contaminants from oil products). Two promising technology options for refineries could ease this clash in the near-to-mid term: the reduction per se of the energy use at the refinery; and the development of treatment processes using non-hydrogen consuming techniques. For instance, in Brazilian refineries, the expanded energy use resulting from severe hydrotreatment to comply with the more stringent specifications of oil products may be almost completely offset by energy saving options and alternative desulfurization techniques, if barriers to invest in technological innovations are overcome. (author)

  3. Coal-based synthetic natural gas (SNG): A solution to China’s energy security and CO2 reduction?

    International Nuclear Information System (INIS)

    Ding, Yanjun; Han, Weijian; Chai, Qinhu; Yang, Shuhong; Shen, Wei

    2013-01-01

    Considering natural gas (NG) to be the most promising low-carbon option for the energy industry, large state owned companies in China have established numerous coal-based synthetic natural gas (SNG) projects. The objective of this paper is to use a system approach to evaluate coal-derived SNG in terms of life-cycle energy efficiency and CO 2 emissions. This project examined main applications of the SNG and developed a model that can be used for evaluating energy efficiency and CO 2 emissions of various fuel pathway systems. The model development started with the GREET model, and added the SNG module and an end-use equipment module. The database was constructed with Chinese data. The analyses show when the SNG are used for cooking, power generation, steam production for heating and industry, life-cycle energies are 20–108% higher than all competitive pathways, with a similar rate of increase in life-cycle CO 2 emissions. When a compressed natural gas (CNG) car uses the SNG, life-cycle CO 2 emission will increase by 150–190% compared to the baseline gasoline car and by 140–210% compared to an electric car powered by electricity from coal-fired power plants. The life-cycle CO 2 emission of SNG-powered city bus will be 220–270% higher than that of traditional diesel city bus. The gap between SNG-powered buses and new hybrid diesel buses will be even larger—life-cycle CO 2 emission of the former being around 4 times of that of the latter. It is concluded that the SNG will not accomplish the tasks of both energy conservation and CO 2 reduction. - Highlights: ► We evaluated life-cycle energy efficiency and CO 2 emissions of coal-derived SNG. ► We used GREET model and added a coal-based SNG and an end-use modules. ► The database was constructed with Chinese domestic data. ► Life-cycle energies and CO 2 emissions of coal-based SNG are 20–100% higher. ► Coal-based SNG is not a solution to both energy conservation and CO 2 reduction

  4. CO2 emissions, energy consumption and economic growth in China: A panel data analysis

    International Nuclear Information System (INIS)

    Wang, S.S.; Zhou, D.Q.; Zhou, P.; Wang, Q.W.

    2011-01-01

    This paper examines the causal relationships between carbon dioxide emissions, energy consumption and real economic o