WorldWideScience

Sample records for co2 concentration co2

  1. [Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field].

    Science.gov (United States)

    Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua

    2015-01-01

    A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.

  2. Elevated CO2 concentration around alfalfa nodules increases N2 fixation

    OpenAIRE

    Fischinger, Stephanie A.; Hristozkova, Marieta; Mainassara, Zaman-Allah; Schulze, Joachim

    2009-01-01

    Nodule CO2 fixation via PEPC provides malate for bacteroids and oxaloacetate for N assimilation. The process is therefore of central importance for efficient nitrogen fixation. Nodule CO2 fixation is known to depend on external CO2 concentration. The hypothesis of the present paper was that nitrogen fixation in alfalfa plants is enhanced when the nodules are exposed to elevated CO2 concentrations. Therefore nodulated plants of alfalfa were grown in a hydroponic system that allowed separate ae...

  3. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  4. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen

    2017-01-01

    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  5. Phytophthora quercina infections in elevated CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Oszako Tomasz

    2016-09-01

    Full Text Available In the last decades, a new wave of oak decline has been observed in Poland. The most important pathogenic organisms involved in this phenomenon are probably soil-borne pathogens Phytophthoragenus, especially P. quercina. In this work, we sought to test the influence of elevated CO2 concentration on the susceptibility of oaks (Quercus robur L. to infection by P. quercina. In order to test the susceptibility of oak fine roots to infection, we applied phosphite-based fertiliser Actifos in 0.6% concentration. One-year-old oak seedlings were grown for one year in greenhouse with either an ambient atmosphere (400 ppm CO2 or an elevated (800 ppm concentration of CO2. Oaks grown at the elevated CO2 concentration developed longer shoots as proved by statistically significant differences. However, there was no difference in the development of root systems. The application of Actifos had a positive significant effect on the development of shoots and the surface area of fine roots under the elevated CO2 concentration.

  6. Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes.

    Science.gov (United States)

    Kim, Dohyoung; Oren, Ram; Clark, James S; Palmroth, Sari; Oishi, A Christopher; McCarthy, Heather R; Maier, Chris A; Johnsen, Kurt

    2017-09-01

    We evaluated the effect on soil CO 2 efflux (F CO 2 ) of sudden changes in photosynthetic rates by altering CO 2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO 2 (eCO 2 ) ranging 1.0-1.8 times ambient did not affect F CO 2 . F CO 2 did not decrease until 4 months after termination of the long-term eCO 2 treatment, longer than the 10 days observed for decrease of F CO 2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of F CO 2 following the initiation of eCO 2 . The reduction of F CO 2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and F CO 2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on F CO2 . © 2017 John Wiley & Sons Ltd.

  7. Solubility of NaNd(CO3)2.6H2O(c) in concentrated Na2CO3 and NaHCO3 solutions

    International Nuclear Information System (INIS)

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.; Novak, C.F.

    1996-01-01

    NaNd(CO 3 ) 2 x 6 H 2 O(c) was identified to be the final equilibrium solid phase in suspensions containing concentrated sodium carbonate (0.1 to 2.0 M) and sodium bicarbonate (0.1 to 1.0 M), with either NaNd(CO 3 ) 2 x 6 H 2 O(c) or Nd 2 (CO 3 ) 3 x xH 2 O(s) as initial solids. A thermodynamic model, based on Pitzer's specific into-interaction approach, was developed to interpret the solubility of NaNd(CO 3 ) 2 x 6 H 2 O(c) as functions of sodium carbonate and sodium bicarbonate concentrations. In this model, the solubility data of NaNd(CO 3 ) 2 x 6 H 2 O(c) were explained by assuming the formation of NdCO 3 + , Nd(CO 3 ) 2 - and Nd(CO 3 ) 3 3- species and invoking the specific ion interactions between Na + and Nd(CO 3 ) 3 3- . Ion interaction parameters for Na + -Nd(CO 3 ) 3 3- were developed to fit the solubility data. Based on the model calculations, Nd(CO 3 ) 3 3- was the predominant aqueous neodymium species in 0.1 to 2 M sodium carbonate and 0.1 to 1 M sodium bicarbonate solutions. The logarithm of the NaNd(CO 3 ) 2 x 6 H 2 O solubility product (NaNd(CO 3 ) 2 x 6 H 2 O(c)=Na + +Nd 3+ +2 CO 3 2- +6 H 2 O) was calculated to be -21.39. This model also provided satisfactory interpretation of the solubility data of the analogous Am(III) system in less concentrated carbonate and bicarbonate solutions. (orig.)

  8. Specific radioactivity of glycolate and photorespiration during 14CO2 assimilation at four different CO2 concentrations by sunflower and bean leaves

    International Nuclear Information System (INIS)

    Fock, H.; Klug, K.; Krampitz, M.J.

    1979-01-01

    Using an open gas-exchange system, the rates of apparent CO 2 uptake (APS), true CO 2 uptake (TIPS), CO 2 evolution in light (PR), and the relative specific radioactivity of photorespiration (RSA) by sunflower and bean leaves were measured at four different CO 2 concentrations. At the end of the 14 CO 2 assimilation period the leaves were killed and extract for the analysis of glycolic acid. The rate of PR was CO 2 independent at low and normal CO 2 concentrations but inreased at CO 2 concentrations above normal. The ratio of PR/TPS which declined with an increase in CO 2 was compatible with the ratio of vo/2vo of the RuBP-Carboxylase/Oxygenase reaction. At low and normal concentrations of CO 2 the concentration as well as the specific radioactivity of glycolic acid increased with an increase in CO 2 and the relative specific activity (RSA) of glycolic acid resembled the RSA of photorespiration. It was concluded that these results support the concept of RuBP-carboxylase/oxygenase regulating the fluxes of carbon via the photosynthetic carbon reduction and the glycolate pathway. (orig.) [de

  9. CO2 leakage monitoring and analysis to understand the variation of CO2 concentration in vadose zone by natural effects

    Science.gov (United States)

    Joun, Won-Tak; Ha, Seung-Wook; Kim, Hyun Jung; Ju, YeoJin; Lee, Sung-Sun; Lee, Kang-Kun

    2017-04-01

    Controlled ex-situ experiments and continuous CO2 monitoring in the field are significant implications for detecting and monitoring potential leakage from CO2 sequestration reservoir. However, it is difficult to understand the observed parameters because the natural disturbance will fluctuate the signal of detections in given local system. To identify the original source leaking from sequestration reservoir and to distinguish the camouflaged signal of CO2 concentration, the artificial leakage test was conducted in shallow groundwater environment and long-term monitoring have been performed. The monitoring system included several parameters such as pH, temperature, groundwater level, CO2 gas concentration, wind speed and direction, atmospheric pressure, borehole pressure, and rainfall event etc. Especially in this study, focused on understanding a relationship among the CO2 concentration, wind speed, rainfall and pressure difference. The results represent that changes of CO2 concentration in vadose zone could be influenced by physical parameters and this reason is helpful in identifying the camouflaged signal of CO2 concentrations. The 1-D column laboratory experiment also was conducted to understand the sparking-peak as shown in observed data plot. The results showed a similar peak plot and could consider two assumptions why the sparking-peak was shown. First, the trapped CO2 gas was escaped when the water table was changed. Second, the pressure equivalence between CO2 gas and water was broken when the water table was changed. These field data analysis and laboratory experiment need to advance due to comprehensively quantify local long-term dynamics of the artificial CO2 leaking aquifer. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  10. Effect of Promoter Concentration on CO2 Separation Using K2CO3 With Reactive Absorption Method in Reactor Packed Column

    Directory of Open Access Journals (Sweden)

    Monde Junety

    2018-01-01

    Full Text Available The presence of carbon dioxide (CO2 in the gas is not expected because CO2 can reduce heating value and CO2 is the major emission contributor into the atmosphere. Various separation technologies can be used to reduce CO2 content and improve quality of gas. Chemical or reactive absorption is most widely used because it provides higher removal rate. This paper will study the effect of the addition di ethanolamine (DEA concentration into aqueous 30wt.% potassium carbonate(K2CO3 with reactive absorption method in a reactor packed column at temperature from 40°C to 80°C, DEA concentration range of (1% - 3% and absorbent flow rate (0.5, 0.75 and 1 L. min1. Contacting the gas and absorbent are countercurrent flow in packed column with 1.5 m high and 50 mm in diameter. The absorption column was randomly packed with a packing material raschig rings 5 mm in diameter. The CO2 loading in the liquid samples was determined by titration. It is found that the best result of CO2 loading is 0.065594 mole/mole K2CO3 and CO2 removal 28%. The result show that the loading capacity (mole CO2/mole K2CO3 and CO2 removal increased with the increase of DEA concentration.

  11. [Dynamic observation, simulation and application of soil CO2 concentration: a review].

    Science.gov (United States)

    Sheng, Hao; Luo, Sha; Zhou, Ping; Li, Teng-Yi; Wang, Juan; Li, Jie

    2012-10-01

    Soil CO2 concentration is the consequences of biological activities in above- and below-ground, and its fluctuation may significantly affect the future atmospheric CO2 concentration and the projected climate change. This paper reviewed the methodologies for measuring the soil CO2 concentration in situ as well as their advantages and disadvantages, analyzed the variation patterns and controlling factors of soil CO2 concentration across the temporal (diurnal, several days, seasonal and inter-annual) and spatial (soil profile, site and landscape) scales, introduced the primary empirical and mechanical models for estimating and predicting soil CO2 concentration, and summarized the applications and constraints of soil CO2 concentration gradient in determining soil respiration. Four research priorities were proposed, i. e., to develop new techniques for collecting and determining the soil CO2 in severe soil conditions (e. g., flooding, lithoso and others), to approach the responses of soil CO2 concentration to weather change and related regulation mechanisms, to strengthen the researches on the spatial heterogeneity of soil CO2 concentration, and to expand the applications of soil CO2 concentration gradient in the measurement of tropical-subtropical soil respiration.

  12. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  13. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  14. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration

    Science.gov (United States)

    Liu, Min; Pang, Yuanjie; Zhang, Bo; de Luna, Phil; Voznyy, Oleksandr; Xu, Jixian; Zheng, Xueli; Dinh, Cao Thang; Fan, Fengjia; Cao, Changhong; de Arquer, F. Pelayo García; Safaei, Tina Saberi; Mepham, Adam; Klinkova, Anna; Kumacheva, Eugenia; Filleter, Tobin; Sinton, David; Kelley, Shana O.; Sargent, Edward H.

    2016-09-01

    Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.

  15. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations

    Science.gov (United States)

    Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.

    2018-03-01

    We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.

  16. Ecological imperatives for aquatic CO2-concentrating mechanisms.

    Science.gov (United States)

    Maberly, Stephen C; Gontero, Brigitte

    2017-06-01

    In aquatic environments, the concentration of inorganic carbon is spatially and temporally variable and CO2 can be substantially oversaturated or depleted. Depletion of CO2 plus low rates of diffusion cause inorganic carbon to be more limiting in aquatic than terrestrial environments, and the frequency of species with a CO2-concentrating mechanism (CCM), and their contribution to productivity, is correspondingly greater. Aquatic photoautotrophs may have biochemical or biophysical CCMs and exploit CO2 from the sediment or the atmosphere. Though partly constrained by phylogeny, CCM activity is related to environmental conditions. CCMs are absent or down-regulated when their increased energy costs, lower CO2 affinity, or altered mineral requirements outweigh their benefits. Aquatic CCMs are most widespread in environments with low CO2, high HCO3-, high pH, and high light. Freshwater species are generally less effective at inorganic carbon removal than marine species, but have a greater range of ability to remove carbon, matching the environmental variability in carbon availability. The diversity of CCMs in seagrasses and marine phytoplankton, and detailed mechanistic studies on larger aquatic photoautotrophs are understudied. Strengthening the links between ecology and CCMs will increase our understanding of the mechanisms underlying ecological success and will place mechanistic studies in a clearer ecological context. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data

    Science.gov (United States)

    Chen, Jing M.; Mo, Gang; Deng, Feng

    2017-03-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites (62 collocated with 13CO2 sites) for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using prior CO2 fluxes estimated with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. This joint inversion system using both13CO2 and CO2 observations is effectively a double deconvolution system with consideration of the spatial variations of isotopic discrimination and disequilibrium. Compared to the CO2-only inversion, this 13CO2 constraint on the inversion considerably reduces the total land carbon sink from 3.40 ± 0.84 to 2.53 ± 0.93 Pg C year-1 but increases the total oceanic carbon sink from 1.48 ± 0.40 to 2.36 ± 0.49 Pg C year-1. This constraint also changes the spatial distribution of the carbon sink. The largest sink increase occurs in the Amazon, while the largest source increases are in southern Africa, and Asia, where CO2 data are sparse. Through a case study, in which the spatial distribution of the annual 13CO2 discrimination rate over land is ignored by treating it as a constant at the global average of -14. 1 ‰, the spatial distribution of the inverted CO2 flux over land was found to be significantly modified (up to 15 % for some regions). The uncertainties in our disequilibrium flux estimation are 8.0 and 12.7 Pg C year-1 ‰ for land and ocean, respectively. These uncertainties induced the unpredictability of 0.47 and 0.54 Pg C year-1 in the inverted CO2 fluxes for land and ocean, respectively. Our joint inversion system is therefore

  18. CO2 Fluxes and Concentrations in a Residential Area in the Southern Hemisphere

    Science.gov (United States)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2014-12-01

    While cities are generally major sources of anthropogenic carbon dioxide (CO2) emissions, recent research has shown that parts of urban areas may also act as CO2 sinks due to CO2 uptake by vegetation. However, currently available results are related to a large degree of uncertainty due to the limitations of the applied methods and the limited number of studies available from urban areas, particularly from the southern hemisphere. In this study, we explore the potential of eddy covariance and tracer measurements (13C and 14C isotopes of CO2) to quantify and partition CO2 fluxes and concentrations in a residential urban area in Auckland, New Zealand. Based on preliminary results from autumn and winter (March to July 2014) the residential area is a small source of CO2 (0.11 mol CO2 m-2 day-1). CO2 fluxes and concentrations follow a distinct diurnal cycle with a morning peak between 7:00 and 9:00 (max: 0.25 mol CO2 m-2 day-1/412 ppm) and midday low with negative CO2 fluxes (min: -0.17 mol CO2 m-2 day-1/392 ppm) between 10:00 and 15:00 local time, likely due to photosynthetic CO2 uptake by local vegetation. Soil CO2 efflux may explain that CO2 concentrations increase and remain high (401 ppm) throughout the night. Mean diurnal winter δ13C values are in anti-phase with CO2 concentrations and vary between -9.0 - -9.7‰. The depletion of δ13C compared to clean atmospheric air (-8.2‰) is likely a result of local CO2 sources dominated by gasoline combustion (appr. 60%) during daytime. A sector analysis (based on prevailing wind) of CO2 fluxes and concentrations indicates lower CO2 fluxes and concentrations from the vegetation-dominated sector, further demonstrating the influence of vegetation on local CO2 concentrations. These results provide an insight into the temporal and spatial variability CO2 fluxes/concentrations and potential CO2 sinks and sources from a city in the southern hemisphere and add valuable information to the global database of urban CO2 fluxes.

  19. Changes in concentration and (delta) 13C value of dissolved CH4, CO2 and organic carbon in rice paddies under ambient and elevated concentrations of atmospheric CO2

    International Nuclear Information System (INIS)

    Weiguo Cheng; Yagi, Kazuyuki; Sakai, Hidemitsu; Hua Xu; Kobayashi, Kazuhiko

    2005-01-01

    Changes in concentration and (delta) 13 C value of dissolved CH 4 , CO 2 and organic carbon (DOC) in floodwater and soil solution from a Japanese rice paddy were studied under ambient and elevated concentrations of atmospheric CO 2 in controlled environment chambers. The concentrations of dissolved CH 4 in floodwater increased with rice growth (with some fluctuation), while the concentrations of CO 2 remained between 2.9 to 4.4 and 4.2 to 5.8 μg C mL -1 under conditions of ambient and elevated CO 2 concentration, respectively. The amount of CH 4 dissolved in soil solution under elevated CO 2 levels was significantly lower than under ambient CO 2 in the tillering stage, implying that the elevated CO 2 treatment accelerated CH 4 oxidation during the early stage of growth. However, during later stages of growth, production of CH 4 increased and the amount of CH 4 dissolved in soil solution under elevated CO 2 levels was, on average, greater than that under ambient CO 2 conditions. Significant correlation existed among the (delta) 13 C values of dissolved CH 4 , CO 2 , and DOC in floodwater (except for the samples taken immediately after pulse feeding with 13 C enriched CO 2 ), indicating that the origins and cycling of CH 4 , CO 2 and DOC were related. There were also significant correlations among the (delta) 13 C values of CH 4 , CO 2 and DOC in the soil solution. The turnover rate of CO 2 in soil solution was most rapid in the panicle formation stage of rice growth and that of CH 4 fastest in the grain filling stage. (Author)

  20. Hydrogen purification by selective methanation of CO in CO/CO2/H2

    DEFF Research Database (Denmark)

    Andersen, Anne Mette; Johannessen, Tue; Livbjerg, Hans

    down through the reactor and inside the catalyst pellets/particles. The small particles, which have a rather high effectiveness factor with respect to methanation of CO, have a high CO selectivity, whereas the larger pellets have very low selectivity even at high CO inlet concentrations. Negative...... of reaction kinetics and pore diffusion is crucial for interpreting the experimental data. We have found that the selectivity decreases by increasing the reactor temperature or catalyst particle size and when the CO inlet concentration is reduced. As a result, the selectivity drops significantly...... in an integral reactor operating at high CO-conversion. The lower limit of CO concentration in the outlet is determined by the quasi-equilibrium between CO removal and CO production from CO2....

  1. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    Science.gov (United States)

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  2. Response of Sphagnum mosses to increased CO2 concentration and nitrogen deposition

    International Nuclear Information System (INIS)

    Jauhiainen, J.

    1998-01-01

    The main objective of this work was to study the effects of different CO 2 concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO 2 concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO 2 and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO 2 and N treatments, and (iv) species dependent differences in potential NH 4 + and NO 3 - uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO 2 concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant's metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO 2 concentrations, but photosynthesis was down regulated with prolonged exposure to CO 2 . The water use efficiency in Sphagna appeared not to be coupled with exposure to the long-term CO 2 concentration. The

  3. Dynamics of Soil CO2 Profiles of Pinus sylvestris var. sylvestriformis Seedlings Under CO2 Concentration Doubled%CO2倍增条件下长白赤松幼苗土壤CO2廓线的动态

    Institute of Scientific and Technical Information of China (English)

    韩士杰; 张军辉; 周玉梅; 邹春静

    2002-01-01

    The gas-well system permanently installed in the soil was adopted for studying the dynamic relationship between CO2 profiles and seedling root growth of Pinus sylvestris var. sylvestriformis (Takenouchi) Cheng et C. D. Chu. The study was conducted in the Open Research Station of Changbai Mountain Forest Ecological System, The Chinese Academy of Sciences from 1999 to 2001. Four treatments were arranged in the rectangular open-top chambers (OTCs): ambient CO2+no-seedling, 700 μmol/mol CO2+no-seedling, ambient CO2 +seedlings, 700 μmol/mol CO2+seedlings. By collecting and analyzing soil gas synchronously, it was found that the dynamics of CO2 profiles were related to the biological activity of seedlings. There were more roots distributed in the top soil and the boundary layer across soil and sand, which made more contributions to the CO2 profiles due to respiration root. Compared with the ambient CO2, elevated CO2 led to the peak of CO2 concentration distribution shifted from soil surface layer to the boundary layer as seasonally growing of seedling roots. It is suggested the gas-well system is an inexpensive, non-destructive and relatively sensitive method for study of soil CO2 concentration profiles.%采用固定在土壤中的气井系统,监测土壤剖面的CO2动态及其与长白赤松 (Pinus sylvestris var. sylvestriformis (Takenouchi) Cheng et C. D. Chu) 幼苗根系发展之间的关系.实验研究共设4种CO2处理,分别是环境CO2浓度,无苗;CO2为700 μmol/mol,无苗;环境CO2浓度,有苗;CO2为700 μmol/mol,有苗.通过对土壤剖面CO2气体的同步采集与分析表明:土壤CO2廓线与幼苗根系的生物活性密切相关.在土壤表面及壤土和沙土的边界层中,根系分布密集,根系的呼吸作用对那两个土层CO2贡献大;随着幼苗的季节生长,与环境CO2浓度比较,CO2倍增将导致土壤剖面上CO2

  4. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J; Silvola, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  5. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  6. Elevated temperature and CO2 concentration effects on xylem anatomy of Scots pine

    International Nuclear Information System (INIS)

    Kilpelainen, A.; Gerendiain, A.Z.; Luostarinen, K.; Peltola, H.; Kellomaki, S.

    2007-01-01

    The effects of carbon dioxide (CO 2 ) concentrations and elevated temperatures on the xylem anatomy of 20-year old Scots pine trees were investigated. The experiment was conducted in 16 chambers containing 4 trees each with a factorial combination of both ambient and elevated CO 2 concentrations and 2 different temperature regimes. CO 2 concentrations were doubled with a corresponding increase of between 2 and 6 degrees C according to each season over a period of 6 years. The study showed that elevated CO 2 concentrations increased the ring width in 4 of the 6 analyzed treatment years. Earlywood width increased during the first 2 years of the experiment, while latewood width increased during the third year of the study. The study also showed that the tracheid walls in both the latewood and earlywood samples were thicker when either temperature levels or CO 2 levels were increased. It was noted that combined CO 2 and temperature elevations resulted in thinner tracheid walls. However, latewood tracheid lumen diameters were larger in all CO 2 and temperature treatments than trees grown in ambient conditions. It was concluded that xylem anatomy was impacted more by increases in temperature than by elevated CO 2 concentrations. 48 refs., 2 tabs., 6 figs

  7. Evasion of CO2 injected into the ocean in the context of CO2 stabilization

    International Nuclear Information System (INIS)

    Kheshgi, Haroon S.

    2004-01-01

    The eventual evasion of injected CO 2 to the atmosphere is one consideration when assessing deep-sea disposal of CO 2 as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO 2 emissions, including illustrative cases leading to stabilization of CO 2 concentration at various levels. Modeled residence time for CO 2 injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO 2 concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO 2 emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO 2 concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO 2 concentration, with less effect on concentration later on in time

  8. RELATIONSHIP BETWEEN ATMOSPHERIC CO_2 AND CH_4 CONCENTRATIONS AT SYOWA STATION, ANTARCTICA

    OpenAIRE

    アオキ, シュウジ; ナカザワ, タカキヨ; ムラヤマ, ショウヘイ; シミズ, アキラ; ハヤシ, マサヒコ; イワイ, クニモト; Shuhji, AOKI; Takakiyo, NAKAZAWA; Shohei, MURAYAMA; Akira, SHIMIZU; Masahiko, HAYASHI; Kunimoto, IWAI

    1994-01-01

    Precise measurements of the atmospheric CO_2 and CH_4 concentrations have been continued at Syowa Station since 1984 and 1987,respectively. Measured concentrations show secular increase, together with seasonal cycle and irregular variations. Negative correlation is clearly seen between the secular trends of the CO_2 and CH_4 concentrations. The increase rates of CO_2 and CH_4 show oscillations with periods of 2.3 to 2.8 years. The phases of the average seasonal cycles of CO_2 and CH_4 coincid...

  9. Estimates of CO2 traffic emissions from mobile concentration measurements

    Science.gov (United States)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  10. Stomatal response of Pinus sylvestriformis to elevated CO2 concentrations during the four years of exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-mei; HAN Shi-jie; LIU Ying; JIA Xia

    2005-01-01

    Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.

  11. Effects of Elevated CO2 Concentration on the Biomasses and Nitrogen Concentrations in the Organs of Sainfoin(Onobrychis viciaefolia Scop.)

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zheng-chao; SHANGGUAN Zhou-ping

    2009-01-01

    In forage grasses,the nitrogen concentration is directly related to the nutritional value.The studies examined the hypothesis that global elevation of CO2 concentration probably affects the biomass,nitrogen(N)concentration,and allocation and distribution patterns in the organs of forage grasses.While sainfoin(Onobrychis viciaefolia Scop.)seedlings grew on a low nutrient soil in closed chambers for 90 days,they were exposed to two CO2 concentrations(ambient or ambient+350μmol mol-1 CO2)without adding nutrients to them.After 90 days exposure to CO2,the biomasses of leaves,stems,and roots,and N concentrations and contents of different parts were measured.Compared with the ambient CO2 concentration,the elevated CO2 concentration increased the total dry matter by 25.07%,mainly due to the root and leaf having positive response to the elevated CO2 concentration.However,the elevated CO2 concentration did not change the proportions of the dry matters in different parts and the total plants compared with the ambient CO2 concentration.The elevated CO2 concentration lowered the N concentrations of the plant parts.Because the dry matter was higher,the elevated CO2 concentration had no effect on the N content in the plants compared to the ambient CO2 concentration.The elevated CO2 concentration promoted N allocations of the different parts significantly and increased N allocation of the underground part.The results have confirmed the previous suggestions that the elevated CO2 concentration stimulates plant biomass production and decreases the N concentrations of the plant parts.

  12. An econometric time-series analysis of global CO2 concentrations and emissions

    International Nuclear Information System (INIS)

    Cohen, B.C.; Labys, W.C.; Eliste, P.

    2001-01-01

    This paper extends previous work on the econometric modelling of CO 2 concentrations and emissions. The importance of such work rests in the fact that models of the Cohen-Labys variety represent the only alternative to scientific or physical models of CO 2 accumulations whose parameters are inferred rather than estimated. The stimulation for this study derives from the recent discovery of oscillations and cycles in the net biospheric flux of CO 2 . A variety of time series tests is thus used to search for the presence of normality, stationarity, cyclicality and stochastic processes in global CO 2 emissions and concentrations series. Given the evidence for cyclicality of a short-run nature in the spectra of these series, both structural time series and error correction model are applied to confirm the frequency and amplitude of these cycles. Our results suggest new possibilities for determining equilibrium levels of CO 2 concentrations and subsequently revising stabilization policies. (Author)

  13. Response of Sphagnum mosses to increased CO{sub 2} concentration and nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.

    1998-12-31

    The main objective of this work was to study the effects of different CO{sub 2} concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO{sub 2} concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO{sub 2} and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO{sub 2} and N treatments, and (iv) species dependent differences in potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO{sub 2} concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant`s metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO{sub 2} concentrations, but photosynthesis was down regulated with prolonged exposure to CO{sub 2}. The water use efficiency in Sphagna appeared not to be coupled

  14. Elevated temperature and CO{sub 2} concentration effects on xylem anatomy of Scots pine

    Energy Technology Data Exchange (ETDEWEB)

    Kilpelainen, A.; Gerendiain, A.Z.; Luostarinen, K.; Peltola, H.; Kellomaki, S. [Joensuu Univ., Joensuu (Finland). Faculty of Forestry

    2007-09-15

    The effects of carbon dioxide (CO{sub 2}) concentrations and elevated temperatures on the xylem anatomy of 20-year old Scots pine trees were investigated. The experiment was conducted in 16 chambers containing 4 trees each with a factorial combination of both ambient and elevated CO{sub 2} concentrations and 2 different temperature regimes. CO{sub 2} concentrations were doubled with a corresponding increase of between 2 and 6 degrees C according to each season over a period of 6 years. The study showed that elevated CO{sub 2} concentrations increased the ring width in 4 of the 6 analyzed treatment years. Earlywood width increased during the first 2 years of the experiment, while latewood width increased during the third year of the study. The study also showed that the tracheid walls in both the latewood and earlywood samples were thicker when either temperature levels or CO{sub 2} levels were increased. It was noted that combined CO{sub 2} and temperature elevations resulted in thinner tracheid walls. However, latewood tracheid lumen diameters were larger in all CO{sub 2} and temperature treatments than trees grown in ambient conditions. It was concluded that xylem anatomy was impacted more by increases in temperature than by elevated CO{sub 2} concentrations. 48 refs., 2 tabs., 6 figs.

  15. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions

    Science.gov (United States)

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian

    2015-01-01

    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  16. The possible evolution and future of CO2-concentrating mechanisms.

    Science.gov (United States)

    Raven, John A; Beardall, John; Sánchez-Baracaldo, Patricia

    2017-06-01

    CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Evasion of CO{sub 2} injected into the ocean in the content of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kheshgi, H.S. [ExxonMobil Research and Engineering Co., Annandale, NJ (United States)

    2004-08-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep-sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time. (author)

  18. Evasion of CO{sub 2} injected into the ocean in the context of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kheshgi, Haroon S

    2004-08-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep-sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time.

  19. Relationship between carbon-14 concentrations in tree-ring cellulose and atmospheric CO2

    International Nuclear Information System (INIS)

    Yamada, Yoshimune; Yasuike, Kaeko; Komura, Kazuhisa

    2008-01-01

    Concentrations of organically-bound 14 C in the tree-ring cellulose of a Japanese Cedar (Cryptomeria japonica) grown in a rural region of Kanazawa, Ishikawa prefecture, Japan (36.5degN, 136.7degE), were measured for the ring-years from 1989 to 1998 to study relationship between 14 C concentrations in tree-ring cellulose and atmospheric CO 2 in a narrow region. An interesting result in comparing our data of tree-ring cellulose with those of atmospheric CO 2 is that the 14 C concentration in tree-ring cellulose was close to the corresponding average from mid-June to early September of 14 C concentrations in atmospheric CO 2 . Furthermore, the 14 C concentrations in tree-ring cellulose were found to be merely influenced by the drastic decrease of 14 C concentrations in atmospheric CO 2 in winter, which might be caused by air pollution from the Asian continent and additional local fossil fuel contribution. These results suggest that the 14 C concentration in tree-ring cellulose for a given growing year reflects the 14 C concentrations of atmospheric CO 2 during the warm summer months. (author)

  20. Evasion of CO{sub 2} injected into the ocean in the context of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Haroon S. Kheshgi [ExxonMobil Research and Engineering Company, Annandale, NJ (United States)

    2003-07-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time. 20 refs., 4 figs.

  1. Nutrient concentrations in a Littorella uniflora community at higher CO2 concentrations and reduced light intensities

    DEFF Research Database (Denmark)

    Andersen, T.; Pedersen, O.; Andersen, F. Ø.

    2005-01-01

    laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic...... nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light...... intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field...

  2. Simulation and modeling CO2 absorption in biogas with DEA promoted K2CO3 solution in packed column

    Science.gov (United States)

    Nurkhamidah, Siti; Altway, Ali; Airlangga, Bramantyo; Emilia, Dwi Putri

    2017-05-01

    Absorption of carbon dioxide (CO2) using potassium carbonate (K2CO3) is one of biogas purification method. However, K2CO3 have slow mass transfer in liquid phase. So it is necessary to eliminate the disadvantage of CO2 absorption using K2CO3 by adding promotor (activator). Diethanol amine (DEA) is one of promotor which can increase its reaction rate. Simulation and modeling research of the CO2 absorption from biogas with DEA promoted K2CO3 solution has not been conducted. Thus, the main goal of this research is create model and simulation for the CO2 absorption from biogas with DEA promoted K2CO3 solution, then observe the influence of promoter concentration. DEA concentration varies between 1-5 %wt. From the simulation, we concluded that the CO2 removal rise with the increasing of promoter concentration. The highest CO2 removal is 54.5318 % at 5 % wt DEA concentration.

  3. A high precision mass spectrometry method for measuring O2/N2 ratios and CO2 concentrations in air

    International Nuclear Information System (INIS)

    Marca, A.D.; Dennis, P.F.; Etchells, A.

    2002-01-01

    A full, detailed understanding of the global carbon budget is needed for robust modelling of global climate and environmental change. Since the industrial revolution the carbon cycle has been shifted from a steady state in which removal of CO 2 from the atmosphere through photosynthesis is balanced by its addition through respiration. Currently increased respiration due to deforestation, modern agricultural practises and the burning of fossil fuels dominates photosynthesis resulting in modern atmospheric CO 2 concentrations some 32% higher than the year 1800 levels. However, the CO 2 concentration rises are lower than expected from known fossil fuel combustion inventories. A significant proportion of the excess CO 2 is taken up by the oceans, however a missing carbon sink must still be invoked to account for the difference between measured and expected CO 2 rises. A global greening as a result of increased photosynthesis is required to close the circle

  4. Diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream

    Science.gov (United States)

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji Hyung; Parks, II, James E.

    2017-12-26

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperatures derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.

  5. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  6. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in

  7. Research of CO2 concentration in naturally ventilated lecture room

    Science.gov (United States)

    Laska, Marta; Dudkiewicz, Edyta

    2017-11-01

    Naturally ventilated buildings especially dedicated for educational purposes need to be design to achieve required level of thermal comfort and indoor air quality. It is crucial in terms of both: health and productivity of the room users. Higher requirements of indoor environment are important due to the level of students concentration, their ability to acquire new knowledge and willingness to interact with the lecturer. The article presents the results of experimental study and surveys undertaken in naturally ventilated lecture room. The data is analysed in terms of CO2 concentration and its possible influence on users. Furthermore the outcome of the research is compared with the CO2 concentration models available in the literature.

  8. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Science.gov (United States)

    Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.

    2017-06-01

    Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  9. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    A. M. Morales-Williams

    2017-06-01

    Full Text Available Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3− across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs. To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC and phytoplankton particulate organic carbon (δ13Cphyto in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass–balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3− during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3− uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  10. Impact of elevated CO_2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO_2 sequestration

    International Nuclear Information System (INIS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.

    2017-01-01

    Interest in anthropogenic CO_2 release and associated global climatic change has prompted numerous laboratory-scale and commercial efforts focused on capturing, sequestering or utilizing CO_2 in the subsurface. Known carbonate mineral precipitating microorganisms, such as the anaerobic sulfate-reducing bacteria (SRB), could enhance the rate of conversion of CO_2 into solid minerals and thereby improve long-term storage of captured gasses. The ability of SRB to induce carbonate mineral precipitation, when exposed to atmospheric and elevated pCO_2, was investigated in laboratory scale tests with bacteria from organic-rich sediments collected from hypersaline Lake Estancia, New Mexico. The enriched SRB culture was inoculated in continuous gas flow and batch reactors under variable headspace pCO_2 (0.0059 psi to 20 psi). Solution pH, redox conditions, sulfide, calcium and magnesium concentrations were monitored in the reactors. Those reactors containing SRB that were exposed to pCO_2 of 14.7 psi or less showed Mg-calcite precipitation. Reactors exposed to 20 psi pCO_2 did not exhibit any carbonate mineralization, likely due to the inhibition of bacterial metabolism caused by the high levels of CO_2. Hydrogen, lactate and formate served as suitable electron donors for the SRB metabolism and related carbonate mineralization. Carbon isotopic studies confirmed that ∼53% of carbon in the precipitated carbonate minerals was derived from the CO_2 headspace, with the remaining carbon being derived from the organic electron donors, and the bicarbonate ions available in the liquid medium. The ability of halotolerant SRB to induce the precipitation of carbonate minerals can potentially be applied to the long-term storage of anthropogenic CO_2 in saline aquifers and other ideal subsurface rock units by converting the gas into solid immobile phases. - Highlights: • SRB under study are capable of precipitating calcite up to 14.7 psi pCO_2. • At 20 psi pCO_2, bacterial activity

  11. CO{sub 2} exchange, environmental productivity indices, and productivity of Agaves and Cacti under current and elevated atmospheric CO{sub 2} concentrations. Terminal report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The research described in the proposal investigated net CO{sub 2} uptake and biomass accumulation for an extremely productive CAM plant, the prickly pear cactus Opuntia ficus-indica, under conditions of elevated CO{sub 2} concentrations for relatively long periods. The influences of soil water status, air temperature, and the photosynthetic photon flux (PPF) on net CO{sub 2} uptake over 24-h periods were evaluated to enable predictions to be made based on an Environmental Productivity Index (EPI). Specifically, EPI predicts the fraction of maximal daily net CO{sub 2} uptake based on prevailing environmental conditions. It is the product of indices for temperature, soil water, and intercepted PPF, each of which range from 0.00 when that index factor completely inhibits net CO{sub 2} uptake to 1.00 when no limitation occurs. For instance, the Water Index is 1.00 under wet conditions and decreases to 0.00 during prolonged drought. Although the major emphasis of the research was on net CO{sub 2} uptake and the resulting biomass production for O. ficus-indica, effects of elevated CO{sub 2} concentrations on root: shoot ratios and on the activities of the two carboxylating enzymes were also investigated. Moreover, experiments were also done on other CAM plants, including Agave deserti, Agave salmiana, and Hylocereus undatus, and Stenocereus queretaroensis.

  12. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    Science.gov (United States)

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Magnetic properties of iron-based catalysts activated by various CO{sub 2} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jung Tae; Kim, Chul Sung [Kookmin University, Seoul (Korea, Republic of); Chun, Dong Hyun; Park, Ji Chan [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2014-12-15

    Fresh catalyst samples of 100Fe/5.26Cu/4.76K/18.2SiO{sub 2} in part per weight were synthesized by using a combination of a co-precipitation technique and spray-drying method and were activated in situ by using syngas (H{sub 2}/CO/xCO{sub 2}) with different amounts of CO{sub 2} (x = 0.0, 0.5, 1.0, and 2.0). All activated catalyst samples showed similar XRD patterns, a combination of ferrihydrite, magnetite, χ-carbide, and ε'-carbide, regardless of the CO{sub 2} contents. From the Moessbauer spectra, we also observed a combination of ferrihydrite, magnetite, χ-carbide, and ε'-carbide in all activated catalyst samples. The main compound of the activated catalyst sample activated by using CO{sub 2}-free syngas (H{sub 2}/CO) was magnetic χ-carbide, and the main compound changed from χ-carbide to ferrihydrite with increasing CO{sub 2} concentration, confirmed by both, Moessbauer spectra and XRD pattern.

  14. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  15. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    Science.gov (United States)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  16. Measurements of the total CO2 concentration and partial pressure of CO2 in seawater during WOCE expeditions in the South Pacific Ocean

    International Nuclear Information System (INIS)

    Takahashi, T.; Goddard, J.G.; Chipman, D.W.; Rubin, S.I.

    1993-01-01

    During the first year of the grant, we participated in three WOCE expeditions (a total of 152 days at sea) in the South Pacific Ocean, and the field phase of the proposed investigation has been successfully completed. The total CO 2 concentration and pCO 2 were determined at sea in 4419 water samples collected at 422 stations. On the basis of the shipboard analyses of SIO Reference Solutions for CO, and a comparison with the results of previous expeditions, the overall precision of our total CO 2 determinations is estimated to be about ±2 uM/kg. The deep water data indicate that there is a CO 2 maximum centered about 2600 meters deep. This appears to represent a southward return flow from the North Pacific. The magnitude and distribution of the CO, maximum observed along the 135.0 degrees W meridian differ from those observed along the 150.5 degrees W meridian due to Tuamotu Archipelago, a topographic high which interferes with the southward return flow. The surface water pCO 2 data indicate that the South Pacific sub-tropical gyre water located between about 15 degrees S and 50 degrees S is a sink for atmospheric CO 2

  17. Trace and low concentration co2 removal methods and apparatus utilizing metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-10

    In general, this disclosure describes techniques for removing trace and low concentration CO2 from fluids using SIFSIX-n-M MOFs, wherein n is at least two and M is a metal. In some embodiments, the metal is zinc or copper. Embodiments include devices comprising SIFSIX-n-M MOFs for removing CO2 from fluids. In particular, embodiments relate to devices and methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids, wherein CO2 concentration is trace. Methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids can occur in confined spaces. SIFSIX-n-M MOFs can comprise bidentate organic ligands. In a specific embodiment, SIFSIX-n-M MOFs comprise pyrazine or dipryidilacetylene ligands.

  18. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint

    Science.gov (United States)

    Chen, J. M.; Mo, G.; Deng, F.

    2013-10-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  19. CO2 emission calculations and trends

    International Nuclear Information System (INIS)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-01-01

    Evidence that the atmospheric CO 2 concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO 2 is believed to result from CO 2 releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO 2 concentration and its potential impact on climate. One of the convention's stated objectives was the ''stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. '' Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO 2 as a greenhouse gas, the relationship between CO 2 emissions and increases in atmospheric CO 2 levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO 2 emissions records be compiled, maintained, updated, and documented

  20. Absorption capacity and viscosity for CO_2 capture process using high concentrated PZ-DEAE aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Wang, LeMeng; Mi, ChenLu; Zhang, Pan

    2016-01-01

    Highlights: • Absorption of CO_2 in high concentrated DEAE-PZ aqueous solutions were measured. • Viscosities of CO_2-unloaded and CO_2-loaded DEAE-PZ aqueous solutions were measured. • Weiland equation was used to calculate the viscosities. • Effects of temperature, concentration and CO_2 loading on viscosity were demonstrated. - Abstract: The absorption capacity of CO_2 in piperazine (PZ) promoted 2-diethylaminoethanol (DEAE) aqueous solution was measured. The viscosities of both CO_2-unloaded and CO_2-loaded PZ-DEAE aqueous solutions were measured and then modelled. The temperatures ranged from 303.2 K to 323.2 K. The mass fraction of PZ and DEAE respectively ranged from 0 to 0.075 and 0.3 to 0.5. The temperature and concentration dependences of absorption capacity were determined. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.

  1. Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment

    Directory of Open Access Journals (Sweden)

    C. LeQuéré

    2008-03-01

    Full Text Available The potential impact of seawater acidification on the concentrations of dimethylsulfide (DMS and dimethylsulfoniopropionate (DMSP, and the activity of the enzyme DMSP-lyase was investigated during a pelagic ecosystem CO2 enrichment experiment (PeECE III in spring 2005. Natural phytoplankton blooms were studied for 24 days under present, double and triple partial pressures of CO2 (pCO2; pH=8.3, 8.0, 7.8 in triplicate 25 m3 enclosures. The results indicate similar DMSP concentrations and DMSP-lyase activity (DLA patterns for all treatments. Hence, DMSP and DLA do not seem to have been affected by the CO2 treatment. In contrast, DMS concentrations showed small but statistically significant differences in the temporal development of the low versus the high CO2 treatments. The low pCO2 enclosures had higher DMS concentrations during the first 10 days, after which the levels decreased earlier and more rapidly than in the other treatments. Integrated over the whole study period, DMS concentrations were not significantly different from those of the double and triple pCO2 treatments. Pigment and flow-cytometric data indicate that phytoplanktonic populations were generally similar between the treatments, suggesting a certain resilience of the marine ecosystem under study to the induced pH changes, which is reflected in DMSP and DLA. However, there were significant differences in bacterial community structure and the abundance of one group of viruses infecting nanoeukaryotic algae. The amount of DMS accumulated per total DMSP or chlorophyll-a differed significantly between the present and future scenarios, suggesting that the pathways for DMS production or bacterial DMS consumption were affected by seawater pH. A comparison with previous work (PeECE II suggests that DMS concentrations do not respond consistently to pelagic ecosystem CO2 enrichment experiments.

  2. Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration

    International Nuclear Information System (INIS)

    Lee, Yohan; Lee, Dongyoung; Lee, Jong-Won; Seo, Yongwon

    2016-01-01

    Highlights: • We examine sH hydrates with CO 2 + N 2 + neohexane for CO 2 capture and sequestration. • The structural transition occurs in the CO 2 (40%) + N 2 (60%) + neohexane system. • CO 2 molecules are enclathrated into sH hydrates in the N 2 -rich systems. • CO 2 selectivity in sH hydrates is slightly lower than that in sI hydrates. • ΔH d values provide information on the structural transition of sH to sI hydrates. - Abstract: In this study, the thermodynamic behaviors, cage-specific guest distributions, structural transition, and dissociation enthalpies of sH hydrates with CO 2 + N 2 gas mixtures were investigated for their potential applications to hydrate-based CO 2 capture and sequestration. The stability conditions of the CO 2 + N 2 + water systems and the CO 2 + N 2 + neohexane (2,2-dimethylbutane, NH) + water systems indicated that the gas mixtures in the range of flue gas compositions could form sH hydrates, thereby mitigating the pressure and temperature required for gas hydrate formation. Structure identification using powder X-ray diffraction (PXRD) revealed the coexistence of sI and sH hydrates in the CO 2 (40%) + N 2 (60%) + NH system and the hydrate structure transformed from sH into sI as the CO 2 concentration increased. In addition, the Raman analysis clearly demonstrated that CO 2 molecules were enclathrated into the cages of sH hydrates in the N 2 -rich systems. It was found from direct CO 2 composition measurements that CO 2 selectivity in the sH hydrate phase was slightly lower than that in the corresponding sI hydrate phase. Dissociation enthalpy (ΔH d ) measurements using a high-pressure micro-differential scanning calorimeter (HP μ-DSC) indicated that the ΔH d values could also provide valuable information on the structural transition of sH to sI hydrates with respect to the CO 2 concentration in the feed gas. This study provides a better understanding of the thermodynamic and physicochemical background for CO 2

  3. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    Full Text Available Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv. Crop geometry and management emulated field conditions. In two wet (WS and two dry (DS seasons, final aboveground dry weight (agdw was measured. At 390 ppmv [CO2] (current ambient level, agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE, increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv, 719 mm (390 ppmv, 928 mm (780 ppmv and 803 mm (1560 ppmv. With increasing [CO2], crop water use efficiency (WUE gradually increased from 1.59 g kg-1 (195 ppmv to 2.88 g kg-1 (1560 ppmv. Transpiration efficiency (TE measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  4. Effect of elevated CO2 concentration on growth course of tree seed-lings in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    One-year-old seedlings of Pinus koraiensis, Pinus sylvestriformis, Phellodendron amurense were grown in open-top chambers (OTCs) with 700 and 500 mmol/mol CO2 concentrations, control chamber and on open site (ambient CO2, about 350 mmol/mol CO2) respectively at the Open Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, and the growth course responses of three species to elevated CO2 and temperature during one growing season was studied from May to Oct. 1999. The results showed that increase in CO2 concentration enhanced the growth of seedlings and the effect of 700 mmol/mol CO2 was more remarkable than 500 mmol/mol CO2 on seedling growth. Under the condition of doubly elevated CO2 concentration, the biomass increased by 38% in average for coniferous seedlings and 60% for broad-leaved seedlings. With continuous treatment of high CO2 concentration, the monthly-accumulated biomass of shade-tolerant Pinus koraiensis seedlings was bigger in July than in August and September, while those of Pinus sylvestriformis and Phellodendron amurense seedlings showed an increase in July and August, or did not decrese until September. During the hot August, high CO2 concentration enhanced the growth of Pinus koraiensis seedlings by increasing temperature, but it did not show dominance in other two species.

  5. CO{sub 2} exchange environmental productivity indices, and productivity of agaves and cacti under current and elevated atmospheric CO{sub 2} concentrations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1994-12-31

    The research described in the proposal investigated net CO{sub 2} uptake and biomass accumulation for an extremely productive CAM plant, the prickly pear cactus Opuntia ficus-indica, under conditions of elevated CO{sub 2} concentrations for relatively long periods. The influences of soil water status, air temperature, and the photosynthetic photon flux (PPF) on net CO{sub 2} uptake over 24-h periods were evaluated to enable predictions to be made based on an Environmental Productivity Index (EPI). Specifically, EPI predicts the fraction of maximal daily net CO{sub 2} uptake based on prevailing environmental conditions. It is the product of indices for temperature, soil water, and intercepted PPF, each of which range from 0.00 when that index factor completely inhibits net CO{sub 2} uptake to 1.00 when no limitation occurs. For instance, the Water Index is 1.00 under wet conditions and decreases to 0.00 during prolonged drought. Although the major emphasis of the research was on net C0{sub 2} uptake and the resulting biomass production for O. ficus-indica, effects of elevated CO{sub 2} concentrations on root: shoot ratios and on the activities of the two carboxylating enzymes were also investigated. Moreover, experiments were also done on other CAM plants, including Agave deserti, Agave salmiana, and Hylocereus undatus, and Stenocereus queretaroensis.

  6. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Liu, Guoxia; Zhai, Xiaoyun; Zhou, Jie; Cai, Zhen; Li, Yin

    2015-01-01

    Production of fuels from the abundant and wasteful CO2 is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO2 using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO2 fixation. Although preliminary research has suggested that CO2 fixation in heterotrophic microbes is feasible after incorporation of a CO2-fixing bypass into the central carbon metabolic pathway, it remains unclear how much and how efficient that CO2 can be fixed by a heterotrophic microbe. A simple metabolic flux index was developed to indicate the relative strength of the CO2-fixation flux. When two sequential enzymes of the cyanobacterial Calvin cycle were incorporated into an E. coli strain, the flux of the CO2-fixing bypass pathway accounts for 13 % of that of the central carbon metabolic pathway. The value was increased to 17 % when the carbonic anhydrase involved in the cyanobacterial carbon concentrating mechanism was introduced, indicating that low intracellular CO2 concentration is one limiting factor for CO2 fixation in E. coli. The engineered CO2-fixing E. coli with carbonic anhydrase was able to fix CO2 at a rate of 19.6 mg CO2 L(-1) h(-1) or the specific rate of 22.5 mg CO2 g DCW(-1) h(-1). This CO2-fixation rate is comparable with the reported rates of 14 autotrophic cyanobacteria and algae (10.5-147.0 mg CO2 L(-1) h(-1) or the specific rates of 3.5-23.7 mg CO2 g DCW(-1) h(-1)). The ability of CO2 fixation was created and improved in E. coli by incorporating partial cyanobacterial Calvin cycle and carbon concentrating mechanism, respectively. Quantitative analysis revealed that the CO2-fixation rate of this strain is comparable with that of the autotrophic cyanobacteria and algae, demonstrating great potential of heterotrophic CO2 fixation.

  7. Experimental and CFD modelling for thermal comfort and CO2 concentration in office building

    Science.gov (United States)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Computational fluid dynamic CFD was used for simulating air flow, indoor air distribution and contamination concentration. Gases pollution and thermal discomfort affected occupational health and productivity of work place. The main objectives of this study are to investigate the impact of air change rate in CO2 concentration and to estimate the profile of CO2 concentration in the offices building. The thermal comfort and gases contamination are investigated by numerical analysis CFD which was validated by experiment. Thus the air temperature, air velocity and CO2 concentration were measured at several points in the chamber with four occupants. Comparing between experimental and numerical results showed good agreement. In addition, the CO2 concentration around human recorded high, compared to the other area. Moreover, the thermal comfort in this study is within the ASHRAE standard 55-2004.

  8. Explaining CO2 fluctuations observed in snowpacks

    Science.gov (United States)

    Graham, Laura; Risk, David

    2018-02-01

    Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.

  9. Elevated tropospheric CO2 and O3 concentrations impair organic pollutant removal from grassland soil.

    Science.gov (United States)

    Ai, Fuxun; Eisenhauer, Nico; Jousset, Alexandre; Butenschoen, Olaf; Ji, Rong; Guo, Hongyan

    2018-04-03

    The concentrations of tropospheric CO 2 and O 3 have been rising due to human activities. These rising concentrations may have strong impacts on soil functions as changes in plant physiology may lead to altered plant-soil interactions. Here, the effects of eCO 2 and eO 3 on the removal of polycyclic aromatic hydrocarbon (PAH) pollutants in grassland soil were studied. Both elevated CO 2 and O 3 concentrations decreased PAH removal with lowest removal rates at elevated CO 2 and elevated O 3 concentrations. This effect was linked to a shift in soil microbial community structure by structural equation modeling. Elevated CO 2 and O 3 concentrations reduced the abundance of gram-positive bacteria, which were tightly linked to soil enzyme production and PAH degradation. Although plant diversity did not buffer CO 2 and O 3 effects, certain soil microbial communities and functions were affected by plant communities, indicating the potential for longer-term phytoremediation approaches. Results of this study show that elevated CO 2 and O 3 concentrations may compromise the ability of soils to degrade organic pollutants. On the other hand, the present study also indicates that the targeted assembly of plant communities may be a promising tool to shape soil microbial communities for the degradation of organic pollutants in a changing world.

  10. Towards CO2 sequestration and applications of CO2 hydrates: the effects of tetrahydrofuran on the phase equilibria of CO2 hydrates

    International Nuclear Information System (INIS)

    Khalik, M.S.; Peters, C.J.

    2006-01-01

    The increasing quantity of carbon dioxide (CO 2 ) in the atmosphere has caused widespread global concerns. Capturing CO 2 from its sources and stored it in the form of gas hydrates and application of CO 2 hydrates are among the proposed methods to overcome this problem. In order to make hydrate-based process more attractive, the use of cyclic ethers as promoters is suggested to reduce the required hydrate formation pressure and enhancing the corresponding kinetic rate. In the present work, tetrahydrofuran (THF) is chosen as a hydrate promoter, participating in forming hydrates and produces mixed hydrate together with CO 2 . The pressure and temperature ranges of hydrate stability region are carefully determined through phase equilibrium measurement of the ternary CO 2 , tetrahydrofuran (THF) and water systems. From the experimental results, it is confirmed that the presence of THF in CO 2 + water systems will extend the hydrate formation region to higher temperature at a constant pressure. The extension of the hydrate stability region is depended on the overall concentration of the ternary system. Moreover, four-phase equilibrium of H-Lw-Lv-V is observed in the system, which may be due to a liquid phase split. In the region where the four-phase equilibrium exists, the ternary system loses its concentration dependency of the hydrate equilibrium conditions. (Author)

  11. Decontamination of solid matrices using supercritical CO2: study of contaminant-additives-CO2

    International Nuclear Information System (INIS)

    Galy, J.

    2006-11-01

    This work deals with the decontamination of solid matrices by supercritical CO 2 and more particularly with the study of the interactions between the surfactants and the CO 2 in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO 2 . The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO 2 low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO 2 -phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO 2 and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO 2 -phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO 2 . A parallel has been established between the evolution of the surface tension between the water and

  12. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  13. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  14. Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Rajwali, Khan; Fang Ming-Hu

    2015-01-01

    Polycrystalline samples of (Zn, Co) co-doped SnO 2 nanoparticles were prepared using a co-precipitation method. The influence of (Zn, Co) co-doping on electrical, dielectric, and magnetic properties was studied. All of the (Zn, Co) co-doped SnO 2 powder samples have the same tetragonal structure of SnO 2 . A decrease in the dielectric constant was observed with the increase of Co doping concentration. It was found that the dielectric constant and dielectric loss values decrease, while AC electrical conductivity increases with doping concentration and frequency. Magnetization measurements revealed that the Co doping SnO 2 samples exhibits room temperature ferromagnetism. Our results illustrate that (Zn, Co) co-doped SnO 2 nanoparticles have an excellent dielectric, magnetic properties, and high electrical conductivity than those reported previously, indicating that these (Zn, Co) co-doped SnO 2 materials can be used in the field of the ultrahigh dielectric material, high frequency device, and spintronics. (paper)

  15. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  16. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  17. Soil CO2 concentration does not affect growth or root respiration in bean or citrus

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported, Here we examine the effects of both short-and long-term exposure to soil CO2 on the root respiration of intact plants and on

  18. Armazenamento refrigerado de morango submetido a altas concentrações de CO2 Cold storage of strawberries under high CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Luis C Cunha Junior

    2012-12-01

    strawberries. However, fruits and vegetables are not currently handled under cold chain in Brazil and, when it happens, it used to be at 10 to 15ºC. The goal of this work was to evaluate the quality and the shelf life of 'Oso Grande' strawberry at 10ºC associated to high carbon dioxide concentrations. Strawberries were randomized, chilled and stored at 10ºC in hermetic mini-chambers to apply the CO2 concentrations (0.03, 10, 20, 40 and 80% plus 20% O2. Strawberries were analyzed every two days while they were proper to consumption. The shelf life for strawberries at 20 and 40% CO2 was 8 days, while those at 0.03% CO2 lasted only two days. Strawberries at 80% CO2 maintained good appearance for 6 days, but they were considered unsuitable for consumption due to high levels of acetaldehyde (40.92 µg g-1 and ethanol (1,053 µg g-1 that gave evidence of fermentation process. The weight loss was less than 2% showing how efficient was the method used to control the relative humidity during the storage. Strawberries at 0.03 and 80% CO2 levels showed higher firmness loss. Those fruits lost 40% of the initial firmness. Strawberries at 20 and 40% CO2 lost only 28% of initial firmness. Despite of the statistical effect of the treatments in the external color it was not visually perceptible. Strawberries stored at 10ºC and 40% CO2 plus 20% O2 kept the marketable quality during 8 days.

  19. Reversibility in an Earth System model in response to CO2 concentration changes

    International Nuclear Information System (INIS)

    Boucher, O; Halloran, P R; Burke, E J; Doutriaux-Boucher, M; Jones, C D; Lowe, J; Ringer, M A; Robertson, E; Wu, P

    2012-01-01

    We use the HadGEM2-ES Earth System model to examine the degree of reversibility of a wide range of components of the Earth System under idealized climate change scenarios where the atmospheric CO 2 concentration is gradually increased to four times the pre-industrial level and then reduced at a similar rate from several points along this trajectory. While some modelled quantities respond almost immediately to the atmospheric CO 2 concentrations, others exhibit a time lag relative to the change in CO 2 . Most quantities also exhibit a lag relative to the global-mean surface temperature change, which can be described as a hysteresis behaviour. The most surprising responses are from low-level clouds and ocean stratification in the Southern Ocean, which both exhibit hysteresis on timescales longer than expected. We see no evidence of critical thresholds in these simulations, although some of the hysteresis phenomena become more apparent above 2 × CO 2 or 3 × CO 2 . Our findings have implications for the parametrization of climate impacts in integrated assessment and simple climate models and for future climate studies of geoengineering scenarios. (letter)

  20. The Density and Compressibility of BaCO3-SrCO3-CaCO3-K2CO3-Na2CO3-Li2CO3 Liquids: New Measurements and a Systematic Trend with Cation Field Strength

    Science.gov (United States)

    Hurt, S. M.; Lange, R. A.; Ai, Y.

    2015-12-01

    The volumetric properties of multi-component carbonate liquids are required to extend thermodynamic models that describe partial melting of the deep mantle (e.g. pMELTS; Ghiorso et al., 2003) to carbonate-bearing lithologies. Carbonate in the mantle is an important reservoir of carbon, which is released to the atmosphere as CO2 through volcanism, and thus contributes to the carbon cycle. Although MgCO3 is the most important carbonate component in the mantle, it is not possible to directly measure the 1-bar density and compressibility of MgCO3 liquid because, like other alkaline-earth carbonates, it decomposes at a temperature lower than its melting temperature. Despite this challenge, Liu and Lange (2003) and O'Leary et al. (2015) showed that the one bar molar volume, thermal expansion and compressibility of the CaCO3 liquid component could be obtained by measuring the density and sound speeds of stable liquids in the CaCO3-Li2CO3-Na2CO3-K2CO3 quaternary system at one bar. In this study, this same strategy is employed on SrCO3- and BaCO3-bearing alkali carbonate liquids. The density and sound speed of seven liquids in the SrCO3-Li2CO3-Na2CO3-K2CO3 quaternary and three liquids in the BaCO3-Li2CO3-Na2CO3-K2CO3 quaternary were measured from 739-1367K, with SrCO3 and BaCO3 concentrations ranging from 10-50 mol%. The density measurements were made using the double-bob Archimedean method and sound speeds were obtained with a frequency-sweep acoustic interferometer. The molar volume and sound speed measurements were used to calculate the isothermal compressibility of each liquid, and the results show the volumetric properties mix ideally with composition. The partial molar volume and compressibility of the SrCO3 and BaCO3 components are compared to those obtained for the CaCO3 component as a function of cation field strength. The results reveal a systematic trend that allows the partial molar volume and compressibility of the MgCO3 liquid component to be estimated.

  1. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    Science.gov (United States)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  2. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef; Guillerm, Vincent; Eddaoudi, Mohamed

    2016-01-01

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  3. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef

    2016-03-30

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  4. A possible CO2 conducting and concentrating mechanism in plant stomata SLAC1 channel.

    Directory of Open Access Journals (Sweden)

    Qi-Shi Du

    Full Text Available BACKGROUND: The plant SLAC1 is a slow anion channel in the membrane of stomatal guard cells, which controls the turgor pressure in the aperture-defining guard cells, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought, high levels of carbon dioxide, and bacterial invasion. Recent study demonstrated that bicarbonate is a small-molecule activator of SLAC1. Higher CO(2 and HCO(3(- concentration activates S-type anion channel currents in wild-type Arabidopsis guard cells. Based on the SLAC1 structure a theoretical model is derived to illustrate the activation of bicarbonate to SLAC1 channel. Meanwhile a possible CO(2 conducting and concentrating mechanism of the SLAC1 is proposed. METHODOLOGY: The homology structure of Arabidopsis thaliana SLAC1 (AtSLAC1 provides the structural basis for study of the conducting and concentrating mechanism of carbon dioxide in SLAC1 channels. The pK(a values of ionizable amino acid side chains in AtSLAC1 are calculated using software PROPKA3.0, and the concentration of CO(2 and anion HCO(3(- are computed based on the chemical equilibrium theory. CONCLUSIONS: The AtSLAC1 is modeled as a five-region channel with different pH values. The top and bottom layers of channel are the alkaline residue-dominated regions, and in the middle of channel there is the acidic region surrounding acidic residues His332. The CO(2 concentration is enhanced around 10(4 times by the pH difference between these regions, and CO(2 is stored in the hydrophobic region, which is a CO(2 pool. The pH driven CO(2 conduction from outside to inside balances the back electromotive force and maintain the influx of anions (e.g. Cl(- and NO(3(- from inside to outside. SLAC1 may be a pathway providing CO(2 for photosynthesis in the guard cells.

  5. Advances in Geological CO{sub 2} Sequestration and Co-Sequestration with O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe A; O& #x27; Connor, William K.; Ideker, J.H.

    2012-10-28

    The injection of CO{sub 2} for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing formations for long term storage has been in practice or under investigation in many locations globally. This study focused on the assessment of cement wellbore seal integrity in CO{sub 2}- and CO{sub 2}-O{sub 2}-saturated brine and supercritical CO{sub 2} environments. Brine chemistries (NaCl, MgCl{sub 2}, CaCl{sub 2}) at various saline concentrations were investigated at a pressure of 28.9 MPa (4200 psi) at both 50{degree}C and 85{degree}C. These parameters were selected to simulate downhole conditions at several potential CO{sub 2} injection sites in the United States. Class H portland cement is not thermodynamically stable under these conditions and the formation of carbonic acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO{sub 3} buffered zone, amorphous silica, and other secondary minerals. Increased temperature affected the structure of C-S-H and the hydration of the cement leading to higher degradation rates.

  6. CO{sub 2} emission calculations and trends

    Energy Technology Data Exchange (ETDEWEB)

    Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [Alaska Univ., Fairbanks, AK (United States). Inst. of Northern Engineering

    1995-12-31

    Evidence that the atmospheric CO{sub 2} concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the ``stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. `` Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  7. CO{sub 2} Emission Calculations and Trends

    Science.gov (United States)

    Boden, T. A.; Marland, G.; Andres, R. J.

    1995-06-01

    Evidence that the atmospheric CO{sub 2}concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  8. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  9. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  10. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Manderscheid, R.; Bender, J.; Schenk, U.; Weigel, H.J.

    1997-01-01

    The objectives of the present study were to test (i) whether the effect of season-long CO 2 enrichment on plant dry matter production of white clover (Trifolium repens cv. Karina) depends on the temperature or can solely be explained by changes in radiation use efficiency, and (ii) whether the atmospheric CO 2 concentration affects the relationship between tissue %N and plant biomass. Plants were grown in pots with adequate nutrient and water supply and were exposed to ambient and above ambient CO 2 concentrations (approximately +80 ppm, +160 ppm, +280 ppm) in open-top chambers for two seasons. Nitrogen fertilizer was given only before the experiment started to promote N 2 fixation. Plants were clipped to a height of 5 cm, when the canopy had reached a height of about 20 cm and when the CO 2 effect had not been diminished due to self-shading of the leaves. Photon exposure (400–700 nm) measured above the canopy was linearly related to the above ground biomass, the leaf area index and the nitrogen yield (r 2 > 0.94). The slopes of the curves depended on the CO 2 concentration. Since most of the radiation (>90%) was absorbed by the foliage, the slopes were used to calculate the CO 2 effect on the radiation use efficiency of biomass production, which is shown to increase curvilinearly between 380 and 660 ppm CO 2 from 2.7 g MJ −1 to 3.9 g MJ −1 . CO 2 enrichment increased above ground biomass by increasing the leaf number, the individual leaf weight and the leaf area; specific leaf weight was not affected. The relative CO 2 response varied between harvests; there was a slight but not significant positive relationship with mean daytime temperature. At the beginning of the season, plant nitrogen concentration in the above ground biomass was decreased by CO 2 enrichment. However, at later growth stages, when the plants depended solely on N 2 fixation, nitrogen concentration was found to be increased when the nitrogen concentration value was adjusted for the decrease

  11. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations

    Directory of Open Access Journals (Sweden)

    I. N. Polonsky

    2014-04-01

    Full Text Available GeoCARB is a proposed instrument to measure column averaged concentrations of CO2, CH4 and CO from geostationary orbit using reflected sunlight in near-infrared absorption bands of the gases. The scanning options, spectral channels and noise characteristics of geoCARB and two descope options are described. The accuracy of concentrations from geoCARB data is investigated using end-to-end retrievals; spectra at the top of the atmosphere in the geoCARB bands are simulated with realistic trace gas profiles, meteorology, aerosol, cloud and surface properties, and then the concentrations of CO2, CH4 and CO are estimated from the spectra after addition of noise characteristic of geoCARB. The sensitivity of the algorithm to aerosol, the prior distributions assumed for the gases and the meteorology are investigated. The contiguous spatial sampling and fine temporal resolution of geoCARB open the possibility of monitoring localised sources such as power plants. Simulations of emissions from a power plant with a Gaussian plume are conducted to assess the accuracy with which the emission strength may be recovered from geoCARB spectra. Scenarios for "clean" and "dirty" power plants are examined. It is found that a reliable estimate of the emission rate is possible, especially for power plants that have particulate filters, by averaging emission rates estimated from multiple snapshots of the CO2 field surrounding the plant. The result holds even in the presence of partial cloud cover.

  12. Effects of long-term elevated atmospheric CO2 concentrations on Pinus ponderosa

    International Nuclear Information System (INIS)

    Surano, K.A.; Kercher, J.R.

    1993-01-01

    This report details the results from an experiment of the effects of long-term elevated atmospheric CO 2 concentrations on ponderosa pine (Pinus ponderosa Laws.) saplings and seedlings. The study began in 1983 as a pilot study designed to explore the feasibility of using open-top chambers for continuous multi-year exposures on sapling-sized trees and to examine possible CO 2 responses so that future research could be adequately designed. however, following the first year of exposure, preliminary results from the study indicated that measurements of CO 2 responses should be intensified. Open-top chambers proved suitable for use in multiyear exposures of mature trees. With respect to the preliminary examination of CO 2 responses, many interesting observations were made. The nature of the preliminary results suggests that future long-term field CO 2 exposures on perennial species may be critical to the understanding and preparation for future environments. Other research reported here attempted to adapt an existing western coniferous forest growth and succession model for use in elevated CO 2 scenarios using differential species responses, and assessed the usefulness of the model in that regard. Seven papers have been processed separately for inclusion in the appropriate data bases

  13. Decontamination of solid matrices using supercritical CO{sub 2}: study of contaminant-additives-CO{sub 2}; Decontamination de matrices organiques solides par CO{sub 2} supercritique: etude des interactions contaminant-additifs-CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Galy, J

    2006-11-15

    This work deals with the decontamination of solid matrices by supercritical CO{sub 2} and more particularly with the study of the interactions between the surfactants and the CO{sub 2} in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO{sub 2}. The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO{sub 2} low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO{sub 2}-phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO{sub 2} and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO{sub 2}-phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO{sub 2}. A parallel has

  14. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership

    Science.gov (United States)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart

    2016-04-01

    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  15. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Directory of Open Access Journals (Sweden)

    H. Jamali

    2013-04-01

    Full Text Available We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the

  16. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2013-04-01

    We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e) basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past) would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but

  17. Promoting Ethylene Selectivity from CO2 Electroreduction on CuO Supported onto CO2 Capture Materials.

    Science.gov (United States)

    Yang, Hui-Juan; Yang, Hong; Hong, Yu-Hao; Zhang, Peng-Yang; Wang, Tao; Chen, Li-Na; Zhang, Feng-Yang; Wu, Qi-Hui; Tian, Na; Zhou, Zhi-You; Sun, Shi-Gang

    2018-03-09

    Cu is a unique catalyst for CO 2 electroreduction, since it can catalyze CO 2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO 2 is considered to facilitate the activity and selectivity of CO 2 reduction. Herein, a new strategy is presented for CO 2 reduction with improved C 2 H 4 selectivity on a Cu catalyst by using CO 2 capture materials as the support at ambient pressure. N-doped carbon (N x C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO 2 uptake capacity of N x C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/N x C catalysts exhibit a considerably higher C 2 H 4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C 2 H 4 faradaic efficiency and CO 2 uptake capacity of the supports for CuO. The local high CO 2 concentration near Cu catalysts, created by CO 2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C 2 H 4 . This study demonstrates that pairing Cu catalysts with CO 2 capture supports is a promising approach for designing highly effective CO 2 reduction electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    Science.gov (United States)

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 22Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Concentration of Co2+, Fe3+ and Zn2+ ions with microbiological collectors

    International Nuclear Information System (INIS)

    Fisel, S.; Dulman, V.; Cecal, A.

    1975-01-01

    By means of the Spicaria Biolacea Abbott fungus a satisfactory microbiological concentration of 60 Co 2+ , sup(55+59)Fe 3+ and 65 Zn 2+ can be obtained under optimum experimental conditions. By repeating the cultures on the media obtained after filtration, multistage processes, and by adding the necessary nutritive substances, practically quantitative concentration of these three elements can be produced. The experimental results plead in favour of a concentration mechanism of the isotopes inside the cell with no surface adsorption. The influence of the experimental conditions i.e. pH, time and concentration have been investigated. (T.G.)

  20. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor

    Science.gov (United States)

    Osuna, J. L.; Bora, M.; Bond, T.

    2015-12-01

    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  1. Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2017-06-01

    A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.

  2. The relationship between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2012-12-01

    1. We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of Northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. 2. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. 3. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux, however, these relationships were clearly termite species specific. 4. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in past) would result in errors of more than 5-fold for CH4 and 3-fold for CO2. 5. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a~mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but these relationships vary greatly among termite species. Consequently, there is no generic relationship that will allow for the prediction of CH4 fluxes from termite mounds of all species.

  3. CO2 absorption/emission and aerodynamic effects of trees on the concentrations in a street canyon in Guangzhou, China

    International Nuclear Information System (INIS)

    Li, Jian-Feng; Zhan, Jie-Min; Li, Y.S.; Wai, Onyx W.H.

    2013-01-01

    In this paper, the effects of trees on CO 2 concentrations in a street canyon in Guangzhou, China are examined by Computational Fluid Dynamics (CFD) simulations of the concentration distribution, taking into account both the CO 2 absorption/emission and aerodynamic effects of trees. Simulation results show that, under a 2 m/s southerly prevailing wind condition, CO 2 absorption by trees will reduce the CO 2 concentration by around 2.5% in the daytime and at the same time the trees' resistance will increase the difference of CO 2 concentrations in the street and at the inflow by 43%. As the traffic density increases to 50 vehicles/min, the effect of trees on the ambient CO 2 concentration will change from positive to negative. At night, trees have a negative effect on the concentration in the street canyon mainly because of their resistance to airflow. When environmental wind changes, the effect of trees will be different. -- Highlights: ► The trees affect CO 2 concentrations in a street canyon. ► Both the CO 2 absorption and flow resistance of trees are significant factors by day. ► As the emissions of CO 2 increase, the effect of trees will become negative. ► At night, trees have a negative effect on CO 2 concentration due to the resistance. -- The effects of trees on CO 2 concentrations in a street canyon are examined by CFD simulations, taking into account both the CO 2 absorption/emission and aerodynamic effects of trees

  4. CO and NO2 pollution in a long two-way traffic road tunnel: investigation of NO2/NOx ratio and modelling of NO2 concentration.

    Science.gov (United States)

    Indrehus, O; Vassbotn, P

    2001-02-01

    The CO, NO and NO2 concentrations, visibility and air flow velocity were measured using continuous analysers in a long Norwegian road tunnel (7.5 km) with traffic in both directions in April 1994 and 1995. The traffic density was monitored at the same time. The NO2 concentration exceeded Norwegian air quality limits for road tunnels 17% of the time in 1994. The traffic through the tunnel decreased from 1994 to 1995, and the mean NO2 concentration was reduced from 0.73 to 0.22 ppm. The ventilation fan control, based on the CO concentration only, was unsatisfactory and the air flow was sometimes low for hours. Models for NO2 concentration based on CO concentration and absolute air flow velocity were developed and tested. The NO2/NOx ratio showed an increase for NOx levels above 2 ppm; a likely explanation for this phenomenon is NO oxidation by O2. Exposure to high NO2 concentrations may represent a health risk for people with respiratory and cardiac diseases. In long road tunnels with two-way traffic, this study indicates that ventilation fan control based on CO concentration should be adjusted for changes in vehicle CO emission and should be supplemented by air flow monitoring to limit the NO2 concentration.

  5. Plant growth and leaf-spot severity on eucalypt at different CO2 concentrations in the air

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Oliveira da Silva

    2014-03-01

    Full Text Available The objective of this work was to evaluate the effects of increased air-CO2 concentration on plant growth and on leaf-spot caused by Cylindrocladium candelabrum in Eucalyptus urophylla. Seedlings were cultivated for 30 days at 451, 645, 904, and 1,147 µmol mol-1 CO2 ; then, they were inoculated with the pathogen and kept under the same conditions for seven days. Increased CO2 concentration increased plant height and shoot dry matter mass, and decreased disease incidence and severity. Stem diameter was not affected by the treatments. Increased concentrations of atmospheric CO2 favorably affect eucalypt growth and reduce leaf-spot severity.

  6. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    Science.gov (United States)

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-04-01

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO 2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO 2 , since the root FW reduction caused by excess B was less marked at the high CO 2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO 2 concentration, and from 38 to 51% at elevated CO 2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO 2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO 2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO 2 .

  7. Possible use of Fe/CO2 fuel cells for CO2 mitigation plus H2 and electricity production

    International Nuclear Information System (INIS)

    Rau, Greg H.

    2004-01-01

    The continuous oxidation of scrap iron in the presence of a constant CO 2 -rich waste gas stream and water is evaluated as a means of sequestering anthropogenic CO 2 as well as generating hydrogen gas and electricity. The stoichiometry of the net reaction, Fe 0 + CO 2 + H 2 O → FeCO 3 + H 2 , and assumptions about reaction rates, reactant and product prices/values and overhead costs suggest that CO 2 might be mitigated at a net profit in excess of $30/tonne CO 2 . The principle profit center of the process would be hydrogen production, alone providing a gross income of >$160/tonne CO 2 reacted. However, the realization of such fuel cell economics depends on a number of parameters including: (1) the rate at which the reaction can be sustained, (2) the areal and volumetric density with which H 2 and electricity can be produced, (3) the purity of the H 2 produced, (4) the transportation costs of the reactants (Fe, CO 2 and H 2 O) and products (FeCO 3 or Fe(HCO 3 ) 2 ) to/from the cells and (5) the cost/benefit trade-offs of optimizing the preceding variables in a given market and regulatory environment. Because of the carbon intensity of conventional iron metal production, a net carbon sequestration benefit for the process can be realized only when waste (rather than new) iron and steel are used as electrodes and/or when Fe(HCO 3 ) 2 is the end product. The used electrolyte could also provide a free source of Fe 2+ ions for enhancing iron-limited marine photosynthesis and, thus, greatly increasing the CO 2 sequestration potential of the process. Alternatively, the reaction of naturally occurring iron oxides (iron ore) with CO 2 can be considered for FeCO 3 formation and sequestration, but this foregoes the benefits of hydrogen and electricity production. Use of Fe/CO 2 fuel cells would appear to be particularly relevant for fossil fuel gasification/steam reforming systems given the highly concentrated CO 2 they generate and given the existing infrastructure they

  8. Analysis of CO2, CO and HC emission reduction in automobiles

    Science.gov (United States)

    Balan, K. N.; Valarmathi, T. N.; Reddy, Mannem Soma Harish; Aravinda Reddy, Gireddy; Sai Srinivas, Jammalamadaka K. M. K.; Vasan

    2017-05-01

    In the present scenario, the emission from automobiles is becoming a serious problem to the environment. Automobiles, thermal power stations and Industries majorly constitute to the emission of CO2, CO and HC. Though the CO2 available in the atmosphere will be captured by oceans, grasslands; they are not enough to control CO2 present in the atmosphere completely. Also advances in engine and vehicle technology continuously to reduce the emission from engine exhaust are not sufficient to reduce the HC and CO emission. This work concentrates on design, fabrication and analysis to reduce CO2, CO and HC emission from exhaust of automobiles by using molecular sieve 5A of 1.5mm. In this paper, the details of the fabrication, results and discussion about the process are discussed.

  9. Elevated CO2 response of photosynthesis depends on ozone concentration in aspen

    International Nuclear Information System (INIS)

    Noormets, Asko; Kull, Olevi; Sober, Anu; Kubiske, Mark E.; Karnosky, David F.

    2010-01-01

    The effect of elevated CO 2 and O 3 on apparent quantum yield (φ), maximum photosynthesis (P max ), carboxylation efficiency (V cmax ) and electron transport capacity (J max ) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O 3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO 2 alone did not affect φ or P max , and increased J max in the O 3 -sensitive, but not in the O 3 -tolerant clone. Elevated O 3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O 3 increased through time. Significant interaction effect, whereby the negative impact of elevated O 3 was exaggerated by elevated CO 2 was seen in Chl, N and J max , and occurred in both O 3 -tolerant and O 3 -sensitive clones. The clonal differences in the level of CO 2 x O 3 interaction suggest a relationship between photosynthetic acclimation and background O 3 concentration. - Photosynthetic acclimation to elevated CO 2 depends on the background oxidant levels.

  10. Associations between classroom CO2 concentrations and student attendance in Washington and Idaho.

    Science.gov (United States)

    Shendell, D G; Prill, R; Fisk, W J; Apte, M G; Blake, D; Faulkner, D

    2004-10-01

    Student attendance in American public schools is a critical factor in securing limited operational funding. Student and teacher attendance influence academic performance. Limited data exist on indoor air and environmental quality (IEQ) in schools, and how IEQ affects attendance, health, or performance. This study explored the association of student absence with measures of indoor minus outdoor carbon dioxide concentration (dCO(2)). Absence and dCO(2) data were collected from 409 traditional and 25 portable classrooms from 22 schools located in six school districts in the states of Washington and Idaho. Study classrooms had individual heating, ventilation, and air conditioning (HVAC) systems, except two classrooms without mechanical ventilation. Classroom attributes, student attendance and school-level ethnicity, gender, and socioeconomic status (SES) were included in multivariate modeling. Forty-five percent of classrooms studied had short-term indoor CO(2) concentrations above 1000 p.p.m. A 1000 p.p.m. increase in dCO(2) was associated (P student absence. Annual ADA was 2% higher (P student attendance, and occupant health and student performance, with longer term indoor minus outdoor CO(2) concentrations and more accurately measured ventilation rates. If our findings are confirmed, improving classroom ventilation should be considered a practical means of reducing student absence. Adequate or enhanced ventilation may be achieved, for example, with educational training programs for teachers and facilities staff on ventilation system operation and maintenance. Also, technological interventions such as improved automated control systems could provide continuous ventilation during occupied times, regardless of occupant thermal comfort demands.

  11. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    CO2 capture and storage including its utilization or reuse presents an opportunity to achieve deep reductions in greenhouse gas emissions from fossil energy use. The development and deployment of this option could significantly assist in meeting a future goal of achieving stabilization of the presently rising atmospheric concentration of greenhouse gases. CO2 capture from process streams is an established concept that has achieved industrial practice. Examples of current applications include the use of primarily, solvent based capture technologies for the recovery of pure CO2 streams for chemical synthesis, for utilization as a food additive, for use as a miscible agent in enhanced oil recovery operations and removal of CO2 as an undesired contaminant from gaseous process streams for the production of fuel gases such as hydrogen and methane. In these applications, the technologies deployed for CO2 capture have focused on gas separation from high purity, high pressure streams and in reducing (or oxygen deficient) environments, where the energy penalties and cost for capture are moderately low. However, application of the same capture technologies for large scale abatement of greenhouse gas emissions from fossil fuel use poses significant challenges in achieving (at comparably low energy penalty and cost) gas separation in large volume, dilute concentration and/or low pressure flue gas streams. This paper will focus on a review of existing commercial methods of CO2 capture and the technology stretch, process integration and energy system pathways needed for their large scale deployment in fossil fueled processes. The assessment of potential capture technologies for the latter purpose will also be based on published literature data that are both 'transparent' and 'systematic' in their evaluation of the overall cost and energy penalties of CO2 capture. In view of the of the fact that many of the existing commercial processes for CO2 capture have seen applications in

  12. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  13. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  14. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    sensitivity test without urban parameterisation removes the UHI and underpredicts nighttime BLH over urban and suburban sites, leading to large overestimation of nocturnal CO2 mixing ratio at the suburban sites (bias of +17 ppm. The agreement between observation and prediction for BLH and CO2 concentrations and urban–rural increments, both day and night, demonstrates the potential of using the urban mesoscale system in the context of inverse modelling

  15. Modeling soil CO2 production and transport to investigate the intra-day variability of surface efflux and soil CO2 concentration measurements in a scots pine forest (Pinus Sylvestris, L.)

    OpenAIRE

    Goffin, Stéphanie; Wylock, Christophe; Haut, Benoît; Maier, Martin; Longdoz, Bernard; Aubinet, Marc

    2015-01-01

    Aimed:The main aim of this study is to improve the mechanistic understanding of soil CO2 efflux (Fs), especially its temporal variation at short-time scales, by investigating, through modeling, which underlying process among CO2 production and its transport up to the atmosphere is responsible for observed intra-day variation of Fs and soil CO2 concentration [CO2].Methods:In this study, a measurement campaign of Fs and vertical soil [CO2] profiles was conducted in a Scots Pine Forest soil in H...

  16. Photosynthetic responses to elevated CO2 and O3 in Quercus ilex leaves at a natural CO2 spring

    International Nuclear Information System (INIS)

    Paoletti, E.; Seufert, G.; Della Rocca, G.; Thomsen, H.

    2007-01-01

    Photosynthetic stimulation and stomatal conductance (Gs) depression in Quercus ilex leaves at a CO 2 spring suggested no down-regulation. The insensitivity of Gs to a CO 2 increase (from ambient 1500 to 2000 μmol mol -1 ) suggested stomatal acclimation. Both responses are likely adaptations to the special environment of CO 2 springs. At the CO 2 -enriched site, not at the control site, photosynthesis decreased 9% in leaves exposed to 2x ambient O 3 concentrations in branch enclosures, compared to controls in charcoal-filtered air. The stomatal density reduction at high CO 2 was one-third lower than the concomitant Gs reduction, so that the O 3 uptake per single stoma was lower than at ambient CO 2 . No significant variation in monoterpene emission was measured. Higher trichome and mesophyll density were recorded at the CO 2 -enriched site, accounting for lower O 3 sensitivity. A long-term exposure to H 2 S, reflected by higher foliar S-content, and CO 2 might depress the antioxidant capacity of leaves close to the vent and increase their O 3 sensitivity. - Very high CO 2 concentrations did not compensate for the effects of O 3 on holm oak photosynthesis

  17. Impact of CO_2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO_2 Leakage

    International Nuclear Information System (INIS)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    2016-01-01

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO_2) emissions to the atmosphere. During this process, CO_2 is injected as super critical carbon dioxide (SC-CO_2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO_2 in subsurface geologic formations could unintentionally lead to CO_2 leakage into overlying freshwater aquifers. Introduction of CO_2 into these subsurface environments will greatly increase the CO_2 concentration and will create CO_2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO_2 gradients will impact these communities. The overarching goal of this project is to understand how CO_2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO_2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO_2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO_2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO_2 injection/leakage plume where CO_2 concentrations are highest. At CO_2 exposures expected downgradient from the CO_2 plume, selected microorganisms emerged as dominant in the CO_2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site

  18. Enhanced growth of the red alga Porphyra-Yezoensis Ueda in high CO sub 2 concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, K.; Aruga, Y.; Asada, K.; Ishihara, T.; Akano, T.; Kiyohara, M. (Kansai Environmental Engineering Centre, Osaka (Japan))

    1991-12-01

    Leafy thalli of the red alga Porphyra yezoensis Ueda, initiated from conchospores released from free-living conchocelis, were cultured using aeration with high CO{sub 2}. It was found that the higher the CO{sub 2} concentration, the faster the growth of the thalli. Aeration with elevated CO{sub 2} lowered pH in dark, but raised pH remarkably in light with the thalli, because the photosynthetic conversion of HCO{sub 3} {sup -} to OH{sup -} and CO{sub 2} proceeded much faster than the dissociation of hydrated CO{sub 2} releasing H{sup +}. Photosynthesis of the alga was found to be enhanced in the seawater of elevated dissolved inorganic carbon DIC, CO{sub 2} + HCO{sub 3}{sup -} + CO{sub 3}{sup -}. It is concluded that the increased pH in the light resulted in the increase of DIC in the culture media, thus enhancing photosynthesis and growth. The relevance of the results to removal of atmospheric CO{sub 2} by marine algae is discussed.

  19. Design of CO{sub 2} absorption plant for recovery of CO{sub 2} from flue gases of gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mofarahi, Masoud [Chemical Engineering Department, Persian Gulf University, Boushehr (Iran); Khojasteh, Yaser; Khaledi, Hiwa; Farahnak, Arsalan [Delta Consultant Engineering Group, Tehran (Iran)

    2008-08-15

    The ongoing human-induced emission of carbon dioxide (CO{sub 2}) threatens to change the earth's climate. A major factor in global warming is CO{sub 2} emission from thermal power plants, which burn fossil fuels. One possible way of decreasing CO{sub 2} emissions is to apply CO{sub 2} removal, which involves recovering of CO{sub 2} from energy conversion processes. This study is focused on recovery of CO{sub 2} from gas turbine exhaust of Sarkhun gas refinery power station. The purpose of this study is to recover the CO{sub 2} with minimum energy requirement. Many of CO{sub 2} recovery processes from flue gases have been studied. Among all CO{sub 2} recovery processes which were studied, absorption process was selected as the optimum one, due to low CO{sub 2} concentration in flue gas. The design parameters considered in this regard, are: selection of suitable solvent, solvent concentration, solvent circulation rate, reboiler and condenser duty and number of stages in absorber and stripper columns. In the design of this unit, amine solvent such as, diethanolamine (DEA), diglycolamine (DGA), methyldiethanolamine (MDEA), and monoethanolamine (MEA) were considered and the effect of main parameters on the absorption and stripping columns is presented. Some results with simultaneous changing of the design variables have been obtained. The results show that DGA is the best solvent with minimum energy requirement for recovery of CO{sub 2} from flue gases at atmospheric pressure. (author)

  20. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Science.gov (United States)

    Chandra, Naveen; Lal, Shyam; Venkataramani, S.; Patra, Prabir K.; Sheel, Varun

    2016-05-01

    About 70 % of the anthropogenic carbon dioxide (CO2) is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO) have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric) and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm) during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm) during the autumn (SON) season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic emissions in the late night (00:00-05:00 h, IST

  1. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    Science.gov (United States)

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO 2 concentrations. Growth under a high concentration of CO 2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO 2 . Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO 2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO 2 . Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO 2 -enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO 2 -enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO 2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in

  2. Soil CO2 concentrations and efflux dynamics of a tree island in the Pantanal wetland

    Science.gov (United States)

    Lathuillière, Michael J.; Pinto, Osvaldo B.; Johnson, Mark S.; Jassal, Rachhpal S.; Dalmagro, Higo J.; Leite, Nei K.; Speratti, Alicia B.; Krampe, Daniela; Couto, Eduardo G.

    2017-08-01

    The Pantanal is the largest tropical wetland on the planet, and yet little information is available on the biome's carbon cycle. We used an automatic station to measure soil CO2 concentrations and oxidation-reduction potential over the 2014 and 2015 flood cycles of a tree island in the Pantanal that is immune to inundation during the wetland's annual flooding. The soil CO2 concentration profile was then used to estimate soil CO2 efflux over the two periods. In 2014, subsurface soil saturation at 0.30 m depth created conditions in that layer that led to CO2 buildup close to 200,000 ppm and soil oxidation-reduction potential below -300 mV, conditions that were not repeated in 2015 due to annual variability in soil saturation at the site. Mean CO2 efflux over the 2015 flood cycle was 0.023 ± 0.103 mg CO2-C m-2 s-1 representing a total annual efflux of 593 ± 2690 mg CO2-C m-2 y-1. Unlike a nearby tree island site that experiences full inundation during the wet season, here the soil dried quickly following repeated rain events throughout the year, which led to the release of CO2 pulses from the soil. This study highlights not only the complexity and heterogeneity in the Pantanal's carbon balance based on differences in topography, flood cycles, and vegetation but also the challenges of applying the gradient method in the Pantanal due to deviations from steady state conditions.

  3. Revealing Transient Concentration of CO2 in a Mixed Matrix Membrane by IR Microimaging and Molecular Modeling

    KAUST Repository

    Hwang, Seungtaik

    2018-02-21

    Through IR microimaging the spatially and temporally resolved development of the CO2 concentration in a ZIF-8@6FDA-DAM mixed matrix membrane was visualized during transient adsorption. By recording the evolution of the CO2 concentration, it is observed that the CO2 molecules propagate from the ZIF-8 filler, which acts as a transport

  4. Revealing Transient Concentration of CO2 in a Mixed Matrix Membrane by IR Microimaging and Molecular Modeling

    KAUST Repository

    Hwang, Seungtaik; Semino, Rocio; Seoane, Beatriz; Zahan, Marufa; Chmelik, Christian; Valiullin, Rustem; Bertmer, Marko; Haase, Jü rgen; Kapteijn, Freek; Gascon, Jorge; Maurin, Guillaume; Kä rger, Jö rg

    2018-01-01

    Through IR microimaging the spatially and temporally resolved development of the CO2 concentration in a ZIF-8@6FDA-DAM mixed matrix membrane was visualized during transient adsorption. By recording the evolution of the CO2 concentration, it is observed that the CO2 molecules propagate from the ZIF-8 filler, which acts as a transport

  5. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Davis, Kenneth; Lauvaux, Thomas; Miles, Natasha L; Richardson, Scott; Schuh, Andrew; Cooley, Dan; Breidt, F Jay; West, Tristram O; Heath, Linda S; Smith, James E; McCarty, Jessica L; Gurney, Kevin R; Tans, Pieter; Denning, A Scott

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO 2 concentrations and inverse modeling to verify nationally-reported biogenic CO 2 emissions. The biogenic CO 2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of −408 ± 136 Tg CO 2 for the entire study region, which was not statistically different from the biogenic flux of −478 ± 146 Tg CO 2 that was estimated using the atmospheric CO 2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO 2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC. (letter)

  6. Effects of long-term elevated atmospheric CO{sub 2} concentrations on Pinus ponderosa

    Energy Technology Data Exchange (ETDEWEB)

    Surano, K.A.; Kercher, J.R. [eds.

    1993-10-01

    This report details the results from an experiment of the effects of long-term elevated atmospheric CO{sub 2} concentrations on ponderosa pine (Pinus ponderosa Laws.) saplings and seedlings. The study began in 1983 as a pilot study designed to explore the feasibility of using open-top chambers for continuous multi-year exposures on sapling-sized trees and to examine possible CO{sub 2} responses so that future research could be adequately designed. however, following the first year of exposure, preliminary results from the study indicated that measurements of CO{sub 2} responses should be intensified. Open-top chambers proved suitable for use in multiyear exposures of mature trees. With respect to the preliminary examination of CO{sub 2} responses, many interesting observations were made. The nature of the preliminary results suggests that future long-term field CO{sub 2} exposures on perennial species may be critical to the understanding and preparation for future environments. Other research reported here attempted to adapt an existing western coniferous forest growth and succession model for use in elevated CO{sub 2} scenarios using differential species responses, and assessed the usefulness of the model in that regard. Seven papers have been processed separately for inclusion in the appropriate data bases.

  7. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland

    Science.gov (United States)

    Fay, P. A.; Collins, H.; Polley, W.

    2016-12-01

    Atmospheric CO2 concentration will likely exceed 500 µL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA . Whether increased abundance translates to increased inflorescence production is poorly understood, and is important because it indicates the potential effects of CO2 enrichment on genetic variability and the potential for evolutionary change in future generations. We examined whether the responses of inflorescence production to CO2 enrichment in four C4 grasses and a C3 forb were predicted their vegetative biomass, and by soil moisture, soil nitrogen, or light availability. Inflorescence production was studied in a long-term CO2 concentration gradient spanning pre-industrial to anticipated mid-21st century values (250 - 500 µL L-1) maintained on clay, silty clay and sandy loam soils common in the U.S. Southern Plains. We expected that CO2 enrichment would increase inflorescence production, and more so with higher water, nitrogen, or light availability. However, structural equation modeling revealed that vegetative biomass was the single consistent direct predictor of flowering for all species (p grass) and Solidago canadensis (C3 forb), direct CO2 effects on flowering were only weakly mediated by indirect effects of soil water content and soil NO3-N availability. For the decreasing species (Bouteloua curtipendula, C4 grass), the negative CO2-flowering relationship was cancelled (p = 0.39) by indirect effects of increased SWC and NO3-N on clay and silty clay soils. For the species with no CO2 response, inflorescence production was predicted only by direct water content (p grass) or vegetative biomass (p = 0.0009, Tridens albescens, C4 grass) effects. Light availability was unrelated to inflorescence production. Changes in inflorescence production are thus closely tied to direct and indirect effects of CO2 enrichment on vegetative biomass, and may either increase, decrease, or leave

  8. Carbon Balance at Landscape Level inferred fromTower CO2 Concentration Measurements

    Science.gov (United States)

    Chen, J. M.; Chen, B.; Higuchi, K.; Chan, D.; Shashkov, A.; Lin, H.; Liu, J.

    2003-04-01

    Terrestrial carbon sinks are considerable in the global carbon budget, but the accumulation of carbon in terrestrial ecosystems is very small (~0.2% per year) relative to the total carbon stocks in forests. Currently, eddy-covariance instruments mounted on towers are the only reliable means to measure carbon balance of a land surface, albeit limited to small areas and not free of caveats. In our quest of understanding the collective performance of ecosystems under the changing climate, it is highly desirable to have the ability to acquire carbon cycle information for large areas (landscape) consisting of patches of different ecosystems. For this purpose we explored methodologies of inferring carbon cycle information from tower CO2 concentration measurements affected by large areas (100-10000 km2). An ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS) is coupled with a carbon-specific Vertical Diffusion Scheme (VDS) in order to decipher temporal variations in CO2 for landscape-level photosynthesis and respiration information. The coupled BEPS-VDS is applied to a unique 9-year (1990-2000 with 1997-8 missing data) 5-minute CO2 record measured on a 40-m tower over boreal forests near Fraserdale, Ontario, Canada. Over the period, the mean diurnal amplitude of the measured CO2 at 40 m increased by 5.58 ppmv, or 28% in the growing season. The increase in nighttime ecosystem respiration, causing the increase in the daily maximum CO2 concentration, was responsible for 65% of the increase in the diurnal amplitude, i.e., 3.61 ppmv, corresponding to an increase in the mean daily air temperature by about 2.77 degC and precipitation by 5% over the same period. The rest (35%) is explained by the increase in ecosystem daytime photosynthesis, causing the decrease in the daily minimum CO2 concentration. As the nighttime stable boundary layer (SBL) (270-560 m) was much shallower than the daytime convective boundary layer (CBL) (1000-1600 m), the increase in

  9. Photosynthetic response to variation in CO2 concentrations and temperature of four broad-leaved trees in Beijing region

    Institute of Scientific and Technical Information of China (English)

    Zhibo MA; Shengqing SHI; Qinyan MA; Yutao WANG; Xingliang LIU

    2008-01-01

    Responses of the photosynthetic characteris-tics to variation in CO2 concentration and temperature of Ginkgo biloba, Eucornmia ulmoides, Magnolia denudata and Tiliajaponica were measured during the peak growing season. The results show that the ambient CO2 concentra-tion could not meet the requirements for photosynthesis of these four species. The optimal temperatures for pho-tosynthesis were lower than the average daytime air tem-perature. Hence, the photosynthesis of these four species was restricted by the low CO2 concentration and high daytime air temperature at the time of measurement. Marked enhancements in the net photosynthetic rate were found in all four species when the CO2 concentration was doubled. When the dependency on CO2 and temperature were examined simultaneously, it was seen that for increased CO2 concentrations there was a shift in the optimum temperature for M. denudata and T. japonica towards higher temperatures. Due to their independence on CO2 concentrations, this trend could not be found in the G. biloba and E. ulmoides data sets. The stomatal con-ductance (Gs) was sensitive to a vapor pressure deficit (VPD) which in turn was sensitive to temperature. An increase in temperature would cause the VPD to increase and plants might be assumed to react by reducing their stomatal apertures. The effect on stomatal resistance would be most significant at high temperatures. The restriction to stomatal conductance for these four species would increase if CO2 concentrations were elevated at the same temperature.

  10. Reconsideration of atmospheric CO2 lifetime: potential mechanism for explaining CO2 missing sink

    Science.gov (United States)

    Kikuchi, R.; Gorbacheva, T.; Gerardo, R.

    2009-04-01

    Carbon cycle data (Intergovernmental Panel on Climate Change 1996) indicate that fossil fuel use accounts for emissions to the atmosphere of 5.5±0.5 GtC (Gigatons of carbon) annually. Other important processes in the global CO2 budget are tropical deforestation, estimated to generate about 1.6±1.0 GtC/yr; absorption by the oceans, removing about 2.0±0.8 GtC/yr; and regrowth of northern forests, taking up about 0.5±0.5 GtC/yr. However, accurate measurements of CO2 show that the atmosphere is accumulating only about 3.3±0.2 GtC/yr. The imbalance of about 1.3±1.5 GtC/yr, termed the "missing sink", represents the difference between the estimated sources and the estimated sinks of CO2; that is, we do not know where all of the anthropogenic CO2 is going. Several potential mechanisms have been proposed to explain this missing carbon, such as CO2 fertilization, climate change, nitrogen deposition, land use change, forest regrowth et al. Considering the complexity of ecosystem, most of ecosystem model cannot handle all the potential mechanisms to reproduce the real world. It has been believed that the dominant sink mechanism is the fertilizing effects of increased CO2 concentrations in the atmosphere and the addition to soils of fixed nitrogen from fossil-fuel burning and agricultural fertilizers. However, a recent analysis of long-term observations of the change in biomass and growth rates suggests that such fertilization effects are much too small to explain more than a small fraction of the observed sink. In addition, long-term experiments in which small forest patches and other land ecosystems have been exposed to elevated CO2 levels for extended periods show a rapid decrease of the fertilization effect after an initial enhancement. We will explore this question of the missing sink in atmospheric CO2 residence time. Radioactive and stable carbon isotopes (13-C/12-C) show the real CO2 lifetime is about 5 years; i.e. CO2 is quickly taken out of the atmospheric

  11. Alberta industrial synergy CO2 programs initiative

    International Nuclear Information System (INIS)

    Yildirim, E.

    1998-01-01

    The various industrial sectors within Alberta produce about 350,000 tonnes of CO 2 per day. This presentation was concerned with how this large volume and high concentration of CO 2 can be used in industrial and agricultural applications, because every tonne of CO 2 used for such purposes is a tonne that does not end up in the atmosphere. There is a good potential for an industrial synergy between the producers and users of CO 2 . The Alberta Industrial Synergy CO 2 Programs Initiative was established to ultimately achieve a balance between the producers of CO 2 and the users of CO 2 by creating ways to use the massive quantities of CO 2 produced by Alberta's hydrocarbon-based economy. The Alberta CO 2 Research Steering Committee was created to initiate and support CO 2 programs such as: (1) CO 2 use in enhanced oil recovery, (2) creation of a CO 2 production inventory, (3) survey of CO 2 users and potential users, (4) investigation of process issues such as power generation, oil sands and cement manufacturing, and (5) biofixation by plants, (6) other disposal options (e.g. in depleted oil and gas reservoirs, in aquifers, in tailings ponds, in coal beds). The single most important challenge was identified as 'rationalizing the formation of the necessary infrastructure'. Failing to do that will greatly impede efforts directed towards CO 2 utilization

  12. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    Science.gov (United States)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.

    2013-01-01

    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were 6 km.

  13. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.

    2009-06-10

    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  14. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07.

    Science.gov (United States)

    Patil, Lakkanagouda; Kaliwal, Basappa

    2017-05-01

    Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.

  15. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael

    2004-07-01

    with the expansions of natural gas networks for Sweden should be looked for. Issues that need more deep studies are how the injection infrastructures for aquifers need to be modified compared to those used for oil fields, successively improved validation of CO 2 handling costs for Europe and Sweden, regarding i.a. ship transport and industrial compression and cooling of large CO 2 flows in connection to CO 2 capture. It is likely that the local environment would be affected by a possible leakage. Many organisms and ecosystems are sensitive to small changes in the CO 2 concentration. Knowledge exists on how humans, animals and plants would be affected by enhanced contents of carbon dioxide in their immediate surroundings, and on how the physical part of soils and water would be influenced by higher CO 2 concentrations. How individual ecosystems would be affected will have to be assessed based on the conditions in each specific system. Further studies are needed on consequences for ecosystems, especially for ecosystems in the ground, particularly those deep in the ground. Severe environmental damages (large short-term emissions that would damage the surrounding environment, i.e. concentrations around 25 % CO 2 ) would be limited to a few tens of meters from the plant and will therefore not need to be considered. No calculations have been performed for any transport means besides pipelines. Two parallels to CO 2 transport and storage are geothermic projects and natural gas pipelines. For geothermic projects there is a basic positive attitude already before the project start and the operations take place deep in the ground, i.e. at a safe distance from those concerned, and no threatening picture has been felt. No overall legal framework applicable to CO 2 transport and storage exist today, neither within the national Swedish law nor within international/European law. There are however adjacent legal frameworks mainly regarding transport. Providing that the construction of

  16. Assessing systematic errors in GOSAT CO2 retrievals by comparing assimilated fields to independent CO2 data

    Science.gov (United States)

    Baker, D. F.; Oda, T.; O'Dell, C.; Wunch, D.; Jacobson, A. R.; Yoshida, Y.; Partners, T.

    2012-12-01

    Measurements of column CO2 concentration from space are now being taken at a spatial and temporal density that permits regional CO2 sources and sinks to be estimated. Systematic errors in the satellite retrievals must be minimized for these estimates to be useful, however. CO2 retrievals from the TANSO instrument aboard the GOSAT satellite are compared to similar column retrievals from the Total Carbon Column Observing Network (TCCON) as the primary method of validation; while this is a powerful approach, it can only be done for overflights of 10-20 locations and has not, for example, permitted validation of GOSAT data over the oceans or deserts. Here we present a complementary approach that uses a global atmospheric transport model and flux inversion method to compare different types of CO2 measurements (GOSAT, TCCON, surface in situ, and aircraft) at different locations, at the cost of added transport error. The measurements from any single type of data are used in a variational carbon data assimilation method to optimize surface CO2 fluxes (with a CarbonTracker prior), then the corresponding optimized CO2 concentration fields are compared to those data types not inverted, using the appropriate vertical weighting. With this approach, we find that GOSAT column CO2 retrievals from the ACOS project (version 2.9 and 2.10) contain systematic errors that make the modeled fit to the independent data worse. However, we find that the differences between the GOSAT data and our prior model are correlated with certain physical variables (aerosol amount, surface albedo, correction to total column mass) that are likely driving errors in the retrievals, independent of CO2 concentration. If we correct the GOSAT data using a fit to these variables, then we find the GOSAT data to improve the fit to independent CO2 data, which suggests that the useful information in the measurements outweighs the negative impact of the remaining systematic errors. With this assurance, we compare

  17. Well technologies for CO2 geological storage: CO2-resistant cement

    International Nuclear Information System (INIS)

    Barlet-Gouedard, V.; Rimmele, G.; Porcherie, O.; Goffe, B.

    2007-01-01

    Storing carbon dioxide (CO 2 ) underground is considered the most effective way for long-term safe and low-cost CO 2 sequestration. This recent application requires long-term well-bore integrity. A CO 2 leakage through the annulus may occur much more rapidly than geologic leakage through the formation rock, leading to economic loss, reduction of CO 2 storage efficiency, and potential compromise of the field for storage. The possibility of such leaks raises considerable concern about the long-term well-bore isolation and the durability of hydrated cement that is used to isolate the annulus across the producing/injection intervals in CO 2 -storage wells. We propose a new experimental procedure and methodology to study reactivity of CO 2 -Water-Cement systems in simulating the interaction of the set cement with injected supercritical CO 2 under downhole conditions. The conditions of experiments are 90 deg. C under 280 bars. The evolution of mechanical, physical and chemical properties of Portland cement with time is studied up to 6 months. The results are compared to equivalent studies on a new CO 2 -resistant material; the comparison shows significant promise for this new material. (authors)

  18. CO2: a worldwide myth

    International Nuclear Information System (INIS)

    Gerondeau, Ch.

    2009-01-01

    In this book, the author demonstrates the paradox that reducing CO 2 emissions leads to no CO 2 abatement at all. This assertion is based on an obvious statement. Everybody knows that oil resources are going to be exhausted in few decades. The oil that industrialized countries will not use will be consumed by emerging countries and the CO 2 emissions will remain the same. Who would believe that the oil, gas or coal still available will remain unused? The Kyoto protocol, the national policies, the European agreements of emissions abatement, the carbon taxes, the emissions abatement requests sent to the rest of the world, all these actions cost a lot and are useless. CO 2 concentration in the atmosphere will inescapably double during the 21. century but, according to the author, without any catastrophic consequence for the Earth. (J.S.)

  19. Sensitive indicators of Stipa bungeana response to precipitation under ambient and elevated CO2 concentration

    Science.gov (United States)

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu

    2018-02-01

    Precipitation is a primary environmental factor in the semiarid grasslands of northern China. With increased concentrations of atmospheric greenhouse gases, precipitation regimes will change, and high-impact weather events may be more common. Currently, many ecophysiological indicators are known to reflect drought conditions, but these indicators vary greatly among species, and few studies focus on the applicability of these drought indicators under high CO2 conditions. In this study, five precipitation levels (- 30%, - 15%, control, + 15%, and + 30%) were used to simulate the effects of precipitation change on 18 ecophysiological characteristics in Stipa bungeana, including leaf area, plant height, leaf nitrogen (N), and chlorophyll content, among others. Two levels of CO2 concentration (ambient, 390 ppm; 550 ppm) were used to simulate the effects of elevated CO2 on these drought indicators. Using gray relational analysis and phenotypic plasticity analysis, we found that total leaf area or leaf number (morphology), leaf water potential or leaf water content (physiology), and aboveground biomass better reflected the water status of S. bungeana under ambient and elevated CO2 than the 13 other analyzed variables. The sensitivity of drought indicators changed under the elevated CO2 condition. By quantifying the relationship between precipitation and the five most sensitive indicators, we found that the thresholds of precipitation decreased under elevated CO2 concentration. These results will be useful for objective monitoring and assessment of the occurrence and development of drought events in S. bungeana grasslands.

  20. Process for analyzing CO{sub 2} in seawater

    Science.gov (United States)

    Atwater, J.E.; Akse, J.R.; DeHart, J.

    1997-07-01

    The process of this invention comprises providing a membrane for separating CO{sub 2} into a first CO{sub 2} sample phase and a second CO{sub 2} analyte phase. CO{sub 2} is then transported through the membrane thereby separating the CO{sub 2} with the membrane into a first CO{sub 2} sample phase and a second CO{sub 2} analyte liquid phase including an ionized, conductive, dissociated CO{sub 2} species. Next, the concentration of the ionized, conductive, dissociated CO{sub 2} species in the second CO{sub 2} analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO{sub 2} to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO{sub 2} in the first CO{sub 2} sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO{sub 2} species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO{sub 2} species are detected using the conductivity measuring instrument. 43 figs.

  1. Process for analyzing CO.sub.2 in seawater

    Science.gov (United States)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey

    1997-01-01

    The process of this invention comprises providing a membrane for separating CO.sub.2 into a first CO.sub.2 sample phase and a second CO.sub.2 analyte phase. CO.sub.2 is then transported through the membrane thereby separating the CO.sub.2 with the membrane into a first CO.sub.2 sample phase and a second CO.sub.2 analyte liquid phase including an ionized, conductive, dissociated CO.sub.2 species. Next, the concentration of the ionized, conductive, dissociated CO.sub.2 species in the second CO.sub.2 analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO.sub.2 to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO.sub.2 in the first CO.sub.2 sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO.sub.2 species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO.sub.2 species are detected using the conductivity measuring instrument.

  2. Study on O2 generation and CO2 absorption capability of four co-cultured salad plants in an enclosed system

    Science.gov (United States)

    Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Shen, Yunze; Qin, Lifeng; Ma, Jialu; Zhu, Jingtao; Ren, Jin

    2014-06-01

    The ability to generate O2 and absorb CO2 of several co-cultured vegetable plants in an enclosed system was studied to provide theoretical reference for the future man-plant integrated tests. Four kinds of salad plants (Lactuca sativa L. var. Dasusheng, Lactuca sativa L. var. Youmaicai, Gynura bicolor and Cichorium endivia L.) were grown in the CELSS Integration Test Platform (CITP). The environmental factors including O2 and CO2 concentration were continuously monitored on-line and the plant biomass was measured at the end of the test. The changing rules of O2 and CO2 concentration in the system were basically understood and it was found that the O2 generated by the plants could satisfy the respiratory needs of 1.75 persons by calculation. It was also found that the plants could absorb the CO2 breathed out by 2 persons when the light intensity was raised to 550 mmol m-2 s-1 PPF. The results showed that the co-cultured plants hold good compatibility and excellent O2-generating and CO2-absorbing capability. They could also supply some fresh edible vegetable for a 2-person crew.

  3. Analysis of a New Liquefaction Combined with Desublimation System for CO2 Separation Based on N2/CO2 Phase Equilibrium

    Directory of Open Access Journals (Sweden)

    Wenchao Yang

    2015-09-01

    Full Text Available Cryogenic CO2 capture is considered as a promising CO2 capture method due to its energy saving and environmental friendliness. The phase equilibrium analysis of CO2-mixtures at low temperature is crucial for the design and operation of a cryogenic system because it plays an important role in analysis of recovery and purity of the captured CO2. After removal of water and toxic gas, the main components in typical boiler gases are N2/CO2. Therefore, this paper evaluates the reliabilities of different cubic equations of state (EOS and mixing rules for N2/CO2. The results show that Peng-Robinson (PR and Soave-Redlich-Kwong (SRK fit the experimental data well, PR combined with the van der Waals (vdW mixing rule is more accurate than the other models. With temperature decrease, the accuracy of the model improves and the deviation of the N2 vapor fraction is 0.43% at 220 K. Based on the selected calculation model, the thermodynamic properties of N2/CO2 at low temperature are analyzed. According to the results, a new liquefaction combined with a desublimation system is proposed. The total recovery and purity of CO2 production of the new system are satisfactory enough for engineering applications. Additionally, the total energy required by the new system to capture the CO2 is about 3.108 MJ·kg−1 CO2, which appears to be at least 9% lower than desublimation separation when the initial concentration of CO2 is 40%.

  4. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Directory of Open Access Journals (Sweden)

    N. Chandra

    2016-05-01

    Full Text Available About 70 % of the anthropogenic carbon dioxide (CO2 is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm during the autumn (SON season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic

  5. Interactions between CO2, saline water and minerals during geological storage of CO2

    International Nuclear Information System (INIS)

    Hellevang, Helge

    2006-06-01

    The topic of this thesis is to gain a better understanding of interactions between injected CO 2 , aqueous solutions and formation mineralogies. The main focus is concerned with the potential role mineral reactions play in safe long term storage of CO 2 . The work is divided into an experimental part concentrated on the potential of dawsonite (NaAl(OH) 2 CO 3 ) as a permanent storage host of CO 2 , and the development of a new geochemical code ACCRETE that is coupled with the ATHENA multiphase flow simulator. The thesis is composed of two parts: (I) the first part introducing CO 2 storage, geochemical interactions and related work; and (II) the second part that consists of the papers. Part I is composed as follows: Chapter 2 gives a short introduction to geochemical reactions considered important during CO 2 storage, including a thermodynamic framework. Chapter 3 presents objectives of numerical work related to CO 2 -water-rock interactions including a discussion of factors that influence the outcome of numerical simulations. Chapter 4 presents the main results from paper A to E. Chapter 5 give some details about further research that we propose based on the present work and related work in the project. Several new activities have emerged from research on CO 2 -water-rock interaction during the project. Several of the proposed activities are already initiated. Papers A to F are then listed in Part II of the thesis after the citation list. The thesis presents the first data on the reaction kinetics of dawsonite at different pH (Paper A), and comprehensive numerical simulations, both batch- and large scale 3D reactive transport, that illustrate the role different carbonates have for safe storage of CO 2 in geological formations (Papers C to F). The role of dawsonite in CO 2 storage settings is treated throughout the study (Papers A to E) After the main part of the thesis (Part I and II), two appendices are included: Appendix A lists reactions that are included in the

  6. Effects of export concentration on CO2 emissions in developed countries: an empirical analysis.

    Science.gov (United States)

    Apergis, Nicholas; Can, Muhlis; Gozgor, Giray; Lau, Chi Keung Marco

    2018-03-08

    This paper provides the evidence on the short- and the long-run effects of the export product concentration on the level of CO 2 emissions in 19 developed (high-income) economies, spanning the period 1962-2010. To this end, the paper makes use of the nonlinear panel unit root and cointegration tests with multiple endogenous structural breaks. It also considers the mean group estimations, the autoregressive distributed lag model, and the panel quantile regression estimations. The findings illustrate that the environmental Kuznets curve (EKC) hypothesis is valid in the panel dataset of 19 developed economies. In addition, it documents that a higher level of the product concentration of exports leads to lower CO 2 emissions. The results from the panel quantile regressions also indicate that the effect of the export product concentration upon the per capita CO 2 emissions is relatively high at the higher quantiles.

  7. CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Hakuta, Toshikatu [National Inst. of Materials and Chemical Research, Ibaraki (Japan)

    1993-12-31

    The climate change induced by CO{sub 2} and other greenhouse gases is probably the most serious environmental threat that mankind has ever experienced. Nowadays fossil fuels occupy the majority of the world commercial energy supply. Most nations will be dependent on fossil fuels even in the first half of the next century. Around 30 % of CO{sub 2} in the world is emitted from thermal power plants. Recovering CO{sub 2} from energy conversion processes and storing it outside the atmosphere is a promising option for the mitigation of global warming. CO{sub 2} fixation and storage include CO{sub 2} disposal into oceans and underground, and utilization of CO{sub 2}. CO{sub 2} separation process will be used in any CO{sub 2} storage system, and is estimated to consume almost half the energy of the total system. Research and development of highly efficient CO{sub 2} separation process is most important from the viewpoint of practical application of CO{sub 2} fixation system.

  8. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    Science.gov (United States)

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  9. New Electrolytes for CO2 Electrolysis Cells

    DEFF Research Database (Denmark)

    Mollerup, Pia Lolk

    The aim of this thesis has been to explore the potential of aqueous immobilized K2CO3 as a possible electrolyte for co-electrolysis of CO2 and water at approx. 200 °C. This has been done by exploring the properties of pure K2CO3 (aq) and immobilized K2CO3 (aq) as well as the properties...... was observed for 10 wt% K2CO3 immobilized in TiO2 when changing the atmosphere from N2 to CO2. K2CO3 (aq) immobilized in TiO2 shows good promise as a potential electrolyte for co-electrolysis of CO2 and water at 200 °C....... in a 10 wt% K2CO3 (aq) solution are K+ and HCO3-. The water partial pressure as well as the amount of water vapour at different temperatures, pressures and K2CO3 (aq) concentrations was also calculated using FactSage. K2CO3 (aq) was immobilized in both SrTiO3 and TiO2. It was found that a loss...

  10. Equilibration of metabolic CO2 with preformed CO2 and bicarbonate

    International Nuclear Information System (INIS)

    Hems, R.; Saez, G.T.

    1983-01-01

    Entry of metabolic 14 CO 2 into urea is shown to occur more readily than it equilibrates with the general pool of cellular plus extracellular bicarbonate plus CO 2 . Since the sites of CO 2 production (pyruvate dehydrogenase and oxoglutarate dehydrogenase) and of fixation (carbamoylphosphate synthetase) are intramitochondrial, it is likely that the fixation of CO 2 is also more rapid than its equilibration with the cytoplasmic pool of bicarbonate plus CO 2 . This observation may point to a more general problem concerning the interpretation of isotope data, with compartmentation or proximity of sites of production and utilisation of metabolites may result in the isotope following a preferred pathway. (Auth.)

  11. Exceptionally High Efficient Co-Co2P@N, P-Codoped Carbon Hybrid Catalyst for Visible Light-Driven CO2-to-CO Conversion.

    Science.gov (United States)

    Fu, Wen Gan

    2018-05-02

    Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction,and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, we report a visible light-driven system for CO2-to-CO conversion that consists of a heterogeneous hybrid catalyst of Co and Co2P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2P@NPC) and a homogeneous Ru(II)-based complex photosensitizer. The average generation rate of CO of the system was up to 35,000 μmol h-1 g-1 with selectivity of 79.1% in 3 h. Linear CO production at an exceptionally high rate of 63,000 μmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, we also synthesized Co@NC and Co2P@NPC materials and explored their structure, morphology, and catalytic properties for CO2 photoreduction. The results showed that the nanoparticle size, partially adsorbed H2O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor

    Science.gov (United States)

    Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F.; Schroeder, Julian I.

    2016-01-01

    Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3− enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375

  13. High temperature H2/CO2 separation using cobalt oxide silica membranes

    Energy Technology Data Exchange (ETDEWEB)

    Smart, S.; Diniz da Costa, J.C. [The University of Queensland, FIMLab - Films and Inorganic Membrane Laboratory, School of Chemical Engineering, Brisbane, Qld 4072 (Australia); Vente, J.F. [Energy research Centre of the Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2012-09-15

    In this work high quality cobalt oxide silica membranes were synthesized on alumina supports using a sol-gel, dip coating method. The membranes were subsequently connected into a steel module using a graphite based proprietary sealing method. The sealed membranes were tested for single gas permeance of He, H2, N2 and CO2 at temperatures up to 600C and feed pressures up to 600 kPa. Pressure tests confirmed that the sealing system was effective as no gas leaks were observed during testing. A H2 permeance of 1.9 x 10{sup -7} mol m{sup -2} s{sup -1} Pa-1 was measured in conjunction with a H2/CO2 permselectivity of more than 1500, suggesting that the membranes had a very narrow pore size distribution and an average pore diameter of approximately 3 Angstrom. The high temperature testing demonstrated that the incorporation of cobalt oxide into the silica matrix produced a structure with a higher thermal stability, able to resist thermally induced densification up to at least 600C. Furthermore, the membranes were tested for H2/CO2 binary feed mixtures between 400 and 600C. At these conditions, the reverse of the water gas shift reaction occurred, inadvertently generating CO and water which increased as a function of CO2 feed concentration. The purity of H2 in the permeate stream significantly decreased for CO2 feed concentrations in excess of 50 vol%. However, the gas mixtures (H2, CO2, CO and water) had a more profound effect on the H2 permeate flow rates which significantly decreased, almost exponentially as the CO2 feed concentration increased.

  14. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    Science.gov (United States)

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  15. Thermodynamic modeling of NH_3-CO_2-SO_2-K_2SO_4-H_2O system for combined CO_2 and SO_2 capture using aqueous NH_3

    International Nuclear Information System (INIS)

    Qi, Guojie; Wang, Shujuan

    2017-01-01

    Highlights: • A new application of aqueous NH_3 based combined CO_2 and SO_2 process was proposed. • A thermodynamic model simulated the heat of absorption and the K_2SO_4 precipitation. • The CO_2 content can be regenerated in a stripper with lower heat of desorption. • The SO_2 content can be removed by K_2SO_4 precipitation from the lean NH_3 solvent. - Abstract: A new application of aqueous NH_3 based post-combustion CO_2 and SO_2 combined capture process was proposed to simultaneously capture CO_2 and SO_2, and remove sulfite by solid (K_2SO_4) precipitation method. The thermodynamic model of the NH_3-CO_2-SO_2-K_2SO_4-H_2O system for the combined CO_2 and SO_2 capture process was developed and validated in this work to analyze the heat of CO_2 and SO_2 absorption in the NH_3-CO_2-SO_2-H_2O system, and the K_2SO_4 precipitation characteristics in the NH_3-CO_2-SO_2-K_2SO_4-H_2O system. The average heat of CO_2 absorption in the NH_3-CO_2-H_2O system at 40 °C is around −73 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N. The average heat of SO_2 absorption in the NH_3-SO_2-H_2O system at 40 °C is around −120 kJ/mol SO_2 in 2.5 wt% NH_3 with SO_2 loading between 0 and 0.5 S/N. The average heat of CO_2 absorption in the NH_3-CO_2-SO_2-H_2O system at 40 °C is 77, 68, and 58 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N, when SO_2 loading is 0, 0.1, 0.2 S/N, respectively. The solubility of K_2SO_4 increases with temperature, CO_2 and SO_2 loadings, but decreases with NH_3 concentration in the CO_2 and SO_2 loaded aqueous NH_3. The thermodynamic evaluation indicates that the combined CO_2 and SO_2 capture process could employ the typical absorption/regeneration process to simultaneously capture CO_2 and SO_2 in an absorber, thermally desorb CO_2 in a stripper, and feasibly remove sulfite (oxidized to sulfate) content by precipitating K_2SO_4 from the lean NH_3 solvent after the lean/rich heat exchanger.

  16. Transport Mechanisms for CO2-CH4 Exchange and Safe CO2 Storage in Hydrate-Bearing Sandstone

    Directory of Open Access Journals (Sweden)

    Knut Arne Birkedal

    2015-05-01

    Full Text Available CO2 injection in hydrate-bearing sediments induces methane (CH4 production while benefitting from CO2 storage, as demonstrated in both core and field scale studies. CH4 hydrates have been formed repeatedly in partially water saturated Bentheim sandstones. Magnetic Resonance Imaging (MRI and CH4 consumption from pump logs have been used to verify final CH4 hydrate saturation. Gas Chromatography (GC in combination with a Mass Flow Meter was used to quantify CH4 recovery during CO2 injection. The overall aim has been to study the impact of CO2 in fractured and non-fractured samples to determine the performance of CO2-induced CH4 hydrate production. Previous efforts focused on diffusion-driven exchange from a fracture volume. This approach was limited by gas dilution, where free and produced CH4 reduced the CO2 concentration and subsequent driving force for both diffusion and exchange. This limitation was targeted by performing experiments where CO2 was injected continuously into the spacer volume to maintain a high driving force. To evaluate the effect of diffusion length multi-fractured core samples were used, which demonstrated that length was not the dominating effect on core scale. An additional set of experiments is presented on non-fractured samples, where diffusion-limited transportation was assisted by continuous CO2 injection and CH4 displacement. Loss of permeability was addressed through binary gas (N2/CO2 injection, which regained injectivity and sustained CO2-CH4 exchange.

  17. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    Directory of Open Access Journals (Sweden)

    Sangsub Cha

    Full Text Available The atmospheric carbon dioxide (CO2 level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R and decreased specific leaf area (SLA under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  18. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    Science.gov (United States)

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  19. 1.6 μm DIAL Measurement and Back Trajectory Analysis of CO2 Concentration Profiles in the Lower-Atmosphere

    Science.gov (United States)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    Carbon dioxide (CO2) is the primary greenhouse gas emitted through human activities. In addition to the ground level CO2 network, vertical CO2 concentration profiles also play an important role for the estimation of the carbon budget and global warming in the inversion method. Especially, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, vertical CO2 concentration profiles with high spatial and temporal resolution in the lower atmosphere have been conducted by a differential absorption lidar (DIAL). We have observed several vertical profiles of CO2 concentrations for nighttime and daytime from 0.25 to 2.5 km altitude with range resolution of 300 m and integration time of 1 hour. In order to extract information on the origin of the CO2 masses, one day back trajectories were calculated by using a three dimensional (3-D) atmospheric transport model. In many cases, CO2 low concentration layers of over 1.5km altitude were flown by westerly winds from the forest. In another case, high concentration layers of CO2 were flown from the urban areas. As the spectra of absorption lines of any molecules are influenced basically by the temperature in the atmosphere, laser beams of three wavelengths around a CO2 absorption spectrum are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature profiles. Moreover, a few processing algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. For computation of trajectories and drawing their figures, the JRA-25 data provided by the cooperative research project for the JRA-25 long-term reanalysis of the Japan Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry (CRIEPI) and the NIPR trajectory model (Tomikawa and Sato, 2005; http://firp-nitram.nipr.ac.jp) were used. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and

  20. Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil.

    Science.gov (United States)

    Bloemen, Jasper; Agneessens, Laura; Van Meulebroek, Lieven; Aubrey, Doug P; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2014-02-01

    There is recent clear evidence that an important fraction of root-respired CO2 is transported upward in the transpiration stream in tree stems rather than fluxing to the soil. In this study, we aimed to quantify the contribution of root-respired CO2 to both soil CO2 efflux and xylem CO2 transport by manipulating the autotrophic component of belowground respiration. We compared soil CO2 efflux and the flux of root-respired CO2 transported in the transpiration stream in girdled and nongirdled 9-yr-old oak trees (Quercus robur) to assess the impact of a change in the autotrophic component of belowground respiration on both CO2 fluxes. Stem girdling decreased xylem CO2 concentration, indicating that belowground respiration contributes to the aboveground transport of internal CO2 . Girdling also decreased soil CO2 efflux. These results confirmed that root respiration contributes to xylem CO2 transport and that failure to account for this flux results in inaccurate estimates of belowground respiration when efflux-based methods are used. This research adds to the growing body of evidence that efflux-based measurements of belowground respiration underestimate autotrophic contributions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Degradation kinetics of monoethanolamine during CO2 and H2 S absorption from biogas

    Directory of Open Access Journals (Sweden)

    Preecha Kasikamphaiboon

    2015-02-01

    Full Text Available The rate of degradation of MEA during CO2 and H2 S absorption in the biogas upgrading process was examined in four degradation systems, i.e., MEA-CO2 , MEA-CO2 -O2 , MEA-CO2 -H2 S and MEA-CO2 -O2 -H2 S. Degradation experiments were performed in a 800-ml stainless steel autoclave reactor, using MEA concentrations of 3 and 5 mol/L, CO2 loadings of 0.4 and 0.5 mol CO2 /mol MEA, O2 pressure of 200 kPa, and H2 S concentrations of 84 and 87 mg/L at temperatures of 120 and 140C. The results showed that, for the MEA-CO2 system, an increase in temperature or MEA concentration resulted in a higher rate of MEA degradation. In contrast, an increase in CO2 loading in the MEA-CO2 -O2 system led to a reduction of MEA degradation. The degradation rate of the system with O2 was with 8.3 times as high as that of the system without O2 . The presence of H2 S did not appear to affect the rate of degradation in the MEA-CO2 -H2 S system. However, for the system in which both H2 S and O2 were present, the MEA degradation was additionally induced by H2 S, thus, resulting in higher degradation rates than those of the system with O2 only. The extent of degradation under the same period of time increased in the order MEA-CO2 , MEA-CO2 -H2 S < MEA-CO2 -O2 < MEA-CO2 -O2 -H2 S.

  2. [Influence of elevated atmospheric CO2 concentration on photosynthesis and leaf nitrogen partition in process of photosynthetic carbon cycle in Musa paradisiaca].

    Science.gov (United States)

    Sun, G; Zhao, P; Zeng, X; Peng, S

    2001-06-01

    The photosynthetic rate (Pn) in leaves of Musa paradisiaca grown under elevated CO2 concentration (700 +/- 56 microliters.L-1) for one week was 5.14 +/- 0.32 mumol.m-2.s-1, 22.1% higher than that under ambient CO2 concentration, while under elevated CO2 concentration for 8 week, the Pn decreased by 18.1%. It can be inferred that the photosynthetic acclimation to elevated CO2 concentration and the Pn inhibition occurred in leaves of M. paradisiaca. The respiration rate in light (Rd) was lower in leaves under higher CO2 concentration, compared with that under ambient CO2 concentration. If the respiration in light was not included, the difference in CO2 compensation point for the leaves of both plants was not significant. Under higher CO2 concentration for 8 weeks, the maximum carboxylation rate(Vcmax) and electron transportation rate (J) in leaves decreased respectively by 30.5% and 14.8%, compared with that under ambient CO2 concentration. The calculated apparent quantum yield (alpha) in leaves under elevated CO2 concentration according to the initial slope of Pn/PAR was reduced to 0.014 +/- 0.010 molCO2.mol-1 quanta, compared with the value of 0.025 +/- 0.005 molCO2.mol-1 quanta in the control. The efficiency of light energy conversion also decreased from 0.203 to 0.136 electrons.quanta-1 in plants under elevated CO2 concentration. A lower partitioning coefficient for leaf nitrogen in Rubisco, bioenergetics and thylakoid light-harvesting components was observed in plants under higher CO2 concentration. The results indicated that the multi-process of photosynthesis was suppressed significantly by a long-term (8 weeks) higher CO2 concentration incubation.

  3. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  4. Residual CO2 trapping in Indiana limestone.

    Science.gov (United States)

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-02

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  5. Biofiksasi CO2 Oleh Mikroalga Chlamydomonas sp dalam Photobioreaktor Tubular

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2014-05-01

    Full Text Available Mikroalga memiliki potensi dalam membiofiksasi CO2 dan dapat dimanfaatkan untuk mengurangi kadar CO2 dalam gas pencemar. Pertumbuhan mikroalga sangat dipengaruhi oleh konsentrasi gas CO2 di dalam gas pencemar. Tujuan penelitian ini adalah untuk mengeetahui kemampuan mikroalga Chlamydomonas sp yang dikultivasi dalam photobioreaktor tubular dalam penyerapan gas CO2 serta untuk mengetahui konsentrasi maksimum gas CO2 dalam umpan untuk memproduksi biomasa mikroalga yang optimal. Percobaan dilakukan dnegan memvariasi laju alir dari 0.03 -0.071 L/menit dan konsentrasi CO2 dalam umpan 10-30%. Hasil penelitian menunjukkan bahwa biomasa mikroalga dapat diproduksi dengan maksimal dengan konsentrasi gas CO2 20% dengan laju alir 0.07 L/min. Semakin tinggi laju alir maka produksi biomasa alga semakin besar. Kecepatan pertumbuhan alga maksimum terjadi pada 0.31 /hari. Pada konsentrasi gas CO2 30%, terjadi substrate inhibition yang disebabkan carbon dalam bentuk ion bicarbonate tidak dapat dikonsumsi lagi di dalam kultur alga. Kata kunci : Mikroalga, chlamydomonas sp, biofiksasi CO2, biogas Abstract Microalgae have a potential for CO2 biofixation and therefore can be used to reduce the CO2 concentration in the gas pollutants. Moreover, microalgae growth is strongly affected by the concentration of CO2 in the exhaust gas pollutants. The objective of this research was to investigate the ability of microalgae Chlamydomonas sp which was cultivated in a tubular photobioreactor for CO2 absorption as well as to determine the maximum concentration of CO2 in the feed gas to obtain optimum microalgae biomass. The experiments were performed by varying the gas flow rate of 0.03 -0.071 L / min and the concentration of CO2 in the feed of 10-30%. The results showed that the maximum biomass of microalgae can be produced with CO2 concentration of 20% vol with a flow rate of 0.07 L / min. The result also showed that increasing the gas flow rate, the greater of the production of

  6. Comparison of regional and ecosystem CO2 fluxes

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Søgaard, Henrik; Batchvarova, Ekaterina

    2009-01-01

    A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio-soundings......A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio...

  7. Assessing the Suitability and Limitations of Satellite-based Measurements for Estimating CO, CO2, NO2 and O3 Concentrations over the Niger Delta

    Science.gov (United States)

    Fagbeja, M. A.; Hill, J. L.; Chatterton, T. J.; Longhurst, J. W.; Akinyede, J. O.

    2011-12-01

    Space-based satellite sensor technology may provide important tools in the study and assessment of national, regional and local air pollution. However, the application of optical satellite sensor observation of atmospheric trace gases, including those considered to be 'air pollutants', within the lower latitudes is limited due to prevailing climatic conditions. The lack of appropriate air pollution ground monitoring stations within the tropical belt reduces the ability to verify and calibrate space-based measurements. This paper considers the suitability of satellite remotely sensed data in estimating concentrations of atmospheric trace gases in view of the prevailing climate over the Niger Delta region. The methodological approach involved identifying suitable satellite data products and using the ArcGIS Geostatistical Analyst kriging interpolation technique to generate surface concentrations from satellite column measurements. The observed results are considered in the context of the climate of the study area. Using data from January 2001 to December 2005, an assessment of the suitability of satellite sensor data to interpolate column concentrations of trace gases over the Niger Delta has been undertaken and indicates varying degrees of reliability. The level of reliability of the interpolated surfaces is predicated on the number and spatial distributions of column measurements. Accounting for the two climatic seasons in the region, the interpolation of total column concentrations of CO and CO2 from SCIAMACHY produced both reliable and unreliable results over inland parts of the region during the dry season, while mainly unreliable results are observed over the coastal parts especially during the rainy season due to inadequate column measurements. The interpolation of tropospheric measurements of NO2 and O3 from GOME and OMI respectively produced reliable results all year. This is thought to be due to the spatial distribution of available column measurements

  8. CO2 blood test

    Science.gov (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...

  9. Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2015-01-01

    Estimating potential of CO 2 emission reduction of non-capture CO 2 utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue gas. For the estimating the CO 2 emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO 2 of 100 tons per day was performed, Also for the estimation of the indirect CO 2 reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO 2 emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO 3 (7.4 GJ/tNaHCO 3 ). While for the NCCU technology, the direct CO 2 reduction through the CO 2 carbonation was estimated as 36,500 ton per year and the indirect CO 2 reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue was energy efficient and could be one of the promising technology for the low CO 2 emission technology.

  10. Does Elevated CO2 Alter Silica Uptake in Trees?

    Directory of Open Access Journals (Sweden)

    Robinson W. Fulweiler

    2015-01-01

    Full Text Available Human activities have greatly altered global carbon (C and N (N cycling. In fact, atmospheric concentrations of carbon dioxide (CO2 have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global carbon dioxide fertilization, long-term free-air CO2 enrichment (FACE experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine, and five hardwood species. Specifically, we measured foliar biogenic silica (BSi concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20% and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.

  11. Carbonation and CO2 uptake of concrete

    International Nuclear Information System (INIS)

    Yang, Keun-Hyeok; Seo, Eun-A; Tae, Sung-Ho

    2014-01-01

    This study developed a reliable procedure to assess the carbon dioxide (CO 2 ) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO 2 per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, and the substitution level of supplementary cementitious materials to the CO 2 diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO 2 diffusion coefficient and increased CO 2 concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO 2 uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO 2 uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO 2 emissions from concrete production, which roughly corresponds to 18%–21% of the CO 2 emissions from the production of ordinary Portland cement. - Highlights: • CO 2 uptake assessment approach owing to the

  12. Equilibrium solubility of CO{sub 2} in aqueous solutions of 1-amino-2-propanol as function of concentration, temperature, and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rebolledo-Morales, Miguel Angel; Rebolledo-Libreros, Maria Esther [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion de Termofisica, Eje Central Lazaro Cardenas Norte 152, 07730 Mexico, D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion de Termofisica, Eje Central Lazaro Cardenas Norte 152, 07730 Mexico, D.F. (Mexico)

    2011-05-15

    Research highlights: Gas solubility of CO{sub 2} in aqueous solutions of 1-amino-2-propanol was measured. Solubility increases as pressure and concentration of 1-amino-2-propanol increase. The Kent-Eisenberg model was used to correlate all the experimental results. Aqueous solutions of MIPA are an excellent alternative to use in gas purification. - Abstract: Using a dynamic method with recirculation of the vapour phase, experimental values for the gas solubility of carbon dioxide in aqueous solutions of 1-amino-2-propanol (MIPA) were measured at T = (313.15 and 393.15) K, over the pressure range of (0.2 to 2436.4) kPa. The concentrations of the studied aqueous MIPA solutions were (0.20, 0.30, 0.40, and 0.50) mass fraction. The results of gas solubility are given as the partial pressure of CO{sub 2}, p{sub CO{sub 2}}, against its mole ratio, {alpha}{sub CO{sub 2}} (mol CO{sub 2} {center_dot} mol{sup -1} MIPA), and its mole fraction, x{sub CO{sub 2}}. It is observed that the solubility of CO{sub 2} increases as the concentration of MIPA in solution increases, at a given temperature throughout the pressure range considered; also the solubility values increase, under constant temperature, as the pressure increases in the studied concentration range of MIPA. The physicochemical model of Kent and Eisenberg was used to correlate simultaneously all the experimental results of the solubility of CO{sub 2} in the studied aqueous solutions of MIPA. The model correlates satisfactorily the experimental results. The deviation for pressure was 96.9 kPa using 62 experimental solubility points. The solubility results of carbon dioxide presented in this work are compared with those reported in the literature for aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), diisopropanolamine (DIPA), and N-methyldiethanolamine (MDEA) and it is possible to conclude that the aqueous solutions of MIPA are an excellent alternative to use in gas purification processes, since the

  13. Influences of elevated CO[sub 2] on CO[sub 2] uptake and biomass production for the CAM plant Opuntia ficus-indica in open-top chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cui, M.; Miller, P.M.; Nobel, P.S. (Univ. of California, Los Angeles (United States))

    1993-06-01

    CO[sub 2] uptake, water vapor conductance, and biomass production of the CAM plant Opuntia ficus-indica were studied at the current and two elevated CO[sub 2] concentrations (plus 150 and plus 350 [mu]L L[sup [minus]1]) in open-top chambers over a 23-week period. Nine weeks after planting, daily net CO[sub 2] uptake for basal cladodes in the medium and the high CO[sub 2] treatments was 49% and 84% higher, respectively, than at the current CO[sub 2] concentration. Nine weeks after the first-daughter cladodes emerged, their daily net CO[sub 2] uptake was 35% and 49% higher, respectively, in the medium and the high CO[sub 2] treatments than at the current CO[sub 2] concentration. Despite significantly lower chlorophyll contents (19% and 62%, respectively) in the first-daughter cladodes, biomass production over 23 weeks in the medium and the high CO[sub 2] treatments was 22% and 50% higher, respectively, than for plants at the current CO[sub 2].

  14. CO2-Switchable Membranes Prepared by Immobilization of CO2-Breathing Microgels.

    Science.gov (United States)

    Zhang, Qi; Wang, Zhenwu; Lei, Lei; Tang, Jun; Wang, Jianli; Zhu, Shiping

    2017-12-20

    Herein, we report the development of a novel CO 2 -responsive membrane system through immobilization of CO 2 -responsive microgels into commercially available microfiltration membranes using a method of dynamic adsorption. The microgels, prepared from soap-free emulsion polymerization of CO 2 -responsive monomer 2-(diethylamino)ethyl methacrylate (DEA), can be reversibly expanded and shrunken upon CO 2 /N 2 alternation. When incorporated into the membranes, this switching behavior was preserved and further led to transformation between microfiltration and ultrafiltration membranes, as indicated from the dramatic changes on water flux and BSA rejection results. This CO 2 -regulated performance switching of membranes was caused by the changes of water transportation channel, as revealed from the dynamic water contact angle tests and SEM observation. This work represents a simple yet versatile strategy for making CO 2 -responsive membranes.

  15. A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.

    2006-02-23

    Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture

  16. TG-FTIR measurement of CO2-H2O co-adsorption for CO2 air capture sorbent screening

    NARCIS (Netherlands)

    Smal, I.M.; Yu, Qian; Veneman, Rens; Fränzel-Luiten, B.; Brilman, Derk Willem Frederik

    2014-01-01

    Capturing atmospheric CO2 using solid sorbents is gaining interest. As ambient air normally contains much more (up to 100 times) water than CO2, a selective sorbent is desirable as co-adsorption will most likely occur. In this study, a convenient method based on an TG-FTIR analysis system is

  17. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Science.gov (United States)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  18. 13CO2/12CO2 isotope ratio analysis in human breath using a 2 μm diode laser

    Science.gov (United States)

    Sun, Mingguo; Cao, Zhensong; Liu, Kun; Wang, Guishi; Tan, Tu; Gao, Xiaoming; Chen, Weidong; Yinbo, Huang; Ruizhong, Rao

    2015-04-01

    The bacterium H. pylori is believed to cause peptic ulcer. H. pylori infection in the human stomach can be diagnosed through a CO2 isotope ratio measure in exhaled breath. A laser spectrometer based on a distributed-feedback semiconductor diode laser at 2 μm is developed to measure the changes of 13CO2/12CO2 isotope ratio in exhaled breath sample with the CO2 concentration of ~4%. It is characterized by a simplified optical layout, in which a single detector and associated electronics are used to probe CO2 spectrum. A new type multi-passes cell with 12 cm long base length , 29 m optical path length in total and 280 cm3 volume is used in this work. The temperature and pressure are well controlled at 301.15 K and 6.66 kPa with fluctuation amplitude of 25 mK and 6.7 Pa, respectively. The best 13δ precision of 0.06o was achieved by using wavelet denoising and Kalman filter. The application of denoising and Kalman filter not only improved the signal to noise ratio, but also shorten the system response time.

  19. Determination of the dissociation constant of molten Li/sub 2/CO/sub 3//Na/sub 2/CO/sub 3//K/sub 2/CO/sub 3/ using a stabilized zirconia oxide-ion indicator

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yasuhiko; Tsuru, Kiyoshi; Oishi, Jun; Miyazaki, Yoshinori; Kodama, Teruo

    1985-09-01

    An Li/sub 2/CO/sub 3//Na/sub 2/CO/sub 3//K/sub 2/CO/sub 3/ eutectic melt has been selected as an example of a molten-carbonate system and the suitability of a stabilized zirconia-air electrode as an oxide-ion concentration indicator for this melt has been confirmed. With this indicator, the dissociation constant of the reaction CO/sub 3//sup 2 -/(l)=CO/sub 2/(g)+O/sup 2 -/(l) in this melt has been determined to be Ksub(d)=P sub(CO/sub 2/) (O/sup 2 -/)=4.03 x 10/sup -3/ Pa at 873 K. Reproducible measurements were obtained throughout the experiment and this method might find further application in the study of reactions related to the oxide ion in carbonate melts. (orig.).

  20. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  1. Confined release of CO{sub 2} into the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.E.; Zhang, X.Y.; Herzog, H.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [and others

    1993-12-31

    To help reduce global warming, it has been proposed to sequester some CO{sub 2} in the deep ocean. However, current pipe technology is limited to about 600-650 m{sup 4}, so deeper transport requires other means. Recently, it was suggested that CO{sub 2} could be released at depths of 200 - 400 m as a concentrated seawater solution. The dense solution would form a negatively buoyant gravity current and sink to greater depth. In the following we expand our previous calculations showing that an unconfined release of CO{sub 2} will not create sufficient concentration or negative buoyancy. However, release of either compressed gaseous or liquid CO{sub 2} into an appropriately designed confinement vessel could produce sufficient concentration to transport the current to deeper water. Furthermore, such a scheme may facilitate formation of CO{sub 2} hydrate particles that are heavier than seawater, causing further sinking. A recently completed Research Needs assessment study which we conducted for DOE concludes that shallow water disposal of CO{sub 2} may be the most promising CO{sub 2} disposal option.

  2. Implications for carbon processing beneath the Greenland Ice Sheet from dissolved CO2 and CH4 concentrations of subglacial discharge

    Science.gov (United States)

    Pain, A.; Martin, J.; Martin, E. E.

    2017-12-01

    Subglacial carbon processes are of increasing interest as warming induces ice melting and increases fluxes of glacial meltwater into proglacial rivers and the coastal ocean. Meltwater may serve as an atmospheric source or sink of carbon dioxide (CO2) or methane (CH4), depending on the magnitudes of subglacial organic carbon (OC) remineralization, which produces CO2 and CH4, and mineral weathering reactions, which consume CO2 but not CH4. We report wide variability in dissolved CO2 and CH4 concentrations at the beginning of the melt season (May-June 2017) between three sites draining land-terminating glaciers of the Greenland Ice Sheet. Two sites, located along the Watson River in western Greenland, drain the Isunnguata and Russell Glaciers and contained 1060 and 400 ppm CO2, respectively. In-situ CO2 flux measurements indicated that the Isunnguata was a source of atmospheric CO2, while the Russell was a sink. Both sites had elevated CH4 concentrations, at 325 and 25 ppm CH4, respectively, suggesting active anaerobic OC remineralization beneath the ice sheet. Dissolved CO2 and CH4 reached atmospheric equilibrium within 2.6 and 8.6 km downstream of Isunnguata and Russell discharge sites, respectively. These changes reflect rapid gas exchange with the atmosphere and/or CO2 consumption via instream mineral weathering. The third site, draining the Kiagtut Sermiat in southern Greenland, had about half atmospheric CO2 concentrations (250 ppm), but approximately atmospheric CH4 concentrations (2.1 ppm). Downstream CO2 flux measurements indicated ingassing of CO2 over the entire 10-km length of the proglacial river. CO2 undersaturation may be due to more readily weathered lithologies underlying the Kiagtut Sermiat compared to Watson River sites, but low CH4 concentrations also suggest limited contributions of CO2 and CH4 from OC remineralization. These results suggest that carbon processing beneath the Greenland Ice Sheet may be more variable than previously recognized

  3. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.

    Science.gov (United States)

    Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús

    2016-04-01

    Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*]. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    Science.gov (United States)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  5. Estimating Indoor PM2.5 and CO Concentrations in Households in Southern Nepal: The Nepal Cookstove Intervention Trials.

    Directory of Open Access Journals (Sweden)

    Chen Chen

    Full Text Available High concentrations of household air pollution (HAP due to biomass fuel usage with unvented, insufficient combustion devices are thought to be an important health risk factor in South Asia population. To better characterize the indoor concentrations of particulate matter (PM2.5 and carbon monoxide (CO, and to understand their impact on health in rural southern Nepal, this study analyzed daily monitoring data collected with DataRAM pDR-1000 and LASCAR CO data logger in 2980 households using traditional biomass cookstove indoor through the Nepal Cookstove Intervention Trial-Phase I between March 2010 and October 2011. Daily average PM2.5 and CO concentrations collected in area near stove were 1,376 (95% CI, 1,331-1,423 μg/m3 and 10.9 (10.5-11.3 parts per million (ppm among households with traditional cookstoves. The 95th percentile, hours above 100μg/m3 for PM2.5 or 6ppm for CO, and hours above 1000μg/m3 for PM2.5 or 9ppm for CO were also reported. An algorithm was developed to differentiate stove-influenced (SI periods from non-stove-influenced (non-SI periods in monitoring data. Average stove-influenced concentrations were 3,469 (3,350-3,588 μg/m3 for PM2.5 and 21.8 (21.1-22.6 ppm for CO. Dry season significantly increased PM2.5 concentration in all metrics; wood was the cleanest fuel for PM2.5 and CO, while adding dung into the fuel increased concentrations of both pollutants. For studies in rural southern Nepal, CO concentration is not a viable surrogate for PM2.5 concentrations based on the low correlation between these measures. In sum, this study filled a gap in knowledge on HAP in rural Nepal using traditional cookstoves and revealed very high concentrations in these households.

  6. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions

    International Nuclear Information System (INIS)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V.; Grace, John

    2014-01-01

    It has been suggested that atmospheric CO 2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO 2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO 2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO 2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO 2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. -- Highlights: • Sky conditions affect the relative impact of elevated CO 2 on photosynthesis. • Cloudy skies reduce light use efficiency and carbon gain when CO 2 is elevated. • Stimulation of photosynthesis by high CO 2 may decline with increasing cloud cover. • High CO 2 leads to marked afternoon photosynthesis depression in sun-adapted leaves. -- The stimulatory effect of elevated CO 2 concentration on photosynthetic carbon assimilation can be expected to diminish as cloud cover increases

  7. CO2 Fixation by Membrane Separated NaCl Electrolysis

    DEFF Research Database (Denmark)

    Park, Hyun Sic; Lee, Ju Sung; Han, Junyoung

    2015-01-01

    for converting CO2 into CaCO3 requires high temperature and high pressure as reaction conditions. This study proposes a method to fixate CaCO3 stably by using relatively less energy than existing methods. After forming NaOH absorbent solution through electrolysis of NaCl in seawater, CaCO3 was precipitated...... crystal product was high-purity calcite. The study shows a successful method for fixating CO2 by reducing carbon dioxide released into the atmosphere while forming high-purity CaCO3.......Atmospheric concentrations of carbon dioxide (CO2), a major cause of global warming, have been rising due to industrial development. Carbon capture and storage (CCS), which is regarded as the most effective way to reduce such atmospheric CO2 concentrations, has several environmental and technical...

  8. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  9. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    Science.gov (United States)

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Does an elevated CO2 concentration decrease dark respiration in trees? Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Long, Stephen [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2003-12-31

    Averaged across many previous investigations, doubling the CO2 concentration ([CO2]) has frequently been reported to cause an instantaneous reduction of leaf dark respiration measured as CO2 efflux. No known mechanism accounts for this effect. While four recent studies have shown that the measurement of respiratory CO2 efflux is prone to experimental artifacts that could account for the reported response, papers published since the start of the current research continue to report an instantaneous depression of respiratory CO2 efflux by elevation of [CO2]. Here, these artifacts are avoided by use of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratory 02 uptake in normal air. Leaf 02 uptake was determined in response to instantaneous elevation of [CO2] in nine contrasting species and to long-term elevation in seven species from four of the DOE-sponsored long-term elevated [CO2] field experiments. Over one thousand separate measurements of respiration failed to reveal any decrease in respiratory 02 uptake with an instantaneous increase in [CO2]. Respiration was found insensitive not only to doubling [CO2], but also to a five-fold increase and to decrease to zero.

  12. Elevated CO2 concentration affects vertical distribution of photosynthetic activity in Calamagrostis arundinacea (L.) Roth

    Czech Academy of Sciences Publication Activity Database

    Klem, Karel; Holub, Petr; Urban, Otmar

    2017-01-01

    Roč. 10, 1-2 (2017), s. 67-74 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : chlorophyll * CO2 assimilation * elevated CO2 * concentration * transpiration * vertical gradient * water-use efficiency Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) https://beskydy.mendelu.cz/10/1/0067/

  13. Modeling CO2-facilitated transport across a diethanolamine liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lihong Bao; Michael C. Trachtenberg [Carbozyme Inc., Monmouth Junction, NJ (United States)

    2005-12-15

    We compared experimental and model data for the facilitated transport of CO2 from a CO2-air mixture across an aqueous solution of diethanolamine (DEA) via a hollow fiber, contained liquid membrane (HFCLM) permeator. A two-step carbamate formation model was devised to analyze the data instead of the one-step mechanism used by previous investigators. The effects of DEA concentration, liquid membrane thickness and feed CO2 concentration were also studied. With a 20% (wt) DEA liquid membrane and feed of 15% CO2 in CO2-air mixture at atmosphere pressure, the permeance reached 1.51E-8 mol/m{sup 2} s Pa with a CO2/N2 selectivity of 115. Model predictions compared well with the experimental results at CO2 concentrations of industrial importance. Short-term stability of the HFCLM permeator performance was examined. The system was stable during 5-days of testing.

  14. Studies on CO2 removal and reduction. CO2 taisaku kenkyu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1993-02-01

    This paper summarizes study trends mainly in CO2 fixing processes. Underground CO2 storage is a most promising method because it can fix a huge amount of CO2 and has low effects on ecological systems. Storing CO2 in ocean includes such methods as storing it in deep oceans; storing it in deep ocean beds; dissolving it into sea water; neutralizing it with calcium carbonates; and precipitating it as dry ice. Japan, disposing CO2 in these ways, may create international problems. Separation of CO2 may use a chemical absorption process as a superior method. Other processes discussed include a physical adsorption method and a membrane separation method. A useful method for CO2 fixation using marine organisms is fixation using coral reefs. This process will require an overall study including circulation of phosphorus and nitrogen. Marine organisms may include planktons and algae. CO2 fixation using land plants may be able to fix one trillion and 8 hundred billion tons of CO2 as converted to carbon. This process would require forest protection, prevention of desertification, and tree planting. Discussions are being given also on improving power generation cycles, recovering CO2 from automotive exhausts, and backfilling carbons into ground by means of photosynthesis. 23 refs., 7 figs., 1 tab.

  15. Potential and economics of CO{sub 2} sequestration; Sequestration du CO{sub 2}: faisabilite et cout

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J. [CEA Saclay, 91 - Gif sur Yvette (France). Direction des Sciences de la Matiere; Ducroux, R. [Centre d' Initiative et de Recherche sur l' Energie et l' Environnement, CIRENE, 91 - Palaiseau (France)

    2001-07-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO{sub 2}. Some techniques could be used to reduced CO{sub 2} emission and stabilize atmospheric CO{sub 2} concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO{sub 2} emissions such as renewable or nuclear energy, iii) capture and store CO{sub 2} from fossil fuels combustion, and enhance the natural sinks for CO{sub 2} (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO{sub 2} and to review the various options for CO{sub 2} sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO{sub 2} and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO{sub 2} emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO{sub 2} emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO{sub 2} is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon

  16. Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah

    Science.gov (United States)

    D. V. Mallia; J. C. Lin; S. Urbanski; J. Ehleringer; T. Nehrkorn

    2015-01-01

    Biomass burning is known to contribute large quantities of CO2, CO, and PM2.5 to the atmosphere. Biomass burning not only affects the area in the vicinity of fire but may also impact the air quality far downwind from the fire. The 2007 and 2012 western U.S. wildfire seasons were characterized by significant wildfire...

  17. Changes in Air CO2 Concentration Differentially Alter Transcript Levels of NtAQP1 and NtPIP2;1 Aquaporin Genes in Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2016-04-01

    Full Text Available The aquaporin specific control on water versus carbon pathways in leaves is pivotal in controlling gas exchange and leaf hydraulics. We investigated whether Nicotiana tabacum aquaporin 1 (NtAQP1 and Nicotiana tabacum plasma membrane intrinsic protein 2;1 (NtPIP2;1 gene expression varies in tobacco leaves subjected to treatments with different CO2 concentrations (ranging from 0 to 800 ppm, inducing changes in photosynthesis, stomatal regulation and water evaporation from the leaf. Changes in air CO2 concentration ([CO2] affected net photosynthesis (Pn and leaf substomatal [CO2] (Ci. Pn was slightly negative at 0 ppm air CO2; it was one-third that of ambient controls at 200 ppm, and not different from controls at 800 ppm. Leaves fed with 800 ppm [CO2] showed one-third reduced stomatal conductance (gs and transpiration (E, and their gs was in turn slightly lower than in 200 ppm– and in 0 ppm–treated leaves. The 800 ppm air [CO2] strongly impaired both NtAQP1 and NtPIP2;1 gene expression, whereas 0 ppm air [CO2], a concentration below any in vivo possible conditions and specifically chosen to maximize the gene expression alteration, increased only the NtAQP1 transcript level. We propose that NtAQP1 expression, an aquaporin devoted to CO2 transport, positively responds to CO2 scarcity in the air in the whole range 0–800 ppm. On the contrary, expression of NtPIP2;1, an aquaporin not devoted to CO2 transport, is related to water balance in the leaf, and changes in parallel with gs. These observations fit in a model where upregulation of leaf aquaporins is activated at low Ci, while downregulation occurs when high Ci saturates photosynthesis and causes stomatal closure.

  18. CO{sub 2} solubility in brines of sedimentary basins. Application to CO{sub 2} sequestration (greenhouse gas); Solubilite de CO{sub 2} dans les saumures des bassins sedimentaires. Application au stockage de CO{sub 2} (gaz a effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Portier, S.

    2005-04-01

    Large scale combustion of fossil energy leads today to a production of 20 billions tons of CO{sub 2} annually. This increases continuously the CO{sub 2} concentration in the atmosphere, responsible of the observed climatic increase of the temperature since one century. One of the most acceptable solutions consists in the so called CO{sub 2} sequestration in natural geological formations. The control of the process and the prediction of the final quantity of CO{sub 2} trapped in the deep saline aquifers depend on the knowledge of the solubility of acid gas in natural brines in the in situ temperature and pressure conditions. The possible dissolution of acid gases in aqueous phases brings a new complexity, owing to the fact that they behave like electrolytes in aqueous mediums A thermodynamic model for CO{sub 2} solubility is presented. The vapour phase is described by a cubic state equation. The aqueous phase is described by apparent constants of CO{sub 2} dissolution and dissociation, adjusted on literature data. This model is validated by measurements of the British Geological Survey (CO{sub 2} sequestration at Sleipner oil field, North Sea). The results of this study made it possible to calculate the impact of a CO{sub 2} injection on the solubility of calcite by acidification of formation water. The consequences in terms of CO{sub 2} storage capacity of deep saline aquifers are estimated. (author)

  19. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    Science.gov (United States)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. © 2015 John Wiley & Sons Ltd.

  20. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species

    DEFF Research Database (Denmark)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz

    2016-01-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential...... responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 -. Net photosynthesis of all species except Zostera polychlamys were limited...... at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 - users through acidification of diffusive boundary layers, production of extracellular carbonic...

  1. Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation

    Science.gov (United States)

    Ahmad, A. L.; Salaudeen, Y. O.; Jawad, Z. A.

    2017-06-01

    Large emission of carbon dioxide (CO2) to the environment requires mitigation to avoid unbearable consequences on global climate change. The CO2 emissions generated by fossil fuel combustion within the power and industrial sectors need to be quickly curbed. The gas emission can be abated using membrane technology; this is one of the most promising approaches for selective separation of CO2/N2. The purpose of the study is to synthesis an asymmetric polyetherimide (PEI) membrane and to establish its morphological characteristics for CO2/N2 separation. The PEI flat-sheet asymmetric membrane was fabricated using phase inversion with N-methyl-2-pyrrolidone (NMP) as solvent and water-isopropanol as a coagulant. Particularly, polymer concentration of 20, 25, and 30 wt. % were studied. In addition, the structure and morphology of the produced membrane were observed using scanning electron microscopy (SEM). Importantly, results showed that the membrane with high PEI concentration of 30 wt. % yield an optimal selectivity of 10.7 for CO2/Nitrogen (N2) separation at 1 bar and 25 ºC for pure gas, aided by the membrane surface morphology. The dense skin present was as a result of non-solvent (water) while isopropanol generates a porous sponge structure. This appreciable separation performance makes the PEI asymmetric membrane an attractive alternative for CO2/N2 separation.

  2. CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway

    International Nuclear Information System (INIS)

    Boee, Reidulv; Magnus, Christian; Osmundsen, Per Terje; Rindstad, Bjoern Ivar

    2002-01-01

    The GESTCO project comprises a study of the distribution and coincidence of thermal CO 2 emission sources and location/quality of geological storage capacity in Europe. Four of the most promising types of geological storage are being studied. 1. Onshore/offshore saline aquifers with or without lateral seal. 2. Low entalpy geothermal reservoirs. 3. Deep methane-bearing coal beds and abandoned coal and salt mines. 4. Exhausted or near exhausted hydrocarbon structures. In this report we present an inventory of CO 2 point sources in Norway (1999) and the results of the work within Study Area C: Deep saline aquifers offshore/near shore Northern and Central Norway. Also offshore/near shore Southern Norway has been included while the Barents Sea is not described in any detail. The most detailed studies are on the Tilje and Aare Formations on the Troendelag Platform off Mid-Norway and on the Sognefjord, Fensfjord and Krossfjord Formations, southeast of the Troll Field off Western Norway. The Tilje Formation has been chosen as one of the cases to be studied in greater detail (numerical modelling) in the project. This report shows that offshore Norway, there are concentrations of large CO 2 point sources in the Haltenbanken, the Viking Graben/Tampen Spur area, the Southern Viking Graben and the central Trough, while onshore Norway there are concentrations of point sources in the Oslofjord/Porsgrund area, along the coast of western Norway and in the Troendelag. A number of aquifers with large theoretical CO 2 storage potential are pointed out in the North Sea, the Norwegian Sea and in the Southern Barents Sea. The storage capacity in the depth interval 0.8 - 4 km below sea level is estimated to be ca. 13 Gt (13000000000 tonnes) CO 2 in geological traps (outside hydrocarbon fields), while the storage capacity in aquifers not confined to traps is estimated to be at least 280 Gt CO 2 . (Author)

  3. Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in central Japan

    International Nuclear Information System (INIS)

    Murayama, Shohei; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki; Eguchi, Yozo; Chan, Douglas

    2003-01-01

    In order to examine the temporal variation of the atmospheric CO 2 concentration in a temperate deciduous forest, and its relationship with meteorological conditions, continuous measurements of CO 2 and meteorological parameters have been made since 1993 on a tower at Takayama in the central part of Japan. In addition to an average secular increase in atmospheric CO 2 of 1.8 ppm/yr, diurnal variation with a maximum during the night-time to early morning and a minimum in the afternoon is observed from late spring to early fall; the diurnal cycle is not so clearly observed in the remaining seasons of the year. A concentration difference between above and below the canopy, and its diurnal variation, can also be seen clearly in summer. Daily mean concentration data show a prominent seasonal cycle. The maximum and the minimum of the seasonal cycle occur in April and from mid August to mid September, respectively. Day-to-day changes in the diurnal cycle of CO 2 are highly dependent on the day-to-day variations in meteorological conditions. However, CO 2 variations on longer time scales (>10 d) appear to be linearly related to changes in respiration. At Takayama, variations in the 10-d standard deviation of daily mean CO 2 data and 10-d averaged respiration show distinct relationships with soil temperature during spring and fall seasons. In spring, respiration has a stronger exponential dependence on soil temperature than in fall. Interestingly, in summer when soil temperature becomes greater than about 15 deg C, biological respiration becomes more variable and independent of the soil temperature. Thus, at the Takayama site, the Q10 relationship is seasonally dependent, and does not represent well the biological respiration process when the soil temperature rises above 15 deg C

  4. In-depth numerical analysis on the determination of amount of CO2 recirculation in LNG/O2/CO2 combustion

    International Nuclear Information System (INIS)

    Kim, Hey-Suk; Shin, Mi-Soo; Jang, Dong-Soon; Lee, Dae Keun

    2010-01-01

    The determination of proper amount of CO 2 recirculation is one of the critical issues in oxy-fuel combustion technology for the reduction of CO 2 emissions by the capture and sequestration of CO 2 species in flue gas. The objective of this study is to determine the optimum value of O 2 fraction in O 2 /CO 2 mixture to obtain similar flame characteristics with LNG-air combustion. To this end, a systematic numerical investigation has been made in order to resolve the physical feature of LNG/O 2 /CO 2 combustion. For this, SIMPLEC algorithm is used for the resolution of pressure velocity coupling. And for the Reynolds stresses and turbulent reaction the popular two-equation (k-ε) model by Launder and Spalding and eddy breakup model by Magnussen and Hjertager were incorporated, respectively. The radiative heat transfer is calculated from the volumetric energy loss rate from flame, considering absorption coefficient of H 2 O, CO 2 and CO gases. A series of parametric investigation has been made as function of oxidizer type, O 2 fraction and fuel type for the resolution of combustion characteristics such as flame temperature, turbulent mixing and species concentration. Further the increased effect of CO 2 species on the flame temperature is carefully examined by the consideration of change of specific heat and radiation effect. Based on this study, it was observed that the same mass flow rate of CO 2 with N 2 appears as the most adequate value for the amount of CO 2 recirculation for LNG fuel since the lower C p value for the CO 2 relative to N 2 species at lower temperatures cancels the effect of the higher C p value at higher temperatures over the range of flame temperatures present in this study. However, for the fuel with high C/H ratio, for example of coal, the reduced amount of CO 2 recirculation is recommended in order to compensate the increased radiation heat loss. In general, the calculation results were physically acceptable and consistent with reported data

  5. Effects of elevated CO2 concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Increasing atmospheric CO2 concentration is generally expected to enhance photosynthesis and growth of agricultural C3 vegetable crops,and therefore results in an increase in crop yield.However,little is known about the combined effect of elevated CO2 and N species on plant growth and development.Two growth-chamber experiments were conducted to determine the effects of NH4+/NO3- ratio and elevated CO2 concentration on the physiological development and water use of tomato seedlings.Tomato was grown for 45 d in containers with nutrient solutions varying in NH4+/NO3- ratios and CO2 concentrations in growth chambers.Results showed that plant height,stem thickness,total dry weight,dry weight of the leaves,stems and roots,G value (total plant dry weight/seedling days),chlorophyll content,photosynthetic rate,leaf-level and whole plant-level water use efficiency and cumulative water consumption of tomato seedlings were increased with increasing proportion of NO3- in nutrient solutions in the elevated CO2 treatment.Plant biomass,plant height,stem thickness and photosynthetic rate were 67%,22%,24% and 55% higher at elevated CO2 concentration than at ambient CO2 concentration,depending on the values of NH4+/NO3- ratio.These results indicated that elevating CO2 concentration did not mitigate the adverse effects of 100% NH4+-N (in nutrient solution) on the tomato seedlings.At both CO2 levels,NH4+/NO3- ratios of nutrient solutions strongly influenced almost every measure of plant performance,and nitrate-fed plants attained a greater biomass production,as compared to ammonium-fed plants.These phenomena seem to be related to the coordinated regulation of photosynthetic rate and cumulative water consumption of tomato seedlings.

  6. Comparison of regional and ecosystem CO{sub 2} fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S. E. (Wind Energy Department, Risoe National Laboratory for Sustainable Energy, Technical Univ. of Denmark, Roskilde (Denmark)); Soegaard, H. (Institute of Geography and Geology, University of Copenhagen, Copenhagen (Denmark)); Batchvarova, E. (National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences, Sofia (Bulgaria))

    2009-07-01

    A budget method to derive the regional surface flux of CO{sub 2} from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO{sub 2} concentrations by i.e. an airplane, successive radio-soundings and standard measurements of the CO{sub 2} concentration near the ground. The method was used to derive the regional flux of CO{sub 2} over an agricultural site at Zealand in Denmark during an experiment on 12-13 June 2006. The regional fluxes of CO{sub 2} represent a combination of agricultural and forest surface conditions. It was found that the regional flux of CO{sub 2} in broad terms follows the behavior of the flux of CO{sub 2} at the agricultural (grassland) and the deciduous forest station. The regional flux is comparable not only in size but also in the diurnal (daytime) cycle of CO{sub 2} fluxes at the two stations. (orig.)

  7. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentrations for four growing seasons' exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU YuMei; HAN ShiJie; ZHANG HaiSen; XIN LiHua; ZHENG JunQiang

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous species-Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. Koraiensis and P. Sylvestriformis were exposed to 700,500μmol·mol-1 CO2 and ambient CO2(approx.350 μmol·mol-1)for four growing seasons. Needle dark respiration was measurd during the second, third and fourth growing seasons' exposure to elevated CO2.The results showed that needle dark respiration rate increased for P. Koraiensis and P. Sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. Koraiensis was stimulated and that of P. Sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. Koraiensis and P. Sylvestriformis during the fourth growing season. There was consistent trend between the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. Sylvestriformis during the third growing season by changing measurement CO2 concentrations. However, the short-term effect was different from the long-term effect for P. Koraiensis. Response of dark respiration of P. Koraiensis and P. Sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  8. CO2 recovery system using solar energy; Taiyo energy wo riyoshita CO2 bunri kaishu system

    Energy Technology Data Exchange (ETDEWEB)

    Hosho, F; Naito, H; Yugami, H; Arashi, H [Tohoku University, Sendai (Japan)

    1997-11-25

    As a part of studies on chemical absorption process with MEA (monoethanolamine) for CO2 recovery from boiler waste gas in thermal power plants, use of solar heat as MEA regenerating energy was studied. An integrated stationary evacuated concentrator (ISEC) effective as collector in a medium temperature range was used to realize a regenerating temperature range of 100-120degC. ISEC is featured by vacuum insulation, use of selective absorbing membranes for an absorber, a CPC (compound parabolic concentrator)-shaped reflection mirror, and high-efficiency. An MEA regenerator is composed of an ISEC and PG(propylene glycol)-MEA heat exchanger, and circulates PG as heat medium. Heat collection experiment was also made using water instead of MEA. Both batch and continuous systems could supply a heat quantity necessary for MEA regeneration. CO2 concentration in the top of the regenerator rapidly decreased with PG circulation regenerating MEA. As mol ratios of CO2/MEA were compared between before and after regeneration, a recovery rate was estimated to be 59.4% for the batch system. 8 figs., 4 tabs.

  9. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils

    Directory of Open Access Journals (Sweden)

    M. D. Corre

    2010-08-01

    Full Text Available Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2 production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D calculated based on relationships with soil porosity and moisture ("physically modeled" D. Our objective was to investigate whether these inconsistencies were related to (1 the applied interpolation and solution methods and/or (2 uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2

  10. CO2 leakage-induced vegetation decline is primarily driven by decreased soil O2.

    Science.gov (United States)

    Zhang, Xueyan; Ma, Xin; Zhao, Zhi; Wu, Yang; Li, Yue

    2016-04-15

    To assess the potential risks of carbon capture and storage (CCS), studies have focused on vegetation decline caused by leaking CO2. Excess soil CO2 caused by leakage can affect soil O2 concentrations and soil pH, but how these two factors affect plant development remains poorly understood. This hinders the selection of appropriate species to mitigate potential negative consequences of CCS. Through pot experiments, we simulated CO2 leakage to examine its effects on soil pH and soil O2 concentrations. We subsequently assessed how maize growth responded to these changes in soil pH and O2. Decreased soil O2 concentrations significantly reduced maize biomass, and explained 69% of the biomass variation under CO2 leakage conditions. In contrast, although leaked CO2 changed soil pH significantly (from 7.32 to 6.75), it remained within the optimum soil pH range for maize growth. This suggests that soil O2 concentration, not soil pH, influences plant growth in these conditions. Therefore, in case of potential CO2 leakage risks, hypoxia-tolerant species should be chosen to improve plant survival, growth, and yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of elevated CO2 concentrations on photosynthesis, dark res-piration and RuBPcase activity of three species seedlings in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two-year-old seedlings of Pinus koraiensis, Pinus sylvestriformis and Fraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L-1, 500 μL·L-1) and ambient CO2 concentrations (350 μL·L-1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species except P. sylvestriformis grown under 500 μL·L-1 CO2 concentration. The dark respiration rates of P. koraiensis and P. sylvestriformis increased under concentration of 700 μL·L-1 CO2, but that of F. mandshurica decreased under both concentrations 700 μL·L-1 and 500 μL·L-1 CO2. The seedlings of F. mandshurica decreased in chlorophyll contents at elevat-ed CO2 concentrations.

  12. Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery

    International Nuclear Information System (INIS)

    Hwang, Kyung-Ran; Park, Jin-Woo; Lee, Sung-Wook; Hong, Sungkook; Lee, Chun-Boo; Oh, Duck-Kyu; Jin, Min-Ho; Lee, Dong-Wook; Park, Jong-Soo

    2015-01-01

    The CCR (catalytic combustion reaction) of the retentate gas, consisting of 90% CO 2 and 10% H 2 obtained from a CO 2 /H 2 separation membrane reactor, was investigated using a porous Ni metal catalyst in order to recover energy and further enrich CO 2 . A disc-shaped porous Ni metal catalyst, namely Al[0.1]/Ni, was prepared by a simple method and a compact MCR (micro-channel reactor) equipped with a catalyst plate was designed for the CCR. CO 2 and H 2 concentrations of 98.68% and 0.46%, respectively, were achieved at an operating temperature of 400 °C, GHSV (gas-hourly space velocity) of 50,000 h −1 and a H 2 /O 2 ratio (R/O) of 2 in the unit module. In the case of the MCR, a sheet of the Ni metal catalyst was easily installed along with the other metal plates and the concentration of CO 2 in the retentate gas increased up to 96.7%. The differences in temperatures measured before and after the CCR were 31 °C at the product outlet and 19 °C at the N 2 outlet in the MCR. The disc-shaped porous metal catalyst and MCR configuration used in this study exhibit potential advantages, such as high thermal transfer resulting in improved energy recovery rate, simple catalyst preparation, and easy installation of the catalyst in the MCR. - Highlights: • The catalytic combustion of a retentate gas obtained from the H 2 /CO 2 separation membrane. • A disc-shaped porous nickel metal catalyst and a micro-channel reactor for catalytic hydrogen combustion. • CO 2 enrichment up to 98.68% at 400 °C, 50,000 h −1 and H 2 /O 2 ratio of 2.

  13. Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?

    Science.gov (United States)

    Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa

    2015-04-01

    Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual

  14. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    OpenAIRE

    Santos, Roberta Machado; Voltolini, Tadeu Vinhas; Angelotti, Francislene; Aidar, Saulo de Tarso; Chaves, Agnaldo Rodrigues de Melo

    2014-01-01

    The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian) were compared. Cultivars were grown in growth chambers at three temperatures (day/night): 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × ...

  15. Correlations among atmospheric CO[sub 2], CH[sub 4] and CO in the Arctic, March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T.J.; Steele, L.P.; Novelli, P.C. (NOAA Climate Monitoring and Diagnostics Lab., Boulder, CO (United States))

    1993-12-01

    During six aircraft flights conducted as part of the third Arctic Gas and Aerosol Sampling Program (AGASP III, March 1989), 189 air samples were collected throughout the Arctic troposphere and lower stratosphere for analysis of CO[sub 2], CH[sub 4] and CO. The mixing ratios of the three gases varied significantly both horizontally and vertically. Elevated concentrations were found in layers with high anthropogenic aerosol concentrations (Arctic Haze). The mixing ratios of CO[sub 2], CH[sub 4] and CO were highly correlated on all flights. A linear regression of CH[sub 4] vs CO[sub 2] for pooled data from all flights yielded a correlation coefficient (r[sup 2]) of 0.88 and a slope of 13.5 ppb CH[sub 4]/ppm CO[sub 2] (n 186). For CO vs CO[sub 2] a pooled linear regression gave r[sup 2] 0.91 and a slope of 15.8 ppb CO/ppm CO[sub 2] (n 182). Carbon dioxide CH[sub 4] and CO also exhibited mean vertical gradients with slopes of 0.37, -4.4 and -4.2 ppb km[sup -1], respectively. Since the carbon dioxide variations observed in the Arctic atmosphere during winter are due primarily to variations in the emissions and transport of anthropogenic CO[sub 2] from Europe and Asia, the strong correlations that we have found suggest that a similar interpretation applies to CH[sub 4] and CO. Using reliable estimates of CO[sub 2] emissions for the source regions and the measured CH[sub 4]/CO[sub 2] and CO/CO[sub 2] ratios, we estimate a regional European CH[sub 4] source of 47[+-] 6 Tg CH[sub 4] yr[sup -1] that may be associated with fossil fuel combustion. A similar calculation for CO results in an estimated regional CO source of 82[+-]2 Tg CO yr[sup -1]. 31 refs., 7 figs., 4 tabs.

  16. Monitoring CO2 Intrusion in shallow aquifer using complex electrical methods and a novel CO2 sensitive Lidar-based sensor

    Science.gov (United States)

    Leger, E.; Dafflon, B.; Thorpe, M.; Kreitinger, A.; Laura, D.; Haivala, J.; Peterson, J.; Spangler, L.; Hubbard, S. S.

    2016-12-01

    While subsurface storage of CO2 in geological formations offers significant potential to mitigate atmospheric greenhouse gasses, approaches are needed to monitor the efficacy of the strategy as well as possible negative consequences, such as leakage of CO2 or brine into groundwater or release of fugitive gaseous CO2. Groundwater leakages can cause subsequent reactions that may also be deleterious. For example, a release of dissolved CO2 into shallow groundwatersystems can decrease groundwater pH which can potentiallymobilize naturally occurring trace metals and ions. In this perspective, detecting and assessing potential leak requires development of novel monitoring techniques.We present the results of using surface electrical resistivity tomography (ERT) and a novel CO2 sensitive Lidar-based sensor to monitor a controlled CO2 release at the ZeroEmission Research and Technology Center (Bozeman, Montana). Soil temperature and moisture sensors, wellbore water quality measurements as well as chamber-based CO2 flux measurements were used in addition to the ERT and a novel Lidar-based sensor to detect and assess potential leakage into groundwater, vadose zone and atmosphere. The three-week release wascarried out in the vadose and the saturated zones. Well sampling of pH and conductivity and surface CO2 fluxes and concentrations measurements were acquired during the release and are compared with complex electricalresistivity time-lapse measurements. The novel Lidar-based image of the CO2 plume were compared to chamber-based CO2 flux and concentration measurements. While a continuous increase in subsurface ERT and above ground CO2 was documented, joint analysis of the above and below ground data revealed distinct transport behavior in the vadose and saturated zones. Two type of transport were observed, one in the vadoze zone, monitored by CO2 flux chamber and ERT, and the other one in the saturated zone, were ERT and wellsampling were carried. The experiment suggests how

  17. Inexpensive CO2 Thickening Agents for Improved Mobility Control of CO2 Floods

    Energy Technology Data Exchange (ETDEWEB)

    Robert Enick; Eric Beckman; Andrew Hamilton

    2005-08-31

    The objective of this research was the design, synthesis and evaluation of inexpensive, non-fluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to design a CO{sub 2}-thickener based on these CO{sub 2}-philic polymers. Two types of thickeners were considered. The first was a copolymer in which the CO{sub 2}-philic monomer was combined with a small proportion of CO{sub 2}-phobic associating groups that could cause viscosity-enhancing intermolecular interactions to occur. The second was a small hydrogen-bonding compound with urea groups in the core to promote intermolecular interactions that would cause the molecules to 'stack' in solution while the arms were composed of the CO{sub 2}-philic oligomers. Although we were not able to develop a viable thickener that exhibited high enough CO{sub 2} solubility at EOR MMP conditions to induce a viscosity increase, we made significant progress in our understanding of CO{sub 2}-soluble compounds that can be used in subsequent studies to design CO{sub 2}-soluble thickeners or CO{sub 2}-soluble surfactant-based foaming agents. These findings are detailed in this final report. In summary, we assessed many polymers and verified that the most CO{sub 2}-soluble oxygenated hydrocarbon polymer is poly(vinyl acetate), PVAc. This is primarily due to the presence of both ether and carbonyl oxygens associated with acetate-rich compounds. In addition to polymers, we also made small acetate-rich molecules that were also capable of associating in solution via the inclusion of hydrogen-bonding groups in hopes of forming viscosity-enhancing macromolecules. Despite the presence of multiple acetate groups in these compounds, which can impart incredible CO{sub 2}-solubility to many

  18. Faults as Windows to Monitor Gas Seepage: Application to CO2 Sequestration and CO2-EOR

    Directory of Open Access Journals (Sweden)

    Ronald W. Klusman

    2018-03-01

    Full Text Available Monitoring of potential gas seepage for CO2 sequestration and CO2-EOR (Enhanced Oil Recovery in geologic storage will involve geophysical and geochemical measurements of parameters at depth and at, or near the surface. The appropriate methods for MVA (Monitoring, Verification, Accounting are needed for both cost and technical effectiveness. This work provides an overview of some of the geochemical methods that have been demonstrated to be effective for an existing CO2-EOR (Rangely, CA, USA and a proposed project at Teapot Dome, WY, USA. Carbon dioxide and CH4 fluxes and shallow soil gas concentrations were measured, followed by nested completions of 10-m deep holes to obtain concentration gradients. The focus at Teapot Dome was the evaluation of faults as pathways for gas seepage in an under-pressured reservoir system. The measurements were supplemented by stable carbon and oxygen isotopic measurements, carbon-14, and limited use of inert gases. The work clearly demonstrates the superiority of CH4 over measurements of CO2 in early detection and quantification of gas seepage. Stable carbon isotopes, carbon-14, and inert gas measurements add to the verification of the deep source. A preliminary accounting at Rangely confirms the importance of CH4 measurements in the MVA application.

  19. A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry

    International Nuclear Information System (INIS)

    Park, Sangwon; Jo, Hoyong; Kang, Dongwoo; Park, Jinwon

    2014-01-01

    CCS (carbon capture and storage) is the most popular technology used for the reduction of CO 2 in the post-combustion stage. However, the CCS process has some disadvantages including uncertainty about the stability of the land that is used to store the separated CO 2 . Consequently, CCU (carbon capture and utilization) technologies have recently received increased attention as a possible replacement for CCS. In this study, we utilized CO 2 fixation methods by using the metal carbonate mechanism. We selected 5 and 30 wt% MEA (mono-ethanolamine) solutions to rapidly make a carbonate and Ca(OH) 2 slurry. In all of the experiments, normal temperature and pressure conditions were maintained (except during desorption to check for residual CO 2 in the MEA solution). Consequently, most of the CO 2 was converted to carbonate. The MEA converted CO 2 to ionic CO 2 and rapidly created calcium carbonate. Also the formed solids that were observed were determined to be CaCO 3 and Ca(OH) 2 by X-ray diffractometry. Also, the MEA solution could be reused to absorb CO 2 . Therefore, we have confirmed the development of our suggested CCS process. This process has the ability not only to reuse emitted CO 2 , but it can also be employed to reuse construction wastes that include heavy metals. - Highlights: • We propose novel CO 2 conversion technology by utilizing an amine solution. • In this study, alkaline solutions were used to produce CO 2 precipitate. • The MEA (mono-ethanolamine) solution has a sufficient potential to fix CO 2 with metal sources under moderate condition. • Also, the Ca(OH) 2 slurry yielded enough Ca 2+ ions to make carbonate

  20. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  1. Response of archaeal communities in the rhizosphere of maize and soybean to elevated atmospheric CO2 concentrations.

    Directory of Open Access Journals (Sweden)

    David M Nelson

    Full Text Available BACKGROUND: Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric carbon dioxide concentrations ([CO(2] will influence the structure and function of soil archaeal communities. METHODOLOGY/PRINCIPAL FINDINGS: We measured abundances of archaeal and bacterial 16S rRNA and amoA genes, phylogenies of archaeal 16S rRNA and amoA genes, concentrations of KCl-extractable soil ammonium and nitrite, and potential ammonia oxidation rates in rhizosphere soil samples from maize and soybean exposed to ambient (∼385 ppm and elevated (550 ppm [CO(2] in a replicated and field-based study. There was no influence of elevated [CO(2] on copy numbers of archaeal or bacterial 16S rRNA or amoA genes, archaeal community composition, KCl-extractable soil ammonium or nitrite, or potential ammonia oxidation rates for samples from maize, a model C(4 plant. Phylogenetic evidence indicated decreased relative abundance of crenarchaeal sequences in the rhizosphere of soybean, a model leguminous-C(3 plant, at elevated [CO(2], whereas quantitative PCR data indicated no changes in the absolute abundance of archaea. There were no changes in potential ammonia oxidation rates at elevated [CO(2] for soybean. Ammonia oxidation rates were lower in the rhizosphere of maize than soybean, likely because of lower soil pH and/or abundance of archaea. KCl-extractable ammonium and nitrite concentrations were lower at elevated than ambient [CO(2] for soybean. CONCLUSION: Plant-driven shifts in soil biogeochemical processes in response to elevated [CO(2] affected archaeal community composition, but not copy numbers of archaeal genes, in the rhizosphere of soybean. The lack of a treatment effect for maize is consistent with the fact that the photosynthesis and productivity of maize are not stimulated by elevated [CO(2] in the absence of drought.

  2. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica.

    Science.gov (United States)

    Mochizuki, Tomoki; Amagai, Takashi; Tani, Akira

    2018-04-11

    Monoterpenes emitted from plants contribute to the formation of secondary pollution and affect the climate system. Monoterpene emission rates may be affected by environmental changes such as increasing CO 2 concentration caused by fossil fuel burning and drought stress induced by climate change. We measured monoterpene emissions from Cryptomeria japonica clone saplings grown under different CO 2 concentrations (control: ambient CO 2 level, elevated CO 2 : 1000μmolmol -1 ). The saplings were planted in the ground and we did not artificially control the SWC. The relationship between the monoterpene emissions and naturally varying SWC was investigated. The dominant monoterpene was α-pinene, followed by sabinene. The monoterpene emission rates were exponentially correlated with temperature for all measurements and normalized (35°C) for each measurement day. The daily normalized monoterpene emission rates (E s0.10 ) were positively and linearly correlated with SWC under both control and elevated CO 2 conditions (control: r 2 =0.55, elevated CO 2 : r 2 =0.89). The slope of the regression line of E s0.10 against SWC was significantly higher under elevated CO 2 than under control conditions (ANCOVA: P<0.01), indicating that the effect of CO 2 concentration on monoterpene emission rates differed by soil water status. The monoterpene emission rates estimated by considering temperature and SWC (Improved G93 algorithm) better agreed with the measured monoterpene emission rates, when compared with the emission rates estimated by considering temperature alone (G93 algorithm). Our results demonstrated that the combined effects of SWC and CO 2 concentration are important for controlling the monoterpene emissions from C. japonica clone saplings. If these relationships can be applied to the other coniferous tree species, our results may be useful to improve accuracy of monoterpene emission estimates from the coniferous forests as affected by climate change in the present and

  3. Soil gas (222Rn, CO2, 4He) behaviour over a natural CO2 accumulation, Montmiral area (Drome, France): geographical, geological and temporal relationships

    International Nuclear Information System (INIS)

    Gal, Frederick; Joublin, Franck; Haas, Hubert; Jean-prost, Veronique; Ruffier, Veronique

    2011-01-01

    The south east basin of France shelters deep CO 2 reservoirs often studied with the aim of better constraining geological CO 2 storage operations. Here we present new soil gas data, completing an existing dataset (CO 2 , 222 Rn, 4 He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO 2 reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO 2 concentrations. Fine grained clayey soils preferentially favoured the existence of 222 Rn but not CO 2 . Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO 2 and 222 Rn concentrations still exist, it is suggested that 222 Rn migration is also CO 2 dependent in non-leaking areas - diffusion dominated systems.

  4. Radon-calibrated emissions of CO2 from South Africa

    International Nuclear Information System (INIS)

    Gaudry, A.; Polian, G.; Ardouin, B.; Lambert, G.

    1990-01-01

    Atmospheric CO 2 and 222 Rn have been monitored at Amsterdam Island since 1980. Data were selected in order to eliminate any local influence. Typical CO 2 concentrations of the subantarctic marine atmosphere can be determined by selecting those values for which 222 Rn radioactivity was particularly low: less than 1 pCi m -3 . 222 Rn concentrations higher than 2 pCi m -3 are mainly due to injections into the subantarctic atmosphere from the continental source of South Africa. The passage of air masses under continental influence also shows typical CO 2 variations, well correlated with 222 Rn variations. From the knowledge of the global continental fluxes of 222 Rn, it has been possible to estimate CO 2 fluxes into the atmosphere from South Africa. The mean CO 2 flux corresponding to a 6-month period from May to October is about 5 millimole m -2 h -1 . Continental CO 2 emissions reach a maximum in August. (orig.)

  5. Assessing Methods for Mapping 2D Field Concentrations of CO2 Over Large Spatial Areas for Monitoring Time Varying Fluctuations

    Science.gov (United States)

    Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.

    2014-12-01

    This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.

  6. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  7. Mineralogical controls on porosity and water chemistry during O_2-SO_2-CO_2 reaction of CO_2 storage reservoir and cap-rock core

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Golab, Alexandra; Dawson, Grant K.W.; Knuefing, Lydia; Goodwin, Carley; Golding, Suzanne D.

    2016-01-01

    Reservoir and cap-rock core samples with variable lithology's representative of siliciclastic reservoirs used for CO_2 storage have been characterized and reacted at reservoir conditions with an impure CO_2 stream and low salinity brine. Cores from a target CO_2 storage site in Queensland, Australia were tested. Mineralogical controls on the resulting changes to porosity and water chemistry have been identified. The tested siliciclastic reservoir core samples can be grouped generally into three responses to impure CO_2-brine reaction, dependent on mineralogy. The mineralogically clean quartzose reservoir cores had high porosities, with negligible change after reaction, in resolvable porosity or mineralogy, calculated using X-ray micro computed tomography and QEMSCAN. However, strong brine acidification and a high concentration of dissolved sulphate were generated in experiments owing to minimal mineral buffering. Also, the movement of kaolin has the potential to block pore throats and reduce permeability. The reaction of the impure CO_2-brine with calcite-cemented cap-rock core samples caused the largest porosity changes after reaction through calcite dissolution; to the extent that one sample developed a connection of open pores that extended into the core sub-plug. This has the potential to both favor injectivity but also affect CO_2 migration. The dissolution of calcite caused the buffering of acidity resulting in no significant observable silicate dissolution. Clay-rich cap-rock core samples with minor amounts of carbonate minerals had only small changes after reaction. Created porosity appeared mainly disconnected. Changes were instead associated with decreases in density from Fe-leaching of chlorite or dissolution of minor amounts of carbonates and plagioclase. The interbedded sandstone and shale core also developed increased porosity parallel to bedding through dissolution of carbonates and reactive silicates in the sandy layers. Tight interbedded cap

  8. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J.Tim Cullinane; Marcus Hilliard; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-07-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. CO{sub 2} mass transfer rates are second order in piperazine concentration and increase with ionic strength. Modeling of stripper performance suggests that 5 m K{sup +}/2.5 m PZ will require 25 to 46% less heat than 7 m MEA. The first pilot plant campaign was completed on June 24. The CO{sub 2} penetration through the absorber with 20 feet of Flexipac{trademark} 1Y varied from 0.6 to 16% as the inlet CO{sub 2} varied from 3 to 12% CO{sub 2} and the gas rate varied from 0.5 to 3 kg/m{sup 2}-s.

  9. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  10. Impact of CO2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO2 Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Gregory, Kelvin B. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Lowry, Gregorgy V. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-06-20

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO2) emissions to the atmosphere. During this process, CO2 is injected as super critical carbon dioxide (SC-CO2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO2 in subsurface geologic formations could unintentionally lead to CO2 leakage into overlying freshwater aquifers. Introduction of CO2 into these subsurface environments will greatly increase the CO22 concentration and will create CO2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO2 gradients will impact these communities. The overarching goal of this project is to understand how CO2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO2 injection/leakage plume where CO2 concentrations are highest. At CO2 exposures expected downgradient from the CO2 plume, selected microorganisms

  11. Enhancing Catalyzed Decomposition of Na2CO3 with Co2MnO x Nanowire-Decorated Carbon Fibers for Advanced Na-CO2 Batteries.

    Science.gov (United States)

    Fang, Cong; Luo, Jianmin; Jin, Chengbin; Yuan, Huadong; Sheng, Ouwei; Huang, Hui; Gan, Yongping; Xia, Yang; Liang, Chu; Zhang, Jun; Zhang, Wenkui; Tao, Xinyong

    2018-05-23

    The metal-CO 2 batteries, especially Na-CO 2 , batteries come into sight owing to their high energy density, ability for CO 2 capture, and the abundance of sodium resource. Besides the sluggish electrochemical reactions at the gas cathodes and the instability of the electrolyte at a high voltage, the final discharge product Na 2 CO 3 is a solid and poor conductor of electricity, which may cause the high overpotential and poor cycle performance for the Na-CO 2 batteries. The promotion of decomposition of Na 2 CO 3 should be an efficient strategy to enhance the electrochemical performance. Here, we design a facile Na 2 CO 3 activation experiment to screen the efficient cathode catalyst for the Na-CO 2 batteries. It is found that the Co 2 MnO x nanowire-decorated carbon fibers (CMO@CF) can promote the Na 2 CO 3 decomposition at the lowest voltage among all these metal oxide-decorated carbon fiber structures. After assembling the Na-CO 2 batteries, the electrodes based on CMO@CF show lower overpotential and better cycling performance compared with the electrodes based on pristine carbon fibers and other metal oxide-modified carbon fibers. We believe this catalyst screening method and the freestanding structure of the CMO@CF electrode may provide an important reference for the development of advanced Na-CO 2 batteries.

  12. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  13. Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils.

    Science.gov (United States)

    Wu, Huibin; Song, Zhengguo; Wang, Xiao; Liu, Zhongqi; Tang, Shirong

    2016-09-01

    Environmental pollution by both ambient CO2 and heavy metals has been steadily increasing, but we do not know how fluctuating CO2 concentrations influence plant nutrients under high Cd pollution, especially in crops. Here, we studied the effects of elevated CO2 and Cd accumulation on proteins and amino acids in rice under Cd stress. In this pot experiment, we analyzed the amino-acid profile of 20 rice cultivars that accumulate Cd differently; the plants were grown in Cd-containing soils under ambient conditions and elevated CO2 levels. We found that although Cd concentrations appeared to be higher in most cultivars under elevated CO2 than under ambient CO2, the effect was significant only in seven cultivars. Combined exposure to Cd and elevated CO2 strongly decreased rice protein and amino acid profiles, including essential and non-essential amino acids. Under elevated CO2, the ratios of specific amino acids were either higher or lower than the optimal ratios provided by FAO/WHO, suggesting that CO2 may flatten the overall amino-acid profile, leading to an excess in some amino acids and deficiencies in others when the rice is consumed. Thus, Cd-tainted rice limits the concentration of essential amino acids in rice-based diets, and the combination with elevated CO2 further exacerbates the problem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Experimental Investigations into CO2 Interactions with Injection Well Infrastructure for CO2 Storage

    Science.gov (United States)

    Syed, Amer; Shi, Ji-Quan; Durucan, Sevket; Nash, Graham; Korre, Anna

    2013-04-01

    Wellbore integrity is an essential requirement to ensure the success of a CO2 Storage project as leakage of CO2 from the injection or any other abandoned well in the storage complex, could not only severely impede the efficiency of CO2 injection and storage but also may result in potential adverse impact on the surrounding environment. Early research has revealed that in case of improper well completions and/or significant changes in operating bottomhole pressure and temperature could lead to the creation of microannulus at cement-casing interface which may constitute a preferential pathway for potential CO2 leakage during and post injection period. As a part of a European Commission funded CO2CARE project, the current research investigates the sealing behaviour of such microannulus at the cement-casing interface under simulated subsurface reservoir pressure and temperature conditions and uses the findings to develop a methodology to assess the overall integrity of CO2 storage. A full scale wellbore experimental test set up was constructed for use under elevated pressure and temperature conditions as encountered in typical CO2 storage sites. The wellbore cell consists of an assembly of concentric elements of full scale casing (Diameter= 0.1524m), cement sheath and an outer casing. The stainless steel outer ring is intended to simulate the stiffness offered by the reservoir rock to the displacement applied at the wellbore. The Central Loading Mechanism (CLM) consists of four case hardened shoes that can impart radial load onto the well casing. The radial movement of the shoes is powered through the synchronised movement of four precision jacks controlled hydraulically which could impart radial pressures up to 15 MPa. The cell body is a gas tight enclosure that houses the wellbore and the central loading mechanism. The setup is enclosed in a laboratory oven which acts both as temperature and safety enclosure. Prior to a test, cement mix is set between the casing and

  15. Impact of CO2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO2 Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Gregory, Kelvin B. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Lowry, Gregory V. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering

    2016-06-20

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO2) emissions to the atmosphere. During this process, CO2 is injected as super critical carbon dioxide (SC-CO2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO2 in subsurface geologic formations could unintentionally lead to CO2 leakage into overlying freshwater aquifers. Introduction of CO2 into these subsurface environments will greatly increase the CO2 concentration and will create CO2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO2 gradients will impact these communities. The overarching goal of this project is to understand how CO2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO2 injection/leakage plume where CO2 concentrations are highest. At CO2 exposures expected downgradient from the CO2 plume, selected microorganisms

  16. CO{sub 2} sequestration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ketzer, Marcelo [Brazilian Carbon Storage Research Center (Brazil)

    2008-07-15

    In this presentation the importance of the capture and sequestration of CO{sub 2} is outlined for the reduction of gas discharges of greenhouse effect; then the principles of CO{sub 2} storage in geologic formations are reviewed; afterwards, the analogs for the CO{sub 2} storage are commented, such as the storage of the acid gas, the natural gas storage and the natural CO{sub 2} deposits. Also it is spoken on the CO{sub 2} storage in coal, in water-bearing saline deposits and in oil fields, and finally the subject of the safety and monitoring of the CO{sub 2} storage is reviewed. [Spanish] En esta presentacion se expone la importancia de la captura y secuestro de CO{sub 2} para la reduccion de emisiones de gases de efecto invernadero; luego se tratan los principios de almacenamiento de CO{sub 2} en formaciones geologicas; despues se comentan los analogos para el almacenamiento de CO{sub 2} como el almacenamiento del gas acido, el almacenamiento de gas natural y los yacimientos naturales de CO{sub 2}. Tambien se habla sobre el almacenamiento de CO{sub 2} en carbon, acuiferos salinos y yacimientos petroliferos y por ultimo se toca el tema de la seguridad y monitoreo del almacenamiento de CO{sub 2}.

  17. Solid state synthesis of stoichiometric LiCoO2 from mechanically activated Co-Li2CO3 mixtures

    International Nuclear Information System (INIS)

    Berbenni, Vittorio; Milanese, Chiara; Bruni, Giovanna; Marini, Amedeo

    2006-01-01

    Stoichiometric lithium cobalt oxide (LiCoO 2 ) has been synthesized by solid state reaction of mixtures of the system Co-0.5Li 2 CO 3 after mechanical activation by high energy milling. The differences in the reaction mechanism and in product stoichiometry with respect to what happens when starting from the non activated (physical) system have been brought into evidence by TG analysis. Furthermore it has been shown that stoichiometric LiCoO 2 is obtained by a 200 h annealing of the activated mixture at temperatures as low as 400 deg. C. Finally, it has been revealed that longer activation times (150 h) result in Co oxidation to Co 3 O 4 that, in turn, hampers the formation of stoichiometric LiCoO 2

  18. A Model for Interpreting High-Tower CO2 Concentration Records for the Surface Carbon Balance Information

    Science.gov (United States)

    Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.

    2002-05-01

    Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can

  19. Experimental Investigation of Gaseous Reaction Products from Na-CO{sub 2} Reaction in Na/CO{sub 2} Heat Exchanger leakage scenario

    Energy Technology Data Exchange (ETDEWEB)

    Go, A-Reum; Jung, Hwa-Young; Kim, Min Seok; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Min, Jaehong; Wi, Myung-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The SFRs have operated with the steam Rankine cycle as a power conversion system. However, the potential sodium-water reaction (SWR) whose chemical reactivity is vigorous and instantaneous has been one of the major issues concerning the safety and integrity of the SFRs. In order to avoid SWR, supercritical CO{sub 2}(S-CO{sub 2}) Brayton cycles have been investigated recently. Compared to conventional steam Rankine cycles, S-CO{sub 2} Brayton cycle features higher thermal efficiency and potential compactness of its required equipment. In spite of the superiority of S-CO{sub 2} Brayton cycle, there is a potential reactive process between sodium and CO{sub 2} if the pressure boundary fails in the sodium-CO{sub 2} heat exchanger. The leakage scenario which could lead to mechanical and thermal problems should be evaluated. Previous studies have reported the following major reaction formulas. Each reaction occurs competitively. In this paper, the experimental setup to observe the pressure variation and CO concentration in Na-CO{sub 2} heat exchanger during the CO{sub 2} leak is explained. Before the experiment is carried out, water-CO{sub 2} mock-up test will be performed. In order to evaluate the leakage scenario in Na-CO{sub 2} heat exchanger more accurately, this study will be important for guaranteeing the system of SFR coupled with S-CO{sub 2} cycle.

  20. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  1. Solar kerosene from H2O and CO2

    Science.gov (United States)

    Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.

    2017-06-01

    The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

  2. Imaging volcanic CO2 and SO2

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.

    2017-12-01

    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  3. CO[sub 2] exchange and growth of the Crassulacean acid metabolism plant opuntia ficus-indica under elevated CO[sub 2] in open-top chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cui, M.; Miller, P.M.; Nobel, P.S. (Univ. of California, Los Angeles, CA (United States))

    1993-10-01

    CO[sub 2] uptake, water vapor conductance, and biomass production of Opuntia ficus-indica, a Crassulacean acid metabolism species, were studied at CO[sub 2] concentrations of 370, 520, and 720 [mu]L L[sup [minus]1] in open-top chambers during a 23-week period. Nine weeks after planting, daily net CO[sub 2] uptake for basal cladodes at 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2] was 76 and 98% higher, respectively, than at 370 [mu]L L[sup [minus]1]. Eight weeks after daughter cladodes emerged, their daily net CO[sub 2] uptake was 35 and 49% higher at 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2], respectively, than at 370 L L[sup [minus]1]. Daily water-use efficiency was 88% higher under elevated CO[sub 2] for basal cladodes and 57% higher for daughter cladodes. The daily net CO[sub 2] uptake capacity for basal cladodes increased for 4 weeks after planting and then remained fairly constant, whereas for daughter cladodes, it increased with cladode age, became maximal at 8 to 14 weeks, and then declined. The percentage enhancement in daily net CO[sub 2] uptake caused by elevated CO[sub 2] was greatest initially for basal cladodes and at 8 to 14 weeks for daughter cladodes. The chlorophyll content per unit fresh weight of chlorenchyma for daughter cladodes at 8 weeks was 19 and 62% lower in 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2], respectively, compared with 370 [mu]L L[sup [minus]1]. Despite the reduced chlorophyll content, plant biomass production during 23 weeks in 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2] was 21 and 55% higher, respectively, than at 370 [mu]L L[sup [minus]1]. The root dry weight nearly tripled as the CO[sub 2] concentration was doubled, causing the root/shoot ratio to increase with CO[sub 2] concentration. During the 23-week period, elevated CO[sub 2] significantly increased CO[sub 2] uptake and biomass production of O. 35 refs., 4 figs., 1 tab.

  4. Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations.

    Science.gov (United States)

    Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé

    2014-02-01

    Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  6. Effects of CO 2 concentration and moisture content of sugar-free media on the tissue-cultured plantlets in a large growth chamber

    Science.gov (United States)

    Qu, Y. H.; Lin, C.; Zhou, W.; Li, Y.; Chen, B.; Chen, G. Q.

    2009-01-01

    The dynamic fluctuations of CO 2 concentration in the tissue culture growth chamber after transplantation of petunia, chrysanthemum and tomato plantlets were recorded with a real-time control system to determine the critical CO 2 concentration levels of 35 μl l -1 at which CO 2 enrichment is needed. The experimental data showed that the tissue-cultured plantlets of petunia, chrysanthemum and tomato had the same CO 2 concentration dynamics. The results indicated that CO 2 enrichment was proper on the second day after transplantation. Petunia plantlets were used to conduct experiments under PPFD of 80 μmol m -2 s -1, and CO 2 concentrations of 350 ± 50 μl l -1, 650 ± 50 μl l -1 and 950 ± 50 μl l -1 as well as medium moisture contents of 60%, 70% and 80%, with the result that plantlets grew better under CO 2 concentration of 650 ± 50 μl l -1 than under the other two concentrations with all the different media water contents. Three media water contents under the same CO 2 concentration produced plantlets with the same quality. The impacts of CO 2 concentrations on plantlets are more important than those of the media water contents. Sugar-free tissue culture, as compared with the conventional culture, showed that CO 2 enrichment to 350 ± 50 μl l -1 can promote the growth of the cultured plantlets. Sugar-free tissue culture produced healthy plantlets with thick roots, almost equivalent to the common plantlets.

  7. Correlation between plant physiology and CO2 removable

    Science.gov (United States)

    Leman, A. M.; Shamsuri, Mohd Mahathir Suhaimi; Hariri, Azian; Kadir, Aeslina Abdul; Idris, Ahmad Fu'ad; Afandi, Azizi

    2017-09-01

    Certain plants that are able to live in the building are known as indoor plants. Plants have tolerance with indoor environment in order to survive. Usually these plants are able to improve indoor air quality (IAQ). Absorption of carbon dioxide (CO2) by plants is one of the indicators that plants are still alive during photosynthesis process. The possibility of plants structure (plant physiology) to affect CO2 absorption had been the concerns of former researchers. This research intends to study the significant of plant structure (leaf area, fresh weight, and dry weight) that leads to reducing the concentration of CO2 by seven plant species (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plants, Spider Plants, and Syngonium). The data of CO2 reduction by plants has been obtained from previous studies. Based on results show that, the leaf area is the most contributing the significant effect to the plant absorb CO2 compare to fresh weight and dry weight. It can be prove by Pearson Correlation, where only the value of leaf area is more than 0.5 for every four conditions. This study can be conclude that the leaf area is quite plays an important role to the plant treat air from CO2, while concentration of light and CO2 will become catalytic factor for the plants improve their photosynthesis process.

  8. CO{sub 2} separation from exhaust gas; CO{sub 2} separasjon fra eksosgass

    Energy Technology Data Exchange (ETDEWEB)

    Magelssen, Paul Fr. [Saga Petroleum A/S, Forus (Norway)

    1998-07-01

    When Saga wanted to reduce the CO{sub 2} emissions from Snorre B, cleaning of CO{sub 2} from exhaust gas was one of several options considered. CO{sub 2} cleaning using membrane/amine technology is under development. Saga required that the technology should be qualified and that the yield of the Snorre B project should not be reduced. This presentation discusses qualification of combined membrane/amine technology, environmental issues, economic issues and implementation on the Snorre B platform. Flue gas from the gas turbine is passed to a CO{sub 2} absorption and desorption stage from which the CO{sub 2} is passed on for compression and disposal while the cleaned flue is let out. The membrane is situated between the flue gas and the absorbent liquid. The pores are large enough for the CO{sub 2} to pass through quickly and small enough to prevent the liquid from penetrating into the pores. The packing factor is high, 500 - 1000 m2/m3, there is no formation of froth, ducts or entrainment of the liquid. New technology implies 65 - 70% size reduction of the main equipment and 39 - 40% reduction of the energy consumption. Research on amines brings out new chemicals which imply 80% reduction in the consumption of chemicals and the quantity of special waste produced. If a CO{sub 2} cleaning plant is installed on a LM 2500, the CO{sub 2} emissions can be reduced by 97,200 ton/year given the right operational conditions. Although it was decided in 1998 not to install the module with the CO{sub 2} pilot cleaning plant, Snorre B is still a good environmental project having CO{sub 2} emission within the values set by Miljoesok.

  9. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    OpenAIRE

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  10. Catholyte-Free Electrocatalytic CO2 Reduction to Formate.

    Science.gov (United States)

    Lee, Wonhee; Kim, Young Eun; Youn, Min Hye; Jeong, Soon Kwan; Park, Ki Tae

    2018-04-16

    Electrochemical reduction of carbon dioxide (CO 2 ) into value-added chemicals is a promising strategy to reduce CO 2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO 2 reduction (CO 2 R) is the low solubility of CO 2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte-free electrocatalytic CO 2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm -2 , despite the decrease in CO 2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L -1 is obtained as a one-path product at 343 K with high PCD (51.7 mA cm -2 ) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentra-tions for four growing seasons’ exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous spe- cies—Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. koraiensis and P. sylvestriformis were exposed to 700, 500 μmol·mol-1 CO2 and ambient CO2 (approx. 350 μmol·mol-1) for four growing seasons. Needle dark respiration was meas- ured during the second, third and fourth growing seasons’ exposure to elevated CO2. The results showed that needle dark respiration rate increased for P. koraiensis and P. sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. koraiensis was stimu- lated and that of P. sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. koraiensis and P. sylvestriformis during the fourth growing season. There was consistent trend be- tween the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. sylvestriformis during the third growing season by changing measurement CO2 concentrations. How- ever, the short-term effect was different from the long-term effect for P. koraiensis. Response of dark respiration of P. koraiensis and P. sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  12. Reactivity of micas and cap-rock in wet supercritical CO_2 with SO_2 and O_2 at CO_2 storage conditions

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Dawson, Grant K.W.; Law, Alison C.K.; Biddle, Dean; Golding, Suzanne D.

    2016-01-01

    Seal or cap-rock integrity is a safety issue during geological carbon dioxide capture and storage (CCS). Industrial impurities such as SO_2, O_2, and NOx, may be present in CO_2 streams from coal combustion sources. SO_2 and O_2 have been shown recently to influence rock reactivity when dissolved in formation water. Buoyant water-saturated supercritical CO_2 fluid may also come into contact with the base of cap-rock after CO_2 injection. Supercritical fluid-rock reactions have the potential to result in corrosion of reactive minerals in rock, with impurity gases additionally present there is the potential for enhanced reactivity but also favourable mineral precipitation. The first observation of mineral dissolution and precipitation on phyllosilicates and CO_2 storage cap-rock (siliciclastic reservoir) core during water-saturated supercritical CO_2 reactions with industrial impurities SO_2 and O_2 at simulated reservoir conditions is presented. Phyllosilicates (biotite, phlogopite and muscovite) were reacted in contact with a water-saturated supercritical CO_2 containing SO_2, or SO_2 and O_2, and were also immersed in the gas-saturated bulk water. Secondary precipitated sulfate minerals were formed on mineral surfaces concentrated at sheet edges. SO_2 dissolution and oxidation resulted in solution pH decreasing to 0.74 through sulfuric acid formation. Phyllosilicate dissolution released elements to solution with ∼50% Fe mobilized. Geochemical modelling was in good agreement with experimental water chemistry. New minerals nontronite (smectite), hematite, jarosite and goethite were saturated in models. A cap-rock core siltstone sample from the Surat Basin, Australia, was also reacted in water-saturated supercritical CO_2 containing SO_2 or in pure supercritical CO_2. In the presence of SO_2, siderite and ankerite were corroded, and Fe-chlorite altered by the leaching of mainly Fe and Al. Corrosion of micas in the cap-rock was however not observed as the pH was

  13. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants.

    Science.gov (United States)

    Rae, Benjamin D; Long, Benedict M; Förster, Britta; Nguyen, Nghiem D; Velanis, Christos N; Atkinson, Nicky; Hee, Wei Yih; Mukherjee, Bratati; Price, G Dean; McCormick, Alistair J

    2017-06-01

    Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Acute physiological impacts of CO2 ocean sequestration on marine animals

    International Nuclear Information System (INIS)

    Ishimatsu, A.; Hayashi, M.; Lee, K.S.; Murata, K.; Kumagai, E.

    2005-01-01

    The biological impacts of ocean carbon dioxide (CO 2 ) sequestration must be carefully considered before it is implemented as a mitigation strategy. This paper presented details of a study investigating the effects of high CO 2 concentrations on marine fish, lobster, and octopus. The influence of water temperature on the physiological effects of CO 2 was also discussed. In the first part of the study, eggs and larvae of red seabream were exposed to both CO 2 and HCI-acidified seawater at identical pH levels. Seabream in the CO 2 group showed a much higher mortality rate than fish in the HCI group. Other tests showed that Japanese Flounder died after complete recovery of pH in seawater equilibrated with 5 per cent CO 2 . Cardiac output was rapidly depressed in Yellowtail fish without significant changes in blood oxygen concentrations. Lower temperatures resulted in higher mortality and delayed pH recovery during hypercapnia in all fish. Western rock lobsters were the most tolerant to CO 2 among all species tested. The recovery of hemolymph pH was complete at exposure to CO 2 concentrations of 1 per cent. Changes in hemolymph bicarbonate concentrations indicated that acid-based regulatory mechanisms differed between fish and lobsters. Mortality rates for octopus were significant at CO 2 concentrations of 1 per cent. The results of all tests showed that aquatic animals are more susceptible to increases in ambient CO 2 levels than terrestrial animals. It was concluded that even slight elevations in CO 2 concentration levels adversely affected physiological functioning in the tested species. It was concluded that CO 2 sequestration in deeper, colder waters will have a more pronounced effect on aquatic animals due to the interactions between CO 2 and lower temperatures, as well as the fact that most deep-sea fish are less tolerant to environmental perturbations. 3 refs., 1 tab., 3 figs

  15. Estimation of long-term trends in the tropospheric 14CO2 activity concentration

    Czech Academy of Sciences Publication Activity Database

    Světlík, Ivo; Povinec, P. P.; Molnár, M.; Meinhardt, F.; Michálek, V.; Simon, J.; Svingor, E.

    2010-01-01

    Roč. 52, č. 2-3 (2010), s. 815-822 ISSN 0033-8222. [International Radiocarbon Conference /20./. Big Island, Hawai, 31.05.2009-05.06.2009] Institutional research plan: CEZ:AV0Z10480505 Keywords : 14CO2 * activity concentration * greenhouse gasses * fossil fuel combustion Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.703, year: 2010

  16. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu

    2013-09-01

    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  17. Element mobilization and immobilization from carbonate rocks between CO 2 storage reservoirs and the overlying aquifers during a potential CO 2 leakage

    Energy Technology Data Exchange (ETDEWEB)

    Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew; Kukkadapu, Ravi K.; Qafoku, Odeta; Bacon, Diana H.; Brown, Christopher F.

    2018-04-01

    Despite the numerous studies on changes within the reservoir following CO2 injection and the effects of CO2 release into overlying aquifers, little or no literature is available on the effect of CO2 release on rock between the storage reservoirs and subsurface. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO2, liquid analysis showed an increase of major elements (e.g., Ca, and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower concentrations were observed in N2 controls. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.

  18. CO{sub 2} geothermal heat probe - Phase 2; CO{sub 2}-Erdwaermesonde - Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Grueniger, A.; Wellig, B.

    2009-12-15

    In this project the fluid dynamics and thermodynamics inside a CO{sub 2} geothermal heat probe have been investigated. The functionality of such a probe, which works like a thermosyphon, was analyzed by means of a simulation model in MATLAB. The model couples the behaviour inside the heat probe with the heat conduction in the earth. A parameter study revealed that the self-circulation character of such a probe leads to flattening of the vertical earth temperature profile near the probe and, hence, leads to more uniform heat removal along the probe. The circulation of CO{sub 2} even goes on when the heat pump is off. This might be advantageous for the regeneration phase. The heat transfer resistance of the evaporating CO{sub 2} film flowing down the probe wall is very small compared to the conduction resistance of the earth. Therefore, no difference has been found between the performances of a conventional heat pipe and a configuration where the liquid phase injection is distributed on different height stages along the probe. It is estimated that the seasonal performance factor of heat pumps can be improved by 15-25% with a CO{sub 2} geothermal heat probe. The main advantage is that the heat transfer to the evaporator of the heat pump (condensation of CO{sub 2} / evaporation of refrigerant) is much more efficient than in a conventional brine probe without phase change. Furthermore, no circulation pump is needed. (authors)

  19. Effect of breathing fluctuations on cerebral blood flow in demented patients and its correction method using end-tidal CO/sub 2/ concentration

    Energy Technology Data Exchange (ETDEWEB)

    Komatani, Akio; Yamaguchi, Koichi; Kera, Masahiro; Takanashi, Toshiyasu; Shinohara, Masao; Kawakatsu, Shinobu; Yazaki, Mitsuyasu

    1989-02-01

    During mouthpiece respiration of Xe-133 for a measurement of regional cerebral blood flow (rCBF), the breathing pattern of patients fluctuated and it caused a change of end-tidal CO/sub 2/ concentration that had an excellent correlation with PaCO/sub 2/ in patients without respiratory disease. The end-tidal CO/sub 2/ concentration of demented patients varied within lower ranges than senile control group. The range of fluctuation on the end-tidal CO/sub 2/ concentration was dependent on the type and the degree of dementia, and it fluctuated most widely at the middle stage of Alzheimer disease. Mean cerebral blood flow increased by 13.9% for each l% increase in end-tidal CO/sub 2/ concentration (3.6%/mmHg PaCO/sub 2/) in the case of demented patients without cerebrovascular disease. To improve the reliability of rCBF in demented patients, especially in Alzheimer disease, the correction of rCBF data for end-tidal CO/sub 2/ concentration should be performed.

  20. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  1. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    Science.gov (United States)

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  2. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?

    Science.gov (United States)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György

    2017-04-01

    Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an

  3. Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO)2 }2 {μ-η22 -B2 H4 }] and [{Cp*M(CO)2 }2 B2 H2 M(CO)4 ], M=Mo,W.

    Science.gov (United States)

    Mondal, Bijan; Bag, Ranjit; Ghorai, Sagar; Bakthavachalam, K; Jemmis, Eluvathingal D; Ghosh, Sundargopal

    2018-04-26

    The reaction of [(Cp*Mo) 2 (μ-Cl) 2 B 2 H 6 ] (1) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO) 2 } 2 {μ-η 22 -B 2 H 4 }] (2). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged C s structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum-alkyne complex [{CpMo(CO) 2 } 2 C 2 H 2 ]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO) 4 ] fragment, [{Cp*Mo(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (3) was isolated upon treatment with [W(CO) 5 ⋅thf]. Compound 3 shows the intriguing presence of [B 2 H 2 ] with a short B-B length of 1.624(4) Å. We isolated the tungsten analogues of 3, [{Cp*W(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (4) and [{Cp*W(CO) 2 } 2 B 2 H 2 Mo(CO) 4 ] (5), which provided direct proof of the existence of the tungsten analogue of 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2010-06-23

    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.

  5. Adiabatic burning velocity of H2-O2 mixtures diluted with CO2/N2/Ar

    International Nuclear Information System (INIS)

    Ratna Kishore, V.; Muchahary, Ringkhang; Ray, Anjan; Ravi, M.R.

    2009-01-01

    Global warming due to CO 2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO 2 , N 2 , and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO 2 , N 2 , and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H 2 /O 2 /CO 2 flames with 65% CO 2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H 2 /O 2 /CO 2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame. (author)

  6. Effect of Co crystallinity on Co/CNT catalytic activity in CO/CO{sub 2} hydrogenation and CO disproportionation

    Energy Technology Data Exchange (ETDEWEB)

    Chernyak, Sergei A., E-mail: chernyak.msu@gmail.com [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation); Suslova, Evgeniya V.; Egorov, Alexander V.; Maslakov, Konstantin I. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Savilov, Serguei V.; Lunin, Valery V. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation)

    2016-05-30

    Highlights: • Amorphous and crystalline Co supported on CNTs were obtained by tuning of CNT surface. • CO and CO{sub 2} hydrogenation does not occur on amorphous Co particles. • Thermal activation of amorphous Co led to crystallization of metal. • Amorphous Co promotes CO disproportionation. • Carbon shells around the amorphous metal particles after the CO hydrogenation. - Abstract: Carbon nanotubes (CNTs) with different degree of surface oxidation were used as supports for 5 wt.% Co catalysts. CNTs and Co/CNT catalysts were analyzed by XPS, nitrogen adsorption, TEM and electron diffraction to reveal their structure. High oxidation degree of CNT surface (8.6 at.% of O) and low Co loading led to predominantly amorphous Co species. This resulted in the absence of catalytic activity in both CO and CO{sub 2} hydrogenation in opposite to the catalyst supported on less oxidized CNTs (5.4 at.% of O) where Co species were found to be crystalline. Thermal treatment of inactive catalyst in H{sub 2} and He led to the formation of Co crystal phase which was active in catalysis. Co particle size in catalyst supported on strongly oxidized CNTs was unchanged during CO hydrogenation in opposite to Co supported on less oxidized CNTs. Carbon shell formation on the surface of amorphous Co particles during CO hydrogenation was revealed, which testified CO disproportionation. Qualitative mechanism of CO hydrogenation on small Co particles was proposed.

  7. CO2 capture by ionic liquids - an answer to anthropogenic CO2 emissions?

    Science.gov (United States)

    Sanglard, Pauline; Vorlet, Olivier; Marti, Roger; Naef, Olivier; Vanoli, Ennio

    2013-01-01

    Ionic liquids (ILs) are efficient solvents for the selective removal of CO2 from flue gas. Conventional, offthe-shelf ILs are limited in use to physisorption, which restricts their absorption capacity. After adding a chemical functionality like amines or alcohols, absorption of CO2 occurs mainly by chemisorption. This greatly enhances CO2 absorption and makes ILs suitable for potential industrial applications. By carefully choosing the anion and the cation of the IL, equimolar absorption of CO2 is possible. This paper reviews the current state of the art of CO2 capture by ILs and presents the current research in this field performed at the ChemTech Institute of the Ecole d'Ingénieurs et d'Architectes de Fribourg.

  8. Estimating CO{sub 2} Emission Reduction of Non-capture CO{sub 2} Utilization (NCCU) Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo [KEPCO Research Institute, Daejon (Korea, Republic of); Choi, Jong Shin [Korea East-West Power Co., LTD(ETP), Ulsan (Korea, Republic of)

    2015-10-15

    Estimating potential of CO{sub 2} emission reduction of non-capture CO{sub 2} utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO{sub 2} contained in the flue gas. For the estimating the CO{sub 2} emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO{sub 2} of 100 tons per day was performed, Also for the estimation of the indirect CO{sub 2} reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO{sub 2} emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO{sub 3} (7.4 GJ/tNaHCO{sub 3}). While for the NCCU technology, the direct CO{sub 2} reduction through the CO{sub 2} carbonation was estimated as 36,500 ton per year and the indirect CO{sub 2} reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO{sub 2} contained in the flue was energy efficient and could be one of the promising technology for the low CO{sub 2} emission technology.

  9. The ins and outs of CO2

    Science.gov (United States)

    Raven, John A.; Beardall, John

    2016-01-01

    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3 –. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3 – use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3 – active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3 – can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3 – pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3 –. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  10. The BIG protein distinguishes the process of CO2 -induced stomatal closure from the inhibition of stomatal opening by CO2.

    Science.gov (United States)

    He, Jingjing; Zhang, Ruo-Xi; Peng, Kai; Tagliavia, Cecilia; Li, Siwen; Xue, Shaowu; Liu, Amy; Hu, Honghong; Zhang, Jingbo; Hubbard, Katharine E; Held, Katrin; McAinsh, Martin R; Gray, Julie E; Kudla, Jörg; Schroeder, Julian I; Liang, Yun-Kuan; Hetherington, Alistair M

    2018-04-01

    We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO 2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO 2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO 2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO 2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO 2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO 2 -mediated control of stomatal development. In the control of stomatal aperture by CO 2 , BIG is only required in elevated CO 2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO 2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO 2 -mediated responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  11. 14C concentration of liberated CO2 in the free fermentation process of Japanese SAKE brewing

    International Nuclear Information System (INIS)

    Yamada, Y.; Kaji, A.; Kiriyama, N.; Itoh, M.; Komura, K.; Ueno, K.

    1989-01-01

    The daily variation of 14 C concentrations of liberated CO 2 in the free fermentation process of Japanese SAKE brewing was studied. Each of the concentrations measured in the initial and final stages of the fermentation process correlated with levels of koji rice and steamed rice, obtained from different areas and used for SAKE production. This shows that analysis of fermenting CO 2 of SAKE could be used to estimate the 14 C level in a local environment. (author) 4 refs.; 1 tab

  12. Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean (NCEI accession 01645680) (NCEI Accession 0164568)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatological mean monthly distributions of pH in the total H+ scale, total CO2 concentration (TCO2), and the degree of CaCO3 saturation for the global surface...

  13. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2-N2 and CO2-CH4 gas mixtures with high CO2 loading.

    Science.gov (United States)

    Pal, Arun; Chand, Santanu; Elahi, Syed Meheboob; Das, Madhab C

    2017-11-14

    A microporous MOF {[Zn(SDB)(L) 0.5 ]·S} n (IITKGP-5) with a polar pore surface has been constructed by the combination of a V-shaped -SO 2 functionalized organic linker (H 2 SDB = 4,4'-sulfonyldibenzoic acid) with an N-rich spacer (L = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene), forming a network with sql(2,6L1) topology. IITKGP-5 is characterized by TGA, PXRD and single crystal X-ray diffraction. The framework exhibits lozenge-shaped channels of an approximate size of 4.2 × 5.6 Å 2 along the crystallographic b axis with a potential solvent accessible volume of 26%. The activated IITKGP-5a revealed a CO 2 uptake capacity of 56.4 and 49 cm 3 g -1 at 273 K/1 atm and 295 K/1 atm, respectively. On the contrary, it takes up a much smaller amount of CH 4 (17 cm 3 g -1 at 273 K and 13.6 cm 3 g -1 at 295 K) and N 2 (5.5 cm 3 g -1 at 273 K; 4 cm 3 g -1 at 295 K) under 1 atm pressure exhibiting its potential for a highly selective adsorption of CO 2 from flue gas as well as a landfill gas mixture. Based on the ideal adsorbed solution theory (IAST), a CO 2 /N 2 selectivity of 435.5 and a CO 2 /CH 4 selectivity of 151.6 have been realized at 273 K/100 kPa. The values at 295 K are 147.8 for CO 2 /N 2 and 23.8 for CO 2 /CH 4 gas mixtures under 100 kPa. In addition, this MOF nearly approaches the target values proposed for PSA and TSA processes for practical utility exhibiting its prospect for flue gas separation with a CO 2 loading capacity of 2.04 mmol g -1 .

  14. Assessment of coal combustion in O{sub 2}+CO{sub 2} by equilibrium calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ligang [Natural Resources Canada, CANMET Energy Technology Centre, 1 Haanel Drive, Nepean, ON (Canada); Furimsky, Edward [IMAF Group, 184 Marlborough Avenue, Ottawa, ON (Canada)

    2003-04-15

    The facility for analysis of chemical thermodynamics (F*A*C*T) method based on the Gibbs energy minimization principle was used for the environmental assessment of coal combustion in O{sub 2}+CO{sub 2} mixture compared with that in air. For the former case, the calculations predict higher emissions of CO and lower emissions of NO{sub x}. For both combustion media, SO{sub x} emissions are governed by O{sub 2} concentration, whereas distribution of trace metals was unaffected when O{sub 2} concentration in the O{sub 2}+CO{sub 2} mixture approached that in air. The effect of O{sub 2}+CO{sub 2} mixture on the distribution of chlorine- and alkali-containing compounds in the vapor phase was minor compared with that in air. In spite of the large excess of CO{sub 2} in combustion medium, sulfation was the predominant reaction occurring in ash.

  15. Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism.

    Science.gov (United States)

    Memmola, Francesco; Mukherjee, Bratati; Moroney, James V; Giordano, Mario

    2014-09-01

    Four mutants of Chlamydomonas reinhardtii with defects in different components of the CO2 concentrating mechanism (CCM) or in Rubisco activase were grown autotrophically at high pCO2 and then transferred to low pCO2, in order to study the role of different components of the CCM on carbon allocation and elemental composition. To study carbon allocation, we measured the relative size of the main organic pools by Fourier Transform Infrared spectroscopy. Total reflection X-ray fluorescence was used to analyze the elemental composition of algal cells. Our data show that although the organic pools increased their size at high CO2 in all strains, their stoichiometry was highly homeostatic, i.e., the ratios between carbohydrates and proteins, lipid and proteins, and carbohydrates and lipids, did not change significantly. The only exception was the wild-type 137c, in which proteins decreased relative to carbohydrates and lipids, when the cells were transferred to low CO2. It is noticeable that the two wild types used in this study responded differently to the transition from high to low CO2. Malfunctions of the CCM influenced the concentration of several elements, somewhat altering cell elemental stoichiometry: especially the C/P and N/P ratios changed appreciably in almost all strains as a function of the growth CO2 concentration, except in 137c and the Rubisco activase mutant rca1. In strain cia3, defective in the lumenal carbonic anhydrase (CA), the cell quotas of P, S, Ca, Mn, Fe, and Zn were about 5-fold higher at low CO2 than at high CO2. A Principle Components Analysis showed that, mostly because of its elemental composition, cia3 behaved in a substantially different way from all other strains, at low CO2. The lumenal CA thus plays a crucial role, not only for the correct functioning of the CCM, but also for element utilization. Not surprisingly, growth at high CO2 attenuated differences among strains.

  16. Climate change and the CO2 myth

    International Nuclear Information System (INIS)

    Boettcher, C.J.F.

    1994-01-01

    Further increase of the CO 2 concentration in the atmosphere has little effect on the greenhouse effect contrary to the effect of the increase of other greenhouse gases. However, politicians are using targets for the reduction of CO 2 emissions that are unrealistic, taking into account the scientific uncertainties of the applied models, the doubts about the feasibility of quantitative targets and the economic consequences of such drastic measures. Some recommendations are given for a more realistic CO 2 policy. Also attention is paid to the important role that coal will play in the future of the energy supply. 5 figs., 3 ills

  17. A common behaviour of thermoelectric layered cobaltites: incommensurate spin density wave states in [Ca2Co4/3Cu2/3O4]0.62[CoO2] and [Ca2CoO3]0.62[CoO2

    International Nuclear Information System (INIS)

    Sugiyama, J; Brewer, J H; Ansaldo, E J; Itahara, H; Dohmae, K; Xia, C; Seno, Y; Hitti, B; Tani, T

    2003-01-01

    Magnetism of a misfit layered cobaltite [Ca 2 Co 4/3 Cu 2/3 O 4 ] x RS [CoO 2 ] (x ∼ 0.62, RS denotes a rocksalt-type block) was investigated by a positive muon spin rotation and relaxation (μ + SR) experiment. A transition to an incommensurate (IC) spin density wave (SDW) state was found below 180 K (= T C on ); and a clear oscillation due to a static internal magnetic field was observed below 140 K(= T C ). Furthermore, an anisotropic behaviour of the zero-field μ + SR experiment indicated that the IC-SDW lies in the a-b plane, with oscillating moments directed along the c axis. These results were quite similar to those for the related compound [Ca 2 CoO 3 ] 0.62 RS [CoO 2 ], i.e., Ca 3 Co 4 O 9 . Since the IC-SDW field in [Ca 2 Co 4/3 Cu 2/3 O 4 ] 0.62 RS [CoO 2 ] was approximately the same as those in pure and doped [Ca 2 CoO 3 ] 0.62 RS [CoO 2 ], it was concluded that the IC-SDW exists in the [CoO 2 ] planes

  18. Economic efficiency of CO2 reduction programs

    International Nuclear Information System (INIS)

    Tahvonen, O.; Storch, H. von; Storch, J. von

    1993-01-01

    A highly simplified time-dependent low-dimensional system has been designed to describe conceptually the interaction of climate and economy. Enhanced emission of carbon dioxide (CO 2 ) is understood as the agent that not only favors instantaneous consumption but also causes unfavorable climate changes at a later time. The problem of balancing these two counterproductive effects of CO 2 emissions on a finite time horizon is considered. The climate system is represented by just two parameters, namely a globally averaged near-surface air-temperature and a globally averaged troposheric CO 2 concentration. The costs of abating CO 2 emissions are monitored by a function which depends quadratically on the percentage reduction of emission compared to an 'uncontrolled emission' scenario. Parameters are fitted to historical climate data and to estimates from studies of CO 2 abatement costs. Two optimization approaches, which differ from earlier attempts to describe the interaction of economy and climate, are discussed. In the 'cost oriented' strategy an optimal emission path is identified which balances the abatement costs and explicitly formulated damage costs. These damage costs, whose estimates are very uncertain, are hypothesized to be a linear function of the time-derivative of temperature. In the 'target oriented' strategy an emission path is chosen so that the abatement costs are minimal while certain restrictions on the terminal temperature and concentration change are met. (orig.)

  19. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  20. Co[sub 2] exchange, environmental productivity indices, and productivity of opuntia ficus-indica under current and elevated CO[sub 2] concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1992-01-01

    This project involved placing mature cladodes (flattened stem segments) of Opuntia ficus-indica in growth chambers containing 360 or 720 ppM CO[sub 2]. After nine weeks, the new daughter cladodes initiated on the planted cladodes averaged 7% higher in biomass but 8% less is area, leading to a specific stem mass for this Crassulacean acid metabolism (CAM) species that was 16% higher under the elevated CO[sub 2] condition. This is similar to be less dramatic than the increase in specific leaf mass for C[sub 3] and C[sub 4] plants under elevated CO[sub 2], which generally ranges from 28% to 40%. Another contrast with C[sub 3] and C[sub 4] Plants was the reliance of the new organs of the CAM plant on biomass translocated from existing organs instead of derived directly from current photosynthate. In this regard, 18% less dry weight was translocated from basal cladodes into daughter cladodes of Q. ficus-indica at 720 ppM CO[sub 2] compared with 360 ppM.

  1. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amorvadee Veawab

    2006-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.

  2. Carbon-14 exchange between CO2 and CO in the system 14CO2-CO-NOsub(x)(Ar, N2, O2)-quartz vessels

    International Nuclear Information System (INIS)

    Wawer, A.; Zielinski, M.

    1981-01-01

    It has been established that the rate of 14 C exchange between CO 2 and CO is diminished in presence of NO and NO 2 . The temperature dependence of the overall rate of exchange and the partial orders in respect to separate components of the exchange mixtures have been determined. The rate dependence on quartz surface has been established and the surface mechanism considered. The inhibiting action NO and NO 2 is explained. At higher pressures the catalytic effect of NO was found and explained. (author)

  3. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  4. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  5. SOIL 222Rn CONCENTRATION, CO2 AND CH4 FLUX MEASUREMENTS AROUND THE JWALAMUKHI AREA OF NORTH-WEST HIMALAYAS, INDIA.

    Science.gov (United States)

    Kumar, Arvind; Walia, Vivek; Yang, Tsanyao Frank; Fu, Ching-Chou; Singh, Surinder; Bajwa, Bikramjit Singh; Arora, Vishal

    2016-10-01

    Soil 222 Rn concentration, CO 2 and CH 4 flux measurements were conducted around the Jwalamukhi area of North-West Himalayas, India. During this study, around 37 soil gas points and flux measurements were taken with the aim to assure the suitability of this method in the study of fault zones. For this purpose, RAD 7 (Durridge, USA) was used to monitor radon concentrations, whereas portable diffuse flux meter (West Systems, Italy) was used for the CO 2 and CH 4 flux measurements. The recorded radon concentration varies from 6.1 to 34.5 kBq m -3 with an average value of 16.5 kBq m -3 The anomalous value of radon concentrations was recorded between Jwalamukhi thrust and Barsar thrust. The recorded average of CO 2 and CH 4 flux were 11.8 and 2.7 g m -2 day -1 , respectively. The good correlation between anomalous CO 2 flux and radon concentrations has been observed along the fault zone in the study area, suggesting that radon migration is dependent on CO 2 . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Pingping He

    2018-04-01

    Full Text Available A series of carbon aerogels were synthesized by polycondensation of resorcinol and formaldehyde, and their structure was adjusted by managing solution concentration of precursors. Carbon aerogels were characterized by X-ray diffraction (XRD, Raman, Fourier transform infrared spectroscopy (FTIR, N2 adsorption/desorption and scanning electron microscope (SEM technologies. It was found that the pore structure and morphology of carbon aerogels can be efficiently manipulated by managing solution concentration. The relative micropore volume of carbon aerogels, defined by Vmicro/Vtol, first increased and then decreased with the increase of solution concentration, leading to the same trend of CO2 adsorption capacity. Specifically, the CA-45 (the solution concentration of precursors is 45 wt% sample had the highest CO2 adsorption capacity (83.71 cm3/g and the highest selectivity of CO2/N2 (53 at 1 bar and 0 °C.

  7. Rising atmospheric CO2 concentration may imply higher risk of Fusarium mycotoxin contamination of wheat grains.

    Science.gov (United States)

    Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó

    2017-08-01

    Increasing atmospheric CO 2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO 2 (750 μmol mol -1 ) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO 2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO 2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO 2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO 2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO 2 . The results indicate that future environmental conditions, such as rising CO 2 levels, may increase the threat of grain mycotoxin contamination.

  8. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than that at 40 °C, and the temperature dependence is significantly weaker for higher surface area carbon cathodes. Ex-situ FTIR and XRD analyses convincingly show that lithium carbonate (Li2CO3) is the main component of the discharge product. The feasibility of similar primary metal-CO2 batteries based on earth abundant metal anodes, such as Al and Mg, is demonstrated. The metal-CO2 battery platform provides a novel approach for simultaneous capturing of CO2 emissions and producing electrical energy. © 2013 The Royal Society of Chemistry.

  9. Rangeland -- plant response to elevated CO2

    International Nuclear Information System (INIS)

    Owensby, C.E.; Coyne, P.I.; Ham, J.M.; Parton, W.; Rice, C.; Auen, L.M.; Adam, N.

    1993-01-01

    Plots of a tallgrass prairie ecosystem were exposed to ambient and twice-ambient CO 2 concentrations in open-top chambers and compared to unchambered ambient CO 2 plots during the entire growing season from 1989 through 1992. Relative root production among treatments was estimated using root ingrowth bags which remained in place throughout the growing season. Latent heat flux was simulated with and without water stress. Botanical composition was estimated annuallyin all treatments. Open-top chambers appeared to reduce latent heat flux and increase water use efficiency similar to elevated CO 2 when water stress was not severe, but under severe water stress, chamber effect on water use efficiency was limited. In natural ecosystems with periodic moisture stress, increased water use efficiency under elevated CO 2 apparently would have a greater impact on productivity than photosynthetic pathway. Root ingrowth biomass was greater in 1990 and 1991 on elevated CO 2 plots compared to ambient or chambered-ambient plots. In 1992, there was no difference in root ingrowth biomass among treatments

  10. Novel CO2 Foam Concepts and Injection Schemes for Improving CO2 Sweep Efficiency in Sandstone and Carbonate Hydrocarbon Formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Quoc [Univ. of Texas, Austin, TX (United States). Department of Petroleum & Geosystems Engineering; Hirasaki, George [Rice Univ., Houston, TX (United States). Department of Chemical Engineering; Johnston, Keith [Univ. of Texas, Austin, TX (United States). Department of Chemical Engineering

    2015-02-05

    We explored cationic, nonionic and zwitterionic surfactants to identify candidates that have the potential to satisfy all the key requirements for CO2 foams in EOR. We have examined the formation, texture, rheology and stability of CO2 foams as a function of the surfactant structure and formulation variables including temperature, pressure, water/CO2 ratio, surfactant concentration, salinity and concentration of oil. Furthermore, the partitioning of surfactants between oil and water as well as CO2 and water was examined in conjunction with adsorption measurements on limestone by the Hirasaki lab to develop strategies to optimize the transport of surfactants in reservoirs.

  11. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan

    2010-01-01

    Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded...... simulations were made for seven oil samples within a wide range of temperature, pressure and salinity. The results were analyzed in terms of the change in oil recovery due to different phase equilibrium descriptions, the delay in breakthrough and the CO2 lost to the aqueous phase. The influence of different...

  12. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    Science.gov (United States)

    McNeil, Ben I.; Sasse, Tristan P.

    2016-01-01

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean ‘CO2 hotspots’ evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for

  13. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    This study examines the initial performance and durability of a solid oxide cell applied for co-electrolysis of CO2 and H2O. Such a cell, when powered by renewable/nuclear energy, could be used to recycle CO2 into sustainable hydrocarbon fuels. Polarization curves and electrochemical impedance...... systematically varied test conditions enabled clear visual identification of five electrode processes that contribute to the cell resistance. The processes could be assigned to each electrode and to gas concentration effects by examining their dependence on gas composition changes and temperature. This study...

  14. Triazine containing N-rich microporous organic polymers for CO2 capture and unprecedented CO2/N2 selectivity

    International Nuclear Information System (INIS)

    Bhunia, Subhajit; Bhanja, Piyali; Das, Sabuj Kanti; Sen, Tapas; Bhaumik, Asim

    2017-01-01

    Targeted synthesis of microporous adsorbents for CO 2 capture and storage is very challenging in the context of remediation from green house gases. Herein we report two novel N-rich microporous networks SB-TRZ-CRZ and SB-TRZ-TPA by extensive incorporation of triazine containing tripodal moiety in the porous polymer framework. These materials showed excellent CO 2 storage capacities: SB-TRZ-CRZ displayed the CO 2 uptake capacity of 25.5 wt% upto 1 bar at 273 K and SB-TRZ-TPA gave that of 16 wt% under identical conditions. The substantial dipole quadruple interaction between network (polar triazine) and CO 2 boosts the selectivity for CO 2 /N 2 . SB-TRZ-CRZ has this CO 2 /N 2 selectivity ratio of 377, whereas for SB-TRZ-TPA it was 97. Compared to other porous polymers, these materials are very cost effective, scalable and very promising material for clean energy application and environmental issues. - Graphical abstract: We report two novel N-rich microporous polymeric materials by doping of triazine containing tripodal dopant in the organic framework. These materials showed excellent CO 2 storage capacities as high as 25.5 wt% under 1 bar pressure with exceptional CO 2 /N 2 selectivity of 377. - Highlights: • Triazine containing trimodal moiety incorporated in polycarbazolic and poly triphenylamine networks. • N-rich crosslinked polymers with high BET surface area and 1.5–1.7 nm size large micropores. • CO 2 uptake capacity of 25.5 wt% upto 1 bar at 273 K. • These crosslinked porous polymers showed exceptional CO 2 /N 2 selectivity.

  15. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils

    Science.gov (United States)

    Gladys I. Loranger; Kurt S. Pregitzer; John S. King

    2004-01-01

    Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...

  16. CO{sub 2} uptake by the Kalanchoe plant; CO{sub 2}-opname bij Kalanchoe

    Energy Technology Data Exchange (ETDEWEB)

    Verberkt, H.

    1994-01-01

    The results of a study on the assimilation of the Kalanchoe plant are presented. The aim of the study is to determine the optimal time period of a natural day (24 hours) to supply carbon dioxide to a Kalanchoe plant. A Kalanchoe plant originally is a so-called CAM (Crassulacean Acid Metabolism) plant: CO{sub 2} uptake at night and chemical conversion of CO{sub 2} into malic acid. By day the fixed CO{sub 2} is used for photosynthesis. It appears that a Kalanchoe plant also takes up CO{sub 2} by day, which is directly used for photosynthesis. For Dutch horticulture conditions (20C, sufficient moisture) extra CO{sub 2} supply by day in the spring results in an increase of both the fresh weight and the dry weight compared to no extra CO{sub 2} supply. 10 figs., 3 tabs., 19 refs., 4 appendices

  17. Photosynthesis of C3 and C4 Species in Response to Increased CO2 Concentration and Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIM

    2005-12-01

    Full Text Available Photosynthetic gas exchange in response to increased carbon dioxide concentration ([CO2] and drought stress of two C3 (wheat and kale and two C4 species (Echinochloa crusgallii and Amaranthus caudatus were analysed. Plants were grown in controlled growth chambers with ambient (350 μmol mol−1 and doubled ambient [CO2]. Drought was given by withholding water until the plants severely wilted, whereas the control plants were watered daily. Even though stomatal conductance (Gs of C4 species either under ambient or double [CO2] was lower than those in C3, doubled [CO2] decreased Gs of all species under well watered conditions. As a result, the plants grown under doubled [CO2] transpired less water than those grown under ambient [CO2]. Photosynthesis (Pn of the C4 species was sustained during moderate drought when those of the C3 species decreased significantly. Doubled [CO2] increased photosynthesis of C3 but not of C4 species. Increased [CO2] was only able to delay Pn reduction of all species due to the drought, but not remove it completely. The positive effects of increased [CO2] during moderate drought and the disappearance of it under severe drought suggesting that metabolic effect may limit photosynthesis under severe drought.

  18. Photosynthesis of C3 and C4 Species in Response to Increased CO2 Concentration and Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIM

    2005-12-01

    Full Text Available Photosynthetic gas exchange in response to increased carbon dioxide concentration ([CO2] and drought stress of two C3 (wheat and kale and two C4 species (Echinochloa crusgallii and Amaranthus caudatus were analysed. Plants were grown in controlled growth chambers with ambient (350 mol mol-1 and doubled ambient [CO2]. Drought was given by withholding water until the plants severely wilted, whereas the control plants were watered daily. Even though stomatal conductance (Gs of C4 species either under ambient or double [CO2] was lower than those in C3, doubled [CO2] decreased Gs of all species under well watered conditions. As a result, the plants grown under doubled [CO2] transpired less water than those grown under ambient [CO2]. Photosynthesis (Pn of the C4 species was sustained during moderate drought when those of the C3 species decreased significantly. Doubled [CO2] increased photosynthesis of C3 but not of C4 species. Increased [CO2] was only able to delay Pn reduction of all species due to the drought, but not remove it completely. The positive effects of increased [CO2] during moderate drought and the disappearance of it under severe drought suggesting that metabolic effect may limit photosynthesis under severe drought.

  19. Novel Co(III)/Co(II) mixed valence compound [Co(bapen)Br2]2[CoBr4] (bapen = N,N‧-bis(3-aminopropyl)ethane-1,2-diamine): Synthesis, crystal structure and magnetic properties

    Science.gov (United States)

    Smolko, Lukáš; Černák, Juraj; Kuchár, Juraj; Miklovič, Jozef; Boča, Roman

    2016-09-01

    Green crystals of Co(III)/Co(II) mixed valence compound [Co(bapen)Br2]2[CoBr4] (bapen = N,N‧-bis(3-aminopropyl)ethane-1,2-diamine) were isolated from the aqueous system CoBr2 - bapen - HBr, crystallographically studied and characterized by elemental analysis and IR spectroscopy. Its ionic crystal structure is built up of [Co(bapen)Br2]+ cations and [CoBr4]2- anions. The Co(III) central atoms within the complex cations are hexacoordinated (donor set trans-N4Br2) with bromido ligands placed in the axial positions. The Co(II) atoms exhibit distorted tetrahedral coordination. Beside ionic forces weak Nsbnd H⋯Br intermolecular hydrogen bonding interactions contribute to the stability of the structure. Temperature variable magnetic measurements confirm the S = 3/2 behavior with the zero-field splitting of an intermediate strength: D/hc = 8.7 cm-1.

  20. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.

    2001-01-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  1. ELEVATED CO{sub 2} IN A PROTOTYPE FREE-AIR CO{sub 2} ENRICHMENT FACILITY AFFECTS PHOTOSYNTHETIC NITROGEN RELATIONS IN A MATURING PINE FOREST

    Energy Technology Data Exchange (ETDEWEB)

    ELLSWORTH,D.S.; LA ROCHE,J.; HENDREY,G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric [CO{sub 2}] {approx} 550 {micro}mol mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Their findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. While carboxylation efficiency per unit N apparently decreased under elevated CO{sub 2}, photosynthetic rates in trees at elevated CO{sub 2} concentrations {approx} 550 pmol mol{sub {minus}1} are still

  2. CO2 as a refrigerant

    CERN Document Server

    2014-01-01

    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  3. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-01-01

    Full Text Available We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ∼ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  4. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    Science.gov (United States)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  5. Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test.

    Science.gov (United States)

    Yang, Changbing; Hovorka, Susan D; Delgado-Alonso, Jesus; Mickler, Patrick J; Treviño, Ramón H; Phillips, Straun

    2014-12-02

    This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. Measurements of groundwater pH, alkalinity, DIC, and dissolved CO2 clearly deviated from their background values, showing responses to CO2 leakage. Dissolved CO2 observed in the tests was highly sensitive in comparison to groundwater pH, DIC, and alkalinity. Comparison of the pulselike CO2-release tests to other field tests suggests that pulselike CO2-release tests can provide reliable assessment of geochemical parameters indicative of CO2 leakage. Measurements by the fiber-optic CO2 sensor, showing obvious leakage signals, demonstrated the potential of real-time in situ monitoring of dissolved CO2 for leakage detection at a geologic carbon sequestration (GCS) site. Results of a two-dimensional reactive transport model reproduced the geochemical measurements and confirmed that the decrease in groundwater pH and the increases in DIC and dissolved CO2 observed in the pulselike CO2-release tests were caused by dissolution of CO2 whereas alkalinity was likely affected by carbonate dissolution.

  6. Geochemical alteration of wellbore cement by CO2 or CO2+H 2 S reaction during long-term carbon storage: Original Research Article: Geochemical alteration of wellbore cement by CO2

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong [Pacific Northwest National Laboratory, Richland WA USA; Rod, Kenton A. [Pacific Northwest National Laboratory, Richland WA USA; Jung, Hun Bok [New Jersey City University, Jersey City NJ USA; Brown, Christopher F. [Pacific Northwest National Laboratory, Richland WA USA

    2016-03-22

    Cement samples were reacted with CO2-saturated groundwater, with or without added H2S (1 wt.%), at 50°C and 10 MPa for up to 13 months (CO2 only) or for up to 3.5 months (CO2 + H2S) under static conditions. After the reaction, X-ray computed tomography images revealed that calcium carbonate precipitation (CaCO3) occurred extensively within the fractures in the cement matrix, but only partially along fractures at the cement-basalt interface. Exposure of a fractured cement sample to CO2-saturated groundwater (50°C and 10 MPa) over a period of 13 months demonstrated progressive healing of cement fractures by CaCO3(s) precipitation. After reaction with CO2 + H2S-saturated groundwater, CaCO3 (s) precipitation also occurred more extensively within the cement fracture than along the cement-basalt caprock interfaces. X-ray diffraction analysis showed that major cement carbonation products of the CO2 + H2S-saturated groundwater were calcite, aragonite, and vaterite, all consistent with cement carbonation by CO2-saturated groundwater. While pyrite is thermodynamically favored to form, due to the low H2S concentration it was not identified by XRD in this study. The cement alteration rate into neat Portland cement columns by CO2-saturated groundwater was similar at ~0.02 mm/d, regardless of the cement-curing pressure and temperature (P-T) conditions, or the presence of H2S in the brine. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2- or CO2 + H2S-saturated groundwater, whereas fractures along the cement-caprock interface are likely to remain open and vulnerable to the leakage of CO2.

  7. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    Science.gov (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  8. Environmental impacts of ocean disposal of CO2

    International Nuclear Information System (INIS)

    Adams, E.; Herzog, H.; Auerbach, D.

    1995-01-01

    One option to reduce atmospheric CO 2 levels is to capture and sequester power plant CO 2 Commercial CO 2 capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO 2 is highly uncertain. The deep ocean is one of only a few possible CO 2 disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO 2 . The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO 2 is originally discharged. However, peak atmospheric CO 2 concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO 2 injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO 2 will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996

  9. Effect of Uncertainties in CO2 Property Databases on the S-CO2 Compressor Performance

    International Nuclear Information System (INIS)

    Lee, Je Kyoung; Lee, Jeong Ik; Ahn, Yoonhan; Kim, Seong Gu; Cha, Je Eun

    2013-01-01

    Various S-CO 2 Brayton cycle experiment facilities are on the state of construction or operation for demonstration of the technology. However, during the data analysis, S-CO 2 property databases are widely used to predict the performance and characteristics of S-CO 2 Brayton cycle. Thus, a reliable property database is very important before any experiment data analyses or calculation. In this paper, deviation of two different property databases which are widely used for the data analysis will be identified by using three selected properties for comparison, C p , density and enthalpy. Furthermore, effect of above mentioned deviation on the analysis of test data will be briefly discussed. From this deviation, results of the test data analysis can have critical error. As the S-CO 2 Brayton cycle researcher knows, CO 2 near the critical point has dramatic change on thermodynamic properties. Thus, it is true that a potential error source of property prediction exists in CO 2 properties near the critical point. During an experiment data analysis with the S-CO 2 Brayton cycle experiment facility, thermodynamic properties are always involved to predict the component performance and characteristics. Thus, construction or defining of precise CO 2 property database should be carried out to develop Korean S-CO 2 Brayton cycle technology

  10. Effects of cyclopentane on CO2 hydrate formation and dissociation as a co-guest molecule for desalination

    International Nuclear Information System (INIS)

    Zheng, Jia-nan; Yang, Ming-jun; Liu, Yu; Wang, Da-yong; Song, Yong-chen

    2017-01-01

    Highlights: • CP decreases CO 2 hydrate phase equilibrium pressure by forming CO 2 -CP hydrates. • The increase of CP can’t decrease hydrates phase equilibrium pressure unlimitedly. • Higher CP concentration lowers CO 2 hydrate gas uptake. • The optimal CP molar ratio is 0.01 based on hydrate phase equilibrium and gas uptake. - Abstract: Cyclopentane (CP) is considered to be a potential co-guest molecule in carbon dioxide (CO 2 ) hydrate-based desalination. The experimental thermodynamic data of CO 2 -CP hydrates were measured for a salt solution, where CP was chosen as a hydrate promoter. Seven experimental cases (62 cycles) were studied with different molar ratios of CP/water (0, 0.0025, 0.005, 0.0075, 0.01, 0.02, and 0.03). Hydrate phase equilibrium data were generated using an isochoric method, and the hydrate saturations were calculated based on gas uptake. The results indicated that the increase in CP concentration significantly decreased the CO 2 hydrate equilibrium pressure to a certain limit; the hydrate saturation also decreased during this process. Also, it was determined that CP encouraged the formation of s-II double CO 2 -CP hydrates, which are different from s-I simple CO 2 hydrate. The CO 2 -CP guest provides a strengthened stability and moderate hydrate phase equilibrium conditions for hydrate-based desalination. The recommended optimal molar ratio of CP is 0.01 when the increase in equilibrium was more than 10 K, and the decrease in hydrate saturation was less than 2%.

  11. Acute physiological impacts of CO{sub 2} ocean sequestration on marine animals

    Energy Technology Data Exchange (ETDEWEB)

    Ishimatsu, A.; Hayashi, M.; Lee, K.S.; Murata, K.; Kumagai, E. [Nagasaki Univ., Nagasaki (Japan). Marine Research Inst.; Kikkawa, T. [Marine Ecology Research Inst., Chiba (Japan). Central Laboratory; Kita, J. [Research Inst. of Innovative Technology for the Earth, Kyoto (Japan)

    2005-07-01

    The biological impacts of ocean carbon dioxide (CO{sub 2}) sequestration must be carefully considered before it is implemented as a mitigation strategy. This paper presented details of a study investigating the effects of high CO{sub 2} concentrations on marine fish, lobster, and octopus. The influence of water temperature on the physiological effects of CO{sub 2} was also discussed. In the first part of the study, eggs and larvae of red seabream were exposed to both CO{sub 2} and HCI-acidified seawater at identical pH levels. Seabream in the CO{sub 2} group showed a much higher mortality rate than fish in the HCI group. Other tests showed that Japanese Flounder died after complete recovery of pH in seawater equilibrated with 5 per cent CO{sub 2}. Cardiac output was rapidly depressed in Yellowtail fish without significant changes in blood oxygen concentrations. Lower temperatures resulted in higher mortality and delayed pH recovery during hypercapnia in all fish. Western rock lobsters were the most tolerant to CO{sub 2} among all species tested. The recovery of hemolymph pH was complete at exposure to CO{sub 2} concentrations of 1 per cent. Changes in hemolymph bicarbonate concentrations indicated that acid-based regulatory mechanisms differed between fish and lobsters. Mortality rates for octopus were significant at CO{sub 2} concentrations of 1 per cent. The results of all tests showed that aquatic animals are more susceptible to increases in ambient CO{sub 2} levels than terrestrial animals. It was concluded that even slight elevations in CO{sub 2} concentration levels adversely affected physiological functioning in the tested species. It was concluded that CO{sub 2} sequestration in deeper, colder waters will have a more pronounced effect on aquatic animals due to the interactions between CO{sub 2} and lower temperatures, as well as the fact that most deep-sea fish are less tolerant to environmental perturbations. 3 refs., 1 tab., 3 figs.

  12. CO2 capture by gas hydrate crystallization: Application on the CO2-N2 mixture

    International Nuclear Information System (INIS)

    Bouchemoua, A.

    2012-01-01

    CO 2 capture and sequestration represent a major industrial and scientific challenge of this century. There are different methods of CO 2 separation and capture, such as solid adsorption, amines adsorption and cryogenic fractionation. Although these processes are well developed at industrial level, they are energy intensive. Hydrate formation method is a less energy intensive and has an interesting potential to separate carbon dioxide. Gas hydrates are Document crystalline compounds that consist of hydrogen bonded network of water molecules trapping a gas molecule. Gas hydrate formation is favored by high pressure and low temperature. This study was conducted as a part of the SECOHYA ANR Project. The objective is to study the thermodynamic and kinetic conditions of the process to capture CO 2 by gas hydrate crystallization. Firstly, we developed an experimental apparatus to carry out experiments to determine the thermodynamic and kinetic formation conditions of CO 2 -N 2 gas hydrate mixture in water as liquid phase. We showed that the operative pressure may be very important and the temperature very low. For the feasibility of the project, we used TBAB (Tetrabutylammonium Bromide) as thermodynamic additive in the liquid phase. The use of TBAB may reduce considerably the operative pressure. In the second part of this study, we presented a thermodynamic model, based on the van der Waals and Platteeuw model. This model allows the estimation of thermodynamic equilibrium conditions. Experimental equilibrium data of CO 2 -CH 4 and CO 2 -N 2 mixtures are presented and compared to theoretical results. (author)

  13. Upper airway CO2 receptors in tegu lizards: localization and ventilatory sensitivity.

    Science.gov (United States)

    Coates, E L; Ballam, G O

    1987-01-01

    1. Tidal volume, end-tidal CO2, and ventilatory frequency in Tupinambis nigropunctatus were measured in response to CO2 (1-4%) delivered to either the mouth or nares. Additionally, the sensitivity of the ventilatory response to nasal CO2 was evaluated at CO2 concentrations less than 1%. The ventilatory parameters were also measured in response to CO2 (1-4%) delivered to the nares after the olfactory peduncle was transected. 2. It was found that (0.4-4%) nasal CO2 depressed ventilatory frequency by 9% to 83% respectively, while tidal volume was not significantly altered. CO2 (1-4%) delivered to the mouth produced no apparent changes in any of the ventilatory parameters. Following transection of the olfactory peduncle, nasal CO2 was ineffective in producing any change in ventilatory frequency or depth. 3. These findings indicate that CO2-sensitive receptors are located in either the nasal or vomeronasal membranes of tegu lizards and that the olfactory peduncle must be intact for these receptors to affect ventilatory changes in response to elevated CO2 concentrations. The receptors are capable of mediating a ventilatory response to CO2 concentrations lower than those found in either expired air or in confined spaces such as occupied burrows. 4. The discrepancies in the ventilatory responses of lizards and snakes to inspired CO2 reported in past experiments may be partially explained by the presence of nasal or vomeronasal CO2-sensitive receptors.

  14. Does the increase in ambient CO2 concentration elevate allergy risks posed by oak pollen?

    Science.gov (United States)

    Kim, Kyu Rang; Oh, Jae-Won; Woo, Su-Young; Seo, Yun Am; Choi, Young-Jin; Kim, Hyun Seok; Lee, Wi Young; Kim, Baek-Jo

    2018-05-01

    Oak pollen is a major respiratory allergen in Korea, and the distribution of oak trees is expected to increase by ecological succession and climate change. One of the drivers of climate change is increasing CO2, which is also known to amplify the allergy risk of weed pollen by inducing elevated allergenic protein content. However, the impact of CO2 concentration on tree pollen is not clearly understood due to the experimental difficulties in carrying out extended CO2 treatment. To study the response of pollen production of sawtooth oak trees (Quercus acutissima) to elevated levels of ambient CO2, three open-top chambers at the National Institute of Forest Science in Suwon, Korea were utilized with daytime (8 am-6 pm) CO2 concentrations of ambient (× 1.0, 400 ppm), × 1.4 ( 560 ppm), and × 1.8 ( 720 ppm) treatments. Each chamber had three sawtooth oak trees planted in September 2009. One or two trees per chamber matured to bloom in 2016. Five to six catkins were selected per tree and polyethylene bags were attached to collect pollen grains. The total number of catkins per tree was counted and the number and weight of pollen grains per catkin were measured. Oak allergen—Que a 1 (Allergon Co., Uppsala, Sweden)—was extracted and purified to make an ELISA kit by which the antigen levels in the pollen samples were quantified. Total pollen counts per tree of the × 1.4 and × 1.8 treatments showed significant increase of 353 and 1299%, respectively, from the × 1.0 treatment (p < 0.001). Allergenic protein contents at the × 1.4 and × 1.8 treatments also showed significant increase of 12 and 11%, respectively (p = 0.011). The × 1.8 treatment induced significant difference from the × 1.0 treatment in terms of pollen production and allergenic protein content, whereas the × 1.4 treatment showed mixed significance. In summary, the oak trees under the elevated CO2 levels, which are expected in the changing climate, produced significantly higher amount of pollen and

  15. Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

    International Nuclear Information System (INIS)

    Lee, D.H.; Lee, K.S.; Cho, Y.J.; Kim, H.J.; Choi, J.M.; Chung, S.O.

    2012-01-01

    Reducing carbon dioxide (CO2) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where CO2 is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, CO2 concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse CO2 enrichment based on accurate monitoring of the added CO2 can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required CO2 concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied CO2. RPI for a greenhouse controlled at lower set point of CO2 concentration (500 μmol * mol -1 ) was greater than that of greenhouse at higher set point (800 μmol * mol -1 ). Evaluation tests to optimize CO2 enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of CO2 but also to maintain the crop profitability

  16. Ocean CO{sub 2} disposal

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Yuji; Hakuta, Toshikatsu [National Inst. of Materials and Chemical Research, AIST, MITI, Higashi, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Most countries in the world will continue to depend on fossil fuels for their main energy at least for half a country, even in the confrontation with the threat of global warming. This indicates that the development of CO{sub 2} removal technologies such as recovering CO{sub 2} from flue gases and sequestering it of in the deep oceans or subterranean sites is necessary, at least until non-fossil fuel dependent society is developed. Ocean CO{sub 2} disposal is one of the promising options for the sequestration of CO{sub 2} recovered from flue gases. Oceans have sufficient capacity to absorb all the CO{sub 2} emitted in the world. It is very significant to research and develop the technologies for ocean CO{sub 2} disposal.

  17. Effect of the temperature and the CO2 concentration on the behaviour of the citric acid as a scale inhibitor of CaCO3

    Science.gov (United States)

    Blanco, K.; Aponte, H.; Vera, E.

    2017-12-01

    For all Industrial sector is important to extend the useful life of the materials that they use in their process, the scales of CaCO3 are common in situation where fluids are handled with high concentration of ions and besides this temperatures and CO2 concentration dissolved, that scale generates large annual losses because there is a reduction in the process efficiency or corrosion damage under deposit, among other. In order to find new alternatives to this problem, the citric acid was evaluated as scale of calcium carbonate inhibition in critical condition of temperature and concentration of CO2 dissolved. Once the results are obtained it was carried out the statistical evaluation in order to generate an equation that allow to see that behaviour, giving as result, a good efficiency of inhibition to the conditions evaluated the scales of products obtained were characterized through scanning electron microscopy.

  18. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    Science.gov (United States)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations.

    Science.gov (United States)

    Beleggia, Romina; Fragasso, Mariagiovanna; Miglietta, Franco; Cattivelli, Luigi; Menga, Valeria; Nigro, Franca; Pecchioni, Nicola; Fares, Clara

    2018-03-01

    The concentrations of 10 minerals were investigated in the grain of 12 durum wheat genotypes grown under free air CO 2 enrichment conditions, and in four of their derived pasta samples, using inductively coupled plasma mass spectrometry. Compared to ambient CO 2 (400ppm; AMB), under elevated CO 2 (570ppm; ELE), the micro-element and macro-element contents showed strong and significant decreases in the grain: Mn, -28.3%; Fe, -26.7%; Zn, -21.9%; Mg, -22.7%; Mo, -40.4%; K, -22.4%; and Ca, -19.5%. These variations defined the 12 genotypes as sensitive or non-sensitive to ELE. The pasta samples under AMB and ELE showed decreased mineral contents compared to the grain. Nevertheless, the contributions of the pasta to the recommended daily allowances remained relevant, also for the micro-elements under ELE conditions (range, from 18% of the recommended daily allowance for Zn, to 70% for Mn and Mo). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.

    Science.gov (United States)

    Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng

    2017-11-01

    Climate change, caused by heavy CO 2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO 2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO 2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO 2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO 2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO 2 reduction. In order to achieve high selectivity for CO 2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO 2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Carbon Dioxide and Water Vapor Concentrations, Co-spectra and Fluxes from Latest Standardized Automated CO2/H2O Flux Systems versus Established Analyzer Models

    Science.gov (United States)

    Burba, G. G.; Kathilankal, J. C.; Begashaw, I.; Franzen, D.; Welles, J.; McDermitt, D. K.

    2017-12-01

    Spatial and temporal flux data coverage have improved significantly in recent years, due to standardization, automation and management of data collection, and better handling of the generated data. With more stations and networks, larger data streams from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process.These tools should produce standardized verifiable datasets, and provide a way to cross-share the standardized data with external collaborators to leverage available funding, and promote data analyses and publications. In 2015, new open-path and enclosed flux measurement systems1 were developed, based on established gas analyzer models2,3, with the goal of improving stability in the presence of contamination, refining temperature control and compensation, and providing more accurate gas concentration measurements. In 2017, the new open-path system was further refined to simplify hardware configuration, and to reduce power consumption and cost. Additionally, all new systems incorporate complete automated on-site flux calculations using EddyPro® Software4 run by a weatherized remotely-accessible microcomputer to provide standardized traceable data sets for fluxes and supporting variables. This presentation will describe details and results from the field tests of the new flux systems, in comparison to older models and reference instruments. References:1 Burba G., W. Miller, I. Begashaw, G. Fratini, F. Griessbaum, J. Kathilankal, L. Xu, D. Franz, E. Joseph, E. Larmanou, S. Miller, D. Papale, S. Sabbatini, T. Sachs, R. Sakai, D. McDermitt, 2017. Comparison of CO2 Concentrations, Co-spectra and Flux Measurements between Latest Standardized Automated CO2/H2O Flux Systems and Older Gas Analysers. 10th ICDC Conference, Switzerland: 21-25/08 2 Metzger, S., G. Burba, S. Burns, P. Blanken, J. Li, H. Luo, R. Zulueta, 2016. Optimization of an enclosed gas analyzer sampling system for measuring eddy

  2. CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy

    International Nuclear Information System (INIS)

    Ipek Tunc, G.; Tueruet-Asik, Serap; Akbostanci, Elif

    2007-01-01

    Recently, global warming (greenhouse effect) and its effects have become one of the hottest topics in the world agenda. There have been several international attempts to reduce the negative effects of global warming. The Kyoto Protocol can be cited as the most important agreement which tries to limit the countries' emissions within a time horizon. For this reason, it becomes important to calculate the greenhouse gas emissions of countries. The aim of this study is to estimate the amount of CO 2 -the most important greenhouse gas-emissions, for the Turkish economy. An extended input-output model is estimated by using 1996 data in order to identify the sources of CO 2 emissions and to discuss the share of sectors in total emission. Besides, 'CO 2 responsibility', which takes into account the CO 2 content of imports, is estimated for the Turkish economy. The sectoral CO 2 emissions and CO 2 responsibilities are compared and these two notions are linked to foreign trade volume. One of the main conclusions is that the manufacturing industry has the first place in both of the rankings for CO 2 emissions and CO 2 responsibilities, while agriculture and husbandry has the last place

  3. Measurements of CO2 Column Abundance in the Low Atmosphere Using Ground Based 1.6 μm CO2 DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    Changes in atmospheric carbon dioxide (CO2) concentration are believed to produce the largest radiative forcing for the current climate system. Accurate predictions of atmospheric CO2 concentration rely on the knowledge of its sinks and sources, transports, and its variability with time. Although this knowledge is currently unsatisfactory, numerical models use it as a way in simulating CO2 fluxes. Validating and improving the global atmospheric transport model, therefore, requires precise measurement of the CO2 concentration profile. There are two further variations on Lidar: the differential absorption Lidar (DIAL) and the integrated path differential absorption (IPDA) Lidar. DIAL/IPDA are basically for profile/total column measurement, respectively. IPDA is a special case of DIAL and can measure the total column-averaged mixing ratio of trace gases using return signals from the Earth's surface or from thick clouds based on an airborne or a satellite. We have developed a ground based 1.6 μm DIAL to measure vertical CO2 mixing ratio profiles from 0.4 to 2.5 km altitude. The goals of the CO2 DIAL are to produce atmospheric CO2 mixing ratio measurements with much smaller seasonal and diurnal biases from the ground surface. But, in the ground based lidar, return signals from around ground surface are usually suppressed in order to handle the large dynamic range. To receive the return signals as near as possible from ground surface, namely, the field of view (FOV) of the telescope must be wide enough to reduce the blind range of the lidar. While the return signals from the far distance are very weak, to enhance the sensitivity and heighten the detecting distance, the FOV must be narrow enough to suppress the sky background light, especially during the daytime measurements. To solve this problem, we propose a total column measurement method from the ground surface to 0.4 km altitude. Instead of strong signals from thick clouds such as the IPDA, the proposed method uses

  4. Environmental potential of the use of CO_2 from alcoholic fermentation processes. The CO_2-AFP strategy

    International Nuclear Information System (INIS)

    Alonso-Moreno, Carlos; García-Yuste, Santiago

    2016-01-01

    A novel Carbon Dioxide Utilization (CDU) approach from a relatively minor CO_2 emission source, i.e., alcoholic fermentation processes (AFP), is presented. The CO_2 produced as a by-product from the AFP is estimated by examining the EtOH consumed per year reported by the World Health Organization in 2014. It is proposed that the extremely pure CO_2 from the AFP is captured in NaOH solutions to produce one of the Top 10 commodities in the chemical industry, Na_2CO_3, as a good example of an atomic economy process. The novel CDU strategy could yield over 30.6 Mt of Na_2CO_3 in oversaturated aqueous solution on using ca. 12.7 Mt of captured CO_2 and this process would consume less energy than the synthetic methodology (Solvay ammonia soda process) and would not produce low-value by-products. The quantity of Na_2CO_3 obtained by this strategy could represent ca. 50% of the world Na_2CO_3 production in one year. In terms of the green economy, the viability of the strategy is discussed according to the recommendations of the CO_2Chem network, and an estimation of the CO_2negative emission achieved suggests a capture of around 280.0 Mt of CO_2 from now to 2020 or ca. 1.9 Gt from now to 2050. Finally, the results obtained for this new CDU proposal are discussed by considering different scenarios; the CO_2 production in a typical winemaking corporation, the CO_2 released in the most relevant wine-producing countries, and the use of CO_2 from AFP as an alternative for the top Na_2CO_3-producing countries. - Highlights: • A new CDU strategy to mitigate the CO_2 in the atmosphere is assessed. • An environmental action towards negligible emission sources such as AFP. • The waste CO_2 from AFP could be converted into Na_2CO_3. • Capture 12.7 Mt yr"–"1 of CO_2 to generate ca. 1.9 Gt of CO_2negative emissions by 2050.

  5. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    Science.gov (United States)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  6. CO2 chemical valorization

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Rakotojaona, Loic; Bucy, Jacques de; Clodic, Denis; Roger, Anne-Cecile; El Khamlichi, Aicha; Thybaud, Nathalie; Oeser, Christian; Forti, Laurent; Gimenez, Michel; Savary, David; Amouroux, Jacques

    2014-07-01

    Facing global warming, different technological solutions exist to tackle carbon dioxide (CO 2 ) emissions. Some inevitable short term emissions can be captured so as to avoid direct emissions into the atmosphere. This CO 2 must then be managed and geological storage seems to currently be the only way of dealing with the large volumes involved. However, this solution faces major economic profitability and societal acceptance challenges. In this context, alternative pathways consisting in using CO 2 instead of storing it do exist and are generating growing interest. This study ordered by the French Environment and Energy Management Agency (ADEME), aims at taking stock of the different technologies used for the chemical conversion of CO 2 in order to have a better understanding of their development potential by 2030, of the conditions in which they could be competitive and of the main actions to be implemented in France to foster their emergence. To do this, the study was broken down into two main areas of focus: The review and characterization of the main CO 2 chemical conversion routes for the synthesis of basic chemical products, energy products and inert materials. This review includes a presentation of the main principles underpinning the studied routes, a preliminary assessment of their performances, advantages and drawbacks, a list of the main R and D projects underway, a focus on emblematic projects as well as a brief analysis of the markets for the main products produced. Based on these elements, 3 routes were selected from among the most promising by 2030 for an in-depth modelling and assessment of their energy, environmental and economic performances. The study shows that the processes modelled do have favorable CO 2 balances (from 1 to 4 t-CO 2 /t-product) and effectively constitute solutions to reduce CO 2 emissions, despite limited volumes of CO 2 in question. Moreover, the profitability of certain solutions will remain difficult to reach, even with an

  7. Solar processing of CO2 and H2O, routes for solar fuels

    International Nuclear Information System (INIS)

    Flammant, G.; Abanades, St.

    2008-01-01

    Complete text of publication follows: Concentrated solar energy provides heat in the temperature range 200 C - 3000 C for concentration ratio variation from 10 to 10 000 (three orders of magnitude). Consequently, solar-driven thermochemical processes may be proposed to produce hydrogen from water decomposition and to reduce carbon dioxide. This lecture gives an overview of such processes. High temperature thermochemical cycles for hydrogen production by water splitting are currently studied at PROMES lab, particularly 2-step and 3-step cycles based on the following reaction scheme, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + H 2 O → MOox + H 2 (low temperature non solar step). Volatile and non-volatile oxide cycles are developed from the chemical and the engineering points of view. A similar reaction scheme may be proposed to reduce carbon dioxide with concentrated solar energy (Fig. 1), it comes, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + CO 2 → MOox + CO (low temperature non solar step). As a result gas mixtures such as CO 2 /H 2 and CO/H 2 may be produced by solar energy. Such mixtures are the reactants for liquid fuels production (solar fuels)

  8. Geochemical Study of Natural CO{sub 2} Emissions in the French Massif Central: How to Predict Origin, Processes and Evolution of CO{sub 2} Leakage; Etude geochimique des emissions naturelles de CO{sub 2} du Massif Central: origine et processus de migration du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Battani, A.; Deville, E.; Faure, J.L.; Jeandel, E.; Noirez, S.; Tocque, E.; Benoit, Y.; Schmitz, J.; Parlouar, D. [Institut francais du petrole, IFP, 92 - Rueil-Malmaison (France); Sarda, P. [Paris-11 Univ., 91 - Orsay (France); Gal, F.; Le Pierres, K.; Brach, M.; Braibant, G.; Beny, C. [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France); Pokryszka, Z.; Charmoille, A.; Bentivegna, G. [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, 60 - Verneuil-en-Halatte (France); Pironon, J.; De Donato, P.; Garnier, C.; Cailteau, C.; Barres, O.; Radilla, G.; Bauer, A. [Institut National Polytechnique de Lorraine (INPL), 54 - Vandoeuvre-les-Nancy (France)

    2010-07-15

    This study presents an overview of some results obtained within the French ANR (National Agency of Research) supported Geocarbone-Monitoring research program. The measurements were performed in Sainte-Marguerite, located in the French Massif Central. This site represents a natural laboratory for CO{sub 2}/fluid/rock interactions studies, as well as CO{sub 2} migration mechanisms towards the surface. The CO{sub 2} leaking character of the studied area also allows to test and validate measurements methods and verifications for the future CO{sub 2} geological storage sites. During these surveys, we analyzed soil CO{sub 2} fluxes and concentrations. We sampled and analyzed soil gases, and gas from carbo-gaseous bubbling springs. A one-month continuous monitoring was also tested, to record the concentration of CO{sub 2} both in atmosphere and in the soil at a single point. We also developed a new methodology to collect soil gas samples for noble gas abundances and isotopic analyses, as well as carbon isotopic ratios. Our geochemical results, combined with structural geology, show that the leaking CO{sub 2} has a very deep origin, partially mantle derived. The gas rises rapidly along normal and strike-slip active faults. CO{sub 2} soil concentrations (also showing a mantle derived component) and CO{sub 2} fluxes are spatially variable, and reach high values. The recorded atmospheric CO{sub 2} is not very high, despite the important CO{sub 2} degassing throughout the whole area. (authors)

  9. Simulasi Numeris Karakteristik Pembakaran CH4/CO2/Udara dan CH4/CO2/O2 pada Counterflow Premixed Burner

    Directory of Open Access Journals (Sweden)

    Hangga Wicaksono

    2017-08-01

    Full Text Available The high amount of CO2 produced in a conventional biogas reactor needs to be considered. A further analysis is needed in order to investigate the effect of CO2 addition especially in thermal and chemical kinetics aspect. This numerical study has been held to analyze the effect of CO2 in CH4/CO2/O­2 and CH4/CO2/Air premixed combustion. In this study one dimensional analisys in a counterflow burner has been performed. The volume fraction of CO2 used in this study was 0%-40% from CH4’s volume fraction, according to the amount of CO2 in general phenomenon. Based on the flammability limits data, the volume fraction of CH4 used was 5-61% in O2 environment and 5-15% in air environment. The results showed a decreasing temperature along with the increasing percentage of CO2 in each mixtures, but the effect was quite smaller especially in stoichiometric and lean mixture. CO2 could affects thermally (by absorbing heat due to its high Cp and also made the production of unburnt fuel species such as CO relatively higher.

  10. Effects of tillage practice and atmospheric CO2 level on soil CO2 efflux

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) affects both the quantity and quality of plant tissues, which impacts the cycling and storage of carbon (C) within plant/soil systems and thus the rate of CO2 release back to the atmosphere. Research to accurately quantify the effects of elevated CO2 and as...

  11. Experimental Studies on the Interaction of scCO2 and scCO2-SO2 With Rock Forming Minerals at Conditions of Geologic Carbon Storages - First Results

    Science.gov (United States)

    Erzinger, J.; Wilke, F.; Wiersberg, T.; Vasquez Parra, M.

    2010-12-01

    Co-injection of SO2 (plus possibly NOx and O2) during CO2 storage in deep saline aquifers may cause stronger brine acidification than CO2 alone. Because of that, we investigate chemical corrosion of rocks and rock-forming minerals with impure supercritical CO2 (scCO2) at possible storage conditions of >73.7 bar and >31°C. Contaminates were chosen with respect to the composition of CO2 captured industrially from coal-fired power plants using the oxyfuel technology. The resulting data should build a base for the long-term prediction of the behavior of CO2 in geologic storage reservoirs. Experiments of up to 1000 hrs duration have been performed with 10 natural mineral concentrates (calcite, dolomite, siderite, anhydrite, hematite, albite, microcline, kaolinite, muscovite, biotite) in 3n NaCl solution and pure scCO2 or scCO2+SO2 (99.5+0.5 vol%). The NaCl reaction fluid resembles the average salinity of deep formation waters of the North German Basin and is not free of oxygen. To increase reaction rates all minerals were ground and the reagents agitated either by stirring or shaking in autoclaves of about one liter in volume. The autoclaves consist of Hastelloy™ or ferromagnetic stainless steel fully coated with PTFE. We used in average 15 g of solids, 700 ml liquid, and the vessels were pressurized up to 100 bars with CO2 or CO2-SO2 mixture. Experiments were run at temperatures up to 90°C. Before, during and after the experiments small amounts fluids were sampled and analyzed for dissolved constituents and pH. Solid phases were characterized by XRF, XRD, and EMPA before and after the experiments. Pure scCO2 corrodes all carbonates, reacts only slightly with anhydrite, albite, and microcline at a minimum pH of 4, and does not recognizably interact with the others. After the experiment, albite has gained in a, not yet fully identified, carbonate phase which might be dawsonite. Reaction fluids of the experiments with scCO2+SO2 have mostly lower pH than using scCO2

  12. Hydronium-Induced Switching between CO2 Electroreduction Pathways.

    Science.gov (United States)

    Seifitokaldani, Ali; Gabardo, Christine M; Burdyny, Thomas; Dinh, Cao-Thang; Edwards, Jonathan P; Kibria, Md Golam; Bushuyev, Oleksandr S; Kelley, Shana O; Sinton, David; Sargent, Edward H

    2018-03-21

    Over a broad range of operating conditions, many CO 2 electroreduction catalysts can maintain selectivity toward certain reduction products, leading to materials and surfaces being categorized according to their products; here we ask, is product selectivity truly a property of the catalyst? Silver is among the best electrocatalysts for CO in aqueous electrolytes, where it reaches near-unity selectivity. We consider the hydrogenations of the oxygen and carbon atoms via the two proton-coupled-electron-transfer processes as chief determinants of product selectivity; and find using density functional theory (DFT) that the hydronium (H 3 O + ) intermediate plays a key role in the first oxygen hydrogenation step and lowers the activation energy barrier for CO formation. When this hydronium influence is removed, the activation energy barrier for oxygen hydrogenation increases significantly, and the barrier for carbon hydrogenation is reduced. These effects make the formate reaction pathway more favorable than CO. Experimentally, we then carry out CO 2 reduction in highly concentrated potassium hydroxide (KOH), limiting the hydronium concentration in the aqueous electrolyte. The product selectivity of a silver catalyst switches from entirely CO under neutral conditions to over 50% formate in the alkaline environment. The simulated and experimentally observed selectivity shift provides new insights into the role of hydronium on CO 2 electroreduction processes and the ability for electrolyte manipulation to directly influence transition state (TS) kinetics, altering favored CO 2 reaction pathways. We argue that selectivity should be considered less of an intrinsic catalyst property, and rather a combined product of the catalyst and reaction environment.

  13. CO/sub 2/ carbon cycle and climate interactions

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Maier-Reimer, E; Degens, E T; Kempe, S; Spitzy, A

    1984-03-01

    Past and expected emissions of anthropogenic CO/sub 2/ stimulate carbon cycle and climate research. Prognoses of future CO/sub 2/ levels depend on energy scenarios and on the reaction of the biosphere and hydrosphere to elevated atmospheric CO/sub 2/ concentrations. The reaction of the reservoirs vegetation, freshwater and oceans to disturbances of the carbon cycle is reviewed. For the oceans first results of a simple carbon cycle model implanted in a three-dimensional general circulation model are presented. This model allows experiments not possible with previous box models.

  14. Optimization of pipeline transport for CO2 sequestration

    International Nuclear Information System (INIS)

    Zhang, Z.X.; Wang, G.X.; Massarotto, P.; Rudolph, V.

    2006-01-01

    Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO 2 concentration and, hence, global warming. Capture and disposal of CO 2 has received increased R and D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO 2 emissions. This paper addresses CO 2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO 2 can be transported through pipelines in the form of a gas, a supercritical fluid or in the subcooled liquid state. Operationally, most CO 2 pipelines used for enhanced oil recovery transport CO 2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the cost of CO 2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO 2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO 2 below its critical point of 31.1 o C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions

  15. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  16. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  17. Tropical epiphytes in a CO 2-rich atmosphere

    Science.gov (United States)

    Monteiro, José Alberto Fernandez; Zotz, Gerhard; Körner, Christian

    2009-01-01

    We tested the effect on epiphyte growth of a doubling of pre-industrial CO 2 concentration (280 vs. 560 ppm) combined with two light (three fold) and two nutrition (ten fold) treatments under close to natural humid conditions in daylight growth cabinets over 6 months. Across co-treatments and six species, elevated CO 2 increased relative growth rates by only 6% ( p = 0.03). Although the three C3 species, on average, grew 60% faster than the three CAM species, the two groups did not significantly differ in their CO 2 response. The two Orchidaceae, Bulbophyllum (CAM) and Oncidium (C3) showed no CO 2 response, and three out of four Bromeliaceae showed a positive one: Aechmea (CAM, +32% p = 0.08), Catopsis (C3, +11% p = 0.01) and Vriesea (C3, +4% p = 0.02). In contrast, the representative of the species-rich genus Tillandsia (CAM), which grew very well under experimental conditions, showed no stimulation. On average, high light increased growth by 21% and high nutrients by 10%. Interactions between CO 2, light and nutrient treatments (low vs. high) were inconsistent across species. CO 2 responsive taxa such as Catopsis, could accelerate tropical forest dynamics and increase branch breakage, but overall, the responses to doubling CO 2 of these epiphytes was relatively small and the responses were taxa specific.

  18. Radiation dosimetry of 15O-labeled O2, CO2 and CO gases administered continuously in the breath

    International Nuclear Information System (INIS)

    Bigler, R.E.; Sgouros, G.

    1982-01-01

    The ratio of activity per liter of air supplied to the activity concentration in the blood for oxygen-15 labeled carbon dioxide and carbon monoxide was found to show an approximate factor of 10 variation from study to study in dog experiments (Bigler and co-workers, unpublished data). Unless human measurement experience shows the lung extraction efficiency to be more constant and therefore predictable, radiation dose estimates should be empirically verified in each study by a rapid and early measurement of the exhaled and unused gas activities. Patient activity extraction would be obtained by difference of this measurement with the supplied activity. The results show calculations for a factor of 2 lower and higher than the extraction efficiency observed for barbiturate sedated dogs. The total-body cumulated activities can be converted into effective total administered doses by multiplying them by the decay constant for oxygen-15 (20.453 hr -1 ). This gives for O 2 , CO 2 and CO, respectively, 227, 98 and 95 mCi/hr or 3.79, 1.64 and 1.58 mCi/min. Assuming the patient inhales 7.4 liters/min., the extraction efficiencies from the 1 mCi/liter-air supplied to the patient amounts to for O 2 , CO 2 and CO, respectively 51, 22 and 21%

  19. Reactions between olivine and CO2-rich seawater at 300 °C: Implications for H2 generation and CO2 sequestration on the early Earth

    Directory of Open Access Journals (Sweden)

    Hisahiro Ueda

    2017-03-01

    Full Text Available To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth, we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 °C and 500 bars. During the experiments, the total carbonic acid concentrationCO2 in the fluid decreased from approximately 65 to 9 mmol/kg. Carbonate minerals, magnesite, and subordinate amount of dolomite were formed via the water-rock interaction. The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h, which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature. As seen in previous hydrothermal experiments using komatiite, ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration. Considering carbonate mineralogy over the temperature range of natural hydrothermal fields, H2 generation is likely suppressed at temperatures below approximately 300 °C due to the formation of the Mg-bearing carbonates. Nevertheless, H2 concentration in fluid at 300 °C could be still high due to the temperature dependency of magnetite stability in ultramafic systems. Moreover, the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth. Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle. This process may have reduced the huge initial amount of CO2 on the surface of the early Earth. Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle, even in hot subduction zones.

  20. Dolomite decomposition under CO2

    International Nuclear Information System (INIS)

    Guerfa, F.; Bensouici, F.; Barama, S.E.; Harabi, A.; Achour, S.

    2004-01-01

    Full text.Dolomite (MgCa (CO 3 ) 2 is one of the most abundant mineral species on the surface of the planet, it occurs in sedimentary rocks. MgO, CaO and Doloma (Phase mixture of MgO and CaO, obtained from the mineral dolomite) based materials are attractive steel-making refractories because of their potential cost effectiveness and world wide abundance more recently, MgO is also used as protective layers in plasma screen manufacture ceel. The crystal structure of dolomite was determined as rhombohedral carbonates, they are layers of Mg +2 and layers of Ca +2 ions. It dissociates depending on the temperature variations according to the following reactions: MgCa (CO 3 ) 2 → MgO + CaO + 2CO 2 .....MgCa (CO 3 ) 2 → MgO + Ca + CaCO 3 + CO 2 .....This latter reaction may be considered as a first step for MgO production. Differential thermal analysis (DTA) are used to control dolomite decomposition and the X-Ray Diffraction (XRD) was used to elucidate thermal decomposition of dolomite according to the reaction. That required samples were heated to specific temperature and holding times. The average particle size of used dolomite powders is 0.3 mm, as where, the heating temperature was 700 degree celsius, using various holding times (90 and 120 minutes). Under CO 2 dolomite decomposed directly to CaCO 3 accompanied by the formation of MgO, no evidence was offered for the MgO formation of either CaO or MgCO 3 , under air, simultaneous formation of CaCO 3 , CaO and accompanied dolomite decomposition

  1. Sequestering CO2 in the Ocean: Options and Consequences

    Science.gov (United States)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood

  2. Controle de Rhyzopertha dominica pela atmosfera controlada com CO2, em trigo Control of Rhyzopertha dominica using a controlled atmosphere with CO2, in wheat

    Directory of Open Access Journals (Sweden)

    Rogério Amaro Gonçalves

    2000-01-01

    grain. This test consisted of five CO2 concentrations ( 0, 30, 40, 50 and 60%; completed with N2, fumigation periods of 5, 10 and 15 days; insect populations collected from Campo Mourão, PR, Sete Lagoas, MG and Santa Rosa, RS, in Brazil and seven developing stages (egg, larva of 1st, 2nd, 3rd and 4th instar, pupa and adult, in three replications. All the different life stages of the insect were kept as individual samples in a small voile cloth bag and put inside a 200 liter fumigation chamber with 75% of this volume full of grain with the metal lid sealed at the edge with silicone rubber to guarantee hermetic conditions. The different CO2 concentrations were then added inside the chambers. The results showed that all CO2 concentrations tested caused 100% mortality to all adult stage of the three insect populations in all fumigation periods tested. The mortality of the pupa stage of the three insect population was 100% when the 60% CO2 concentration was used in the 15 days fumigation period; however, all CO2 concentrations in 15 days fumigation period caused 100% mortality in pupa of insects collected in Santa Rosa. For adequate control of all larval stages it requires 50% CO2 or above this concentration. During the 10 and 15 days fumigation periods all CO2 concentrations controlled 100% of the eggs from the three populations studied.

  3. Atmospheric CO2 capture for the artificial photosynthetic system

    Science.gov (United States)

    Nogalska, Adrianna; Zukowska, Adrianna; Garcia-Valls, Ricard

    2017-11-01

    The scope of these studies is to evaluate the ambient CO2 capture abilities of the membrane contactor system in the same conditions as leaves works during photosynthesis, such as ambient temperature, pressure and low CO2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane was made by phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of the membrane and absorbent solution was evaluated, in order to exclude wetting issues. The prepared membranes were introduced in a cross flow module and used as contactor between the CO2 and the potassium hydroxide solution, as absorbing media. The influence of the membrane thickness, absorbent stirring rate and absorption time, on CO2 capture were evaluated. The results show that the efficiency of our CO2 capture system is similar to stomatal carbon dioxide assimilation rate.

  4. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2 : an experiment with plant populations from naturally high CO2 areas

    NARCIS (Netherlands)

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may

  5. Photosynthesis of amphibious and obligately submerged plants in CO2-rich lowland streams.

    Science.gov (United States)

    Sand-Jensen, Kaj; Frost-Christensen, Henning

    1998-11-01

    Small unshaded streams in lowland regions receive drainage water with high concentrations of free␣CO 2 , and they support an abundant growth of amphibious and obligately submerged plants. Our first objective was to measure the CO 2 regime during summer in a wide range of small alkaline Danish streams subject to wide variation in temperature, O 2 and CO 2 during the day. The second objective was to determine the effect of these variations on daily changes in light-saturated photosynthesis in water of a homophyllous and a heterophyllous amphibious species that only used CO 2 , and an obligately submerged species capable of using both HCO - 3 and CO 2 . We found that the median CO 2 concentrations of the streams were 11 and 6 times above air saturation in the morning and the afternoon, respectively, but stream sites with dense plant growth had CO 2 concentrations approaching air saturation in the afternoon. In contrast, outlets from lakes had low CO 2 concentrations close to, or below, air saturation. The amphibious species showed a reduction of photosynthesis in water from morning to afternoon along with the decline in CO 2 concentrations, while increasing temperature and O 2 had little effect on photosynthesis. Photosynthesis of the obligately submerged species varied little with the change of CO 2 because of HCO 3 - - use, and variations were mostly due to changes in O 2 concentration. Independent measurements showed that changes in temperature, O 2 and CO 2 could account for the daily variability of photosynthesis of all three species in water. The results imply that CO 2 supersaturation in small lowland streams is important for the rich representation of amphibious species and their contribution to system photosynthesis.

  6. Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: Discrete surface chambers and continuous soil CO2 concentration probes

    Science.gov (United States)

    Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch

    2008-01-01

    Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....

  7. Program Developed for CO2 System Calculations (Program files: CO2SYS_calc_DOS_v1.05; CO2SYS_calc_XLS_v2.3; CO2SYS_calc_MAC_WIN; CO2SYS_calc_MATLAB_v1.1) (NCEI Accession 0164485)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The program CO2SYS performs calculations relating parameters of the carbon dioxide (CO2) system in seawater and freshwater. The program uses two of the four...

  8. Castration of piglets under CO2-gas anaesthesia.

    Science.gov (United States)

    Gerritzen, M A; Kluivers-Poodt, M; Reimert, H G M; Hindle, V; Lambooij, E

    2008-11-01

    It has become common practice in pig fattening production systems to castrate young boar piglets without the use of anaesthesia. In this study, we examined whether or not CO2 gas is capable of inducing an acceptable anaesthetic state during which castration can be performed. The first step was to identify the most promising CO2/O2 mixture. Based on the results from this first experiment, a mixture of 70% CO2 + 30% O2 was chosen for further investigation as a potential anaesthetic during the castration of young piglets. Thereby, it was established whether the duration and depth of anaesthesia were acceptable for castration where the animal has to be insensible and unconscious. Physiological effects were assessed based on electroencephalogram (EEG) and electrocardiogram (ECG) measurements, blood gas values and behavioural responses. During the induction phase, the only typical behaviour the piglets exhibited when exposed to the 70/30 gas mixture was heavy breathing. All piglets (n = 25) lost consciousness after approximately 30 s according to the EEG. Heart rate decreased slowly during the induction phase, a serious drop occurred when piglets lost their posture. Immediately after this drop, the heart rate neared zero or showed a very irregular pattern. Shortly after loss of posture, most animals showed a few convulsions. None of the animals showed any reaction to castration in behaviour and/or on the EEG and ECG. On average, the piglets recovered within 59 s, i.e. EEG returned to its pre-induction pattern and piglets were able to regain a standing position. After 120 s, heart rate returned to pre-induction levels. In order to explore the usage range of CO2 concentration, 24 piglets were exposed to 60% CO2 + 20% O2 + 20% N2 for up to 30 s after loss of consciousness (as registered on EEG), and castrated after removal from the chamber. Sixteen of the 24 animals showed a reaction to the castration on the EEG. To establish the maximum time piglets survive in 70% CO2 + 30

  9. Water Resources Response to Changes in Temperature, Rainfall and CO2 Concentration: A First Approach in NW Spain

    Directory of Open Access Journals (Sweden)

    Ricardo Arias

    2014-10-01

    Full Text Available Assessment of the diverse responses of water resources to climate change and high concentrations of CO2 is crucial for the appropriate management of natural ecosystems. Despite numerous studies on the impact of climate change on different regions, it is still necessary to evaluate the impact of these changes at the local scale. In this study, the Soil and Water Assessment Tool (SWAT model was used to evaluate the potential impact of changes in temperature, rainfall and CO2 concentration on water resources in a rural catchment in NW Spain for the periods 2031–2060 and 2069–2098, using 1981–2010 as a reference period. For the simulations we used compiled regional climate models of the ENSEMBLES project for future climate input data and two CO2 concentration scenarios (550 and 660 ppm. The results showed that changes in the concentration of CO2 and climate had a significant effect on water resources. Overall, the results suggest a decrease in streamflow of 16% for the period 2031–2060 (intermediate future and 35% by the end of the 21st century as a consequence of decreasing rainfall (2031–2060: −6%; 2069–2098: −15% and increasing temperature (2031–2060: 1.1 °C; 2069–2098: 2.2 °C.

  10. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  11. Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in Northeast China.

    Directory of Open Access Journals (Sweden)

    Fanchao Meng

    Full Text Available Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2] and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol(-1, and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5-9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (Pn and intercellular CO2 concentration (Ci of maize. Similarly, the stomatal conductance (Gs and transpiration rate (Tr decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (Pnmax and light saturation points (LSP were increased under elevated [CO2] and irrigation, and dark respiration (Rd was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China.

  12. Responses of soil microbial activity to cadmium pollution and elevated CO2.

    Science.gov (United States)

    Chen, Yi Ping; Liu, Qiang; Liu, Yong Jun; Jia, Feng An; He, Xin Hua

    2014-03-06

    To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.

  13. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  14. Alcohol synthesis from CO or CO.sub.2

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Dagle, Robert A [Richland, WA; Holladay, Jamelyn D [Kennewick, WA; Cao, Chunshe [Houston, TX; Wang, Yong [Richland, WA; White, James F [Richland, WA; Elliott, Douglas C [Richland, WA; Stevens, Don J [Richland, WA

    2010-12-28

    Methods for producing alcohols from CO or CO.sub.2 and H.sub.2 utilizing a palladium-zinc on alumina catalyst are described. Methods of synthesizing alcohols over various catalysts in microchannels are also described. Ethanol, higher alcohols, and other C.sub.2+ oxygenates can produced utilizing Rh--Mn or a Fisher-Tropsch catalyst.

  15. Exchange coupling behavior in bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Leite, G.C.P. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Chagas, E.F., E-mail: efchagas@fisica.ufmt.br [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Pereira, R.; Prado, R.J. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Terezo, A.J. [Departamento de Quimica, Universidade Federal do Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Alzamora, M.; Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 Urca, Rio de Janeiro (Brazil)

    2012-09-15

    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe{sub 2}O{sub 4} and ferrimagnetic oxide/ferromagnetic metal CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite: (i) first, preparation of CoFe{sub 2}O{sub 4} nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe{sub 2}O{sub 4} particles is about 16 nm. Mossbauer spectra revealed two sites for Fe{sup 3+}. One site is related to Fe in an octahedral coordination and the other one to the Fe{sup 3+} in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe{sub 2}O{sub 4}. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe{sub 2} on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH){sub max} of 1.22 MGOe was achieved at room temperature for CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposites, which is about 115% higher than the value obtained for CoFe{sub 2}O{sub 4} precursor. The exchange coupling interaction and the enhancement of product (BH){sub max} in nanocomposite CoFe{sub 2}O{sub 4}/CoFe{sub 2} are discussed. - Highlights: Black-Right-Pointing-Pointer CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite

  16. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  17. Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP concentration in hypoxic soils in natural CO2 springs

    Directory of Open Access Journals (Sweden)

    Irena Maček

    2012-03-01

    Full Text Available Changed ratios of soil gases that lead to hypoxia are most often present in waterlogged soils, but can also appear in soils not saturated with water. In natural CO2 springs (mofettes, gases in soil air differ from those in typical soils. In this study, plant roots from the mofette area Stavešinci (Slovenia were sampled in a spatial scale and investigated for AM fungal colonization. AM fungi were found in roots from areas with high geological CO2 concentration, however mycorrhizal intensity was relatively low and no correlation between AM fungal colonization and soil pattern of CO2/O2 concentrations (up to 37% CO2 was found. The relatively high abundance of arbuscules in root cortex indicated existence of functional symbiosis at much higher CO2 concentrations than normally found in soils. In addition, concentration of two different glomalin-related soil protein fractions – EE-GRSP and TG-GRSP – was measured. No significant correlation between any of the fractions and soil gases was found, however the concentration of both fractions was significantly higher in the upper 0–5 cm, compared to the 5–10 cm layer of the soil.

  18. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry

    Science.gov (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.

    2016-12-01

    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  19. On the losses of dissolved CO(2) during champagne serving.

    Science.gov (United States)

    Liger-Belair, Gérard; Bourget, Marielle; Villaume, Sandra; Jeandet, Philippe; Pron, Hervé; Polidori, Guillaume

    2010-08-11

    Pouring champagne into a glass is far from being consequenceless with regard to its dissolved CO(2) concentration. Measurements of losses of dissolved CO(2) during champagne serving were done from a bottled Champagne wine initially holding 11.4 +/- 0.1 g L(-1) of dissolved CO(2). Measurements were done at three champagne temperatures (i.e., 4, 12, and 18 degrees C) and for two different ways of serving (i.e., a champagne-like and a beer-like way of serving). The beer-like way of serving champagne was found to impact its concentration of dissolved CO(2) significantly less. Moreover, the higher the champagne temperature is, the higher its loss of dissolved CO(2) during the pouring process, which finally constitutes the first analytical proof that low temperatures prolong the drink's chill and helps it to retain its effervescence during the pouring process. The diffusion coefficient of CO(2) molecules in champagne and champagne viscosity (both strongly temperature-dependent) are suspected to be the two main parameters responsible for such differences. Besides, a recently developed dynamic-tracking technique using IR thermography was also used in order to visualize the cloud of gaseous CO(2) which flows down from champagne during the pouring process, thus visually confirming the strong influence of champagne temperature on its loss of dissolved CO(2).

  20. Pressure, O2, and CO2, in aquatic Closed Ecological Systems

    Science.gov (United States)

    Taub, Frieda B.; McLaskey, Anna K.

    2013-03-01

    Pressure increased during net photosynthetic O2 production in the light and decreased during respiratory O2 uptake during the dark in aquatic Closed Ecological Systems (CESs) with small head gas volumes. Because most CO2 will be in the liquid phase as bicarbonate and carbonate anions, and CO2 is more soluble than O2, volumes of gaseous CO2 and gaseous O2 will not change in a compensatory manner, leading to the development of pressure. Pressure increases were greatest with nutrient rich medium with NaHCO3 as the carbon source. With more dilute media, pressure was greatest with NaHCO3, and less with cellulose or no-added carbon. Without adequate turbulence, pressure measurements lagged dissolved O2 concentrations by several hours and dark respiration would have been especially underestimated in our systems (250-1000 ml). With adequate turbulence (rotary shaker), pressure measurements and dissolved O2 concentrations generally agreed during lights on/off cycles, but O2 measurements provided more detail. At 20 °C, 29.9 times as much O2 will distribute into the gas phase as in the liquid, per unit volume, as a result of the limited solubility of O2 in water and according to Henry's Law. Thus even a small head gas volume can contain more O2 than a larger volume of water. When both dissolved and gaseous O2 and CO2 are summed, the changes in Total O2 and CO2 are in relatively close agreement when NaHCO3 is the carbon source. These findings disprove an assumption made in some of Taub's earlier research that aquatic CESs would remain at approximately atmospheric pressure because approximately equal molar quantities of O2 and CO2 would exchange during photosynthesis and respiration; this assumption neglected the distribution of O2 between water and gas phases. High pressures can occur when NaHCO3 is the carbon source in nutrient rich media and if head-gas volumes are small relative to the liquid volume; e.g., one "worse case" condition developed 800 mm Hg above atmospheric

  1. INEXPENSIVE CO{sub 2} THICKENING AGENTS FOR IMPROVED MOBILITY CONTROL OF CO{sub 2} FLOODS

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Enick; Eric J. Beckman; Andrew Hamilton

    2004-10-01

    The objective of this research was the design, synthesis and evaluation of inexpensive, nonfluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to be completed only when a CO{sub 2}-soluble polymer that was soluble in CO{sub 2} at pressures comparable to the MMP was identified. In the second step, viscosity-enhancing associating groups were to be incorporated into the polymer to make it a viable thickener that exhibited high CO{sub 2} solubility at EOR MMP conditions. This final report documents the CO{sub 2} solubility of a series of commercial and novel polymers composed of carbon, hydrogen, oxygen and, in some cases, nitrogen.

  2. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    Science.gov (United States)

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  3. Soil gas ({sup 222}Rn, CO{sub 2}, {sup 4}He) behaviour over a natural CO{sub 2} accumulation, Montmiral area (Drome, France): geographical, geological and temporal relationships

    Energy Technology Data Exchange (ETDEWEB)

    Gal, Frederick, E-mail: f.gal@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France); Joublin, Franck, E-mail: f.joublin@brgm.f [BRGM, Regional Geological Survey, 6 ter, Rue Pierre et Marie Curie, 59260 Lezennes (France); Haas, Hubert, E-mail: h.haas@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France); Jean-prost, Veronique, E-mail: v.jean-prost@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France); Ruffier, Veronique, E-mail: v.ruffier@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France)

    2011-02-15

    The south east basin of France shelters deep CO{sub 2} reservoirs often studied with the aim of better constraining geological CO{sub 2} storage operations. Here we present new soil gas data, completing an existing dataset (CO{sub 2}, {sup 222}Rn, {sup 4}He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO{sub 2} reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO{sub 2} concentrations. Fine grained clayey soils preferentially favoured the existence of {sup 222}Rn but not CO{sub 2}. Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO{sub 2} and {sup 222}Rn concentrations still exist, it is suggested that {sup 222}Rn migration is also CO{sub 2} dependent in non-leaking areas - diffusion dominated systems.

  4. Dissociative photo-multiple-ionisation of CO and CO2

    International Nuclear Information System (INIS)

    Bapat, B; Sharma, Vandana; Prajapati, I A; Subramanian, K P; Singh, R K; Lodha, G S

    2007-01-01

    In a photoelectron-photoion coincidence experiment on CO and CO 2 , we have observed the formation and fragmentation of singly to triply charged CO 2 and singly to quadruply charged CO at various energies. Doubly charged cations of both molecules are found to have unstable as well as stable states. Cations with higher charge are found to dissociate promptly. The energy dependence of the relative partial cross-sections in the energy range 125-310 eV are presented

  5. Study of the hyperfine magnetic field at Ta181 site in the Heusler Co2 Sc Sn, Co2 Sc Ga and Co2 Hf Sn alloys

    International Nuclear Information System (INIS)

    Attili, R.N.

    1992-01-01

    The hyperfine magnetic fields acting on 181 Ta nuclei at the Sc and Hf sites have been measured in Heusler alloys Co 2 Sc Sn and Co 2 Sc Ga and Co 2 Hf Sn using the Time Differential Perturbed γ-γ Angular Correlation (TDPAC) technique. The measurements were carried out using an automatic spectrometer consisting of two Ba F 2 detectors and the conventional electronics. The magnitude of hyperfine magnetic field at 181 Ta was measured for all the alloys. The signs of the were determined in the cases of Co 2 Sc Sn and Co 2 Hf Sn alloys by performing the Perturbed Angular Correlation measurements with an external polarizing magnetic field of ≅ 5 k Gauss. The hyperfine magnetic fields obtained are -187,6± 3,3 and 90,0 ± 2,1 kOe measured at 77 K for Co 2 Sc Sn and Co 2 Sc Ga alloys respectively, and -342,4 ± 10,1 kOe measured at the room temperature for Co 2 Hf Sn alloy. These results are discussed and compared with the hyperfine magnetic field systematics in Co-based Heusler alloy. (author)

  6. Effect of upper airway CO2 pattern on ventilatory frequency in tegu lizards.

    Science.gov (United States)

    Ballam, G O; Coates, E L

    1989-07-01

    Nasal CO2-sensitive receptors are reported to depress ventilatory frequency in several reptilian species in response to constant low levels of inspired CO2. The purpose of this study was to determine the influence of phasic patterns of CO2 in the upper airways on ventilation. Awake lizards (Tupinambis nigropunctatus) breathed through an endotracheal tube from an isolated gas source. A second gas mixture was forced at constant flow into the external nares. A concentration of 4% CO2 was intermittently pulsed through the nares in a square-wave pattern with a frequency of 60, 12, 6, 4.2, 1.8, and 0.6 cycles/min. Concentrations of 2, 3, 4, and 6% CO2 were also pulsed through the nares at 12 cycles/min and compared with sustained levels of 1, 1.5, 2, and 3%. Additionally, 0 or 3% CO2 was forced through the upper airways with a servo system designed to mimic normal ventilatory flow and gas concentrations. No changes in breathing pattern were noted during any of the pulsing protocols, although a significant breathing frequency depression was present with sustained levels of CO2 of comparable mean concentrations. We conclude that ventilatory control is selectively responsive to sustained levels of environmental CO2 but not to phasic changes in upper airway CO2 concentration.

  7. Interpreting plant-sampled ¿14CO2 to study regional anthropogenic CO2 signals in Europe

    OpenAIRE

    Bozhinova, D.N.

    2015-01-01

    "Interpreting plant-sampled Δ14CO2 to study regional anthropogenic CO2 signals in Europe" Author: Denica Bozhinova This thesis investigates the quantitative interpretation of plant-sampled ∆14CO2 as an indicator of fossil fuel CO2 recently added to the atmosphere. We present a methodology to calculate the ∆14CO2 that has accumulated in a plant over its growing period, based on a modeling framework consisting of a plant growth model (SUCROS) and an atmospheric transport model (WRF-Chem). We ve...

  8. NATURAL CO2 FLOW FROM THE LOIHI VENT: IMPACT ON MICROBIAL PRODUCTION AND FATE OF THE CO2

    Energy Technology Data Exchange (ETDEWEB)

    Richard B. Coffin; Thomas J. Boyd; David L. Knies; Kenneth S. Grabowski; John W. Pohlman; Clark S. Mitchell

    2004-02-27

    The program for International Collaboration on CO{sub 2} Ocean Sequestration was initiated December 1997. Preliminary steps involved surveying a suite of biogeochemical parameters off the coast of Kona on the Big Island of Hawaii. The preliminary survey was conducted twice, in 1999 and 2000, to obtain a thorough data set including measurements of pH, current profiles, CO{sub 2} concentrations, microbial activities, and water and sediment chemistries. These data were collected in order to interpret a planned CO{sub 2} injection experiment. After these preliminary surveys were completed, local environment regulation forced moving the project to the coast north east of Bergen, Norway. The preliminary survey along the Norwegian Coast was conducted during 2002. However, Norwegian government revoked a permit, approved by the Norwegian State Pollution Control Authority, for policy reasons regarding the CO{sub 2} injection experiment. As a result the research team decided to monitor the natural CO{sub 2} flow off the southern coast of the Big Island. From December 3rd-13th 2002 scientists from four countries representing the Technical Committee of the International Carbon Dioxide Sequestration Experiment examined the hydrothermal venting at Loihi Seamount (Hawaiian Islands, USA). Work focused on tracing the venting gases, the impacts of the vent fluids on marine organisms, and CO{sub 2} influence on biogeochemical cycles. The cruise on the R/V Ka'imikai-O-Kanaloa (KOK) included 8 dives by the PISCES V submarine, 6 at Loihi and 2 at a nearby site in the lee of the Big Island. Data for this final report is from the last 2 dives on Loihi.

  9. Removal of SO42− from Li2CO3 by Recrystallization in Na2CO3 Solution

    Directory of Open Access Journals (Sweden)

    Wei Cai

    2018-01-01

    Full Text Available Li2CO3 with high purity is an important raw material for the fabrication of lithium rechargeable batteries. This paper reports a facile recrystallization way to produce Li2CO3 with high purity from commercial Li2CO3 containing 0.8 wt % of SO42− by the treatment of the commercial Li2CO3 in Na2CO3 solution. The increase of temperature from 30 °C to 90 °C favored the recrystallization of Li2CO3 in Na2CO3 solution and promoted the removal of SO42− adsorbed or doped on/in the commercial Li2CO3. The content of SO42− in Li2CO3 decreased to 0.08 wt % after the treatment of the commercial Li2CO3 in 1.0 mol·L−1 Na2CO3 solution at 90 °C for 10.0 h.

  10. Stomatal and pavement cell density linked to leaf internal CO2 concentration.

    Science.gov (United States)

    Santrůček, Jiří; Vráblová, Martina; Simková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-08-01

    Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Foraminiferal calcification and CO2

    Science.gov (United States)

    Nooijer, L. D.; Toyofuku, T.; Reichart, G. J.

    2017-12-01

    Ongoing burning of fossil fuels increases atmospheric CO2, elevates marine dissolved CO2 and decreases pH and the saturation state with respect to calcium carbonate. Intuitively this should decrease the ability of CaCO3-producing organisms to build their skeletons and shells. Whereas on geological time scales weathering and carbonate deposition removes carbon from the geo-biosphere, on time scales up to thousands of years, carbonate precipitation increases pCO2 because of the associated shift in seawater carbon speciation. Hence reduced calcification provides a potentially important negative feedback on increased pCO2 levels. Here we show that foraminifera form their calcium carbonate by active proton pumping. This elevates the internal pH and acidifies the direct foraminiferal surrounding. This also creates a strong pCO2 gradient and facilitates the uptake of DIC in the form of carbon dioxide. This finding uncouples saturation state from calcification and predicts that the added carbon due to ocean acidification will promote calcification by these organisms. This unknown effect could add substantially to atmospheric pCO2 levels, and might need to be accounted for in future mitigation strategies.

  12. Soil and Root Respiration Under Elevated CO2 Concentrations During Seedling Growth of Pinus sylvestris var. sylvestriformis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris var. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003,from 20.6% to 48.6%.

  13. Concurrent CO2 Control and O2 Generation for Advanced Life Support

    Science.gov (United States)

    Paul, Heather L.; Duncan, Keith L.; Hagelin-Weaver, Helena E.; Bishop, Sean R.; Wachsman, Eric D.

    2007-01-01

    The electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied, however, conventional devices using yttria-stabilized zirconia (YSZ) electrolytes operate at temperatures greater than 700 C. Operating at such high temperatures increases system mass compared to lower temperature systems because of increased energy overhead to get the COG up to operating temperature and the need for heavier insulation and/or heat exchangers to reduce the COG oxygen (O2) output temperature for comfortable inhalation. Recently, the University of Florida developed novel ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth for NASA's future exploration of Mars. To reduce landed mass and operation expenditures during the mission, in-situ resource utilization was proposed using these COGs to obtain both lifesupporting oxygen and oxidant/propellant fuel, by converting CO2 from the Mars atmosphere. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal was an issue. The strategy proposed for CO2 removal for advanced life support systems employs a catalytic layer combined with a COG so that it is reduced all the way to solid carbon and oxygen. Hence, a three-phased approach was used for the development of a viable low weight COG for CO2 removal. First, to reduce the COG operating temperature a high oxide ion conductivity electrolyte was developed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, novel cathodes and a removable catalytic carbon deposition layer were designed. Third, to improve efficiency, a pre-stage for CO2 absorption was used to concentrate CO2 from the exhalate before sending it to the COG. These subsystems were then

  14. CO_2 valorization - Part. 2: chemical transformation ways

    International Nuclear Information System (INIS)

    Dumergues, Laurent

    2016-01-01

    Carbon dioxide (CO_2) can be used in many ways as a raw material or chemical reagent. The chemical conversion of CO_2 used as a feedstock is achievable by different techniques: mineralization, organic synthesis, hydrogenation, dry reforming, electrolysis, thermolysis, etc. The products obtained have applications as energy products, chemicals, building materials, etc. Choosing an appropriate CO_2 reuse technology will depend on technical and economic requirements (such as the CO_2 purity needed, technological maturity, cost-effectiveness, etc.) and also environmental and social criteria

  15. An analytical model for the distribution of CO2 sources and sinks, fluxes, and mean concentration within the roughness sub-layer

    Science.gov (United States)

    Siqueira, M. B.; Katul, G. G.

    2009-12-01

    A one-dimensional analytical model that predicts foliage CO2 uptake rates, turbulent fluxes, and mean concentration throughout the roughness sub-layer (RSL), a layer that extends from the ground surface up to 5 times the canopy height (h), is proposed. The model combines the mean continuity equation for CO2 with first-order closure principles for turbulent fluxes and simplified physiological and radiative transfer schemes for foliage uptake. This combination results in a second-order ordinary differential equation in which it is imposed soil respiration (RE) as lower and CO2 concentration well above the RSL as upper boundary conditions. An inverse version of the model was tested against data sets from two contrasting ecosystems: a tropical forest (TF, h=40 m) and a managed irrigated rice canopy (RC, h=0.7 m) - with good agreement noted between modeled and measured mean CO2 concentration profiles within the entire RSL (see figure). Sensitivity analysis on the model parameters revealed a plausible scaling regime between them and a dimensionless parameter defined by the ratio between external (RE) and internal (stomatal conductance) characteristics controlling the CO2 exchange process. The model can be used to infer the thickness of the RSL for CO2 exchange, the inequality in zero-plane displacement between CO2 and momentum, and its consequences on modeled CO2 fluxes. A simplified version of the solution is well suited for being incorporated into large-scale climate models. Furthermore, the model framework here can be used to a priori estimate relative contributions from the soil surface and the atmosphere to canopy-air CO2 concentration thereby making it synergetic to stable isotopes studies. Panels a) and c): Profiles of normalized measured leaf area density distribution (a) for TF and RC, respectively. Continuous lines are the constant a used in the model and dashed lines represent data-derived profiles. Panels b) and d) are modeled and ensemble-averaged measured