WorldWideScience

Sample records for co2 emissions perspectivas

  1. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  2. Perspectives of thermoelectric power generation in Brazil and Co2 emissions; Perspectivas da geracao termeletrica no Brasil e emissoes de Co2

    Energy Technology Data Exchange (ETDEWEB)

    Abdalad, Rogerio

    2000-03-01

    Climate changes taking place on Earth have a strong component due to energy, from the exploitation of primary sources and its conversion to end use forms. The overheating of the atmosphere is consequence of the increasing of greenhouse gases concentration with distinction to carbon dioxide - CO{sub 2}. Brazilian energy sector uses renewable sources with a intensity higher than the world average. The restructuring of the power sector adapting it to a competitive market might contribute to increase the use of fossil in the energy matrix - specially coal and natural gas. The development of thermal power generation technologies from fossil fuels supposes the adaptation to attend environmental patterns of CO{sub 2} emission rates. The improvement of the processes of thermal conversion of these fuels may, in midterm make economically feasible even the use of renewable sources such as biomass. The anticipation in the use of more efficient and advanced technologies has the characteristics of technical intervention and regulatory measures. This work analyses the effects of these actions and measures in a scenery with thermal power expansion in Brazil and estimates the amount of carbon dioxide emissions to a possible result to be achieved with anticipation of new technologies of thermal power using coal and natural gas. (author)

  3. Economic effects on taxing CO2 emissions

    International Nuclear Information System (INIS)

    Haaparanta, P.; Jerkkola, J.; Pohjola, J.

    1996-01-01

    The CO 2 emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO 2 taxation. First one was the economic effects of increasing CO 2 tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  4. Trading CO2 emission; Verhandelbaarheid van CO2-emissies

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.F.; Looijenga, A.; Moor, R.; Wissema, E.W.J. [Afdeling Energie, Ministerie van VROM, The Hague (Netherlands)

    2000-06-01

    Systems for CO2-emission trading can take many shapes as developments in Europe show. European developments for emission trading tend to comprehend cap and-trade systems for large emission sources. In the Netherlands a different policy is in preparation. A trading system for sheltered sectors with an option to buy reductions from exposed sectors will be further developed by a Commission, appointed by the minister of environment. Exposed sectors are committed to belong to the top of the world on the area of energy-efficiency. The authors point out that a cap on the distribution of energy carriers natural gas, electricity and fuel seems to be an interesting option to shape the trade scheme. A cap on the distribution of electricity is desirable, but not easy to implement. The possible success of the system depends partly on an experiment with emission reductions. 10 refs.

  5. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  6. Corn residue removal and CO2 emissions

    Science.gov (United States)

    Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) are the primary greenhouse gases (GHG) emitted from the soil due to agricultural activities. In the short-term, increases in CO2 emissions indicate increased soil microbial activity. Soil micro-organisms decompose crop residues and release...

  7. Eindhoven Airport : towards zero CO2 emissions

    NARCIS (Netherlands)

    Jorge Simoes Pedro, Joana

    2015-01-01

    Eindhoven airport is growing and it is strongly committed to take this opportunity to invest in innovative solutions for a sustainable development. Therefore, this document proposes a strategic plan for reaching Zero CO2 emissions at Eindhoven airport. This document proposes to reduce the CO2

  8. CO2 emission calculations and trends

    International Nuclear Information System (INIS)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-01-01

    Evidence that the atmospheric CO 2 concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO 2 is believed to result from CO 2 releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO 2 concentration and its potential impact on climate. One of the convention's stated objectives was the ''stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. '' Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO 2 as a greenhouse gas, the relationship between CO 2 emissions and increases in atmospheric CO 2 levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO 2 emissions records be compiled, maintained, updated, and documented

  9. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  10. CO2 emissions of nuclear power supply

    International Nuclear Information System (INIS)

    Wissel, S.; Mayer-Spohn, O.; Fahl, U.; Voss, A.

    2007-01-01

    Increasingly, supported by the recent reports of the IPCC (International Panel on Climate Change), political, social and scientific institutions call for the use of atomic energy for reducing CO2 emissions. In Germany, the discussion is highly controversial. A life-cycle balance of nuclear power shows that its CO2 emissions are much lower than those of other technologies, even if changes in the nuclear fuel cycle are taken into account. (orig.)

  11. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima

    2016-12-01

    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  12. Managing CO2 emissions in Nigeria

    International Nuclear Information System (INIS)

    Obioh, I.B.; Oluwole, A.F.; Akeredolu, F.A.

    1994-01-01

    The energy resources in Nigeria are nearly equally divided between fossil fuels and biofuels. The increasing pressure on them, following expected increased population growth, may lead to substantial emissions of carbon into the atmosphere. Additionally agricultural and forestry management practices in vogue are those related to savannah burning and rotational bush fallow systems, which have been clearly implicated as important sources of CO 2 and trace gases. An integrated model for the prediction of future CO 2 emissions based on fossil fuels and biomass fuels requirements, rates of deforestation and other land-use indices is presented. This is further based on trends in population and economic growth up to the year 2025, with a base year in 1988. A coupled carbon cycle-climate model based on the contribution of CO 2 and other trace gases is established from the proportions of integrated global warming effects for a 20-year averaging time using the product of global warming potential (GWP) and total emissions. An energy-technology inventory approach to optimal resources management is used as a tool for establishing the future scope of reducing the CO 2 emissions through improved fossil fuel energy efficiencies. Scenarios for reduction based on gradual to swift shifts from biomass to fossil and renewable fuels are presented together with expected policy options required to effect them

  13. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  14. Towards Verifying National CO2 Emissions

    Science.gov (United States)

    Fung, I. Y.; Wuerth, S. M.; Anderson, J. L.

    2017-12-01

    With the Paris Agreement, nations around the world have pledged their voluntary reductions in future CO2 emissions. Satellite observations of atmospheric CO2 have the potential to verify self-reported emission statistics around the globe. We present a carbon-weather data assimilation system, wherein raw weather observations together with satellite observations of the mixing ratio of column CO2 from the Orbiting Carbon Observatory-2 are assimilated every 6 hours into the NCAR carbon-climate model CAM5 coupled to the Ensemble Kalman Filter of DART. In an OSSE, we reduced the fossil fuel emissions from a country, and estimated the emissions innovations demanded by the atmospheric CO2 observations. The uncertainties in the innovation are analyzed with respect to the uncertainties in the meteorology to determine the significance of the result. The work follows from "On the use of incomplete historical data to infer the present state of the atmosphere" (Charney et al. 1969), which maps the path for continuous data assimilation for weather forecasting and the five decades of progress since.

  15. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  16. Toxic emissions and devalued CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    With reference to the paradigme shift regarding the formation of dioxins in municiplan solid waste incinerators experimental results are taken into account which lead to the suspicion that the same mechanism of de-novo-synthesis also applies to fireplace chimneys. This can explain the dioxin...... friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  17. Smart Transportation CO2 Emission Reduction Strategies

    Science.gov (United States)

    Tarulescu, S.; Tarulescu, R.; Soica, A.; Leahu, C. I.

    2017-10-01

    Transport represents the sector with the fastest growing greenhouse gas emissions around the world. The main global objective is to reduce energy usage and associated greenhouse gas emissions from the transportation sector. For this study it was analyzed the road transportation system from Brasov Metropolitan area. The study was made for the transportation route that connects Ghimbav city to the main surrounding objectives. In this study ware considered four optimization measures: vehicle fleet renewal; building the detour belt for the city; road increasing the average travel speed; making bicycle lanes; and implementing an urban public transport system for Ghimbav. For each measure it was used a mathematical model to calculate the energy consumption and carbon emissions from the road transportation sector. After all four measures was analyzed is calculated the general energy consumption and CO2 reduction if this are applied from year 2017 to 2020.

  18. CO2 emission trade from a fiscal perspective

    International Nuclear Information System (INIS)

    Klaassen, F.A.H.; Derksen, R.T.; Keijel, J.J.C.

    2004-06-01

    The report gives answers to questions as 'are CO2 emission permits assets or supplies?'; how to deal with forward contracts and options in CO2 emission permits 'fiscal-wise'; and 'which are the consequences of CO2 emissions trade for the rebate of pre-taxes?' Als attention is paid to trading system for NOx emission [nl

  19. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  20. Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2015-01-01

    Estimating potential of CO 2 emission reduction of non-capture CO 2 utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue gas. For the estimating the CO 2 emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO 2 of 100 tons per day was performed, Also for the estimation of the indirect CO 2 reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO 2 emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO 3 (7.4 GJ/tNaHCO 3 ). While for the NCCU technology, the direct CO 2 reduction through the CO 2 carbonation was estimated as 36,500 ton per year and the indirect CO 2 reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue was energy efficient and could be one of the promising technology for the low CO 2 emission technology.

  1. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  2. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  3. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  4. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  5. Charcoal cuts the CO2-emissions

    International Nuclear Information System (INIS)

    Aakervik, Anne Lise.

    1999-01-01

    According to this article, bio carbon, or charcoal, may be the way out for the Norwegian processing industry in attempting to reduce the emission of carbon dioxide. Norwegian ferro-alloy plants emit 3 million ton carbon dioxide per year, which comes from the use of coal and coke as reducing agents in the smelting process. If the fraction of bio carbon is increased by 15%, the emission of CO 2 may be reduced by about 1/2 million tonne per year. But the price of charcoal is much greater than that of fix C from coal and coke. Research is in progress on trying to produce bio carbon cheaper. Charcoal can be produced from all types of forest by pyrolysis. Waste heat from the pyrolysis can be sold and used for district heating. The most expensive part in the use of bio carbon will be timber felling and transport to the log pile. Small-scale and large-scale tests will be made to see if it is possible to make adequate charcoal from subarctic timber

  6. CO2 Emission Reduction in Energy Sector

    International Nuclear Information System (INIS)

    Bole, A.; Sustersic, A.; Voncina, R.

    2013-01-01

    Due to human activities, concentrations of the greenhouse gases increase in the atmosphere much quicker than they naturally would. Today it is clear that climate change is the result of human activities. With the purpose of preventing, reducing and mitigating of climate change, the EU, whose member is also Slovenia, set ambitious goals. In order to keep rise of the global atmosphere temperature below 2 degrees of C, the European Council set an objective of reducing greenhouse gas emissions by 80 - 95 % by 2050 compared to 1990. It is important that every single individual is included in achieving of these goals. Certainly, the most important role is assumed by individual sectors especially Public Electricity and Heat Production sector as one of the greatest emitters of the greenhouse gases. As a possible solution of radical reduction of the greenhouse gases emission from mentioned sector Carbon Capture and Storage (CCS) technology is implemented. In the article the range of CO 2 reduction possibilities, technology demands and environmental side effects of CCS technology are described. Evaluation of CCS implementation possibilities in Slovenia is also included.(author)

  7. CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy

    International Nuclear Information System (INIS)

    Ipek Tunc, G.; Tueruet-Asik, Serap; Akbostanci, Elif

    2007-01-01

    Recently, global warming (greenhouse effect) and its effects have become one of the hottest topics in the world agenda. There have been several international attempts to reduce the negative effects of global warming. The Kyoto Protocol can be cited as the most important agreement which tries to limit the countries' emissions within a time horizon. For this reason, it becomes important to calculate the greenhouse gas emissions of countries. The aim of this study is to estimate the amount of CO 2 -the most important greenhouse gas-emissions, for the Turkish economy. An extended input-output model is estimated by using 1996 data in order to identify the sources of CO 2 emissions and to discuss the share of sectors in total emission. Besides, 'CO 2 responsibility', which takes into account the CO 2 content of imports, is estimated for the Turkish economy. The sectoral CO 2 emissions and CO 2 responsibilities are compared and these two notions are linked to foreign trade volume. One of the main conclusions is that the manufacturing industry has the first place in both of the rankings for CO 2 emissions and CO 2 responsibilities, while agriculture and husbandry has the last place

  8. CO2 emissions in the World in 2013

    International Nuclear Information System (INIS)

    Ecoiffier, Mathieu

    2015-12-01

    This publication presents and comments data of CO 2 emissions in the world and their evolution. It more particularly addresses CO 2 emissions due to energy combustion which represent more than 80 per cent of these emissions or 62 per cent of greenhouse gas emissions, and which increased in 2013 with respect to 2012 (+ 2.2 pc). The distribution of CO 2 emissions due to energy combustion in different continents and regions is indicated (levels in 1990, 2012 and 2013, evolutions). The decrease of the CO 2 emission intensity with respect to the GDP is briefly commented (evolution since 1970), as well as the level of CO 2 emissions per inhabitant in China with respect to that in the EU (evolutions since 1970). The evolution of CO 2 emissions is then analysed with respect to different determining parameters according to the Kaya equation (population, GDP, primary energy consumption and their evolution or relationship one to each other)

  9. CO2 emissions resulting from the energy use

    International Nuclear Information System (INIS)

    2004-01-01

    This document brings statistical data on the carbon dioxide emissions resulting from the energy use only. Tables and charts present data for the CO 2 emissions in France, in the world (2001-2002), in the OECD (2000-2002), the CO 2 emissions from electric power plants and refineries in France (1996-1999) and archives of statistics on CO 2 emissions. (A.L.B.)

  10. State of Energy Consumption and CO2 Emission in Bangladesh

    International Nuclear Information System (INIS)

    Azad, Abul K.; Nashreen, S.W.; Sultana, J.

    2006-01-01

    Carbon dioxide (CO 2 ) is one of the most important gases in the atmosphere, and is necessary for sustaining life on Earth. It is also considered to be a major greenhouse gas contributing to global warming and climate change. In this article, energy consumption in Bangladesh is analyzed and estimates are made of CO 2 emission from combustion of fossil fuel (coal, gas, petroleum products) for the period 1977 to 1995. International Panel for Climate Change guidelines for national greenhouse gas inventories were used in estimating CO 2 emission. An analysis of energy data shows that the consumption of fossil fuels in Bangladesh is growing by more than 5% per year. The proportion of natural gas in total energy consumption is increasing, while that of petroleum products and coal is decreasing. The estimated total CO 2 release from all primary fossil fuels used in Bangladesh amounted to 5,072 Gg in 1977, and 14,423 Gg in 1995. The total amounts of CO 2 released from petroleum products, natural gas, and coal in the period 1977-1995 were 83,026 Gg (50% of CO 2 emission), 72,541 Gg (44% of CO 2 emission), and 9,545 Gg (6% CO 2 emission), respectively. A trend in CO 2 emission with projections to 2070 is generated. In 2070, total estimated CO 2 emission will be 293,260 Gg with a current growth rate of 6.34%/y. CO 2 emission from fossil fuels is increasing. Petroleum products contribute the majority of CO 2 emission load, and although the use of natural gas is increasing rapidly, its contribution to CO 2 emission is less than that of petroleum products. The use of coal as well as CO 2 emission from coal is expected to gradually decrease

  11. Financial development and sectoral CO2 emissions in Malaysia.

    Science.gov (United States)

    Maji, Ibrahim Kabiru; Habibullah, Muzafar Shah; Saari, Mohd Yusof

    2017-03-01

    The paper examines the impacts of financial development on sectoral carbon emissions (CO 2 ) for environmental quality in Malaysia. Since the financial sector is considered as one of the sectors that will contribute to Malaysian economy to become a developed country by 2020, we utilize a cointegration method to investigate how financial development affects sectoral CO 2 emissions. The long-run results reveal that financial development increases CO 2 emissions from the transportation and oil and gas sector and reduces CO 2 emissions from manufacturing and construction sectors. However, the elasticity of financial development is not significant in explaining CO 2 emissions from the agricultural sector. The results for short-run elasticities were also consistent with the long-run results. We conclude that generally, financial development increases CO 2 emissions and reduces environmental quality in Malaysia.

  12. CO2 emissions by the economic circuit in France

    International Nuclear Information System (INIS)

    Lenglart, F.; Lesieur, Ch.; Pasquier, J.L.

    2010-01-01

    Before commenting various statistical data on CO 2 emission in France, this report explains how these data have been established according to the 'Stiglitz' Commission recommendations, i.e. by integrating CO 2 emissions in the national accounts. While commenting the evolutions of CO 2 emissions in relationship with economic activity and giving table of world data, it outlines that France represents 3% of the World GDP, 1.3% of CO 2 emissions and 1% of the population. The relationship between standard of living and pollutant emissions are commented. As far as France is concerned and with a comparison with world data the shares of different sources of energy and of the different sectors in CO 2 emissions are indicated and commented. The report comments the influence of the domestic demand on foreign CO 2 emissions, the differences between households in terms of CO 2 emissions with respect to their revenues, the shares of household consumption and of CO 2 emissions among expense items, the influence of socio-professional, of age, and of household composition category on CO 2 emissions. Some methodological and computational aspects are given

  13. National CO2 emissions trading in European perspective; Nationale CO2-emissiehandel in Europees perspectief

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This report is the reaction of the Social and economic council (SER) in the Netherlands to the request of the Dutch Ministry of Housing, Spatial Planning en Environment (VROM) to formulate an advice on the final report of the Committee CO2 Trade (a.k.a the Vogtlander Committee). This Committee has drafted a proposal for a CO2 emission trade system in the Netherlands. The SER has also taken into account the proposal of the European Committee on a guideline for CO2 emission trade in the European Union (EU)

  14. CO2 emissions: a peak level in 2010

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    After a reduction of CO 2 emissions in 2009 due to the financial crisis, these emissions have again reached a peak in 2010: 30.6 Gt, it means an increase by 5% compared to the previous peak. According to IEA (International Energy Agency): 44% of the emissions come from coal, 36% from oil and 20% from natural gas, and OECD countries are responsible of 40% of the CO 2 global emissions but only of 25% of their increase since 2009. For China and India the emissions of CO 2 have increased sharply due to their strong economic growth. (A.C.)

  15. Climate change and CO2 emission reductions

    International Nuclear Information System (INIS)

    Ha Duong, M.; Campos, A.S.

    2007-04-01

    This paper presents the results of an opinion poll performed on a representative sample of 1000 persons about their sensitivity to climate change and to environment protection, their knowledge about technologies which are useful for environment protection, their opinion about geological CO 2 sequestration, and technologies to be developed to struggle against climate warming

  16. Toxic emissions and devaluated CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    Environmental, energy and climate policies need fresh reflections. In order to evaluate toxics reduction policies the Stockholm Convention on Persistent Organic Pollutants is mandatory. Denmark's function as lead country for dioxin research in the context of the OSPAR Convention is contrasted...... with a climate policy whose goals of CO2-reduction were made operational by green-wash. Arguments are given for the devaluation of CO2- neutrality in case of burning wood. Alternative practices as storing C in high quality wood products and/or leaving wood in the forest are recommended. A counter......-productive effect of dioxin formation in the cooling phase of wood burning appliances has been registered akin to de-novo-synthesis in municipal solid waste incinerators. Researchers, regulators and the public are, however, still preoccupied by notions of oven design and operation parameters, assuming that dioxin...

  17. The oil market and international agreements on CO2 emissions

    International Nuclear Information System (INIS)

    Berger, K.; Fimreite, Oe.; Golombek, R.; Hoel, M.

    1991-01-01

    In order to avoid a relatively large risk of dramatic adverse climatic changes during the next century, greenhouse gas emissions must be reduced significantly relative to present emissions. CO 2 is the most important greenhouse gas, so any international agreement will certainly cover CO 2 emissions. Any international agreement to reduce emissions of CO 2 is going to have a significant impact on the markets for fossil fuels. The analysis shows that is not only the amount of CO 2 emissions permitted in an agreement which matters for fossil fuel prices, but also the type of agreement. Two obvious forms of agreements, which under certain assumptions both are cost efficient, are (a) tradeable emission permits, and (b) an international CO 2 tax. If the fossil fuel markets were perfectly competitive, these two types of agreements would have the same effect on the producer price of fossil fuels. However, fossil fuel markets are not completely competitive. It is shown that, under imperfect competition, direct regulation of the ''tradeable quotas'' type tends to imply higher producer prices than an international CO 2 tax giving the same total CO 2 emissions. A numerical illustration of the oil market indicates that the difference in producer prices for the two types of CO 2 agreements is quite significant. 6 refs., 2 figs., 1 tab

  18. Episodical CO2 emission during shoulder seasons in the arctic

    DEFF Research Database (Denmark)

    Friborg, Thomas; Elberling, Bo; Hansen, Birger

    soils. Our knowledge about the exchanges of CO2 and other trace gas fluxes in the arctic region has been constrained by the limited availability of measurements during the long winter season. For that reason only a small number of sites have been able to produce annual budgets of C exchange...... and the driving processes behind winter time exchange of CO2 are not fully understood. Here we present two very different examples of CO2 exchange from shoulder seasons in the Arctic. In an example from NE Greenland, eddy covariance measurements show that the snow cover has a significant effect on the release...... of CO2 during spring. The other example, from a study during late autumn and winter from high arctic Svalbard we found that episodical emissions of CO2 accounted for a significant part of the total CO2 emission form the site. The emission pattern could be associated with temperature variations...

  19. CO2 Emissions From Fuel Combustion. Highlights. 2013 Edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    In the lead-up to the UN climate negotiations in Warsaw, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process, the IEA is making available for free download the ''Highlights'' version of CO2 Emissions from Fuel Combustion now for sale on IEA Bookshop. This annual publication contains, for more than 140 countries and regions: estimates of CO2 emissions from 1971 to 2011; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; a decomposition of CO2 emissions into driving factors; and CO2emissions from international marine and aviation bunkers, key sources, and other relevant information. The nineteenth session of the Conference of the Parties to the Climate Change Convention (COP-19), in conjunction with the ninth meeting of the Parties to the Kyoto Protocol (CMP 9), met in Warsaw, Poland from 11 to 22 November 2013. This volume of ''Highlights'', drawn from the full-scale study, was specially designed for delegations and observers of the meeting in Warsaw.

  20. Decoupling of CO2-emissions from Energy Intensive Industries

    DEFF Research Database (Denmark)

    Andersen, M. S.; Enevoldsen, M. K.; Ryelund, A. V.

    and taxes on the trends in CO2 emissions on the basis of a novel method that relies on sector-specific energy prices. Whereas previous research has been unable to account for the implications of complex tax exemptions and price discounts, the present report bridges the gap and provides innovative estimates....... This finding suggests that price increases, whether induced by taxes or market fluctuations, can be effective in curbing CO2 emissions when they accurately reflect the CO2 burden. It also suggests that CO2-specific taxes on fuels are more effective than end-user electricity taxes which do not reflect actual...

  1. The oil market and international agreements on CO2 emissions

    International Nuclear Information System (INIS)

    Berger, K.; Fimreite, O.; Golombek, R.; Hoel, M.

    1992-01-01

    According to most scientists, greenhouse gas emissions must be reduced significantly relative to current trends to avoid dramatic adverse climatic changes during the next century. CO 2 is the most important greenhouse gas, so any international agreement will certainly cover CO 2 emissions. Any international agreement to reduce emissions of CO 2 is going to have a significant impact on the markets for fossil fuels. The analysis shows that it is not only the amount of CO 2 emissions permitted in an agreement which matters for fossil fuel prices, but also the type of agreement. Two obvious forms of agreements, which under certain assumptions both are cost efficient, are (a) tradeable emission permits, and (b) an international CO 2 tax. If the fossil fuel markets were perfectly competitive, these two types of agreements would have the same effect on the producer price of fossil fuels. However, fossil fuel markets are not completely competitive. It is shown that, under imperfect competition, direct regulation of the 'tradeable quotas' type tends to imply higher producer prices and a larger efficiency loss than an international CO 2 tax giving the same total CO 2 emissions. A numerical illustration of the oil market indicates that the difference in producer prices for the two types of CO 2 agreements is quite significant. 6 refs., 2 figs., 2 tabs

  2. Practical guidebook about the market of CO2 emission quotas

    International Nuclear Information System (INIS)

    2005-01-01

    Since January 1, 2005, the European directive about the trading of CO 2 emission quotas foresees the allocation of CO 2 emission quotas to the industrial sectors that generate huge amounts of greenhouse gases (energy generation, cement, glass, steel-making, mineral and paper industries). A system of trading of CO 2 quotas has been implemented and allows the companies to exchange, sale or purchase quotas in order to be conformable with the volume of CO 2 they have been authorized to release in the atmosphere. This guidebook is a vade mecum of the management of emission quotas. It explains the actions of the international community in favor of the fight against greenhouse emissions, the 3 flexibility mechanisms, the French environmental policy, the European system of fight against climatic change, the CO 2 quotas system and its practical implementation. (J.S.)

  3. Trends in global CO2 emissions. 2012 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy)

    2012-07-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2011 and updates last year's assessment. This assessment focusses on the changes in annual CO2 emissions from 2010 to 2011, and includes not only fossil fuel combustion on which the BP reports are based, but also incorporates all other relevant CO2 emissions sources including flaring of waste gas during oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. After a short description of the methods used (Chapter 2), we first present a summary of recent CO2 emission trends, by region and by country, and of the underlying trend of fossil fuel use, non-fossil energy and of other CO2 sources (Chapter 3). To provide a broader context of the global trends we also assess the cumulative global CO2 emissions of the last decade, i.e. since 2000, and compare it with scientific literature that analyse global emissions in relation to the target of 2C maximum global warming in the 21st century, which was adopted in the UN climate negotiations (Chapter 4). Compared to last year's report, Annex 1 includes a more detailed and updated discussion of the uncertainty in national and global CO2 emission estimates.

  4. Trends in global CO2 emissions. 2012 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J. G.J.; Peters, J. A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy)

    2012-07-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2011 and updates last year's assessment. This assessment focusses on the changes in annual CO2 emissions from 2010 to 2011, and includes not only fossil fuel combustion on which the BP reports are based, but also incorporates all other relevant CO2 emissions sources including flaring of waste gas during oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. After a short description of the methods used (Chapter 2), we first present a summary of recent CO2 emission trends, by region and by country, and of the underlying trend of fossil fuel use, non-fossil energy and of other CO2 sources (Chapter 3). To provide a broader context of the global trends we also assess the cumulative global CO2 emissions of the last decade, i.e. since 2000, and compare it with scientific literature that analyse global emissions in relation to the target of 2C maximum global warming in the 21st century, which was adopted in the UN climate negotiations (Chapter 4). Compared to last year's report, Annex 1 includes a more detailed and updated discussion of the uncertainty in national and global CO2 emission estimates.

  5. Electricity system planning under the CO2 emission restriction

    International Nuclear Information System (INIS)

    Lim, Chae Young; Lee, Man Ki; Roh, Jae Hyung; Kim, Eun Hwan

    2004-01-01

    Objective of this study is to analyze how the restriction of CO 2 emission from power generation will affect the national electricity supply system. The role of nuclear power is investigated under the restriction of CO 2 emission in Korea. A simplified electricity system was modeled for the analysis. To analyze the impact of CO 2 emission restriction, 2 different scenarios were established and compared with the base scenario. The first scenario was 'CO 2 emission restriction with new nuclear power installation'. In this scenario, a CO 2 emission restriction of 0.11kg-C/kWh was imposed and there was no restriction on the nuclear power construction. While, in the second scenario, 'CO 2 emission restriction without new nuclear power installation' the same amount of CO 2 restriction was imposed with no consideration of nuclear power installation. It is found out that the current national emission target(0.11kg- C/kWh) in the electricity sector can not be achieved without nuclear and renewable(wind power) options considered

  6. Framework for Assessing Biogenic CO2 Emissions from ...

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide emissions from stationary sources. EPA developed the revised report, Framework for Assessing Biogenic CO2 Emissions from Stationary Sources, to present a methodological framework for assessing the extent to which the production, processing, and use of biogenic material at stationary sources for energy production results in a net atmospheric contribution of biogenic CO2 emissions. Biogenic carbon dioxide emissions are defined as CO2 emissions related to the natural carbon cycle, as well as those resulting from the production, harvest, combustion, digestion, decomposition, and processing of biologically-based materials. The EPA is continuing to refine its technical assessment of biogenic CO2 emissions through another round of targeted peer review of the revised study with the EPA Science Advisory Board (SAB). This study was submitted to the SAB's Biogenic Carbon Emissions Panel in February 2015. http://yosemite.epa.gov/sab/sabproduct.nsf/0/3235dac747c16fe985257da90053f252!OpenDocument&TableRow=2.2#2 The revised report will inform efforts by policymakers, academics, and other stakeholders to evaluate the technical aspects related to assessments of biogenic feedstocks used for energy at s

  7. Grey forecasting model for CO2 emissions: A Taiwan study

    International Nuclear Information System (INIS)

    Lin, Chiun-Sin; Liou, Fen-May; Huang, Chih-Pin

    2011-01-01

    Highlights: → CO 2 is the most frequently implicated in global warming. → The CARMA indicates that the Taichung coal-fired power plants had the highest CO 2 emissions in the world. → GM(1,1) prediction accuracy is fairly high. → The results show that the average residual error of the GM(1,1) was below 10%. -- Abstract: Among the various greenhouse gases associated with climate change, CO 2 is the most frequently implicated in global warming. The latest data from Carbon Monitoring for Action (CARMA) shows that the coal-fired power plant in Taichung, Taiwan emitted 39.7 million tons of CO 2 in 2007 - the highest of any power plant in the world. Based on statistics from Energy International Administration, the annual CO 2 emissions in Taiwan have increased 42% from 1997 until 2006. Taiwan has limited natural resources and relies heavily on imports to meet its energy needs, and the government must take serious measures control energy consumption to reduce CO 2 emissions. Because the latest data was from 2009, this study applied the grey forecasting model to estimate future CO 2 emissions in Taiwan from 2010 until 2012. Forecasts of CO 2 emissions in this study show that the average residual error of the GM(1,1) was below 10%. Overall, the GM(1,1) predicted further increases in CO 2 emissions over the next 3 years. Although Taiwan is not a member of the United Nations and is not bound by the Kyoto Protocol, the findings of this study provide a valuable reference with which the Taiwanese government could formulate measures to reduce CO 2 emissions by curbing the unnecessary the consumption of energy.

  8. Households' direct CO-2 emissions according to location

    International Nuclear Information System (INIS)

    Cavailhes, Jean; Hilal, Mohamed; Moreau, Sylvain; Bottin, Anne; Reperant, Patricia

    2012-08-01

    Limiting direct emissions of carbon dioxide (CO 2 ) by households is an important factor for achieving reductions in greenhouse gas emissions in compliance with the Kyoto Protocol and European policy. The two main sources of emissions are, in descending order, housing and commuting between home and the workplace or place of study. Average housing-related emissions are 3, 150 kg of CO 2 per year, reaching 4, 200 kg of CO 2 per year in mountain and semi-continental climates. Individual houses in urban centres, often old and with fuel-oil heating, emit more CO 2 than peri-urban dwellings, which are more recent and often have 100% electric heating. Conversely, emissions from commuting are higher in peri-urban areas, where the needs for transport are greater but less transport services are on offer. (authors)

  9. Trends in global CO2 emissions. 2013 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy); Muntean, M. [Institute for Environment and Sustainability IES, Joint Research Centre JRC, Ispra (Italy)

    2013-10-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2012 and updates last year's assessment. This assessment focuses on the changes in annual CO2 emissions from 2011 to 2012, and includes not only fossil-fuel combustion on which the BP reports are based, but also incorporates other relevant CO2 emissions sources including flaring of waste gas during gas and oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. The report clarifies the CO2 emission sources covered, and describes the methodology and data sources. More details are provided in Annex 1 over the 2010-2012 period, including a discussion of the degree of uncertainty in national and global CO2 emission estimates. Chapter 2 presents a summary of recent CO2 emission trends, per main country or region, including a comparison between emissions per capita and per unit of Gross Domestic Product (GDP), and of the underlying trend in fossil-fuel production and use, non-fossil energy and other CO2 sources. Specific attention is given to developments in shale gas and oil production and oil sands production and their impact on CO2 emissions. To provide a broader context of global emissions trends, international greenhouse gas mitigation targets and agreements are also presented, including different perspectives of emission accounting per country. In particular, annual trends with respect to the Kyoto Protocol target and Cancun agreements and cumulative global CO2 emissions of the last decade are compared with scientific literature that analyses global emissions in relation to the target of 2{sup 0}C maximum global warming in the 21st century, which was adopted in the UN climate negotiations. In addition, we briefly discuss the rapid development and implementation of various emission trading schemes, because of their increasing importance as a cross-cutting policy instrument for mitigating

  10. Energy consumption and CO2 emissions in Iran, 2025

    International Nuclear Information System (INIS)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-01-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO 2 emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  11. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia

    International Nuclear Information System (INIS)

    Hooijer, A.; Silvius, M.; Woesten, H.; Page, S.

    2006-12-01

    Forested tropical peatlands in SE Asia store at least 42,000 Megatonnes of soil carbon. This carbon is increasingly released to the atmosphere due to drainage and fires associated with plantation development and logging. Peatlands make up 12% of the SE Asian land area but account for 25% of current deforestation. Out of 27 million hectares of peatland, 12 million hectares (45%) are currently deforested and mostly drained. One important crop in drained peatlands is palm oil, which is increasingly used as a biofuel in Europe. In the PEAT-CO2 project, present and future emissions from drained peatlands were quantified using the latest data on peat extent and depth, present and projected land use and water management practice, decomposition rates and fire emissions. It was found that current likely CO2 emissions caused by decomposition of drained peatlands amounts to 632 Mt/y (between 355 and 874 Mt/y). This emission will increase in coming decades unless land management practices and peatland development plans are changed, and will continue well beyond the 21st century. In addition, over 1997-2006 an estimated average of 1400 Mt/y in CO2 emissions was caused by peatland fires that are also associated with drainage and degradation. The current total peatland CO2 emission of 2000 Mt/y equals almost 8% of global emissions from fossil fuel burning. These emissions have been rapidly increasing since 1985 and will further increase unless action is taken. Over 90% of this emission originates from Indonesia, which puts the country in 3rd place (after the USA and China) in the global CO2 emission ranking. It is concluded that deforested and drained peatlands in SE Asia are a globally significant source of CO2 emissions and a major obstacle to meeting the aim of stabilizing greenhouse gas emissions, as expressed by the international community. It is therefore recommended that international action is taken to help SE Asian countries, especially Indonesia, to better conserve

  12. Changes in CO2 emission intensities in the Mexican industry

    International Nuclear Information System (INIS)

    González, Domingo; Martínez, Manuel

    2012-01-01

    A CO 2 emission intensity analysis in the Mexican industry from 1965 to 2010 is carried out by taking into consideration four stages: 1965–1982, 1982–1994, 1994–2003, and 2004–2010. Based on the LMDI decomposition methodology, three influencing factors are analyzed: energy intensity, CO 2 coefficient, and structure in terms of their contributions of each individual attributes to the overall percent change of them as it was proposed in Choi and Ang (2011). The energy intensity effect was the driving factor behind the main decreases of CO 2 intensity, the CO 2 coefficient effect contributed to less extent to mitigate it, and the structure effect tended to increased it. It is observed that CO 2 intensity declined by 26.2% from 1965 to 2003, but it increased by 10.1% from 2004 to 2010. In addition, the move of Mexico from an economic model based on import-substitution to an export-oriented economy brought more importance to the Mexican industry intended to export, thus maintaining high levels of activity of industries such as cement, iron and steel, chemical, and petrochemical, while industries such as automotive, and ‘other’ industries grown significantly not only as far their energy consumptions and related CO 2 emissions but they also increased their contributions to the national economy. - Highlights: ► Industrial CO 2 emission intensity was reduced by 26.2% from 1965 to 2003. ► Industrial CO 2 emission intensity was increased by 10.1% from 2003 to 2010. ► 1965–2003: Intensity effect took down CO 2 emission intensity. ► 2003–2010: Export-oriented industries raised CO 2 emission intensity.

  13. Influence of travel behavior on global CO2 emissions

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Vries, B. de

    2013-01-01

    Travel demand is rising steeply and its contribution to global CO2 emissions is increasing. Different studies have shown possible mitigation through technological options, but so far few studies have evaluated the implications of changing travel behavior on global travel demand, energy use and CO2

  14. An instructive comparison of Denmark and Sweden CO2 emissions

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2007-02-01

    Denmark and Sweden are close neighbors, they have pretty much the same Climate, so that it is interesting to try to understand what makes them so different in their per capita GHG (Green House Gas) emissions from fuel combustion. Indeed, the CO 2 emissions of Denmark and Sweden are practically equal while the population of Sweden is much larger. Thus, the per capita CO 2 emissions of Denmark are 63 % larger than those of Sweden. Denmark resorts heavily to fossil fuels for its production of both its electric power and its industrial heat whereas Sweden resorts to other primary energy sources which are either renewable or do not emit CO 2 . True, Sweden is in a privileged situation for its access to hydro power and to biomass but Denmark could considerably reduce its CO 2 emissions if it were to call on nuclear power as Sweden has been doing. (A.L.B.)

  15. Reducing of CO2 emissions and its depositing into underground

    Directory of Open Access Journals (Sweden)

    Jaroslava Koudelková

    2005-11-01

    Full Text Available Increasing CO2 emissions caused especially by the combustion of fossil fuels rises a question of how this can be problem solved in the long term. There is several solutions which differ technically and financially. This paper deals with the CO2 capture from combustion processes or power plant processes, (CO2 can be captured from the flue gas, after combustion in oxygen and recirculated flue gas or from a synthesis gas before combustion. This paper presents possibilities of CO2 storagex captured in this way into underground (deep ocean, oil and gas fields, coal bed, aquifers.

  16. Social Learning and the Mitigation of Transport CO2 Emissions

    OpenAIRE

    Maha Al Sabbagh

    2017-01-01

    Social learning, a key factor in fostering behavioural change and improving decision making, is considered necessary for achieving substantial CO2 emission reductions. However, no empirical evidence exists on how it contributes to mitigation of transport CO2 emissions, or the extent of its influence on decision making. This paper presents evidence addressing these knowledge gaps. Social learning-oriented workshops were conducted to gather the views and preferences of participants from the gen...

  17. Macro economic analysis of CO2 emission limits for China

    International Nuclear Information System (INIS)

    Zhang, Z.X.; Folmer, H.; Van Beek, P.

    1995-01-01

    Using a newly developed time-recursive dynamic CGE model for energy and environmental policy analysis of the Chinese economy, a business-as-usual scenario is first developed assuming no specific policy intervention to limit the growth rate of CO2 emissions. Counter factual policy simulation is then carried out to compute the macroeconomic implications of a carbon tax to limit the Chinese energy-related CO2 emissions. 2 tabs., 5 refs

  18. Developing Benchmarking Criteria for CO2 Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, M.; Worrell, E.; Mueller, N.; Angelini, T. [Ecofys, Utrecht (Netherlands); Cremer, C.; Schleich, J.; Eichhammer, W. [The Fraunhofer Institute for Systems and Innovation research, Karlsruhe (Germany)

    2009-02-15

    A European Union (EU) wide greenhouse gas (GHG) allowance trading scheme (EU ETS) was implemented in the EU in 2005. In the first two trading periods of the scheme (running up to 2012), free allocation based on historical emissions was the main methodology for allocation of allowances to existing installations. For the third trading period (2013 - 2020), the European Commission proposed in January 2008 a more important role of auctioning of allowances rather then free allocation. (Transitional) free allocation of allowances to industrial sectors will be determined via harmonized allocation rules, where feasible based on benchmarking. In general terms, a benchmark based method allocates allowances based on a certain amount of emissions per unit of productive output (i.e. the benchmark). This study aims to derive criteria for an allocation methodology for the EU Emission Trading Scheme based on benchmarking for the period 2013 - 2020. To test the feasibility of the criteria, we apply them to four example product groups: iron and steel, pulp and paper, lime and glass. The basis for this study is the Commission proposal for a revised ETS directive put forward on 23 January 2008 and does not take into account any changes to this proposal in the co-decision procedure that resulted in the adoption of the Energy and Climate change package in December 2008.

  19. Radon-calibrated emissions of CO2 from South Africa

    International Nuclear Information System (INIS)

    Gaudry, A.; Polian, G.; Ardouin, B.; Lambert, G.

    1990-01-01

    Atmospheric CO 2 and 222 Rn have been monitored at Amsterdam Island since 1980. Data were selected in order to eliminate any local influence. Typical CO 2 concentrations of the subantarctic marine atmosphere can be determined by selecting those values for which 222 Rn radioactivity was particularly low: less than 1 pCi m -3 . 222 Rn concentrations higher than 2 pCi m -3 are mainly due to injections into the subantarctic atmosphere from the continental source of South Africa. The passage of air masses under continental influence also shows typical CO 2 variations, well correlated with 222 Rn variations. From the knowledge of the global continental fluxes of 222 Rn, it has been possible to estimate CO 2 fluxes into the atmosphere from South Africa. The mean CO 2 flux corresponding to a 6-month period from May to October is about 5 millimole m -2 h -1 . Continental CO 2 emissions reach a maximum in August. (orig.)

  20. CO2 emissions embodied in international trade: evidence for Spain

    International Nuclear Information System (INIS)

    Sanchez-Choliz, Julio; Duarte, Rosa

    2004-01-01

    The objective of this paper is to analyse the sectoral impacts that Spanish international trade relations have on present levels of atmospheric pollution using an input-output model. We try to evaluate the exports and imports of the Spanish economy in terms of the direct and indirect CO 2 emissions (CO 2 embodied) generated in Spain and abroad. The results show a slightly exporting behaviour in the Spanish economy which, nevertheless, hides important pollution interchanges. Moreover, the sectors transport material, mining and energy, non-metallic industries, chemical and metals are the most relevant CO 2 exporters and other services, construction, transport material and food the biggest CO 2 importers, and those whose final demands also embody more than 70% of the CO 2 emissions

  1. Economic Growth and CO2 Emissions in the European Union

    International Nuclear Information System (INIS)

    Bengochea-Morancho, A.; Martinez-Zarzoso, I.; Higon-Tamarit, F.

    2001-01-01

    This paper examines the relationship between economic growth and CO 2 emissions in the European Union. A panel data analysis for the period 1981 to 1995 is applied in order to estimate the relationship between Gross Domestic Product (GDP) growth and CO 2 emissions in ten selected European countries. The analysis shows important disparities between the most industrialised countries and the rest. The results do not seem to support a uniform policy to control emissions; they rather indicate that a reduction in emissions should be achieved by taking into account the specific economic situation and the industrial structure of each EU member state. 20 refs

  2. China CO2 emission accounts 1997–2015

    Science.gov (United States)

    Shan, Yuli; Guan, Dabo; Zheng, Heran; Ou, Jiamin; Li, Yuan; Meng, Jing; Mi, Zhifu; Liu, Zhu; Zhang, Qiang

    2018-01-01

    China is the world’s top energy consumer and CO2 emitter, accounting for 30% of global emissions. Compiling an accurate accounting of China’s CO2 emissions is the first step in implementing reduction policies. However, no annual, officially published emissions data exist for China. The current emissions estimated by academic institutes and scholars exhibit great discrepancies. The gap between the different emissions estimates is approximately equal to the total emissions of the Russian Federation (the 4th highest emitter globally) in 2011. In this study, we constructed the time-series of CO2 emission inventories for China and its 30 provinces. We followed the Intergovernmental Panel on Climate Change (IPCC) emissions accounting method with a territorial administrative scope. The inventories include energy-related emissions (17 fossil fuels in 47 sectors) and process-related emissions (cement production). The first version of our dataset presents emission inventories from 1997 to 2015. We will update the dataset annually. The uniformly formatted emission inventories provide data support for further emission-related research as well as emissions reduction policy-making in China. PMID:29337312

  3. China CO2 emission accounts 1997-2015

    Science.gov (United States)

    Shan, Yuli; Guan, Dabo; Zheng, Heran; Ou, Jiamin; Li, Yuan; Meng, Jing; Mi, Zhifu; Liu, Zhu; Zhang, Qiang

    2018-01-01

    China is the world's top energy consumer and CO2 emitter, accounting for 30% of global emissions. Compiling an accurate accounting of China's CO2 emissions is the first step in implementing reduction policies. However, no annual, officially published emissions data exist for China. The current emissions estimated by academic institutes and scholars exhibit great discrepancies. The gap between the different emissions estimates is approximately equal to the total emissions of the Russian Federation (the 4th highest emitter globally) in 2011. In this study, we constructed the time-series of CO2 emission inventories for China and its 30 provinces. We followed the Intergovernmental Panel on Climate Change (IPCC) emissions accounting method with a territorial administrative scope. The inventories include energy-related emissions (17 fossil fuels in 47 sectors) and process-related emissions (cement production). The first version of our dataset presents emission inventories from 1997 to 2015. We will update the dataset annually. The uniformly formatted emission inventories provide data support for further emission-related research as well as emissions reduction policy-making in China.

  4. CO2 extraction : turning emissions to profit

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J. [ConocoPhillips Canada Resources Corp., Calgary, AB (Canada)

    2005-07-01

    This presentation described how ConocoPhillips extracts carbon dioxide (CO{sub 2}) from waste gas from its natural gas processes and sells it to industrial users. By extracting carbon dioxide, the company saves money and reduces energy consumption through greenhouse gas and sulphur emission reductions. The presentation discussed the company's Empress Straddle Plant and provided a process flow diagram of the plant. It then discussed how CO{sub 2} and sulphur gas are removed. New plants were also discussed as were CO{sub 2} extraction plant processes such as sulphur gas treating, separation, storage and disposal; and CO{sub 2} compression, refrigeration, storage, and transportation. The resulting savings were also presented. tabs., figs.

  5. Estimating marginal CO2 emissions rates for national electricity systems

    International Nuclear Information System (INIS)

    Hawkes, A.D.

    2010-01-01

    The carbon dioxide (CO 2 ) emissions reduction afforded by a demand-side intervention in the electricity system is typically assessed by means of an assumed grid emissions rate, which measures the CO 2 intensity of electricity not used as a result of the intervention. This emissions rate is called the 'marginal emissions factor' (MEF). Accurate estimation of MEFs is crucial for performance assessment because their application leads to decisions regarding the relative merits of CO 2 reduction strategies. This article contributes to formulating the principles by which MEFs are estimated, highlighting the strengths and weaknesses in existing approaches, and presenting an alternative based on the observed behaviour of power stations. The case of Great Britain is considered, demonstrating an MEF of 0.69 kgCO 2 /kW h for 2002-2009, with error bars at +/-10%. This value could reduce to 0.6 kgCO 2 /kW h over the next decade under planned changes to the underlying generation mix, and could further reduce to approximately 0.51 kgCO 2 /kW h before 2025 if all power stations commissioned pre-1970 are replaced by their modern counterparts. Given that these rates are higher than commonly applied system-average or assumed 'long term marginal' emissions rates, it is concluded that maintenance of an improved understanding of MEFs is valuable to better inform policy decisions.

  6. Peak energy consumption and CO2 emissions in China

    International Nuclear Information System (INIS)

    Yuan, Jiahai; Xu, Yan; Hu, Zheng; Zhao, Changhong; Xiong, Minpeng; Guo, Jingsheng

    2014-01-01

    China is in the processes of rapid industrialization and urbanization. Based on the Kaya identity, this paper proposes an analytical framework for various energy scenarios that explicitly simulates China's economic development, with a prospective consideration on the impacts of urbanization and income distribution. With the framework, China's 2050 energy consumption and associated CO 2 reduction scenarios are constructed. Main findings are: (1) energy consumption will peak at 5200–5400 million tons coal equivalent (Mtce) in 2035–2040; (2) CO 2 emissions will peak at 9200–9400 million tons (Mt) in 2030–2035, whilst it can be potentially reduced by 200–300 Mt; (3) China's per capita energy consumption and per capita CO 2 emission are projected to peak at 4 tce and 6.8 t respectively in 2020–2030, soon after China steps into the high income group. - Highlights: • A framework for modeling China's energy and CO 2 emissions is proposed. • Scenarios are constructed based on various assumptions on the driving forces. • Energy consumption will peak in 2035–2040 at 5200–5400 Mtce. • CO 2 emissions will peak in 2030–2035 at about 9300 Mt and be cut by 300 Mt in a cleaner energy path. • Energy consumption and CO 2 emissions per capita will peak soon after China steps into the high income group

  7. Impact of Biogas Stations on CO2 Emission from Agriculture

    Directory of Open Access Journals (Sweden)

    Josef Slaboch

    2017-01-01

    Full Text Available This paper deals with the effects of biogas stations on CO2 emissions produced within agricultural sector. In last years, owing to a positive policy of renewable energy resources a number of biogas stations in the CR has rapidly increased – actually over 350 agricultural biogas stations with the total installed power 365 MW are in operation. Concerning CO2 emissions from the agricultural sector, there is a presumption of decrease in produced emissions owing to decrease of influence of animal wastes which are processed just in the biogas stations. From the results it is obvious that CO2 emissions produced by agriculture in the CR decrease by 93.7 thousand tonnes annually. A presumption P1 that building of biogas stations will further support this trend is documented with results of a simple dynamic linear regression model. Further, elasticities of particular variables influencing the total emission from agriculture are investigated in the paper.

  8. Achieving Negative CO2 Emissions by Protecting Ocean Chemistry

    Science.gov (United States)

    Cannara, A.

    2016-12-01

    Industrial Age CO2 added 1.8 trillion tons to the atmosphere. About ¼ has dissolved in seas. The rest still dissolves, bolstered by present emissions of >30 gigatons/year. Airborne & oceanic CO2 have induced sea warming & ocean acidification*. This paper suggests a way to induce a negative CO2-emissions environment for climate & oceans - preserve the planet`s dominant CO2-sequestration system ( 1 gigaton/year via calcifying sea life**) by promptly protecting ocean chemistry via expansion of clean power for both lime production & replacement of CO2-emitting sources. Provide natural alkali (CaO, MgO…) to oceans to maintain average pH above 8.0, as indicated by marine biologists. That alkali (lime) is available from past calcifying life's limestone deposits, so can be returned safely to seas once its CO2 is removed & permanently sequestered (Carbfix, BSCP, etc.***). Limestone is a dense source of CO2 - efficient processing per mole sequestered. Distribution of enough lime is possible via cargo-ship transits - 10,000 tons lime/transit, 1 million transits/year. New Panamax ships carry 120,000 tons. Just 10,000/transit allows gradual reduction of present & past CO2 emissions effects, if coupled with combustion-power reductions. CO2 separation from limestone, as in cement plants, consumes 400kWHrs of thermal energy per ton of output lime (or CO2). To combat yearly CO2 dissolution in seas, we must produce & distribute about 10gigatons of lime/year. Only nuclear power produces the clean energy (thousands of terawatt hours) to meet this need - 1000 dedicated 1GWe reactors, processing 12 cubic miles of limestone/year & sequestering CO2 into a similar mass of basalt. Basalt is common in the world. Researchers*** report it provides good, mineralized CO2 sequestration. The numbers above allow gradual CO2 reduction in air and seas, if we return to President Kennedy's energy path: http://tinyurl.com/6xgpkfa We're on an environmental precipice due to failure to eliminate

  9. Forgotten carbon: indirect CO2 in greenhouse gas emission inventories

    International Nuclear Information System (INIS)

    Gillenwater, Michael

    2008-01-01

    National governments that are Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit greenhouse gas (GHG) inventories accounting for the emissions and removals occurring within their geographic territories. The Intergovernmental Panel on Climate Change (IPCC) provides inventory methodology guidance to the Parties of the UNFCCC. This methodology guidance, and national inventories based on it, omits carbon dioxide (CO 2 ) from the atmospheric oxidation of methane, carbon monoxide, and non-methane volatile organic compounds emissions that result from several source categories. The inclusion of this category of 'indirect' CO 2 in GHG inventories increases global anthropogenic emissions (excluding land use and forestry) between 0.5 and 0.7%. However, the effect of inclusion on aggregate UNFCCC Annex I Party GHG emissions would be to reduce the growth of total emissions, from 1990 to 2004, by 0.2% points. The effect on the GHG emissions and emission trends of individual countries varies. The paper includes a methodology for calculating these emissions and discusses uncertainties. Indirect CO 2 is equally relevant for GHG inventories at other scales, such as global, regional, organizational, and facility. Similarly, project-based methodologies, such as those used under the Clean Development Mechanism, may need revising to account for indirect CO 2

  10. CO2 emissions and mitigation potential in China's ammonia industry

    International Nuclear Information System (INIS)

    Zhou Wenji; Zhu Bing; Li Qiang; Ma Tieju; Hu Shanying; Griffy-Brown, Charla

    2010-01-01

    Significant pressure from increasing CO 2 emissions and energy consumption in China's industrialization process has highlighted a need to understand and mitigate the sources of these emissions. Ammonia production, as one of the most important fundamental industries in China, represents those heavy industries that contribute largely to this sharp increasing trend. In the country with the largest population in the world, ammonia output has undergone fast growth spurred by increasing demand for fertilizer of food production since 1950s. However, various types of technologies implemented in the industry make ammonia plants in China operate with huge differences in both energy consumption and CO 2 emissions. With consideration of these unique features, this paper attempts to estimate the amount of CO 2 emission from China's ammonia production, and analyze the potential for carbon mitigation in the industry. Based on the estimation, related policy implications and measures required to realize the potential for mitigation are also discussed.

  11. Nuclear power and its role in limiting CO2 emissions

    International Nuclear Information System (INIS)

    Suparman

    2012-01-01

    The objective of this study is to analyze the proper role of nuclear power in the long term energy planning by comparing different type of scenarios in terms of CO2 emission reduction, based on the Business-as-Usual (BAU) scenario. For this purpose, a MESSAGE (Model of Energy Supply Systems and their General Environmental impacts) was used to develop energy planning as well as CO2 emission projection. A sensitivity analysis for CO2 reduction rates of 2.%, 3%, 4% and 5% have been done. From this sensitivity analysis, it can be concluded that nuclear will be a part of optimum solution under CO2 limitation of at least 3% from BAU condition. The more the environmental standards are tightened and enforced the more and the earlier nuclear power becomes part of the optimum generation mix. (author)

  12. Energy consumption and CO2 emissions in Iran, 2025.

    Science.gov (United States)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-04-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Energy development and CO2 emissions in China

    International Nuclear Information System (INIS)

    Xiaolin Xi

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO 2 emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO 2 emissions from burning fossil fuels and projects future energy use and resulting CO 2 emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO 2 emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO 2 emissions reduction in China during the 1985-2020 period are examined

  14. CO2 emissions from soil incubated with sugarcane straw and ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... CO2 emissions peaked at 5.45, 10.82, 14.00, 11.92 and 11.20, 14.47, 15.98,and 14.74 µg mol of. CO2 g-1 s-1 within the ... of mineral N for plants and microorganisms. The .... incubation and were highest when incubated at 30°C with average daily ... because the majority of labile C had been consumed.

  15. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion

    Science.gov (United States)

    Saeki, Tazu; Patra, Prabir K.

    2017-12-01

    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  16. Anomalous CO2 Emissions in Different Ecosystems Around the World

    Science.gov (United States)

    Sanchez-Canete, E. P.; Moya Jiménez, M. R.; Kowalski, A. S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Oyonarte, C.; Domingo, F.

    2016-12-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data available, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aim of this study is: 1) to identify anomalous short term CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that are influencing these emissions, and 3) to explore the potential processes that can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database (version 2015) and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with quality control flag equal to 0 was used) and correlation analysis were performed with NEE and ancillary data. Preliminary results showed strong and highly significant correlations between meteorological variables and anomalous CO2 emissions. Correlation results showed clear differing behaviors between ecosystems types, which could be related to the different processes involved in the anomalous CO2 emissions. We suggest that anomalous CO2 emissions are happening globally and therefore, their contribution to the global net ecosystem carbon balance requires further investigation in order to better understand its drivers.

  17. ICT, openness and CO2 emissions in Africa.

    Science.gov (United States)

    Asongu, Simplice A

    2018-04-01

    This study investigates how information and communication technology (ICT) complements globalisation in order to influence CO 2 emissions in 44 Sub-Saharan African countries over the period 2000-2012. ICT is measured with internet penetration and mobile phone penetration whereas globalisation is designated in terms of trade and financial openness. The empirical evidence is based on the generalised method of moments. The findings broadly show that ICT can be employed to dampen the potentially negative effect of globalisation on environmental degradation like CO 2 emissions. Practical, policy and theoretical implications are discussed.

  18. Swedish CO2-emissions 1900-2010: an exploratory note

    International Nuclear Information System (INIS)

    Kristroem, Bengt; Lundgren, Tommy

    2005-01-01

    This paper projects Swedish CO 2 -emissions during the period 2000-2010 based on data covering 1900-1999. Swedish climate policy is currently based on the assumption that carbon emissions will increase, ceteris paribus, by 5-15% relative to the 1990 level. This forecast has motivated a number of policy measures, including carbon taxes, subsidies and an 'information package'. We find, however, that CO 2 -emissions may well be lower in the future. This outcome is broadly consistent with the literature on the Environmental Kuznets Curve, which portrays the relationship between emissions and GDP. The key contribution of this paper is that our analysis is based on a long time series. Current literature is invariably based on 'short' panel data sets, while we study a single country through several phases of development. Our analysis also sheds some light on the key importance played by nuclear power for carbon emission projections

  19. Essays on the Determinants of Energy Related CO2 Emissions =

    Science.gov (United States)

    Moutinho, Victor Manuel Ferreira

    Overall, amongst the most mentioned factors for Greenhouse Gases (GHG) growth are the economic growth and the energy demand growth. To assess the determinants GHG emissions, this thesis proposed and developed a new analysis which links the emissions intensity to its main driving factors. In the first essay, we used the 'complete decomposition' technique to examine CO2 emissions intensity and its components, considering 36 economic sectors and the 1996-2009 periods in Portugal. The industry (in particular 5 industrial sectors) is contributing largely to the effects of variation of CO2 emissions intensity. We concluded, among others, the emissions intensity reacts more significantly to shocks in the weight of fossil fuels in total energy consumption compared to shocks in other variables. In the second essay, we conducted an analysis for 16 industrial sectors (Group A) and for the group of the 5 most polluting manufacturing sectors (Group B) based on the convergence examination for emissions intensity and its main drivers, as well as on an econometric analysis. We concluded that there is sigma convergence for all the effects with exception to the fossil fuel intensity, while gamma convergence was verified for all the effects, with exception of CO2 emissions by fossil fuel and fossil fuel intensity in Group B. From the econometric approach we concluded that the considered variables have a significant importance in explaining CO2 emissions and CO2 emissions intensity. In the third essay, the Tourism Industry in Portugal over 1996-2009 period was examined, specifically two groups of subsectors that affect the impacts on CO2 emissions intensity. The generalized variance decomposition and the impulse response functions pointed to sectors that affect tourism more directly, i. e. a bidirectional causality between the intensity of emissions and energy intensity. The effect of intensity of emissions is positive on energy intensity, and the effect of energy intensity on

  20. Reducing CO2 emissions in Sierra Leone and Ghana

    International Nuclear Information System (INIS)

    Davidson, O.

    1991-01-01

    With soring population growth rates and minimal economic growth, the nations of Africa are afflicted with innumerable problems. Why then should Africa's developing countries worry about CO 2 emissions? First, because agricultural activities form the backbone of most African economies; thus, these nations may be particularly vulnerable to the negative impacts of climate change. Second, acting to reduce carbon emissions will bring about more efficient energy use. All of Africa could benefit from the improved use of energy. Finally, the accumulation of CO 2 in the atmosphere is a global problem with individual solutions; in order to reduce international emissions, all countries, including those in Africa, must contribute. Typical of many African countries, Ghana and Sierra Leone have among the lowest levels of energy demand per capita across the globe. primary energy demand per capita in these two West African nations equals about one quarter of the world's average and about one twentieth of the US average. This work summarizes the results of two long-term energy use and carbon emissions scenarios for Sierra Leone and Ghana. In the high emissions (HE) scenario for 2025, policy changes focused on galvanizing economic growth lead to significant increases in energy use and carbon emissions in Ghana and Sierra Leone between 1985 and 2025. In the low emissions (LE) scenario, the implementation of policies aimed specifically at curtailing CO 2 emissions significantly limits the increase in carbon in both nations by 2025

  1. Mastering the market of CO2 emission quotas

    International Nuclear Information System (INIS)

    2004-05-01

    On January 1, 2005, a system of trade of carbon dioxide emission quotas, also called 'market of tradable emission permits', will be implemented in the European Union. This system is one of the 3 flexibility mechanisms foreseen by the Kyoto protocol in order to reduce the global economic cost of the fight against climatic change. The aim of this seminar is to clarify the process of transfer of the European directive into French law. It comprises 8 presentations dealing with: the objectives of tradable emission quotas (greenhouse effect, Kyoto commitments, short and long term stakes); presentation of the European directive about the trade system of greenhouse gas emissions; transposition of the directive into French law (fields of application, sectors and facilities concerned, possible exemptions, first national plan of quotas allocation); voluntary emission abatement commitments by industrial companies member of the AERES; quotas recording and management, control of trades; companies strategy (investment for CO 2 abatement or purchase of quotas, impact on industries and competitiveness); experience feedback of emission quotas trading in foreign countries (international CO 2 market development); CO 2 emission quotas linked with cogeneration (emissions from cogeneration facilities, possible allocation, impact for cogeneration companies, approaches in other European countries in this domain); perspectives and conclusions. (J.S.)

  2. Costs of mitigating CO2 emissions from passenger aircraft

    Science.gov (United States)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  3. Achieving CO2 Emissions Reduction Goals with Energy Infrastructure Projects

    International Nuclear Information System (INIS)

    Eberlinc, M.; Medved, K.; Simic, J.

    2013-01-01

    The EU has set its short-term goals in the Europe 2020 Strategy (20% of CO 2 emissions reduction, 20% increase in energy efficiency, 20% share of renewables in final energy). The analyses show that the EU Member States in general are on the right track of achieving these goals; they are even ahead (including Slovenia). But setting long-term goals by 2050 is a tougher challenge. Achieving CO 2 emissions reduction goes hand in hand with increasing the share of renewables and strategically planning the projects, which include exploiting the potential of renewable sources of energy (e.g. hydropower). In Slovenia, the expected share of hydropower in electricity production from large HPPs in the share of renewables by 2030 is 1/3. The paper includes a presentation of a hydro power plants project on the middle Sava river in Slovenia and its specifics (influenced by the expansion of the Natura 2000 protected sites and on the other hand by the changes in the Environment Protection Law, which implements the EU Industrial Emissions Directive and the ETS Directive). Studies show the importance of the HPPs in terms of CO 2 emissions reduction. The main conclusion of the paper shows the importance of energy infrastructure projects, which contribute to on the one hand the CO 2 emissions reduction and on the other the increase of renewables.(author)

  4. Atmospheric verification of anthropogenic CO2 emission trends

    Science.gov (United States)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  5. CO2 emissions from the transport of China's exported goods

    International Nuclear Information System (INIS)

    Andersen, Otto; Goessling, Stefan; Simonsen, Morten; Walnum, Hans Jakob; Peeters, Paul; Neiberger, Cordula

    2010-01-01

    Emissions of greenhouse gases in many European countries are declining, and the European Union (EU) believes it is on track in achieving emission reductions as agreed upon in the Kyoto Agreement and the EU's more ambitious post-Kyoto climate policy. However, a number of recent publications indicate that emission reductions may also have been achieved because production has been shifted to other countries, and in particular China. If a consumption perspective is applied, emissions in industrialized countries are substantially higher, and may not have declined at all. Significantly, emissions from transports are omitted in consumption-based calculations. As all trade involves transport, mostly by cargo ship, but also by air, transports add considerably to overall emissions growth incurred in production shifts. Consequently, this article studies the role of transports in creating emissions of CO 2 , based on the example of exports from China. Results are discussed with regard to their implications for global emission reductions and post-Kyoto negotiations.

  6. Assesment of Energy Options for CO2 Emission Reduction

    International Nuclear Information System (INIS)

    Cavlina, Nikola

    2014-01-01

    Since the 1992 Earth Summit in Rio de Janeiro, global anthropogenic CO 2 emissions grew by 52% which caused an increase in 10.8% in the CO 2 concentration in the atmosphere, and it tipped the 400 ppm mark in May 2013. The Fifth Assessment Report on climate impacts from the Intergovernmental Panel on Climate Change (IPCC) confirmed earlier warnings that climate change is already stressing human communities, agriculture, and natural ecosystems, and the effects are likely to increase in the future. While European Union has long been committed to lowering carbon emissions, this places additional pressure on current EU goals for energy sector that includes significant reduction of CO 2 emissions. Current EU commitment has been formalized in so-called '20-20-20' plan, reducing carbon emissions, increasing energy efficiency and increasing energy production from renewables by 20% by 2020. Some EU member states are even more ambitious, like United Kingdom, planning to reduce carbon emissions by 80% by 2050. Bulk of carbon reduction will have to be achived in energy sector. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. In this invited lecture, predicted cost of energy production for newly bulit nuclear power plant and newly built combination of wind or solar and gas-fired power plant are compared. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarious. (author)

  7. Utopia Switzerland (2) - A Country Without CO2 Emissions

    International Nuclear Information System (INIS)

    Streit, Marco

    2008-01-01

    Global warming and climate change are major themes in the today's energy policy discussion. Awarding Al Gore and the IPCC with the Nobel price in 2007 shows the importance of the climate change for the whole world. That we are running into climatic problems is already known since several decades and possibilities to solve the CO 2 emissions were proposed and discussed since years, but a reduction in the CO 2 emissions is not detectable. This might be due to the fact, that the major part of CO 2 production (traffic and heating) is not consequently touched. It seems to be easier to discuss about renewable energies in the electricity market than in other areas. And the consequences of discussing stepping out of nuclear all over the world, has enforced the problem. Although the renaissance of nuclear has started and the known positive impact to the climate from this energy source, it is not forced to be the solution for the biggest problem of the near future. There are only a few countries worldwide which produce electricity without or with only small amounts of CO 2 emissions like Norway or Switzerland. Those countries could be demonstration countries to show the possibilities for reducing and avoiding CO 2 emissions. Would it be possible to replace all fossil energy sources during a reasonable period of time by using nuclear energy and hydrogen as an energy storage system? Is this scenario technical feasible and of economic interest for a small, developed country like Switzerland? If yes, Switzerland might be a good candidate to establish the first CO 2 -free industrial developed state in the world. Looking much more ahead this study will discuss a simple but might be effective scenario for Switzerland. The study is based on a paper presented at IYNC 2006 and will update the used data as well as going in more details. (authors)

  8. BRAZILIAN ECONOMIC GROWTH AND THE EMISSION OF CO2

    Directory of Open Access Journals (Sweden)

    Cleyzer Adrian Cunha

    2013-07-01

    Full Text Available The objective of paper is verifying empirically the relationship between GDP per capita and CO2 emissions in Brazil in the period 1980-2006. The scope of work was limited to this natural resource due to its role in economic activity, as an important input in the production process in the Brazilian energy matrix. Among the main results is that there is a long-term relationship and simultaneous causality between variables and GDP per capita CO2 emissions. This evidence, coupled with the fact that the series used were not stationary in level, impossible to estimate the Environmental Kuznets Curve (EKC, which is the main theoretical basis used in empirical work related to the theme. The VAR / VEC has been estimated and found elasticity between economic growth and CO2 emission was 7.32, ie, in the long run, we can infer that an increase of 1% in GDP per capita increases by 7, 32% CO2 emissions.

  9. CO2 emissions from Super-light Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Bagger, Anne

    2011-01-01

    CO2 emission from the construction of buildings is seldom taken into account because focus is primarily on building operation. New technologies have therefore mainly been developed to reduce the energy consumption connected to operation. Super-light technology is a new structural principle giving...

  10. Estimates of CO2 traffic emissions from mobile concentration measurements

    Science.gov (United States)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  11. Economics and the refinery's CO2 emissions allocation problem

    International Nuclear Information System (INIS)

    Pierru, A.

    2007-01-01

    The establishment of a market for CO 2 emission rights in Europe leads oil-refining companies to add a cost associated with carbon emissions to the objective function of linear programming models used to manage refineries. These models may be used to compute the marginal contribution of each finished product to the CO 2 emissions of the refinery. Babusiaux (Oil. Gas Sci. Technol., 58, 2003, 685-692) has shown that, under some conditions, this marginal contribution is a relevant means of allocating the carbon emissions of the refinery. Thus, it can be used in a well-to-wheel Life Cycle Assessment. In fact, this result holds if the demand equations are the only binding constraints with a non-zero right-hand side coefficient. This is not the case for short-run models with fixed capacity. Then, allocating CO 2 emissions on a marginal basis tends to over-value (or undervalue) the total volume of emissions. In order to extend the existing methodology, we discuss two distinct solutions to this problem, inspired by economic theory: adapting either the Aumann-Shapley cost sharing method (Values of non-atomic games, 1974, Princeton University Press) or the Ramsey pricing formula (Econ. J., 37, 1927, 47-61; J. Econ. Theory, 3, 1971, 219-240). We compare these two solutions, with a strong argument in favour of Ramsey prices, based on the determination of the optimal environmental tax rate to which imported finished products should be subject. (author)

  12. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  13. Influence of trade on national CO2 emissions

    International Nuclear Information System (INIS)

    Munksgaard, Jesper; Pade, Lise-Lotte; Minx, Jan; Lenzen, Manfred

    2005-01-01

    International trade has an impact on national CO 2 emissions and consequently on the ability to fulfil national CO 2 reduction targets. Through goods and services traded in a globally interdependent world, the consumption in each country is linked to greenhouse gas emissions in other countries. It has been argued that in order to achieve equitable reduction targets, international trade has to be taken into account when assessing nations' responsibility for abating climate change. Especially for open economies such as Denmark, greenhouse gases embodied in internationally traded commodities can have a considerable influence on the national 'greenhouse gas responsibility'. By using input-output modelling, we analyse the influence from international trade on national CO 2 emissions. The aim is to show that trade is the key to define CO 2 responsibility on a macroeconomic level and that imports should be founded in a multi-region model approach. Finally, the paper concludes on the need to consider the impact from foreign trade when negotiating reduction targets and base line scenarios. (Author)

  14. CO2 emissions and reduction potential in China's chemical industry

    International Nuclear Information System (INIS)

    Zhu, Bing; Zhou, Wenji; Hu, Shanying; Li, Qiang; Griffy-Brown, Charla; Jin, Yong

    2010-01-01

    GHG (Increasing greenhouse gas) emissions in China imposes enormous pressure on China's government and society. The increasing GHG trend is primarily driven by the fast expansion of high energy-intensive sectors including the chemical industry. This study investigates energy consumption and CO 2 emissions in the processes of chemical production in China through calculating the amounts of CO 2 emissions and estimating the reduction potential in the near future. The research is based on a two-level perspective which treats the entire industry as Level one and six key sub-sectors as Level two, including coal-based ammonia, calcium carbide, caustic soda, coal-based methanol, sodium carbonate, and yellow phosphorus. These two levels are used in order to address the complexity caused by the fact that there are more than 40 thousand chemical products in this industry and the performance levels of the technologies employed are extremely uneven. Three scenarios with different technological improvements are defined to estimate the emissions of the six sub-sectors and analyze the implied reduction potential in the near future. The results highlight the pivotal role that regulation and policy administration could play in controlling the CO 2 emissions by promoting average technology performances in this industry.

  15. Study on CO2 emission reduction using ENPEP in Korea

    International Nuclear Information System (INIS)

    Moon, K. H.; Kim, S. S.; Song, K. D.; Im, C. Y.

    2003-01-01

    ENPEP was used to analyze the role of nuclear power in mitigating carbon emission in power generation sector. In this study, base scenario reflects business as usual case in Korea. Additional two scenarios were established. One stands for fuel switch scenario, where nuclear power plants scheduled to be introduced after 2008 were assumed to be replaced by Coal Power Plant, the other one is established to see the impact of carbon tax. In this scenario carbon tax(50$/ton-C0 2 ) is imposed on coal power plants from 2008. It is resulted that fuel switch from nuclear to coal in power generation sector has a great effect on CO 2 emission, while carbon tax imposition makes a slight contribution to the reduction of CO 2 emission. These findings mean that the role of nuclear power in Korea is important in view of the GHG mitigation

  16. Economics of the Nuclear Energy Considered CO2 Emission

    International Nuclear Information System (INIS)

    Kim, Su Jin; Kim, Yong Min

    2011-01-01

    The energy consumption in Korea has greatly increased along with its rapid economic growth and industrialization since the 1970s. Total energy consumption increased at an average annual growth rate. Due to the lack of domestic energy resources, however, the overseas dependence rate of energy consumption has continuously increased. Also Climate change, resulting from increases in greenhouse gas emissions (GHG), is considered one of the biggest environmental dangers facing the world today. The objective and approach of this study are to compare the different types of scenarios in terms of the power plant type and CO 2 emission from each power plant. We estimated cost of electricity generation using fuel cost, O and M cost(Operation and Maintenance Cost) and CO 2 emission

  17. The CO2-tax and its ability to reduce CO2 emissions related to oil and gas production in Norway

    International Nuclear Information System (INIS)

    Roemo, F.; Lund, M.W.

    1994-01-01

    The primary ambition of the paper is to illustrate some relevant effects of the CO 2 -tax, and draw the line from company adaptation via national ambitions and goals to global emission consequences. The CO 2 -tax is a success for oil and gas production only to the extent that the CO 2 emission per produced unit oil/gas is reduced as a consequence of the tax. If not, the CO 2 -tax is a pure fiscal tax and has no qualitative impact on the CO 2 emissions. The reduction potential is then isolated to the fact that some marginal fields will not be developed, and the accelerated close down of fields in production. The paper indicates that a significant replacement of older gas turbines at a certain level of the CO 2 -tax could be profitable for the companies. This is dependent on change in turbine energy utilization, and the investment cost. The CO 2 -tax is a political success for the nation if it is a significant contributor to achieve national emission goals. Furthermore, is the CO 2 -tax an environmental success only to the extent it contributes to reductions in the CO 2 emissions globally. The paper indicates that there are possibilities for major suboptimal adaptations in connection with national CO 2 -taxation of the oil and gas production. 13 refs., 6 figs

  18. The impact of CO2 emissions on economic growth: evidence from selected higher CO2 emissions economies.

    Science.gov (United States)

    Azam, Muhammad; Khan, Abdul Qayyum; Bin Abdullah, Hussin; Qureshi, Muhammad Ejaz

    2016-04-01

    The main purpose of this work is to analyze the impact of environmental degradation proxied by CO2 emissions per capita along with some other explanatory variables namely energy use, trade, and human capital on economic growth in selected higher CO2 emissions economies namely China, the USA, India, and Japan. For empirical analysis, annual data over the period spanning between 1971 and 2013 are used. After using relevant and suitable tests for checking data properties, the panel fully modified ordinary least squares (FMOLS) method is employed as an analytical technique for parameter estimation. The panel group FMOLS results reveal that almost all variables are statistically significant, whereby test rejects the null hypotheses of non cointegration, demonstrating that all variables play an important role in affecting the economic growth role across countries. Where two regressors namely CO2 emissions and energy use show significantly negative impacts on economic growth, for trade and human capital, they tend to show the significantly positive impact on economic growth. However, for the individual analysis across countries, the panel estimate suggests that CO2 emissions have a significant positive relationship with economic growth for China, Japan, and the USA, while it is found significantly negative in case of India. The empirical findings of the study suggest that appropriate and prudent policies are required in order to control pollution emerging from areas other than liquefied fuel consumption. The ultimate impact of shrinking pollution will help in supporting sustainable economic growth and maturation as well as largely improve society welfare.

  19. Strategies and costs for reducing CO2 emissions in Finland

    International Nuclear Information System (INIS)

    Lehtilae, A.; Pirilae, P.

    1993-01-01

    In this study cost-efficient measures for the abatement of energy-related CO 2 emissions in Finland are analyzed, and the direct costs of such measures are estimated. The time frame considered is the period up to the year 2010. Furthermore, the probable impacts of an energy/CO 2 -tax on the Finnish energy system are worked out, and an attempt is made to assess the effectiveness of a tax scheme as an economic instrument for achieving CO 2 emission targets. The primary methodological tool in the analyses has been the model of the Finnish energy system developed at the Technical Research Centre of Finland (VTT) within the project. The model facilitates the search for cost-efficient emission control strategies over a period of several decades. Structural and technological changes in the energy system, e.g. fuel and technology substitution, new technologies, efficiency improvements, and energy-saving measures have been allowed for in the model. The results of the analyses show that achieving the target of returning the CO 2 emissions to the 1990 level by the year 2000 would be very difficult and costly in Finland. In the case of a nuclear moratorium it would be reasonable to delay the target by ten years. Even in the delayed cases achieving the target would require extensive structural changes and substantial energy-saving measures in the absence of additional nuclear energy. Coal use would have to be severely restricted, whereas the use of biomass and natural gas should be more than doubled compared to the 1990 levels. According to the results, a CO 2 tax would clearly be a more efficient instrument than a tax based on the energy content of a fuel

  20. Some scenarios of CO2 emission from the energy system

    International Nuclear Information System (INIS)

    Liik, O.; Landsberg, M.

    1996-01-01

    After Estonia regained its independence, planning of energy policy became topical. Since 1989, several expert groups have worked on the urgent problems and developments of Estonia's power engineering. Comprehensive energy system planning by mathematical modeling was accomplished in 1994. Then Tallinn Technical University acquired the MARKAL model from the Swedish National Board for Industrial and Technical Development (NUTEK). The influence of air pollution constraints on energy system development was first investigated in 1995. At the end of 1995, under the U.S. Country Studies Program, a detailed analysis of future CO 2 emissions and their reduction options began. During 1990-1993, energy demand lowered due to economic decline and sharp rise in the fuel and energy prices as well as a decrease in electricity exports, has resulting in 50% reduction of CO 2 emissions. For the same reasons, Estonia has been able to meet the requirements set in the agreements on SO 2 and NO x emissions with no special measures or costs. To meet the rigid ing SO 2 restrictions and growing energy consumption in the future, Estonia must invest in abatement and in new clean and efficient oil-shale combustion technology. Along with the old oil-shale plants closing and electricity consumption growing, other fuels will be used. The increase in energy demand then should not be fast due to constantly rising prices and efficient energy use. Measures to reduce SO 2 , and NO x emissions will also reduce CO 2 . In MARKAL runs the 1990 level of CO 2 emissions will be exceeded only along with high demand growth and absence of emissions control. Restricted availability of imported fuels and nuclear power or enabling electricity import can change the results significantly. The results discussed here can also change because the data base is being improved (such as detailed description of energy networks, description of demand-side technologies, accounting of energy conservation measures, addition of

  1. Abatement of CO2 emissions in the European Union

    International Nuclear Information System (INIS)

    Lesourne, J.; Keppler, J.H.; Jaureguy-Naudin, Maite; Smeers, Yves; Bouttes, Jean-Paul; Trochet, Jean-Michel; Dassa, Francois; Neuhoff, Karsten

    2008-01-01

    This first monograph of the Ifri program on European Governance and Geopolitics of Energy is devoted to the control of carbon dioxide emissions within the European Union. Since it is almost unanimously accepted that Greenhouse Gas emissions constitute the main cause of the observed increase of the world average temperature, the system implemented by the European Union to limit and decrease the CO 2 emissions is a significant pillar of the EU energy policy, the two others being the acceptance by the Member States of long-term commitments (for instance on the future share of renewable energy sources in their energy balance sheet) and the establishment of an internal market for electricity and gas. Though simple in principle, the European Union Greenhouse Gas Emission Trading Scheme (EU ETS) is in fact rather complex, and only experts really understand its merits and its deficiencies. These deficiencies are real and will have to be corrected in the future for the system to be effective. At this moment, when the 2005-2007 trial phase of the EU ETS is ending, the monograph has the purpose to stimulate the discussion between experts and to enable all those interested in the topic to understand the issues and to take part in the public debates on the subject. The monograph contains five papers: - 'An Overview of the CO 2 Emission Control System in the European Union' by Jacques Lesourne and Maite Jaureguy-Naudin. - 'Description and Assessment of EU CO 2 Regulations' by Yves Smeers. - 'Assessment of EU CO 2 Regulations' by Jean-Paul Bouttes, Jean-Michel Trochet and Francois Dassa. - 'Investment in Low Carbon Technologies, Policies for the Power Sector' by Karsten Neuhoff. - 'Lessons Learned from the 2005-2007 Trial Phase of the EU Emission Trading System' by Jan Horst Keppler

  2. Possibility of reducing CO2 emissions from internal combustion engines

    Science.gov (United States)

    Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof

    2017-10-01

    Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.

  3. Economics of reducing CO2 emissions from China

    International Nuclear Information System (INIS)

    Wu Zhongxin

    1991-01-01

    Relative to the nations of the industrialized world, developing countries emit far lower levels of CO 2 per capita. In coming years, however, as the developing world experiences more rapid rates of economic and population growth, their carbon emissions per capita inevitably will rise. Therefore, developing countries should be encouraged both to adopt more advanced energy technologies in order to improve the efficiency of energy exploration, transportation, generation and end-use and to replace carbon-intensive fuels sources with less carbon-intensive sources (non-fossil fuels and renewable energy). By incorporating methods aimed at curtailing carbon emissions into their energy development strategies, developing nations can reduce the risks posed by higher CO 2 emissions. However, adopting more advanced energy technologies generally entails high costs. These higher prices serve as a particularly large obstacle for developing nations. In order to serve the common interest of protecting the global environment, international funds should be devoted to cover the high costs of reducing developing world CO 2 emissions

  4. Impact of renewables deployment on the CO2 price and the CO2 emissions in the European electricity sector

    International Nuclear Information System (INIS)

    Van den Bergh, Kenneth; Delarue, Erik; D'haeseleer, William

    2013-01-01

    As of 2005, electricity generators in Europe operate under the European Union Emission Trading System (EU ETS). At the same time, European Member States have launched support mechanisms to stimulate the deployment of renewable electricity sources (RES-E). RES-E injections displace CO 2 emissions within the sectors operating under the EU ETS and they reduce the demand for European Union Allowances (EUAs), thereby reducing the EUA price. This paper presents the results of an ex post analysis to quantify the impact of RES-E deployment on the EUA price and CO 2 emissions in the Western and Southern European electricity sector during the period from 2007 to 2010, following from an operational partial equilibrium model of the electricity sector. This study shows that the CO 2 displacement from the electricity sector to other ETS sectors due to RES-E deployment can be up to more than 10% of historical CO 2 emissions in the electricity sector. The EUA price decrease caused by RES-E deployment turns out to be likely significant. - Author-Highlights: • We assessed the impact of renewables deployment in the period 2007–2010. • Impact on CO 2 emissions in the electricity sector and the CO 2 price is considered. • CO 2 emissions decreased by up to 10% of historical emissions. • CO 2 price decrease due to renewables turns out to be likely significant

  5. CO2 emission standards and investment in carbon capture

    International Nuclear Information System (INIS)

    Eide, Jan; Sisternes, Fernando J. de; Herzog, Howard J.; Webster, Mort D.

    2014-01-01

    Policy makers in a number of countries have proposed or are considering proposing CO 2 emission standards for new fossil fuel-fired power plants. The proposed standards require coal-fired power plants to have approximately the same carbon emissions as an uncontrolled natural gas-fired power plant, effectively mandating the adoption of carbon capture and sequestration (CCS) technologies for new coal plants. However, given the uncertainty in the capital and operating costs of a commercial scale coal plant with CCS, the impact of such a standard is not apparent a priori. We apply a stochastic generation expansion model to determine the impact of CO 2 emission standards on generation investment decisions, and in particular for coal plants with CCS. Moreover, we demonstrate how the incentive to invest in coal-CCS from emission standards depends on the natural gas price, the CO 2 price, and the enhanced oil recovery price, as well as on the level of the emission standard. This analysis is the first to consider the entire power system and at the same time allow the capture percentage for CCS plants to be chosen from a continuous range to meet the given standard at minimum cost. Previous system level studies have assumed that CCS plants capture 90% of the carbon, while studies of individual units have demonstrated the costs of carbon capture over a continuous range. We show that 1) currently proposed levels of emission standards are more likely to shift fossil fuel generation from coal to natural gas rather than to incentivize investment in CCS; 2) tighter standards that require some carbon reductions from natural gas-fired power plants are more likely than proposed standards to incentivize investments in CCS, especially on natural gas plants, but also on coal plants at high gas prices; and 3) imposing a less strict emission standard (emission rates higher than natural gas but lower than coal; e.g., 1500 lbs/MWh) is more likely than current proposals to incentivize

  6. CO2 emissions, energy usage, and output in Central America

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Payne, James E.

    2009-01-01

    This study extends the recent work of Ang (2007) [Ang, J.B., 2007. CO 2 emissions, energy consumption, and output in France. Energy Policy 35, 4772-4778] in examining the causal relationship between carbon dioxide emissions, energy consumption, and output within a panel vector error correction model for six Central American countries over the period 1971-2004. In long-run equilibrium energy consumption has a positive and statistically significant impact on emissions while real output exhibits the inverted U-shape pattern associated with the Environmental Kuznets Curve (EKC) hypothesis. The short-run dynamics indicate unidirectional causality from energy consumption and real output, respectively, to emissions along with bidirectional causality between energy consumption and real output. In the long-run there appears to be bidirectional causality between energy consumption and emissions.

  7. Reduction of CO2 emissions by influencing fuel prices

    International Nuclear Information System (INIS)

    Keller, M.; Zbinden, R.; Haan, P.; Gruetter, J.; Ott, W.

    2002-01-01

    The CO 2 law stipulates quantitative targets for CO 2 emissions (reductions of 10% by 2010 compared with 1990, 15% for heating fuels, 8% for motor fuels). For motor fuels, it is currently estimated that the target will be missed by about 15%, or 2 to 2.5 million tonnes of CO 2 . In order to reach the targets, therefore, all measures that can be taken to reduce emissions are to be checked out and, where sensible and possible, implemented too. The subject of this study is the preferential treatment of diesel, natural gas, liquefied gas and bio-fuels as far as taxation is concerned, with compensation of tax losses on the petrol side. Also, the possibilities for promoting energy-efficient cars are looked at. The reduction of the price for diesel (at least 25 Swiss cents when compensated for via the petrol price) is considered to be unsuitable for reaching the targets because, in the final analysis, fuel sales - the determining factor for the CO 2 emissions that are charged to Switzerland - will increase instead of decreasing. Also, reservations are expressed from the environmental point of view (increased NO x emissions and, in particular, emissions of particulate matter). The modified measure proposed (fixed difference between the prices for petrol and diesel of 25 Swiss cents, for example) is looked at less critically, because it does actually lead to a reduction of CO 2 , even if only a modest one (approx. 10% of the gap to be bridged). On the environmental side, the same reservations apply. Bonus-malus systems, on the other hand, permit a selective choice of the objects of promotion (efficient and, possibly, low-emission vehicles), avoid the unjust preferential treatment of goods traffic and can be implemented without disturbing international price structures (fuel tourism). A bonus-malus system applied at purchase (e.g. different levels of car taxation) is considered to be more efficient than a differentiation in vehicle (road) tax. The promotion of gas is a

  8. CO2 credit or energy credit in emission trading?

    International Nuclear Information System (INIS)

    Hu, E.

    2002-01-01

    Emission trading is a good concept and approach to tackle global warming. However, what ''currency'' or ''credit'' should be used in the trading has remained a debatable topic. This paper proposed an ''Energy Credit'' concept as an alternative to the ''CO 2 credit'' that is currently in place. From the thermodynamic point of view, the global warming problem is an ''energy balance'' problem. The energy credit concept is thought to be more thermodynamically correct and tackles the core of the global warming problem more directly. The Energy credit concept proposed can be defined as: the credit to offset the extra energy trapped/absorbed in the earth (and its atmosphere) due to the extra anthropogenic emission (or other activities) by a country or company. A couple of examples are given in the paper to demonstrate the concept of the Energy credit and its advantages over the CO 2 credit concept. (author)

  9. Research concepts to reduce CO2 emissions at technical conditions

    International Nuclear Information System (INIS)

    Geigle, K.P.; Lammel, O.; Kutne, P.; Schutz, H.; Luckerath, R.; Aigner, M.

    2009-01-01

    Carbon dioxide (CO 2 ) emissions are thought to contribute to climate change and therefore, there is a significant motivation for current gas turbine burner development to reduce those emissions. In order to support burner development, the German Aerospace Center (DLR) utilizes high pressure testing in combination with optical diagnostics enabled by good optical access and numerical simulation. This paper discussed 3 primary activities on CO 2 reduction that have been accomplished recently, notably the simulation of burner development based on the flameless oxidation concept, characterization of syngas combustion behaviour and studying parameters influencing oxyfuel combustion. Enhanced FLOX burner development and flameless oxidation were illustrated and an experimental realization of DLR FLOX burner V1 for operation up to 30 bars was discussed. Several experiments were illustrated and outlined. Computational fluid dynamics and other simulation models were presented. It was concluded that optical diagnostics applicable to high pressure combustion and numerical simulation proved to be extremely helpful for design optimization. 14 refs., 9 figs.

  10. Estimate of Possible CO2 Emission Reduction in Slovenia

    International Nuclear Information System (INIS)

    Plavcak, V.-P.; Jevsek, F.; Tirsek, A.

    1998-01-01

    The first estimation of possible CO 2 emission reduction, according to the obligations from Kyoto Protocol, is prepared. The results show that the required 8% reduction of greenhouses gases in Slovenia in the period from 2008 to 2012 with regard to year 1986 will require a through analytical treatment not only in electric power sector but also in transport and industry sectors, which are the main pollutants. (author)

  11. Calculation of CO2 emissions from the italian energy system

    International Nuclear Information System (INIS)

    Contaldi, M.; La Motta, S.

    2001-01-01

    The calculation of CO2 emissions from the Italian energy system is the object of this work. The inventory method used is the Reference Approach from the Intergovernmental Panel for Climate Change (IPCC, 1996 revised Guidelines for National Greenhouse Gas Inventories) and the energy consumption data are taken from the Italian Energy Balance edited by the Ministry of Industry. The years analysed are those from 1990 to 2000 [it

  12. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution

    Science.gov (United States)

    Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun

    2014-01-01

    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  13. Emission of CO2 from energy crop production

    International Nuclear Information System (INIS)

    Turhollow, A.F.

    1991-01-01

    The production of cellulosic energy crops (e.g., short rotation woody crops and herbaceous crops) make a net contribution of CO 2 to the atmosphere to the extent that fossil-fuel based inputs are used in their production. The CO 2 released from the use of the biomass is merely CO 2 that has recently been removed from the atmosphere by the plant growth process. Fossil inputs used in the production of energy corps include energy invested in fertilizers and pesticides, and petroleum fuels used for machinery operation such as site preparation, weed control, harvesting, and hauling. Fossil inputs used come from petroleum, natural gas, and electricity derived from fossil sources. No fossil inputs for the capital used to produce fertilizers, pesticides, or machinery is calculated in this analysis. In this paper calculations are made for the short rotation woody crop hybrid poplar (Populus spp.), the annual herbaceous crop sorghum (Sorghum biocolor [L.] Moench), and the perennial herbaceous crop switchgrass (Panicum virgatum L.). For comparison purposes, emissions of CO 2 from corn (Zea mays L.) are calculated

  14. The improvement of CO2 emission reduction policies based on system dynamics method in traditional industrial region with large CO2 emission

    International Nuclear Information System (INIS)

    Li, Fujia; Dong, Suocheng; Li, Zehong; Li, Yu; Li, Shantong; Wan, Yongkun

    2012-01-01

    Some traditional industrial regions are characterized by high industrial proportion and large CO 2 emission. They are facing dual pressures of maintaining economic growth and largely reducing CO 2 emission. From the perspective of study of typological region, taking the typical traditional industrial region—Liaoning Province of China as a case, this study establishes a system dynamics model named EECP and dynamically simulates CO 2 emission trends under different conditions. Simulation results indicate, compared to the condition without CO 2 emission reduction policies, CO 2 emission intensity under the condition of implementing CO 2 emission reduction policies of “Twelfth Five-Year Plan” is decreased by 11% from 2009 to 2030, but the economic cost is high, making the policies implementation faces resistance. Then some improved policies are offered and proved by EECP model that they can reduce CO 2 emission intensity after 2021 and decrease the negative influence to GDP, realizing the improvement objects of reducing CO 2 emission and simultaneously keeping a higher economy growth speed. The improved policies can provide reference for making and improving CO 2 emission reduction policies in other traditional industrial regions with large CO 2 emission. Simultaneously, EECP model can provide decision-makers with reference and help for similar study of energy policy. - Highlights: ► We build EECP model for CO 2 emission reduction study in traditional industry region. ► By the model, we simulate CO 2 emission trend and improve emission reduction policy. ► By improvement, both CO 2 emission intensity and economic cost can be largely reduced. ► Besides CO 2 emission is reduced effectively, higher GDP increment speed is kept. ► EECP model can be widely used for making and improving regional energy policies.

  15. CO2 Emissions Generated by a Fall AGU Meeting

    Science.gov (United States)

    osborn, G.; Malowany, K. S.; Samolczyk, M. A.

    2011-12-01

    The process of reporting on and discussing geophysical phenomena, including emissions of greenhouse gases, generates more greenhouse gases. At the 2010 fall meeting of the AGU, 19,175 delegates from 81 countries, including, for example, Eritrea, Nepal, and Tanzania, traveled a total of 156,000,000 km to congregate in San Francisco for five days. With data on home bases of participants provided by AGU, we estimated the CO2 emissions generated by travel and hotel stays of those participants. The majority of the emissions from the meeting resulted from air travel . In order to estimate the footprint of such travel, (a) distances from the largest airport in each country and American state (except Canada and California) to San Francisco were tabulated , (b) basic distances were converted to emissions using the TerraPass (TRX Travel Analytics) carbon calculator, (c) it was assumed that half the California participants would fly and half would drive, (d) it was assumed that half of Canadians would fly out of Toronto and half out of Vancouver, and (e) a fudge factor of 10% was added to air travel emissions to account for connecting flights made by some participants to the main airports in the respective countries (connecting flights are disproportionately significant because of high output during takeoff acceleration). Driving impacts were estimated with a Transport Direct/RAC Motoring Services calculator using a 2006 Toyota Corolla as a standard car. An average driving distance of 50 km to the departure airport, and from the airport upon return, was assumed. Train impacts were estimated using the assumption that all flying participants would take BART from SFO. Accomodation impacts were estimated using an Environmental Protection Agency calculator, an assumed average stay of 3 nights, and the assumption that 500 participants commuted from local residences or stayed with friends. The above assumptions lead to an estimate, which we consider conservative, of 19 million kg of

  16. Benchmarking and the allocation of emission rights. European Parliament agreement on CO2 emission trade

    International Nuclear Information System (INIS)

    Harmsen, H.

    2003-01-01

    July 2, 2003, the Parliament of the European Union approved the directive for CO2 emission trade, which means that the energy-intensive industry and businesses in Europe have to deal with cost for CO2 emission from 2005 onwards. It is estimated that the Dutch government will have to distribute circa 90 million ton of CO2 emission rights (1.8 billion euro at a price of 20 euro per ton CO2). In order to realize a fair and transparent distribution of the rights use can be made of the Covenant Benchmarking for Energy Efficiency [nl

  17. Social Learning and the Mitigation of Transport CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Maha Al Sabbagh

    2017-01-01

    Full Text Available Social learning, a key factor in fostering behavioural change and improving decision making, is considered necessary for achieving substantial CO2 emission reductions. However, no empirical evidence exists on how it contributes to mitigation of transport CO2 emissions, or the extent of its influence on decision making. This paper presents evidence addressing these knowledge gaps. Social learning-oriented workshops were conducted to gather the views and preferences of participants from the general public in Bahrain on selected transport CO2 mitigation measures. Social preferences were inputted into a deliberative decision-making model and then compared to a previously prepared participative model. An analysis of the results revealed that social learning could contribute to changes in views, preferences and acceptance regarding mitigation measures, and these changes were statistically significant at an alpha level of 0.1. Thus, while social learning evidently plays an important role in the decision-making process, the impacts of using other participatory techniques should also be explored.

  18. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    Science.gov (United States)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  19. Coalfire related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.

    2008-06-11

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  20. Coalfires related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.

    2008-06-11

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  1. Coalfire related CO2 emissions and remote sensing

    International Nuclear Information System (INIS)

    Gangopadhyay, P.K.

    2008-01-01

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  2. Norwegian emissions of CO2 1987-1994. A study of some effects of the CO2 tax

    International Nuclear Information System (INIS)

    Larsen, B.M.; Nesbakken, R.

    1997-01-01

    Several countries have introduced taxes on fossil fuels with the aim of reducing atmospheric emissions, partly because of local environmental goals (SO2, NOx) and partly to participate in a global effort to reduce emissions of greenhouse gases. Many macroeconomic studies, based on both global and national models, have been made of how emissions can be reduced with the help of taxes and the consequent reduction in GDP following the introduction of such taxes. Norway has had a CO2 tax for five years, thereby providing a unique opportunity to evaluate the effects of this tax on emissions. The paper provides a counterfactual analysis of energy consumption and emissions if no CO2 taxes had been introduced, compared with the actual situation in which such taxes exist. The effect of a CO2 tax on oil consumption, and thus CO2 emissions, is studied on the basis of partial economic models for various sectors of the Norwegian economy. The study indicates that the CO2 tax has had an impact on CO2 emissions in Norway. 7 figs., 3 tabs., 17 refs

  3. Evaluation system for CO2 emission of hot asphalt mixture

    Directory of Open Access Journals (Sweden)

    Bo Peng

    2015-04-01

    Full Text Available The highway construction industry plays an important role in economic and development, but is also a primary source of carbon emission. Accordingly, with the global climate change, energy conservation and reduction of carbon emissions have become critical issues in the highway construction industry. However, to date, a model for the highway construction industry has not been established. Hence, to implement a low-carbon construction model for highways, this study divided asphalt pavement construction into aggregate stacking, aggregate supply, and other stages, and compiled a list of energy consumption investigation. An appropriate calculation model of CO2 emission was then built. Based on the carbon emission calculation model, the proportion of carbon emissions in each stage was analyzed. The analytic hierarchy process was used to establish the system of asphalt pavement construction with a judgment matrix, thereby enabling calculation of the weight coefficient of each link. In addition, the stages of aggregate heating, asphalt heating, and asphalt mixture mixing were defined as key stages of asphalt pavement construction. Carbon emissions at these stages accounted for approximately 90% of the total carbon emissions. Carbon emissions at each stage and their impact on the environment were quantified and compared. The energy saving construction schemes as well as the environmental and socioeconomic benefits were then proposed. Through these schemes, significant reductions in carbon emissions and costs can be achieved. The results indicate that carbon emissions reduce by 32.30% and 35.93%, whereas costs reduce by 18.58% and 6.03%. The proposed energy-saving and emission reduction scheme can provide a theoretical basis and technical support for the development of low-carbon highway construction.

  4. Urban CO2 emissions metabolism: The Hestia Project

    Science.gov (United States)

    Gurney, K. R.; Razlivanov, I.; Zhou, Y.; Song, Y.

    2011-12-01

    A central expression of urban metabolism is the consumption of energy and the resulting environmental impact, particularly the emission of CO2 and other greenhouse gases. Quantification of energy and emissions has been performed for numerous cities but rarely has this been done in explicit space/time detail. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain. A complete data product has been built for the city of Indianapolis and work is ongoing for the city of Los Angeles (Figure 1). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. For the buildings, we utilize an energy building model which we constrain through lidar data, county assessor parcel data and GIS layers. For onroad emissions, we use a combination of traffic data and GIS road layers maintaining vehicle class information. Finally, all pointwise data in the Vulcan Project are transferred to our urban landscape and additional time distribution is performed. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban environment. Next steps in this research from the metabolism perspective is to consider the carbon footprint of material goods and their lateral transfer in addition to the connection between electricity consumption and production.

  5. National plan of allocation of CO2 emission quotas

    International Nuclear Information System (INIS)

    2006-01-01

    The directive 2003/87/CE of the European parliament and council from October 13, 2003 establishes a trading system of CO 2 emission quotas for some companies of the energy generation industry, of the manufacturing industry and of services. These quotas are tradable and negotiable and an initial amount of quotas is allocated to these companies according to their facilities in concern. The national plan of quotas allocation must precise the total amount of tradable emissions and its share among the different sectors of activity and facilities. The first project of allocation plan was transmitted to the European Commission on July 6, 2004 after its public consultation between June 8 and June 29 2004. Modifications have been added to meet the requests of the Commission and the French plan was finally approved on December 17, 2004 for an annual amount of 156.51 Mt of CO 2 quotas during the 2005-2007 period. This paper precises the modifications requested by the commission, the modifications of the French juridical system necessary to complete the implementation of the French part of the European quotas trading system, the elaboration of the next allocation plan for the 2008-2012 period, and the link between the European emissions trading system and the 'joint implementation' and 'clean development ' mechanisms implemented by the Kyoto protocol. (J.S.)

  6. Responsible for 45 000 tons CO2 emissions

    International Nuclear Information System (INIS)

    Nedrelid, Ola N.

    2006-01-01

    Waste combustion has much better tax conditions in Sweden compared to Norway. Today waste is being transported from Norway to Sweden, resulting in a 45 000 ton emission of CO 2 every year, when the waste could have remained in Norway, utilized as regained energy in district heating. The tax regime, however, does not provide the conditions for a profitable use of the waste in Norway. The district heating association is disappointed with the new government's proposed fiscal budget, which only worsens the competitive situation for Norway handling its own waste (ml)

  7. Uncertainty quantification of CO2 emission reduction for maritime shipping

    International Nuclear Information System (INIS)

    Yuan, Jun; Ng, Szu Hui; Sou, Weng Sut

    2016-01-01

    The International Maritime Organization (IMO) has recently proposed several operational and technical measures to improve shipping efficiency and reduce the greenhouse gases (GHG) emissions. The abatement potentials estimated for these measures have been further used by many organizations to project future GHG emission reductions and plot Marginal Abatement Cost Curves (MACC). However, the abatement potentials estimated for many of these measures can be highly uncertain as many of these measures are new, with limited sea trial information. Furthermore, the abatements obtained are highly dependent on ocean conditions, trading routes and sailing patterns. When the estimated abatement potentials are used for projections, these ‘input’ uncertainties are often not clearly displayed or accounted for, which can lead to overly optimistic or pessimistic outlooks. In this paper, we propose a methodology to systematically quantify and account for these input uncertainties on the overall abatement potential forecasts. We further propose improvements to MACCs to better reflect the uncertainties in marginal abatement costs and total emissions. This approach provides a fuller and more accurate picture of abatement forecasts and potential reductions achievable, and will be useful to policy makers and decision makers in the shipping industry to better assess the cost effective measures for CO 2 emission reduction. - Highlights: • We propose a systematic method to quantify uncertainty in emission reduction. • Marginal abatement cost curves are improved to better reflect the uncertainties. • Percentage reduction probability is given to determine emission reduction target. • The methodology is applied to a case study on maritime shipping.

  8. The feasibility of domestic CO2 emissions trading in Poland

    International Nuclear Information System (INIS)

    Missfeldt, F.; Hauff, J.

    2000-09-01

    In early 2000, neither a comprehensive upstream system nor an all-encompassing downstream approach to CO 2 emissions permit trading seems feasible in Poland. However, a pilot emissions trading system in the power and Combined Heat and Power (CHP) sector is thought to be a realistic option in the near future. A comprehensive upstream approach would require permits for the carbon contained in fossil fuels produced or imported in Poland. It is ruled out due to the perceived difficulties of the inclusion of the coal sector in such a system. While inclusion of the gas sector, and especially of the oil sector, seems possible within a relatively short time, relying on an upstream approach without the coal sector is not advisable. Once the restructuring of the coal sector as well as the privatization of the gas and oil sector is advanced, an upstream approach might become an option again. A comprehensive downstream approach would regulate CO 2 emissions at their source, that is mostly at point of combustion of fossil fuels. A system which includes industry, households and transport can be assumed to be infeasible. Instead, a 'core program' was examined, which would focus on power and heat generation as well as energy intensive industries. Such an approach was found feasible in principle. Currently, however, only the largest emitters could be easily integrated in a reliable system. Drawing the line between those included and those excluded from such a partial system requires careful analysis. Including all enterprises in the relevant sectors would require significant improvements in monitoring and reporting reliability. A pilot emissions permit trading system could be introduced in the professional power and heat sector. Here, awareness concerning the instrument was found to be high and the system could be based on monitoring requirements already required by law. Gradual inclusion of more relevant sectors and eventual combination with an upstream component to include oil

  9. CO2 emissions of installations concerned by the directive quotas 2003/87/CE

    International Nuclear Information System (INIS)

    2003-01-01

    This document provides data on the the carbon dioxide emissions: emissions of reference for the allocation (t CO 2 ), annual allocation of quotas (t CO 2 ), % of reduction for 2005-2007 against reference emissions, % of reduction for 2005-2007 against the 2002 emissions, allocation of quotas for the period 2005-2007 (t CO 2 ). (A.L.B.)

  10. Reducing CO2-Emission by using Eco-Cements

    Science.gov (United States)

    Voit, K.; Bergmeister, K.; Janotka, I.

    2012-04-01

    CO2 concentration in the air is rising constantly. Globally, cement companies are emitting nearly two billion tonnes/year of CO2 (or around 6 to 7 % of the planet's total CO2 emissions) by producing portland cement clinker. At this pace, by 2025 the cement industry will be emitting CO2 at a rate of 3.5 billion tones/year causing enormous environmental damage (Shi et al., 2011; Janotka et al., 2012). At the dawn of the industrial revolution in the mid-eighteenth century the concentration of CO2 was at a level of ca. 280 ppm. 200 years later at the time of World War II the CO2 level had risen to 310 ppm what results in a rate of increase of 0,15 ppm per year for that period (Shi et al., 2011). In November 2011 the CO2 concentration reached a value of 391 ppm (NOAA Earth System Research Laboratory, 2011), a rise of ca. 81 ppm in 66 years and an increased rate of around 1,2 ppm/year respectively. In the same period cement production in tons of cement has multiplied by a factor of ca. 62 (Kelly & Oss, US Geological Survey, 2010). Thus new CO2-saving eco-cement types are gaining in importance. In these cement types the energy-consuming portland cement clinker is partially replaced by latent hydraulic additives such as blast furnace slag, fly ash or zeolite. These hydraulic additives do not need to be fired in the rotary furnace. They ony need to be pulverized to the required grain size and added to the ground portland cement clinker. Hence energy is saved by skipping the engery-consuming firing process, in addition there is no CO2-degassing as there is in the case of lime burning. Therefore a research project between Austria and Slovakia, funded by the EU (Project ENVIZEO), was initiated in 2010. The main goal of this project is to develop new CEM V eco-types of cements and certificate them for common usage. CEM V is a portland clinker saving cement kind that allows the reduction of clinker to a proportion of 40-64% for CEM V/A and 20-39% for CEM V/B respectively by the

  11. Enhancement of farmland greenhouse gas emissions from leakage of stored CO2: simulation of leaked CO2 from CCS.

    Science.gov (United States)

    Zhang, Xueyan; Ma, Xin; Wu, Yang; Li, Yue

    2015-06-15

    The effects of leaked CO2 on plant and soil constitute a key objective of carbon capture and storage (CCS) safety. The effects of leaked CO2 on trace soil gas (e.g., methane (CH4) and nitrous oxide (N2O) emissions in farmlands are not well-understood. This study simulated the effects of elevated soil CO2 on CH4 and N2O through pot experiments. The results revealed that significant increases of CH4 and N2O emissions were induced by the simulated CO2 leakages; the emission rates of CH4 and N2O were substantial, reaching about 222 and 48 times than that of the control, respectively. The absolute global warming potentials (GWPs) of the additional CH4 and N2O are considerable, but the cumulative GWPs of the additional CH4 and N2O only accounted for 0.03% and 0.06%, respectively, of the cumulative amount of leaked CO2 under high leakage conditions. The results demonstrate that leakage from CCS projects may lead to additional greenhouse gas emissions from soil; however, in general, the amount of additional CH4 and N2O emissions is negligible when compared with the amount of leaked CO2. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A multinational model for CO2 reduction: defining boundaries of future CO2 emissions in nine countries

    International Nuclear Information System (INIS)

    Kram, Tom; Hill, Douglas.

    1996-01-01

    A need to make substantial future reductions in greenhouse gas emissions would require major changes in national energy systems. Nine industrialized countries have explored the technical boundaries of CO 2 emission restrictions during the next 40 to 50 years using comparable scenario assumptions and a standard model, MARKAL. Quantitative results for the countries are shown side by side in a set of energy maps that compare the least-cost evolution of the national energy systems by the main factors that contribute to CO 2 emissions. The ability to restrict future CO 2 emissions and the most cost-effective measures for doing so differ among the countries; an international agreement that would mandate substantial emission restrictions among countries by an equal percentage reduction is clearly impossible. The results are a first step toward a basis for allocating such international reductions, and the multinational process by which they were produced provides an example for further international greenhouse gas abatement costing studies. (Author)

  13. Uncovering China’s transport CO2 emission patterns at the regional level

    International Nuclear Information System (INIS)

    Guo, Bin; Geng, Yong; Franke, Bernd; Hao, Han; Liu, Yaxuan; Chiu, Anthony

    2014-01-01

    With China’s rapid economic development, its transport sector has experienced a dramatic growth, leading to a large amount of related CO 2 emission. This paper aims to uncover China’s transport CO 2 emission patterns at the regional and provincial level. We first present the CO 2 emission features from transport sector in 30 Chinese provinces, including per capita emissions, emission intensities, and historical evolution of annual CO 2 emission. We then quantify the related driving forces by adopting both period-wise and time-series LMDI analysis. Results indicate that significant regional CO 2 emission disparities exist in China’s transport sector. The eastern region had higher total CO 2 emissions and per capita CO 2 emissions, but lower CO 2 emission intensities in its transport sector. The western region had higher CO 2 emission intensities and experienced a rapid CO 2 emission increase. The CO 2 emission increments in the eastern provinces were mainly contributed by both economic activity effect and population effect, while energy intensity partially offset the emission growth and energy structure had a marginal effect. However, in the central and western provinces, both economic activity effect and energy intensity effect induced the CO 2 emission increases, while the effects from population and energy structure change were limited. - Highlights: • The CO 2 emission features from transport sector in 30 Chinese provinces were presented. • The driving forces of CO 2 emissions from transport sector were quantified. • Regional disparities on China’s transport sector CO 2 emission exist. • Region-specific mitigation policies on transport sector CO 2 emission are needed

  14. Reducing CO2 Emissions through Lightweight Design and Manufacturing

    Science.gov (United States)

    Carruth, Mark A.; Allwood, Julian M.; Milford, Rachel L.

    2011-05-01

    To meet targeted 50% reductions in industrial CO2 emissions by 2050, demand for steel and aluminium must be cut. Many steel and aluminium products include redundant material, and the manufacturing routes to produce them use more material than is necessary. Lightweight design and optimized manufacturing processes offer a means of demand reduction, whilst creating products to perform the same service as existing ones. This paper examines two strategies for demand reduction: lightweight product design; and minimizing yield losses through the product supply chain. Possible mass savings are estimated for specific case-studies on metal-intensive products, such as I-beams and food cans. These estimates are then extrapolated to other sectors to produce a global estimate for possible demand reductions. Results show that lightweight product design may offer potential mass savings of up to 30% for some products, whilst yield in the production of others could be improved by over 20%. If these two strategies could be combined for all products, global demand for steel and aluminium would be reduced by nearly 50%. The impact of demand reduction on CO2 emissions is presented, and barriers to the adoption of new, lightweight technologies are discussed.

  15. CO2 capture by ionic liquids - an answer to anthropogenic CO2 emissions?

    Science.gov (United States)

    Sanglard, Pauline; Vorlet, Olivier; Marti, Roger; Naef, Olivier; Vanoli, Ennio

    2013-01-01

    Ionic liquids (ILs) are efficient solvents for the selective removal of CO2 from flue gas. Conventional, offthe-shelf ILs are limited in use to physisorption, which restricts their absorption capacity. After adding a chemical functionality like amines or alcohols, absorption of CO2 occurs mainly by chemisorption. This greatly enhances CO2 absorption and makes ILs suitable for potential industrial applications. By carefully choosing the anion and the cation of the IL, equimolar absorption of CO2 is possible. This paper reviews the current state of the art of CO2 capture by ILs and presents the current research in this field performed at the ChemTech Institute of the Ecole d'Ingénieurs et d'Architectes de Fribourg.

  16. Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions

    Science.gov (United States)

    Jenkins, S.; Millar, R. J.; Leach, N.; Allen, M. R.

    2018-03-01

    The relationship between cumulative CO2 emissions and CO2-induced warming is determined by the Transient Climate Response to Emissions (TCRE), but total anthropogenic warming also depends on non-CO2 forcing, complicating the interpretation of emissions budgets based on CO2 alone. An alternative is to frame emissions budgets in terms of CO2-forcing-equivalent (CO2-fe) emissions—the CO2 emissions that would yield a given total anthropogenic radiative forcing pathway. Unlike conventional "CO2-equivalent" emissions, these are directly related to warming by the TCRE and need to fall to zero to stabilize warming: hence, CO2-fe emissions generalize the concept of a cumulative carbon budget to multigas scenarios. Cumulative CO2-fe emissions from 1870 to 2015 inclusive are found to be 2,900 ± 600 GtCO2-fe, increasing at a rate of 67 ± 9.5 GtCO2-fe/yr. A TCRE range of 0.8-2.5°C per 1,000 GtC implies a total budget for 0.6°C of additional warming above the present decade of 880-2,750 GtCO2-fe, with 1,290 GtCO2-fe implied by the Coupled Model Intercomparison Project Phase 5 median response, corresponding to 19 years' CO2-fe emissions at the current rate.

  17. CO2 removals and CO2 and non-CO2 trace gas emissions affected by human activity in the forests in the Republic of macedonia

    International Nuclear Information System (INIS)

    Grupche, Ljupcho; Lozanovski, Risto; Markovska, Natasha

    2001-01-01

    During 2000 and 2001 inventories of CO 2 removals and emissions caused by changes in forest and other woody biomass stocks, as well as the inventories of CO 2 and non-CO 2 trace gas emissions caused by forest conversions (accidental burning) were carried out. According to the forest area in ha, and depending on the differences between the annual biomass increment and annual biomass consumption, about 30-50% of total annual carbon uptake increment is released through the biomass consumption from stocks. 50-70% of the net annual carbon uptake converted to CO 2 identify the annual removals of this gas, which is on average 1805 Gg/yr, ranging between 1485 and 2243 Gg/yr. From 1990 to 1998 on average 4700 ha forest area (min. 110 ha in 1991, max. 14420 ha in 1993) was burned. Proportionally to the burned area, there was a release on average of 18.62 kt C annually (min. 0.42 kt C, max. 57.11 kt), related to 136.07 kt CO 2 on average (min. 1.5 kt CO 2 , max. 209.22 kt CO 2 ). (Original)

  18. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Optional SO2, NOX, and CO2 emissions... § 75.19 Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units. (a... input, NOX, SO2, and CO2 mass emissions, and NOX emission rate under this part. If the owner or operator...

  19. The CO2 emissions bond to the energy combustion in the world during 2003-2004

    International Nuclear Information System (INIS)

    2006-11-01

    This analysis shows a stabilization of the CO 2 emissions in France (+0,3%), the continuous increase of the CO 2 emissions in the world (+5%), a chinese economic growth which generates many CO 2 and a gap of 1 to 20 of the emissions per inhabitant from the Africa to the United States. Data of CO 2 emissions are detailed for the countries and are given in function of the population and the gross domestic product. (A.L.B.)

  20. European Community Can Reduce CO2 Emissions by Sixty Percent : A Feasibility Study

    NARCIS (Netherlands)

    Mot, E.; Bartelds, H.; Esser, P.M.; Huurdeman, A.J.M.; Laak, P.J.A. van de; Michon, S.G.L.; Nielen, R.J.; Baar, H.J.W. de

    1993-01-01

    Carbon dioxide (CO2) emissions in the European Community (EC) can be reduced by roughly 60 percent. A great many measures need to be taken to reach this reduction, with a total annual cost of ECU 55 milliard. Fossil fuel use is the main cause of CO2 emissions into the atmosphere; CO2 emissions are

  1. Energy solutions for CO2 emission peak and subsequent decline

    DEFF Research Database (Denmark)

    Risø International Energy Conference 2009 took place 14 – 16 September 2009. The conference focused on: • Future global energy development options Scenario and policy issues • Measures to achieve CO2 emission peak in 2015 – 2020 and subsequent decline • Renewable energy supply technologies...... such as bioenergy, wind and solar • Centralized energy technologies such as clean coal technologies • Energy conversion, energy carriers and energy storage, including fuel cells and hydrogen technologies • Providing renewable energy for the transport sector • Systems aspects for the various regions throughout...... the world • End-use technologies, efficiency improvements in supply and end use • Energy savings The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 3 August 2009....

  2. The urgent need to internalize CO2 emission costs

    International Nuclear Information System (INIS)

    Goodland, R.; El Serafy, S.

    1998-01-01

    Despite growing manifestations of global warming and the commitment of most nations to move towards reducing greenhouse gas (GHG) emissions, a simple device that can be effective in reducing GHG emissions continues to be overlooked or even rejected. This is to acknowledge the fact that carbon emissions inflict global costs that are not borne by emitters. This paper advocates that all activities emitting or saving carbon emissions should internalize the carbon cost inflicted or avoided by new projects involving CO 2 . Considering the current wide range of carbon cost estimates, the paper recommends that a two-stage approach be adopted. Firstly, incorporate carbon costs in project analysis only theoretically in order to differentiate objectively among alternative designs involving carbon emissions of varying degrees. Different estimates of the costs of a ton of carbon would be used in order to test the sensitivity of rates of return to alternative carbon costs. While this process would have the effect of screening the allocation of scarce investment funds among projects that affect global warming in different degrees, it should be viewed as only a first step. Secondly, we advocate a rigorous process of passing through estimated carbon costs to the ultimate users of the services of carbon-emitting projects and processes. It is this ultimate process that will secure the urgently needed transition from the current dependence on fossil fuels to more benign sources of energy that would reduce climate-change risks. Since the time available is limited, the paper points out the urgency of these proposals that are crucial for sustainability

  3. The Potential for Forestry to Reduce Net CO2 Emissions

    International Nuclear Information System (INIS)

    Eriksson, Erik

    2006-01-01

    Forestry may have an important role to play in attempts to reduce atmospheric CO 2 levels, since countries may choose to account for forest management activities to fulfil their commitments under the Kyoto Protocol. However, the effectiveness of such efforts may depend on the forest management strategies applied. This thesis is based on four separate studies in which the potential for forest management strategies to decrease net CO 2 emissions was considered. Long-term field experiments and models were used to: evaluate the impact of different thinning regimes; study broad-leaved stands growing on abandoned farmland with different rotation lengths; predict the effects of using different rotation lengths on carbon accumulation and fossil fuel substitution; and perform an integrated analysis of forest management practices and the potential to substitute fossil fuels by wood products. To evaluate the effects of the management regimes considered, carbon stocks in the investigated stands and the potential of the resulting biomass to substitute fossil fuel were estimated. No significant differences were found in biomass production between the thinning regimes for Norway spruce (Picea abies (L.) Karst.) stands, but the standing biomass was significantly larger in unthinned stands, indicating that to maximize the carbon stock in tree biomass thinnings should be avoided. For Scots pine (Pinus sylvestris L.), thinned and fertilized stands produced significantly more biomass (2.60-2.72 ton d.w./ha/yr) than unthinned and unfertilized stands (2.17-2.34 ton d.w./ha/yr) in the northern regions. These findings indicate that fertilization might be a viable measure to increase production of biomass with the potential to replace fossil fuel and energy-intensive material. In addition, for broad-leaved trees stands on abandoned farmland, management regimes with a short rotation were found to be better for maximizing the substitution of fossil fuel than regimes with a long rotation

  4. Re-Examining Embodied SO2 and CO2 Emissions in China

    Directory of Open Access Journals (Sweden)

    Rui Huang

    2018-05-01

    Full Text Available CO2 and SO2, while having different environmental impacts, are both linked to the burning of fossil fuels. Research on joint patterns of CO2 emissions and SO2 emissions may provide useful information for decision-makers to reduce these emissions effectively. This study analyzes both CO2 emissions and SO2 emissions embodied in interprovincial trade in 2007 and 2010 using multi-regional input–output analysis. Backward and forward linkage analysis shows that Production and Supply of Electric Power and Steam, Non-metal Mineral Products, and Metal Smelting and Pressing are key sectors for mitigating SO2 and CO2 emissions along the national supply chain. The total SO2 emissions and CO2 emissions of these sectors accounted for 81% and 76% of the total national SO2 emissions and CO2 emissions, respectively.

  5. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks - A revision of global mangrove CO2 emissions

    Science.gov (United States)

    Rosentreter, Judith A.; Maher, D. T.; Erler, D. V.; Murray, R.; Eyre, B. D.

    2018-02-01

    Continuous high-resolution surface water pCO2 and δ13C-CO2 and 222Rn (dry season only) were measured over two tidal cycles in the wet and dry season in three tropical tidal mangrove creeks on the north-eastern coast of Queensland, Australia. Mangrove surface water pCO2 followed a clear tidal pattern (ranging from 387 to 13,031 μatm) with higher pCO2-values in the wet season than in the dry season. The δ13C-CO2 in the mangrove waters ranged from -21.7 to -8.8‰ and was rather indicative of a mixed source than a distinct mangrove signature. Surface water CO2 was likely driven by a combination of mangrove and external carbon sources, e.g. exchange with groundwater/pore water enriched in 13C, or terrestrial carbon inputs with a significant contribution of C4-vegetation (sugar cane) source. The kinetic and equilibrium fractionation during the gas exchange at the water-atmosphere interface may have further caused a 13C-enrichment of the CO2 pool in the mangrove surface waters. Average CO2 evasion rates (58.7-277.6 mmol m-2 d-1) were calculated using different empirical gas transfer velocity models. Using our high-resolution time series data and previously published data, the average CO2 flux rate in mangrove ecosystems was estimated to be 56.5 ± 8.9 mmol m-2 d-1, which corresponds to a revised global mangrove CO2 emission of 34.1 ± 5.4 Tg C per year.

  6. Trend of CO2 emissions of the 30 largest power plants in Germany

    International Nuclear Information System (INIS)

    Hermann, Hauke

    2014-01-01

    The brochure on the trend of CO 2 emissions of the 30 largest power plants in Germany includes tables of the emissions of these power plants. The CO 2 emissions of these power plants in 2013 (25% of the total German greenhouse gas emissions) have increased by 5% compared to 2012. The total CO 2 emission sin Germany increased by 1.5%. The differences between brown coal and black coal fired power plants are discussed.

  7. China’s provincial CO2 emissions embodied in international and interprovincial trade

    International Nuclear Information System (INIS)

    Guo Ju’e; Zhang Zengkai; Meng Lei

    2012-01-01

    Trades create a mechanism of embodied CO 2 emissions transfer among regions, causing distortion on the total emissions. As the world’s second largest economy, China has a large scale of trade, which results in the serious problem of embodied CO 2 emissions transfer. This paper analyzes the characteristics of China’s CO 2 emissions embodied in international and interprovincial trade from the provincial perspective. The multi-regional Input–Output Model is used to clarify provincial CO 2 emissions from geographical and sectoral dimensions, including 30 provinces and 28 sectors. Two calculating principles (production accounting principle and consumption accounting principle, ) are applied. The results show that for international trade, the eastern area accounts for a large proportion in China’s embodied CO 2 emissions. The sectors as net exporters and importers of embodied CO 2 emissions belong to labor-intensive and energy-intensive industries, respectively. For interprovincial trade, the net transfer of embodied CO 2 emissions is from the eastern area to the central area, and energy-intensive industries are the main contributors. With the largest amount of direct CO 2 emissions, the eastern area plays an important role in CO 2 emissions reduction. The central and western areas need supportive policies to avoid the transfer of industries with high emissions. - Highlights: ► China’s embodied CO 2 emissions are analyzed from the provincial perspective. ► Eastern provinces have larger CO 2 emissions embodied in international trade. ► Embodied CO 2 emissions are mainly transferred from eastern area to central area. ► Coastal provinces play important roles in CO 2 emissions reduction. ► Inland provinces need supportive policies on emissions reduction.

  8. Energy use, cost and CO2 emissions of electric cars

    International Nuclear Information System (INIS)

    van Vliet, Oscar; Brouwer, Anne Sjoerd; Kuramochi, Takeshi; van den Broek, Machteld; Faaij, Andre

    2011-01-01

    We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles. GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0 g km -1 (using renewables) and 155 g km -1 (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 35-77 g CO 2 eq km -1 . We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 EUR year -1 . TCO of future wheel motor PHEV may become competitive when batteries cost 400 EUR kWh -1 , even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150 EUR kWh -1 in the future. Variations in driving cost from charging patterns have negligible influence on TCO. GHG abatement costs using plug-in hybrid cars are currently 400-1400 EUR tonne -1 CO 2eq and may come down to -100 to 300 EUR tonne -1 . Abatement cost using

  9. The greenhouse effect and the amount of CO2 emissions in Romania

    International Nuclear Information System (INIS)

    Manea, Gh.

    1992-01-01

    In order to reduce the CO 2 emissions, responsible by the greenhouse effect on Terra, an international control for monitoring them is to be instated. The development of methods for reducing the CO 2 emissions, implies the identification and evaluation of the CO 2 sources, the forecasting of probable evolution of the CO 2 emissions, and also the assessment of the economic impact. This paper tries to accomplish such an evaluation and to draft several scenarios for reduction of the CO 2 emissions. Also considerations about the suitability of the Romanian adhesion to the international treaties regarding the greenhouse effect monitoring are presented. (author). 7 tabs

  10. Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach

    International Nuclear Information System (INIS)

    Mustapa, Siti Indati; Bekhet, Hussain Ali

    2016-01-01

    The demand for transport services is expected to rise, causing the CO 2 emissions level to increase as well. In Malaysia, the transportation sector accounts for 28% of total CO 2 emissions, of which 85% comes from road transport. By 2020, Malaysia is targeting a reduction in CO 2 emissions intensity by up to 40% and in this effort the role of road transport is paramount. This paper attempts to investigate effective policy options that can assist Malaysia in reducing the CO 2 emissions level. An Optimisation model is developed to estimate the potential CO 2 emissions mitigation strategies for road transport by minimising the CO 2 emissions under the constraint of fuel cost and demand travel. Several mitigation strategies have been applied to analyse the effect of CO 2 emissions reduction potential. The results demonstrate that removal of fuel price subsidies can result in reductions of up to 652 ktonnes of fuel consumption and CO 2 emissions can be decreased by 6.55%, which would enable Malaysia to hit its target by 2020. CO 2 emissions can be reduced significantly, up to 20%, by employing a combination of mitigation policies in Malaysia. This suggests that appropriate mitigation policies can assist the country in its quest to achieve the CO 2 emissions reduction target. - Highlights: • An optimisation model for CO 2 emissions reduction in Malaysia's road transport is formulated. • Sensible policy options to achieve the CO 2 emissions reduction target are provided. • Increase in fuel price has induced shift towards fuel efficient vehicles. • The CO 2 emissions can be reduced up to 5.7 MtCO 2 with combination of mitigation policies.

  11. Cost of lower NO x emissions: Increased CO 2 emissions from heavy-duty diesel engines

    Science.gov (United States)

    Krishnamurthy, Mohan; Carder, Daniel K.; Thompson, Gregory; Gautam, Mridul

    This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared. The objective of this study was to determine the changes in brake-specific emissions of NO x as a result of emission regulations, and to highlight the effect these have had on brake-specific CO 2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO 2 and NO x. Comparison of on-road in-use emissions data suggests NO x reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995-2002. However, the results indicate that the fuel consumption; hence, CO 2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.

  12. Study of nuclear heat application systems for arresting CO2 emission

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogata, Kan; Yamada, Seiya.

    1996-11-01

    The objective of the paper is to investigate the systems for arresting CO 2 emission and for the effective utilization of fossil fuel. We studied the fossil fuel reforming systems to decrease the CO 2 emission rate per unit amount of heat generation by fossil fuel. Feed materials for reforming system were natural gas, crude oil, oil sand, oil shale and coal. Products by reforming were hydrogen, methane, methanol and gasoline. We examined CO 2 emission ratio of ten systems with different feed material and product. The CO 2 emission ratio was the ratio of CO 2 emission rate per unit amount of heat generation between the products and the feed materials, and was the important index. As the results, the CO 2 emission ratio for the coal to methane reforming system using steam gasifier had the lowest value of 51%. It means that the CO 2 emission rate of the product from the coal to methane reforming system was 51% of the emission rate of the feed material, that is, the system is very effective to arrest the CO 2 emission. The CO 2 emission ratio increases in the following order: the reforming systems from coal to methanol, heavy oil to hydrogen and natural gas to hydrogen. It was clarified that the system of coal to methane reforming was very effective for arresting CO 2 emission compared to the other systems, moreover the nuclear heat using rate and thermal efficiency of the plant of the system were the highest. (author)

  13. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  14. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  15. How much can wind reduce the French CO2 emissions?

    International Nuclear Information System (INIS)

    Flocard, H.

    2010-03-01

    This report analyses the information recently made available by the French electricity transport network RTE (Reseau de Transport d'Electricite). It consists in a detailed data set which gives the time evolution of the power either consumed by the country or generated with the diverse production modes exploited by utilities within France. For the first time the French public is also provided some analytical information on a major renewable energy: wind. Our analysis shows that the French wind-turbine-fleet efficiency over last fall-winter semester is 24.3%. The wind production displays the strong fluctuations expected for this intermittent non-controllable energy. It is observed that the time and energy distributions of the power delivered by the French wind turbines are not related to the increased electricity needs which occurred during a semester where a few cold waves hit the country. As a consequence, the controllable productions which already ensure the balance of consumption versus production had also to carry the extra load associated with the handling of wind fluctuations. In a second part of this report, based on the actual data provided by RTE, the report determines the maximal reduction of the CO 2 emissions which can be expected from the completion of the national wind energy program endorsed by the government. We conclude that in the absence of a significant strengthening of the electric network and an increase of the national energy storage capacity, the wind energy policy decided by the French government will only yield limited results on the reduction of both the GHG emissions and the country reliance on fossil fuel burning plants. (author)

  16. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

    Science.gov (United States)

    Wang, Yilong; Broquet, Grégoire; Ciais, Philippe; Chevallier, Frédéric; Vogel, Felix; Wu, Lin; Yin, Yi; Wang, Rong; Tao, Shu

    2018-03-01

    Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75° × 2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low

  17. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-03-01

    Full Text Available Combining measurements of atmospheric CO2 and its radiocarbon (14CO2 fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2. In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75°  ×  2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty. The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 % in high emitting regions, but the performance of the inversion

  18. CO2 sequestration. World CO2 emission reduction by forest plantations on agricultural land up to 2050

    International Nuclear Information System (INIS)

    Dameron, V.; Barbier, C.; Riedacker, A.

    2005-01-01

    The main objective of this study was to determine the possible contribution on CO 2 emission reductions of new forest plantations on agricultural land which may become available in the world from now to 2050. Emission reductions have been calculated by taking into account potential changes in carbon stocks on afforested land (in biomass and soil) and replacement with biomass of fossil fuel and material such as steel, aluminium or concrete. Increase of carbon stocks in wood as building material and final conversion of wood recycled from buildings into energy to replace fossil fuel have also been taken into account. CO 2 emission reductions (or carbon benefits) from afforested agricultural land become significant only after 2030 or 2050, and even at a later stage with long rotations. In the case of the latter, about 100 years are needed to get the full benefits. Forest plantations can therefore only be considered as long term options

  19. Comparison of CO2 Emissions Data for 30 Cities from Different Sources

    Science.gov (United States)

    Nakagawa, Y.; Koide, D.; Ito, A.; Saito, M.; Hirata, R.

    2017-12-01

    Many sources suggest that cities account for a large proportion of global anthropogenic greenhouse gas emissions. Therefore, in search for the best ways to reduce total anthropogenic greenhouse gas emissions, a focus on the city emission is crucial. In this study, we collected CO2 emissions data in 30 cities during 1990-2015 and evaluated the degree of variance between data sources. The CO2 emissions data were obtained from academic papers, municipal reports, and high-resolution emissions maps (CIDIACv2016, EDGARv4.2, ODIACv2016, and FFDASv2.0). To extract urban CO2 emissions from the high-resolution emissions maps, urban fraction ranging from 0 to 1 was calculated for each 1×1 degree grid cell using the global land cover data (SYNMAP). Total CO2 emissions from the grid cells in which urban fraction occupies greater than or equal to 0.9 were regarded as urban CO2 emissions. The estimated CO2 emissions varied greatly depending on the information sources, even in the same year. There was a large difference between CO2 emissions collected from academic papers, municipal reports, and those extracted from high-resolution emissions maps. One reason is that they use different city boundaries. That is, the city proper (i.e. the political city boundary) is often defined as the city boundary in academic papers and municipal reports, whereas the urban area is used in the high-resolution emissions maps. Furthermore, there was a large variation in CO2 emissions collected from academic papers and municipal reports. These differences may be due to the difference in the assumptions such as allocation ratio of CO2 emissions to producers and consumers. In general, the consumption-based assignment of emissions gives higher estimates of urban CO2 emission in comparison with production-based assignment. Furthermore, there was also a large variation in CO2 emissions extracted from high-resolution emissions maps. This difference would be attributable to differences in information used

  20. Near stabilisation of CO2 emissions in the world in 2014

    International Nuclear Information System (INIS)

    Ecoiffier, Mathieu

    2016-03-01

    This publication proposes discussions and comments of tables and graphs of statistics regarding evolutions of CO 2 emissions during the last decades. It is noticed that CO 2 emissions only had a 0.5 per cent increase in 2014, i.e. nearly stagnation. These variations and data are analysed with respect to countries and geographical regions. Thus, it is outlined that CO 2 emissions per inhabitant in China are higher than in Europe, that the intensity of CO 2 emission with respect to GDP is strongly decreasing (-4.4 per cent), that the decrease of energy intensity slowed down the growth of world emission since 1990

  1. CO2 emissions, nuclear energy, renewable energy and economic growth in the US

    International Nuclear Information System (INIS)

    Menyah, Kojo; Wolde-Rufael, Yemane

    2010-01-01

    This study explores the causal relationship between carbon dioxide (CO 2 ) emissions, renewable and nuclear energy consumption and real GDP for the US for the period 1960-2007. Using a modified version of the Granger causality test, we found a unidirectional causality running from nuclear energy consumption to CO 2 emissions without feedback but no causality running from renewable energy to CO 2 emissions. The econometric evidence seems to suggest that nuclear energy consumption can help to mitigate CO 2 emissions, but so far, renewable energy consumption has not reached a level where it can make a significant contribution to emissions reduction.

  2. Industrial CO2 emissions in China based on the hypothetical extraction method: Linkage analysis

    International Nuclear Information System (INIS)

    Wang, Yuan; Wang, Wenqin; Mao, Guozhu; Cai, Hua; Zuo, Jian; Wang, Lili; Zhao, Peng

    2013-01-01

    Fossil fuel-related CO 2 emissions are regarded as the primary sources of global climate change. Unlike direct CO 2 emissions for each sector, CO 2 emissions associated with complex linkages among sectors are usually ignored. We integrated the input–output analysis with the hypothetical extraction method to uncover the in-depth characteristics of the inter-sectoral linkages of CO 2 emissions. Based on China's 2007 data, this paper compared the output and demand emissions of CO 2 among eight blocks. The difference between the demand and output emissions of a block indicates that CO 2 is transferred from one block to another. Among the sectors analyzed in this study, the Energy industry block has the greatest CO 2 emissions with the Technology industry, Construction and Service blocks as its emission's primary destinations. Low-carbon industries that have lower direct CO 2 emissions are deeply anchored to high-carbon ones. If no effective measures are taken to limit final demand emissions or adjust energy structure, shifting to an economy that is low-carbon industries oriented would entail a decrease in CO 2 emission intensity per unit GDP but an increase in overall CO 2 emissions in absolute terms. The results are discussed in the context of climate-change policy. - Highlights: • Quantitatively analyze the characteristics of inter-industrial CO 2 emission linkages. • Propose the linkage measuring method of CO 2 emissions based on the modified HEM. • Detect the energy industry is a key sector on the output of embodied carbon. • Conclude that low-carbon industries are deeply anchored to high-carbon industries

  3. Decoupling economic growth from CO2 emissions: A decomposition analysis of China's household energy consumption

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ma

    2016-09-01

    Full Text Available This paper analyzes Chinese household CO2 emissions in 1994–2012 based on the Logarithmic Mean Divisia Index (LMDI structure decomposition model, and discusses the relationship between household CO2 emissions and economic growth based on a decoupling indicator. The results show that in 1994–2012, household CO2 emissions grew in general and displayed an accelerated growth trend during the early 21st century. Economic growth leading to an increase in energy consumption is the main driving factor of CO2 emission growth (an increase of 1.078 Gt CO2 with cumulative contribution rate of 55.92%, while the decline in energy intensity is the main cause of CO2 emission growth inhibition (0.723 Gt CO2 emission reduction with cumulative contribution rate of 38.27%. Meanwhile, household CO2 emissions are in a weak state of decoupling in general. The change in CO2 emissions caused by population and economic growth shows a weak decoupling and expansive decoupling state, respectively. The CO2 emission change caused by energy intensity is in a state of strong decoupling, and the change caused by energy consumption structure fluctuates between a weak and a strong decoupling state.

  4. Estimation of CO2 emission for each process in the Japanese steel industry: a process analysis

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Tonooka, Y.

    2000-01-01

    The CO 2 emission for each process in the Japanese steel industry is estimated by a process analysis using statistical data in order to evaluate the possibility of reducing CO 2 emissions. The emission factor of CO 2 for each product and also for crude steel produced from an integrated steel plant route and an electric arc furnaces route is estimated and compared. The CO 2 emissions can be estimated from production amounts of products for each process and for crude steel. The CO 2 emission of blast furnaces is the largest and that of rolling and piping follows. The emission factor of CO 2 of crude steel produced from an integrated steel plant route is approximately 3.8 times as high as that produced via an electric arc furnace route. (Author)

  5. Carbon-14 based determination of the biogenic fraction of industrial CO2 emissions : Application and validation

    NARCIS (Netherlands)

    Palstra, S. W. L.; Meijer, H. A. J.

    The C-14 method is a very reliable and sensitive method for industrial plants, emission authorities and emission inventories to verify data estimations of biogenic fractions of CO2 emissions. The applicability of the method is shown for flue gas CO2 samples that have been sampled in I-h intervals at

  6. CO2 emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress

    International Nuclear Information System (INIS)

    2005-01-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO 2 emissions abatement and geological sequestration: technological advances of CO 2 capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO 2 emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO 2 abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO 2 emissions abatement, Ademe's actions in CO 2 abatement and sequestration, and BRGM's experience in CO 2 sequestration and climatic change expertise. (J.S.)

  7. Exploring the relation between urbanization and residential CO2 emissions in China: a PTR approach

    OpenAIRE

    Hu, Zongyi; Tang, Liwei

    2013-01-01

    Recent empirical work suggests that urbanization and residential CO2 emissions are related. This paper investigates the nonlinear impact of urbanization on residential CO2 emissions over the period 1997–2011 in China by applying the Candelon et al. (2012) methodology. The results show that the relationship between urbanization and residential CO2 emissions is negative over the sample which is inconsistent with the previous studies. In addition, we find the absolute difference of the estimated...

  8. An analysis of Chinas CO2 emission peaking target and pathways

    OpenAIRE

    He, Jian-Kun

    2017-01-01

    China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for Chinas resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the ...

  9. Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-07-01

    Full Text Available To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG emission reduction target of 37% (851 million tons of the business as usual (BAU rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code, there are also rising demands for the assessment on CO2 emissions during the life cycle in accordance with ISO (International Standardization Organization’s Standard 14040. At present, precast concrete (PC engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO2 emissions (including absorption throughout the PC life cycle by using a life cycle assessment (LCA method. Using the proposed assessment method, CO2 emissions during the life cycle of a precast concrete girder (PCG were assessed. In addition, CO2 absorption was assessed against a PCG using conventional carbonation and CO2 absorption-related models. As a result, the CO2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO2/1 PCG. The CO2 emissions during the production of raw materials among the CO2 emissions throughout the life cycle of the PCG were 1390 (kg-CO2/1 PCG, accounting for a high portion to total CO2 emissions (nearly 90%. In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO2 emissions. Among the use of the PCG, CO2 absorption was mostly decided by the CO2 diffusion coefficient and the amount of CO2 absorption by cement paste. The CO2 absorption by carbonation

  10. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico

    2005-01-01

    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  11. Empirical Study of Decomposition of CO2 Emission Factors in China

    Directory of Open Access Journals (Sweden)

    Yadong Ning

    2013-01-01

    Full Text Available China’s CO2 emissions increase has attracted world’s attention. It is of great importance to analyze China’s CO2 emission factors to restrain the CO2 rapid growing. The CO2 emissions of industrial and residential consumption sectors in China during 1980–2010 were calculated in this paper. The expanded decomposition model of CO2 emissions was set up by adopting factor-separating method based on the basic principle of the Kaya identities. The results showed that CO2 emissions of industrial and residential consumption sectors increase year after year, and the scale effect of GDP is the most important factor affecting CO2 emissions of industrial sector. Decreasing the specific gravity of secondary industry and energy intensity is more effective than decreasing the primary industry and tertiary industry. The emissions reduction effect of structure factor is better than the efficiency factor. For residential consumption sector, CO2 emissions increase rapidly year after year, and the economy factor (the increase of wealthy degree or income is the most important factor. In order to slow down the growth of CO2 emissions, it is an important way to change the economic growth mode, and the structure factor will become a crucial factor.

  12. CO2 emissions, energy consumption and economic growth in China: A panel data analysis

    International Nuclear Information System (INIS)

    Wang, S.S.; Zhou, D.Q.; Zhou, P.; Wang, Q.W.

    2011-01-01

    This paper examines the causal relationships between carbon dioxide emissions, energy consumption and real economic output using panel cointegration and panel vector error correction modeling techniques based on the panel data for 28 provinces in China over the period 1995-2007. Our empirical results show that CO 2 emissions, energy consumption and economic growth have appeared to be cointegrated. Moreover, there exists bidirectional causality between CO 2 emissions and energy consumption, and also between energy consumption and economic growth. It has also been found that energy consumption and economic growth are the long-run causes for CO 2 emissions and CO 2 emissions and economic growth are the long-run causes for energy consumption. The results indicate that China's CO 2 emissions will not decrease in a long period of time and reducing CO 2 emissions may handicap China's economic growth to some degree. Some policy implications of the empirical results have finally been proposed. - Highlights: → We conduct a panel data analysis of the energy-CO 2 -economy nexus in China. → CO 2 emissions, energy use and economic growth appear to be cointegrated. → There exists bidirectional causality between energy consumption and economic growth. → Energy consumption and economic growth are the long-run causes for CO 2 emissions.

  13. Stabilization of emission of CO2: A computable general equilibrium assessment

    International Nuclear Information System (INIS)

    Glomsroed, S.; Vennemo, H.; Johnsen, T.

    1992-01-01

    A multisector computable general equilibrium model is used to study economic development perspectives in Norway if CO 2 emissions were stabilized. The effects discussed include impacts on main macroeconomic indicators and economic growth, sectoral allocation of production, and effects on the market for energy. The impact of other pollutants than CO 2 on emissions is assessed along with the related impact on noneconomic welfare. The results indicate that CO 2 emissions might be stabilized in Norway without dramatically reducing economic growth. Sectoral allocation effects are much larger. A substantial reduction in emissions to air other than CO 2 is found, yielding considerable gains in noneconomic welfare. 25 refs., 6 tabs., 2 figs

  14. Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China

    International Nuclear Information System (INIS)

    Zhang Chuanguo; Lin Yan

    2012-01-01

    As urbanization accelerates, urban areas play a leading role in energy consumption and CO 2 emissions in China. The existing research is extensively concerned with the relationships between urbanization, energy consumption and CO 2 emissions in recent years, but little attention has been paid to the regional differences. This paper is an analysis of the impact of urbanization on energy consumption and CO 2 emissions at the national and regional levels using the STIRPAT model and provincial panel data from 1995 to 2010 in China. The results showed that urbanization increases energy consumption and CO 2 emissions in China. The effects of urbanization on energy consumption vary across regions and decline continuously from the western region to the central and eastern regions. The impact of urbanization on CO 2 emissions in the central region is greater than that in the eastern region. The impact of urbanization on energy consumption is greater than the impact on CO 2 emissions in the eastern region. And some evidences support the argument of compact city theory. These results not only contribute to advancing the existing literature, but also merit particular attention from policy makers and urban planners in China. - Highlights: ► We analyze the impact of urbanization on energy use and CO 2 emissions in China. ► Urbanization increases energy consumption and CO 2 emissions in China. ► The effects of urbanization on energy use and CO 2 emissions vary across regions.

  15. A Study on the Analysis of CO2 Emissions of Apartment Housing in the Construction Process

    Directory of Open Access Journals (Sweden)

    Jonggeon Lee

    2018-01-01

    Full Text Available Recent research in the construction industry has focused on the reduction of CO2 emission using quantitative assessment of building life. However, most of this research has focused on the operational stage of a building’s life cycle. Few comprehensive studies of CO2 emissions during building construction have been performed. The purpose of this study is to analyze the CO2 emissions of an apartment housing during the construction process. The quantity of CO2 emissions associated with the utilization of selected building materials and construction equipment were used to estimate the CO2 emissions related to the apartment housing life cycle. In order to set the system boundary for the construction materials, equipment, and transportation used, 13 types of construction work were identified; then the CO2 emissions produced by the identified materials were calculated for each type of construction work. The comprehensive results showed that construction work involving reinforced concrete accounted for more than 73% of the total CO2 emissions. The CO2 emissions related to reinforced concrete work was mainly due to transportation from the supplier to the construction site. Therefore, at the time that reinforced concrete is being supplied, shipping distance and fuel economy management of concrete transportation vehicles should be considered thoroughly for significant reduction of CO2 emissions.

  16. Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis

    Science.gov (United States)

    Zhang, Bo; Zhang, Yaowen; Zhao, Xueli; Meng, Jing

    2018-01-01

    Reliable inventory information is critical in informing emission mitigation efforts. Using the latest officially released emission data, which is production based, we take a consumption perspective to estimate the non-CO2 greenhouse gas (GHG) emissions for China in 2012. The non-CO2 GHG emissions, which cover CH4, N2O, HFCs, PFCs, and SF6, amounted to 2003.0 Mt. CO2-eq (including 1871.9 Mt. CO2-eq from economic activities), much larger than the total CO2 emissions in some developed countries. Urban consumption (30.1%), capital formation (28.2%), and exports (20.6%) derived approximately four fifths of the total embodied emissions in final demand. Furthermore, the results from structural path analysis help identify critical embodied emission paths and key economic sectors in supply chains for mitigating non-CO2 GHG emissions in Chinese economic systems. The top 20 paths were responsible for half of the national total embodied emissions. Several industrial sectors such as Construction, Production and Supply of Electricity and Steam, Manufacture of Food and Tobacco and Manufacture of Chemicals, and Chemical Products played as the important transmission channels. Examining both production- and consumption-based non-CO2 GHG emissions will enrich our understanding of the influences of industrial positions, final consumption demands, and trades on national non-CO2 GHG emissions by considering the comprehensive abatement potentials in the supply chains.

  17. Factors influencing CO2 emissions in China's power industry: Co-integration analysis

    International Nuclear Information System (INIS)

    Zhao, Xiaoli; Ma, Qian; Yang, Rui

    2013-01-01

    More than 40% of China's total CO 2 emissions originate from the power industry. The realization of energy saving and emission reduction within China's power industry is therefore crucial in order to achieve CO 2 emissions reduction in this country. This paper applies the autoregressive-distributed lag (ARDL) co-integration model to study the major factors which have influenced CO 2 emissions within China's power industry from 1980 to 2010. Results have shown that CO 2 emissions from China's power industry have been increasing rapidly. From 1980 to 2010, the average annual growth rate was 8.5%, and the average growth rate since 2002 has amounted to 10.5%. Secondly, the equipment utilization hour (as an indicator of the power demand) has the greatest influence on CO 2 emissions within China's power industry. In addition, the impact of the industrial added value of the power sector on CO 2 emissions is also positive from a short-term perspective. Thirdly, the Granger causality results imply that one of the important motivators behind China's technological progress, within the power industry, originates from the pressures created by a desire for CO 2 emissions reduction. Finally, this paper provides policy recommendations for energy saving and emission reduction for China's power industry. - Highlights: ► We study the major factors influencing China's power industry CO 2 emissions. ► The average annual growth rate of CO 2 emission from power industry is calculated. ► Installed capacity has the greatest influence on power industry CO 2 emission. ► The Granger causality between CO 2 emission and its effecting factors is analyzed

  18. Strategic research on CO2 emission reduction for China. Application of MARKAL to China energy system

    International Nuclear Information System (INIS)

    Wang Yongping

    1995-09-01

    MARKAL was applied to the energy system for analyzing the CO 2 emission reduction in China over the time period from 1990 to 2050. First the Chinese Reference Energy System (CRES) was established based on the framework of MARKAL model. The following conclusions can be drawn from this study. When shifting from scenario LH (low useful energy demand and high import fuel prices) to HL (high demand and low prices), another 33 EJ of primary energy will be consumed and another 2.31 billion tons of CO 2 will be emitted in 2050. Detailed analyses on the disaggregation of CO 2 emissions by Kaya Formula show. The energy intensity (primary energy/GDP) decreases much faster in scenario HL, but the higher growth rate of GDP per capita is the overwhelming factor that results in higher CO 2 emission per capita in the baseline case of scenario HL in comparison with LH. When the carbon taxes are imposed on CO 2 emissions, the residential sector will make the biggest contribution to CO 2 emission abatement from a long-term point of view. However, it's difficult to stabilize CO 2 emission per capita before 2030 in both scenarios even with heavy carbon taxes. When nuclear moratorium occurs, more 560 million tons of CO 2 will be emitted to the atmosphere in 2050 under the same CO 2 tax regime. From the analysis of value flow, CO 2 emission reduction depends largely on new or advanced technologies particularly in the field of electricity generation. The competent technologies switch to those CO 2 less-emitting technologies when surcharging CO 2 emissions. Nuclear power shows significant potential in saving fossil energy resources and reducing CO 2 emissions. (J.P.N.)

  19. Potential effects of emission taxes on CO2 emissions in OECD and LDC countries. Working paper

    International Nuclear Information System (INIS)

    Messner, S.; Strubegger, M.

    1990-12-01

    A set of existing optimization models representing the energy systems of the OECD and LDC countries (the LDC region covers all less developed countries excluding centrally planned economies) with a time horizon up to 2020 was applied to derive first-order estimates of the techno-economic potential for emission reduction. The driving force for the introduction of reduction measures was a scheme of taxes levied on the emissions of 6 relevant pollutants-including the greenhouse gases CO 2 and methane. The tax levels introduced are based on the taxes discussed by the Swedish government administration; they are the break-even point to test which measures are cost-effective and which emission levels can be reached at these costs. The regional models offer the choice between the following alternatives as response to increases in expenditures caused by emission taxes: (*) Reduction of final energy demand by supplying the requested services by other means (i.e., conservation). (*) Substitution of 'dirty' fuels by fuels entailing less pollution. (*) Introduction of 'clean' technologies for the same purposes (e.g., a combined cycle based on coal gasification is a much cleaner process for electricity generation from coal than conventional coal power plants). (*) For SO 2 and NO x emissions pollution reduction technologies (i.e., scrubbers and catalysts) can be added to existing technologies in order to reduce emissions. Alternative scenarios with emission taxes are compared to a base scenario without taxes related to pollutant emissions. The results indicate that an increase in CO 2 emissions in the OECD and LDC regions of 47% over the next 30 years in the base scenario would be changed into stabilization up to 2010 by measures induced by the tax levels introduced. Thereafter, however, energy consumption growth in the LDC area, in conjunction with the exhaustion of economically viable emission reduction measures, reverse this trend: CO 2 emissions start to increase again after

  20. Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve

    International Nuclear Information System (INIS)

    Saboori, Behnaz; Sulaiman, Jamalludin; Mohd, Saidatulakmal

    2012-01-01

    This paper attempts to establish a long-run as well as causal relationship between economic growth and carbon dioxide (CO 2 ) emissions for Malaysia. Using data for the years from 1980 to 2009, the Environmental Kuznets Curve (EKC) hypothesis was tested utilizing the Auto Regressive Distributed Lag (ARDL) methodology. The empirical results suggest the existence of a long-run relationship between per capita CO 2 emissions and real per capita Gross Domestic Product (GDP) when the CO 2 emissions level is the dependent variable. We found an inverted-U shape relationship between CO 2 emissions and GDP in both short and long-run, thus supporting the EKC hypothesis. The Granger Causality test based on the Vector Error Correction Model (VECM) presents an absence of causality between CO 2 emissions and economic growth in the short-run while demonstrating uni-directional causality from economic growth to CO 2 emissions in the long-run. - Highlights: ► We tested the dynamic relationship between economic growth and CO 2 emissions. ► The Environmental Kuznets Curve hypothesis was tested using bounds testing approach. ► The empirical analysis confirms the existence of EKC for Malaysia. ► Causality results in an absence of causality between CO 2 and income in the short-run. ► There is uni-directional causality from income to CO 2 emissions in the long-run.

  1. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen

    OpenAIRE

    Sun, Zhihong; H?ve, Katja; Vislap, Vivian; Niinemets, ?lo

    2013-01-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 ?mol mol?1 and elevated [CO2] of 780 ?mol mol?1 were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibito...

  2. The Value of CO2-Geothermal Bulk Energy Storage to Reducing CO2 Emissions Compared to Conventional Bulk Energy Storage Technologies

    Science.gov (United States)

    Ogland-Hand, J.; Bielicki, J. M.; Buscheck, T. A.

    2016-12-01

    Sedimentary basin geothermal resources and CO2 that is captured from large point sources can be used for bulk energy storage (BES) in order to accommodate higher penetration and utilization of variable renewable energy resources. Excess energy is stored by pressurizing and injecting CO2 into deep, porous, and permeable aquifers that are ubiquitous throughout the United States. When electricity demand exceeds supply, some of the pressurized and geothermally-heated CO2 can be produced and used to generate electricity. This CO2-BES approach reduces CO2 emissions directly by storing CO2 and indirectly by using some of that CO2 to time-shift over-generation and displace CO2 emissions from fossil-fueled power plants that would have otherwise provided electricity. As such, CO2-BES may create more value to regional electricity systems than conventional pumped hydro energy storage (PHES) or compressed air energy storage (CAES) approaches that may only create value by time-shifting energy and indirectly reducing CO2 emissions. We developed and implemented a method to estimate the value that BES has to reducing CO2 emissions from regional electricity systems. The method minimizes the dispatch of electricity system components to meet exogenous demand subject to various CO2 prices, so that the value of CO2 emissions reductions can be estimated. We applied this method to estimate the performance and value of CO2-BES, PHES, and CAES within real data for electricity systems in California and Texas over the course of a full year to account for seasonal fluctuations in electricity demand and variable renewable resource availability. Our results suggest that the value of CO2-BES to reducing CO2 emissions may be as much as twice that of PHES or CAES and thus CO2-BES may be a more favorable approach to energy storage in regional electricity systems, especially those where the topography is not amenable to PHES or the subsurface is not amenable to CAES.

  3. Energy technology patents–CO2 emissions nexus: An empirical analysis from China

    International Nuclear Information System (INIS)

    Wang Zhaohua; Yang Zhongmin; Zhang Yixiang; Yin Jianhua

    2012-01-01

    Energy technology innovation plays a crucial role in reducing carbon emissions. This paper investigates whether there is relationship between energy technology patents and CO 2 emissions of 30 provinces in mainland China during 1997–2008. Gross domestic product (GDP) is included in the study due to its impact on CO 2 emissions and energy technology innovation, thus avoiding the problem of omitted variable bias. Furthermore, we investigate three cross-regional groups, namely eastern, central and western China. The results show that domestic patents for fossil-fueled technologies have no significant effect on CO 2 emissions reduction; however, domestic patents for carbon-free energy technologies appear to play an important role in reducing CO 2 emissions, which is significant in eastern China, but is not significant in central, western and national level of China. The results of this study enrich energy technology innovation theories and provide some implications for energy technology policy making. - Highlights: ► We studied the causality between energy technology patents and CO 2 emissions using dynamic panel data approach. ► There is a long-run equilibrium relationship among energy technology patents, CO 2 emissions and GDP. ► Domestic patents for fossil-fueled technologies have no significant effect on CO 2 emissions reduction. ► Domestic patents for carbon-free energy technologies appear to play an important role in reducing CO 2 emissions. ► This study provides some references for the future energy technology policy making.

  4. The impacts of non-renewable and renewable energy on CO2 emissions in Turkey.

    Science.gov (United States)

    Bulut, Umit

    2017-06-01

    As a result of great increases in CO 2 emissions in the last few decades, many papers have examined the relationship between renewable energy and CO 2 emissions in the energy economics literature, because as a clean energy source, renewable energy can reduce CO 2 emissions and solve environmental problems stemming from increases in CO 2 emissions. When one analyses these papers, he/she will observe that they employ fixed parameter estimation methods, and time-varying effects of non-renewable and renewable energy consumption/production on greenhouse gas emissions are ignored. In order to fulfil this gap in the literature, this paper examines the effects of non-renewable and renewable energy on CO 2 emissions in Turkey over the period 1970-2013 by employing fixed parameter and time-varying parameter estimation methods. Estimation methods reveal that CO 2 emissions are positively related to non-renewable energy and renewable energy in Turkey. Since policy makers expect renewable energy to decrease CO 2 emissions, this paper argues that renewable energy is not able to satisfy the expectations of policy makers though fewer CO 2 emissions arise through production of electricity using renewable sources. In conclusion, the paper argues that policy makers should implement long-term energy policies in Turkey.

  5. Analyses of CO2 emissions embodied in Japan-China trade

    International Nuclear Information System (INIS)

    Liu Xianbing; Ishikawa, Masanobu; Wang Can; Dong Yanli; Liu Wenling

    2010-01-01

    This paper examines CO 2 emissions embodied in Japan-China trade. Besides directly quantifying the flow of CO 2 emissions between the two countries by using a traditional input-output (IO) model, this study also estimates the effect of bilateral trade to CO 2 emissions by scenario analysis. The time series of quantifications indicate that CO 2 emissions embodied in exported goods from Japan to China increased overall from 1990 to 2000. The exported CO 2 emissions from China to Japan greatly increased in the first half of the 1990s. However, by 2000, the amount of emissions had reduced from 1995 levels. Regardless, there was a net export of CO 2 emissions from China to Japan during 1990-2000. The scenario comparison shows that the bilateral trade has helped the reduction of CO 2 emissions. On average, the Chinese economy was confirmed to be much more carbon-intensive than Japan. The regression analysis shows a significant but not perfect correlation between the carbon intensities at the sector level of the two countries. In terms of CO 2 emission reduction opportunities, most sectors of Chinese industry could benefit from learning Japanese technologies that produce lower carbon intensities.

  6. Constraining East Asian CO2 emissions with GOSAT retrievals: methods and policy implications

    Science.gov (United States)

    Shim, C.; Henze, D. K.; Deng, F.

    2017-12-01

    The world largest CO2 emissions are from East Asia. However, there are large uncertainties in CO2 emission inventories, mainly because of imperfections in bottom-up statistics and a lack of observations for validating emission fluxes, particularly over China. Here we tried to constrain East Asian CO2 emissions with GOSAT retrievals applying 4-Dvar GEOS-Chem and its adjoint model. We applied the inversion to only the cold season (November - February) in 2009 - 2010 since the summer monsoon and greater transboundary impacts in spring and fall greatly reduced the GOSAT retrievals. In the cold season, the a posteriori CO2 emissions over East Asia generally higher by 5 - 20%, particularly Northeastern China shows intensively higher in a posteriori emissions ( 20%), where the Chinese government is recently focusing on mitigating the air pollutants. In another hand, a posteriori emissions from Southern China are lower 10 - 25%. A posteriori emissions in Korea and Japan are mostly higher by 10 % except over Kyushu region. With our top-down estimates with 4-Dvar CO2 inversion, we will evaluate the current regional CO2 emissions inventories and potential uncertainties in the sectoral emissions. This study will help understand the quantitative information on anthropogenic CO2 emissions over East Asia and will give policy implications for the mitigation targets.

  7. Reduction of emissions and geological storage of CO2. Innovation an industrial stakes

    International Nuclear Information System (INIS)

    Mandil, C.; Podkanski, J.; Socolow, R.; Dron, D.; Reiner, D.; Horrocks, P.; Fernandez Ruiz, P.; Dechamps, P.; Stromberg, L.; Wright, I.; Gazeau, J.C.; Wiederkehr, P.; Morcheoine, A.; Vesseron, P.; Feron, P.; Feraud, A.; Torp, N.T.; Christensen, N.P.; Le Thiez, P.; Czernichowski, I.; Hartman, J.; Roulet, C.; Roberts, J.; Zakkour, P.; Von Goerne, G.; Armand, R.; Allinson, G.; Segalen, L.; Gires, J.M.; Metz, B.; Brillet, B.

    2005-01-01

    An international symposium on the reduction of emissions and geological storage of CO 2 was held in Paris from 15 to 16 September 2005. The event, jointly organized by IFP, ADEME and BRGM, brought together over 400 people from more than 25 countries. It was an opportunity to review the international stakes related to global warming and also to debate ways of reducing CO 2 emissions, taking examples from the energy and transport sectors. The last day was dedicated to technological advances in the capture and geological storage of CO 2 and their regulatory and economic implications. This document gathers the available transparencies and talks presented during the colloquium: Opening address by F. Loos, French Minister-delegate for Industry; Session I - Greenhouse gas emissions: the international stakes. Outlook for global CO 2 emissions. The global and regional scenarios: Alternative scenarios for energy use and CO 2 emissions until 2050 by C. Mandil and J. Podkanski (IEA), The stabilization of CO 2 emissions in the coming 50 years by R. Socolow (Princeton University). Evolution of the international context: the stakes and 'factor 4' issues: Costs of climate impacts and ways towards 'factor 4' by D. Dron (ENS Mines de Paris), CO 2 emissions reduction policy: the situation in the United States by D. Reiner (MIT/Cambridge University), Post-Kyoto scenarios by P. Horrocks (European Commission), Possibilities for R and D in CO 2 capture and storage in the future FP7 program by P. Fernandez Ruiz and P. Dechamps (European Commission). Session II - CO 2 emission reductions in the energy and transport sectors. Reducing CO 2 emissions during the production and conversion of fossil energies (fixed installations): Combined cycles using hydrogen by G. Haupt (Siemens), CO 2 emission reductions in the oil and gas industry by I. Wright (BP). Reducing CO 2 emissions in the transport sector: Sustainable transport systems by P. Wiederkehr (EST International), The prospects for reducing

  8. Decrease of energy and emission prices undesired. Unfair attack on CO2-levies

    International Nuclear Information System (INIS)

    Blom, M.; De Keizer, I.; Benner, J.

    2005-01-01

    Recently, in the Netherlands, fuel taxes and prices for CO2 emission are criticised. High energy prices are used to suggest other forms of pricing regulations. However, the higher energy prices and CO2-levies are very useful in realizing a sustainable energy supply. More transparency in the market for emissions trading is required to prevent unfair on-charge expenses of CO2-charges [nl

  9. A supply chain optimization framework for CO2 emission reduction: Case of the Netherlands

    OpenAIRE

    Kalyanarengan Ravi, N.; Zondervan, E.; van Sint Annaland, M.; Fransoo, J.C.; Grievink, J.; Claus, T.; Herrmann, F.; Manitz, M.; Rose, O.

    2016-01-01

    A major challenge for the industrial deployment of a CO2 emission reduction methodology is to reduce the overall cost and the integration of all the nodes in the supply chain for CO2 emission reduction. In this work, we develop a mixed integer linear optimization model that selects appropriate sources, capture process, transportation network and CO2 storage sites and optimize for a minimum overall cost. Initially, we screen the sources and storage options available in the Netherlands at diffe...

  10. Reducing CO2 emissions of conventional fuel cars by vehicle photovoltaic roofs

    OpenAIRE

    LODI CHIARA; SEITSONEN ANTTI; PAFFUMI ELENA; DE GENNARO MICHELE; HULD THOMAS; MALFETTANI STEFANO

    2017-01-01

    The European Union has adopted a range of policies aiming at reducing greenhouse gas emissions from road transport, including setting binding targets for tailpipe CO2 emissions for new light-duty fleets. The legislative framework for implementing such targets allows taking into account the CO2 savings from innovative technologies that cannot be adequately quantified by the standard test cycle CO2 measurement. This paper presents a methodology to define the average productivity of vehicle-moun...

  11. A supply chain optimization framework for CO2 emission reduction : Case of the Netherlands

    NARCIS (Netherlands)

    Kalyanarengan Ravi, N.; Zondervan, E.; van Sint Annaland, M.; Fransoo, J.C.; Grievink, J.; Claus, T.; Herrmann, F.; Manitz, M.; Rose, O.

    2016-01-01

    A major challenge for the industrial deployment of a CO2 emission reduction methodology is to reduce the overall cost and the integration of all the nodes in the supply chain for CO2 emission reduction. In this work, we develop a mixed integer linear optimization model that selects appropriate

  12. CO_2 emission trends of China's primary aluminum industry: A scenario analysis using system dynamics model

    International Nuclear Information System (INIS)

    Li, Qiang; Zhang, Wenjuan; Li, Huiquan; He, Peng

    2017-01-01

    China announced its promise on CO_2 emission peak. When and what level of CO_2 emission peak China's primary aluminum industry will reach is in suspense. In this paper, a system dynamic model is established, with five subsystems of economy development, primary aluminum production, secondary aluminum production, CO_2 emission intensity and policies making involved. The model is applied to examine potential CO_2 emission trends of China's primary aluminum industry in next fifteen years with three scenarios of “no new policies”, “13th five-year plan” and “additional policies”. Simulation results imply that: merely relying on rapid expansion of domestic scarps recycling and reuse could not mitigate CO_2 emission continuously. Combination of energy-saving technology application and electrolytic technology innovation, as well as promoting hydropower utilization in primary aluminum industry are necessary for long term low-carbon development. From a global prospective, enhancing international cooperation on new primary aluminum capacity construction in other countries, especially with rich low-carbon energy, could bring about essential CO_2 emission for both China's and global primary aluminum industry. - Highlights: • A system dynamic model is established for future CO_2 emission trend of China's primary aluminum industry. • Three potential policy scenarios are simulated. • The impacts of potential policies implication on the CO_2 emission trend are discussed.

  13. The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries

    International Nuclear Information System (INIS)

    Cowan, Wendy N.; Chang, Tsangyao; Inglesi-Lotz, Roula; Gupta, Rangan

    2014-01-01

    This study reexamines the causal link between electricity consumption, economic growth and CO 2 emissions in the BRICS countries (i.e., Brazil, Russia, India, China, and South Africa) for the period 1990–2010, using panel causality analysis, accounting for dependency and heterogeneity across countries. Regarding the electricity–GDP nexus, the empirical results support evidence on the feedback hypothesis for Russia and the conservation hypothesis for South Africa. However, a neutrality hypothesis holds for Brazil, India and China, indicating neither electricity consumption nor economic growth is sensitive to each other in these three countries. Regarding the GDP–CO 2 emissions nexus, a feedback hypothesis for Russia, a one-way Granger causality running from GDP to CO 2 emissions in South Africa and reverse relationship from CO 2 emissions to GDP in Brazil is found. There is no evidence of Granger causality between GDP and CO 2 emissions in India and China. Furthermore, electricity consumption is found to Granger cause CO 2 emissions in India, while there is no Granger causality between electricity consumption and CO 2 emissions in Brazil, Russia, China and South Africa. Therefore, the differing results for the BRICS countries imply that policies cannot be uniformly implemented as they will have different effects in each of the BRICS countries under study. - Highlights: • We examine the nexus of electricity, GDP growth and CO 2 emissions in BRICS. • We take into account cross-sectional dependency and heterogeneity across countries. • Electricity–GDP: Feedback for Russia and conservation for South Africa. • CO 2 –GDP feedback for Russia, from GDP to CO 2 in SA, CO 2 to GDP in Brazil. • Only from electricity consumption to emissions for India

  14. Modelling Energy Systems and International Trade in CO2 Emission Quotas - The Kyoto Protocol and Beyond

    International Nuclear Information System (INIS)

    Persson, Tobias A.

    2002-01-01

    A transformation of the energy system in the 21st century is required if the CO 2 concentration in the atmosphere should be stabilized at a level that would prevent dangerous anthropogenic interference with the climate system. The industrialized countries have emitted most of the anthropogenic CO 2 released to the atmosphere since the beginning of the industrial era and still account for roughly two thirds of global fossil fuel related CO 2 emissions. Industrial country CO 2 emissions on a per capita basis are roughly five to ten times higher than those of developing countries. However, a global atmospheric CO 2 concentration target of 450 ppm, if adopted would require that global average per capita CO 2 emissions by the end of this century have to be comparable to those of developing countries today. The industrialized countries would have to reduce their emissions substantially and the emissions in developing countries could not follow a business-as-usual scenario. The transformation of the energy system and abatement of CO 2 emissions would need to occur in industrialized and developing countries. Energy-economy models have been developed to analyze of international trading in CO 2 emission permits. The thesis consists of three papers. The cost of meeting the Kyoto Protocol is estimated in the first paper. The Kyoto Protocol, which defines quantitative greenhouse gas emission commitments for industrialized countries over the period 2008-2012, is the first international agreement setting quantitative goals for abatement of CO 2 emissions from energy systems. The Protocol allows the creation of systems for trade in emission permits whereby countries exceeding their target levels can remain in compliance by purchasing surplus permits from other developed countries. However, a huge carbon surplus, which has been christened hot air, has been created in Russia and Ukraine since 1990 primarily because of the contraction of their economies. The current Unites States

  15. Oil Consumption, CO2 Emission, and Economic Growth: Evidence from the Philippines

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Lim

    2014-02-01

    Full Text Available This paper attempts to investigate the short- and long-run causality issues among oil consumption, CO2 emissions, and economic growth in the Philippines by using time series techniques and annual data for the period 1965–2012. Tests for unit root, co-integration, and Granger-causality tests based on an error-correction model are presented. Three important findings emerge from the investigation. First, there is bi-directional causality between oil consumption and economic growth, which suggests that the Philippines should endeavor to overcome the constraints on oil consumption to achieve economic growth. Second, bi-directional causality between oil consumption and CO2 emissions is found, which implies that the Philippines needs to improve efficiency in oil consumption in order not to increase CO2 emissions. Third, uni-directional causality running from CO2 emissions to economic growth is detected, which means that growth can continue without increasing CO2 emissions.

  16. The causal link among militarization, economic growth, CO2 emission, and energy consumption.

    Science.gov (United States)

    Bildirici, Melike E

    2017-02-01

    This paper examines the long-run and the causal relationship among CO 2 emissions, militarization, economic growth, and energy consumption for USA for the period 1960-2013. Using the bound test approach to cointegration, a short-run as well as a long-run relationship among the variables with a positive and a statistically significant relationship between CO 2 emissions and militarization was found. To determine the causal link, MWALD and Rao's F tests were applied. According to Rao's F tests, the evidence of a unidirectional causality running from militarization to CO 2 emissions, from energy consumption to CO 2 emissions, and from militarization to energy consumption all without a feedback was found. Further, the results determined that 26% of the forecast-error variance of CO 2 emissions was explained by the forecast error variance of militarization and 60% by energy consumption.

  17. Trade pattern change impact on industrial CO2 emissions in Taiwan

    International Nuclear Information System (INIS)

    Wu, Jung-Hua; Huang, Yun-Hsun; Chen, Yen-Yin

    2007-01-01

    Input-output structural decomposition analysis (I-O SDA) is applied in this paper to analyze the sources of change in industrial CO 2 emissions in Taiwan from 1989 to 2001. Owing to the fact that Taiwan is an export-oriented, trade-dependent economy, the focus is on trade transformation over the past decade and its effect over industrial CO 2 emissions. Change in trade patterns has significantly impacted many aspects of the Taiwan economy, subsequently resulting in various influences on industrial CO 2 emissions, as shown by empirical analysis results. Change in export level increased industrial CO 2 emissions, above all other effects, by 72.1%. However, changes in export mix and import coefficients imposed effects of dragging down industrial CO 2 emissions by 5.7% and 11.7%, respectively. (author)

  18. Committed CO2 Emissions of China's Coal-fired Power Plants

    Science.gov (United States)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed

  19. The development of the tertiary sector in the economy and the reduction in CO2 emissions

    International Nuclear Information System (INIS)

    Morvan, R.; Hubert, M.; Gregoire, P.; Lowezanin, Ch.

    2004-09-01

    The development of the tertiary sector appears to support sustainable development since it now accounts for almost two thirds of the national economy and is responsible for low CO 2 emission levels. Between 1980 and 1997, CO 2 emissions from the tertiary sector increased by 20 % compared with a 48 % rise in the sector value added. In terms of production, CO 2 levels in the tertiary sector are low, compared with 55 % for the secondary sector (industry). However, when trade between economic activities is taken into account, there is cause to qualify the assessment. This makes it possible to ascertain emissions from the point of view of satisfying final demand for products, and to identify direct and indirect emissions in each branch of activity. Thus, when emissions from certain industrial and agricultural activities are redistributed specifically to branches of activity in the tertiary sector, CO 2 emissions in this sector account for almost one-third of total emissions. (A.L.B.)

  20. The change of CO2 emission on manufacturing sectors in Indonesia: An input-output analysis

    Science.gov (United States)

    Putranti, Titi Muswati; Imansyah, Muhammad Handry

    2017-12-01

    The objective of this paper is to evaluate the change of CO2 emission on manufacturing sectors in Indonesia using input-output analysis. The method used supply perspective can measure the impact of an increase in the value added of different productive on manufacturing sectors on total CO2 emission and can identify the productive sectors responsible for the increase in CO2 emission when there is an increase in the value added of the economy. The data used are based on Input-Output Energy Table 1990, 1995 and 2010. The method applied the elasticity of CO2 emission to value added. Using the elasticity approach, one can identify the highest elasticity on manufacturing sector as the change of value added provides high response to CO2 emission. Therefore, policy maker can concentrate on manufacturing sectors with the high response of CO2 emission due to the increase of value added. The approach shows the contribution of the various sectors that deserve more consideration for mitigation policy. Five of highest elasticity of manufacturing sectors of CO2 emission are Spinning & Weaving, Other foods, Tobacco, Wearing apparel, and other fabricated textiles products in 1990. Meanwhile, the most sensitive sectors Petroleum refinery products, Other chemical products, Timber & Wooden Products, Iron & Steel Products and Other non-metallic mineral products in 1995. Two sectors of the 1990 were still in the big ten, i.e. Spinning & weaving and Other foods in 1995 for the most sensitive sectors. The six sectors of 1995 in the ten highest elasticity of CO2 emission on manufacturing which were Plastic products, Other chemical products,Other fabricated metal products, Cement, Iron & steel products, Iron & steel, still existed in 2010 condition. The result of this research shows that there is a change in the most elastic CO2 emission of manufacturing sectors which tends from simple and light manufacturing to be a more complex and heavier manufacturing. Consequently, CO2 emission jumped

  1. Decomposition of CO2 Emission Factors in Baoding

    Science.gov (United States)

    Li, Wei; Wang, xuyang; Zhang, Hongzhi

    2018-01-01

    Baoding, as one of the first “five provinces and eight cities” low carbon pilot cities, undertakes an important task and mission. The urgent task is to explore a peak route and emission reduction path suitable for Baoding’s own development, so as to provide reference for the construction of low-carbon pilot cities. At present, the carbon emissions of Baoding city and its subordinate districts and counties are not clear, and the carbon emissions, change trends and emission characteristics of various industries have not been systematically studied. This lead researcherscan not carry out further attribution analysis, the prediction of future emissions trends and put forward specific measures to reduce emissions are impossible.If the government can not accurately and comprehensively understand the problems faced in the construction and development of low-carbon cities, it is difficult to fundamentally put forward effective emission reduction policies and measures.

  2. CO2 emissions due to energy combustion in the World in 2011

    International Nuclear Information System (INIS)

    Wong, Florine

    2014-01-01

    This publication presents and comments data, graphs and tables which illustrate the evolution of CO 2 emissions in the world (data are given for different countries and regions of the World), and more particularly those due to energy combustion. These emissions increased in 2011. It also discusses the evolution of CO 2 emission intensity with respect to GDP (1 pc decrease in 2011). When studying emission data with respect to the number of inhabitants, it appears that USA are emitting 20 times more CO 2 per inhabitant than Africa

  3. Potential effects of emission taxes on CO2 emissions in the OECD and LDCs

    International Nuclear Information System (INIS)

    Messner, S.; Strubegger, M.

    1991-01-01

    A set of existing optimization models, which represent the energy systems of the OECD and LDCs (less developed countries excluding centrally planned economies) with a time horizon to 2020, has been applied to derive first-order estimates of the techno-economic potential for emission reduction. The driving force for the introduction of reduction measures is a scheme of taxes levied on the emission of six pollutants, including the greenhouse gases CO 2 and methane. The tax levels introduced are based on taxes discussed by the Swedish government: they are the break-even point to test which measures are cost-effective and which emission levels can be reached at these costs. The regional models include the following alternatives: (i) reduction of final energy demand by supplying the requested services by other means (i.e., conservation); (ii) substitution of new fuels for polluting fuels; (iii) introduction of clean technologies for the same purposes; (iv) additions of pollution-reduction technologies. Alternative scenarios with emission taxes are compared with a base scenario without taxes related to pollutant emissions. The results indicate that an increase in CO 2 emissions in the OECD and LDC regions of 47% over the next 30 yr in the base scenario would be changed to stable levels to 2010 by tax-induced measures. Thereafter, energy-consumption growth in the LDCs reverses this trend. (author)

  4. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    Science.gov (United States)

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Regional differences in the CO_2 emissions of China's iron and steel industry: Regional heterogeneity

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2016-01-01

    Identifying the key influencing factors of CO_2 emissions in China's iron and steel industry is vital for mitigating its emissions and formulating effective environmental protection measures. Most of the existing researches utilized time series data to investigate the driving factors of the industry's CO_2 emission at the national level, but regional differences have not been given appropriate attention. This paper adopts provincial panel data from 2000 to 2013 and panel data models to examine the key driving forces of CO_2 emissions at the regional levels in China. The results show that industrialization dominates the industry's CO_2 emissions, but its effect varies across regions. The impact of energy efficiency on CO_2 emissions in the eastern region is greater than in the central and western regions because of a huge difference in R&D investment. The influence of urbanization has significant regional differences due to the heterogeneity in human capital accumulation and real estate development. Energy structure has large potential to mitigate CO_2 emissions on account of increased R&D investment in energy-saving technology and expanded clean energy use. Hence, in order to effectively achieve emission reduction, local governments should consider all these factors as well as regional heterogeneity in formulating appropriate mitigation policies. - Highlights: • We explore the driving forces of CO_2 emissions in China's steel industry. • Industrialization dominates CO_2 emissions in the iron and steel industry. • Energy structure has large potential to mitigate CO_2 emissions in the steel industry. • The influence of urbanization has significant regional differences.

  6. Spatiotemporal Characteristics, Determinants and Scenario Analysis of CO2 Emissions in China Using Provincial Panel Data.

    Science.gov (United States)

    Wang, Shaojian; Fang, Chuanglin; Li, Guangdong

    2015-01-01

    This paper empirically investigated the spatiotemporal variations, influencing factors and future emission trends of China's CO2 emissions based on a provincial panel data set. A series of panel econometric models were used taking the period 1995-2011 into consideration. The results indicated that CO2 emissions in China increased over time, and were characterized by noticeable regional discrepancies; in addition, CO2 emissions also exhibited properties of spatial dependence and convergence. Factors such as population scale, economic level and urbanization level exerted a positive influence on CO2 emissions. Conversely, energy intensity was identified as having a negative influence on CO2 emissions. In addition, the significance of the relationship between CO2 emissions and the four variables varied across the provinces based on their scale of economic development. Scenario simulations further showed that the scenario of middle economic growth, middle population increase, low urbanization growth, and high technology improvement (here referred to as Scenario BTU), constitutes the best development model for China to realize the future sustainable development. Based on these empirical findings, we also provide a number of policy recommendations with respect to the future mitigation of CO2 emissions.

  7. Modeling and validation of on-road CO2 emissions inventories at the urban regional scale

    International Nuclear Information System (INIS)

    Brondfield, Max N.; Hutyra, Lucy R.; Gately, Conor K.; Raciti, Steve M.; Peterson, Scott A.

    2012-01-01

    On-road emissions are a major contributor to rising concentrations of atmospheric greenhouse gases. In this study, we applied a downscaling methodology based on commonly available spatial parameters to model on-road CO 2 emissions at the 1 × 1 km scale for the Boston, MA region and tested our approach with surface-level CO 2 observations. Using two previously constructed emissions inventories with differing spatial patterns and underlying data sources, we developed regression models based on impervious surface area and volume-weighted road density that could be scaled to any resolution. We found that the models accurately reflected the inventories at their original scales (R 2 = 0.63 for both models) and exhibited a strong relationship with observed CO 2 mixing ratios when downscaled across the region. Moreover, the improved spatial agreement of the models over the original inventories confirmed that either product represents a viable basis for downscaling in other metropolitan regions, even with limited data. - Highlights: ► We model two on-road CO 2 emissions inventories using common spatial parameters. ► Independent CO 2 observations are used to validate the emissions models. ► The downscaled emissions models capture the urban spatial heterogeneity of Boston. ► Emissions estimates show a strong non-linear relationship with observed CO 2 . ► Our study is repeatable, even in areas with limited data. - This work presents a new, reproducible methodology for downscaling and validating on-road CO 2 emissions estimates.

  8. Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2016-08-01

    Full Text Available Policy-makers have been sharing growing concerns that climate change has significant impacts on human society and economic activates. Knowledge of the influencing factors of CO2 emission is the crucial step to reduce it. In this paper, both CO2 emission and CO2 sink on a city-level of the nine cities in Wuhan Metropolitan Area are calculated using the Intergovernmental Panel on Climate Change approach. Moreover, the logarithmic mean Divisia index (LMDI model was employed to decompose the net CO2 emission from 2001 to 2009. Results showed that (1 the largest amount of CO2 emission comes from energy while the largest amount CO2 sink comes from cropland; (2 economic level (S was the largest positive driving factor for net CO2 emission growth in the Wuhan Metropolitan Area, population (P also played a positive driving role, but with very weak contribution; and as negative inhibiting factors, energy structure (E and energy efficiency (C significantly reduced the net CO2 emission.

  9. 2007 CO2 emissions due to energy combustion in the world

    International Nuclear Information System (INIS)

    2010-01-01

    Worldwide energy combustion contributes to more than 95% of the global CO 2 emissions. According to the last International Energy Agency (IEA) results, these emissions have raised by 3.3% with respect to 2006 and by 38% with respect to 1990 with a total of about 29 Gt of CO 2 . After a new 8% boom in 2007, China's emissions have tripled since 1990 with a total exceeding 6 Gt of CO 2 . China has become the first CO 2 emitter in front of the USA. When compared to the number of inhabitants, China's emissions are comparable to the world average (4.4 t CO 2 /hab) but remain four times lower than the ones of the USA. (J.S.)

  10. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China

    International Nuclear Information System (INIS)

    Jalil, Abdul; Mahmud, Syed F.

    2009-01-01

    This study examines the long-run relationship between carbon emissions and energy consumption, income and foreign trade in the case of China by employing time series data of 1975-2005. In particular the study aims at testing whether environmental Kuznets curve (EKC) relationship between CO 2 emissions and per capita real GDP holds in the long run or not. Auto regressive distributed lag (ARDL) methodology is employed for empirical analysis. A quadratic relationship between income and CO 2 emission has been found for the sample period, supporting EKC relationship. The results of Granger causality tests indicate one way causality runs through economic growth to CO 2 emissions. The results of this study also indicate that the carbon emissions are mainly determined by income and energy consumption in the long run. Trade has a positive but statistically insignificant impact on CO 2 emissions.

  11. Methods for Remote Determination of CO2 Emissions

    Science.gov (United States)

    2011-01-01

    calibrated at the ∼0.07 ppm level from the WMO are used, at concentrations of about −10, 0, and +10 ppm relative to ambient ( Tans and Thoning, 2008). CO2Meter...B – References [1] Stephens, B. B., Gurney, K. R., Tans , P. P., Sweeney, C., Peters, W., Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P., Nakazawa...combination of dense sampling and careful modeling. Similar studies have been carried out across the U.S. using maize [9], and in Europe using wine

  12. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    Science.gov (United States)

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  13. Simulating the integrated summertime Δ14CO2 signature from anthropogenic emissions over Western Europe

    Directory of Open Access Journals (Sweden)

    D. Bozhinova

    2014-07-01

    Full Text Available Radiocarbon dioxide (14CO2, reported in Δ14CO2 can be used to determine the fossil fuel CO2 addition to the atmosphere, since fossil fuel CO2 no longer contains any 14C. After the release of CO2 at the source, atmospheric transport causes dilution of strong local signals into the background and detectable gradients of Δ14CO2 only remain in areas with high fossil fuel emissions. This fossil fuel signal can moreover be partially masked by the enriching effect that anthropogenic emissions of 14CO2 from the nuclear industry have on the atmospheric Δ14CO2 signature. In this paper, we investigate the regional gradients in 14CO2 over the European continent and quantify the effect of the emissions from nuclear industry. We simulate the emissions and transport of fossil fuel CO2 and nuclear 14CO2 for Western Europe using the Weather Research and Forecast model (WRF-Chem for a period covering 6 summer months in 2008. We evaluate the expected CO2 gradients and the resulting Δ14CO2 in simulated integrated air samples over this period, as well as in simulated plant samples. We find that the average gradients of fossil fuel CO2 in the lower 1200 m of the atmosphere are close to 15 ppm at a 12 km × 12 km horizontal resolution. The nuclear influence on Δ14CO2 signatures varies considerably over the domain and for large areas in France and the UK it can range from 20 to more than 500% of the influence of fossil fuel emissions. Our simulations suggest that the resulting gradients in Δ14CO2 are well captured in plant samples, but due to their time-varying uptake of CO2, their signature can be different with over 3‰ from the atmospheric samples in some regions. We conclude that the framework presented will be well-suited for the interpretation of actual air and plant 14CO2 samples.

  14. Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors

    OpenAIRE

    Fujii, Hidemichi; Managi, Shunsuke

    2015-01-01

    To mitigate the effects of climate change, countries worldwide are advancing technologies to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal production resource reallocation on CO2 emissions reduction, focusing on regional and industrial characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 countries from...

  15. 150 Years of Italian CO2 Emissions and Economic Growth

    DEFF Research Database (Denmark)

    Annicchiarico, Barbara; Bennato, Anna Rita; Chini, Emilio Zanetti

    This paper examines the relationship between economic growth and carbon dioxide emissions in Italy considering the developments in a 150-year time span. Using several statistical techniques, we find that GDP growth and carbon dioxide emissions are strongly interrelated, with a dramatic change...

  16. Linearity between temperature peak and bio-energy CO2 emission rates

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M.; Stromman, Anders H.; Gasser, Thomas; Ciais, Philippe

    2014-01-01

    Many future energy and emission scenarios envisage an increase of bio-energy in the global primary energy mix. In most climate impact assessment models and policies, bio-energy systems are assumed to be carbon neutral, thus ignoring the time lag between CO 2 emissions from biomass combustion and CO 2 uptake by vegetation. Here, we show that the temperature peak caused by CO 2 emissions from bio-energy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR) to fossil fuel emissions is approximately constant, the CCR to bio-energy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bio-energy CO 2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO 2 emissions from bio-energy matters. Under the international agreement to limit global warming to 2 C by 2100, early emissions from bio-energy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bio-energy is sourced from biomass with medium (50-60 years) or long turnover times (100 years). (authors)

  17. On the income–nuclear energy–CO2 emissions nexus revisited

    International Nuclear Information System (INIS)

    Baek, Jungho; Pride, Dominique

    2014-01-01

    This paper seeks to contribute to the debate over the income–nuclear enery–CO 2 emissions nexus by taking specific account of the possible endogeneity of income, which has been largely ignored by early studies. A multivariate cointegrated vector autoregression (CVAR) is applied to top six nuclear generating countries. We find that nuclear energy tends to reduce CO 2 emission for all countries. It is also found that income has a beneficial effect on the environment only in some countries. Finally, we find that CO 2 emissions and income are indeed determined simultaneously, while nuclear energy acts exogenously, indicating that nuclear energy is the driving variable, which significantly influences the long-run movements of CO 2 emissions and income, but is not affected by CO 2 emissions and income in the model. - Highlights: • We examine the income–nuclear energy–CO 2 emissions nexus in top six nuclear generating countries. • The model pays special attention to the possible endogeneity of income. • Nuclear energy is found to have a beneficial effect on the environment in all countries. • Income has a favorable effect on the environment only in some countries. • CO 2 emissions and income are indeed found to be determined simultaneously

  18. Spatial variability of soil CO2 emission in different topographic positions

    Directory of Open Access Journals (Sweden)

    Liziane de Figueiredo Brito

    2010-01-01

    Full Text Available The spatial variability of soil CO2 emission is controlled by several properties related to the production and transport of CO2 inside the soil. Considering that soil properties are also influenced by topography, the objective of this work was to investigate the spatial variability of soil CO2 emission in three different topographic positions in an area cultivated with sugarcane, just after mechanical harvest. One location was selected on a concave-shaped form and two others on linear-shaped form (in back-slope and foot-slope. Three grids were installed, one in each location, containing 69 points and measuring 90 x 90 m each. The spatial variability of soil CO2 emission was characterized by means of semivariance. Spatial variability models derived from soil CO2 emission were exponential in the concave location while spherical models fitted better in the linear shaped areas. The degree of spatial dependence was moderate in all cases and the range of spatial dependence for the CO2 emission in the concave area was 44.5 m, higher than the mean value obtained for the linear shaped areas (20.65 m. The spatial distribution maps of soil CO2 emission indicate a higher discontinuity of emission in the linear form when compared to the concave form.

  19. Tourism-Related CO2 Emission and Its Decoupling Effects in China: A Spatiotemporal Perspective

    Directory of Open Access Journals (Sweden)

    Zi Tang

    2018-01-01

    Full Text Available The rapid development of the tourism industry has been accompanied by an increase in CO2 emissions and has a certain degree of impact on climate change. This study adopted the bottom-up approach to estimate the spatiotemporal change of CO2 emissions of the tourism industry in China and its 31 provinces over the period 2000–2015. In addition, the decoupling index was applied to analyze the decoupling effects between tourism-related CO2 emissions and tourism economy from 2000 to 2015. The results showed that the total CO2 emissions of the tourism industry rose from 37.95 Mt in 2000 to 100.98 Mt in 2015 with an average annual growth rate of 7.1%. The highest CO2 emissions from the tourism industry occurred in eastern coastal China, whereas the least CO2 emissions were in the west of China. Additionally, the decoupling of CO2 emissions from economic growth in China’s tourism industry had mainly gone through the alternations of negative decoupling and weak decoupling. The decoupling states in most of the Chinese provinces were desirable during the study period. This study may serve as a scientific reference regarding decision-making in the sustainable development of the tourism industry in China.

  20. Reduction of CO2 emissions during cement clinker burning : Part 2 = Ein Beitrag zur Reduzierung der CO2-Emissionen beim Zementklinkerbrand; Teil 2

    NARCIS (Netherlands)

    Vogel, S.; Kolditz, K.; Beilmann, F.; Finger, F.A.; Ott-Reinhardt, D.; Kralisch, D.

    2013-01-01

    The aim of the research project entitled "New technology in cement production for reducing CO2 emissions" sponsored by the German Federal Environmental Foundation was to lower the CO2 emissions during clinker burning. A possible reduction, relative to an industrial example, of up to 21 % in the

  1. Reduction of CO2 emissions during cement clinker burning; part 1 = Ein Beitrag zur Reduzierung der CO2-Emissionen beim Zementklinkerbrand; Teil 1

    NARCIS (Netherlands)

    Vogel, S.; Kolditz, K.; Bellmann, F.; Ott-Reinhardt, D.; Kralisch, D.

    2013-01-01

    The aim of the research project entitled "New technology in cement production for reducing CO2 emissions" sponsored by the German Federal Environmental Foundation was to lower the CO2 emissions during clinker burning. A possible reduction, relative to an industrial example, of up to 21 % in the

  2. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Shrestha, Ashish

    2009-01-01

    This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO 2 ) emissions in selected Asian countries during the 1980-2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO 2 emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO 2 emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO 2 emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO 2 emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO 2 emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.

  3. The effects of fiscal policy on CO_2 emissions: Evidence from the U.S.A

    International Nuclear Information System (INIS)

    Halkos, George E.; Paizanos, Epameinondas A.

    2016-01-01

    This paper examines the effects of fiscal policy on CO_2 emissions using Vector Autoregressions on U.S. quarterly data from 1973 to 2013. In particular, we analyze the short- and mid-term interactions between fiscal policy and emissions by using sign restrictions to identify the policy shocks. We construct the impulse responses to linear combinations of fiscal shocks, corresponding to the scenarios of deficit-financed spending and deficit-financed tax-cuts. To consider possible variations of the effect of fiscal policy according to the sources of pollution, we distinguish between production- and consumption- generated CO_2 emissions. The results point out that the implementation of expansionary fiscal spending provides an alleviating effect on emissions from both sources of the pollutant, whereas deficit-financed tax-cuts are associated with an increase on consumption-generated CO_2 emissions. The exact pattern of the effects depends on the source of emissions, the scenario of fiscal policy that is implemented and the functional class of government expenditure being increased. - Highlights: • We investigate the effects of fiscal policy on CO_2 emissions using VAR methods. • Spending expansions reduce production- and consumption- generated CO_2 emissions. • This alleviating effect is greater when increasing certain expenditure categories. • Deficit-financed tax-cuts increase consumption-generated CO_2 emissions. • Unique factors in U.S. may limit applicability of findings to other jurisdictions.

  4. Estimation of CO2 emissions from China’s cement production: Methodologies and uncertainties

    International Nuclear Information System (INIS)

    Ke, Jing; McNeil, Michael; Price, Lynn; Khanna, Nina Zheng; Zhou, Nan

    2013-01-01

    In 2010, China’s cement output was 1.9 Gt, which accounted for 56% of world cement production. Total carbon dioxide (CO 2 ) emissions from Chinese cement production could therefore exceed 1.2 Gt. The magnitude of emissions from this single industrial sector in one country underscores the need to understand the uncertainty of current estimates of cement emissions in China. This paper compares several methodologies for calculating CO 2 emissions from cement production, including the three main components of emissions: direct emissions from the calcination process for clinker production, direct emissions from fossil fuel combustion and indirect emissions from electricity consumption. This paper examines in detail the differences between common methodologies for each emission component, and considers their effect on total emissions. We then evaluate the overall level of uncertainty implied by the differences among methodologies according to recommendations of the Joint Committee for Guides in Metrology. We find a relative uncertainty in China’s cement-related emissions in the range of 10 to 18%. This result highlights the importance of understanding and refining methods of estimating emissions in this important industrial sector. - Highlights: ► CO 2 emission estimates are critical given China’s cement production scale. ► Methodological differences for emission components are compared. ► Results show relative uncertainty in China’s cement-related emissions of about 10%. ► IPCC Guidelines and CSI Cement CO 2 and Energy Protocol are recommended

  5. Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea

    International Nuclear Information System (INIS)

    Oh, Ilyoung; Wehrmeyer, Walter; Mulugetta, Yacob

    2010-01-01

    Energy-related CO 2 emissions in South Korea have increased substantially, outpacing those of Organisation for Economic Co-operation and Development (OECD) countries since 1990. To mitigate CO 2 emissions in South Korea, we need to understand the main contributing factors to rising CO 2 levels as part of the effort toward developing targeted policies. This paper aims to analyze the specific trends and influencing factors that have caused changes in emissions patterns in South Korea over a 15-year period. To this end, we employed the Log Mean Divisia index method with five energy consumption sectors and seven sub-sectors in terms of fuel mix (FM), energy intensity (EI), structural change (SC) and economic growth (EG). The results showed that EG was a dominant explanation for the increase in CO 2 emissions in all of the sectors. The results also demonstrated that FM causes CO 2 reduction across the array of sectors with the exception of the energy supply sector. CO 2 reduction as a function of SC was also observed in manufacturing, services and residential sectors. Furthermore, EI was an important driver of CO 2 reduction in most sectors except for several manufacturing sub-sectors. Based on these findings, it appears that South Korea should implement climate change policies that consider the specific influential factors associated with increasing CO 2 emissions in each sector.

  6. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  7. Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa; Bush, Richard T; Sullivan, Leigh A

    2015-04-01

    Controversy surrounds the green credentials of hydroelectricity because of the potentially large emission of greenhouse gases (GHG) from associated reservoirs. However, limited and patchy data particularly for China is constraining the current global assessment of GHG releases from hydroelectric reservoirs. This study provides the first evaluation of the CO2 and CH4 emissions from China's hydroelectric reservoirs by considering the reservoir water surface and drawdown areas, and downstream sources (including spillways and turbines, as well as river downstream). The total emission of 29.6 Tg CO2/year and 0.47 Tg CH4/year from hydroelectric reservoirs in China, expressed as CO2 equivalents (eq), corresponds to 45.6 Tg CO2eq/year, which is 2-fold higher than the current GHG emission (ca. 23 Tg CO2eq/year) from global temperate hydropower reservoirs. China's average emission of 70 g CO2eq/kWh from hydropower amounts to 7% of the emissions from coal-fired plant alternatives. China's hydroelectric reservoirs thus currently mitigate GHG emission when compared to the main alternative source of electricity with potentially far great reductions in GHG emissions and benefits possible through relatively minor changes to reservoir management and design. On average, the sum of drawdown and downstream emission including river reaches below dams and turbines, which is overlooked by most studies, represents the equivalent of 42% of the CO2 and 92% of CH4 that emit from hydroelectric reservoirs in China. Main drivers on GHG emission rates are summarized and highlight that water depth and stratification control CH4 flux, and CO2 flux shows significant negative relationships with pH, DO, and Chl-a. Based on our finding, a substantial revision of the global carbon emissions from hydroelectric reservoirs is warranted.

  8. Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China.

    Science.gov (United States)

    Hu, Cheng; Liu, Shoudong; Wang, Yongwei; Zhang, Mi; Xiao, Wei; Wang, Wei; Xu, Jiaping

    2018-06-03

    Anthropogenic CO 2 emissions from cities represent a major source contributing to the global atmospheric CO 2 burden. Here, we examined the enhancement of atmospheric CO 2 mixing ratios by anthropogenic emissions within the Yangtze River Delta (YRD), China, one of the world's most densely populated regions (population greater than 150 million). Tower measurements of CO 2 mixing ratios were conducted from March 2013 to August 2015 and were combined with numerical source footprint modeling to help constrain the anthropogenic CO 2 emissions. We simulated the CO 2 enhancements (i.e., fluctuations superimposed on background values) for winter season (December, January, and February). Overall, we observed mean diurnal variation of CO 2 enhancement of 23.5~49.7 μmol mol -1 , 21.4~52.4 μmol mol -1 , 28.1~55.4 μmol mol -1 , and 29.5~42.4 μmol mol -1 in spring, summer, autumn, and winter, respectively. These enhancements were much larger than previously reported values for other countries. The diurnal CO 2 enhancements reported here showed strong similarity for all 3 years of the study. Results from source footprint modeling indicated that our tower observations adequately represent emissions from the broader YRD area. Here, the east of Anhui and the west of Jiangsu province contributed significantly more to the anthropogenic CO 2 enhancement compared to the other sectors of YRD. The average anthropogenic CO 2 emission in 2014 was 0.162 (± 0.005) mg m -2  s -1 and was 7 ± 3% higher than 2010 for the YRD. Overall, our emission estimates were significantly smaller (9.5%) than those estimated (0.179 mg m -2  s -1 ) from the EDGAR emission database.

  9. Towards real-time verification of CO2 emissions

    Science.gov (United States)

    Peters, Glen P.; Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Friedlingstein, Pierre; Ilyina, Tatiana; Jackson, Robert B.; Joos, Fortunat; Korsbakken, Jan Ivar; McKinley, Galen A.; Sitch, Stephen; Tans, Pieter

    2017-12-01

    The Paris Agreement has increased the incentive to verify reported anthropogenic carbon dioxide emissions with independent Earth system observations. Reliable verification requires a step change in our understanding of carbon cycle variability.

  10. A carbon tax to reduce CO2 emissions in Europe

    International Nuclear Information System (INIS)

    Agostini, Paola; Botteon, Michele; Carraro, Carlo

    1992-01-01

    This paper examines the effects of introducing a tax on carbon dioxide emissions produced by combustion processes in OECD-European countries. A sectoral model of energy consumption is constructed to examine energy-saving and inter-fuel substitution effects induced by the introduction of various carbon taxes. The simulation period is 1989-94. Our results provide a mild support to the environmental role of a carbon tax. Energy-saving or inter-fuel substitution processes, that result from the introduction of environmental taxation, stabilize emissions at the 1988 level only in the electricity generation sector, and only if high tax rates are assumed ($100/ton.C). By contrast, total emissions (all sectors and all fuels) keep growing, and the implementation of a tax of $100/ton.C can only reduce the emission growth rate. (Author)

  11. Dependency of climate change and carbon cycle on CO2 emission pathways

    International Nuclear Information System (INIS)

    Nohara, Daisuke; Yoshida, Yoshikatsu; Misumi, Kazuhiro; Ohba, Masamichi

    2013-01-01

    Previous research has indicated that the response of globally average temperature is approximately proportional to cumulative CO 2 emissions, yet evidence of the robustness of this relationship over a range of CO 2 emission pathways is lacking. To address this, we evaluate the dependency of climate and carbon cycle change on CO 2 emission pathways using a fully coupled climate–carbon cycle model. We design five idealized pathways (including an overshoot scenario for cumulative emissions), each of which levels off to final cumulative emissions of 2000 GtC. The cumulative emissions of the overshoot scenario reach 4000 GtC temporarily, subsequently reducing to 2000 GtC as a result of continuous negative emissions. Although we find that responses of climatic variables and the carbon cycle are largely independent of emission pathways, a much weakened Atlantic meridional overturning circulation (AMOC) is projected in the overshoot scenario despite cessation of emissions. This weakened AMOC is enhanced by rapid warming in the Arctic region due to considerable temporary elevation of atmospheric CO 2 concentration and induces the decline of surface air temperature and decrease of precipitation over the northern Atlantic and Europe region. Moreover, the weakened AMOC reduces CO 2 uptake by the Atlantic and Arctic oceans. However, the weakened AMOC contributes little to the global carbon cycle. In conclusion, although climate variations have been found to be dependent on emission pathways, the global carbon cycle is relatively independent of these emission pathways, at least superficially. (letter)

  12. Analysis of CO2, CO and HC emission reduction in automobiles

    Science.gov (United States)

    Balan, K. N.; Valarmathi, T. N.; Reddy, Mannem Soma Harish; Aravinda Reddy, Gireddy; Sai Srinivas, Jammalamadaka K. M. K.; Vasan

    2017-05-01

    In the present scenario, the emission from automobiles is becoming a serious problem to the environment. Automobiles, thermal power stations and Industries majorly constitute to the emission of CO2, CO and HC. Though the CO2 available in the atmosphere will be captured by oceans, grasslands; they are not enough to control CO2 present in the atmosphere completely. Also advances in engine and vehicle technology continuously to reduce the emission from engine exhaust are not sufficient to reduce the HC and CO emission. This work concentrates on design, fabrication and analysis to reduce CO2, CO and HC emission from exhaust of automobiles by using molecular sieve 5A of 1.5mm. In this paper, the details of the fabrication, results and discussion about the process are discussed.

  13. Decoupling between CO2 emissions and economic growth in Brazil and in other countries

    Directory of Open Access Journals (Sweden)

    Carla Nogueira Patrão de Aquino

    2017-10-01

    Full Text Available The aim of this article is to examine the change in behavior between CO2 emissions and the world economic growth in the years 2013 and 2014 which may represent decoupling, and, thus,  contribute to the debate on alternative forms of reducing greenhouse effect. We established the 1990-2014 period as time axis because it presents two inflections in the growth curve of global CO2 emissions: one associated with the 2008 world crisis; and the other starting in 2013, discussed in this article. We selected six countries: the United States, Japan, Brazil, China, India, and Russia. In common, they share the same amount of CO2 emissions in world production. As a result, we identified changes related to the vectors gross domestic product and global CO2 emissions, favoring gas emissions reduction, as behavioral reflection of these two variables in the investigated countries which, if confirmed, points to structural changes between these two variables.

  14. Estimation and reduction of CO2 emissions from crude oil distillation units

    International Nuclear Information System (INIS)

    Gadalla, M.; Olujic, Z.; Jobson, M.; Smith, R.

    2006-01-01

    Distillation systems are energy-intensive processes, and consequently contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide (CO 2 ). A simple model for the estimation of CO 2 emissions associated with operation of heat-integrated distillation systems as encountered in refineries is introduced. In conjunction with a shortcut distillation model, this model has been used to optimize the process conditions of an existing crude oil atmospheric tower unit aiming at minimization of CO 2 emissions. Simulation results indicate that the total CO 2 emissions of the existing crude oil unit can be cut down by 22%, just by changing the process conditions accordingly, and that the gain in this respect can be doubled by integrating a gas turbine. In addition, emissions reduction is accompanied by substantial profit increase due to utility saving and/or export

  15. Norwegian gas sales and the impacts on European CO2 emissions

    International Nuclear Information System (INIS)

    Berg, E.; Boug, P.; Kverndokk, S.

    2001-01-01

    This paper has studied the impacts on Western European CO 2 emissions of a reduction in Norwegian gas sales. Such impacts are due to changes in energy demand, energy supply, and environmental and political regulations. The gas supply model DYNOPOLY was used to analyse the effects on Russian and Algerian gas exports of a reduction in Norwegian gas supply. The effects on the demand side and the effects of committing to CO 2 targets were analysed using the energy demand model SEEM. If Western European countries commit to their announced CO 2 emissions targets, reduced Norwegian gas sales will have no impact on emissions. The consumption of oil and coal will increase slightly, while the total energy consumption will go down. Also, a reduction in Norwegian gas sales will have only minor impacts on the CO 2 emissions from Western Europe when no emissions regulations are considered

  16. Does export product quality matter for CO2 emissions? Evidence from China.

    Science.gov (United States)

    Gozgor, Giray; Can, Muhlis

    2017-01-01

    This paper re-estimates the environmental Kuznets curve (EKC) in China. To this end, it uses the unit root tests with structural breaks and the autoregressive-distributed lag (ARDL) estimations over the period 1971-2010. The special role is given to the impact of export product quality on CO 2 emissions in the empirical models. The paper finds that the EKC hypothesis is applicable in China. It also observes the positive effect from energy consumption to CO 2 emissions. In addition, it finds that the export product quality is negatively associated with CO 2 emissions. The paper also argues potential implications.

  17. Social groups and CO2 emissions in Spanish households

    International Nuclear Information System (INIS)

    Duarte, Rosa; Mainar, Alfredo; Sánchez-Chóliz, Julio

    2012-01-01

    This paper examines the social factors that underlie the composition of final demand and, therefore, determine the final volume of emissions. The study throws light on the relationships between the parameters characterising Spanish households (income, urban/rural residence, local population density, head of household's level of education and social class) and their behaviour with regard to consumption and the demand for goods and services. On this basis, we determine which consumption patterns are best aligned with sustainable growth and development. Our main conclusion is that the factors analysed determine the volume of emissions for each household in terms of their correlation with income, which is the primary determinant of consumption patterns. The methodology proposed combines linear SAM models and econometric estimation of emissions elasticity with respect to spending. - Highlights: ► The methodology proposed combines linear SAM models and econometric estimation. ► Social factors determine the volume of emissions for each household. ► This is due to their correlation with income, which determine consumption patterns. ► Higher levels of spending do not entail greater household emission intensities. ► Elasticities of emissions calculated are lower than one.

  18. Spatial Disaggregation of CO2 Emissions for the State of California

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; de la Rue du Can, Stephane; Wenzel, Tom; Fischer, Marc

    2008-06-11

    This report allocates California's 2004 statewide carbon dioxide (CO2) emissions from fuel combustion to the 58 counties in the state. The total emissions are allocated to counties using several different methods, based on the availability of data for each sector. Data on natural gas use in all sectors are available by county. Fuel consumption by power and combined heat and power generation plants is available for individual plants. Bottom-up models were used to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft. All other sources of CO2 emissions were allocated to counties based on surrogates for activity. CO2 emissions by sector were estimated for each county, as well as for the South Coast Air Basin. It is important to note that emissions from some sources, notably electricity generation, were allocated to counties based on where the emissions were generated, rather than where the electricity was actually consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported from other states and international marine bunker fuels, were not included in the analysis. California Air Resource Board (CARB) does not include CO2 emissions from interstate and international air travel, in the official California greenhouse gas (GHG) inventory, so those emissions were allocated to counties for informational purposes only. Los Angeles County is responsible for by far the largest CO2 emissions from combustion in the state: 83 Million metric tonnes (Mt), or 24percent of total CO2 emissions in California, more than twice that of the next county (Kern, with 38 Mt, or 11percent of statewide emissions). The South Coast Air Basin accounts for 122 MtCO2, or 35percent of all emissions from fuel combustion in the state. The distribution of emissions by sector varies considerably by county, with on-road motor vehicles dominating most counties, but large stationary sources and rail travel

  19. Carbon-14 based determination of the biogenic fraction of industrial CO(2) emissions - application and validation.

    Science.gov (United States)

    Palstra, S W L; Meijer, H A J

    2010-05-01

    The (14)C method is a very reliable and sensitive method for industrial plants, emission authorities and emission inventories to verify data estimations of biogenic fractions of CO(2) emissions. The applicability of the method is shown for flue gas CO(2) samples that have been sampled in 1-h intervals at a coal- and wood-fired power plant and a waste incineration plant. Biogenic flue gas CO(2) fractions of 5-10% and 48-50% have been measured at the power plant and the waste incineration plant, respectively. The reliability of the method has been proven by comparison of the power plant results with those based on carbon mass input and output data of the power plant. At industrial plants with relatively low biogenic CO(2) fraction (<10%) the results need to be corrected for sampled (14)CO(2) from atmospheric air. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. The influence of using LPG device on the CO2 emissions from personal passenger cars

    Directory of Open Access Journals (Sweden)

    Viliam Carach

    2007-12-01

    Full Text Available Traffic, mostly the air and car traffic is the biggest producer of CO2 (51% at present. CO2 is one of the most important greenhouse gases with more than 50 % of emissions contributing to this major global ecological problem. A rising concetration of CO2 in the atmosphere leads to higher global temperatures. The main problem is the rise of CO2 emissions in most developed countries despite international undertakings accepted in 80´s. This is the main reason for finding solutions to reduce the amount of CO2 emissions in the traffic. One of many solutions is the use of LPG fuel. The purpose of this article is to quantify the efficiency of using LPG in personal passenger cars.

  1. Analyzing impact factors of CO2 emissions using the STIRPAT model

    International Nuclear Information System (INIS)

    Fan Ying; Liu Lancui; Wu Gang; Wei Yiming

    2006-01-01

    Using the STIRPAT model, this paper analyzes the impact of population, affluence and technology on the total CO 2 emissions of countries at different income levels over the period 1975-2000. Our main results show at the global level that economic growth has the greatest impact on CO 2 emissions, and the proportion of the population between ages 15 and 64 has the least impact. The proportion of the population between 15 and 64 has a negative impact on the total CO 2 emissions of countries at the high income level, but the impact is positive at other income levels. This may illustrate the importance of the 'B' in the 'I = PABT'; that is to say that different behavior fashions can greatly influence environmental change. For low-income countries, the impact of GDP per capita on total CO 2 emissions is very great, and the impact of energy intensity in upper-middle income countries is very great. The impact of these factors on the total CO 2 emissions of countries at the high income level is relatively great. Therefore, these empirical results indicate that the impact of population, affluence and technology on CO 2 emissions varies at different levels of development. Thus, policy-makers should consider these matters fully when they construct their long-term strategies for CO 2 abatement

  2. Influence of European passenger cars weight to exhaust CO2 emissions

    International Nuclear Information System (INIS)

    Zervas, Efthimios; Lazarou, Christos

    2008-01-01

    The increase of atmospheric CO 2 concentration influences climate changes. The road transport sector is one of the main anthropogenic sources of CO 2 emissions in the European Union (EU). One of the main parameters influencing CO 2 emissions from passenger cars (PCs) is their weight, which increases during last years. For the same driving distance, heavier vehicles need more work than lighter ones, because they have to move an extra weight, and thus more fuel is consumed and thus increased CO 2 emissions. The weight control of new PCs could be an efficient way to control their CO 2 emissions. After an analysis of the EU new PCs market, their segment distribution and their weight, some estimations for 2020 are presented. Based on this analysis, 13 base scenarios using several ways for the control of the weight of future European new PCs are used to estimate their CO 2 emissions and the benefit of each scenario. The results show that a significant benefit on CO 2 emissions could be achieved if the weight of each PC does not exceed an upper limit, especially if this limit is quite low. The benefit obtained by limitations of weight is higher than the benefit obtained from the expected decreased future fuel consumption. Similar results are obtained when the weight of new PCs does not exceed an upper limit within each segment, or when the weight of each new PC decreases. (author)

  3. Does Non-Fossil Energy Usage Lower CO2 Emissions? Empirical Evidence from China

    Directory of Open Access Journals (Sweden)

    Deshan Li

    2016-08-01

    Full Text Available This paper uses an autoregressive distributed lag model (ARDL to examine the dynamic impact of non-fossil energy consumption on carbon dioxide (CO2 emissions in China for a given level of economic growth, trade openness, and energy usage between 1965 and 2014. The results suggest that the variables are in a long-run equilibrium. ARDL estimation indicates that consumption of non-fossil energy plays a crucial role in curbing CO2 emissions in the long run but not in the short term. The results also suggest that, in both the long and short term, energy consumption and trade openness have a negative impact on the reduction of CO2 emissions, while gross domestic product (GDP per capita increases CO2 emissions only in the short term. Finally, the Granger causality test indicates a bidirectional causality between CO2 emissions and energy consumption. In addition, this study suggests that non-fossil energy is an effective solution to mitigate CO2 emissions, providing useful information for policy-makers wishing to reduce atmospheric CO2.

  4. Factor Decomposition Analysis of Energy-Related CO2 Emissions in Tianjin, China

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-07-01

    Full Text Available Tianjin is the largest coastal city in northern China with rapid economic development and urbanization. Energy-related CO2 emissions from Tianjin’s production and household sectors during 1995–2012 were calculated according to the default carbon-emission coefficients provided by the Intergovernmental Panel on Climate Change. We decomposed the changes in CO2 emissions resulting from 12 causal factors based on the method of Logarithmic Mean Divisia Index. The examined factors were divided into four types of effects: energy intensity effect, structure effect, activity intensity effect, scale effect and the various influencing factors imposed differential impacts on CO2 emissions. The decomposition outcomes indicate that per capita GDP and population scale are the dominant positive driving factors behind the growth in CO2 emissions for all sectors, while the energy intensity of the production sector is the main contributor to dampen the CO2 emissions increment, and the contributions from industry structure and energy structure need further enhancement. The analysis results reveal the reasons for CO2 emission changes in Tianjin and provide a solid basis upon which policy makers may propose emission reduction measures and approaches for the implementation of sustainable development strategies.

  5. Trends in CO2 Emissions from China-Oriented International Marine Transportation Activities and Policy Implications

    Directory of Open Access Journals (Sweden)

    Hualong Yang

    2017-07-01

    Full Text Available The demand for marine transportation and its associated CO2 emissions are growing rapidly as a result of increasing international trade and economic growth. An activity-based approach is developed for forecasting CO2 emissions from the China-oriented international seaborne trade sector. To accurately estimate the aggregated emissions, CO2 emissions are calculated individually for five categories of vessels: crude oil tanker, product tanker, chemical tanker, bulk carrier, and container. A business-as-usual (BAU scenario was developed to describe the current situation without additional mitigation policies, whilst three alternative scenarios were developed to describe scenarios with various accelerated improvements of the key factors. The aggregated CO2 emissions are predicted to reach 419.97 Mt under the BAU scenario, and 258.47 Mt under the optimal case, AD3. These predictions are 4.5 times and 2.8 times that of the aggregated emissions in 2007. Our analysis suggests that regulations for monitoring, reporting, and verifying the activities of vessels should be proposed, in order to quantify the CO2 emissions of marine transportation activities in Chinese territorial waters. In the long-term future, mitigation policies should be employed to reduce CO2 emissions from the marine trade sector and to address the climatic impact of shipping.

  6. Estimation of CO2 emission from water treatment plant--model development and application.

    Science.gov (United States)

    Kyung, Daeseung; Kim, Dongwook; Park, Nosuk; Lee, Woojin

    2013-12-15

    A comprehensive mathematical model developed for this study was used to compare estimates of on-site and off-site CO2 emissions, from conventional and advanced water treatment plants (WTPs). When 200,000 m(3) of raw water at 10 NTU (Nepthelometric Turbidity Unit) was treated by a conventional WTP to 0.1 NTU using aluminum sulfate as a coagulant, the total CO2 emissions were estimated to be 790 ± 228 (on-site) and 69,596 ± 3950 (off-site) kg CO2e/d. The emissions from an advanced WTP containing micro-filtration (MF) membrane and ozone disinfection processes; treating the same raw water to 0.005 NTU, were estimated to be 395 ± 115 (on-site) and 38,197 ± 2922 (off-site) kg CO2e/d. The on-site CO2 emissions from the advanced WTP were half that from the conventional WTP due to much lower use of coagulant. On the other hand, off-site CO2 emissions due to consumption of electricity were 2.14 times higher for the advanced WTP, due to the demands for operation of the MF membrane and ozone disinfection processes. However, the lower use of chemicals in the advanced WTP decreased off-site CO2 emissions related to chemical production and transportation. Overall, total CO2 emissions from the conventional WTP were 1.82 times higher than that from the advanced WTP. A sensitivity analysis was performed for the advanced WTP to suggest tactics for simultaneously reducing CO2 emissions further and enhancing water quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

    International Nuclear Information System (INIS)

    Lee, D.H.; Lee, K.S.; Cho, Y.J.; Kim, H.J.; Choi, J.M.; Chung, S.O.

    2012-01-01

    Reducing carbon dioxide (CO2) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where CO2 is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, CO2 concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse CO2 enrichment based on accurate monitoring of the added CO2 can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required CO2 concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied CO2. RPI for a greenhouse controlled at lower set point of CO2 concentration (500 μmol * mol -1 ) was greater than that of greenhouse at higher set point (800 μmol * mol -1 ). Evaluation tests to optimize CO2 enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of CO2 but also to maintain the crop profitability

  8. Urban CO2 emissions in China: Spatial boundary and performance comparison

    International Nuclear Information System (INIS)

    Cai, Bofeng; Zhang, Lixiao

    2014-01-01

    Different names/concepts and therefore different spatial boundaries for cities in China are responsible for the conflicting and confusing results associated with urban CO 2 emissions accounting. In this study, four types of urban boundaries, i.e., city administrative boundary (UB 1 ), city district boundary (UB 2 ), city built-up area (UB 3 ) and urban proper (UB 4 ), were identified and defined. Tianjin was subsequently selected as the case city to illustrate the different performances of CO 2 emissions with respect to these four boundaries using a 1-km grid dataset built bottom-up by point-emission sources. Different urban boundaries can induce a difference in CO 2 emissions as large as 654%. UB 1 and UB 2 are not the appropriate proxies for urban boundaries in the analysis of urban CO 2 emissions, although UB 1 is a widely adopted boundary. UB 3 is a good representative of city clusters and urban sprawl in a certain region, whereas UB 4 is the appropriate system boundary for such issues as urban CO 2 emissions in light of landscape characteristics and pertinent human activities, as well as the comparability to counterparts in developed countries. These results provide sound policy implications for the improvement of urban energy management and carbon emission abatement in China. - highlights: • Four types of urban boundaries in China were clarified and defined. • Different urban boundaries will induce deviation in CO 2 emissions as large as 654%. • The UB 4 stands for appropriate urban boundary for urban CO 2 emissions analysis. • Gridded data proves to be supplementary tools for urban CO 2 emissions accounting

  9. Spatial and temporal distribution of onroad CO2 emissions at the Urban spatial scale

    Science.gov (United States)

    Song, Y.; Gurney, K. R.; Zhou, Y.; Mendoza, D. L.

    2011-12-01

    The Hestia Project is a multi-disciplinary effort to help better understand the spatial and temporal distribution of fossil fuel carbon dioxide (CO2) emission at urban scale. Onroad transportation is an essential source of CO2 emissions. This study examines two urban domains: Marion County (Indianapolis) and Los Angeles County and explores the methods and results associated with the spatial and temporal distribution of local urban onroad CO2 emissions. We utilize a bottom-up approach and spatially distribute county emissions based on the Annual Average Daily Traffic (AADT) counts provided by local Department of Transportation. The total amount of CO2 emissions is calculated by the National Mobile Inventory Model (NMIM) for Marion County and the EMission FACtors (EMFAC) model for Los Angeles County. The NMIM model provides CO2 emissions based on vehicle miles traveled (VMT) data at the county-level from the national county database (NCD). The EMFAC model provides CO2 emissions for California State based on vehicle activities, including VMT, vehicle population and fuel types. A GIS road atlas is retrieved from the US Census Bureau. Further spatial analysis and integration are performed by GIS software to distribute onroad CO2 emission according to the traffic volume. The temporal allocation of onroad CO2 emission is based on the hourly traffic data obtained from the Metropolitan Planning Orgnizations (MPO) for Marion County and Department of Transportation for Los Angeles County. The annual CO2 emissions are distributed according to each hourly fraction of traffic counts. Due to the fact that ATR stations are unevenly distributed in space, we create Thiessen polygons such that each road segment is linked to the nearest neighboring ATR station. The hourly profile for each individual station is then combined to create a "climatology" of CO2 emissions in time on each road segment. We find that for Marion County in the year 2002, urban interstate and arterial roads have

  10. Trading for a better environment. Feasibility of CO2 emission trade in the Netherlands

    International Nuclear Information System (INIS)

    Kolk, J. van der; Harmsen, H.

    2002-01-01

    July 1, 2000, the Committee CO2 trade was initiated by the Dutch Minister of Housing, Spatial Planning and the Environment (VROM) to investigate the desirability and feasibility of a national system for the trade of CO2 emission. Other greenhouse gases than carbon dioxide are not taken into account [nl

  11. Reduction of CO2 emissions in houses of historic and visual importance

    NARCIS (Netherlands)

    Hal, van J.D.M. (Anke); Dulski, B.; Postel, A.M.

    2010-01-01

    According to the ‘Climate Programme’ the municipality of Amsterdam has the ambition to reduce the CO2 emissions within the city limits by 40% in the year 2025 compared to the year 1990. To realize this ambition substantial CO2 savings have to be realized at the 375,000 current houses in the city. A

  12. Reduction of CO2 Emissions in Houses of Historic and Visual Importance

    NARCIS (Netherlands)

    Van Hal, A.; Dulski, B.; Postel, A.M.

    2010-01-01

    According to the ‘Climate Programme’ the municipality of Amsterdam has the ambition to reduce the CO2 emissions within the city limits by 40% in the year 2025 compared to the year 1990. To realize this ambition substantial CO2 savings have to be realized at the 375,000 current houses in the city. A

  13. Optimizing Blendstock Composition and Ethanol Feedstock to Reduce Gasoline Well-to-Pump CO 2 Emission

    KAUST Repository

    Zhang, Bo

    2017-06-02

    Lifecycle CO2 emission of ethanol blended gasoline was simulated to investigate how fuel properties and composition affect overall emission. Fuel research octane number (RON), octane sensitivity and ethanol content (derived from sugarcane and corn) were varied in the simulations to formulate blended fuels that economically achieve target specifications. The well-to-pump (WTP) simulation results were then analyzed to understand the effects of fuel composition on emission. Elevated ethanol content displaces aromatics and olefins required in gasoline blendstock to reach a target fuel specification. The addition of greater sugarcane-based ethanol percentage in constant aromatics and olefins fuel reduces its WTP CO2 emission. Corn-based ethanol blending does not offer CO2 emission offset due to its high production emissions. The mixing of sugarcane-based with corn-based ethanol is shown to be a potentially effective method for achieving a blended fuel with a lower lifecycle CO2 emission. Besides CO2 emission, the total greenhouse gas (GHG) emission from land-use conversions (LUC), CH4, and N2O are also significant in determining the optimal fuel blend. Herein, we present preliminary results showing that total GHG emissions significantly increase when either corn or sugarcane ethanol is blended at even small percentages; detailed results will be addressed in future communications.

  14. Optimizing Blendstock Composition and Ethanol Feedstock to Reduce Gasoline Well-to-Pump CO 2 Emission

    KAUST Repository

    Zhang, Bo; Sarathy, Mani; Abdul-Manan, Amir F.N.

    2017-01-01

    Lifecycle CO2 emission of ethanol blended gasoline was simulated to investigate how fuel properties and composition affect overall emission. Fuel research octane number (RON), octane sensitivity and ethanol content (derived from sugarcane and corn) were varied in the simulations to formulate blended fuels that economically achieve target specifications. The well-to-pump (WTP) simulation results were then analyzed to understand the effects of fuel composition on emission. Elevated ethanol content displaces aromatics and olefins required in gasoline blendstock to reach a target fuel specification. The addition of greater sugarcane-based ethanol percentage in constant aromatics and olefins fuel reduces its WTP CO2 emission. Corn-based ethanol blending does not offer CO2 emission offset due to its high production emissions. The mixing of sugarcane-based with corn-based ethanol is shown to be a potentially effective method for achieving a blended fuel with a lower lifecycle CO2 emission. Besides CO2 emission, the total greenhouse gas (GHG) emission from land-use conversions (LUC), CH4, and N2O are also significant in determining the optimal fuel blend. Herein, we present preliminary results showing that total GHG emissions significantly increase when either corn or sugarcane ethanol is blended at even small percentages; detailed results will be addressed in future communications.

  15. Investigation of CO2 emission reduction strategy from in-use gasoline vehicle

    Science.gov (United States)

    Choudhary, Arti; Gokhale, Sharad

    2016-04-01

    On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.

  16. CO2 emission related to energy combustion in the world in 2006

    International Nuclear Information System (INIS)

    2009-02-01

    After a brief comment of the evolution of CO 2 emissions due to transports, housing and office buildings, industry and agriculture, electrical plants, and other energetic activities in France in 2007 in comparison with previous years, this article comments the global increase of CO 2 emissions related to energy in the world (figures and graphs are given for some countries of all continents, notably for China, the United States, France, the European Union, the United Kingdom and Germany). These emissions are then assessed in terms of ratio between emission intensity and GDPs or population. Emissions per inhabitant display a 1 to 20 ratio between the USA and Africa

  17. National fossil fuels consumption: Estimates of CO2 emissions and thermic pollution

    International Nuclear Information System (INIS)

    Mariani, Mario; Casale, Francesco

    1997-01-01

    The study on the basis of the national energy consumption from 1988 to 1994, estimates CO 2 emission rates produced by the most relevant hydrocarbons involved in the technological combustion processes and assess the potential thermic impact on the environment. Two calculation procedures have been developed taking into account once emission factors and other emission indexes in order to verify the two estimates. Besides, the work determines the national trend of CO 2 emission with regard to the aim for the stabilization of carbon dioxide emissions at 1990 levels by 2000

  18. A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations

    Science.gov (United States)

    Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2016-12-01

    Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field

  19. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries

    International Nuclear Information System (INIS)

    Arouri, Mohamed El Hedi; Ben Youssef, Adel; M'henni, Hatem; Rault, Christophe

    2012-01-01

    This article extends the recent findings of , , and by implementing recent bootstrap panel unit root tests and cointegration techniques to investigate the relationship between carbon dioxide emissions, energy consumption, and real GDP for 12 Middle East and North African Countries (MENA) over the period 1981–2005. Our results show that in the long-run energy consumption has a positive significant impact on CO 2 emissions. More interestingly, we show that real GDP exhibits a quadratic relationship with CO 2 emissions for the region as a whole. However, although the estimated long-run coefficients of income and its square satisfy the EKC hypothesis in most studied countries, the turning points are very low in some cases and very high in other cases, hence providing poor evidence in support of the EKC hypothesis. CO 2 emission reductions per capita have been achieved in the MENA region, even while the region exhibited economic growth over the period 1981–2005. The econometric relationships derived in this paper suggest that future reductions in CO 2 emissions per capita might be achieved at the same time as GDP per capita in the MENA region continues to grow. - Highlights: ► We study the links between CO 2 emissions, energy consumption and GDP in MENA region. ► Energy consumption has a positive correlation with CO 2 emissions. ► GDP exhibits a quadratic relationship with CO 2 emissions for the region as a whole. ► However, the turning points are low in some cases and high in other cases. ► Thus, not all countries need to sacrifice economic growth to decrease CO 2 emissions.

  20. Swedish biomass strategies to reduce CO2 emission and oil use in an EU context

    International Nuclear Information System (INIS)

    Joelsson, Jonas; Gustavsson, Leif

    2012-01-01

    Swedish energy strategies for transportation, space heating and pulp industries were evaluated with a focus on bioenergy use. The aims were to 1) study trade-offs between reductions in CO 2 emission and oil use and between Swedish reductions and EU reductions, 2) compare the potential contributions of individual reduction measures, 3) quantify the total CO 2 emission and oil use reduction potentials. Swedish energy efficiency measures reduced EU CO 2 emission by 45–59 Mt CO 2 /a, at current biomass use and constant oil use. Doubling Swedish bioenergy use yielded an additional 40 Mt CO 2 /a reduction. Oil use could be reduced, but 36–81 kt of reductions in CO 2 emission would be lost per PJ of oil use reduction. Swedish fossil fuel use within the studied sectors could be nearly eliminated. The expansion of district heating and cogeneration of heat with a high electricity yield were important measures. Plug-in hybrid electric cars reduced CO 2 emission compared with conventional cars, and the difference was larger with increasing oil scarcity. The introduction of black liquor gasification in pulp mills also gave large CO 2 emission reduction. Motor fuel from biomass was found to be a feasible option when coal is the marginal fuel for fossil motor fuel production. -- Highlights: ► Bioenergy is compared to optimized fossil fuel use under different oil availability constraints. ► Swedish strategies are evaluated with respect to CO 2 emission and oil use reduction within Sweden and the EU. ► Efficiency measures give the largest reductions but increased bioenergy use is also important. ► District heating expansion, high electricity yield CHP, increased vehicle efficiency and PHEVs are important options. ► The studied sectors in Sweden could become nearly fossil-fuel free and yield an energy surplus.

  1. Analysis on influence factors of China's CO2 emissions based on Path-STIRPAT model

    International Nuclear Information System (INIS)

    Li Huanan; Mu Hailin; Zhang Ming; Li Nan

    2011-01-01

    With the intensification of global warming and continued growth in energy consumption, China is facing increasing pressure to cut its CO 2 (carbon dioxide) emissions down. This paper discusses the driving forces influencing China's CO 2 emissions based on Path-STIRPAT model-a method combining Path analysis with STIRPAT (stochastic impacts by regression on population, affluence and technology) model. The analysis shows that GDP per capita (A), industrial structure (IS), population (P), urbanization level (R) and technology level (T) are the main factors influencing China's CO 2 emissions, which exert an influence interactively and collaboratively. The sequence of the size of factors' direct influence on China's CO 2 emission is A>T>P>R>IS, while that of factors' total influence is A>R>P>T>IS. One percent increase in A, IS, P, R and T leads to 0.44, 1.58, 1.31, 1.12 and -1.09 percentage change in CO 2 emission totally, where their direct contribution is 0.45, 0.07, 0.63, 0.08, 0.92, respectively. Improving T is the most important way for CO 2 reduction in China. - Highlights: → We analyze the driving forces influencing China's CO 2 emissions. → Five macro factors like per capita GDP are the main influencing factors. → These factors exert an influence interactively and collaboratively. → Different factors' direct and total influence on China's CO 2 emission is different. → Improving technology level is the most important way for CO 2 reduction in China.

  2. Energy use, cost and CO2 emissions of electric cars

    NARCIS (Netherlands)

    van Vliet, O.; Brouwer, A.S.; Kuramochi, T.; van den Broek, M.A.; Faaij, A.P.C.

    2010-01-01

    We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate

  3. Energy-related CO_2 emission in European Union agriculture: Driving forces and possibilities for reduction

    International Nuclear Information System (INIS)

    Li, Tianxiang; Baležentis, Tomas; Makutėnienė, Daiva; Streimikiene, Dalia; Kriščiukaitienė, Irena

    2016-01-01

    Highlights: • The research focuses on agricultural sectors of the eighteen European countries. • The main drivers of energy-related CO_2 emission are quantified by means of IDA. • The slack-based DEA model is applied to gauge the environmental efficiency. • Shadow prices of carbon emission are analysed. • Energy efficiency remains the primary means for increasing environmental efficiency. - Abstract: Climate change mitigation is a key issue in formulating global environmental policies. Energy production and consumption are the main sources of greenhouse gas (GHG) emissions in Europe. Energy consumption and energy-related GHG emissions from agriculture are an important concern for policymakers, as the agricultural activities should meet food security goals along with proper economic, environmental, and social impacts. Carbon dioxide (CO_2) emission is the most significant among energy-related GHG emissions. This paper analyses the main drivers behind energy-related CO_2 emission across agricultural sectors of European countries. The analysis is based on aggregate data from the World Input-Output Database. The research explores two main directions. Firstly, Index Decomposition Analysis (IDA), facilitated by the Shapley index, is used to identify the main drivers of CO_2 emission. Secondly, the Slack-based Model (SBM) is applied to gauge the environmental efficiency of European agricultural sectors. By applying frontier techniques, we also derive the measures of environmental efficiency and shadow prices, thereby contributing to a discussion on CO_2 emission mitigation in agriculture. Therefore, the paper devises an integrated approach towards analysis of CO_2 emission based upon advanced decomposition and efficiency analysis models. The research covers eighteen European countries and the applied methodology decomposes contributions to CO_2 emission across of regions and factors. Results of IDA suggest that decreasing energy intensity is the main factor

  4. ASSESSMENT OF CO2 EMISSION MITIGATION FOR A BRAZILIAN OIL REFINERY

    Directory of Open Access Journals (Sweden)

    W. N. Chan

    Full Text Available Abstract Currently the oil refining sector is responsible for approximately 5% of the total Brazilian energy related CO2 emissions. Possibilities to reduce CO2 emissions and related costs at the largest Brazilian refinery have been estimated. The abatement costs related to energy saving options are negative, meaning that feasibility exists without specific income due to emission reductions. The assessment shows that short-term mitigation options, i.e., fuel substitution and energy efficiency measures, could reduce CO2 emissions by 6% of the total current refinery emissions. It is further shown that carbon capture and storage offers the greatest potential for more significant emission reductions in the longer term (up to 43%, but costs in the range of 64 to162 US$/t CO2, depending on the CO2 emission source (regenerators of FCC units or hydrogen production units and the CO2 capture technology considered (oxyfuel combustion or post-combustion. Effects of uncertainties in key parameters on abatement costs are also evaluated via sensitivity analysis.

  5. Role of nuclear energy in CO2 emissions reduction

    International Nuclear Information System (INIS)

    Schaefer, H.

    1995-01-01

    Between 1675 and 1992 worldwide primary energy consumption has been multiplied by about 100 and has reached about 11 billions of tons of equivalent weight of coal, while human population has been multiplied by 8 and will probably reach 9 billions in 2030. The increase of atmospheric CO 2 production due to fossil fuel burn up will become a critical pollution and climatic problem which can be significantly reduced by a more widely use of nuclear energy in replacement of primary energies. However, perspectives of nuclear energy depend principally on the safety improvements of nuclear plants and on the solutions found to solve the management of radioactive waste. Renewable energies sources such as photovoltaic plants, wind engines, hydraulic plants have not yet been used at a large scale because they require large surfaces for their installation. To avoid any monolithic solution to solve the energy and environmental problems, a combination of renewable and nuclear energies seems to be a good compromise. For instance, the conception of a safety non-refueling nuclear reactor with an overheating hybrid system combining solar and fossil fuel energies should be conceivable. (J.S.)

  6. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  7. Projection of Chinese motor vehicle growth, oil demand, and CO2 emissions through 2050

    Science.gov (United States)

    2007-01-01

    During this study a methodology was developed to project growth trends of the motor vehicle population and associated oil demand and carbon dioxide (CO2) emissions in China through 2050. In particular, the numbers of highway vehicles, motorcycles, an...

  8. Energy Consumption, Economic Growth and CO2 Emissions: Evidence from Panel Data for MENA Region

    Directory of Open Access Journals (Sweden)

    Sahbi Farhani

    2012-01-01

    Full Text Available Energy plays a vital role in economic development. It performs a key for sustainable development. Hence, many studies have attempted to look for the direction of causality between energy consumption (EC, economic growth (GDP and CO2 emissions. This paper, therefore, applies the panel unit root tests, panel cointegration methods and panel causality test to investigate the relationship between EC, GDP and CO2 emissions for 15 MENA countries covering the annual period 1973-2008. The finding of this study reveals that there is no causal link between GDP and EC; and between CO2 emissions and EC in the short run. However, in the long run, there is a unidirectional causality running from GDP and CO2 emissions to EC. In addition, to deal with the heterogeneity in countries and the endogeneity bias in regressors, this paper applies respectively the FMOLS and the DOLS approach to estimate the long-run relationship between these three factors.

  9. CMS: CO2 Emissions from Fossil Fuels Combustion, ACES Inventory for Northeastern USA

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides estimates of annual and hourly carbon dioxide (CO2) emissions from the combustion of fossil fuels (FF) for 13 states across the Northeastern...

  10. CMS: CO2 Signals Estimated for Fossil Fuel Emissions and Biosphere Flux, California

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimated CO2 emission signals for 16 regions (air quality basins) in California, USA, during the individual months of November 2010 and May...

  11. NACP MCI: CO2 Emissions Inventory, Upper Midwest Region, USA., 2007

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a bottom-up CO2 emissions inventory for the mid-continent region of the United States for the year 2007. The study was undertaken as...

  12. NACP MCI: CO2 Emissions Inventory, Upper Midwest Region, USA., 2007

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a bottom-up CO2 emissions inventory for the mid-continent region of the United States for the year 2007. The study was undertaken as part of...

  13. An analysis of the driving forces of CO2 emissions embodied in Japan-China trade

    International Nuclear Information System (INIS)

    Dong Yanli; Ishikawa, Masanobu; Liu Xianbing; Wang Can

    2010-01-01

    By using the latest China-Japan input-output data sets and the index decomposition analysis (IDA) approach, this article analyzes the driving forces of CO 2 emissions embodied in trade between the two countries during 1990-2000. We found that the growth of trade volume had a large influence on the increase of CO 2 emissions embodiments in bilateral trade. The dramatic decline in carbon intensity of the Chinese economy is a primary cause in offsetting CO 2 emissions exported from China to Japan over 1995-2000. We argue that a better understanding of the factors affecting CO 2 emissions embodied in international trade will assist in seeking more effective climate policies with wider participation in the post-Kyoto regime.

  14. Economic Growth, Foreign Direct Investment and CO2 Emissions in China: A Panel Granger Causality Analysis

    Directory of Open Access Journals (Sweden)

    Hongfeng Peng

    2016-03-01

    Full Text Available Using a sample of province-level panel data, this paper investigates the Granger causality associations among economic growth (GDP, foreign direct investment (FDI and CO2 emissions in China. By applying the bootstrap Granger panel causality approach (Kónya, 2006, we consider both cross-sectional dependence and homogeneity of different regions in China. The empirical results support that the causality direction not only works in a single direction either from GDP to FDI (in Yunnan or from FDI to GDP (in Beijing, Neimenggu, Jilin, Shanxi and Gansu, but it also works in both directions (in Henan. Moreover, we document that GDP is Granger-causing CO2 emissions in Neimenggu, Hubei, Guangxi and Gansu while there is bidirectional causality between these two variables in Shanxi. In the end, we identify the unidirectional causality from FDI to CO2 emissions in Beijing, Henan, Guizhou and Shanxi, and the bidirectional causality between FDI and CO2 emissions in Neimenggu.

  15. Forecasting of CO2 emissions from fuel combustion using trend analysis

    International Nuclear Information System (INIS)

    Koene, Aylin Cigdem; Bueke, Tayfun

    2010-01-01

    The accelerating use of fossil fuels since the Industrial Revolution and the rapid destruction of forests causes a significant increase in greenhouse gases. The increasing threat of global warming and climate change has been the major, worldwide, ongoing concern especially in the last two decades. The impacts of global warming on the world economy have been assessed intensively by researchers since the 1990s. Worldwide organizations have been attempting to reduce the adverse impacts of global warming through intergovernmental and binding agreements. Carbon dioxide (CO 2 ) is one of the most foremost greenhouse gases in the atmosphere. The energy sector is dominated by the direct combustion of fuels, a process leading to large emissions of CO 2 . CO 2 from energy represents about 60% of the anthropogenic greenhouse gas emissions of global emissions. This percentage varies greatly by country, due to diverse national energy structures. The top-25 emitting countries accounted 82.27% of the world CO 2 emissions in 2007. In the same year China was the largest emitter and generated 20.96% of the world total. Trend analysis is based on the idea that what has happened in the past gives traders an idea of what will happen in the future. In this study, trend analysis approach has been employed for modelling to forecast of energy-related CO 2 emissions. To this aim first, trends in CO 2 emissions for the top-25 countries and the world total CO 2 emissions during 1971-2007 are identified. On developing the regression analyses, the regression analyses with R 2 values less than 0.94 showing insignificant influence in statistical tests have been discarded. Statistically significant trends are indicated in eleven countries namely, India, South Korea, Islamic Republic of Iran, Mexico, Australia, Indonesia, Saudi Arabia, Brazil, South Africa, Taiwan, Turkey and the world total. The results obtained from the analyses showed that the models for those countries can be used for CO 2

  16. Driving forces of rapid CO2 emissions growth: A case of Korea

    International Nuclear Information System (INIS)

    Kim, Yong-Gun; Yoo, Jonghyun; Oh, Wankeun

    2015-01-01

    This study aims to investigate Korea's final demand structure and its impacts on CO 2 emissions in order to reduce CO 2 emissions and develop environmental policy directions. Based on the environmentally extended input–output model, this study adopts a two-step approach: (1) to estimate the embodied emissions and their intensities for 393 sectors induced by final demand; and (2) to calculate the driving factors of emission growth between 2003 and 2011 and then evaluate the result by using Structural Decomposition Analysis (SDA). The findings of this study demonstrate that the impact of composition change in export with less embodied emission intensities tends to offset the increase in CO 2 emission by the export scale growth. The relatively low residential electricity price has resulted in the rapid growth of household electricity consumption and significantly contributed to emissions growth. The result of SDA indicates that Korea's final demand behavior yielded high carbonization over the same period. The findings suggest that Korean government should promote exports in industries with less embedded CO 2 in order to protect environments. In addition, emission information of each product and service should be provided for consumers to change their purchase patterns towards contributing to low carbon emissions as active players. -- Highlights: •We investigate Korea's final demand structure and its contribution to CO 2 emissions. •Using SDA, we evaluate the driving factors of emission growth from 2003 to 2011. •Exports play a critical role in Korea's CO 2 emissions growth. •The relatively low residential electricity price has contributed to emission growth. •Korea's final demand behavior yielded high carbonization over the same period

  17. Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland

    International Nuclear Information System (INIS)

    Alam, Md. Saniul; Hyde, Bernard; Duffy, Paul; McNabola, Aonghus

    2017-01-01

    Highlights: • Integration of models provides a robust estimation of tailpipe CO 2 emissions. • Taxation impact of vehicle fleet dieselisation was modelled. • A scenario development approach was proposed for policy analysis. • EV provided the largest cost saving option than that of the other fuel technologies. - Abstract: This study modelled the Passenger (PC) fleet and other categories of road transport in Ireland from 2015 to 2035 to assess the impact of current and potential greenhouse gas mitigation policies on CO 2 emissions. Scenarios included the shift of purchasing towards diesel PCs over gasoline PCs. Scrappage rates were also calculated and applied to the fleet to predict future sales of PCs. Seven future policy scenarios were examined using different penetrations of PC sales for different vehicle technologies under current and alternative bio-fuel obligations. Tank to Wheel (T2W) tailpipe and Well to Wheel (W2W) CO 2 emissions, and energy demand were modelled using COPERT 4v11.3 and a recently published W2W CO 2 emissions model. A percentage reduction of conventional diesel and petrol vehicles, in different scenarios compared to a baseline scenario in the W2W model was applied to estimate the likely changes in T2W emissions at the tailpipe up to 2035. The results revealed that the biofuel policy scenario was insufficient in achieving a significant reduction of CO 2 emissions. However, without a fixed reduction target for CO 2 from the road transport sector, the success of policy scenarios in the long run is difficult to compare. The current Electric vehicle (EV) policy in Ireland is required to be implemented to reduce CO 2 emissions by a significant level. Results also show that a similar achievement of CO 2 emission reduction could be possible by using alternative vehicle technologies with higher abatement cost. However, as EV based policies have not been successful so far, Ireland may need to search for alternative pathways.

  18. Does Financial Development Reduce CO2 Emissions in Malaysian Economy? A Time Series Analysis

    OpenAIRE

    Shahbaz, Muhammad; Solarin, Sakiru Adebola; Mahmood, Haider

    2012-01-01

    This study deals with the question whether financial development reduces CO2 emissions or not in case of Malaysia. For this purpose, we apply the bounds testing approach to cointegration for long run relations between the variables. The study uses annual time series data over the period 1971-2008. Ng-Perron stationarity test is applied to test the unit root properties of the series. Our results validate the presence of cointegration between CO2 emissions, financial development, energy co...

  19. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    OpenAIRE

    Towles, N.; Olson, P.; Gnanadesikan, A.

    2015-01-01

    Scaling relationships are derived for the perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the carbon cycle model LOSCAR (Zeebe et al., 2009; Zeebe, 2012b) we calculate perturbations to atmosphere temperature and total carbon, ocean temperature, total ocean carbon, pH, and alkalinity, marine sediment carbon, plus carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The...

  20. Electricity generation, rational energy use and CO2 emissions. The Electrabel approach

    International Nuclear Information System (INIS)

    Bulteel, P.

    1995-01-01

    Electrabel (Belgium) commitments in integrating the goals of rational and sustainable energy use and CO 2 emissions control are presented: demand side measures with promotion and decision-making help to the customers in order to reduce technical, commercial and financial barriers, and supply side measures such as integrated resource planning, high efficiency fossil-fuel generating stations (gas fired combined cycle units), cogeneration schemes. The expected impact on CO 2 emissions are discussed

  1. China's CO2 emissions from power generating stations: A first exploration

    OpenAIRE

    Du, Limin; Hanley, Aoife; Rehdanz, Katrin

    2014-01-01

    Our analysis is the first of its kind to explore patterns of subsidization and CO2 emissions in China's electricity producing sector. Applying data for all power plants across China and controlling for the age, capacity and location of generating stations, we find that plants attracting a higher government subsidy are also worryingly the plants generating a disproportionate share of CO2 emissions. This distortion is incongruent with China's aspiration for a greener economy but may be eliminat...

  2. The impact of electric vehicles on CO2 emissions

    International Nuclear Information System (INIS)

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T.

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective

  3. A predictive analysis of CO2 emissions, environmental policy stringency, and economic growth in China.

    Science.gov (United States)

    Ahmed, Khalid; Ahmed, Sidrah

    2018-03-28

    This study takes environmental policy stringency and economic activity as the controlling variables and forecasts the CO 2 emissions in China up to 2022. In doing so, an application of corrected grey model with convolution is used over the annual time series data between 1990 and 2012. The simulation results show that (1) between 2012 and 2022, CO 2 emissions in China is expected to increase at an average rate of 17.46% annually, raising the emissions intensity from 7.04 in 2012 to 25.461 metric tons per capita by 2022; (2) stringent environmental policies reduce CO 2 emissions-whereas, GDP tends to increase the emissions intensity in China; (3) stringent environmental policies are found to have a negative impact on GDP in China. Based on the empirical findings, the study also provides some policy suggestions to reduce emissions intensity in China.

  4. Abatement of CO2 emissions by way of enhancing the efficiency of nuclear power plants

    International Nuclear Information System (INIS)

    Kienle, F.

    1995-01-01

    Contributing about one third of the overall electricity supplied by the public utilities in 1994, nuclear power as in the previous years has been one of the major pillars of electricity supply in Germany. The approx. 150 billion kWh generated by the nuclear power plants represent reliable electricity supply around the clock, and free of CO 2 emissions, or SO 2 emissions, or NO x . Comparing nuclear generation with the electricity output contributed by conventional power plants in Germany, nuclear generation can also be expressed in terms of emissions avoided, which in 1994 meant: almost 150 million tons of CO 2 , equivalent to about 16 % of the aggregate annual CO 2 emissions; 110.000 tons of SO 2 , equivalent to about 11 % of aggregate annual SO 2 emissions; 125.000 tons of NO x , equivalent to 5 % of aggregate, annual NO x emissions. (orig.) [de

  5. CO2 emissions, natural gas and renewables, economic growth: Assessing the evidence from China.

    Science.gov (United States)

    Dong, Kangyin; Sun, Renjin; Dong, Xiucheng

    2018-05-31

    This study aims to test the environmental Kuznets curve (EKC) for carbon dioxide (CO 2 ) emissions in China by developing a new framework based on the suggestion of Narayan and Narayan (2010). The dynamic effect of natural gas and renewable energy consumption on CO 2 emissions is also analyzed. Considering the structural break observed in the sample, a series of econometric techniques allowing for structural breaks is utilized for the period 1965-2016. The empirical results confirm the existence of the EKC for CO 2 emissions in China. Furthermore, in both the long-run and the short-run, the beneficial effects of natural gas and renewables on CO 2 emission reduction are observable. In addition, the mitigation effect of natural gas on CO 2 emissions will be weakened over time, while renewables will become progressively more important. Finally, policy suggestions are highlighted not only for mitigating CO 2 emissions, but also for promoting growth in the natural gas and renewable energy industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Life Comparative Analysis of Energy Consumption and CO2 Emissions of Different Building Structural Frame Types

    Science.gov (United States)

    Kim, Sangyong; Moon, Joon-Ho; Shin, Yoonseok; Kim, Gwang-Hee; Seo, Deok-Seok

    2013-01-01

    The objective of this research is to quantitatively measure and compare the environmental load and construction cost of different structural frame types. Construction cost also accounts for the costs of CO2 emissions of input materials. The choice of structural frame type is a major consideration in construction, as this element represents about 33% of total building construction costs. In this research, four constructed buildings were analyzed, with these having either reinforced concrete (RC) or steel (S) structures. An input-output framework analysis was used to measure energy consumption and CO2 emissions of input materials for each structural frame type. In addition, the CO2 emissions cost was measured using the trading price of CO2 emissions on the International Commodity Exchange. This research revealed that both energy consumption and CO2 emissions were, on average, 26% lower with the RC structure than with the S structure, and the construction costs (including the CO2 emissions cost) of the RC structure were about 9.8% lower, compared to the S structure. This research provides insights through which the construction industry will be able to respond to the carbon market, which is expected to continue to grow in the future. PMID:24227998

  7. Life Comparative Analysis of Energy Consumption and CO2 Emissions of Different Building Structural Frame Types

    Directory of Open Access Journals (Sweden)

    Sangyong Kim

    2013-01-01

    Full Text Available The objective of this research is to quantitatively measure and compare the environmental load and construction cost of different structural frame types. Construction cost also accounts for the costs of CO2 emissions of input materials. The choice of structural frame type is a major consideration in construction, as this element represents about 33% of total building construction costs. In this research, four constructed buildings were analyzed, with these having either reinforced concrete (RC or steel (S structures. An input-output framework analysis was used to measure energy consumption and CO2 emissions of input materials for each structural frame type. In addition, the CO2 emissions cost was measured using the trading price of CO2 emissions on the International Commodity Exchange. This research revealed that both energy consumption and CO2 emissions were, on average, 26% lower with the RC structure than with the S structure, and the construction costs (including the CO2 emissions cost of the RC structure were about 9.8% lower, compared to the S structure. This research provides insights through which the construction industry will be able to respond to the carbon market, which is expected to continue to grow in the future.

  8. An econometric time-series analysis of global CO2 concentrations and emissions

    International Nuclear Information System (INIS)

    Cohen, B.C.; Labys, W.C.; Eliste, P.

    2001-01-01

    This paper extends previous work on the econometric modelling of CO 2 concentrations and emissions. The importance of such work rests in the fact that models of the Cohen-Labys variety represent the only alternative to scientific or physical models of CO 2 accumulations whose parameters are inferred rather than estimated. The stimulation for this study derives from the recent discovery of oscillations and cycles in the net biospheric flux of CO 2 . A variety of time series tests is thus used to search for the presence of normality, stationarity, cyclicality and stochastic processes in global CO 2 emissions and concentrations series. Given the evidence for cyclicality of a short-run nature in the spectra of these series, both structural time series and error correction model are applied to confirm the frequency and amplitude of these cycles. Our results suggest new possibilities for determining equilibrium levels of CO 2 concentrations and subsequently revising stabilization policies. (Author)

  9. Determinants of CO2 emissions in ASEAN countries using energy and mining indicators

    International Nuclear Information System (INIS)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Ismail, Siti Fatimah; Hamzah, Khairum; Halim, Bushra Abdul; Kun, Sek Siok

    2015-01-01

    Carbon dioxide (CO 2 ) is the main greenhouse gas emitted from human activities. Industrial revolution is one of the triggers to accelerate the quantity of CO 2 in the atmosphere which lead to undesirable changes in the cycle of carbon. Like China and United States which are affected by the economic development growth, the atmospheric CO 2 level in ASEAN countries is expected to be higher from year to year. This study focuses on energy and mining indicators, namely alternative and nuclear energy, energy production, combustible renewables and waste, fossil fuel energy consumption and the pump price for diesel fuel that contribute to CO 2 emissions. Six ASEAN countries were examined from 1970 to 2010 using panel data approach. The result shows that model of cross section-fixed effect is the most appropriate model with the value of R-squared is about 86%. Energy production and fossil fuel energy consumption are found to be significantly influenced to CO 2 emissions

  10. Determinants of CO2 emissions in ASEAN countries using energy and mining indicators

    Science.gov (United States)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Ismail, Siti Fatimah; Hamzah, Khairum; Halim, Bushra Abdul; Kun, Sek Siok

    2015-05-01

    Carbon dioxide (CO2) is the main greenhouse gas emitted from human activities. Industrial revolution is one of the triggers to accelerate the quantity of CO2 in the atmosphere which lead to undesirable changes in the cycle of carbon. Like China and United States which are affected by the economic development growth, the atmospheric CO2 level in ASEAN countries is expected to be higher from year to year. This study focuses on energy and mining indicators, namely alternative and nuclear energy, energy production, combustible renewables and waste, fossil fuel energy consumption and the pump price for diesel fuel that contribute to CO2 emissions. Six ASEAN countries were examined from 1970 to 2010 using panel data approach. The result shows that model of cross section-fixed effect is the most appropriate model with the value of R-squared is about 86%. Energy production and fossil fuel energy consumption are found to be significantly influenced to CO2 emissions.

  11. Fiscal Measures to Reduce CO2 Emissions from New Passenger Cars

    OpenAIRE

    Cowi A/S

    2002-01-01

    Model based calculations constitute the core output of this study. The calculations assess the extent to which vehicle related taxes (mainly acquisition taxes and ownership taxes) can be effective means to reduce CO2 emissions from new cars. More specifically, the model calculations have assessed the ability of vehicle taxes to support the target to reduce average CO2 emissions from new cars down to a level of 120 g/km. This is the agreed target of the Community Strategy to reduce CO2 emissio...

  12. Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki

    OpenAIRE

    Hashimoto, Shizuka; Fujita, Tsuyoshi; Geng, Yong; Nagasawa, Emiri

    2010-01-01

    This article is one effort to examine the present and potential performances of CO2 emission reduction though industrial symbiosis by employing a case study approach and life cycle CO2 analysis for alternative industrial symbiosis scenarios. As one of the first and the best-known eco-town projects, Kawasaki Eco-town was chosen as a case study area. First, the current industrial symbiosis practices in this area are introduced. To evaluate the potential of reducing the total CO2 emission throug...

  13. H2 production by reforming route in reducing CO2 emissions

    International Nuclear Information System (INIS)

    Raphaelle Imbault

    2006-01-01

    Nowadays the most common way to produce hydrogen is the Steam Methane Reforming route from natural gas. With the pressure of new environmental rules, reducing CO 2 emissions becomes a key issue. The European project Ulcos (Ultra Low CO 2 Steelmaking) has targeted to reduce of at least 50% the CO 2 emissions in steelmaking. The H 2 route (and in particular the reforming process) is one of the solutions which have been explored. The results of this study have shown that the two main ways (which can be combined) of limiting CO 2 emissions in H 2 production are to improve the energetic efficiency of the plant or to capture CO 2 . With the first way, a reduction of 20% of emissions compared to conventional plant can be reached. The second one enables to achieve a decrease of 90%. However the CO 2 capture is much more expensive and this kind of solution can be economically competitive only if high CO 2 taxes are implemented (≥40 Euros/ton). (author)

  14. Policy options to reduce passenger car CO2 emissions after 2020

    Energy Technology Data Exchange (ETDEWEB)

    De Wilde, H.P.J.; Kroon, P. [ECN Beleidsstudies, Petten (Netherlands)

    2013-02-15

    The EU has set emission targets for new cars up to 2020 and is now preparing the post 2020 legislation. The present study aims to give insight in the design of policies to further reduce passenger car emissions after 2020. Internal combustion engine (ICE) vehicles are now expected to enable deeper and less costly CO2 emission reductions than envisioned until recently. However, even advanced ICE vehicles will not enable to meet the very stringent long term emission reduction targets for passenger cars. Therefore transport policies need not only to reduce emissions of ICE vehicles, but also ensure that electric and hydrogen vehicles are phased in timely, along with low-CO2 electricity and hydrogen. Current legislation to regulate tank-to-wheel vehicle emissions is based on CO2-limits, expressed in g CO2/km. On the short term it is important to maximize the efficiency of conventional vehicles. At the same time it is essential to foster the market introduction of electric and hydrogen vehicles, given their potential to reach eventually much deeper overall CO2-reductions. When the market share of electric and hydrogen vehicles grows it becomes increasingly important to maximize their efficiency and to minimize their upstream CO2 emissions. Maximizing both efficiency and overall CO2-performance of all vehicle types - ICE, electric, and hydrogen - will be complicated to achieve with a single CO2-based standard. At this point an efficiency-based standard is more effective, and may offer some additional benefits too. The current report provides basic directions of how such legislation could be shaped.

  15. The potential role of nuclear energy in mitigating CO2 emissions in the United Arab Emirates

    International Nuclear Information System (INIS)

    AlFarra, Hasan Jamil; Abu-Hijleh, Bassam

    2012-01-01

    The annual CO 2 emissions have more than doubled in the UAE since 1990. Electricity generated by fossil fuels is responsible for almost half of the country's emissions. Keeping with the Kyoto Protocol, the UAE decided to integrate nuclear energy into the electricity scheme to mitigate CO 2 emissions as declared by the government. This paper evaluates the effectiveness of the UAE's proposed nuclear energy strategy in mitigating CO 2 emissions from the built environment up to year 2050. The IAEA's simulation model “MESSAGE” is used to estimate the energy demand and CO 2 emissions in the UAE up to year 2050. Several energy supply/fuels scenarios are modeled and simulated including the following: Business as Usual (BaU), the UAE proposed nuclear strategy (APR1400) as well as 12 more aggressive Clean Energy Era (CEE) proposed scenarios. Nuclear energy, especially in its extreme CEE scenario (8NPPs), was found to be more practical option in mitigating CO 2 than renewable energy and carbon capture and sequestration among the simulated scenarios. Nuclear energy also demonstrated an economic viability. The cost of electricity produced from nuclear energy was calculated to be 3.2 cents/kWh, significantly less than the current cost of 8.15 cents/kWh for electricity generation from fossil fuels in the UAE. - Highlights: ► Effectiveness of the UAE's proposed nuclear energy strategy in mitigating CO 2 emissions. ► Simulation is used to estimate the energy demand and CO 2 emissions in the UAE. ► Tested several energy supply/fuels scenarios on mitigating CO 2 .

  16. Offsetting China's CO2 Emissions by Soil Carbon Sequestration

    International Nuclear Information System (INIS)

    Lal, R.

    2004-01-01

    Fossil fuel emissions of carbon (C) in China in 2000 was about 1 Pg/yr, which may surpass that of the U.S. (1.84 Pg C) by 2020. Terrestrial C pool of China comprises about 35 to 60 Pg in the forest and 120 to 186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Similar to world soils, agricultural soils of China have also lost 30 to 50% or more of the antecedent soil organic carbon (SOC) pool. Some of the depleted SOC pool can be re-sequestered through restoration of degraded soils, and adoption of recommended management practices. The latter include conversion of upland crops to multiple cropping and rice paddies, adoption of integrated nutrient management (INM) strategies, incorporation of cover crops in the rotations cycle and adoption of conservation-effective systems including conservation tillage. A crude estimated potential of soil C sequestration in China is 119 to 226 Tg C/y of SOC and 7 to 138 Tg C/y for soil inorganic carbon (SIC) up to 50 years. The total potential of soil C sequestration is about 12 Pg, and this potential can offset about 25% of the annual fossil fuel emissions in China

  17. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Davis, Kenneth; Lauvaux, Thomas; Miles, Natasha L; Richardson, Scott; Schuh, Andrew; Cooley, Dan; Breidt, F Jay; West, Tristram O; Heath, Linda S; Smith, James E; McCarty, Jessica L; Gurney, Kevin R; Tans, Pieter; Denning, A Scott

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO 2 concentrations and inverse modeling to verify nationally-reported biogenic CO 2 emissions. The biogenic CO 2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of −408 ± 136 Tg CO 2 for the entire study region, which was not statistically different from the biogenic flux of −478 ± 146 Tg CO 2 that was estimated using the atmospheric CO 2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO 2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC. (letter)

  18. Frozen cropland soil in northeast China as source of N2O and CO2 emissions.

    Science.gov (United States)

    Miao, Shujie; Qiao, Yunfa; Han, Xiaozeng; Brancher Franco, Roberta; Burger, Martin

    2014-01-01

    Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November-March), when soil temperatures are below -7°C for extended periods, were 0.89-3.01 µg N m(-2) h(-1), and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73-5.48 µg N m(-2) h(-1). The cumulative N2O emissions were on average 0.27-1.39, 0.03-0.08 and 0.03-0.11 kg N2O_N ha(-1) during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3-12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73-4.94, 0.13-0.20 and 0.07-0.11 Mg CO2-C ha(-1) during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0-2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.

  19. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Regulated deficit irrigation can decrease soil CO2 emissions in fruit orchards

    Science.gov (United States)

    Zornoza, Raul; Acosta, José Alberto; Martínez-Martínez, Silvia; De la Rosa, Jose M.°; Faz, Angel; Pérez-Pastor, Alejandro

    2016-04-01

    Irrigation water restrictions in the Mediterranean area have created a growing interest in water conservation. Apart from environmental and economic benefits by water savings, regulated deficit irrigation (RDI) may contribute to reduce soil CO2 emissions and enhance C sequestration in soils, by decreasing microbial and root activity in response to decreased soil moisture levels. An experiment was established in four orchards (peach, apricot, Saturn peach and grape) to investigate the effects of regulated deficit irrigation (RDI) on soil CO2 emissions. Two irrigation treatments were assayed: full irrigation (FI), and RDI, irrigated as FI except for postharvest period (peach, apricot, Saturn peach) or post-veraison period (grape) were 50% of FI was applied. The application of deficit caused a significant decrease in CO2 emission rates, with rates in average of 90 mg CO2-C m-2 h-1, 120 mg CO2-C m-2 h-1, 60 mg CO2-C m-2 h-1 and 60 mg CO2-C m-2 h-1 lower than FI during the period when deficit was applied for peach, apricot, Saturn peach and grape. This confirms the high effectiveness of the RDI strategies not only to save water consumption but also to decrease soil CO2 emissions. However, monitoring during longer periods is needed to verify that this trend is long-term maintained, and assess if soil carbon stocks are increase or most CO2 emissions derive from root respiration. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  1. CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities

    International Nuclear Information System (INIS)

    Yu Wei; Pagani, Roberto; Huang Lei

    2012-01-01

    The international literature has paid significant attention to presenting China as the largest emitter of greenhouse gases (GHGs) in the world, despite having much lower per-capita emissions than the global average. In fact, the imbalance of economic development leads to diversity in GHG emissions profiles in different areas of China. This paper employs a common methodology, consistent with the Sustainable Energy Action Plan (SEAP) approved by the Covenant of Mayors (CoM), to estimate CO 2 emissions of four Chinese cities in highly urbanized areas from 2004 to 2010. The results show that the CO 2 emissions of all four cities are still rising and that secondary industries emit the most CO 2 in these cities. By comparing these data with the inventory results of two European cities, this paper further reveals that Chinese cities in highly urbanized areas contribute much higher per-capita emissions than their European competitors. Furthermore, the per-capita CO 2 emissions of the residential sector and private transport in these Chinese cities are growing rapidly, some of them approaching the levels of European cities. According to these findings, several policy suggestions considering regional disparities are provided that aim to reduce the CO 2 emissions of highly urbanized areas in China. - Highlights: ► An exemplary study of GHG emission inventory for Chinese cities. ► Estimate CO 2 emissions of Chinese city in highly urbanized areas from 2004 to 2010. ► The studied Chinese cities contribute higher per-capita emissions than European’s. ► Emissions of residential sector and private transport in China are growing rapidly. ► Several policy suggestions considering regional disparities are provided.

  2. Origin of path independence between cumulative CO2 emissions and global warming

    Science.gov (United States)

    Seshadri, Ashwin K.

    2017-11-01

    Observations and GCMs exhibit approximate proportionality between cumulative carbon dioxide (CO2) emissions and global warming. Here we identify sufficient conditions for the relationship between cumulative CO2 emissions and global warming to be independent of the path of CO2 emissions; referred to as "path independence". Our starting point is a closed form expression for global warming in a two-box energy balance model (EBM), which depends explicitly on cumulative emissions, airborne fraction and time. Path independence requires that this function can be approximated as depending on cumulative emissions alone. We show that path independence arises from weak constraints, occurring if the timescale for changes in cumulative emissions (equal to ratio between cumulative emissions and emissions rate) is small compared to the timescale for changes in airborne fraction (which depends on CO2 uptake), and also small relative to a derived climate model parameter called the damping-timescale, which is related to the rate at which deep-ocean warming affects global warming. Effects of uncertainties in the climate model and carbon cycle are examined. Large deep-ocean heat capacity in the Earth system is not necessary for path independence, which appears resilient to climate modeling uncertainties. However long time-constants in the Earth system carbon cycle are essential, ensuring that airborne fraction changes slowly with timescale much longer than the timescale for changes in cumulative emissions. Therefore path independence between cumulative emissions and warming cannot arise for short-lived greenhouse gases.

  3. Impact of drought and increasing temperatures on soil CO2 emissions in a Mediterranean shrubland (gariga)

    DEFF Research Database (Denmark)

    de Dato, Giovanbattista Domenico; De Angelis, Paolo; Sirca, Costantino

    2010-01-01

    the soil and air night-time temperatures and to reduce water input from precipitation. The objective was to analyze the extent to which higher temperatures and a drier climate influence soil CO2 emissions in the short term and on an annual basis. The microclimate was manipulated in field plots (about 25 m2...... temperature probe. The seasonal pattern of soil CO2 efflux was characterized by higher rates during the wet vegetative season and lower rates during the dry non-vegetative season (summer). The Warming treatment did not change SR fluxes at any sampling date. The Drought treatment decreased soil CO2 emissions...... on only three of 10 occasions during 2004. The variation of soil respiration with temperature and soil water content did not differ significantly among the treatments, but was affected by the season. The annual CO2 emissions were not significantly affected by the treatments. In the semi-arid Mediterranean...

  4. Integration of indirect CO2 emissions from the full energy chain

    International Nuclear Information System (INIS)

    Yasukawa, S.; Tadokoro, Y.; Sato, O.; Yamaguchi, M.

    1996-01-01

    The methodologies of life-cycle analysis are discussed. The system boundaries have to be adequately defined, which is illustrated with the example of coal-fired electricity generation. The input/output method of LCA is discussed, including the incorporation of material recycling in the analysis. Also discussed is the linkage of engineering and economic approaches together with the necessary improvements of MARKAL in order to integrate the indirect processes. Finally examples are given of the analysis of the direct and indirect CO 2 emission from a pressurized-water reactor and its fuel cycle. The analysis shows that the life-cycle CO 2 emission coefficient is 25.7 g CO 2 /kW.h in case of gas-diffusion enrichment, whereas in case of centrifuge enrichment this emission coefficient amounts to 7.9 g CO 2 /kW.h only. (author). 9 refs, 8 figs, 3 tabs

  5. LMDI Decomposition of Energy-Related CO2 Emissions Based on Energy and CO2 Allocation Sankey Diagrams: The Method and an Application to China

    Directory of Open Access Journals (Sweden)

    Linwei Ma

    2018-01-01

    Full Text Available This manuscript develops a logarithmic mean Divisia index I (LMDI decomposition method based on energy and CO2 allocation Sankey diagrams to analyze the contributions of various influencing factors to the growth of energy-related CO2 emissions on a national level. Compared with previous methods, we can further consider the influences of energy supply efficiency. Two key parameters, the primary energy quantity converted factor (KPEQ and the primary carbon dioxide emission factor (KC, were introduced to calculate the equilibrium data for the whole process of energy unitization and related CO2 emissions. The data were used to map energy and CO2 allocation Sankey diagrams. Based on these parameters, we built an LMDI method with a higher technical resolution and applied it to decompose the growth of energy-related CO2 emissions in China from 2004 to 2014. The results indicate that GDP growth per capita is the main factor driving the growth of CO2 emissions while the reduction of energy intensity, the improvement of energy supply efficiency, and the introduction of non-fossil fuels in heat and electricity generation slowed the growth of CO2 emissions.

  6. The effects of CO2-differentiated vehicle tax systems on car choice, CO2 emissions and tax revenues

    NARCIS (Netherlands)

    Kok, R.

    2011-01-01

    This paper assesses the impacts of a CO2-differentiated tax policy designed to influence car purchasing trends towards lower CO2 emitting vehicles in the Netherlands. Since 2009, gasoline and diesel cars up to 110 and 95 gram CO2 per km are exempted from the vehicle registration tax (VRT). In

  7. Consumer lifestyle approach to US energy use and the related CO2 emissions

    International Nuclear Information System (INIS)

    Bin Shui; Dowlatabadi, Hadi

    2005-01-01

    Historically, a sectoral approach (based on the industrial, transportation, commercial, and residential sectors) has shaped the way we frame and analyze issues of energy conservation and CO 2 mitigation. This sectoral categorization, however, is limited in its capacity to reveal the total impacts of consumer activities on energy use and its related environmental impacts. In this paper, we propose an alternative paradigm, called the Consumer Lifestyle Approach (CLA), to explore the relationship between consumer activities and environmental impacts in the US. Estimates based on our methodology reveal that more than 80% of the energy used and the CO 2 emitted in the US are a consequence of consumer demands and the economic activities to support these demands. Direct influences due to consumer activities (home energy use and personal travel) are 4% of the US GDP, but account for 28% and 41% of US energy use and CO 2 emissions, respectively. Indirect influences (such as housing operations, transportation operations, food, and apparel) involve more than twice the direct energy use and CO 2 emissions. Characterization of both direct and indirect energy use and emissions is critical to the design of more effective energy and CO 2 emission policies. It may also help erode the false dichotomy of 'them versus us' (industrial polluters versus consumers) references to the locus of responsibility for control of energy use and CO 2 emissions

  8. China's foreign trade and climate change: A case study of CO2 emissions

    International Nuclear Information System (INIS)

    Yan Yunfeng; Yang Laike

    2010-01-01

    The globalization of trade has numerous environmental implications. Trade creates a mechanism for consumers to shift environmental pollution associated with their consumption to other countries. Carbon leakage exerts great influences on international trade and economy. Applying an input-output approach, the paper estimates the amount of carbon dioxide (CO 2 ) embodied in China's foreign trade during 1997-2007. It is found that 10.03-26.54% of China's annual CO 2 emissions are produced during the manufacture of export goods destined for foreign consumers, while the CO 2 emissions embodied in China's imports accounted for only 4.40% (1997) and 9.05% (2007) of that. We also estimate that the rest of world avoided emitting 150.18 Mt CO 2 in 1997, increasing to 593 Mt in 2007, as a result of importing goods from China, rather than manufacturing the same type and quantity of goods domestically. During 1997-2007, the net 'additional' global CO 2 emissions resulting from China's exports were 4894 Mt. Then, the paper divides the trade-embodied emissions into scale, composition and technical effect. It was found that scale and composition effect increased the CO 2 emissions embodied in trade while the technical effect offset a small part of them. Finally, its mechanism and policy implications are presented.

  9. Consumer lifestyle approach to US energy use and the related CO2 emissions

    International Nuclear Information System (INIS)

    Bin, Shui; Dowlatabadi, Hadi

    2005-01-01

    Historically, a sectoral approach (based on the industrial, transportation, commercial, and residential sectors) has shaped the way we frame and analyze issues of energy conservation and CO 2 mitigation. This sectoral categorization, however, is limited in its capacity to reveal the total impacts of consumer activities on energy use and its related environmental impacts. In this paper, we propose an alternative paradigm, called the Consumer Lifestyle Approach (CLA), to explore the relationship between consumer activities and environmental impacts in the US. Estimates based on our methodology reveal that more than 80% of the energy used and the CO 2 emitted in the US are a consequence of consumer demands and the economic activities to support these demands. Direct influences due to consumer activities (home energy use and personal travel) are 4% of the US GDP, but account for 28% and 41% of US energy use and CO 2 emissions, respectively. Indirect influences (such as housing operations, transportation operations, food, and apparel) involve more than twice the direct energy use and CO 2 emissions. Characterization of both direct and indirect energy use and emissions is critical to the design of more effective energy and CO 2 emission policies. It may also help erode the false dichotomy of 'them versus us' (industrial polluters versus consumers) references to the locus of responsibility for control of energy use and CO 2 emissions. (Author)

  10. The influencing factors of CO2 emission intensity of Chinese agriculture from 1997 to 2014.

    Science.gov (United States)

    Long, Xingle; Luo, Yusen; Wu, Chao; Zhang, Jijian

    2018-05-01

    In China, agriculture produces the greatest chemical oxygen demand (COD) emissions in wastewater and the most methane (CH 4 ) emissions. It is imperative that agricultural pollution in China be reduced. This study investigated the influencing factors of the CO 2 emission intensity of Chinese agriculture from 1997 to 2014. We analyzed the influencing factors of the CO 2 emission intensity through the first-stage least-square regression. We also analyzed determinants of innovation through the second-stage least-square regression. We found that innovation negatively affected the CO 2 emission intensity in the model of the nation. FDI positively affected innovation in China. It is important to enhance indigenous innovation for green agriculture through labor training and collaboration between agriculture and academia.

  11. The effects of Norwegian gas export on the global CO2 emission

    International Nuclear Information System (INIS)

    1996-01-01

    This report analyses how a limitation of Norway's gas export might affect the global CO 2 emission. In principle, a reduction of this export can lead to decreased or increased CO 2 emission depending on changes in several conditions that individually have conflicting emission effects. What the total effect will be can only become clear after a thorough empirical analysis of the supply and demand structure. The model calculations presented in the report show that the global emission will probably increase if Norway reduces the gas export. A gas export reduction of 10 million tonne oil equivalents in 2015 will increase the global emission by 1.4 and 7.5 million tonne CO 2 depending on the assumption made for alternative gas supplies to the European market and for market conditions in the importing countries. 4 refs., 32 figs., 44 tabs

  12. Modeling CO2 emissions from fossil fuel combustion using the logistic equation

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2011-01-01

    CO 2 emissions from fossil fuel combustion have been known to contribute to the greenhouse effect. Research on emission trends and further forecasting their further values is important for adjusting energy policies, particularly those relative to low carbon. Except for a few countries, the main figures of CO 2 emission from fossil fuel combustion in other countries are S-shaped curves. The logistic function is selected to simulate the S-shaped curve, and to improve the goodness of fit, three algorithms were provided to estimate its parameters. Considering the different emission characteristics of different industries, the three algorithms estimated the parameters of CO 2 emission in each industry separately. The most suitable parameters for each industry are selected based on the criterion of Mean Absolute Percentage Error (MAPE). With the combined simulation values of the selected models, the estimate of total CO 2 emission from fossil fuel combustion is obtained. The empirical analysis of China shows that our method is better than the linear model in terms of goodness of fit and simulation risk. -- Highlights: → Figures of CO 2 emissions from fossil fuel combustion in most countries are S-shape curves. → Using the logistic function to model the S-shape curve. → Three algorithms are offered to estimate the parameters of the logistic function. → The empirical analysis from China shows that the logistic equation has satisfactory simulation results.

  13. CO2 emissions embodied in China's exports from 2002 to 2008: A structural decomposition analysis

    International Nuclear Information System (INIS)

    Xu Ming; Li Ran; Crittenden, John C.; Chen Yongsheng

    2011-01-01

    This study examines the annual CO 2 emissions embodied in China's exports from 2002 to 2008 using environmental input-output analysis. Four driving forces, including emission intensity, economic production structure, export composition, and total export volume, are compared for their contributions to the increase of embodied CO 2 emissions using a structural decomposition analysis (SDA) technique. Although offset by the decrease in emission intensity, the increase of embodied CO 2 emissions was driven by changes of the other three factors. In particular, the change of the export composition was the largest driver, primarily due to the increasing fraction of metal products in China's total export. Relevant policy implications and future research directions are discussed at the end of the paper. - Highlights: → We investigate annual CO 2 emission embodied in China's exports from 2002 to 2008 using environmental input-output analysis. → We conduct a structural decomposition analysis to measure contributions from different driving forces. → Change of export composition was the largest driver for the increase of CO 2 emissions embodied in China's exports. → Increasing fraction of metal products in exports is the key change in export composition.

  14. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling.

    Science.gov (United States)

    Carotenuto, Federico; Gualtieri, Giovanni; Miglietta, Franco; Riccio, Angelo; Toscano, Piero; Wohlfahrt, Georg; Gioli, Beniamino

    2018-02-22

    CO 2 remains the greenhouse gas that contributes most to anthropogenic global warming, and the evaluation of its emissions is of major interest to both research and regulatory purposes. Emission inventories generally provide quite reliable estimates of CO 2 emissions. However, because of intrinsic uncertainties associated with these estimates, it is of great importance to validate emission inventories against independent estimates. This paper describes an integrated approach combining aircraft measurements and a puff dispersion modelling framework by considering a CO 2 industrial point source, located in Biganos, France. CO 2 density measurements were obtained by applying the mass balance method, while CO 2 emission estimates were derived by implementing the CALMET/CALPUFF model chain. For the latter, three meteorological initializations were used: (i) WRF-modelled outputs initialized by ECMWF reanalyses; (ii) WRF-modelled outputs initialized by CFSR reanalyses and (iii) local in situ observations. Governmental inventorial data were used as reference for all applications. The strengths and weaknesses of the different approaches and how they affect emission estimation uncertainty were investigated. The mass balance based on aircraft measurements was quite succesful in capturing the point source emission strength (at worst with a 16% bias), while the accuracy of the dispersion modelling, markedly when using ECMWF initialization through the WRF model, was only slightly lower (estimation with an 18% bias). The analysis will help in highlighting some methodological best practices that can be used as guidelines for future experiments.

  15. Sectoral analysis of energy consumption and energy related CO2 emissions in Finland 1990-1999

    International Nuclear Information System (INIS)

    Kirjavainen, M.; Tamminen, E.

    2002-03-01

    This study describes the development of energy consumption and energy related CO 2 emissions in Finland between 1990-1999. For better understanding of the factors behind the development in main sectors, special indicators are calculated to evaluate how the overall development of the sector is affected by the general activity of the sector, changes in sectoral structure and changes in end-use intensities within the sector. The specific energy consumption of space heating reduced especially during the first half of the decade. Also the total CO 2 emissions caused by space heating reduced, in spite of the increase in the building stock. The main reason for this has been the reduction in specific CO 2 emissions in production of district heat. Regardless of the increased traffic and slightly increased use of passenger cars over public transport, the total energy consumption as well as total CO 2 emissions in passenger transport reduced during the decade. The main reason for this is that the specific fuel consumption of passenger cars has reduced significantly. Volumes in freight traffic increased rapidly after the recession, and as no significant changes have occurred in either specific consumptions or in shares of different transport modes, the total energy use as well as total CO 2 emissions of freight transport have increased. The major factors affecting the energy use and CO 2 emissions of the manufacturing sector have been changes in production volumes. After the recession, growth has been rapid and that has resulted in increased total energy use and CO 2 emissions. Anyway, the especially rapid growth of the less energy intensive electronics industry has resulted in downward overall energy intensity within manufacturing sector. Major factors affecting the specific CO 2 emissions in energy production have been changes in the primary energy supply mix. In electricity production, the major factors have been the increase in nuclear capacity and the variation in net

  16. Global CO_2-energy emissions in 2007. China becomes the largest emitter along with the United States - June 2008

    International Nuclear Information System (INIS)

    2008-01-01

    China becomes the largest emitter along with the United States. Contents: 1990-2007 evolution (key figures of Yearly average evolutions); Global CO_2-energy emissions in 2007: 27,3 GtCO_2; Global CO_2-energy emissions have increased by 3,2% in 2007, largely driven by China. Since 1990, China has more than doubled its CO_2-energy emissions, to reach the same emission level as the USA in 2007. Two very contrasting tendencies appear since 1990: stabilization of emissions in Annex B countries, boom in China and India. Since 1990, more than half of CO_2-energy emissions growth is (logically) due to coal. (authors)

  17. Quantifying global fossil-fuel CO2 emissions: from OCO-2 to optimal observing designs

    Science.gov (United States)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Oda, T.; Feng, S.; Lin, J. C.; Yang, E. G.; Wu, D.; Kuze, A.; Suto, H.; Eldering, A.

    2017-12-01

    Cities house more than half of the world's population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil-fuel CO2 emissions, in an independent, objective way. Satellite platforms provide favorable temporal and spatial coverage to collect urban CO2 data to quantify the anthropogenic contributions to the global carbon budget. We present here the optimal observation design for future NASA's OCO-2 and Japanese GOSAT missions, based on real-data (i.e. OCO-2) experiments and Observing System Simulation Experiments (OSSE's) to address different error components in the urban CO2 budget calculation. We identify the major sources of emission uncertainties for various types of cities with different ecosystems and geographical features, such as urban plumes over flat terrains, accumulated enhancements within basins, and complex weather regimes in coastal areas. Atmospheric transport errors were characterized under various meteorological conditions using the Weather Research and Forecasting (WRF) model at 1-km spatial resolution, coupled to the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emissions. We propose and discuss the optimized urban sampling strategies to address some difficulties from the seasonality in cloud cover and emissions, vegetation density in and around cities, and address the daytime sampling bias using prescribed diurnal cycles. These factors are combined in pseudo data experiments in which we evaluate the relative impact of uncertainties on inverse estimates of CO2 emissions for cities across latitudinal and climatological zones. We propose here several sampling strategies to minimize the uncertainties in target mode for tracking urban fossil-fuel CO2 emissions over the globe for future satellite missions, such as OCO-3 and future

  18. The shadow price of CO2 emissions in China's iron and steel industry.

    Science.gov (United States)

    Wang, Ke; Che, Linan; Ma, Chunbo; Wei, Yi-Ming

    2017-11-15

    As China becomes the world's largest energy consumer and CO 2 emitter, there has been a rapidly emerging literature on estimating China's abatement cost for CO 2 using a distance function approach. However, the existing studies have mostly focused on the cost estimates at macro levels (provinces or industries) with few examining firm-level abatement costs. No work has attempted to estimate the abatement cost of CO 2 emissions in the iron and steel industry. Although some have argued that the directional distance function (DDF) is more appropriate in the presence of bad output under regulation, the choice of directions is largely arbitrary. This study provides the most up-to-date estimate of the shadow price of CO 2 using a unique dataset of China's major iron and steel enterprises in 2014. The paper uses output quadratic DDF and investigates the impact of using different directional vectors representing different carbon mitigation strategies. The results show that the mean CO 2 shadow price of China's iron and steel enterprises is very sensitive to the choice of direction vectors. The average shadow prices of CO 2 are 407, 1226 and 6058Yuan/tonne respectively for the three different direction vectors. We also find substantial heterogeneity in the shadow prices of CO 2 emissions among China's major iron and steel enterprises. Larger, listed enterprises are found to be associated lower CO 2 shadow prices than smaller, unlisted enterprises. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An analysis of energy strategies for CO2 emission reduction in China. Case studies by MARKAL model

    International Nuclear Information System (INIS)

    Li Guangya

    1994-12-01

    The China's energy system has been analyzed by using the MARKAL model in this study and the time period is from the year 1990 to 2050. The MARKAL model is applied here to evaluate the cost effective energy strategies for CO 2 emission reduction in China. Firstly the Reference Energy System (RES) of China and its database were established, and the useful energy demand was projected on the basis of China's economic target and demographic forecasting. Four scenarios, BASE1-BASE4 were defined with different assumptions of crude oil and natural uranium availability. Analytical results show that without CO 2 emission constrains coal consumption will continue to hold a dominant position in primary energy supply, and CO 2 emissions in 2050 will be 9.55 BtCO 2 and 10.28 BtCO 2 with different natural uranium availability. Under the CO 2 emission constraints, nuclear and renewable energy will play important roles in CO 2 emission reduction, and feasible maximum CO 2 emission reduction estimated by this study is 3.16 BtCO 2 in 2050. The cumulative CO 2 emission from 1990 to 2050 will be 418.25 BtCO 2 and 429.16 BtCO 2 with different natural uranium availability. Total feasible maximum CO 2 emission reduction from 1990 to 2050 is 95.97 BtCO 2 . (author)

  20. NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar

    International Nuclear Information System (INIS)

    Jeong Park; Kyunghwan Lee; Keeman Lee

    2002-01-01

    Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H 2 /CO 2 /Ar have been numerically simulated with detailed chemistry. The combination of H 2 , CO 2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO 2 . A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO 2 , N 2 O and Fenimore are taken into account to separately evaluate the effects of CO 2 addition on NO emission characteristics. The increase of added CO 2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO 2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N 2 O and NO 2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO 2 quantity increase, NO production is remarkably augmented. (Author)

  1. Advanced emission control system: CO2 sequestration using algae integrated management system (AIMS)

    International Nuclear Information System (INIS)

    Syed Isa Syed Alwi; Mohd Norsham Che Yahya; Ruzanna Abdul Rahman

    2010-01-01

    One of the companies under Algae tech, Sasaran Bio fuel Sdn. Bhd. provides project management, technology transfer and technical expertise to develop a solution to minimize and mitigate Carbon Dioxide (CO 2 ) emissions through the diversion of the CO 2 to open algal ponds and enclosed photo-bioreactors as algal propagation technologies to consume CO 2 waste stream. The company is presently consulting a listed company from Indonesia to address the technology know-how and implementation of microalgae development from the flue gas of the Groups power plants. Nowadays, one of the aspects that contribute to the air pollution is the emission of flue gases from the factories. So, we provide a system that can reduce the emission of flue gas to the atmosphere and at the same time, cultivate certain strain of algae. With the technology, Algae Integrated Management System (AIMS), it will be for sure a new beginning for way to reduce air pollution. The utilization of power plant resources for growing selected microalgae at a low energy cost for valuable products and bio-fuels while providing CO 2 sequestering. In the same time, it also a low cost algae agriculture. By doing so, it provides all year algae production which can be an income. This residual energy used CO 2 produced from power stations and industrial plants to feed the process (CO 2 recycling and bio-fixation) in cultivation of algae. This will be a low cost flue gas (CO 2 ) to the developer. In a nutshell, CO 2 Sequestration by algae reactors is a potential to reduce greenhouse gas emission by using the CO 2 in the stack gases to produce algae. (author)

  2. Regional allocation of CO2 emissions allowance over provinces in China by 2020

    International Nuclear Information System (INIS)

    Wang, Ke; Zhang, Xian; Wei, Yi-Ming; Yu, Shiwei

    2013-01-01

    The mitigation efforts of China are increasingly important for meeting global climate target since the rapid economic growth of China has led to an increasing share in the world's total CO 2 emissions. This paper sets out to explore the approach for realizing China's national mitigation targets submitted to the UNFCCC as part of the Copenhagen Accord; that is, to reduce the intensity of CO 2 emissions per unit of GDP by 40–45% by 2020, as well as reducing the energy intensity and increasing the share of non-fossil fuel consumption, through regional allocation of emission allowance over China's provinces. Since the realization of China's mitigation target essentially represents a total amount emission allowance allocation problem, an improved zero sum gains data envelopment analysis optimization model, which could deal with the constant total amount resources allocation, is proposed in this study. By utilizing this model and based on several scenarios of China's economic growth, CO 2 emissions, and energy consumption, a new efficient emission allowance allocation scheme on provincial level for China by 2020 is proposed. The allocation results indicate that different provinces have to shoulder different mitigation burdens in terms of emission intensity reduction, energy intensity reduction, and share of non-fossil fuels increase. - Highlights: ► We explore the approach to realize national CO 2 emissions reduction target of China by 2020. ► The CO 2 emissions allowance is allocated over China's 30 administrative regions. ► Several scenarios of China's regional economy, emission, energy consumption are given. ► The zero sum gains data envelopment analysis model is applied in emission allowance allocation. ► An efficient emission allowance allocation scheme on provincial level is proposed

  3. An analysis of China's CO2 emission peaking target and pathways

    Directory of Open Access Journals (Sweden)

    Jian-Kun He

    2014-12-01

    Full Text Available China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for China's resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the developed countries. It is a necessity that the non-fossil energy supplies be able to meet all the increased energy demand for achieving CO2 emission peaking. Given that China's potential GDP annual increasing rate will be more than 4%, and China's total energy demand will continue to increase by approximately 1.0%–1.5% annually around 2030, new and renewable energies will need to increase by 6%–8% annually to meet the desired CO2 emission peak. The share of new and renewable energies in China's total primary energy supply will be approximately 20% by 2030. At that time, the energy consumption elasticity will decrease to around 0.3, and the annual decrease in the rate of CO2 intensity will also be higher than 4% to ensure the sustained growth of GDP. To achieve the CO2 emission peaking target and substantially promote the low-carbon development transformation, China needs to actively promote an energy production and consumption revolution, the innovation of advanced energy technologies, the reform of the energy regulatory system and pricing mechanism, and especially the construction of a national carbon emission cap and trade system.

  4. The dynamic relationship between structural change and CO2 emissions in Malaysia: a cointegrating approach.

    Science.gov (United States)

    Ali, Wajahat; Abdullah, Azrai; Azam, Muhammad

    2017-05-01

    The current study investigates the dynamic relationship between structural changes, real GDP per capita, energy consumption, trade openness, population density, and carbon dioxide (CO 2 ) emissions within the EKC framework over a period 1971-2013. The study used the autoregressive distributed lagged (ARDL) approach to investigate the long-run relationship between the selected variables. The study also employed the dynamic ordinary least squared (DOLS) technique to obtain the robust long-run estimates. Moreover, the causal relationship between the variables is explored using the VECM Granger causality test. Empirical results reveal a negative relationship between structural change and CO 2 emissions in the long run. The results indicate a positive relationship between energy consumption, trade openness, and CO 2 emissions. The study applied the turning point formula of Itkonen (2012) rather than the conventional formula of the turning point. The empirical estimates of the study do not support the presence of the EKC relationship between income and CO 2 emissions. The Granger causality test indicates the presence of long-run bidirectional causality between energy consumption, structural change, and CO 2 emissions in the long run. Economic growth, openness to trade, and population density unidirectionally cause CO 2 emissions. These results suggest that the government should focus more on information-based services rather than energy-intensive manufacturing activities. The feedback relationship between energy consumption and CO 2 emissions suggests that there is an ominous need to refurbish the energy-related policy reforms to ensure the installations of some energy-efficient modern technologies.

  5. Cleaner shipping. Trade off between air pollution, costs and refinery CO2 emissions

    International Nuclear Information System (INIS)

    De Wilde, H.P.J.; Kroon, P.

    2008-05-01

    Still subject to final approval in October 2008, the International Maritime Organisation (IMO) agreed on a maximum sulphur content of 0.5% for shipping fuels in 2020. This target will induce major changes in the global refinery industry. We have estimated the impact on the Dutch refinery industry, which annually produces about 8 million tons of heavy fuel oil for sea shipping, with refinery residues as main component. It is technically possible to convert all residues, although this process will cause an additional energy use of about one million tons of crude oil and a related CO2 emission of about 4 million tons. The investment costs for these major changes in the Dutch refinery industry are estimated at about 1.5 tot 2 billion euros. The recent IMO agreement enables a gradual introduction of cleaner shipping fuels, which will reduce market disruptions and peak prices. Nevertheless, Rotterdam may not necessarily be able to develop a similar position in import, export and bunkering of future low sulphur fuels, compared to its present strong position in the market of heavy marine bunkers. Extrapolation of our national study to the global scale suggests that the deep conversion of 350 million tons of heavy fuel oil for shipping would require refinery investments in the order of 70-100 billion euros. The associated CO2 emissions would amount up to 175 Mton. The net additional CO2 emission, however, would be smaller since lighter shipping fuels result in less CO2 emissions at sea. On balance, we expect that the improvements in fuel economy, driven by the expensive low-carbon shipping fuels, will decrease CO2 emissions more than the increase in CO2 emissions from additional desulphurization in the refineries. Nevertheless CO2 emissions from sea shipping will continue to increase since marine transport is rapidly growing

  6. CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India

    International Nuclear Information System (INIS)

    Jayanthakumaran, Kankesu; Verma, Reetu; Liu Ying

    2012-01-01

    In order to prevent the destabilisation of the Earth's biosphere, CO 2 emissions must be reduced quickly and significantly. The causes of CO 2 emissions by individual countries need to be apprehended in order to understand the processes required for reducing emissions around the globe. China and India are the two largest transitional countries and growing economies, but are in two entirely different categories in terms of structural changes in growth, trade and energy use. CO 2 emissions from the burning of fossil fuels have significantly increased in the recent past. This paper compares China and India using the bounds testing approach to cointegration and the ARDL methodology to test the long- and short-run relationships between growth, trade, energy use and endogenously determined structural breaks. The CO 2 emissions in China were influenced by per capita income, structural changes and energy consumption. A similar causal connection cannot be established for India with regard to structural changes and CO 2 emissions, because India's informal economy is much larger than China's. India possesses an extraordinarily large number of micro-enterprises that are low energy consumers and not competitive enough to reach international markets. Understanding these contrasting scenarios is prerequisite to reaching an international agreement on climate change affecting these two countries. - Highlights: ► The bounds testing approach to cointegration and the ARDL methodology were used to test CO 2 emissions–energy consumption–income–international trade nexus in China and India. ► The CO 2 emissions in China were influenced by structural changes and associated energy consumption, income and foreign trade. ► A similar causal connection (structural change) cannot be established in India. ► Understanding these contrasting scenarios is prerequisite to reaching an international agreement on climate change affecting these countries.

  7. CO2 Emissions and Cost by Floor Types of Public Apartment Houses in South Korea

    Directory of Open Access Journals (Sweden)

    Hyoung Jae Jang

    2016-05-01

    Full Text Available In each country in the world, there is a strong need for all industries to reduce CO2 emissions for sustainable development as a preparation for climatic change. The biggest issue in many developed countries, including the United States, is to reduce CO2 emissions for the upcoming implementation of Carbon Emissions Trading. The construction industry, in particular, which accounts for up about 30% of CO2 emissions, will need studies on the amount of CO2 emissions. The purpose of this study is to present the most environmentally friendly and economical apartment house plan types according to the increasing number of layers by evaluating the amount of CO2 emissions and economic efficiency. The results indicated that flat and Y-shaped types are more eco-friendly and economical in lower levels of less than 20 stories. However, the L-shaped type is more highly eco-friendly and economically efficient in higher levels of more than 20 stories. The results of this paper would help to make a decision on the building types and the number of stories in the early stages of construction.

  8. Analysis of Transport Policy Effect on CO2 Emissions Based on System Dynamics

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    2015-01-01

    Full Text Available CO2 emission from the transport sector attracts the attention of both transport and climate change policymakers because of its share in total green house gas emissions and the forecast of continuous growth reported in many countries. This paper takes the urban transport in Beijing as a case and builds a system dynamics model for analysis of the motorization trend and the assessment of CO2 emissions mitigation policy. It is found that the urban transport condition and CO2 emissions would be more serious with the growth of vehicle ownership and travel demand. Compared with the baseline do-nothing scenario, the CO2 emissions could be reduced from 3.8% to 24.3% in 2020 by various transport policies. And the policy of controlling the number of passenger cars which has been carried out in Beijing and followed by some cities could achieve good results, which may help to increase the proportion of public transit to 55.6% and reduce the CO2 emission by 18.3% compared with the baseline scenario in 2020.

  9. The Long Road from Ljubljana to Kyoto: Implementing Emission Trading Mechanisms and CO2 Tax

    Directory of Open Access Journals (Sweden)

    Tanja Markovič-Hribernik

    2006-03-01

    Full Text Available According to the Kyoto Protocol, Slovenia is required to reduce GHG emissions to an average of 8% below base year 1986 emissions in the period 2008-2012. Slovenia established different measures for reducing GHG emissions long before its ratification. It was first transition country who implemented CO2 tax in the 1997. Several changes in CO2 tax have not brought the desired results. CO2 emissions have actually increased. At the beginning of 2005, Slovenia joined other EU member states by implementing the emissions trading instrument, defined by new EU Directive. At the same time, Slovenia has adopted a new CO2 tax system, which is compatible with the new circumstances. The main purpose of this paper is to present the characteristics of Slovenian approach to national allocation plan for emissions trading and analyze the problems of the CO2 tax in Slovenia. Paper also describes the compliance cost of achieving the Kyoto target and expected movements on the Slovenian allowances market.

  10. CO2 Emisyonu ve Ekonomik Büyüme: Panel Veri Analizi(CO2 Emission and Economic Growth: A Panel Data Analysis

    Directory of Open Access Journals (Sweden)

    Ayşe ARI

    2011-01-01

    Full Text Available The aim of this paper is to test Environmental Kuznets Curve (EKC hypothesis by investigating the relationship between per capita income and carbon dioxide (CO2 emission. In accordance with this aim, The Mediterranian Countries have been analysed with the panel data method over the period 2000-2005. The empirical results displayed an N-shaped relationship between per capita GDP and CO2 emission. Thereby, it has seen that CO2 emission can also increase at the high levels of per capita income. Furthermore, the effects of the population density and energy consumption on the environmental pollution have also been searched in this study. The obtained empirical results indicated that the population density and energy consumption effect CO2 emission positively.

  11. The energy and CO2 emissions impact of renewable energy development in China

    International Nuclear Information System (INIS)

    Qi, Tianyu; Zhang, Xiliang; Karplus, Valerie J.

    2014-01-01

    China has adopted targets for developing renewable electricity that would require expansion on an unprecedented scale. During the period from 2010 to 2020, we find that current renewable electricity targets result in significant additional renewable energy installation and a reduction in cumulative CO 2 emissions of 1.8% relative to a No Policy baseline. After 2020, the role of renewables is sensitive to both economic growth and technology cost assumptions. Importantly, we find that the CO 2 emissions reductions due to increased renewables are offset in each year by emissions increases in non-covered sectors through 2050. We consider sensitivity to renewable electricity cost after 2020 and find that if cost falls due to policy or other reasons, renewable electricity share increases and results in slightly higher economic growth through 2050. However, regardless of the cost assumption, projected CO 2 emissions reductions are very modest under a policy that only targets the supply side in the electricity sector. A policy approach that covers all sectors and allows flexibility to reduce CO 2 at lowest cost – such as an emissions trading system – will prevent this emissions leakage and ensure targeted reductions in CO 2 emissions are achieved over the long term. - Highlights: • The 2020 targets and subsidies make renewable electricity economically viable in the short term. • Cumulative CO 2 emissions (2010-2020) are reduced by 1.8% in the Current Policy scenario. • Displacing fossil fuels from electricity leads to increases in other sectors, offsetting emissions reductions. • The expansion of renewables after 2020 depends on cost reductions achieved

  12. Planning for Economic Growth with Reduced CO2 Emissions in Provincial China: The Case of Jiangxi

    Directory of Open Access Journals (Sweden)

    Yu-Lin Tsou

    Full Text Available ABSTRACT: Since the Industrial Revolution, the concentration of greenhouse gases (GHG, primarily carbon dioxide (CO2, has put increasing pressure on the atmosphere's ability to absorb them. China is the fastest growing major economy in the world, and is following a process of rapid industrialization. This process, however, contributes dramatically to global warming through major CO2 emissions. The widespread provision of electricity through coal-fired power plants is just one contributor, but industrial structures, transportation systems, and the construction of large superblock residential towers also play major roles. The large cities and industrialized provinces of China emit the most CO2, a fact that requires serious attention. However, stemming this trend elsewhere in China would provide a greater opportunity for success in reducing overall CO2 emissions in the country. Consequently, the question this paper addresses is what policies can be adopted to reduce CO2 emissions in provinces in China where development is still in its early stages, while maintaining economic growth. Jiangxi is a province that has historically been a major agricultural area. In recent years, however, because of the economic development policies of the Chinese central government, the province's rich mineral deposits, favorable location, and convenient transportation system are attracting more investments and projects for development (Statistical Bureau of Jiangxi, 2010. Jiangxi, then, provides an excellent case study because the province, although developing quickly, might still produce less CO2 if proper growth policies and actions are implemented. According to the results of this research, CO2 emissions would indeed decline in Jiangxi if the province would adopt new technology for electricity generation and increase the GDP role of the service sector. KEYWORDS: Provincial Chinese development, economic growth and global warming, CO2 emissions in China, Chinese

  13. Coal utilization in industrial boilers in China - a prospect for mitigating CO2 emissions

    International Nuclear Information System (INIS)

    Fang, J.; Zeng, T.; Yang, L.I.S.; Oye, K.A.; Sarofim, A.F.; Beer, J.M.

    1999-01-01

    It is estimated from GEF statistical data for 1991 that more than 500,000 industrial boilers (mostly stoker-fired) in China consume over 400 million tons of coal per year. Each year, because of low boiler efficiency, 75 million tons of coal is wasted and 130 million tons of excess CO 2 are emitted. An analysis of 250 boiler thermal-balance test certificates and 6 field visits in three provinces have shown that: (1) boilers with efficiencies of less than 70% account for 75% of the total boiler-population; (2) the main causes of the low efficiencies are high excess air and unburned carbon in the slag and fly ash. The effect of unburned carbon on CO 2 emission is a balance of positive and negative contributions: while the unburned carbon does not produce CO 2 emissions, its replacement carbon, burned at a low efficiency, contributes to a net increase in CO 2 emissions. It seems from the analysis that the average boiler efficiency can be raised to 73% by relatively simple means, such as the size grading of the coal, improved boiler operating practice and some inexpensive equipment modifications. This could then result in savings each year of 34 million tons of coal and a reduction in CO 2 emissions of 63 million tons at an estimated cost of $10 per ton of CO 2 . (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Does trade openness affect CO2 emissions: evidence from ten newly industrialized countries?

    Science.gov (United States)

    Zhang, Shun; Liu, Xuyi; Bae, Junghan

    2017-07-01

    This paper examines whether the hypothetical environmental Kuznet curve (EKC) exists or not and investigates how trade openness affects CO 2 emissions, together with real GDP and total primary energy consumption. The study sample comprises ten newly industrialized countries (NICs-10) from 1971 to 2013. The results support the existence of hypothetical EKC and indicate that trade openness negatively and significantly affects emissions, while real GDP and energy do positive effects of emissions. Moreover, the empirical results of short-run causalities indicate feedback hypothetical linkage of real GDP and trade, unidirectional linkages from energy to emissions, and from trade to energy. The error correction terms (ECTs) reveal in the long run, feedback linkages of emissions, real GDP, and trade openness, while energy Granger causes emissions, real GDP, and trade, respectively. The study recommendations are that our policymakers should encourage and expand the trade openness in these countries, not only to restrain CO 2 emissions but also to boost their growth.

  15. The CO2 emissions bond to the energy combustion in the world in 2005

    International Nuclear Information System (INIS)

    2007-01-01

    The CO 2 emissions for different countries are compared for the years 1990 2004 and 2005, from statistical data of the AIE. The emissions are calculated in relation of the gross domestic product and the population. A special attention and a sectoral analysis is provided for France. (A.L.B.)

  16. A structural nonparametric reappraisal of the CO2 emissions-income relationship

    NARCIS (Netherlands)

    Azomahou, T.T.; Goedhuys - Degelin, Micheline; Nguyen-Van, P.

    Relying on a structural nonparametric estimation, we show that co2 emissions clearly increase with income at low income levels. For higher income levels, we observe a decreasing relationship, though not significant. We also find thatco2 emissions monotonically increases with energy use at a

  17. Examining Determinants of CO2 Emissions in 73 Cities in China

    Directory of Open Access Journals (Sweden)

    Haitao Zheng

    2016-12-01

    Full Text Available Issues concerning which factors that influence carbon dioxide emission, and which administrative measures should be imposed to reduce carbon emission in Chinese cities, have been on the agenda in cities’ policy-making. Yet little literature has studied this topic from the city level. This paper first measures CO2 emission of 73 Chinese cities. We find heterogeneity embedded in the cross-city distribution of CO2 emission per capita and a nonlinear structure in the relationship between carbon emission and GDP per capita. To describe such multimodality and examine the determinants of CO2 emission in these cities, this article applies a linear mixed effect model covering the quadratic term of GDP per capita to extend the stochastic impact by regression on population, affluence, and technology (STIRPAT model. The empirical results demonstrate that population size, secondary industry proportion, energy consumption structure, urbanization level and economic level have generally shown a positive influence on CO2 emissions in Chinese cities. However, the urbanization level is of no significance. The phenomenon of the environmental Kuznets curve varies across Chinese cities, according to which three city groups are formed. Specific policy recommendations are given to each city group in light of their unique influencing modes on carbon emissions.

  18. The Assessment of Biofuel Utilization Policy on the Total Output and CO2 Emissions in Thailand

    Directory of Open Access Journals (Sweden)

    Suthathip Suanmali

    2013-07-01

    Full Text Available The transport sector is the largest energy-consuming sector in Thailand. Its primary energy supply is heavily depended on imported oil. Since 2005, world crude oil price has been rising and had reached a record of 147 $/barrel. Therefore the policy on promotion of biofuel utilization was initiated in 2005 by the Ministry of Energy; however, the economy-wide impacts have been rarely assessed. This paper presents the energy Input-Output Analysis (IO of the economy-wide impacts on the promotion policy, in particular, the change in Greenhouse Gas (GHG emissions. In order to measure the total GHG emission from different economic sectors, the contribution of emissions has to be considered. In this paper, the focus is placed on CO2 emissions. To calculate the amount of CO2 emissions, the emission amount of various final consumptions in the economy evaluated by the IO must be applied. The direct CO2 emissions in final energy consumptions in Thailand are evaluated by using conversion factors from Guidelines to Defra's GHG conversion factors, Annexes updated in June 2007. The CO2 emissions in various economic sectors will be calculated and compared with the figures in 2015 when the policy is fully implemented.

  19. Transition paths towards CO2 emission reduction in the steel industry

    NARCIS (Netherlands)

    Daniëls, Berend Wilhelm

    2002-01-01

    Radiative forcing, better known as the Greenhouse Effect, is probably the major 21st century environmental problem. Its probable cause is the anthropogenic emission of greenhouse gases, especially CO2. The Kyoto agreement enforces considerable reductions of the GHG emissions in 2010, with 6 to 8% of

  20. The Influence of Various Operation Modes on Diesel Passenger Cars CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Arina Negoițescu

    2015-07-01

    Full Text Available The amount of emissions released into the atmosphere by polluting sources was significantly reduced due to the limitations introduced by the EU. Since one of the main sources affecting air quality is the car, researches regarding the influence of various factors on exhaust emissions are carried out. As CO2 is the main pollutant responsible for the greenhouse effect, the article treats the influence of vehicle load and traffic levels, running modes, the electric consumer’s utilization, and driving style on CO2 emissions for cars equipped with diesel engine. The results from the conducted study can contribute to adopt solutions in order to decrease the concentration of CO2 emissions from cars equipped with diesel engines.

  1. The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion

    International Nuclear Information System (INIS)

    Quadrelli, Roberta; Peterson, Sierra

    2007-01-01

    Fossil fuel combustion is the single largest human influence on climate, accounting for 80% of anthropogenic greenhouse gas emissions. This paper presents trends in world carbon dioxide (CO 2 ) emissions from fossil fuel combustion worldwide, based on the estimates of the International Energy Agency (IEA) [IEA, 2006a. CO 2 Emissions from Fuel Combustion 1971-2004. International Energy Agency, Paris, France]. Analyzing the drivers of CO 2 emissions, the paper considers regions, types of fuel, sectors, and socio-economic indicators. The paper then examines the growing body of climate change mitigation policies and measures, both multinational and federal. Policies discussed include the Kyoto Protocol, the European Union Emissions Trading Scheme, and the potential measures to be implemented in 2012 and beyond. CO 2 emissions of recent years have grown at the highest rates ever recorded, an observed trend incompatible with stabilizing atmospheric concentrations of greenhouse gases and avoiding long-term climate change. Within this aggregate upward trend, a comparison of emissions sources proves dynamic: while industrialized countries have so far dominated historical emissions, rapid growth in energy demand of developing economies, led by China, may soon spur their absolute emissions beyond those of industrialized countries. To provide context for the drivers of CO 2 emissions, the paper examines fuel sources, from coal to biofuels, and fuel use in the production of heat and electricity, in transport, in industrial production and in households. The sectoral analysis illustrates the primacy, in terms of emissions growth and absolute emissions, of two sectors: electricity and heat generation, and transport. A discussion of several socio-economic emissions drivers complements the paper's analysis of mitigation mechanisms. As illustrated, emissions per capita and emissions per unit of economic production, as measured in gross domestic product (GDP), vary widely between

  2. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain

    2018-01-15

    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Johansson, Maria T.

    2014-01-01

    Highlights: • Technologies for recovery and use of industrial excess heat were investigated. • Heat harvesting, heat storage, heat utilization, and heat conversion technologies. • Heat recovery potential for Gävleborg County in Sweden was calculated. • Effects on global CO 2 emissions were calculated for future energy market scenarios. - Abstract: Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO 2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO 2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO 2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gävleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO 2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO 2 emissions when the CO 2 emission charge is low

  4. CO2 emissions, energy consumption, income and foreign trade: A South African perspective

    International Nuclear Information System (INIS)

    Kohler, Marcel

    2013-01-01

    The effect of trade liberalisation on environmental conditions has yielded significant debate in the energy economics literature. Although research on the relationship between energy consumption, emissions and economic growth is not new in South Africa, no study specifically addresses the role that South Africa's foreign trade plays in this context. A surprising fact given trade is one of the most important factors that can explain the environmental Kuznets curve. This study employs recent South African trade and energy data and modern econometric techniques to investigate this. The main finding of interest in this paper is the existence of a long run relationship between environmental quality, levels of per capita energy use and foreign trade in South Africa. As anticipated per capita energy use has a significant long run effect in raising the country's CO 2 emission levels, yet surprisingly higher levels of trade for the country act to reduce these emissions. Granger causality tests confirm the existence of a positive bidirectional relationship between per capita energy use and CO 2 emissions. Whilst the study also finds positive bidirectional causality between trade and income per capita and between trade and per capita energy use, it appears however that trade liberalisation in South Africa has not contributed to a long run growth in pollution-intensive activities nor higher emission levels. - Highlights: • A long run relationship between CO 2 emissions, levels of energy use and trade in SA. • Per capita energy has a significant long run effect in raising SA's CO 2 levels. • Trade reduces CO 2 emissions through stimulating technological innovations. • Positive bidirectional causality between per capita energy use and CO 2 emissions. • Bidirectional causality between trade and income and trade and energy use

  5. Potential energy savings and CO2 emissions reduction of China's cement industry

    International Nuclear Information System (INIS)

    Ke, Jing; Zheng, Nina; Fridley, David; Price, Lynn; Zhou, Nan

    2012-01-01

    This study analyzes current energy and carbon dioxide (CO 2 ) emission trends in China's cement industry as the basis for modeling different levels of cement production and rates of efficiency improvement and carbon reduction in 2011–2030. Three cement output projections are developed based on analyses of historical production and physical and macroeconomic drivers. For each of these three production projections, energy savings and CO 2 emission reduction potentials are estimated in a best practice scenario and two continuous improvement scenarios relative to a frozen scenario. The results reveal the potential for cumulative final energy savings of 27.1 to 37.5 exajoules and energy-related direct emission reductions of 3.2 to 4.4 gigatonnes in 2011–2030 under the best practice scenarios. The continuous improvement scenarios produce cumulative final energy savings of 6.0 to 18.9 exajoules and reduce CO 2 emissions by 1.0 to 2.4 gigatonnes. This analysis highlights that increasing energy efficiency is the most important policy measure for reducing the cement industry's energy and emissions intensity, given the current state of the industry and the unlikelihood of significant carbon capture and storage before 2030. In addition, policies to reduce total cement production offer the most direct way of reducing total energy consumption and CO 2 emissions. - Highlights: ► This study models output and efficiency improvements in Chinese cement industry from 2011–2030. ► Energy savings and CO 2 emission reductions estimated for 3 scenarios relative to frozen scenario. ► Results reveal cumulative final energy savings potential of 27.1–37.5 EJ and 3.2–4.4 Gt CO 2 reductions. ► Increasing efficiency is the most important policy for reducing cement energy and emissions intensity.

  6. CO2 emissions driven by wind are produced at global scale

    Science.gov (United States)

    Rosario Moya, M.; Sánchez-Cañete, Enrique P.; Kowalski, Andrew S.; Serrano-Ortiz, Penélope; López-Ballesteros, Ana; Oyonarte, Cecilio; Domingo, Francisco

    2017-04-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aims of this study are: 1) to identify anomalous daytime CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that influence these emissions, and 3) to explore the potential processes which can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with maximum quality were used, i.e. control flag equal to 0) and daytime (shortwave radiation incoming > 50 W m-2). Partial Spearman correlation analyses were performed between NEE and ancillary data: air temperature, vapour pressure deficit, soil temperature, precipitation, atmospheric pressure, soil water content, incoming photosynthetic photon flux density, friction velocity and net radiation. When necessary, ancillary variables were gap-filled using the MDS method (Reichstein et al. 2005). Preliminary results showed strong and highly significant correlations between friction velocity and anomalous CO2 emissions, suggesting that these emissions were mainly produced by ventilation events. Anomalous CO2 emissions were found mainly in arid ecosystems and sites with hot and dry summers. We suggest that anomalous CO2

  7. Problems in the Relationship between CO2 Emissions and Global Warming

    Directory of Open Access Journals (Sweden)

    Ferenc Kovács

    2005-03-01

    Full Text Available In the analysis of environmental conditions and impacts, the viewpoint that greenhouse gases, primarily anthropogenic (industrial, human carbon dioxide, play a determining role in the change of global temperatures, ( the increase experienced in the last one and a half decade, has been given widespread publicity recently. Coal-fired power plants are the first to blame for the increase in atmospheric CO2 concentrations in the last two centuries. The study indicates possibilities to increase the efficiency of coal-fired power plants, which would involve a considerable reduction in CO2 emissions with an identical production volume of electrical energy. On the basis of the analysis of the amount of fossil fuels used, the amount of CO2 emissions and changes in the concentrations of atmospheric CO2, it is shown that no correlation can be proved between the factors investigated and changes in global temperatures.

  8. Decentralized production of hydrogen from hydrocarbons with reduced CO2 emission

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Cunping Huang; Ali T-Raissi

    2006-01-01

    Currently, most of the industrial hydrogen production is based on steam methane reforming process that releases significant amount of CO 2 into the atmosphere. CO 2 sequestration is one approach to solving the CO 2 emission problem for large centralized hydrogen plants, but it would be impractical for decentralized H 2 production units. The objective of this paper is to explore new routes to hydrogen production from natural gas without (or drastically reduced) CO 2 emissions. One approach analyzed in this paper is based on thermo-catalytic decomposition (TCD) of hydrocarbons (e.g., methane) to hydrogen gas and elemental carbon. The paper discusses some technological aspects of the TCD process development: (1) thermodynamic analysis of TCD using AspenPlus chemical process simulator, (2) heat input options to the endothermic process, (3) catalyst activity issues, etc. Production of hydrogen and carbon via TCD of methane was experimentally verified using carbon-based catalysts. (authors)

  9. Energy consumption and CO2 emissions of the European glass industry

    International Nuclear Information System (INIS)

    Schmitz, Andreas; Kaminski, Jacek; Maria Scalet, Bianca; Soria, Antonio

    2011-01-01

    An in-depth analysis of the energy consumption and CO 2 emissions of the European glass industry is presented. The analysis is based on data of the EU ETS for the period 2005-2007 (Phase I). The scope of this study comprises the European glass industry as a whole and its seven subsectors. The analysis is based on an assignment of the glass installations (ca. 450) within the EU ETS to the corresponding subsectors and an adequate matching of the respective production volumes. A result is the assessment of the overall final energy consumption (fuel, electricity) as well as the overall CO 2 emissions (process, combustion and indirect emissions) of the glass industry and its subsectors in the EU25/27. Moreover, figures on fuel mix as well as fuel intensity and CO 2 emissions intensity (i.e. carbon intensity) are presented for each of the subsectors on aggregated levels and for selected EU Member States separately. The average intensity of fuel consumption and direct CO 2 emissions of the EU25 glass industry decreased from 2005 to 2007 by about 4% and amounted in 2007 to 7.8 GJ and 0.57 t CO 2 per tonne of saleable product, respectively. The economic energy intensity was evaluated with 0.46 toe/1000 Euro (EU27).

  10. CO2 emission reduction strategy and roles of nuclear energy in Japan

    International Nuclear Information System (INIS)

    Sato, Osamu; Shimoda, Makoto; Takematsu, Kenji; Tadokoro, Yoshihiro

    1999-03-01

    An analysis was made on the potential and cost of reducing carbon dioxide (CO 2 ) emissions from Japan's long-term energy systems by using the MARKAL model, developed in the Energy Technology Systems Analysis Programme (ETSAP) of International Energy Agency (IEA). Assuming future growths of GDP, the demand for energy services was estimated for the analytical time horizon 1990-2050. Assumptions were made also on prices and availability of fossil fuels, and on availability of nuclear and renewable energy. CO 2 emissions and system costs were compared between energy demand and supply scenarios defined with different assumptions on nuclear energy, a CO 2 disposal option, and natural gas imports. Main results were as follows. Without nuclear energy, the CO 2 emissions will hardly be reduced because of the increases of coal utilization. CO 2 disposal will be effective in reducing the emissions, however at much higher costs than the case with nuclear energy. The expansion of natural gas imports alone will not reduce the emissions at enough low levels. (author)

  11. Research on economics and CO2 emission of magnetic and inertial fusion reactors

    International Nuclear Information System (INIS)

    Mori, Kenjiro; Yamazaki, Kozo; Oishi, Tetsutarou; Arimoto, Hideki; Shoji, Tatsuo

    2011-01-01

    An economical and environment-friendly fusion reactor system is needed for the realization of attractive power plants. Comparative system studies have been done for magnetic fusion energy (MFE) reactors, and been extended to include inertial fusion energy (IFE) reactors by Physics Engineering Cost (PEC) system code. In this study, we have evaluated both tokamak reactor (TR) and IFE reactor (IR). We clarify new scaling formulas for cost of electricity (COE) and CO 2 emission rate with respect to key design parameters. By the scaling formulas, it is clarified that the plant availability and operation year dependences are especially dominant for COE. On the other hand, the parameter dependences of CO 2 emission rate is rather weak than that of COE. This is because CO 2 emission percentage from manufacturing the fusion island is lower than COE percentage from that. Furthermore, the parameters dependences for IR are rather weak than those for TR. Because the CO 2 emission rate from manufacturing the laser system to be exchanged is very large in comparison with CO 2 emission rate from TR blanket exchanges. (author)

  12. Main drivers of changes in CO_2 emissions in the Spanish economy: A structural decomposition analysis

    International Nuclear Information System (INIS)

    Cansino, José M.; Román, Rocío; Ordóñez, Manuel

    2016-01-01

    The aim of this paper is the analysis of structural decomposition of changes in CO_2 emissions in Spain by using an enhanced Structural Decomposition Analysis (SDA) supported by detailed Input–Output tables from the World Input–Output Database (2013) (WIOD) for the period 1995–2009. The decomposition of changes in CO_2 emissions at sectoral level are broken down into six effects: carbonization, energy intensity, technology, structural demand, consumption pattern and scale. The results are interesting, not only for researchers but also for utility companies and policy-makers as soon as past and current political mitigation measures are analyzed in line with such results. The results allow us to conclude that the implementation of the Kyoto Protocol together with European Directives related to the promotion of RES seem to have a positive impact on CO_2 emissions trends in Spain. After reviewing the current mitigation measures in Spain, one policy recommendation is suggested to avoid the rebound effect and to enhance the fight against Climate Change that is tax benefits for those companies that prove reductions in their energy intensity ratios. - Highlights: • Kyoto's Protocol and European Directives acted against CO_2 emissions in Spain. • Changes in primary energy mix acted against increasing CO_2 emissions. • Energy efficiency seems to have improved. • Historical analysis gives support for most mitigation measures currently in force.

  13. CO2 emission from China's energy sector and strategy for its control

    International Nuclear Information System (INIS)

    He, Jiankun; Deng, Jing; Su, Mingshan

    2010-01-01

    This paper identifies the main features of CO 2 emission from fossil energy combustion in China. Then it estimates China's future energy requirements and projects its CO 2 emission from 2010 to 2020 based on the scenario analysis approach. China's rate of carbon productivity growth is estimated to be 5.4% in the period 2005-2020, while the CO 2 intensity of GDP will reduce by about 50% but CO 2 emission in 2020 will still be about 40% higher than prevailing in 2005 because of rapid growth of GDP. This estimation is based on the assumption that China will implement a sustainable development strategy in consideration of climate change issues. The main objectives of the strategy are to implement an 'energy conservation first' strategy, to develop renewable energy and advanced nuclear technology actively, to readjust the country's economic structure, and to formulate and legislate laws and regulations, and to build institutions for energy conservation and development of renewable energy. It concludes that international measures to mitigate CO 2 emission will limit world fossil fuel consumption. China is not placed to replicate the modernization model adopted by developed countries and has to coordinate economic development and carbon dioxide emission control while still in the process of industrialization and modernization. China has to evolve a low carbon industrialization model. This is the key to the success of sustainable development initiatives in China.

  14. Halving CO2 emission in the built environment. An evaluation of nine tools

    International Nuclear Information System (INIS)

    Rooijers, F.J.; Leguijt, C.; Groot, M.I.

    2010-06-01

    A study has been carried out into the possibilities and limitations of nine policy instruments for the built environment to reduce CO2 emissions to a minimum of 50% in 2030 compared to 1990. Besides an analysis of the bottlenecks that stand in the way of energy conservation, policy instruments such as subsidies and CO2 tax are described and analyzed. Direct and social costs are examined as well as the target and the feasibility. [nl

  15. Reducing CO2 emissions on the electric grid through a carbon disincentive policy

    International Nuclear Information System (INIS)

    Li, Chiao-Ting; Peng, Huei; Sun, Jing

    2013-01-01

    This paper studies the operation of an electric grid with renewable wind generation and plug-in electric vehicles (PEVs). In particular, PEVs will be the controllable demand that can mitigate the intermittency in wind generation and improve the capacity factors of the non-renewable generation assets on the grid. Optimization problems are formulated to minimize the costs of electricity generation, and two approaches are proposed to address the grid CO 2 emission in the optimization. The first approach directly penalizes CO 2 in the objective function, and the second approach adopts a carbon disincentive policy to alter the dispatch order of power plants, so that expensive low-CO 2 plants can replace cheap high-CO 2 plants. These two approaches result in very different outcomes: the first approach affects only the PEV charging demand on the grid and does not result in significant CO 2 reduction, whereas the second approach controls both the generation and load, and CO 2 can be reduced substantially. In addition, the carbon disincentive policy, unlike a carbon tax, does not collect any revenue; therefore, the increase in electricity cost is minimal. The effect of the proposed algorithms on the grid electricity cost and carbon emission is analyzed in details and reported. - Highlights: • We study the tradeoff between CO 2 emissions and generation cost on an electric grid. • The tradeoff was shown by Pareto fronts obtained from optimizations. • Pareto fronts shows that a carbon disincentive is effective in reducing emissions. • Controlling both supply and demand on the grid is necessary to reduce CO 2 and costs

  16. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    Science.gov (United States)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  17. CO2 emissions embodied in China-US trade: Input-output analysis based on the emergy/dollar ratio

    International Nuclear Information System (INIS)

    Du Huibin; Guo Jianghong; Mao Guozhu; Smith, Alexander M.; Wang Xuxu; Wang, Yuan

    2011-01-01

    To gain insight into changes in CO 2 emissions embodied in China-US trade, an input-output analysis based on the emergy/dollar ratio (EDR) is used to estimate embodied CO 2 emissions; a structural decomposition analysis (SDA) is employed to analyze the driving factors for changes in CO 2 emissions embodied in China's exports to the US during 2002-2007. The results of the input-output analysis show that net export of CO 2 emissions increased quickly from 2002 to 2005 but decreased from 2005 to 2007. These trends are due to a reduction in total CO 2 emission intensity, a decrease in the exchange rate, and small imports of embodied CO 2 emissions. The results of the SDA demonstrate that total export volume was the largest driving factor for the increase in embodied CO 2 emissions during 2002-2007, followed by intermediate input structure. Direct CO 2 emissions intensity had a negative effect on changes in embodied CO 2 emissions. The results suggest that China should establish a framework for allocating emission responsibilities, enhance energy efficiency, and improve intermediate input structure. - Highlights: → An input-output analysis based on the emergy/dollar ratio estimated embodied CO 2 . → A structural decomposition analysis analyzed the driving factors. → Net export of CO 2 increased from 2002 to 2005 but decreased from 2005 to 2007. → Total export volume was the largest driving factor. → A framework for allocating emission responsibilities.

  18. Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications

    International Nuclear Information System (INIS)

    Freitas, Luciano Charlita de; Kaneko, Shinji

    2011-01-01

    This study evaluates the changes in CO 2 emissions from energy consumption in Brazil for the period 1970-2009. Emissions are decomposed into production and consumption activities allowing computing the full set of energy sources consumed in the country. This study aims to develop a comprehensive and updated picture of the underlying determinants of emissions change from energy consumption in Brazil along the last four decades, including for the first time the recently released data for 2009. Results demonstrate that economic activity and demographic pressure are the leading forces explaining emission increase. On the other hand, carbon intensity reductions and diversification of energy mix towards cleaner sources are the main factors contributing to emission mitigation, which are also the driving factors responsible for the observed decoupling between CO 2 emissions and economic growth after 2004. The cyclical patterns of energy intensity and economy structure are associated to both increments and mitigation on total emission change depending on the interval. The evidences demonstrate that Brazilian efforts to reduce emissions are concentrated on energy mix diversification and carbon intensity control while technology intensive alternatives like energy intensity has not demonstrated relevant progress. Residential sector displays a marginal weight in the total emission change. - Research highlights: → Article provides an updated evaluation on the changes in CO 2 emissions from energy consumption in Brazil, including the recently released data for 2009. → Results demonstrate that progress in energy mix diversification and associated factors are the most important factors contributing to emission mitigation in Brazil. → Negligence in technology intensive factors, as energy intensity, has offset most efforts on emission mitigation related to energy consumption. → Paper announces a first episode of absolute decoupling between GDP growth and CO 2 emission

  19. Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis

    International Nuclear Information System (INIS)

    Lim, Hea-Jin; Yoo, Seung-Hoon; Kwak, Seung-Jun

    2009-01-01

    This paper attempts to quantify energy consumption and CO 2 emissions in the industrial sectors of Korea. The sources of the changes in CO 2 emissions for the years 1990-2003 are investigated, in terms of a total of eight factors, through input-output structural decomposition analysis: changes in emission coefficient (caused by shifts in energy intensity and carbon intensity); changes in economic growth; and structural changes (in terms of shifts in domestic final demand, exports, imports of final and intermediate goods, and production technology). The results show that the rate of growth of industrial CO 2 emissions has drastically decreased since the 1998 financial crisis in Korea. The effect on emission reductions due to changes in energy intensity and domestic final demand surged in the second period (1995-2000), while the impact of exports steeply rose in the third period (2000-2003). Of all the individual factors, economic growth accounted for the largest increase in CO 2 emissions. The results of this analysis can be used to infer the potential for emission-reduction in Korea

  20. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors

    International Nuclear Information System (INIS)

    Andreoni, V.; Galmarini, S.

    2012-01-01

    A decomposition analysis is used to investigate the main factors influencing the CO 2 emissions of European transport activities for the period 2001–2008. The decomposition method developed by Sun has been used to investigate the carbon dioxide emissions intensity, the energy intensity, the structural changes and the economy activity growth effects for the water and the aviation transport sectors. The analysis is based on Eurostat data and results are presented for 14 Member States, Norway and EU27. Results indicate that economic growth has been the main factor behind the carbon dioxide emissions increase in EU27 both for water and aviation transport activities. -- Highlights: ► Decomposition analysis is used to investigate factors that influenced the energy-related CO 2 emissions of European transport. ► Economic growth has been the main factor affecting the energy-related CO 2 emissions increases. ► Investigating the CO 2 emissions drivers is the first step to define energy efficiency policies and emission reduction strategies.

  1. Energy efficiency and reduction of CO2 emissions from campsites management in a protected area.

    Science.gov (United States)

    Del Moretto, Deny; Branca, Teresa Annunziata; Colla, Valentina

    2018-06-02

    Campsites can be a pollution source, mainly due to the energy consumption. In addition, the green areas, thanks to the direct CO 2 sequestration and the shading, indirectly prevent the CO 2 emissions related to energy consumption. The methodology presented in this paper allowed assessing the annual CO 2 emissions directly related to the campsite management and the consequent environmental impact in campsite clusters in Tuscany. The software i-Tree Canopy was exploited, enabling to evaluate in terms of "canopy" the tonnes of CO 2 sequestered by the vegetation within each campsite. Energy and water consumptions from 2012 to 2015 were assessed for each campsite. As far as the distribution of sequestered CO 2 is concerned, the campsites ranking was in accordance to their size. According to the indicator "T-Tree" or canopy cover, a larger area of the canopy cover allows using less outdoor areas covered by trees for the sequestration of the remaining amount of pollutants. The analysis shows that the considered campsites, that are located in a highly naturalistic Park, present significant positive aspects both in terms of CO 2 emission reductions and of energy efficiency. However, significant margins of improvement are also possible and they were analysed in the paper. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. CO2 emissions due to energy combustion in the World in 2008

    International Nuclear Information System (INIS)

    2010-12-01

    This brief document presents and comments tables and figures of statistics about CO 2 emissions due to energy combustion in the World, as these emissions represent more than 95% of the whole CO 2 emissions. Data and statistics are given for different countries, notably the main Western and Asian countries. These emissions are considered globally, but they are also related to the GDP or to the population. If a slight increase (1,5%) of the global emissions has been noticed in 2008, they have decreased when they are related to the GDP (-2%). When emissions are related to the number of inhabitants, it appears that an African emits 20 times less than an inhabitant of the United States of America

  3. Validating CDIAC's population-based approach to the disaggregation of within-country CO2 emissions

    International Nuclear Information System (INIS)

    Cushman, R.M.; Beauchamp, J.J.; Brenkert, A.L.

    1998-01-01

    The Carbon Dioxide Information Analysis Center produces and distributes a data base of CO 2 emissions from fossil-fuel combustion and cement production, expressed as global, regional, and national estimates. CDIAC also produces a companion data base, expressed on a one-degree latitude-longitude grid. To do this gridding, emissions within each country are spatially disaggregated according to the distribution of population within that country. Previously, the lack of within-country emissions data prevented a validation of this approach. But emissions inventories are now becoming available for most US states. An analysis of these inventories confirms that population distribution explains most, but not all, of the variance in the distribution of CO 2 emissions within the US. Additional sources of variance (coal production, non-carbon energy sources, and interstate electricity transfers) are explored, with the hope that the spatial disaggregation of emissions can be improved

  4. Negative CO2 emissions via subsurface mineral carbonation in fractured peridotite

    Science.gov (United States)

    Kelemen, P. B.; Matter, J.

    2014-12-01

    Uptake of CO2 from surface water via mineral carbonation in peridotite can be engineered to achieve negative CO2 emissions. Reaction with peridotite, e.g., CO2 + olivine (A), serpentine (B) and brucite (C), forms inert, non-toxic, solid carbonates such as magnesite. Experimental studies show that A can be 80% complete in a few hours with 30 micron powders and elevated P(CO2) [1,2,3]. B is slower, but in natural systems the rate of B+C is significant [4]. Methods for capture of dilute CO2 via mineral carbonation [4,5,6,7] are not well known, though CO2 storage via mineral carbonation has been discussed for decades [8,9]. Where crushed peridotite is available, as in mine tailings, increased air or water flow could enhance CO2 uptake at a reasonable cost [4,5]. Here we focus on enhancing subsurface CO2 uptake from surface water flowing in fractured peridotite, in systems driven by thermal convection such as geothermal power plants. Return of depleted water to the surface would draw down CO2 from the air [6,7]. CO2 uptake from water, rate limited by flow in input and output wells, could exceed 1000 tons CO2/yr [7]. If well costs minus power sales were 0.1M to 1M and each system lasts 10 years this costs oil industry. Uptake of 1 Gt CO2/yr at 1000 t/well/yr requires 1M wells, comparable to the number of producing oil and gas wells in the USA. Subsurface CO2 uptake could first be applied in coastal, sub-seafloor peridotite with onshore drilling. Sub-seafloor peridotite is extensive off Oman, New Caledonia and Papua New Guinea, with smaller amounts off Spain, Morocco, USA, etc. This would be a regional contribution, used in parallel with other methods elsewhere. To achieve larger scale is conceivable. There is a giant mass of seafloor peridotite along slow-spreading mid-ocean ridges. Could robotic drills enhance CO2 uptake at a reasonable cost, while fabric chimneys transport CO2-depleted water to the sea surface? Does anyone know James Cameron's phone number? [1] O

  5. A locational gaming model with CO2 emission tax and limits

    International Nuclear Information System (INIS)

    Yu, Z.; Preckel, P.V.; Nderitu, G.; Sparrow, F.T.

    2001-01-01

    This paper presents a locational (spatial) gaming model with CO 2 emission and transmission capacity limits. It is developed for simulating strategic behavior of electricity producers in deregulated electricity markets. The model has multiple players, each maximizing their individual profit with a CO 2 emission tax included to reflect the societal cost of environment damages caused by CO 2 emission from different locations. In the paper, the multiple-producer profits are converted into a set of Lagrangian functions with power production and supply as the primary control variables, resulting in a set of unconstrained, individual profit maximization equations. The Karush-Kuhn-Tucker necessary conditions are then derived and solved simultaneously incorporating Cournot gaming strategy. Case studies show the successful application of the model. (author)

  6. Effects of export concentration on CO2 emissions in developed countries: an empirical analysis.

    Science.gov (United States)

    Apergis, Nicholas; Can, Muhlis; Gozgor, Giray; Lau, Chi Keung Marco

    2018-03-08

    This paper provides the evidence on the short- and the long-run effects of the export product concentration on the level of CO 2 emissions in 19 developed (high-income) economies, spanning the period 1962-2010. To this end, the paper makes use of the nonlinear panel unit root and cointegration tests with multiple endogenous structural breaks. It also considers the mean group estimations, the autoregressive distributed lag model, and the panel quantile regression estimations. The findings illustrate that the environmental Kuznets curve (EKC) hypothesis is valid in the panel dataset of 19 developed economies. In addition, it documents that a higher level of the product concentration of exports leads to lower CO 2 emissions. The results from the panel quantile regressions also indicate that the effect of the export product concentration upon the per capita CO 2 emissions is relatively high at the higher quantiles.

  7. The contribution of energy efficiency and renewability to the reduction of CO2 emissions

    International Nuclear Information System (INIS)

    Paredes, J.A.; Mateo, I.

    1995-01-01

    The European Commission has proposed a series of measures, among which the imposition of a tax on the consumption of energy and CO 2 emissions. Different organizations, among them Eurelectric, have opposed this tax, arguing that there exist alternative solutions, such as the adoption of voluntary commitments between companies/national governments, to reduce CO 2 emissions and which at the same time have a much lower cost/benefit ratio: the effects of the increased use of natural gas in electricity generation, improvements in energy efficiency and the promotion and development of cogeneration and renewable energies on CO 2 emissions on a national level (Spain), as well as applications of the same principles within a particular company (Union Fenosa). 3 tabs

  8. The economics of reducing CO2 emissions by solar thermal power plants

    International Nuclear Information System (INIS)

    Brakmann, G.

    1993-01-01

    The necessity to reduce CO 2 -emissions on a global scale is being recognized by scientists and politicians. If no scientific proof of a climate catastrophe due to CO 2 -emissions can be established, it would nevertheless be prudent to implement a form of global survival insurance policy, the premium of which is the required effort to reduce CO 2 -emissions. The implementation of such a policy without a considerable reduction in the living standard requires the replacement of fossil fuels by capital and/or know-how. It should be performed in the most economical manner. This leads to the replacement of the classical ''least cost power expansion strategy'' by the ''least cost power expansion/pollution limiting strategy''. Thereby projects have to compete no longer exclusively on low cost of energy production but on low cost of pollution reduction as well. (Author)

  9. Decadal changes in CH4 and CO2 emissions on the Alaskan North Slope

    Science.gov (United States)

    Sweeney, C.; Commane, R.; Wofsy, S.; Dlugokencky, E. J.; Karion, A.; Stone, R. S.; Chang, R.; Tans, P. P.; Wolter, S.

    2016-12-01

    Large changes in surface air temperature, sea ice cover and permafrost in the Arctic Boreal Ecosystems (ABE) are significantly impacting the critical ecosystem services and human societies that are dependent on the ABE. In order to predict the outcome of continued change in the climate system of the ABE, it is necessary to look at how past changes in climate have affected the ABE. We look at 30 years of CH4 and 42 years of CO2 observations from the NOAA Global Greenhouse Gas Reference Network site in Barrow, Alaska. By eliminating background trends and only looking at data collected when winds are blowing off the North Slope we find very little change in CH4 enhancements, but significant changes in the CO2 enhancements coming off the tundra. The bulk of both CO2 and CH4 emissions appear to be emitted well after the first snow fall on the North Slope. CO2 emissions are a strongly correlation with summer surface temperatures, while CH4 emissions appear insensitive to the large temperature changes that occurred over the measurement period. These results suggest that CO2, and not CH4 emissions, are a likely pathway for the degradation of permafrost carbon.

  10. Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program

    Science.gov (United States)

    Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.

    2006-12-01

    The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the

  11. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China.

    Science.gov (United States)

    Wang, Shaojian; Li, Qiuying; Fang, Chuanglin; Zhou, Chunshan

    2016-01-15

    Following several decades of rapid economic growth, China has become the largest energy consumer and the greatest emitter of CO2 in the world. Given the complex development situation faced by contemporary China, Chinese policymakers now confront the dual challenge of reducing energy use while continuing to foster economic growth. This study posits that a better understanding of the relationship between economic growth, energy consumption, and CO2 emissions is necessary, in order for the Chinese government to develop the energy saving and emission reduction strategies for addressing the impacts of climate change. This paper investigates the cointegrating, temporally dynamic, and casual relationships that exist between economic growth, energy consumption, and CO2 emissions in China, using data for the period 1990-2012. The study develops a comprehensive conceptual framework in order to perform this analysis. The results of cointegration tests suggest the existence of long-run cointegrating relationship among the variables, albeit with short dynamic adjustment mechanisms, indicating that the proportion of disequilibrium errors that can be adjusted in the next period will account for only a fraction of the changes. Further, impulse response analysis (which describes the reaction of any variable as a function of time in response to external shocks) found that the impact of a shock in CO2 emissions on economic growth or energy consumption was only marginally significant. Finally, Granger casual relationships were found to exist between economic growth, energy consumption, and CO2 emissions; specifically, a bi-directional causal relationship between economic growth and energy consumption was identified, and a unidirectional causal relationship was found to exist from energy consumption to CO2 emissions. The findings have significant implications for both academics and practitioners, warning of the need to develop and implement long-term energy and economic policies in

  12. Is an increased elderly population related to decreased CO2 emissions from road transportation?

    International Nuclear Information System (INIS)

    Okada, Akira

    2012-01-01

    Few studies have focused on the potential effects of an increase in the share of aged population on the environmental impacts of road transportation. In order to fill this gap in the literature, this paper empirically analyzes whether there is a relationship between the share of aged population and carbon dioxide (CO 2 ) emissions from road transportation by applying a quadratic function. Using international panel data, it also addresses the level of the turning point in the relationships between the share of aged population and CO 2 emissions. The analysis in this paper uses a first-order differential equation to estimate an inverted U-shaped relationship between them in order to alleviate the unit roots issue. The results from 25 OECD countries, consisting mainly of European countries and Japan, indicate that there is a quadratic relationship between CO 2 emissions per capita and the share of aged population, and that the turning point is around 16 percent. The results also imply that a relative increase in the number of elderly people is associated with a decrease in CO 2 emissions per capita from the road sector when the share of aged population reaches more than 16 percent. - Highlights: ► I estimate the relationship between a country's share of elderly population and CO 2 emissions from road transport. ► In order to alleviate the unit roots issue, the analysis uses a first-order differential equation to estimate models. ► There is a quadratic relationship between CO 2 emissions per capita and the share of elderly. ► The level of the turning point in terms of the share of elderly in OECD European countries and Japan is around 16 percent.

  13. Environmental and economic benefits resulting from citizens' participation in CO2 emissions trading: An efficient alternative solution to the voluntary compensation of CO2 emissions

    International Nuclear Information System (INIS)

    Rousse, Olivier

    2008-01-01

    Over the last few months in the emerging and lucrative carbon project market, a growing number of organizations have proposed to offset citizens' greenhouse gas emissions. The target of these carbon-offset initiatives is to satisfy the increasing demand of individuals wishing to take part in the fight against climate change. In this paper, we review and criticize these carbon-offsetting programs in general terms. We then propose an alternative that, in our opinion, should prove to be a better solution for citizens who are willing to pay for protecting the environment. This alternative is to organize citizens' participation in carbon emissions trading on a large scale in order to purchase and retire (destroy) CO 2 permits. To do so, a benevolent Regulator or non-governmental organization must correct certain CO 2 emissions market failures; this particularly concerns the high transaction costs, which represent an entry barrier and prevent citizens from purchasing and withholding permits. Based on theoretical findings, we demonstrate that implementing citizens' participation in emissions trading is an economically efficient and a morally preferable option. (author)

  14. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Science.gov (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  15. Impact of the economic recession on the European power sector's CO2 emissions

    International Nuclear Information System (INIS)

    Declercq, Bruno; Delarue, Erik; D'haeseleer, William

    2011-01-01

    This paper investigates the impact of the economic recession on CO 2 emissions in the European power sector, during the years 2008 and 2009. Three main determinants of the power sector's emissions are identified: the demand for electricity, the CO 2 price, and fuel prices. A counterfactual scenario has been set up for each of these, i.e., what these parameters would have been if not affected by the recession. A simulation model of the European power sector is then employed, comparing a historical reference simulation (taking the parameters as actually occurred) with the counterfactual scenarios. The lower electricity demand (due to the recession) is shown to have by far the largest impact, accounting for an emission reduction of about 175 Mton. The lower CO 2 price (due to the recession) resulted in an increase in emissions by about 30 Mton. The impact of fuel prices is more difficult to retrieve; an indicative reduction of about 17 Mton is obtained, mainly as a consequence of the low gas prices in 2009. The simulated combined impact of the parameters results in an emission reduction of about 150 Mton in the European power sector over the years 2008 and 2009 as a consequence of the recession. - Research highlights: → CO 2 emissions are simulated for the European power sector. → Emissions reduced drastically because of the economic recession in 2008 and 2009. → Lower electricity demand had highest impact and accounts for reduction of about 175 Mton. → Impact of different CO 2 and fuel prices on emissions is more limited.

  16. CO_2 emissions and energy intensity reduction allocation over provincial industrial sectors in China

    International Nuclear Information System (INIS)

    Wu, Jie; Zhu, Qingyuan; Liang, Liang

    2016-01-01

    Highlights: • DEA is used to evaluate the energy and environmental efficiency of 30 provincial industrial sector in China. • A new DEA-based model is proposed to allocate the CO_2 emissions and energy intensity reduction targets. • The context-dependent DEA is used to characterize the production plans. - Abstract: High energy consumption by the industry of developing countries has led to the problems of increasing emission of greenhouse gases (GHG) (primarily CO_2) and worsening energy shortages. To address these problems, many mitigation measures have been utilized. One major measure is to mandate fixed reductions of GHG emission and energy consumption. Therefore, it is important for each developing country to disaggregate their national reduction targets into targets for various geographical parts of the country. In this paper, we propose a DEA-based approach to allocate China’s national CO_2 emissions and energy intensity reduction targets over Chinese provincial industrial sectors. We firstly evaluate the energy and environmental efficiency of Chinese industry considering energy consumption and GHG emissions. Then, considering the necessity of mitigating GHG emission and energy consumption, we develop a context-dependent DEA technique which can better characterize the changeable production with reductions of CO_2 emission and energy intensity, to help allocate the national reduction targets over provincial industrial sectors. Our empirical study of 30 Chinese regions for the period 2005–2010 shows that the industry of China had poor energy and environmental efficiency. Considering three major geographical areas, eastern China’s industrial sector had the highest efficiency scores while in this aspect central and western China were similar to each other at a lower level. Our study shows that the most effective allocation of the national reduction target requires most of the 30 regional industrial to reduce CO_2 emission and energy intensity, while a

  17. Model rules and regulations for a global CO2 emissions credit market

    International Nuclear Information System (INIS)

    Sandor, R.L.; Cole, J.B.; Kelly, M.E.

    1994-01-01

    On 21 April 1993, on the occasion of Earth Day, the United States affirmed its commitment to reducing emissions of greenhouse gases to their 1990 levels by the year 2000. In doing so, the United States joined the European Union (EU), Japan, and approximately 141 other countries that had either committed themselves to this international objective or subscribed to the general principles contained in the United Nations Framework Convention on Climate Change, signed at UNCED, Rio de Janeiro, June 1992. The commitment of these three trading groups provides the basis for recommending that a market for tradeable carbon dioxide (CO 2 ) emission entitlements among these groups be implemented as soon as an initial set of rules and regulations can be drafted. The goal of a tradeable CO 2 entitlement or credit market is to lower the cost of limiting emissions. The Costs of CO 2 emission abatement are lowered because the market encourages more emission reductions to be produced by the most efficient resources. The ability easily to selI CO 2 credits created through large emission cuts allows cost recovery by, and incentives for, the most efficient sources of emission reductions. The purpose of this paper is to stimulate debate by providing model rules and regulations for a tradeable CO 2 emission credit market. The trading rules and regulations proposed here are meant to initiate a process whereby participants will iterate toward a final set of rules and regulations. Therefore, our proposal should create a point of departure for further adjustments and transformation to the initial set of recommendations. A specific proposal will be advanced at this point in order to provide a basis for the conceptualization of this global market. Moreover, this specific proposal will help focus dialogue and may provide insight into the general recommendations presented in the balance of this paper

  18. Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Slavíková, Renata; Püschel, David; Janoušková, Martina; Hujslová, Martina; Konvalinková, Tereza; Gryndlerová, Hana; Gryndler, Milan; Weiser, Martin; Jansa, Jan

    2017-01-01

    Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13 CO 2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO 2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO 2 collection system is presented which allows assessment of gaseous CO 2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO 2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13 C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13 C allocation to mycorrhizal substrate) and 2.9% (reduction of 13 C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO 2 released belowground. These results advocate quantification of both above- and belowground CO 2 emissions in future studies.

  19. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Gao, Shan; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2014-01-01

    Highlights: • Superfine pulverized coal combustion in O 2 /CO 2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O 2 /CO 2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O 2 /CO 2 combustion. - Abstract: The combination of O 2 /CO 2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O 2 /CO 2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  20. The relationship between economic growth, energy consumption, and CO_2 emissions: Empirical evidence from China

    International Nuclear Information System (INIS)

    Wang, Shaojian; Li, Qiuying; Fang, Chuanglin; Zhou, Chunshan

    2016-01-01

    Following several decades of rapid economic growth, China has become the largest energy consumer and the greatest emitter of CO_2 in the world. Given the complex development situation faced by contemporary China, Chinese policymakers now confront the dual challenge of reducing energy use while continuing to foster economic growth. This study posits that a better understanding of the relationship between economic growth, energy consumption, and CO_2 emissions is necessary, in order for the Chinese government to develop the energy saving and emission reduction strategies for addressing the impacts of climate change. This paper investigates the cointegrating, temporally dynamic, and casual relationships that exist between economic growth, energy consumption, and CO_2 emissions in China, using data for the period 1990–2012. The study develops a comprehensive conceptual framework in order to perform this analysis. The results of cointegration tests suggest the existence of long-run cointegrating relationship among the variables, albeit with short dynamic adjustment mechanisms, indicating that the proportion of disequilibrium errors that can be adjusted in the next period will account for only a fraction of the changes. Further, impulse response analysis (which describes the reaction of any variable as a function of time in response to external shocks) found that the impact of a shock in CO_2 emissions on economic growth or energy consumption was only marginally significant. Finally, Granger casual relationships were found to exist between economic growth, energy consumption, and CO_2 emissions; specifically, a bi-directional causal relationship between economic growth and energy consumption was identified, and a unidirectional causal relationship was found to exist from energy consumption to CO_2 emissions. The findings have significant implications for both academics and practitioners, warning of the need to develop and implement long-term energy and economic

  1. Implementation of a european directive establishing a negotiable CO2 emissions trading scheme

    International Nuclear Information System (INIS)

    Coussy, P.

    2003-01-01

    Approved on July 22, 2003, European Directive 87/2003/EC establishes a scheme for the trading of greenhouse gas emissions allowances. Before the market comes into effect on January 1, 2005, industrialists will have to account for a new financial asset in planning development strategy: the CO 2 allowance. Each Member State is currently developing a climate plan that includes the allocation of CO 2 emissions allowances to industrial installations. It will not be possible to exceed these allowances without incurring a financial penalty. (author)

  2. Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007

    DEFF Research Database (Denmark)

    Luo, Xiao; Dong, Liang; Dou, Yi

    2016-01-01

    Low-carbon urban development has been regarded as a promising is hot spot of global concern on fighting pathway for mitigatingto climate change, whileand transportation sector as a key role contributes takes a significant proportion to the total CO2 emission. Investigate Investigating the driving...... insights from an evolving perspective. Up to date, there are many emerging case studies on the analysis on urban transport CO2 emission in China; however it, but lacks in-depth decomposition and causal mechanism analysis, as well as comparative study. Under this circumstanceIn order to fill this gap...

  3. Implementation of the European directive for the market of negotiable CO2 emission permits

    International Nuclear Information System (INIS)

    Coussy, P.

    2004-01-01

    The European directive 87/2003/CE, establishing a system of exchange of greenhouse gas emission quotas, was adopted on July 22, 2003. Before the opening of the gas market on July 1, 2005, the industrialists will have to integrate in their strategic development plan the existence of a new financial asset: the CO 2 quota. At a time when all member states are preparing their 'climate plan', a given number of CO 2 emission quotas will be assigned to industrialists. They will have to stay below these quotas otherwise financial sanctions will be imposed. (J.S.)

  4. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    Directory of Open Access Journals (Sweden)

    G. Broquet

    2018-02-01

    Full Text Available This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA. This assessment is based on observing system simulation experiments (OSSEs with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ∼ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system

  5. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    Science.gov (United States)

    Broquet, Grégoire; Bréon, François-Marie; Renault, Emmanuel; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich; Chevallier, Frédéric; Wu, Lin; Ciais, Philippe

    2018-02-01

    This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA). This assessment is based on observing system simulation experiments (OSSEs) with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ˜ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif) and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system is perfectly informed about the

  6. Peaking China’s CO2 Emissions: Trends to 2030 and Mitigation Potential

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2017-02-01

    Full Text Available China has submitted its nationally determined contribution to peak its energy-related emissions around 2030. To understand how China might develop its economy while controlling CO2 emissions, this study surveys a number of recent modeling scenarios that project the country’s economic growth, energy mix, and associated emissions until 2050. Our analysis suggests that China’s CO2 emissions will continue to grow until 2040 or 2050 and will approximately double their 2010 level without additional policy intervention. The alternative scenario, however, suggests that peaking CO2 emissions around 2030 requires the emission growth rate to be reduced by 2% below the reference level. This step would result in a plateau in China’s emissions from 2020 to 2030. This paper also proposed a deep de-carbonization pathway for China that is consistent with China’s goal of peaking emissions by around 2030, which can best be achieved through a combination of improvements in energy and carbon intensities. Our analysis also indicated that the potential for energy intensity decline will be limited over time. Thus, the peaking will be largely dependent on the share of non-fossil fuel energy in primary energy consumption.

  7. Australia's CO2 geological storage potential and matching of emission sources to potential sinks

    International Nuclear Information System (INIS)

    Bradshaw, J.; Bradshaw, B.E.; Wilson, P.; Spencer, L.; Allinson, G.; Nguyen, V.

    2004-01-01

    Within the GEODISC program of the Australian Petroleum Cooperative Research Centre (APCRC), Geoscience Australia (GA) and the University of New South Wales (UNSW) have completed an analysis of the potential for the geological storage of CO 2 . The geological analysis assessed over 100 potential environmentally sustainable sites for CO 2 injection (ESSCIs) by applying a deterministic risk assessment based on the five factors of: storage capacity, injectivity potential, site details, containment and natural resources. Utilising a risked storage capacity suggests that at a regional scale Australia has a CO 2 storage potential in excess of 1600 years of current annual total net emissions. Whilst this estimate does give an idea of the enormous magnitude of the geological storage potential of CO 2 in Australia, it does not account for various factors that are evident in source to sink matching. If preferences due to source to sink matching are incorporated, and an assumption is made that some economic imperative will apply to encourage geological storage of CO 2 , then a more realistic analysis can be derived. In such a case, Australia may have the potential to store a maximum of 25% of our total annual net emissions, or approximately 100-115 Mt CO 2 per year. (author)

  8. Incentives for subcontractors to adopt CO2 emission reporting and reduction techniques

    International Nuclear Information System (INIS)

    Scholtens, Bert; Kleinsmann, Renske

    2011-01-01

    We investigate the incentives for subcontractors (couriers) of a transport and logistics company to report about their CO 2 emissions and to implement CO 2 reducing technologies. Furthermore, we try to find out whether these incentives differ between British and Dutch couriers. We find that several incentives play a significant role. Subcontractors in the Netherlands predominantly are extrinsically motivated to engage in CO 2 reporting and reduction techniques. This is because they are mainly driven by regulatory compliance, energy costs and implementation costs. In contrast, British subcontractors are much more intrinsically motivated to comply. They are predominantly driven by energy costs, environmental awareness, relationship building and reputation building. The contractor will have to account for these differences in making its policies work. - Research highlights: → We investigate incentives for couriers to report CO 2 emissions and to implement CO 2 reduction techniques. → We compare couriers in the Netherlands and the United Kingdom. → Several incentives are significant for the adoption of CO 2 reporting and reduction measures. → There are significant differences in the sensitivity for incentives in the Netherlands and the UK.

  9. Bi-lateral CO_2 emissions embodied in Australia–China trade

    International Nuclear Information System (INIS)

    Jayanthakumaran, Kankesu; Liu, Ying

    2016-01-01

    This paper quantifies the CO_2 emissions embodied in bi-lateral trade between Australia and China using a sectoral input–output model. The results revealed: (1) that China performs lower than Australia in clean technology in the primary, manufacturing, energy sectors due to their overuse of coal and inefficient sectoral production processes, and (2) that China had a 30.94 Mt surplus of bi-lateral CO_2 emissions in 2010–2011 and (3) overall global emissions were reduced by 20.19 Mt through Australia–China trade in 2010–2011. The result indicates that the greater the energy efficient a country among the trading partners the lower will be the overall global CO_2 emissions. Global emissions decreased mainly because China consumed Australian primary products rather than producing them. Australia is an energy efficient producer of primary products relative to China. The bilateral trade compositions and trade volume played an important role in lowering global emissions and therefore one can view proposed China Australia Free trade Agreement positively in reducing global emissions. However, for the sustainable development, China should strengthen clean energy use and both countries should adopt measures to create an emission trading scheme in order to avoid protectionism in the form of future border price adjustments. - Highlights: •Primary (Australia) and manufactured (China) exports are a unique combination. •Quantifies CO_2 emissions embodied in bi-lateral trade between Australia and China. •Global emissions reduce because China consume Australian primary. •Australia is energy efficient producer of primary products relative to China. •Results support more trade with appropriate trade composition and volume.

  10. Virtual CO2 Emission Flows in the Global Electricity Trade Network.

    Science.gov (United States)

    Qu, Shen; Li, Yun; Liang, Sai; Yuan, Jiahai; Xu, Ming

    2018-05-14

    Quantifying greenhouse gas emissions due to electricity consumption is crucial for climate mitigation in the electric power sector. Current practices primarily use production-based emission factors to quantify emissions for electricity consumption, assuming production and consumption of electricity take place within the same region. The increasingly intensified cross-border electricity trade complicates the accounting for emissions of electricity consumption. This study employs a network approach to account for the flows in the whole electricity trade network to estimate CO 2 emissions of electricity consumption for 137 major countries/regions in 2014. Results show that in some countries, especially those in Europe and Southern Africa, the impacts of electricity trade on the estimation of emission factors and embodied emissions are significant. The changes made to emission factors by considering intergrid electricity trade can have significant implications for emission accounting and climate mitigation when multiplied by total electricity consumption of the corresponding countries/regions.

  11. A Cluster of CO2 Change Characteristics with GOSAT Observations for Viewing the Spatial Pattern of CO2 Emission and Absorption

    Directory of Open Access Journals (Sweden)

    Da Liu

    2015-11-01

    Full Text Available Satellite observations can be used to detect the changes of CO2 concentration at global and regional scales. With the column-averaged CO2 dry-air mole fraction (Xco2 data derived from satellite observations, the issue is how to extract and assess these changes, which are related to anthropogenic emissions and biosphere absorptions. We propose a k-means cluster analysis to extract the temporally changing features of Xco2 in the Central-Eastern Asia using the data from 2009 to 2013 obtained by Greenhouse Gases Observing Satellite (GOSAT, and assess the effects of anthropogenic emissions and biosphere absorptions on CO2 changes combining with the data of emission and vegetation net primary production (NPP. As a result, 14 clusters, which are 14 types of Xco2 seasonal changing patterns, are obtained in the study area by using the optimal clustering parameters. These clusters are generally in agreement with the spatial pattern of underlying anthropogenic emissions and vegetation absorptions. According to correlation analysis with emission and NPP, these 14 clusters are divided into three groups: strong emission, strong absorption, and a tendency of balancing between emission and absorption. The proposed clustering approach in this study provides us with a potential way to better understand how the seasonal changes of CO2 concentration depend on underlying anthropogenic emissions and vegetation absorptions.

  12. Portable laser spectrometer for airborne and ground-based remote sensing of geological CO2 emissions.

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio

    2017-07-15

    A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.

  13. Fumarole/plume and diffuse CO2 emission from Sierra Negra caldera, Galapagos archipelago

    Science.gov (United States)

    Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.; Toulkeridis, Theofilos; Melián, Gladys; Barrancos, José; Virgili, Giorgio; Sumino, Hirochika; Notsu, Kenji

    2012-08-01

    Measurements of visible and diffuse gas emission were conducted in 2006 at the summit of Sierra Negra volcano, Galapagos, with the aim to better characterize degassing after the 2005 eruption. A total SO2 emission of 11 ± 2 t day-1 was derived from miniature differential optical absorption spectrometer (mini-DOAS) ground-based measurements of the plume emanating from the Mini Azufral fumarolic area, the most important site of visible degassing at Sierra Negra volcano. Using a portable multigas system, the H2S/SO2, CO2/SO2, and H2O/SO2 molar ratios in the Mina Azufral plume emissions were found to be 0.41, 52.2, and 867.9, respectively. The corresponding H2O, CO2, and H2S emission rates were 562, 394, and 3 t day-1, respectively. The total output of diffuse CO2 emissions from the summit of Sierra Negra volcano was 990 ± 85 t day-1, with 605 t day-1 being released by a deep source. The diffuse-to-plume CO2 emission ratio was about 1.5. Mina Azufral fumaroles released gasses containing 73.6 mol% of H2O; the main noncondensable components amounted to 97.4 mol% CO2, 1.5 mol% SO2, 0.6 mol% H2S, and 0.35 mol% N2. The higher H2S/SO2 ratio values found in 2006 as compared to those reported before the 2005 eruption reveal a significant hydrothermal contribution to the fumarolic emissions. 3He/4He ratios measured at Mina Azufral fumarolic discharges showed values of 17.88 ± 0.25 R A , indicating a mid-ocean ridge basalts (MORB) and a Galapagos plume contribution of 53 and 47 %, respectively.

  14. CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China

    Science.gov (United States)

    Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo

    2018-01-01

    Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission

  15. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure

    Science.gov (United States)

    Davis, S. J.; Caldeira, K.; Matthews, D.

    2010-12-01

    If current greenhouse gas (GHG) concentrations remain constant, the world would be committed to several centuries of increasing global mean temperatures and sea level rise. By contrast, near elimination of anthropogenic CO2 emissions would be required to produce diminishing GHG concentrations consistent with stabilization of mean temperatures. Yet long-lived energy and transportation infrastructure now operating can be expected to contribute substantial CO2 emissions over the next 50 years. Barring widespread retrofitting of existing power plants with carbon capture and storage (CCS) technologies or the early decommissioning of serviceable infrastructure, these “committed emissions” represent infrastructural inertia which may be the primary contributor to total future warming commitment. With respect to GHG emissions, infrastructural inertia may be thought of as having two important and overlapping components: (i) infrastructure that directly releases GHGs to the atmosphere, and (ii) infrastructure that contributes to the continued production of devices that emit GHGs to the atmosphere. For example, the interstate highway and refueling infrastructure in the United States facilitates continued production of gasoline-powered automobiles. Here, we focus only on the warming commitment from infrastructure that directly releases CO2 to the atmosphere. Essentially, we answer the question: What if no additional CO2-emitting devices (e.g., power plants, motor vehicles) were built, but all the existing CO2-emitting devices were allowed to live out their normal lifetimes? What CO2 levels and global mean temperatures would we attain? Of course, the actual lifetime of devices may be strongly influenced by economic and policy constraints. For instance, a ban on new CO2-emitting devices would create tremendous incentive to prolong the lifetime of existing devices. Thus, our scenarios are not realistic, but offer a means of gauging the threat of climate change from existing

  16. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    Science.gov (United States)

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. © 2015 John Wiley & Sons Ltd.

  17. From Oil Crisis to Climate Change. Understanding CO2 Emission Trends in IEA Countries

    International Nuclear Information System (INIS)

    Unander, F.

    2003-11-01

    OECD CO2 emissions from fuel combustion increased 13% between 1990 and 2001. This signals an important shift since, over the 1973 to 1990 period, emissions only increased by 3.4%. As a result, CO2 emissions from energy use (fuel combustion) contributed 81.1% of total OECD greenhouse gas emissions in 2001 compared to 77.7% in 1990. As these figures make clear, reducing CO2 emissions from fuel combustion constitutes a key challenge to combat climate change. Developing and successfully implementing the most efficient policies for reducing CO2 emissions requires a good understanding of how factors such as income, prices, demography, economic structure, lifestyle, climate, energy efficiency and fuel mix affect energy use and resulting CO2 emissions. This paper presents selected results from the analysis of CO2 developments included in the IEA publication 'From Oil Crisis to Climate Challenge: 30 Years of Energy Use in IEA Countries'. The paper gives a brief overview of aggregate CO2 emission trends and of how recent developments in selected IEA countries compare to emissions levels implied by the Kyoto targets. A deeper understanding of the aggregate trends is provided by showing results from a decomposition analysis and by discussing developments in key end-use sectors. The full publication presents a more detailed analysis of how various factors have shaped energy use patterns and CO2 emissions since 1973. The analysis draws on a newly developed database with detailed information on energy use in the manufacturing, household, service and transport sectors. The database represents the most disaggregated information available on a consistent basis across countries and sectors. The study uses quantitative measures to illustrate the forces that drive or restrain energy use. These measures - or indicators - include: activities such as manufacturing output or heated-floor-area of homes; structural developments such as changes in manufacturing output mix or changes in the

  18. Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems soil

    Science.gov (United States)

    Syabruk, Olesia

    2017-04-01

    Twentieth century marked a significant expansion of agricultural production. Soil erosion caused by human activity, conversion of forests and grasslands to cropland, desertification, burning nutrient residues, drainage, excessive cultivation led to intense oxidation of soil carbon to the atmosphere and allocation of additional amounts of CO2. According to the UN Intergovernmental Panel on Climate Change, agriculture is one of the main sources of greenhouse gases emissions to the atmosphere. The thesis reveals main patterns of the impact of natural and anthropogenic factors on CO2 emissions in the chernozems typical and podzolized in a Left-bank Forest-Steppe of Ukraine, seasonal and annual dynamics. New provisions for conducting monitoring CO2 emissions from soil were developed by combining observations in natural and controlled conditions, which allows isolating the impact of hydrological, thermal and trophic factors. During the research, the methods for operational monitoring of emission of carbon losses were improved, using a portable infrared gas analyzer, which allows receiving information directly in the field. It was determined that the volumes of emission losses of carbon chernozems typical and podzolized Left-bank Forest-Steppe of Ukraine during the growing season are 480-910 kg/ha and can vary depending on the soil treatment ±( 4,0 - 6,0) % and fertilizer systems ± (3,8 - 7,1) %. The significant impact of long application of various fertilizer systems and soil treatment on the intensity of carbon dioxide emissions was investigated. It was found that most emission occurs in organic- mineral fertilizers systems with direct seeding. The seasonal dynamics of the potential capacity of the soil to produce CO2 were researched. Under identical conditions of humidity and temperature it has maximum in June and July and the gradual extinction of the autumn. It was determined that the intensity of the CO2 emission from the surface of chernozem fluctuates daily from

  19. Effectiveness of US state policies in reducing CO2 emissions from power plants

    Science.gov (United States)

    Grant, Don; Bergstrand, Kelly; Running, Katrina

    2014-11-01

    President Obama's landmark initiative to reduce the CO2 emissions of existing power plants, the nation's largest source of greenhouse gas (GHG) pollutants, depends heavily on states and their ability to devise policies that meet the goals set by the Environmental Protection Agency (EPA). Under the EPA's proposed Clean Power Plan, states will be responsible for cutting power plants' carbon pollution 30% from 2005 levels by 2030. States have already adopted several policies to reduce the electricity sector's climate impact. Some of these policies focus on reducing power plants' CO2 emissions, and others address this outcome in a more roundabout fashion by encouraging energy efficiency and renewable energy. However, it remains unclear which, if any, of these direct and indirect strategies actually mitigate plants' emissions because scholars have yet to test their effects using plant-level emission data. Here we use a newly released data source to determine whether states' policies significantly shape individual power plants' CO2 emissions. Findings reveal that certain types of direct strategy (emission caps and GHG targets) and indirect ones (public benefit funds and electric decoupling) lower plants' emissions and thus are viable building blocks of a federal climate regime.

  20. Outline for the Rotterdam Climate Initiative. CO2 emissions up to 2030; Verkenning voor Rotterdam Climate Initiative. CO2-emissies tot 2030

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, A.J.; Wetzels, W.; Seebregts, A.J.; Kroon, P [ECN Beleidsstudies, Petten (Netherlands)

    2013-04-15

    The Rotterdam Climate Initiative (RCI) aims to reduce the CO2 emissions within the city and port of Rotterdam by 50% in 2025 as compared to 1990. This target translates into a total emission of 12 Mton of CO2. In this study, Rotterdam's CO2 emissions have been estimated for the future years 2015, 2020, 2025 and 2030 based on autonomous developments combined with a policy framework that is assumed to be fixed. This study only explores the sectors Energy and Industry and Freight transport within Rotterdam. The results demonstrate that: (a) CO2 emissions resulting from the sector Energy and Industry increase from 26.5 Mton CO2 in 2011 to 33.8 Mton CO2 in 2020, and slightly decrease afterwards to 29.4 Mton CO2 in 2025 and 2030; and (b) CO2 emissions resulting from Freight transport increase from 1.0 Mton CO2 in 2011 to 1.4 Mton CO2 in 2025 and increase further to 1.6 Mton in 2030. This means that these sectors alone already exceed the emission target, and that substantial additional effort will be needed to attain the 50% CO2 reduction target. The estimated CO2 emissions are lower than those reported in the previous study that was published in 2010. Differences are mainly due to lower CO2 emissions from power plants as compared to the study in 2010. These are influenced by many different developments, such as high gas prices, low electricity prices and low CO2 prices. These estimates have been calculated bottom-up as much as possible and with the help of sector models. The realisation of Maasvlakte 2 has been taken into account in these results, which means more space for chemical plants and substantially more freight transfer and transport in Rotterdam [Dutch] Het Rotterdam Climate Initiative (RCI) heeft als doel om de CO2-emissie van de gemeente Rotterdam, inclusief de haven, in 2025 met 50% te reduceren ten opzichte van het basisjaar 1990. Deze doelstelling betekent een emissieniveau van 12 Mton CO2 in 2025 binnen de gemeente Rotterdam. In deze studie is de CO2

  1. COMPARISON OF CO2-EMISSIONS OF HOUSEHOLDS HEATED BY NATURAL GAS AND FIREWOOD

    Directory of Open Access Journals (Sweden)

    MÓNIKA PALÁDI

    2013-12-01

    Full Text Available In terms of climate protection, one of the most important questions is the reduction of the GHG emission. In this study, I compared CO2 -emission of households heated by natural gas and firewood, which had similar heated area and volume of air, considering the carbon-dioxide absorbing of forests of the households heated by firewood. Natural gas is a fossil fuel; however, the firewood (solid biomass is a renewable energy resource. One of the main features of renewable energy sources is to get into the atmosphere less CO2 than fossil fuels. The renewable energy resources emit into the air just as much CO2 as they absorb during their life cycle.

  2. A policy instruments working paper on reducing CO2 emissions from the transportation sector in Ontario

    International Nuclear Information System (INIS)

    1995-11-01

    The cost effectiveness of policy instruments for reducing CO 2 emissions from transportation was studied. Cost effectiveness analyzed the impact of the policy instruments in reducing CO 2 emissions against the costs that were incurred while obtaining CO 2 reductions. The approach to defining sustainable transportation was identified which integrates three different visions of the transportation challenge: (1) changing urban form to reduce the need for transportation, (2) advancing technology to reduce the ecological impact of transportation, and (3) changing prices of transportation so that users pay for the full social and environmental costs of their decisions. The general consensus was that while fuel tax on gasoline for automobiles appeared to be the most cost effective option available, all revenue generating options, (e.g.,parking pricing, reference energy factor-related rebates, full cost road pricing and taxation) rated higher on the cost effectiveness indexes than any of the other policy instruments considered. refs., tabs., figs

  3. The CO2 emission in urbanic soils in the conditions of intensive technogenic pollution

    Science.gov (United States)

    Deviatova, Tatiana; Alaeva, Liliia; Negrobova, Elena; Kramareva, Tatiana

    2017-04-01

    Massive industrial pollution of the environment including soils leads to drastic changes in the vital activity of microorganisms, plants and animals. As objects of research was selected soils of the industrial and residential zones, farmland soils, forest soils. Comparative analysis showed that the emission of CO2 urbanizable increase compared to the suburban soils in recreational areas is 1.5 times, in the residential and industrial zones - in 3-5 times. In addition, identified a local point located in the vicinity of chemical plants, where soil CO2 emission increased up to 40 times compared to the suburban soils. Air technogenic pollution of soils by industrial emissions and transport enhances the mineralization of soil organic matter, increases its lability. These trends are associated with nonspecific adaptive reactions of the soil microbial complex in terms of pollution. Strengthening of the processes of mineralization may be due to the increase in the proportion of fungi in the microbial community. According to numerous reports they are more resistant to pollution compared to bacteria and actinomycetes. Admission to the soil organic matter of anthropogenic origin also increases the process of mineralization. According to the findings, low concentrations of petroleum products lead to increased "breathing" of the soil. Strengthening of the processes of mineralization and, consequently, of CO2 emissions, in the conditions of technogenic pollution of the soils identified in our studies, confirmed by numerous studies by other authors. According to reports in Russia the emission of CO2 from soils is 4.5 times higher than the industrial receipt of its atmosphere. The contribution of local anthropogenic CO2 emissions is not so significant compared to the indirect influence of soil pollution on increased CO2 emissions. Consequently, the expansion of technogenic contaminated soil is becoming a more significant factor adversely affecting the state of the atmosphere

  4. Inter-annual variability and trend detection of urban CO2, CH4 and CO emissions

    Science.gov (United States)

    Lauvaux, T.; Deng, A.; Gurney, K. R.; Nathan, B.; Ye, X.; Oda, T.; Karion, A.; Hardesty, M.; Harvey, R. M.; Richardson, S.; Whetstone, J. R.; Hutyra, L.; Davis, K. J.; Brewer, A.; Gaudet, B. J.; Turnbull, J. C.; Sweeney, C.; Shepson, P. B.; Miles, N.; Bonin, T.; Wu, K.; Balashov, N. V.

    2017-12-01

    The Indianapolis Flux (INFLUX) Experiment has conducted an unprecedented volume of atmospheric greenhouse gas measurements across the Indianapolis metropolitan area from aircraft, remote-sensing, and tower-based observational platforms. Assimilated in a high-resolution urban inversion system, atmospheric data provide an independent constraint to existing emission products, directly supporting the integration of economic data into urban emission systems. We present here the first multi-year assessment of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) emissions from anthropogenic activities in comparison to multiple bottom-up emission products. Biogenic CO2 fluxes are quantified using an optimized biogeochemical model at high resolution, further refined within the atmospheric inversion system. We also present the first sector-based inversion by jointly assimilating CO2 and CO mixing ratios to quantify the dominant sectors of emissions over the entire period (2012-2015). The detected trend in CO2 emissions over 2012-2015 from both bottom-up emission products and tower-based inversions agree within a few percent, with a decline in city emissions over the 3-year time period. Major changes occur at the primary power plant, suggesting a decrease in energy production within the city limits. The joint assimilation of CO2 and CO mixing ratios confirms the absence of trends in other sectors. However, top-down and bottom-up approaches tend to disagree annually, with a decline in urban emissions suggested by atmospheric data in 2014 that is several months earlier than is observed in the bottom-up products. Concerning CH4 emissions, the inversion shows a decrease since mid-2014 which may be due to lower landfill emissions or lower energy consumption (from coal and natural gas). This first demonstration of a high-accuracy long-term greenhouse gas measurement network merged with a high-resolution bottom-up information system highlights the potential for informing

  5. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    Science.gov (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  6. CO2 emissions due to energy combustion in the world in 2012

    International Nuclear Information System (INIS)

    Wong, Florine

    2015-01-01

    Illustrated by tables and graphs of data, this publication addresses and discusses the evolution of greenhouse gas emissions due to fossil energy combustion and consumption in the world (in the different continents, and in the main regions and countries). It outlines that these CO 2 emissions have increase of 1.2 per cent in 2012 (data are compared on the 1970-2012 period). The evolution of CO 2 emission intensity with respect to GDP is also presented and commented: a 2.1 per cent decrease has been noticed for 2012. The comparison between main geographic and economic areas indicates a 1 to 20 ratio between Africa and the USA for the emission level per capita

  7. Implications of CO2 Emissions Trading for Short-run Electricity Outcomes in Northwest Europe

    International Nuclear Information System (INIS)

    Chen, Y.; Sijm, J.P.M.; Hobbs, B.F.; Lise, W.

    2008-02-01

    We examine the short-run implications of CO2 trading for power production, prices, emissions, and generator profits in northwest Europe in 2005. Simulation results from a transmission-constrained oligopoly model are compared with theoretical analyses to quantify price increases and windfall profits earned by generators. The analyses indicate that the rates at which CO2 costs are passed through to wholesale prices are affected by market competitiveness, merit order changes, and elasticities of demand and supply. Emissions trading results in large windfall profits, much but not all of which is due to free allocation of allowances. Profits also increase for some generators because their generation mix has low emissions, and so they benefit from electricity price increases. Most emission reductions appear to be due to demand response, not generation redispatch

  8. Implications of CO2 Emissions Trading for Short-run Electricity Outcomes in Northwest Europe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [School of Social Sciences, Humanities, and Arts and School of Engineering, Sierra Nevada Research Institute, University of California, Merced, 5200 N. Lake Rd., Merced, CA 95343 (United States); Sijm, J.P.M. [Policy Studies Unit, Energy Research Centre of the Netherlands ECN, P.O. Box 37154, 1020 Amsterdam (Netherlands); Hobbs, B.F. [Department of Geography and Environmental Engineering, The Johns Hopkins University, 3400 N. Charles St, Ames Hall, Baltimore, MD 21218 (United States); Lise, W. [IBS Research and Consultancy, Aga Hamami Caddesi, Aga Han 17/6, Cihangir, 34433 Beyoglu, Istanbul (Turkey)

    2008-02-15

    We examine the short-run implications of CO2 trading for power production, prices, emissions, and generator profits in northwest Europe in 2005. Simulation results from a transmission-constrained oligopoly model are compared with theoretical analyses to quantify price increases and windfall profits earned by generators. The analyses indicate that the rates at which CO2 costs are passed through to wholesale prices are affected by market competitiveness, merit order changes, and elasticities of demand and supply. Emissions trading results in large windfall profits, much but not all of which is due to free allocation of allowances. Profits also increase for some generators because their generation mix has low emissions, and so they benefit from electricity price increases. Most emission reductions appear to be due to demand response, not generation redispatch.

  9. International comparison of CO2 emission trends in the iron and steel industry

    International Nuclear Information System (INIS)

    Yeonbae, Kim; Worrell, E.

    2002-01-01

    In this paper, we present an in-depth decomposition analysis of trends in CO 2 emissions in the iron and steel industry using physical indicators. Physical indicators allow a detailed analysis of intra- sectoral trends, in contrast to the mostly used monetary indicators. Detailed decomposition analysis makes it possible to link developments in energy intensity to technology change and (indirectly) to policy. We present an analysis for the iron and steel industry in seven countries, i.e. Brazil, China, India (developing countries), Mexico and South Korea (newly industrialized countries) and the United States (industrialized country). We found substantial differences in energy efficiency among these countries. In most countries the increased (or decreased) production was the main contributor to changes in CO 2 emissions, while energy-efficiency was the main factor reducing emission intensities of steel production in almost all countries. Changes in power generation contributed to a reduction of specific emissions in the case of South Korea only. (Author)

  10. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    Science.gov (United States)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  11. CO2 emissions and economic development: China's 12th five-year plan

    International Nuclear Information System (INIS)

    Meng Ming; Niu Dongxiao; Shang Wei

    2012-01-01

    For the period of the 12th Five-Year Plan (2011–2015), the Chinese government has decided to reconsider and adjust its policies on economic development because of the pressures of CO 2 emissions and fossil energy consumption. The current paper adopts the logarithmic Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model to simulate the relationship between CO 2 emissions and other economic development factors in China. Three groups of outliers are found using samples from 1989 to 2008 and the Partial Least Square (PLS) regularity test method. The outlier analysis reveals three important areas for CO 2 reduction: (a) decreasing the share of coal to the total energy consumption and replacing it with non-fossil energies; (b) controlling vehicles used in the cities as well as (c) adjusting industrial structure. Furthermore, based on the social and economic realities of China, the current paper designs six feasible development scenarios for the period covered by the 12th Five-Year Plan and predicts the values of each factor in each scenario. The values can test the implementation of China's CO 2 control development concept. The experiences obtained by outlier analysis can be of significant reference value for realizing the predicted scenarios. - Highlights: ► Using STIRPAT to analyze China's CO 2 emissions and economic development factors. ► Using the PLS outlier test method, three groups of outliers are found. ► Outlier analysis reveals three important areas on reducing CO 2 emissions. ► We design six feasible scenarios for the period covered by the 12th Five-Year Plan. ► We predict the values of each factor in each scenario.

  12. Biodiesel CO2 emissions: A comparison with the main fuels in the Brazilian market

    International Nuclear Information System (INIS)

    Coronado, Christian Rodriguez; de Carvalho, Joao Andrade Jr.; Silveira, Jose Luz

    2009-01-01

    The use of biodiesel is increasing as an attractive fuel due to the depleting fossil fuel resources and environmental degradation. This paper presents results of an investigation on the potentials of biodiesel as an alternative fuel and main substitute of diesel oil, comparing the CO 2 emissions of the main fuels in the Brazilian market with those of biodiesel, in pure form or blended in different proportions with diesel oil (2%, 5%, and 20%, called B2, B5, and B20, respectively). The results of the study are shown in ton CO 2 per m 3 and ton CO 2 per year of fuel. The fuels were analyzed considering their chemical composition, stoichiometric combustion parameters and mean consumption for a single vehicle. The fuels studied were: gasoline, diesel oil, anhydrous ethyl alcohol (anhydrous ethanol), and biodiesel from used frying oil and from soybean oil. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. With data provided by the Brazilian Association of Automotive Vehicle Manufacturers (ANFAVEA) for the number of vehicles produced in Brazil, the emissions of CO 2 for the national fleet in 2007 were obtained per type of fuel. With data provided by the Brazilian Department of Transit (DENATRAN) concerning the number of diesel vehicles in the last five years in Brazil, the total CO 2 emissions and the percentage that they would decrease in the case of use of pure biodiesel, B100, or several mixtures, B2, B5 and B20, were calculated. Estimates of CO 2 emissions for a future scenario considering the mixtures B5 and B20 are also included in this article. (author)

  13. The design of renewable support schemes and CO_2 emissions in China

    International Nuclear Information System (INIS)

    Wu, Jie; Albrecht, Johan; Fan, Ying; Xia, Yan

    2016-01-01

    The renewable energy targets put forward by the Chinese government need comprehensive incentive schemes. This paper uses a multi-regional CGE model to evaluate two types of renewable support schemes; a subsidy scheme like a feed-in tariff (FIT) with a direct price impact for final consumers and a subsidy scheme without any price impact. We assess the CO_2 consequences of both approaches, as well as their impact on economic activity in terms of GDP, industrial structure, electricity generation structure, and regional final demand elasticities of electricity. We find that a support scheme with price impact is much more effective in reducing CO_2 emissions while the difference in GDP between the two policies is small. We estimate that the price implications of the support scheme allow for an additional emissions reduction of 113 Mt CO_2—or 0.07% of total emissions—in China during 2020–2035. The support scheme with a price impact does not lead to a negative impact on the Chinese economy although there are significant differences among regions. In addition, while the whole country faces an approximately unitary electricity elasticity demand, we find significant differences in electricity demand elasticities among Chinese regions. - Highlights: • Two types of FIT policies—with and without a price impact—are evaluated. • We assess the CO_2 emissions of both schemes and their impact on economic activity. • A support scheme with price impact is more effective in reducing CO_2 emissions. • The price impact allows for an additional reduction of 113 Mt CO_2 in China during 2020–2035. • Both of the FIT types have a very similar impact on coal consumption.

  14. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy

    Science.gov (United States)

    Sterman, John D.; Siegel, Lori; Rooney-Varga, Juliette N.

    2018-01-01

    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO2 emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO2 over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO2 emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO2 relative to coal. The payback time for this carbon debt ranges from 44-104 years after clearcut, depending on forest type—assuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO2 impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO2 for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.

  15. Aerosol-based emission, solvent degradation, and corrosion in post combustion CO2 capture

    NARCIS (Netherlands)

    Khakharia, P.

    2015-01-01

    Global greenhouse gas emissions, especially of CO2, have been increasing tremendously over the past century. This is known to cause not only an increase of temperature, but also a change in our climate. Along with a shift to renewable sources of energy, Carbon Capture and Storage is necessary to

  16. User needs for a standardized CO2 emission assessment methodology for intelligent transport systems

    NARCIS (Netherlands)

    Mans, D.; Rekiel, J.; Wolfermann, A.; Klunder, G.

    2012-01-01

    The Amitran FP7 project will define a reference methodology to assess the impact of intelligent transport systems on CO2 emissions. The methodology is intended to be used as a reference by future projects and covers both passenger and freight transport. The project will lead to a validated

  17. Stocks of C in soils and emissions of CO2 from agricultural soils in the Netherlands

    NARCIS (Netherlands)

    Kuikman, P.J.; Groot, de W.J.M.; Hendriks, R.F.A.; Verhagen, J.; Vries, de F.

    2003-01-01

    This report presents considerations for the choice of options to calculate and monitor stocks of carbon in all soils and emissions of CO2 from agricultural soils in the Netherlands for the Kyoto 1990 baseline and following years. The objective of the study was to prepare data for a national

  18. Monetary valuation of the social cost of CO2 emissions : A critical survey

    NARCIS (Netherlands)

    van den Bergh, J. C J M; Botzen, W. J W|info:eu-repo/dai/nl/297620584

    2015-01-01

    An expanding branch of research has estimated the potential costs of climate change, which are often expressed as the "Social Cost of Carbon" (SCC) or the costs of an additional ton of CO2 emissions. Estimates of the SCC can be used by policy makers to evaluate climate change policies and greenhouse

  19. Dynamic relationship between CO2 emissions, energy consumption and economic growth in three North African countries

    Science.gov (United States)

    Kais, Saidi; Ben Mbarek, Mounir

    2017-10-01

    This paper investigated the causal relationship between energy consumption (EC), carbon dioxide (CO2) emissions and economic growth for three selected North African countries. It uses a panel co-integration analysis to determine this econometric relationship using data during 1980-2012. Recently developed tests for panel unit root and co-integration tests are applied. In order to test the Granger causality, a panel Vector Error Correction Model is used. The conservation hypothesis is found; the short run panel results show that there is a unidirectional relationship from economic growth to EC. In addition, there is a unidirectional causality running from economic growth to CO2 emissions. A unidirectional relationship from EC to CO2 emissions is detected. Findings shown that there is a big interdependence between EC and economic growth in the long run, which indicates the level of economic activity and EC mutually influence each other in that a high level of economic growth leads to a high level of EC and vice versa. Similarly, a unidirectional causal relationship from EC to CO2 emissions is detected. This study opens up new insights for policy-makers to design comprehensive economic, energy and environmental policy to keep the economic green and a sustainable environment, implying that these three variables could play an important role in the adjustment process as the system changes from the long run equilibrium.

  20. Support for the revision of regulation on CO2 emissions from light commercial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Smokers, R.; Fraga, F.; Verbeek, M.; Willems, F.; Massink, R.; Spreen, J. [TNO, Delft (Netherlands); Norris, J.; Martinez, C. [AEA Technology plc, London (United Kingdom); Kampman, B.; Brinke, L.; Van Essen, H. [CE Delft, Delft (Netherlands); Schilling, S.; Gruhlke, A.; Sander, K. [Institut fuer Oekologie und Politik Oekopol, Hamburg (Netherlands); Breemersch, T.; De Ceuster, G.; Vanherle, K.; Heyndrickx, C. [Transport and Mobility Leuven TML, Leuven (Belgium); Wrigley, S.; O' Brien, S.; Johnson, A. [Ricardo UK, Shoreham-by-Sea, West Sussex (United Kingdom); Buttigieg, D.; Sima, L.; Pagnac, J.; Dhaene, G. [IHS Global Insight, Nijmegen (Netherlands)

    2012-04-15

    Road vehicles make a major contribution to transport sector CO2 emissions and the European Union has several policies in place to reduce their emissions. One of these is the regulation to reduce the CO2 emissions of light commercial vehicles (LCVs or vans), Regulation (EU) 510/2011, often referred to as the vans regulation. This contains a number of review clauses, which require the European Commission to carry out an impact assessment on the 2020 target of 147 gCO2/km, and to assess a number of further issues. The ensuing study addresses a wide range of topics relating to this regulation, and includes the development of cost curves for different LCV segments, the evaluation of different utility parameters, a comparison with the effort needed to reduce the CO2 emissions of passenger cars, an assessment of the impact of electric vehicle penetration and calculation of the effects on the total cost of ownership and the societal abatement costs associated with the 2020 target. CE Delft contributed to this study by developing scenarios for the market uptake of electric vehicles in this vehicle segment, and by providing support to the Commission regarding the economic aspects of the Impact Analysis.

  1. Exploring residential energy consumers' willingness to accept and pay to offset their CO2-emission

    DEFF Research Database (Denmark)

    Yang, Yingkui; Solgaard, Hans Stubbe

    2015-01-01

    to pay for carbon offset. Finally, the ordered logit model is used in modelling willing to pay for carbon offset. Findings The results show that there is significant support from residential energy consumer to offset their CO2 emission from electricity consumption. The WTP is motivated by consumers...

  2. Accelerating CO2-Emission Reductions via Corporate Programmes; Analysis of an Existing Corporate Programme

    NARCIS (Netherlands)

    Manser, J.; Handgraaf, M.J.J.; Schubert, R.; Gsottbauer, E.; Cornielje, M.; Lede, E.

    2013-01-01

    This working paper analyzes and assesses the COYou2 Program of the company Swiss Re. This corporate program allows employees to claim subsidies for the realization of various activities reducing their energy consumption and CO2-emissions at home. Examples of such activities are the purchase of a

  3. Fiscal policy and CO2 emissions of new passenger cars in the EU

    NARCIS (Netherlands)

    Gerlagh, Reyer; Van Den Bijgaart, Inge; Nijland, Hans; Michielsen, Thomas

    To what extent have national fiscal policies contributed to the decarbonisation of newly sold passenger cars? We construct a simple model that generates predictions regarding the effect of fiscal policies on average CO2 emissions of new cars, and then test the model empirically. Our empirical

  4. The decrease of CO2 emission intensity is decarbonization at national and global levels

    International Nuclear Information System (INIS)

    Sun, J.W.

    2005-01-01

    This viewpoint proposes the definition: 'Decarbonization refers to a decrease of CO 2 emission intensity in a trend'. This viewpoint then argues that an analysis of decarbonization at national and global levels based on that definition would lead to the correct calculation of decarbonization

  5. ELVIS: Comparing Electric and Conventional Vehicle Energy Consumption and CO2 Emissions

    DEFF Research Database (Denmark)

    Andersen, Ove; Krogh, Benjamin Bjerre; Torp, Kristian

    2017-01-01

    Making the transition from conventional combustion vehicles (CVs) to electric vehicles (EVs) requires the users to be comfortable with the limited range of EVs. We present a system named ELVIS that enables a direct comparison of energy/fuel consumption, CO2 emissions, and travel-time between CVs...

  6. CO2 emissions accounting: Whether, how, and when different allocation methods should be used

    International Nuclear Information System (INIS)

    Levihn, Fabian

    2014-01-01

    CO 2 abatement and the transition to sustainable energy systems are of great concern, calling for investments in both old and new technologies. There are many perspectives on how to account for these emissions, not least when it comes to how the roles of different alternative energy production options should be emphasized. Confusion and conflicting interests regarding the appropriate accounting methods for allocating CO 2 emissions interfere with effective energy policy and the efficient use of corporate and national resources. Possible investments in the Stockholm district heating network and how they interact with the electric power grid illustrate the influence of different accounting methods on alternative energy production options. The results indicate that, for several abatement options, performance in terms of reduced CO 2 emissions might be either improved or degraded depending on whether or how alternative electricity production is accounted for. The results provide guidelines for whether, how, and when different allocation methods are appropriate, guidelines relevant to academia, industrial leaders, and policymakers in multiple areas related to power production and consumption. - Highlights: • Involvement in the discussion of CO 2 emission allocation is needed from academia. • Abatement options for the district heating in Stockholm were analyzed in relation to power production and the EU ETS. • Implications of different allocation methods are discussed in relation to different analytical purposes and boundaries. • Conclusions are made on when the different allocation methods are appropriate

  7. Assessment of CO 2 emission level in urban transport of Mekelle ...

    African Journals Online (AJOL)

    Transport plays a crucial role in accelerating development and improving quality of life by allowing ease transfer of people, goods and services. It is also one of the important preconditions for achieving developmental goals. This study therefore intends to assess the level of CO2 emissions in urban transport of Mekelle city.

  8. Scaling up methodology for CO2 emissions in ICT applications in traffic and transport in Europe

    NARCIS (Netherlands)

    Mans, D.; Jonkers, E.; Giannelos, I.; Palanciuc, D.

    2013-01-01

    The Amitran project aims to define a reference methodology for evaluating the effects of ICT measures in trafäc and transport on energy efficiency and consequently CO2 emissions. This methodology can be used as a reference by future projects and will address different modes for both passenger and

  9. In which sectors could new illumination technology strategically reduce CO2 emissions?

    DEFF Research Database (Denmark)

    Bjarklev, Araceli; Andersen, Jan; Kjær, Tyge

    2009-01-01

    , is engaged in several actions to reduce its CO2 emissions. The problem severity demands a capacity to react quickly and efficiently to better reach the international goals.   Traditionally, the efforts have concentrated on the residential sector. Consequently, the aim of this paper is to contribute...

  10. CAUSAL RELATIONSHIP BETWEEN ENERGY CONSUMPTION, ECONOMIC GROWTH AND CO2 EMISSIONS: A DYNAMIC PANEL DATA APPROACH

    Directory of Open Access Journals (Sweden)

    Chaido Dritsaki

    2014-04-01

    Full Text Available Energy plays an important role in economic development worldwide. The increase of energy consumption showed that CO2 emissions in the atmosphere have increased dramatically, and these lead many scientists to push governments of the developing countries to take action for the formulation of environmental policies. Many studies have attempted to look for the direction of causality between energy consumption (EC, economic growth (GDP and CO2 emissions mainly on developing countries. This paper, therefore, applies the panel unit root tests, panel cointegration methods and panel causality test to investigate the relationship between energy consumption (EC, economic growth (GDP and CO2 emissions for three countries of Southern Europe (Greece, Spain, and Portugal covering the annual period 1960-2009. The FMOLS and DOLS are then used to estimate the long run relationship between the variables. The findings of this study reveal that there is a short-run bilateral causal link between the examined variables. However, in the long run, there is a unidirectional causality running from CO2 emissions to energy consumption (EC, and economic growth (GDP and a bilateral causality between energy consumption and economic growth. This indicates that energy is a force for economic growth both in short and long run as it is driven from economic growth. Moreover, to face the heterogeneity on the three countries of Southern Europe we use the FMOLS and DOLS estimation methods.

  11. 40 CFR Appendix G to Part 75 - Determination of CO2 Emissions

    Science.gov (United States)

    2010-07-01

    ..., CO2 emissions from sorbent used in a wet flue gas desulfurization control system, fluidized bed boiler... Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal and Coke...

  12. A decomposition analysis of CO2 emissions from energy use: Turkish case

    International Nuclear Information System (INIS)

    Ipek Tunc, G.; Tueruet-Asik, Serap; Akbostanci, Elif

    2009-01-01

    Environmental problems, especially 'climate change' due to significant increase in anthropogenic greenhouse gases, have been on the agenda since 1980s. Among the greenhouse gases, carbon dioxide (CO 2 ) is the most important one and is responsible for more than 60% of the greenhouse effect. The objective of this study is to identify the factors that contribute to changes in CO 2 emissions for the Turkish economy by utilizing Log Mean Divisia Index (LMDI) method developed by Ang (2005) [Ang, B.W., 2005. The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33, 867-871]. Turkish economy is divided into three aggregated sectors, namely agriculture, industry and services, and energy sources used by these sectors are aggregated into four groups: solid fuels, petroleum, natural gas and electricity. This study covers the period 1970-2006, which enables us to investigate the effects of different macroeconomic policies on carbon dioxide emissions through changes in shares of industries and use of different energy sources. Our analysis shows that the main component that determines the changes in CO 2 emissions of the Turkish economy is the economic activity. Even though important changes in the structure of the economy during 1970-2006 period are observed, structure effect is not a significant factor in changes in CO 2 emissions, however intensity effect is.

  13. Financial development, income inequality, and CO2 emissions in Asian countries using STIRPAT model.

    Science.gov (United States)

    Khan, Abdul Qayyum; Saleem, Naima; Fatima, Syeda Tamkeen

    2018-03-01

    The main purpose of this paper is to find the effects of financial development, income inequality, energy usage, and per capita GDP on carbon dioxide (CO 2 ) emissions as well the environmental Kuznets curve (EKC) for the three developing Asian countries-Bangladesh, India, and Pakistan. Panel data during the period 1980-2014 and the Stochastic Impacts by Regression on Population, Affluence, and Technology model with fully modified ordinary least squares (FMOLS) are employed for empirical investigation. The results show that financial development has a significant negative relationship with CO 2 emission in the three selected Asian countries with the exception of India. The results further reveal that income inequality in Pakistan and India reduce CO 2 emission, while the result for Bangladesh is opposite. Likewise, energy usage has a significant positive effect on CO 2 emission in Bangladesh, Pakistan, and India. Our empirical analysis based on long-run and short-run elasticity appraisal suggests the validation of the EKC in Pakistan and India. The study findings recommend an important policy insinuation. The study suggests introducing a motivational campaign for the inhabitant towards utilization of high-efficiency electrical appliances, constructing mutual cooperat