WorldWideScience

Sample records for co-generation

  1. The co-generation file

    International Nuclear Information System (INIS)

    Signoret, Stephane; Petitot, Pauline; Mary, Olivier; Sredojevic, Alexandre

    2017-01-01

    Whereas co-generation has many benefits (increase of energy efficiency, decrease of greenhouse gas emissions, job creation, integration of renewable energies, local and efficient production of heat and electricity, and so on), as explained in a first article, it has not enough public support in France any longer, notably for installations of more than 1 MW. However, as shown in some examples (a power and heat plant in Aulnay-sous-Bois, a factory in Graulhet), some co-generation installations have been able to take some benefit from the situation in 2015. Besides, some technological development are addressed: new burners to comply with regulations regarding NO_x and CO emissions, new engines able to operate with various gases such as hydrogen or gas produced by biomass gasification. A last article presents a co-generation boiler installed in a medical care home near Roye in the Somme district

  2. CANDU co-generation opportunities

    International Nuclear Information System (INIS)

    Meneley, D.A.; Duffey, R.B.; Pendergast, D.R.

    2000-01-01

    Modern technology makes use of natural energy 'wealth' (uranium) to produce useful energy 'currency' (electricity) that can be used to society's benefit. This energy currency can be further applied to help solve a difficult problem faced by mankind. Within the next few years we must reduce our use of the same fuels which have made many countries wealthy - fossil fuels. Fortunately, electricity can be called upon to produce another currency, namely hydrogen, which has some distinct advantages. Unlike electricity, hydrogen can be stored and can be recovered for later use as fuel. It also is extremely useful in chemical processes and refining. To achieve the objective of reducing greenhouse gas emissions hydrogen must, of course, be produced using a method which does not emit such gases. This paper summarizes four larger studies carried out in Canada in the past few years. From these results we conclude that there are several significant opportunities to use nuclear fission for various co-generation technologies that can lead to more appropriate use of energy resources and to reduced emissions. (author)

  3. Stirling based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, J.S.; Zutt, J.G.M.; Rabou, L.P.L.M.; Beckers, G.J.J. [ECN Clean Fossil Fuels, Petten (Netherlands); Baijens, C.A.W.; Luttikholt, J.J.M. [ATAG Verwarming, Lichtenvoorde (Netherlands)

    2000-04-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%. Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. 5 refs.

  4. Co-generation: Increasing energy efficiency in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Lekić Alija

    2007-01-01

    Full Text Available The main sources for power generation in Bosnia and Herzegovina are domestic coals, mainly lignite and brown coals, which are relatively characterized with a high content of sulphur (3-5% and incombustibles (˜30%. From the 70’s, use of this type of fuels was not allowed in the city of Sarajevo due to very unfavorable emissions to the atmosphere, during the heating period, and since then Sarajevo has been supplied with natural gas. All the heating installations in the city were reconstructed and adapted. The district heating system Toplane Sarajevo is supplied with electrical energy from the Public electrical distribution network (Elektrodistribucija Sarajevo at low voltage (0.4 kV. The boiler-house Dobrinja III-2 (KDIII-2, from the district heating system of Sarajevo Suburb Dobrinja, which was not in use after the war 1992-1995, had a lot of advantages for the reconstruction into the co-generation plant. The Government of Canton Sarajevo financially supported this proposal. An analysis of co-generations for the district heating system and a selection of most appropriate co-generation systems were made. In the proposed conceptual design, the co-generation KDIII-2 was located in the existing boiler-house KDIII-2, connected with the heating system in Dobrinja. The operating costs of production of electricity and heat were evaluated in the study and compared with the costs of conventional energy supply to the district heating system. This analysis resulted in economic indicators, which showed that this investment was economically viable, and it also determined the payback period of the investment. In this paper results of the mentioned study and an overview of co-generation in Bosnia and Herzegovina are presented.

  5. District heating and co-generation in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Franc; Pecaric, Marko; Perovic, Olgica

    2000-01-01

    Recent development of district heating systems, gasification and co-generation processes in local communities in Slovenia as well as current status, potentials, possibilities and plans for further development in this sphere are presented. The current status presents energy production, distribution and use in district heating systems and in local gas distribution networks. An analysis of the energy and power generated and distributed in district power systems, made with regard to the size of the system, fuel used, type of consumers and the way of production, is given. Growth in different areas of local power systems in the period of last years is included. Potentials in the sphere of electrical energy and heat co-generation were assessed. Some possibilities and experience in heat energy storage are given and trends and plans for further development are introduced. (Authors)

  6. Regional hospital improves efficiency with co-generation retrofit.

    Science.gov (United States)

    Knutson, D; Anderson, L

    1999-11-01

    Feasibility analysis of the co-generation retrofit of the Red Deer Regional Hospital pointed to a reasonable payback of capital cost and increased efficiency in operation of the facility. Budget restrictions nearly stopped the project from proceeding. Innovative construction procedures proposed by the Facility Management Group, in particular, Mr Keith Metcalfe, Director of Maintenance, allowed a worthwhile project to reach successful completion. We feel that this model can perhaps be used by similar facilities in the future to achieve their energy efficiency goals.

  7. Heating unit of Berovo by co-generation (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1999-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. The quantity of annually heat and electrical production and annually coal consumption are estimated. (Author)

  8. Co-generation at CERN Beneficial or not?

    CERN Document Server

    Wilhelmsson, M

    1998-01-01

    A co-generation plant for the combined production of electricity and heat has recently been installed on the CERN Meyrin site. This plant consists of: a gas turbine generator set (GT-set), a heat recovery boiler for the connection to the CERN primary heating network, as well as various components for the integration on site. A feasibility study was carried out and based on the argument that the combined use of natural gas -available anyhow for heating purposes- gives an attractively high total efficiency, which will, in a period of time, pay off the investment. This report will explain and update the calculation model, thereby confirming the benefits of the project. The results from the commissioning tests will be taken into account, as well as the benefits to be realized under the condition that the plant can operate undisturbed by technical setbacks which, incidentally, has not been entirely avoided during the first year of test-run and operation.

  9. Can Dutch co-generation survive threats of the liberalisation of the energy markets

    International Nuclear Information System (INIS)

    Battjes, J.J.; Rijkers, F.A.M.

    2000-07-01

    The paper presents an analysis of the effects of liberalisation of the Dutch energy markets on the future development of combined heat and power generation (co-generation) in the Netherlands. First, it reviews the historical growth in co-generation in the Netherlands and the supportive policy measures that have contributed to this growth. Second, the liberalisation process of the Dutch electricity market and the Dutch gas market is described. Subsequently, we discuss the impacts of these new market structures on co-generation by using two scenarios for the Dutch energy markets. Our assessment of the impacts is mainly focused on the cost-effectiveness of co-generation projects. We determine the key aspects that influence the cost-effectiveness of a co-generation project and analyse some of the calculations for different small-scale and large-scale co-generation projects. Based on the results, we conclude that investments in new co-generation plants are unlikely in the short term and the existing plants can barely produce with a positive cash flow. As many parties have an interest in reducing the negative effects of a liberalised energy market on co-generation, approaches are sought to improve the cost-effectiveness of co-generation in the Netherlands. We describe several optional supportive measures for co-generation mainly resulting from the determination of the barriers for co-generation. Moreover, Dutch authorities have already responded to these barriers by preparing policy measures such as investment subsidies and exemption from the energy tax. 2 refs

  10. Fieldwork, Co-Teaching and Co-Generative Dialogue in Lower Secondary School Environmental Science

    Science.gov (United States)

    Rahmawati, Yuli; Koul, Rekha

    2016-01-01

    This article reports one of the case studies in a 3-year longitudinal study in environmental science education. This case explores the process of teaching about ecosystems through co-teaching and co-generative dialogue in a Year-9 science classroom in Western Australia. Combining with co-teaching and co-generative dialogue aimed at transforming…

  11. Co-Generation and Renewables: Solutions for a Low-Carbon Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Co-generation and renewables: solutions for a low-carbon energy future shows that powerful synergies exist when co-generation and renewables work together. The report documents, for the first time, some of the little-known complementary aspects of the two technologies. It also re-emphasises the stand-alone benefits of each technology. Thus, decision makers can use the report as a 'one-stop shop' when they need credible information on co-generation, renewables and the possible synergies between the two. It also provides answers to policy makers' questions about the potential energy and environmental benefits of an increased policy commitment to both co-generation and renewables. Secure, reliable, affordable and clean energy supplies are fundamental to economic and social stability and development. Energy and environmental decision-makers are faced with major challenges that require action now in order to ensure a more sustainable future. More efficient use of, and cleaner primary energy sources can help to achieve this goal. Co-generation -- also known as combined heat and power (CHP) -- represents a proven, cost-effective and energy-efficient solution for delivering electricity and heat. Renewable sources provide clean and secure fuels for producing electricity and heat.

  12. A small capacity co generative gas-turbine plant in factory AD 'Komuna' - Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Dimitrov, Konstantin; Armenski, Slave; Tashevski, Done

    2000-01-01

    The factory AD 'Komuna' -Skopje (Macedonia), has two steam block boilers, type ST 800 for steam production for process and space heating. The factory satisfies the electricity needs from the national grid. By the use of natural gas like fuel it is possible to produce electrical energy in its own co generative gas turbine plant. In this article, a co generative plant with small-scale gas turbine for electricity production is analyzed . The gas from gas turbine have been introduce in the steam block boiler. Also, a natural gas consumption, the electricity production, total investment and payback period of investment are determined. (Authors)

  13. Binary co-generative plants with height temperature SOFC fuel cells

    International Nuclear Information System (INIS)

    Tashevski, D; Dimitrov, K.; Armenski, S.

    2005-01-01

    In this paper, a field of binary co-generative plants with height temperature SOFC fuel cells is presented. Special attention of application of height temperature SOFC fuel cells and binary co-generative units has been given. These units made triple electricity and heat. Principle of combination of fuel cells with binary cycles has been presented. A model and computer programme for calculation of BKPFC, has been created. By using the program, all the important characteristic-results are calculated: power, efficiency, emission, dimension and economic analysis. On base of results, conclusions and recommendations has been given. (Author)

  14. Binary co-generative plants with height temperature SOFC fuel cells

    International Nuclear Information System (INIS)

    Tashevski, D; Dimitrov, K.; Armenski, S.

    2006-01-01

    In this paper, a field of binary co-generative plants with height temperature SOFC fuel cells is presented. Special attention of application of height temperature SOFC fuel cells and binary co-generative units has been given. These units made triple electricity and heat. Principle of combination of fuel cells with binary cycles has been presented. A model and computer programme for calculation of BKPFC, has been created. By using the program, all the important characteristic-results are calculated: power, efficiency, emission, dimension and economic analysis. On base of results, conclusions and recommendations has been given. (Author)

  15. Stirling engine based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, H.; Zutt, S.; Rabou, L.; Beckers, G. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Baijens, K.; Luttikholt, J. [Atag Verwarming BV (Netherlands)

    2000-07-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%: Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. (orig.)

  16. Assessing the economic feasibility of flexible integrated gasification Co-generation facilities

    NARCIS (Netherlands)

    Meerman, J.C.; Ramírez Ramírez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2011-01-01

    This paper evaluated the economic effects of introducing flexibility to state-of-the-art integrated gasification co-generation (IGCG) facilities equipped with CO2 capture. In a previous paper the technical and energetic performances of these flexible IG-CG facilities were evaluated. This paper

  17. Greenhouse gas emission for co-generation installation - reduction and selling

    International Nuclear Information System (INIS)

    Manev, S.; Stankov, N.; Asenov, A.

    2005-01-01

    According to Kyoto protocol countries which have the availability to buy green house gas emissions from other countries could be made by means of realization of investment project. In this article the authors review the necessary scope of work which have to be done in order particular project for co-generation installation to be realized, according the requirement and their own experience in this field

  18. Co-generation and reality Potential in Mexico; Potencial de cogeneracion y realidad en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    This document deals with the Mexican use of co-generation -the efficient use of the energy- through the support offered by the Comision Nacional para el Ahorro de Energia (CONAE), since this is the agency in charge of fomenting the efficient use of energy by means of actions coordinated with diverse dependencies and organizations of the Administracion Publica Federal and with the governments of the federal entities as well as municipalities, social and private sectors. Among the subjects to be dealt are quality of the electrical and thermal energy, types of fuels that can be used in the co-generation project, the present situation of the co-generation in Mexico and the conditions for their development. [Spanish] Este documento analiza el uso de la cogeneracion en Mexico es decir, el uso eficiente de la energia a traves del apoyo que brinda la Comision Nacional para el Ahorro de Energia (CONAE) ya que es el organo encargado de fomentar la eficiencia en el uso de la energia mediante acciones coordinadas con las diversas dependencias y entidades de la Administracion Publica Federal y con los gobiernos de las entidades federativas y los municipios y, a traves de acciones concertadas, con los sectores social y privado. Se trataran temas como calidad de la energia electrica y termica, los tipos de combustibles que pueden utilizarse en el proyecto de cogeneracion, la situacion actual de la cogeneracion en Mexico y las ccondiciones para su desarrollo.

  19. Load averaging system for co-generation plant; Jikayo hatsuden setsubi ni okeru fuka heijunka system

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Y. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1995-07-30

    MAZDA Motor Corp. planed the construction of a 20.5MW co-generation plant in 1991 for responding to an increase in power demand due to expansion of the Hofu factory. On introduction of this co-generation plant, it was decided that the basic system would adopt the following. (1) A circulating fluidized bed boiler which can be operated by burning multiple kinds of fuels with minimum environmental pollution. (2) A heat accumulation system which can be operated through reception of a constant power from electric power company despite a sudden and wide range change in power demand. (3) A circulating-water exchange heat recovery system which recovers exhaust heat of the turbine plant as the hot water to be utilized for heating and air-conditioning of the factory mainly in winter. Power demand in MAZDA`s Hofu factory changes 15% per minute within a maximum range from 20MW to 8MW. This change is difficult to be followed even by an oil burning boiler excellent in load follow-up. The circulating Fluidized bed boiler employed this time is lower in the follow-up performance than the oil boiler. For the newly schemed plant, however, load averaging system named a heat accumulation system capable of responding fully to the above change has been developed. This co-generation plant satisfied the official inspection before commercial operation according the Ministerial Ordinance in 1993. Since then, with regard to the rapid load following, which was one of the initial targets, operation is now performed steadily. This paper introduces an outline of the system and operation conditions. 10 refs.

  20. Electricity and heat energy co-generation process modelling in Belarus

    Energy Technology Data Exchange (ETDEWEB)

    Chtcherbitch, A [Belarus Scientific Research Heat Power Inst., Minsk (Belarus); Iakoushev, A; Popov, B [Institute of Power Engineering Problems, Minsk (Belarus); Vorontsov, V [Institute of New Technics and Technology, Minsk (Belarus)

    1997-09-01

    This paper describes the experience gathered in the application of the ENPEP package to the conditions of Belarus energy system, focusing on the principal problems encountered in modelling a system having an important component of co-generation systems to satisfy the demands for electricity and heat. The approach used to solve this problem and some recommendations for future enhancements of the ENPEP program are discussed. The preliminary results obtained with the use of the model, as well as further analyses expected to be conducted in the near future are also described. (author). 6 figs.

  1. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Saha, Bidyut Baran; Ng, K. C.

    2012-01-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  2. Optimization of operation of energy supply systems with co-generation and absorption refrigeration

    Directory of Open Access Journals (Sweden)

    Stojiljković Mirko M.

    2012-01-01

    Full Text Available Co-generation systems, together with absorption refrigeration and thermal storage, can result in substantial benefits from the economic, energy and environmental point of view. Optimization of operation of such systems is important as a component of the entire optimization process in pre-construction phases, but also for short-term energy production planning and system control. This paper proposes an approach for operational optimization of energy supply systems with small or medium scale co-generation, additional boilers and heat pumps, absorption and compression refrigeration, thermal energy storage and interconnection to the electric utility grid. In this case, the objective is to minimize annual costs related to the plant operation. The optimization problem is defined as mixed integer nonlinear and solved combining modern stochastic techniques: genetic algorithms and simulated annealing with linear programming using the object oriented “ESO-MS” software solution for simulation and optimization of energy supply systems, developed as a part of this research. This approach is applied to optimize a hypothetical plant that might be used to supply a real residential settlement in Niš, Serbia. Results are compared to the ones obtained after transforming the problem to mixed 0-1 linear and applying the branch and bound method.

  3. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung

    2012-10-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  4. Semi-catalyzed deuterium reactors for co-generation of 3He and synfuels (the CoSCD concept)

    International Nuclear Information System (INIS)

    1980-01-01

    The potential of developing semi-catalyzed deuterium reactors for co-generation of 3 He and synthetic fuels is discussed. Such factors as environmental impact, siting, energy basics, and engineering technology are also discussed

  5. North Plant co-generation project for South Davis County Sewer Improvement District

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.S. [Aqua Environmental Services, Inc., Bountiful, UT (United States)

    1993-12-31

    In the summer of 1988, the South Davis County Sewer Improvement District (SDCSID) learned of a grant/loan program being administered by the Utah State Department of Energy(DOE) for projects that demonstrate new and innovative ways of conserving energy or utilizing renewable energy sources. The SDCSID applied for and received from the DOE both a grant and a no-interest loan to finance half of the cost of a co-generation project at the North Wastewater Treatment Plant. This co-generation project utilizes methane gas, a by-product of the anaerobic digestion process, to generate both electricity and heat that is used at the plant. The SDCSID calculated that at the current anaerobic gas production rate, a 140 KW engine generator could be run almost 24 hours a day. Approximately 75% of the current electrical needs at the North Plant are supplied by the 140 KW engine generator. Also, all of the heat necessary to raise the temperature of the incoming sludge to 95{degrees}F, and to heat four large buildings is supplied from the heat recovery system of the engine. The system utilizes an induction type generator to supply electricity, which is somewhat simpler to design and less expensive to install than a synchronous type system. An induction system utilizes the Electrical Utility`s incoming power to excite the generator to correct the phase so that is can be used by the loads in the plant. In addition, the SDCSID installed a second identical engine generator as a back-up and to peak shave. Plant effluent is used to cool the engines instead of air-cooling through radiators.

  6. Reactor type choice and characteristics for a small nuclear heat and electricity co-generation plant

    International Nuclear Information System (INIS)

    Liu Kukui; Li Manchang; Tang Chuanbao

    1997-01-01

    In China heat supply consumes more than 70 percent of the primary energy resource, which makes for heavy traffic and transportation and produces a lot of polluting materials such as NO x , SO x and CO 2 because of use of the fossil fuel. The utilization of nuclear power into the heat and electricity co-generation plant contributes to the global environmental protection. The basic concept of the nuclear system is an integral type reactor with three circuits. The primary circuit equipment is enclosed in and linked up directly with reactor vessel. The third circuit produces steam for heat and electricity supply. This paper presents basic requirements, reactor type choice, design characteristics, economy for a nuclear co-generation plant and its future application. The choice of the main parameters and the main technological process is the key problem of the nuclear plant design. To make this paper clearer, take for example a double-reactor plant of 450 x 2MW thermal power. There are two sorts of main technological processes. One is a water-water-steam process. Another is water-steam-steam process. Compared the two sorts, the design which adopted the water-water-steam technological process has much more advantage. The system is simplified, the operation reliability is increased, the primary pressure reduces a lot, the temperature difference between the secondary and the third circuits becomes larger, so the size and capacity of the main components will be smaller, the scale and the cost of the building will be cut down. In this design, the secondary circuit pressure is the highest among that of the three circuits. So the primary circuit radioactivity can not leak into the third circuit in case of accidents. (author)

  7. Feasibility of co-generation of water and electricity by means of the IRIS

    International Nuclear Information System (INIS)

    Vargas E, S.; Alonso V, G.; Gonzalez, J. A.; Xolocostli, V.; Ramirez S, J. R.

    2009-10-01

    The importance to count with resources that allow the development of a country is an important factor. The electricity and the water are factors that in the future will be crucial for the development of any region of the planet. In this work the economic reliability of use of IRIS reactor like a energy source for the electricity production, as well as for the potable water production through the desalination of sea water. Within this study the requirements of these two outlines for different regions from the country are analyzed, nevertheless, chooses the northwest region of the Mexican republic, because, according to estimations realized for the Energy Secretary and the National Commission of the Water, this would present important water requirements and electricity, due to the population increase that is considered for all the country, mainly the built-up zones. Combined to this one is due to consider that the present water demand in some regions of the country present a worrisome over-exploitation of this liquid appraising. The economic evaluation of co-generation that appears in this work though the IRIS reactor, includes different desalination capacities at the moment, using the three more used techniques, obtaining the even costs of water and electricity, as well as net saleable energy and the construction costs as much for the desalination plant and the IRIS reactor. (Author)

  8. EFFECTS OF IMPLEMENTATION OF CO-GENERATION IN THE DISTRICT HEATING SYSTEM OF THE FACULTY OF MECHANICAL ENGINEERING IN NIŠ

    Directory of Open Access Journals (Sweden)

    Mladen M Stojiljković

    2010-01-01

    Full Text Available Implementation of co-generation of thermal and electrical energy in district heating systems often results with higher overall energy efficiency of the systems, primary energy savings and environmental benefits. Financial results depend on number of parameters, some of which are very difficult to predict. After introduction of feed-in tariffs for generation of electrical energy in Serbia, better conditions for implementation of co-generation are created, although in district heating systems barriers are still present. In this paper, possibilities and effects of implementation of natural gas fired co-generation engines are examined and presented for the boiler house that is a part of the district heating system owned and operated by the Faculty of Mechanical Engineering in Niš. At the moment, in this boiler house only thermal energy is produced. The boilers are natural gas fired and often operate in low part load regimes. The plant is working only during the heating season. For estimation of effects of implementation of co-generation, referent values are taken from literature or are based on the results of measurements performed on site. Results are presented in the form of primary energy savings and greenhouse gasses emission reduction potentials. Financial aspects are also considered and triangle of costs is shown.

  9. Performance analysis of a co-generation system using solar energy and SOFC technology

    International Nuclear Information System (INIS)

    Akikur, R.K.; Saidur, R.; Ping, H.W.; Ullah, K.R.

    2014-01-01

    Highlights: • A new concept of a cogeneration system is proposed and investigated. • The system comprises solar collector, PV, SOFC and heat exchanger. • 83.6% Power and heat generation efficiency has been found at fuel cell mode. • 85.1% Efficiency of SOSE has been found at H2 production mode. • The heat to power ratio of SOFC mode has been found about 0.917. - Abstract: Due to the increasing future energy demands and global warming, the renewable alternative energy sources and the efficient power systems have been getting importance over the last few decades. Among the renewable energy technologies, the solar energy coupling with fuel cell technology will be the promising possibilities for the future green energy solutions. Fuel cell cogeneration is an auspicious technology that can potentially reduce the energy consumption and environmental impact associated with serving building electrical and thermal demands. In this study, performance assessment of a co-generation system is presented to deliver electrical and thermal energy using the solar energy and the reversible solid oxide fuel cell. A mathematical model of the co-generation system is developed. To illustrate the performance, the system is considered in three operation modes: a solar-solid oxide fuel cell (SOFC) mode, which is low solar radiation time when the solar photovoltaic (PV) and SOFC are used for electric and heat load supply; a solar-solid oxide steam electrolyzer (SOSE) mode, which is high solar radiation time when PV is used for power supply to the electrical load and to the steam electrolyzer to generate hydrogen (H 2 ); and a SOFC mode, which is the power and heat generation mode of reversible SOFC using the storage H 2 at night time. Also the effects of solar radiation on the system performances and the effects of temperature on RSOFC are analyzed. In this study, 100 kW electric loads are considered and analyzed for the power and heat generation in those three modes to evaluate

  10. Thermodynamic analysis of SCW NPP cycles with thermo-chemical co-generation of hydrogen

    International Nuclear Information System (INIS)

    Naidin, N.; Mokry, S.; Monichan, R.; Chophla, K.; Pioro, I.; Naterer, G.; Gabriel, K.

    2009-01-01

    Research activities are currently conducted worldwide to develop Generation IV nuclear reactor concepts with the objective of improving thermal efficiency and increasing economic competitiveness of Generation IV Nuclear Power Plants (NPPs) compared to modern thermal power plants. The Super-Critical Water-cooled Reactor (SCWR) concept is one of the six Generation IV options chosen for further investigation and development in several countries including Canada and Russia. Water-cooled reactors operating at subcritical pressures (10 - 16 MPa) have provided a significant amount of electricity production for the past 50 years. However, the thermal efficiency of the current NPPs is not very high (30 - 35%). As such, more competitive designs, with higher thermal efficiencies, which will be close to that of modern thermal power plants (45 - 50%), need to be developed and implemented. Super-Critical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625 o C). Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermochemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. The two SCW NPP cycles proposed by this paper are based on direct, regenerative, no-reheat and single-reheat configurations. As such, the main parameters and performance in terms of thermal efficiency of the SCW NPP concepts mentioned above are being analyzed. The cycles are generally comprised of: an SCWR, a SC turbine, one deaerator, ten feedwater heaters, and pumps. The SC turbine of the no-reheat cycle consists of one High-Pressure (HP) cylinder and two Low-Pressure (LP) cylinders. Alternatively, the SC turbine for the single-reheat cycle is comprised of one High-Pressure (HP) cylinder, one Intermediate-Pressure (IP) cylinder and two Low-Pressure (LP) cylinders. Since the single-reheat option

  11. Nuclear Co-Generating Plants for Powering and Heating to Cleaning the Warsaw's Environment

    International Nuclear Information System (INIS)

    Baurski, J.

    2010-01-01

    In 2009 the Polish Government made a decision to introduce nuclear power to Poland. Two nuclear power plants (NPPs) will be constructed nearly at the same time - the first unit should start operation in 2020, and by 2030 there should be about 6000 MWe added to the national electrical grid. The Commissioner of the Government was nominated to introduce the Polish Nuclear Power Program (PNPP). One of the four vertically integrated - the biggest energy company (PGE - the Polish Energy Group with headquarters in Warsaw) was appointed to prepare investments. These activities are planned in four stages: I. up to 31.12.2010 - The PNPP will be prepared and the program must then be accepted by the Government. II. 2011 - 2013 - Sites will be determined, and the contract for construction of the first NPP will be closed. III. 2014 - 2015 - Technical specifications will be prepared and accepted according the law. IV. 2016 - 2020 - The first NPP in Poland will be constructed. At present, the Government is receiving proposals from some regions of Poland asking that they be chosen for the NPP. One of the obvious locations for the NPP is a 40-kilometer vicinity of Warsaw (1.8 mln inhabitants). The need for both electric power and heat is increasing because of the rapidly growing town. It gives the extremely valuable chance for a very high thermodynamic efficiency of 80% in co-generation instead of 33% (max 36% for EPR-1600) for NPP generated electric power only. The Warsaw heating system has a capacity of 3950 MWt and is the biggest among EU countries. It is the third biggest in the world. Two NPPs, each of 2 x 1000 MWe could be built on the Vistula River up and down the town. In 2005, UE calculated losses caused by gas emissions at 24 mld eur, and the span of human lives was six months shorter in western countries and 8 months shorter in Poland. Warsaw's atmosphere is very polluted also because there are four heat and power generating plants: three coal and one oil -fired. In these

  12. Guideline for implementing Co-generation based on biomass waste from Thai industries

    Energy Technology Data Exchange (ETDEWEB)

    Lybaek, R.

    2005-07-01

    Due to the large-scale industrial development in Thailand the consumption of energy - primarily based on fossil fuels - has increased enormously, even though the economic growth has slowed down since the economic crisis in 1997. It is, therefore, important to reduce the environmental impact of this energy consumption, which can be achieved by energy conservation, higher efficiency in the production of energy, or by the use of different kinds of renewable energy. This thesis seeks to develop new strategies for the use of waste heat as a part of the industrial process heat, which can be supplied to industries by a district-heating network. By substituting process heat - produced by electricity or by boilers using fossil fuel in individual industries - with process heat, produced by a co-generation plant - using the industries own biomass waste as fuel - process heat can be supplied to industries participating in a small scale district heating network. Thus, an Industrial Materials Network can be created, which is environmentally as well as economically beneficial for both industry and society. On the basis of a case study of the industrial area, Navanakorn Industrial Promotion Zone in Thailand, such initiatives for efficient materials and energy uses have been conducted and proved successful, and industries - as well as local and national governmental agencies, NGOs and branch organizations etc. - have shown interest in supporting the implementation of such scheme. In this thesis, a Guideline for large-scale implementation of Industrial Materials Network in Thailand was developed. By following a series of actions, the Guideline defines the initiatives that must be taken in order to ensure correct implementation. Chronologically, the emphasis of the Guideline is on pointing to relevant stakeholders who can pursue the implementation, and then appropriate areas and types of industries for Industrial Materials Network implementation. Thereafter, guidance for the

  13. Experiences of energy saving and co-generation projects; Experiencias de proyectos de ahorro de energia y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Barajas, Alberto [Heat and Power Systems, S.A. de C.V., Mexico D.F. (Mexico)

    2005-07-01

    In this document are presented the successful projects of energy saving and co-generation that Heat and Power Systems, S.A. de C.V. has made in diverse industries. The investment recovery periods have been smaller to 18 months. The projects have been made for different companies within Mexican Republic. [Spanish] Se presentan los casos exitosos de proyectos de ahorro de energia y cogeneracion que Heat and Power Systems, S.A. de C.V. ha realizado en diversas industrias cuyo periodo de recuperacion de la inversion han sido menores a 18 meses. Los proyectos han sido realizados para distintas empresas dentro de la Republica Mexicana.

  14. The Results of Feasibility Study of Co-generation NPP With Innovative VK-300 Simplified Boiling Water Reactor

    International Nuclear Information System (INIS)

    Kuznetsov, Yury N.

    2006-01-01

    The co-generation nuclear power plant (CNPP) producing electricity and district heating heat is planned to be constructed in Archangelsk Region of Russia. Following the 'Letter of Intent' signed by Governor of Archangelsk region and by Minister of the Russian Federation for atomic energy the feasibility study of the Project has been done. The NPP will be based on the four co-generation nuclear power units with the Russian VK-300 SBWR. The innovative passive VK-300 reactor facility has been designed on the basis of well-established nuclear technologies, proven major components, the operating experience of the prototype VK-50 reactor in RIAR, Dimitrovgrad, and the experience in designing such reactors as SBWR (GE) and SWR-1000 (Siemens). The CNPP's total power is planned to be 1000 MW(e) and district-heating heat production capacity 1600 Gcal/h. A detailed description of the results of the feasibility study is presented in the report. The results of the feasibility study have shown that the Archangelsk CGNP is feasible in terms of engineering, economics and production. (authors)

  15. The results of feasibility study of co-generation NPP with innovative VK-300 simplified boiling water reactor

    International Nuclear Information System (INIS)

    Kuznetsov, Yu. N.; Gabaraev, B. A.

    2004-01-01

    The co-generation nuclear power plant (CNPP) producing electricity and district-heating heat is planned to be constructed in Archangelsk Region of Russia. Following the Letter of Intent signed by Governor of Archangelsk region and by Minister of the Russian Federation for atomic energy the feasibility study of the Project has been done. The NPP will be based on the four co-generation nuclear power units with the Russian VK-300 SBWR. The innovative passive VK-300 reactor facility has been designed on the basis of well-established nuclear technologies, proven major components, the operating experience of the prototype VK-50 reactor in RIAR, Dimitrovgrad, and the experience in designing such reactors as SBWR (GE) and SWR-1000 (Siemens). The CNPP's total power is planned to be 1000 MW(e) and district-heating heat production capacity 1600 Gcal /h. A detailed description of the results of the feasibility study is presented in the report. The results of the feasibility study have shown that the Archangelsk CGNP is feasible in terms of engineering, economics and production.(author)

  16. Plant concept of heat utilization of high temperature gas-cooled reactors. Co-generation and coal-gasification

    International Nuclear Information System (INIS)

    Tonogouchi, M.; Maeda, S.; Ide, A.

    1996-01-01

    In Japan, JAERI is now constructing the High temperature Engineering Test Reactor (HTTR) and the new era is coming for the development and utilization of HTR. Recognizing that the heat utilization of HTR would mitigate problems of environment and resources and contribute the effective use and steady supply of the energy, FAPIG organized a working group named 'HTR-HUC' to study the heat utilization of HTR in the field other than electric power generation. We chose three kinds of plants to study, 1) a co-generation plant in which the existing power units supplying steam and electricity can be replaced by a nuclear plant, 2) Coal gasification plant which can accelerate the clean use of coal and contribute stable supply of the energy and preservation of the environment in the world and 3) Hydrogen production plant which can help to break off the use of the new energy carrier HYDROGEN and will release people from the dependence of fossil energy. In this paper the former two plants, Co-generation chemical plant and Coal-gasification plant are focussed on. The main features, process flow and safety assessment of these plants are discussed. (J.P.N.)

  17. The optimal scheduling of decentralised co-generation plants in microgrids; Optimale Einsatzplanung von Kraft-Waerme-Kopplungsanlagen in Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Gunkel, David [TU Dresden (Germany). Lehrstuhl fuer Energiewirtschaft; Hess, Tobias; Schegner, Peter [TU Dresden (Germany). Inst. fuer Elektrische Energieversorgung und Hochspannungstechnik

    2011-07-01

    The daily operational scheduling of decentralised unit is an important optimization task of power systems. This proceeding deals with planning of small scaled co-generation power units for district heating in a microgrid. This power system can be mathematically formulated and solved by an optimization algorithm. The solution process consists of a unit commitment and dispatch. The starting unit commitment is characterised by a mixed integer nonlinear problem defining the on-off-state of all units. Subsequently, the dispatch distributes the generation requirements to every committed unit considering thermal demand. The dispatching is based on a mixed integer linear problem. Additionally, it presents a way for flexible reducing the outage reserve related to the operational condition. The given microgrid operates in an islanding mode. The method can also be applied in a grid connected model considering the possible requirements of a grid operator. (orig.)

  18. Inquiry on the valorisation of heat produced by methanization with co-generation in France. Energy and territory: Valorisation of heat produced by methanization

    International Nuclear Information System (INIS)

    Bazin, Florian; David, Laura; Heuraux, Thalie; Jeziorny, Thibaud; Massazza, Michael; Mosse, Noemie; Nguyen Dai, Kim Yen; Pruvost, Paul; Regimbart, Amelie; Rogee, Pierre-Emmanuel; Roy, Samuel; Segret, Emilien

    2014-01-01

    A leaflet first proposes graphs which illustrate the valorisation of heat produced by methanization with co-generation in France: material and methods, farm characterisation, plant sources, valorisation modes. The second document proposes detailed and discussed presentations of the various involved processes. Contributions address methanization as a whole, valorisation of heat produced by co-generation through heating of agricultural and domestic buildings or through digestate dehydration, digestate hygienisation, and other types of valorisation such as fodder drying, cereal drying, wood drying, compost drying, fabrication of rape seed, greenhouse crops, cultures of micro algae, and mushroom farming

  19. Parametric performance analysis of a concentrated photovoltaic co-generation system equipped with a thermal storage tank

    International Nuclear Information System (INIS)

    Imtiaz Hussain, M.; Lee, Gwi Hyun

    2015-01-01

    Highlights: • Both thermal and electrical powers varied by changing surface area of collector. • Thermal stratification and total system power were increased at critical flow rate. • Parametric analysis of the CPVC system offers to determine the desired outcome. • Thermal and electrical outputs varied by changing the focal length of Fresnel lens. - Abstract: This article presents a parametric study of a concentrated photovoltaic co-generation (CPVC) system with an attached thermal storage tank. The CPVC system utilized dual-axis tracker and multiple solar energy collector (SEC) modules and forced cooling system. Each SEC module comprised 16 triple-junction solar cells, copper tube absorbers, and 16 Fresnel lenses were aligned against each solar cell. This study investigated all possible parameters that can affect the CPVC system performance, including the collector area, solar irradiation, inlet temperature, and mass flow rate. The surface area of the collector and the thermal power were increased by increasing the number of SEC modules connected in series; however, the electrical power output decreased from the first to the fourth SEC module consecutively. At the measured optimal flow rate, mixing and thermal diffusion in the storage tank were decreased, and the total power generation from the CPVC system was increased. Variations in the thermal and electrical power outputs were also observed when the focal length of the Fresnel lens was changed. This parametric analysis enables the CPVC system to obtain the desired output by varying the combination of operational and geometrical parameters

  20. Co-generation on steam industrial systems with disks turbines; Co-geracao em sistemas industriais de vapor com turbinas de discos

    Energy Technology Data Exchange (ETDEWEB)

    Lezsovits, Ferenc [Universidad de Tecnologia y Economia de Budapest (Hungary)

    2010-03-15

    The disk turbine, also called Tesla turbine, being of simple construction and low cost, can be used as steam pressure reduction on industrial systems, generating simultaneously electric power, becoming the co-generation even at lower levels. Can be used for various operational parameters and mass flux ratios.This paper analyses the advantages and disadvantages of the turbines under various operation conditions.

  1. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  2. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  3. Co-generation system with a linear concentrator and thermoelectric elements; Senkei shukokei to netsuden henkan soshi wo mochiita netsuden heikyu system

    Energy Technology Data Exchange (ETDEWEB)

    Kachi, E; Suzuki, A; Fujibayashi, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-27

    The co-generation system using a solar cell has the disadvantage that the performance of a cell element deteriorates when the temperature rises. Therefore, the co-generation system in which a BiTe thermoelectric element and linear Fresnel lens are used was constructed. Moreover, the basic characteristics were confirmed and the characteristics of a system model were analyzed. A thermoelectric element area must be reduced to improve the generating efficiency. The generating efficiency depends on the temperature difference between thermoelectric elements rather than the thermoelectric element area. As the thermoelectric area gets lower, the generating efficiency will get higher. This inclination is advantageous on the economic side. The generating efficiency becomes low during operation at high temperature. As a result, the temperature supplied to the thermal load is set to the lower position (100 to 200{degree}C) so as to advance the validity of the system. Even if the co-generation temperature is low, a heat supply capability of 150{degree}C is sufficient for an industrial heat supply system because it holds a large majority of the consumption demand for the whole industry. 3 refs., 8 figs., 3 tabs.

  4. Design of a small scale stand-alone solar thermal co-generation plant for an isolated region in Egypt

    International Nuclear Information System (INIS)

    Abdelhady, Suzan; Borello, Domenico; Tortora, Eileen

    2014-01-01

    Highlights: • In the selected area, connection to the grid is very difficult and expensive. • The integrated unsteady CSP/ORC system, was modeled TRNSYS. • Assuming a CSP of 200,000 m 2 , 6 MW e and 21.5 MW th can be obtained. • The energy is sufficient to feed more than 3,300 rural users and two big factories. • PER = 1.43, LCOE = 1.25 USD/kW h and the GHG emissions are reduced of 7300 toe/year. - Abstract: Most of Egypt’s population is concentrated in the Nile Valley (5% of Egypt’s area), while the western desert occupies an area of 50% of the total area of Egypt with a small number of inhabitants. The New Valley is the largest governorates in Egypt which occupies 45.8% of the total area of the Country and 65% of the Western Desert and it is the least densely populated governorate in Egypt. However, New Valley has started to receive the migrated people from the Nile valley and Delta region and the demand for the energy is continuously increasing. However, the rural area in New Valley still suffers from lack of access to energy services. The very high transmission losses and costs are the main challenges for electrification in this area. Then, it is worth to investigate the opportunities for distributed energy generation. This area of Egypt receives some of the highest solar radiation in the world (up to 3000 kW h per square meters per year), making it a prime location for use of this resource. In this study, performance and economic assessment of a small scale stand-alone solar thermal co-generation plant using diathermic oil is presented. This configuration is considered as a promising and sustainable solution to provide electricity and heat to an isolated area satisfying the local loads. Parabolic trough plant has been modeled in TRNSYS simulation environment integrated with the Solar Thermal Electric Components (STEC) model library. Both solar and power cycle performances have been modeled based on the solar energy data of the plant site. The

  5. 太阳能水力联合能源发电模式研究%Study on Co-generation of Solar-hydro Energy

    Institute of Scientific and Technical Information of China (English)

    朱永平; 孟利平; 饶民

    2013-01-01

    太阳能与水电站联合能源发电模式利用水库水面建立太阳能发电装置,可以解决大规模发展太阳能发电的土地制约瓶颈.太阳能发电装置与水电站通过集中控制室联合发电并使用同一线路送出,解决了太阳能发电系统的送出制约,更加安全稳定地向电网供电,节约了建设成本.%The co-generation of solar-hydro energy builds solar photovoltaic power generation devices on water surface of reservoir in hydropower station, so it can remove the limits of land resources on the development of solar photovoltaic power generation. At the same time, because the solar photovoltaic power generation can be integrated controlled with the hydropower station and supplies power to grid more safely and steadily through the outlet lines of hydropower station, the limits on power supply to grid of solar photovoltaic power generation can also been eliminated. This new co-generation mode can save construction costs and improve generation efficiency.

  6. Simulation of an air conditioning absorption refrigeration system in a co-generation process combining a proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pilatowsky, I.; Gamboa, S.A.; Rivera, W. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Romero, R.J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas - UAEM, Cuernavaca, Morelos (Mexico); Isaza, C.A. [Universidad Pontificia Bolivariana, Medellin (Colombia). Instituto de Energia y Termodinamica; Sebastian, P.J. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Moreira, J. [Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    In this work, a computer simulation program was developed to determine the optimum operating conditions of an air conditioning system during the co-generation process. A 1 kW PEMFC was considered in this study with a chemical/electrical theoretical efficiency of 40% and a thermal efficiency of 30% applying an electrical load of 100%. A refrigeration-absorption cycle (RAC) operating with monomethylamine-water solutions (MMA-WS), with low vapor generation temperatures (up to 80 C) is proposed in this work. The computer simulation was based on the refrigeration production capacity at the maximum power capacity of the PEMFC. Heat losses between the fuel cell and the absorption air conditioning system at standard operating conditions were considered to be negligible. The results showed the feasibility of using PEMFC for cooling, increasing the total efficiency of the fuel cell system. (author)

  7. Gathering straw energy balance for co-generation in sugarcane mills; Balanco energetico do recolhimento da palha para cogeracao de energia em usinas de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Joao Paulo Soto; Bizzo, Waldir Antonio; Carvalho, Danilo Jose; Berton, Rafael Piatto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica; Linero, Francisco Antonio Barba [Centro de Tecnologia Canavieira (CTC), Piracicaba, SP (Brazil)], E-mails: jpsveiga@fem.unicamp.br, bizzo@fem.unicamp.br, linero@ctc.com.br, liar@fem.unicamp.br, rpberton@fem.unicamp.br

    2012-11-01

    With the requirement and expansion of sugarcane harvest without burning the straw in the field of began to be seen as a potential fuel for co-generation sugarcane mills together bagasse. This study examined the productivity and three ways of gathering and transportation of straw in order to determine the potential energy available in biomass residues and their respective energy consumption on gathering and transport operations. To this were determined parameters for the production of waste per hectare, minimum quantity to be left in the field for maintenance of soil organic carbon and erosion reducing, the amount of straw recovered and milled at the mill, material humidity and diesel and electricity consumption of each step to obtain the final balance of energy recovered. (author)

  8. Feasibility of co-generation of water and electricity by means of the IRIS;Factibilidad de cogeneracion de agua y electricidad mediante el IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Vargas E, S.; Alonso V, G.; Gonzalez, J. A.; Xolocostli, V.; Ramirez S, J. R., E-mail: samuel.vargas@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-10-15

    The importance to count with resources that allow the development of a country is an important factor. The electricity and the water are factors that in the future will be crucial for the development of any region of the planet. In this work the economic reliability of use of IRIS reactor like a energy source for the electricity production, as well as for the potable water production through the desalination of sea water. Within this study the requirements of these two outlines for different regions from the country are analyzed, nevertheless, chooses the northwest region of the Mexican republic, because, according to estimations realized for the Energy Secretary and the National Commission of the Water, this would present important water requirements and electricity, due to the population increase that is considered for all the country, mainly the built-up zones. Combined to this one is due to consider that the present water demand in some regions of the country present a worrisome over-exploitation of this liquid appraising. The economic evaluation of co-generation that appears in this work though the IRIS reactor, includes different desalination capacities at the moment, using the three more used techniques, obtaining the even costs of water and electricity, as well as net saleable energy and the construction costs as much for the desalination plant and the IRIS reactor. (Author)

  9. Procedure to determine the convenience of installing a co-generation system; Procedimiento para determinar la conveniencia de instalar un sistema de cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Colin Castellanos, Carlos; Acosta Torres, Aracely [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1993-12-31

    In this article a methodology for the selection of the co-generation system better adapted to the energy needs of an industry is presented, covering the following schemes: a) Satisfy the thermal demand and deliver to the net the excess electricity generated. b) Reduce the functioning level of the machine and produce electricity in accordance with the internal demand. The thermal demand will be satisfied, for instance, integrating a boiler in the cycle. c) Satisfy the electric demand and utilize only in part the available heat. d) Or else, reduce the operation level of the machine and produce only the necessary thermal energy, taking from the net the electric energy needed to cover the total demand. [Espanol] En este articulo se presenta una metodologia para la seleccion del sistema de cogeneracion que mejor se adapte a las necesidades energeticas de una industria, cubriendo los siguientes esquemas: a) Satisfacer la demanda termica y ceder a la red el exceso de energia electrica generada. b) Reducir el nivel de funcionamiento de la maquina y producir electricidad de acuerdo a la demanda interna. La demanda termica se cubrira, por ejemplo, integrando una caldera al ciclo. c) Satisfacer la demanda electrica y, utilizar solo en parte el calor disponible. d) O bien, reducir el nivel de operacion de la maquina y solo producir la energia termica necesaria, tomando de la red la energia electrica para cubrir la demanda total.

  10. Operating experiences on the co-generation system (CGS) as an uninterruptible power source (UPS) for the super-sized accelerator facility, RIBF of RIKEN

    International Nuclear Information System (INIS)

    Fujinawa, Tadashi; Yano, Yasushige

    2011-01-01

    The RI Beam Factory (RIBF) of RIKEN Nishina Center for Accelerator-Based Science, which succeeded in extracting first beam on December 28th 2006 as scheduled, is currently conducting nuclear physics experiments. The RIBF has six accelerators, one of which is the world's biggest and most powerful superconducting ring cyclotron (SRC). The accelerators require not only a huge amount of electricity but also a reliable power supply for the He-cryogenic system, vacuum system and superconducting magnet systems. For this purpose, the co-generation system (CGS) was introduced. A gas turbine generates 6.5 MW of power from liquid natural gas (LNG) and supplies it to the systems mentioned above as an uninterruptible power source (UPS). By utilizing gas heat exhaust from the gas turbine, the CGS will also supply cooled water to the cooling system of the RIBF accelerators as well as to the air-conditioning system for the bending. The CGS plant was completed on the 1st floor of the RIBF accelerator building and it began operating in April 2003. This paper covers the merits and demerits. (author)

  11. Procedure to determine the convenience of installing a co-generation system; Procedimiento para determinar la conveniencia de instalar un sistema de cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Colin Castellanos, Carlos; Acosta Torres, Aracely [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-12-31

    In this article a methodology for the selection of the co-generation system better adapted to the energy needs of an industry is presented, covering the following schemes: a) Satisfy the thermal demand and deliver to the net the excess electricity generated. b) Reduce the functioning level of the machine and produce electricity in accordance with the internal demand. The thermal demand will be satisfied, for instance, integrating a boiler in the cycle. c) Satisfy the electric demand and utilize only in part the available heat. d) Or else, reduce the operation level of the machine and produce only the necessary thermal energy, taking from the net the electric energy needed to cover the total demand. [Espanol] En este articulo se presenta una metodologia para la seleccion del sistema de cogeneracion que mejor se adapte a las necesidades energeticas de una industria, cubriendo los siguientes esquemas: a) Satisfacer la demanda termica y ceder a la red el exceso de energia electrica generada. b) Reducir el nivel de funcionamiento de la maquina y producir electricidad de acuerdo a la demanda interna. La demanda termica se cubrira, por ejemplo, integrando una caldera al ciclo. c) Satisfacer la demanda electrica y, utilizar solo en parte el calor disponible. d) O bien, reducir el nivel de operacion de la maquina y solo producir la energia termica necesaria, tomando de la red la energia electrica para cubrir la demanda total.

  12. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  13. Biomass: towards more co-generation than gasification? Interview with Jean-Christophe Pouet; Figures for the heat fund; biomass in the Parisian heat network; gasification still at the promise stage; Engie bets on bio-methane of 2. generation; a new bidding for biomass co-generation

    International Nuclear Information System (INIS)

    Petitot, Pauline; De Santis, Audrey; Mary, Olivier; Signoret, Stephane

    2016-01-01

    After some brief presentations of some highlights in the biomass sector in France, Ukraine, UK and Brazil, a set of articles proposes an overview of recent developments and perspectives for the biomass-based energy and heat production in France. It presents and comments some emerging projects based on biomass gasification as technologies have evolved for a higher economic profitability. It discusses the action of the Heat Fund (Fonds chaleur) which supports investors in a context constrained by the hard competition with fossil energies, notably with gas as discussed in an interview with a member of the ADEME. Some tables and graphs give data about biomass installations supported by the Heat fund, about subsidies awarded by the ADEME, about the production of the various heat sources. An article comments the operation of a biomass-based plant near Paris which supplies the Parisian heat network. A project of methane production from dry biomass from local resources by Engie near Lyons (methane of second generation). The last article comments a new bidding process for co-generation projects which can be an opportunity for new projects, and not only big ones

  14. CO-GENERATION AND OPERATING NETWORK CELLS

    DEFF Research Database (Denmark)

    Nielsen, John Eli

    2008-01-01

    In Denmark several thousands of generators are connected to the distribution system (10 kV and 0.4 kV). The production from these generators many times exceeds the load. The generators can be divided into two types, Wind turbines and CHP generators. These generators have one thing in common......, the power system they are connected to, has never been designed to accommodate so many generators. In Denmark we now expect a third type of generators: the microgenerators. This time we want to be prepared. Denmark therefore now participates in a lot of research and full scale demonstration projects. A key...

  15. Co-generation project for the Combined Cycle Power Plant President Juarez Rosarito and a reverse osmosis desalting plant; Proyecto de cogeneracion para la planta de ciclo combinado Presidente Juarez Rosarito y una planta desaladora de osmosis inversa

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Mora, Hector; Espindola Hernandez, Salvador [Universidad NAcional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2006-11-15

    In this work a technical and economical analysis of the installation of a reverse osmosis desalting plant connected to a power station that uses the combined cycle technology under a co-generation scheme is presented: production of electricity and water. The operation program of the desalting power station will be determined by the demand of energy of the combined cycle power station; the proposal is that the desalting plant operates in the hours of low load of the power station and shuts down at the peak hours of electrical energy demand. So that this study is representative, the demand curves of electric energy of the units of combined cycle of Central President Juarez Rosarito of the Comision Federal de Electricidad (CFE) have been taken and updated the data of the reverse osmosis desalting plants that are available at the moment in the market. As basis of the study the level costs will be determined so much as the electrical energy generated by the power station of combined cycle, operating inside and outside of a co-generation scheme and the costs made level for the water produced by the reverse osmosis plant under two assumptions: the first one is buying the electrical energy from CFE and the second one considering that the CFE is the owner of the desalting plant and therefore the cost of electrical energy to desalting the plant is zero. This work shows the economic impacts on the costs of the generation of electrical energy and on those of the desalted water in a co-generation scheme. The results shown in this study can be considered for the future planning in the construction of desalting plants to supply of water in the Northwestern zones of the country where serious problems of water shortage exist. [Spanish] En este trabajo se presenta un analisis tecnico y economico de la instalacion de una planta desaladora de osmosis inversa acoplada a una central de generacion de energia electrica que utiliza la tecnologia de ciclo combinado bajo un esquema de

  16. Co-generation energy centres in diverse production facilities

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, A.L.; Pearson, A.

    1989-01-01

    Reviews applications within the Unilever Group, including plants in operation and studies that did not result in implementation, discusses the development of Unilever's Merseyside site and gives a review of Unilever's recently completed remodelling of the Merseyside Power Station, Port Sunlight, including the financial case, how it is put into practice and operating experience. The oil-fired high-pressure boilers/back pressure steam turbines station now incorporates a 105 tonnes/h, 103 bar, 510/sup o/C, spreader stoker coal-fired boiler and a 9.5 MW heavy fuel oil-burning medium-speed diesel engine. Both operate on 'base load'. The station is flexibly integrated by means of feedwater and air heating systems.

  17. Methodology study: Co-generation feasibility at sawmills

    International Nuclear Information System (INIS)

    Host, J.

    1991-01-01

    This report discussed the various factors that should be studied and evaluated before establishing a cogeneration plant. The results of three case studies and a survey of energy needs in smaller and medium size sawmills are also presented. In general, cogeneration is feasible for supplying electric energy required for processing logs using fuelbark and other residues from the manufacturing process. A rebuilt turbine-generator unit is an initial cost saving alternative that is advantageous throughout the life of the operation

  18. Small Nuclear Co-generation Plants Based on Shipbuilding Technology

    International Nuclear Information System (INIS)

    Vasyukov, V. I.; Veshnyakov, K. B.; Goryunov, E. V.; Zalugin, V. I.; Panov, Yu. K.; Polunichev, V. I.

    2002-01-01

    The development of nuclear cogeneration plants and power desalination complexes of relatively small power, using proven shipbuilding technology, becomes more and more attractive for solving the power supply problems of remote districts of the Extreme North and the Far East with small and medium power grids and for removing the shortage of fresh water in different world regions. The idea of transportation of the power unit with high degree of readiness to the place of its location with minimum construction and mounting activities at the site is very attractive. Compactness typical of RP based on shipbuilding technology allows to develop floating or ground-based plants at minimum use of water area and territory. Small construction scope at the site under conditions of minimum anthropogenic loads and high ecological indices are important arguments in favor of floating nuclear cogeneration plant based on ship power units against the alternative fossil sources. At present, the activities on floating nuclear cogeneration plant design, which is developed on the basis of floating power unit with two KLT-40S reactor plant, which is a modified option of standard KLT-40-type ship plant for icebreaker fleet in Russia are the most advanced. To date, a detailed design of reactor plant has been developed and approved, design activities on floating power unit are in the stage of completion, the site for its location has been selected and licensing by GAN, Russia, is in progress. Besides OKBM has developed some designs of nuclear cogeneration plants of different power on the basis of integral reactor plants, using the experience of transport and stationary power plants designing. Nuclear cogeneration plant investment analysis showed acceptable social and economical efficiency of the design that creates conditions for commercial construction of floating power units with KLT-40S reactor plan. At the same time the reduction of the design recovering terms, increase of budget income and net income during the floating cogeneration plant operation period is the urgent technical and economical problem, which can be successively solved owing to the use of block RP of higher power with prospective equipment, which underwent testing at the test facility, process mastering and operation check; it allows to reach high indices as for safety and reliability level at low masses and dimensions. Further rise of NHCP technical and economical indices may be reached by considerable increase of service life, increase of the core refueling intervals, decrease of personnel number, transportation by any transport means and use of low enrichment core. The report adduces main characteristics of KLT-40S reactor plant and floating NHCP in general, as well as characteristics of NHCP on the basis of other plant. General and environmental safety indices and technical and economical indices of the plant are given. Ways of RP improvement owing to the use of prospective equipment and new layouts and modes are considered; evolution of obtained economic indices is given. (author)

  19. Fiscal 1999 report on basic research for promotion of joint implementation programs. Heat and power plant reconstruction project for Yuzhmash Company co-generating plant, Donepropetrovsk City, the Ukraine; 1999 nendo Donepropetrovsk shi Yuzhmansh sha Heat and Power Plant Reconstruction Project chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project complies with the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) protocol. To be newly installed are three gas turbine power generators (rating: 26MW, main fuel: natural gas), three waste heat recovery boilers (additionally fired boilers, 2-pressure natural circulation type), and one 40MW water circulation type mixed pressure steam turbine power generator (including a bleeder for co-generation). Greenhouse gases will be reduced by 242,424 tons/year in terms of CO2. The project will cost 9-billion yen in total, with improvement on cost performance expected to be 37,000 yen/ton/year in terms of CO2 and 1,500 yen/ton/25 years. Profitability is assessed using EIRR (economic internal rate of return) when the exchange rate is set at 4.91 UHA/US dollar (as of February 2000). Provided that the emission trading rate in US dollar/ton in CO2 is 0.0, 5.00, 14.0, or 60.00, the economic rate of return will be 7.363, 8.112, 9.399, or 15.155%, respectively. To realize an internal rate of return of 15% which the project wants to achieve, the emission trading rate needs to be 60 US dollars/ton in CO2 or higher. (NEDO)

  20. Research report for fiscal 1998. Basic research for promoting joint implementation, etc. (fuel change plan for No. 1 and No. 9 Irkutsk Heat and Power Co-Generation Plants, Irkutsk, Russia); 1998 nendo chosa hokokusho. Roshia renpo Irkuktsk shu dai 1 go oyobi dai 9 go Irkutsk netsu heikyu hatsudensho nenryo tenkan keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A research is conducted to find out if efficiency will increase and greenhouse gas will decrease when fuel is changed from coal to gas at the above-named plants, and the economics of the plan is reviewed. The No. 1 plant comprises 18 coal-fired boilers with a total design capacity of 2985 tons/hour, and 8 steam turbine generators rated at 185MW, constructed in the 1940s. The No. 9 plant was constructed in the 1960s and 1970s. Four different modifications programs are drafted to study the fuel change plan. As the result, it is found that the addition of natural gas burning facilities to the existing heat and power co-generation plants and the modification of the existing boiler-related facilities will be low in earning rate and reliability, though excellent in budget size and cost efficiency; and that to dismantle the existing plants and to newly construct heat and power plants operating on gas turbines will bring about a higher earning rate, fuel cost reduction effect, and reliability, though such will cost more. (NEDO)

  1. Nuclear Co-generation: The Analysis of Technical Capabilities and Cost Estimates

    Directory of Open Access Journals (Sweden)

    Andrzej Reński

    2016-09-01

    Full Text Available This paper presents a concept of the parallel connection of a nuclear power plant fitted to provide heat for district heating application, with the CHP and heat plants existing in the supply region, in this case with the heating systems of Wejherowo and Gdynia. Presented variant proposes to add heat to a nuclear power plant’s total output by supplying heat exchangers with the steam from bleeders of low pressure (LP turbine stage and from the crossover pipe between its high pressure (HP and intermediate pressure (IP stages. A detailed diagram of the EPR nuclear turbine system adapted to supply district heat is also presented. Also determined are the formulas for: electric power output of a nuclear CHP plant; electric power generated strictly in cogeneration, and the decrease in the electric power and energy resulting from the operation in cogeneration mode. Finally, the profitability (competitiveness criteria for a nuclear power plant adapted to supply district heat in a selected heat supply region were proposed.

  2. An integral reactor design concept for a nuclear co-generation plant

    International Nuclear Information System (INIS)

    Lee, D.J.; Kim, J.I.; Kim, K.K.; Chang, M.H.; Moon, K.S.

    1997-01-01

    An integral reactor concept for nuclear cogeneration plant is being developed at KAERI as an attempt to expand the peaceful utilization of well established commercial nuclear technology, and related industrial infrastructure such as desalination technology in Korea. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway to evaluate the characteristics of various passive safety concepts and provide the proper technical data for the conceptual design. This paper describes the preliminary safety and design concepts of the advanced integral reactor. Salient features of the design are hexagonal core geometry, once-through helical steam generator, self-pressurizer, and seismic resistant fine control CEDMS, passive residual heat removal system, steam injector driven passive containment cooling system. (author)

  3. Possible applications and characteristics of HTGRs used for industrial co-generation

    International Nuclear Information System (INIS)

    Grebennik, V.N.

    1984-01-01

    The paper contains an overview of the HTGR's applications - high potential heat needs for industrial processes, covering a temperature range of approximately 500 to 1000 deg. C and higher are described, encompassing processes such as methane steam conversion, ammonia production, complex process of steam coal gasification, hydrogen production and coal hydrogenation for liquid synthetic fuel production, direct iron reduction etc. These needs are to be met by a reactor with power ranging from 1 to 10 GW(th). The USSR R and D work on high-temperature gas-cooled reactors is focused on the standardization of reactor components, high reliability and corresponding high NPP availability and safety. The main effort of the first experimental use of USSR HTGR units is concentrated on the steam conversion of methane. Other industrial processes will be studied at further stages of the HTGR development. (author)

  4. Wind-diesel and distributed diesel co-generation in remote communities

    International Nuclear Information System (INIS)

    Lodge, M.A.

    1995-01-01

    One of the most popular and feasible strategies to reduce costs for electrical and other energy supply in remote communities is the development of wind-diesel systems. In these systems, a significant share of the electrical energy requirements of a community can be provided by wind turbines connected to the community electrical distribution system. One of the characteristics of the systems having a relatively large ratio of wind turbine capacity to community load, called High Penetration Wind-Diesel Systems (HPWDS), is that during high wind periods there will be electrical energy available in excess of the net load on the system. An important concept of the HPWDS strategy is that this excess energy can be directed to a practical use, such as heating. The concept of HPWDS was shown to be economically and technically feasible in communities having no heat recovery on the diesel plants. It proved to be even more attractive as a strategy for self sufficiency of electrical supply in communities with waste heat recovery. 1 fig., 1 tab

  5. Sulphate-ceria composite ceramics for energy environmental co-generation technology

    International Nuclear Information System (INIS)

    Liu, X.R.; Zhu, B.; Xu, J.; Sun, J.C.; Mao, Z.Q.

    2005-01-01

    In this work ion conductivity and FC application were studied for the new type composite material based on SDC (samarium doped ceria) and Li 2 SO 4 . Significant conductivity enhancement was achieved, e.g. 10 -2 -0.4 Scm -1 for the SDC-Li 2 SO 4 compared to 10 -4 -10 -2 Scm -1 for the SDC between 400 and 650 C. Some ion conductivity mechanisms were proposed correspondingly. Using the SDC-Li 2 SO 4 composite materials as the electrolytes, we achieved high performances, 200-540 mWcm -2 , for intermediate temperature (450-650 C) solid oxide FC (ITSOFC) applications. Sulfates, typically Li 2 SO 4 , have an excellent chemical stability in sulfur containing atmosphere. The sulfate-ceria (SDC-Li 2 SO 4 ) composite materials can thus meet the demands to develop the sulfur tolerant and H 2 S FC technologies, which was also demonstrated successfully with significant importance for both fundamental and applied research. (orig.)

  6. Stirling co-generation plants - Is this the future?; Stirling-BHKWs - Zukunft oder...?

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, M.

    2000-07-01

    This article gives an overview of the history and main features of Stirling engines and their use in combined-cycle power generation. The principles behind the Stirling and its thermo-dynamic characteristics are discussed and compared with the internal combustion engine and other thermally-driven machines. The two main types of Stirling - the free-piston and the kinematic Stirling engines are discussed. Also, the important role played by the burner in the operation of Stirling engines is discussed. The use of Stirling engines as a basis for small combined heat and power (CHP) units to produce thermal heating power and electricity is examined. Three examples - the implementations made by the Solo, Whispergen and SIG companies - are looked at in detail and compared with alternative CHP-solutions using small gas engines and fuel cells. The advantages and disadvantages of these different solutions are listed.

  7. Engineering/design of a co-generation waste-to-energy facility

    International Nuclear Information System (INIS)

    Bajaj, K.S.; Virgilio, R.J.

    1992-01-01

    Five hundred fifteen thousand tons of Municipal Solid Waste (MSW) is being generated every day in America. At present 68% of this trash is dumped into landfill operations. As the amount of garbage is increasing daily, the amount of land reserved for landfills is diminishing rapidly. With the sentiment of the public that you produce it, you keep it, the import-export of waste between the counties and states for the landfills, no longer appears to be feasible, especially when combined with expensive disposal costs. One method of reducing the quantity of waste sent to landfills is through the use of waste-to-energy facilities - the technology of resource recovery - the technology of today INCINERATION. All cogeneration projects are not alike. This paper examines several aspects of the electrical system of a particular municipal solid waste-to-energy project at Charleston, S.C. which includes plant auxiliary loads as well as a utility interconnection through a step-up transformer

  8. Carbonylative Heck Reactions Using CO Generated ex Situ in a Two-Chamber System

    DEFF Research Database (Denmark)

    Hermange, Philippe; Gøgsig, Thomas; Lindhardt, Anders Thyboe

    2011-01-01

    A carbonylative Heck reaction of aryl iodides and styrene derivatives employing a two-chamber system using a stable, crystalline, and nontransition metal based carbon monoxide source is reported. By applying near-stoichiometric amounts of the carbon monoxide precursor, an effective exploitation o...... of the hazardous CO gas is obtained affording chalcone derivatives in good yields. Application to isotope labeling, incorporating 13CO, was further established....

  9. Control, Co-generation, and Sensor Placement Strategy for Integral Small Modular Reactors

    International Nuclear Information System (INIS)

    Upadhyaya, Belle-R.; Fan, Li; Hines, J.-Wesley; Perillo, Sergio-R. P.

    2011-01-01

    The development of Small Modular Reactors (SMR) has multiple applications for electricity generation, process heat, hydrogen production, and others. The results of research, development, and demonstration (RD and D) of load-following control design for multiple modules, nuclear desalination, and sensor placement strategy for enhanced fault detection and isolation, are presented in this paper. The technologies are demonstrated with application to an integral pressurized water reactor (IPWR) such as the IRIS reactor. The outcomes of this RD and D include the development of a complete dynamic model of the IRIS system, load following control under dual-module steam mixing, nuclear desalination with a multi-stage flash (MSF) desalination plant, and automated technique for sensor allocation in a combined reactor and balance-of-plant system. The dynamic performance of a nuclear power station comprised of two IRIS reactor modules, operating simultaneously with a common steam header with steam mixing, was evaluated. The control problem addressed 'load-following' scenarios, such as varying load during the day or reduced consumption during the weekend. To solve this problem, a single-module IRIS MATLAB-Simulink model was developed and used to quantify the responses from both modules. The resulting model was subjected to eight different perturbation cases to analyze its capability of detecting small perturbations, therefore testing its robustness and sensitivity. The prospects of using nuclear energy for seawater desalination on a large scale can be very attractive since desalination is an energy intensive process that can utilize the heat from a nuclear reactor and/or the electricity produced by such plants. Small modular reactors, ranging from 50 MWe to 300 MWe, offer the largest potential as coupling options to nuclear desalination systems. However, coupling a nuclear plant and a desalination plant involves a number of issues that have to be addressed. Among these issues, the monitoring of process units and fault diagnosis is of high importance for the safe and optimal operation of a coupled nuclear desalination plant. An efficient sensor placement strategy will help in the quick and accurate identification of faults in sensors, field devices, and the processes of a large industrial plant, such as a nuclear desalination system. A dynamic model of a MSF desalination plant was developed and interfaced with graph-based techniques in order to optimize sensor placement, based on the minimization of fault unobervability. The application of the proposed FDI approach, with optimal sensor placement strategy, is demonstrated for the nuclear desalination system

  10. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern

    2012-07-15

    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  11. Control, Co-generation, and Sensor Placement Strategy for Integral Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle-R.; Fan, Li; Hines, J.-Wesley [University of Tennessee, Knoxville (United States); Perillo, Sergio-R. P. [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil)

    2011-08-15

    The development of Small Modular Reactors (SMR) has multiple applications for electricity generation, process heat, hydrogen production, and others. The results of research, development, and demonstration (RD and D) of load-following control design for multiple modules, nuclear desalination, and sensor placement strategy for enhanced fault detection and isolation, are presented in this paper. The technologies are demonstrated with application to an integral pressurized water reactor (IPWR) such as the IRIS reactor. The outcomes of this RD and D include the development of a complete dynamic model of the IRIS system, load following control under dual-module steam mixing, nuclear desalination with a multi-stage flash (MSF) desalination plant, and automated technique for sensor allocation in a combined reactor and balance-of-plant system. The dynamic performance of a nuclear power station comprised of two IRIS reactor modules, operating simultaneously with a common steam header with steam mixing, was evaluated. The control problem addressed 'load-following' scenarios, such as varying load during the day or reduced consumption during the weekend. To solve this problem, a single-module IRIS MATLAB-Simulink model was developed and used to quantify the responses from both modules. The resulting model was subjected to eight different perturbation cases to analyze its capability of detecting small perturbations, therefore testing its robustness and sensitivity. The prospects of using nuclear energy for seawater desalination on a large scale can be very attractive since desalination is an energy intensive process that can utilize the heat from a nuclear reactor and/or the electricity produced by such plants. Small modular reactors, ranging from 50 MWe to 300 MWe, offer the largest potential as coupling options to nuclear desalination systems. However, coupling a nuclear plant and a desalination plant involves a number of issues that have to be addressed. Among these issues, the monitoring of process units and fault diagnosis is of high importance for the safe and optimal operation of a coupled nuclear desalination plant. An efficient sensor placement strategy will help in the quick and accurate identification of faults in sensors, field devices, and the processes of a large industrial plant, such as a nuclear desalination system. A dynamic model of a MSF desalination plant was developed and interfaced with graph-based techniques in order to optimize sensor placement, based on the minimization of fault unobervability. The application of the proposed FDI approach, with optimal sensor placement strategy, is demonstrated for the nuclear desalination system.

  12. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  13. Policy schemes, operational strategies and system integration of residential co-generation fuel cells

    DEFF Research Database (Denmark)

    Hansen, Lise-Lotte Pade; Schröder, Sascha Thorsten; Münster, Marie

    2013-01-01

    a heat-driven strategy, with and without time-differentiated tariffs, and an electricity price driven strategy for the operation as a virtual power plant. The corresponding support schemes identified cover feed-in tariffs, net metering and feed-in premiums. Additionally, the interplay of the micro......CHP units with the national energy systems has been analysed. Our main findings are that net metering would be an appropriate tool to support FC based microCHP in Denmark, whereas a price premium would be the preferable tool in France and Portugal. Copyright © 2012, Hydrogen Energy Publications, LLC....... Published by Elsevier Ltd. All rights reserved....

  14. Co-generation potentials of municipal solid waste landfills in Serbia

    OpenAIRE

    Bošković Goran B.; Josijević Mladen M.; Jovičić Nebojša M.; Babić Milun J.

    2016-01-01

    Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55%) and carbon dioxide (40-45%) (both GHGs), has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine econo...

  15. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  16. Potential of 57Ni/57Co generator system for radiolabelling proteins for imaging

    International Nuclear Information System (INIS)

    Du, T.; Smith, S.V.; Baker, T.

    1998-01-01

    Full text: There is increasing interest in the use of inert metal complexes for radiolabelling proteins. The present study involves an investigation into the use to the parent/daughter system 57 Ni/ 57 Co for PET and SPECT imaging. In order to assess the potential of the system for such applications it is important to examine whether the ligand chosen complexes with both 57 Ni and 57 Co. A selection of ligands with varying number of donor groups and open-chain and macrocyclic ligands were chosen; ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), 1,4,8,11 - tetraazocyclotetradecane-1 4,8,11-tetraacetic acid (TETA) and diaminohydroxyaryl - diethylenetriaminepentaacetic acid, (DAHA-EDTA). Complexation behaviour over a range of pH and temperatures was investigated. Results show that the ligands have strong complexation for 57 Ni however once 57 Ni decayed to 57 Co evidence ol chemical instability was noted. The DAHA-EDTA ligand (developed in house) was observed to be the most stable under conditions studied. lt was selected for use in radiolabelling B72.3 antibody and preliminary radiolabelling conditions were established

  17. Heating and co-generative systems in urban settlements and industry. Symposium proceedings - Book 1

    International Nuclear Information System (INIS)

    2000-01-01

    The aim of the symposium is to present cogeneration systems for energy production and the district heating systems normally connected to them. Nowadays, it is the most exploited topic with the most potential in the field of energy in general. The reason for this is the expansion of the implementation of natural gas, ecological limitations imposed upon the local and global polluters and the need for such energy sources in the power systems. Divided into topical wholes it is analysed potential sources of heat, transport system, distribution and regulation of the delivered energy to the consumers, manners of rational use of heat in the urban settlements and manners of ownership transformation of heat supplying systems of the urban settlements. Papers relevant to INIS are indexed separately

  18. Optimizing a High-Temperature Hydrogen Co-generation Reactor for Both Economic and Environmental Performance

    International Nuclear Information System (INIS)

    Weimar, Mark R.; Wood, Thomas W.; Reichmuth, Barbara A.; Johnson, Wayne L.

    2003-01-01

    This paper analyzes outcomes for a 3000 MWt High Temperature Gas Reaction nuclear power plant, given price and cost assumptions, and determined what level of hydrogen and electricity production would optimize the plant economically and environmentally (carbon reduction). The tradeoff between producing hydrogen through steam methane reformation and producing electricity is so disproportionate, that advanced reactors will likely be used only as peaking plants for electricity unless policymakers intervene with incentives to change the mix of electricity and hydrogen. The magnitude of the increase in electric prices or decrease in hydrogen prices required to allow electricity production indicate that substantial error in cost estimates would be required to change our analysis.

  19. Conceptual design of a solar tower power plant with a co-generative ...

    African Journals Online (AJOL)

    It involves heat energy being captured and used to generate steam, which drives a steam turbine to produce electrical energy from the alternator. The low temperature exhaust steam from the steam turbine is in turn utilized to vaporize an organic working fluid, which drives the organic turbine to produce electricity from ...

  20. District heating system of Belgrade supplied from the co-generation plant 'Obrenovac' (Yugoslavia)

    International Nuclear Information System (INIS)

    Tomic, P.; Dobric, Z.; Studovic, M.

    2000-01-01

    The paper presents most relevant technical and economic features of the Project called 'System for supplying Belgrade with heat' (SDGB) from the thermal power plant 'Obrenovac', based on domestic coal and reconstruction of condensing power plant for combined generation of electricity and heat for the needs of municipal energy consumption. The system is designed for transport thermal energy, with capacity of 730 MJ/s from the Thermal Power Plant 'Nikola Tesla' / A to the existing heat plant 'Novi Beograd' based on the natural gas. The paper also gives the comparison of most important technical and economic features of 'SDGB' Project with the similar Project of District Heating System for supplying Prague with the thermal energy from Thermal Power Plant Melnik. (Author)

  1. General empirical model for 60Co generation in pressurized water reactors with continuous refueling

    International Nuclear Information System (INIS)

    Urrutia, G.A.; Blesa, M.A.; Fernandez-Prini, R.; Maroto, A.J.G.

    1984-01-01

    A simplified model is presented that permits one to calculate the average activity on the fuel elements of a reactor that operates under continuous refueling, based on the assumption of crud interchange between fuel element surface and coolant in the form of particulate material only and using the crud specific activity as an empirical parameter determined in plant. The net activity flux from core to out-of-core components is then calculated in the form of parametric curves depending on crud specific activity and rate of particulate release from fuel surface. In pressure vessel reactors, contribution to out-ofcore radionuclide inventory arising in the release of activated materials from core components must be taken into account. The contribution from in situ activation of core components is calculated from the rates of release and the specific activities corresponding to the exposed surface of the component (calculated in a straightforward way on the basis of core geometry and neutron fluxes). The rates of release can be taken from the literature, or in the case of cobalt-rich alloys, can be calculated from experimentally determined cobalt contents of structural components and crud. For pressure vessel reactors operating under continuous refueling, activation of deposited crud and release of activated materials are compared; the latter, in certain cases, may represent a sizable (and even the largest) fraction of the total cobalt activity. It is proposed that the ratio of activities of 59 Fe to 54 Mn may be used as a diagnostic tool for in situ activation of structural materials; available data indicate ratios close to unity for pressure tube heavy water reactors (no in situ activation) and ratios around 4 to 10 for pressure vessel, heavy water reactors

  2. An economic study for the co-generation of liquid fuel and hydrogen from coal and municipal solid waste

    International Nuclear Information System (INIS)

    Warren, A.; El-Halwagi, M.

    1996-01-01

    The objective of this paper is to assess the technical and economic feasibility of a new process for co-liquefying coal and plastic wastes. This assessment is based on incorporating recent experimental data on plastic/coal liquefaction within a conceptual process framework. A preliminary design was developed for two process configurations. The primary difference between the configurations is the source of hydrogen (coal versus cellulosic waste). The assessment was based on co-liquefying 720 tons per day of plastic waste with an equivalent amount of coal on a weight basis. The plant products include hydrocarbon gases, naphtha, jet fuel and diesel fuel. Material and energy balances along with plant-wide simulation were conducted for the process. Furthermore, the data on plastic-waste availability, disposal and economics have been compiled. The results from the economic analysis identify profitability criteria for gross profit and thus return on investment based on variable conversion, yield and tipping fee for plastic waste processed. 11 refs., 6 figs

  3. Co-generation system with integrated functions of active filter; Sistema de cogeneracion con funciones de filtro activo integradas

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Grajales, Humberto Raul

    2002-07-15

    Without question, the electrical energy is the form of energy more widely used in the economic and social activities of our modern world. For that reason, it is possible to say that the electricity generating and distributing companies assume two challenges of present relevant preoccupation. One is to generate with greater efficiency, less costs and with a minimum impact on the environment. The second is to fulfill the quality of the provision, that has gotten to be an important point as much for the users as for the companies that distribute the electrical energy, and that is reflected in more efficient distribution and consumption of energy. The thesis work that is presented, describes a photovoltaic system (PVS) interconnected to the electric network that helps to surpass the mentioned challenges. This PSV has the function of receiving the power generated by the solar energy delivered by an array of PV cells; to operate in the maximum point of power of the cells (for greater advantage of the collected energy); to condition it to an alternating signal, within the normative technical parameters for the electrical interconnection established by the company; (Comision Federal de Electricidad in Mexico); and to inject it to the electric network in order to compensate reactive power (active filtering) demanded by lineal and non-lineal loads, reducing the contamination of the electric network; in addition to compensating the active power in demand peaks of maximum electrical energy. The system works as active filter throughout day, which allows that the power installed capacity by the equipment takes advantage to the maximum and not only during the period of the day in which the solar radiation is available. The main advantages that are obtained are: simple, robust implementation and high immunity to the parameters variation. In the active filter functions, the necessary reference signals to modulate the inverter, are obtained using the cancellation technique of adaptive interference. This technique maintains the system in the best functional state, by means of continuous self adjustment facing changes in the operation parameters, generating important and satisfactory results. In addition, simultaneously the PVS uses, in the pursuit of the point of maximum power, the technique of {sup d}isturb and observe{sup ,} which offers a high performance in the injection of active power. [Spanish] Sin duda, la energia electrica es la forma de energia mas ampliamente usada en las actividades economicas y sociales de nuestro mundo moderno. Por ello, se puede decir que las companias generadoras y distribuidoras de electricidad asumen dos retos de relevante preocupacion actual. Uno es generar con mayor eficiencia, menor costo y con un minimo impacto sobre el medio ambiente. El segundo es cumplir con la calidad del suministro, que ha llegado a ser un punto importante tanto para los usuarios como para las companias que distribuyen la energia electrica, y que se refleja en una distribucion y un consumo de energia mas eficiente. El trabajo de tesis que se presenta, describe un sistema fotovoltaico (SFV) interconectado a la red electrica que ayuda a superar los retos citados. Este SFV tiene la funcion de recibir la energia solar entregada por un arreglo de celdas FV; operar en el punto maximo de potencia de las celdas (para mayor aprovechamiento de la energia captada); acondicionarla a una senal alterna, dentro de los parametros tecnicos normativos para la interconexion electrica (establecidos por la compania; Comision Federal de Electricidad en Mexico); e inyectarla a la red electrica con el proposito de compensar potencia reactiva (filtrado activo) demandada por cargas lineales y no lineales, reduciendo la contaminacion de la red electrica; ademas de compensar potencia activa en los picos de demanda de energia electrica maxima. El sistema funciona como filtro activo durante todo el dia, lo que permite que la capacidad de potencia instalada por el equipo se aproveche al maximo y no solamente durante el periodo del dia en que se dispone de la radiacion solar. Las principales ventajas que se tienen son: implementacion sencilla, robusta y con alta inmunidad a la variacion de parametros. En las funciones de filtro activo, las senales de referencia necesarias para modular el inversor, se obtienen utilizando la tecnica de cancelacion de interferencia adaptiva. Esta tecnica mantiene al sistema en el mejor estado funcional, mediante un continuo autoajuste ante cambios en los parametros de operacion, generando resultados importantes y satisfactorios. Ademas, simultaneamente el SFV utiliza, en el seguimiento del punto de maxima potencia, la tecnica de {sup p}erturbar y observar{sup ,} la cual ofrece un alto desempeno en la inyeccion de potencia activa.

  4. Potential Co-Generation of Electrical Energy from Mill Waste: A Case Study of the Malaysian Furniture Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2016-04-01

    Full Text Available Furniture manufacturing in Malaysia is an established industry driven primarily by the availability of raw materials and labor. However, the industry suffers from the low-recovery rate of its materials, as it produces a substantial amount of waste during the manufacturing process. Although smaller waste fragments, or off-cuts, are recovered for other purposes, the splinters, shavings, and coarse dust have little economic value and are often discarded. Because wood is a well-established source of bioenergy, this study investigated the potential use of mill waste from the furniture-manufacturing industry for electrical energy generation. Waste from the rubberwood, bamboo, and rattan furniture industries was evaluated for its potential electrical energy generation, and the amount was compared with the electrical energy that was consumed by the furniture industry. The study also compared the emission of greenhouse gases from the combustion of these waste materials against fossil fuels used to generate electricity to assess its potential in terms of the environmental benefits. In conclusion, such mill waste could be utilized as substitute for fossil fuel to generate energy in the furniture industry.

  5. R and D of proton conducting SOFC reactors to co-generate electricity and ethylene at University of Alberta

    International Nuclear Information System (INIS)

    Fu, X.Z.; Zhou, G.H.; Luo, J.L.; Chuang, K.T.; Sanger, A.R.

    2010-01-01

    Ethane exists in many natural gas deposits and is also a by-product of petroleum refining. Ethane's primary use is as a petrochemical feedstock to produce ethylene, a major intermediate in the manufacture of polymers and petrochemicals. Steam cracking is the principal method for conversion of ethane to ethylene. However, in this process, over 10 per cent of ethane is oxidized to carbon dioxide (CO 2 ), generating a nitrogen oxide pollutant. A large amount of ethane is deeply oxidized to CO 2 using common oxidative dehydrogenation of ethane to ethylene, and the chemical energy is not easily recovered as high grade energy. In addition, oxidative methods also produce acetylene, which is very detrimental to the manufacture of polymers because it poisons the catalysts and must therefore be removed to form high purity ethylene feed, which is a costly process. Ethane has the potential to be used as a fuel for hydrocarbon solid oxide fuel cells (SOFCs) to generate electrical energy with high efficiency and low impact on the environment, in which it is completely oxidized to CO 2 and water. However, consumption of ethane generates greenhouse gas (CO 2 ) emissions in conventional SOFCs using oxygen ion electrolyte, and consumption of these non-renewable resources is less desirable than their use for manufacture of petrochemicals. This paper discussed the development of ethane proton conducting solid oxide fuel cell reactors and related materials in order to more efficiently use ethane resources in an environmentally friendly process. The advantages of these fuel cell reactors were presented. 5 refs.

  6. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    Energy Technology Data Exchange (ETDEWEB)

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  7. Co-generation and innovative heat storage systems in small-medium CSP plants for distributed energy production

    Science.gov (United States)

    Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico

    2017-06-01

    CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.

  8. An innovative concept for maximizing the use of coal and nuclear energy for co-generation applications

    International Nuclear Information System (INIS)

    Choong, P.T.S.

    1995-01-01

    Despite the abundance in coal reserves in the world, coal fired power plants are not the desirable long-term solution to the energy shortage in most nations, because of environmental and transportation difficulties. However, nuclear power is inherently inefficient due to low temperature operations. The prudent solution to world's energy crisis should address both the immediate need for electricity and the long-term need for an environmentally sound energy system capable of providing low cost electricity and district heating energy utilizing mainly indigenous energy resources (coal, uranium, and thorium). The new energy utilization system has to be environment friendly. A conceptual solution plan is the subject matter of this presentation. The concept calls for an innovative integration of coal gasification, gas turbine, steam turbine and an intermediate bulk coolant heating nuclear power technologies. The output of the nuclear heated coolant is to cool the syngas output which is to drive the high temperature gas turbine generator. The waste heat from the gas turbine is recovered to drive the steam turbine. The exhaust steam from the steam turbine is used for district heating. The siting of the nuclear power plant is to be near the coal mines and water resources. Bulk of the electricity output is transmitted via HVDC lines to far away population centers. Excess coal gas from the gasification plant is to be piped to surrounding districts to drive remote combined cycle power plants. The thermal efficiency of power cycle can be over 50%. The overall energy utilization efficiency can be as high as 85% when district heating effect included. An example of INCTES (Integrated Nuclear/Coal Total Energy System) for China power/energy infra structure is briefly touched upon

  9. A floating desalination/co-generation system using the KLT-40 reactor and Canadian RO desalination technology

    International Nuclear Information System (INIS)

    Humphries, J.R.; Davies, K.

    2000-01-01

    As the global consumption of water increases with growing populations and rising levels of industrialization, major new sources of potable water production must be developed. To address this issue efficiently and economically, a new approach has been developed in Canada for the integration of reverse osmosis (RO) desalination systems with nuclear reactors as an energy source. The resulting nuclear desalination/cogeneration plant makes use of waste heat from the electrical generation process to preheat the RO feedwater, advanced feedwater pre-treatment and sophisticated system design integration and optimization techniques. These innovations have led to improved water production efficiency, lower water production costs and reduced environmental impact. The Russian Federation is developing the KLT-40 reactor for application as a Floating Power Unit (FPU). The reactor is ideally suited for such purposes, having bad many years of successful operation as a marine propulsion reactor aboard floating nuclear powered icebreakers and other nuclear propelled vessels. Under the terms of a cooperation agreement with the Russian Federation Ministry of Atomic Energy, CANDESAL Enterprises Ltd has evaluated the FPU, containing two KLT-40 reactors, as a source of electrical energy and waste heat for RO desalination. A design concept for a floating nuclear desalination complex consisting of the FPU and a barge mounted RO desalination unit has been analyzed to establish preliminary performance characteristics for the complex. The FPU, operating as a barge mounted electrical generating station, provides electricity to the desalination barge. In addition, the condenser cooling water from the FPU is used as a source of preheated feedwater for the RO system on the desalination barge. The waste heat produced by the electrical generating process is sufficient to provide RO feedwater at a temperature of about 10 deg. C above ambient seawater temperature. Preliminary design studies have indicated that under these conditions approximately 100,000 m 3 /d of potable water can be produced The use of preheated feedwater results in an improvement in water production efficiency of up to about 15% relative to a system operating at the ambient seawater temperature. This preliminary design study has shown that significant improvements in the cost of water production can be achieved through this 'marriage' of Russian small reactor technology and Canadian RO technology. The potential benefits warrant further detailed evaluation followed by a demonstration project. (author)

  10. The 25 MW Super Near Boiling nuclear reactor (SNB25) for supplying co-generation energy to an Arctic Canadian Forces Base

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W.; Paquette, S.; Boucher, P.J. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2014-12-15

    Nuclear energy represents a better alternative for the supply of heat and electricity to the Canadian Forces bases in the Arctic (CFS Alert and CFB Nanisivik). In this context, the Super Near-Boiling 25-MWth reactor (SNB25) has been designed as a small unpressurized LWR that displays inherent safety and is intended to run in automatic mode. The reactor employs TRISO fuel particles (20% enrichment) in zirconium-sheathed fuel rods, and is light water cooled and moderated with a normal output temperature is 95 {sup o} C at atmospheric pressure. Control is via 133 control rods and six adjustable radial reflector plates. The design work used the probabilistic simulation code MCNP 5 and the deterministic code WIMS-AECL Version 3.1, permitting a code-to-code comparison of the results. Inherent safety was confirmed and is mostly due to the large negative void reactivity coefficient of -5.17 mk per % void. A kinetic model that includes thermal-hydraulics calculations was developed to determine the reactor's behaviour in transient states, and the results further confirm the inherent safety. Large power excursions temperatures that could compromise structural integrity cannot be produced. If the coolant/moderator temperature exceeds the saturation temperature of 100 {sup o} C, the coolant begins to boil and the large negative void coefficient causes the reactor to become subcritical in 0.84 seconds. The SNB25 reactor's core life exceeds 12 years between refuellings. A group of 4 SNB25 reactors meets both the heating and electricity requirements of a base like CFB Nanisivik via a hot water network and through an organic Rankine cycle conversion plant. (author)

  11. The 25 MW super near boiling nuclear reactor (SNB25) for supplying co-generation energy to an Arctic Canadian Forces base

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W.; Paquette, S.; Boucher, P.J., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2014-07-01

    Nuclear energy represents a better alternative for the supply of heat and electricity to the Canadian Forces bases in the Arctic (CFS Alert and CFB Nanisivik). In this context, the Super Near-Boiling 25-MWth reactor (SNB25) has been designed as a small unpressurized LWR that displays inherent safety and is intended to run in automatic mode. The reactor employs TRISO fuel particles (20% enrichment) in zirconium-sheathed fuel rods, and is light water cooled and moderated with a normal output temperature is 95{sup o}C at atmospheric pressure. Control is via 133 control rods and six adjustable radial reflector plates. The design work used the probabilistic simulation code MCNP 5 and the deterministic code WIMS-AECL Version 3.1, permitting a code-to-code comparison of the results. Inherent safety was confirmed and is mostly due to the large negative void reactivity coefficient of -5.17 mk per % void. A kinetic model that includes thermal-hydraulics calculations was developed to determine the reactor's behaviour in transient states, and the results further confirm the inherent safety. Large power excursions temperatures that could compromise structural integrity cannot be produced. If the coolant/moderator temperature exceeds the saturation temperature of 100{sup o}C, the coolant begins to boil and the large negative void coefficient causes the reactor to become subcritical in 0.84 seconds. The SNB25 reactor’s core life exceeds 12 years between refuellings. A group of 4 SNB25 reactors meets both the heating and electricity requirements of a base like CFB Nanisivik via a hot water network and through an organic Rankine cycle conversion plant. (author)

  12. The 25 MW super near boiling nuclear reactor (SNB25) for supplying co-generation energy to an Arctic Canadian Forces base

    International Nuclear Information System (INIS)

    Bonin, H.W.; Paquette, S.; Boucher, P.J.

    2014-01-01

    Nuclear energy represents a better alternative for the supply of heat and electricity to the Canadian Forces bases in the Arctic (CFS Alert and CFB Nanisivik). In this context, the Super Near-Boiling 25-MWth reactor (SNB25) has been designed as a small unpressurized LWR that displays inherent safety and is intended to run in automatic mode. The reactor employs TRISO fuel particles (20% enrichment) in zirconium-sheathed fuel rods, and is light water cooled and moderated with a normal output temperature is 95 o C at atmospheric pressure. Control is via 133 control rods and six adjustable radial reflector plates. The design work used the probabilistic simulation code MCNP 5 and the deterministic code WIMS-AECL Version 3.1, permitting a code-to-code comparison of the results. Inherent safety was confirmed and is mostly due to the large negative void reactivity coefficient of -5.17 mk per % void. A kinetic model that includes thermal-hydraulics calculations was developed to determine the reactor's behaviour in transient states, and the results further confirm the inherent safety. Large power excursions temperatures that could compromise structural integrity cannot be produced. If the coolant/moderator temperature exceeds the saturation temperature of 100 o C, the coolant begins to boil and the large negative void coefficient causes the reactor to become subcritical in 0.84 seconds. The SNB25 reactor’s core life exceeds 12 years between refuellings. A group of 4 SNB25 reactors meets both the heating and electricity requirements of a base like CFB Nanisivik via a hot water network and through an organic Rankine cycle conversion plant. (author)

  13. Co-generation of synthesis gas and C{sub 2+} hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review

    Energy Technology Data Exchange (ETDEWEB)

    Istadi; Nor Aishah Saidina Amin [Universiti Teknologi Malaysia, Johor Bahru (Malaysia). Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Natural Resources Engineering

    2006-03-15

    The topics on conversion and utilization of methane and carbon dioxide are important issues in tackling the global warming effects from the two greenhouse gases. Several technologies including catalytic and plasma have been proposed to improve the process involving conversion and utilization of methane and carbon dioxide. In this paper, an overview of the basic principles, and the effects of CH{sub 4}/CO{sub 2} feed ratio, total feed flow rate, discharge power, catalyst, applied voltage, wall temperature, and system pressure in dielectric-barrier discharge (DBD) plasma reactor are addressed. The discharge power, discharge gap, applied voltage and CH{sub 4}/CO{sub 2} ratio in the feed showed the most significant effects on the reactor performance. Co-feeding carbon dioxide with the methane feed stream reduced coking and increased methane conversion. The H{sub 2}/CO ratio in the products was significantly affected by CH{sub 4}/CO{sub 2} ratio. The synergism of the catalyst placed in the discharge gap and the plasma affected the products distribution significantly. Methane and carbon dioxide conversions were influenced significantly by discharge power and applied voltage. The drawbacks of DBD plasma application in the CH{sub 4}-CO{sub 2} conversion should be taken into consideration before a new plausible reactor system can be implemented. 76 refs., 4 figs., 2 tabs.

  14. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind capacity and power prices

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? Future energy hopes and emissions reduction scenarios place significant reliance on renewables, actually meaning largely new wind power both onshore and offshore. The opportunity exists for a synergy between high capacity factor nuclear plants and wind power using hydrogen by both as a 'currency' for use in transportation and industrial processing. But this use of hydrogen needs to be introduced soon. To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 Cent US/kW.h). One approach is to operate interruptibly allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies have shown that this could be a cost-competitive approach with a nuclear power generator producing electricity around 3 Cent US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the hydrogen production (electrolysis) facility due to the variability of wind generated electricity imposes a serious cost penalty. This paper reports our latest results on the potential economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment enables it to accommodate the higher rate of hydrogen generation, while still being substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability in our NuWind model. The variability in wind fields between sites was accommodated by assuming an average wind speed that produced an average electricity generation from wind of around 33% of peak capacity, which is typical of the expectations for most wind-generation sites. The results show the support of wind power by nuclear energy, and competitive hydrogen costs in the near term for a feasible generation mix. (authors)

  15. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind generation. Paper no. IGEC-1-094

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 cents US/kW.h). One approach is to operate interruptibly, allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies show that this could be cost-competitive using nuclear power generator producing electricity around 3 cents US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the electrolysis facility due to the variability of wind-generated electricity imposes a significant cost penalty. This paper reports on ongoing work on the economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered - a concept we call NuWind. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment to enable it to accommodate the higher rate of hydrogen generation is still substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability. The variability in wind fields between sites was accommodated by assigning average wind speeds that produced an average electricity generation from wind of between 32 and 42% of peak capacity, which is typical of the expectations for superior wind-generation sites. (author)

  16. Co-Teaching/Co-Generative Dialogues in a Teaching Education Program as Room for Agency and New Forms of Participation: "I Found Jesus in [Writing] the Paper"

    Science.gov (United States)

    El Kadri, Michele Salles; Roth, Wolff-Michael

    2015-01-01

    Although the importance of understanding the social and cultural processes mediating pre-service teachers' expansion of the power to act has been increasingly recognized lately, the way the concept of "agency" is portrayed in most of the studies focuses almost exclusively on the subject of activity and therefore, there is insufficient…

  17. "6"0Co-generated gamma radiation induced fluctuations on in vitro seed germination and callogenesis in Velvet bean (Mucunapruriens L.) seeds

    International Nuclear Information System (INIS)

    Misra, Pragati; Gupta, Ankit; Shukla, Pradeep Kumar

    2017-01-01

    Mucunapruriens exhibit many medicinal properties and almost every part of the plant contains metabolite of medicinal value. Irradiation treatments performed at in vitro culture has been also employed to increase genetic variability and mutants as a potential source of new commercial cultivars. Gamma rays are often used for developing plants varieties that are agriculturally and economically important and have high productivity potential with the minimum input. The callus induction frequency was in declined gradually with the increasing dose of gamma radiation. Gamma treated seeds developed greenish and fragile callus and also showed decreased weight as compare to control which was white greenish, compact and heavier. (author)

  18. The French biogas market by 2020. Injected biogas, co-generation, fuel biomethane, and so on: which challenges and perspectives for the market and the different actors on the medium term?

    International Nuclear Information System (INIS)

    2016-03-01

    As the French biogas market keeps on developing, as its growth potential on the medium term is doubtless, and as always more farmers and waste-water treatment plants are equipped with biogas plants, many technical problems remain to be solved, objectives will not be reached, and new regulations and measures are introduced by public authorities to support the sector. In order to provide an overview of this context, this report proposes an analysis of the market and of its perspectives (presentation of determining factors, analysis of the activity evolution until 2015, analysis of the main biogas producing sectors, provisional scenario by 2020), an analysis of the external environment (support measures, impact of regulation, assessments of waste supplies, focus on some other structural factors like economy de-industrialisation and difficult acceptance of biogas projects). The report also analyses the business model of operators (income, financing, investments, burdens, relationships between actors) and their financial situation (site profitability, over-costs related to technical difficulties). The last part addresses challenges and highlights: sector consolidation (takeovers, construction of large sites), new perspectives of valorisation with presentation of a case study, security of supplies through partnerships, and technique improvements

  19. Analysis of the internal temperature of the combustion chamber of a compact system of co-generation; Analise das temperaturas internas da camara de combustao de um sistema compacto de co-geracao

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Joao B.F. [Universidade de Fortaleza (UNIFOR), CE (Brazil)], email: furlan@unifor.br; Couto, Heraldo S. [Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, SP (Brazil)], email: heraldo@lcp.inpe.br; Holanda, Carlos A.M. de [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Metalurgica e de Materiais], email: almir@metalmat.ufc.br

    2008-07-01

    Nowadays, the energy deficit represents one of the biggest governmental challenges, since there is still a great number of communities living in areas without electricity energy; and thus without access to electro-electronic equipment such as television, refrigerators, computers. The main focus of this work is to present the possibility of electricity energy generation in conjunction with the frozen or hot water production in for places without electricity transmission nets or even any type of alternative power plants. The system is based on the standard air cycle called Brayton cycle composed of a turbo-compressor model 4LGZ from BorgWarner, a combustion chamber, a power turbine, a heat exchanger, a water-ammonia chiller, a 5.0 kV A generator, and a command panel for automation and distribution of energy. This system that uses natural gas or LPG, will supply electric energy from the generator, hot water from the heat exchange with the gases of combustion, and water frozen from chiller using as the hot source the gases proceeding from the power system. The prototype is already being tested and the first results obtained are excellent. In this paper, we analyze the internal combustion chamber temperatures. (author)

  20. Co-generation and thermometrical power generation feasibility and perspectives for the sugar-alcohol sector; Viabilidade e perspectivas da cogeracao e da geracao termoeletrica junto ao setor sucro-alcooleiro

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Arnaldo Cesar da Silva

    1994-11-01

    This work deals with cogeneration and independent power production and, more specifically, with the feasibility and perspectives of these technologies in the Brazilian sugar-cane industry. In the first part of thesis, cogeneration and independent power production are assessed as decentralised power generation options. Some aspects of these technologies are identified, as the conditions in which they have developed in recent years, world-wide, and how they have been dealt with in the institutional structural changes under way in the public owned electric power sector in several countries. In the second part, the Brazilian sector and the sugar-cane industry are evaluated. The organisational structure of the electric power sector, the reasons of its institutional and financial crises and some structural changes proposals are discussed. In the other hand, the sugar-cane industry is studied according to the following aspects: its expansion in recent years, the concentration of the production, the alcohol production costs and why some degree of production diversification in this industrial branch is desirable. Several technological alternatives that allow a large scale electricity production in the sugar and alcohol sector are examined in the final part of this thesis. A simulation procedure was specially developed in this thesis and applied to a typical sugar and alcohol plant. With the help of this simulation procedure, technical and economic evaluations were carried out and the best alternatives are identified. Finally, their potential was calculated for the sugar-cane industry in the State of Sao Paulo, considering the possible expansion of the sugar and alcohol production and the mills that are amore appropriate to respond for this increase. The large scale electric power generation from sugar-cane by-products is an option that can bring about some advantages for the public owned electric power sector, as well for the sugar-cane one. As a matter of fact, looking from a social of view, a larger number of advantages can be identified for the society as a whole. Despite the present constraints, the perspectives are good, specially in an environment of more competition in the electric sector and in the sugar-cane industry. (author) 161 refs., 54 figs., 30 tabs.

  1. Gasification processes study of biomass and industrial wastes integrated to a type IGCC cogeneration system. Scientific report PE 5-1, 2003 - BIOCOGAZ; Etude des procedes de gazeification de la biomasse et de residus industriels integres a un systeme de co-generation de type IGCC. Rapport scientifique PE 5-1, 2003 - BIOCOGAZ

    Energy Technology Data Exchange (ETDEWEB)

    Most, J.M. [Poitiers Univ., Lab. de Combustion et Detonique (LCD) UPR 9028, 86 (France); Lede, J. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 (France)

    2004-07-01

    The exploratory program objective was to define the characteristics of a thermochemical process of pyrolysis-gasification of the biomass or wastes, which can be connected to a direct energy generation application (gas turbines, boilers, engines). This document presents the program methodology. (A.L.B.)

  2. Concept for urban heating systems using co-generation; Conception de systemes de chauffage urbain pour la cogeneration. Phase I: application au quartier des Morasses (Martigny) de la methode de conception des reseaux de chauffage urbain developpe au LENI. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Cherix, G. [Centre de competence en urbistique CREM, Martigny (Switzerland); Weber, C. [Swiss Federal Institute of Technology (EPFL), Laboratoire d' energetique industrielle (LENI), Lausanne (Switzerland)

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reviews the work done in the first phase of a project concerning the concept for a district heating system in Martigny, Switzerland. This work was carried out by the Centre for Municipal and Energy Research CREM in Martigny, Switzerland, and the Laboratory for Industrial Energy LENI at the Swiss Federal Institute of Technology in Lausanne. Software developed at the LENI is introduced and its use for the determination of the necessary configuration and modes of operation of a district heating system in Martigny is discussed. The situation in the Morasses district of Martigny and the promising results obtained are looked at. These can lead to the optimisation of heating supply in other such areas.

  3. Economical analysis of combined fuel cell generators and absorption chillers

    Directory of Open Access Journals (Sweden)

    M. Morsy El-Gohary

    2013-06-01

    Full Text Available This paper presents a co-generation system based on combined heat and power for commercial units. For installation of a co-generation system, certain estimates for this site should be performed through making assessments of electrical loads, domestic water, and thermal demand. This includes domestic hot water, selection of the type of power generator, fuel cell, and the type of air conditioning system, and absorption chillers. As a matter of fact, the co-generation system has demonstrated good results for both major aspects, economic and environmental. From the environmental point of view, this can be considered as an ideal solution for problems concerned with the usage of Chlorofluoro carbons. On the other hand, from the economic point of view, the cost analysis has revealed that the proposed system saves 4% of total cost through using the co-generation system.

  4. To Problem Pertaining to Provision of Electric Power Load Schedules of Power Sys- tems while Involving Potential of Power Technological Sources of Industrial Enterprises

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2010-01-01

    Full Text Available The paper considers a possibility to use co-generated complexes having heat technological industrial load for operation in accordance with the requirements of irregularity of electric power generation schedule.

  5. Sustainability assessment of cogeneration sector development in Croatia

    International Nuclear Information System (INIS)

    Liposcak, Marko; Afgan, Naim H.; Duic, Neven; Graca Carvalho, Maria da

    2006-01-01

    The effective and rational energy generation and supply is one of the main presumptions of sustainable development. Combined heat and power production, or co-generation, has clear environmental advantages by increasing energy efficiency and decreasing carbon emissions. However, higher investment cost and more complicated design and maintenance sometimes-present disadvantages from the economical viability point of view. As in the case of most of economies in transition in Central and Eastern Europe, Croatia has a strong but not very efficient co-generation sector, delivering 12% of the final energy consumption. District heating systems in the country's capital Zagreb and in city of Osijek represent the large share of the overall co-generation capacity. Besides district heating, co-generation in industry sector is also relatively well developed. The paper presents an attempt to assess the sustainability of Croatian co-generation sector future development. The sustainability assessment requires multi-criteria assessment of specific scenarios to be taken into consideration. In this respect three scenarios of Croatian co-generation sector future development are taken into consideration and for each of them environmental, social and economic sustainability indicators are defined and calculated. The assessment of complex relationships between environmental, social and economic aspects of the system is based on the multi-criteria decision-making procedure. The sustainability assessment is based on the General Sustainability Index rating for different cases reflecting different criteria and their priority. The method of sustainability assessment is applied to the Croatian co-generation sector contributing to the evaluation of different strategies and definition of a foundation for policy related to the sustainable future cogeneration sector development

  6. Kyoto protocol and cogeneration in rural areas: institutional and organizational configuration and perspectives; Protocolo de Kyoto e co-geracao no meio rural: configuracao institucional e organizacional e perspectivas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Zilmar Jose de; Azevedo, Paulo Furquim de [Fundacao Getulio Vargas (EESP/FGV), Sao Paulo, SP (Brazil). Escola de Economia de Sao Paulo], e-mails: zilmar.souza@energiasdobrasil.com.br, pfa@fgvsp.br

    2006-07-01

    This article presents a brief historical record concerning the Brazilian institutional arrangement given to the Kyoto Protocol and, based on the Brazilian emissions profile, discusses general perspectives to the use of the CDM, mainly in projects involving co-generation in the agricultural sector. It is observed high uncertainty about the liquidity and development of the carbon credit market, above all, with reference to the definition of the second period of the Kyoto Protocol commitments. Even so, with the consolidation of the institutional environment, the carbon credit market must become favorable to the projects of co-generation in agricultural sector, especially in countries as Brazil. (author)

  7. Biomass gasification in electric power production; Gaseificacao de biomassa na producao de eletricidade

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Claudio P. de; Ennes, Sergio A.W. [Companhia Energetica de Sao Paulo, SP (Brazil); Corsetti, Marilena

    1992-12-31

    The main objective of this work is to evaluate the technical and economical viability of thermoelectric power generation based on biomass. The technology of gasification of sugar cane bagasse in fluidized bed and its influences in the generation or co-generation process in gas turbines is analysed. The potential of such kind of generation as well as the costs are indicated. Such potential are compared to those of the conventional technologies of co-generation using fuel oil and natural gas in the industry 10 refs., 2 figs., 4 tabs.

  8. Analysis of carbon monoxide production in multihundred-watt heat sources

    International Nuclear Information System (INIS)

    Peterson, D.E.; Mulford, R.N.R.

    1976-05-01

    The production of carbon monoxide observed within Multihundred Watt heat sources placed under storage conditions was analyzed. Results of compositional and isotopic analyses of gas taps performed on eight heat sources are summarized and interpreted. Several proposed CO generation mechanisms are examined theoretically and assessed by applying thermodynamic principles. Outgassing of the heat source graphite followed by oxygen isotopic exchange through the vent assemblies appears to explain the CO production at storage temperatures. Reduction of the plutonia fuel sphere by the CO is examined as a function of temperature and stoichiometry. Experiments that could be performed to investigate possible CO generation mechanisms are discussed

  9. Modelberekening naar de invloed van lokale emissiebronnen van luchtverontreinigende componenten op de lokale vorming van fotochemische smog. Modellering van een (pluim)rookgasverspreidingsmodel, waaraan een beperkte subroutine met fotochemische en chemische reacties is toegevoegd

    NARCIS (Netherlands)

    van Rossum GJ; Erbrink JJ; de Leeuw FAAM

    1993-01-01

    The contribution of a 250 MWe co-generation plant assumed to be located in an urban area with about 300,000 inhabitants, to the photochemical ozone formation on the local scale is estimated by means of the flue gas dispersion model STACKS. In this study a limited number of photochemical reactions

  10. DOE FINAL TECHNICAL REPORT RP

    Energy Technology Data Exchange (ETDEWEB)

    RUSS PETERMAN

    2012-01-01

    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  11. Cogenerating a Competency-based HRM Degree: A Model and Some Lessons from Experience.

    Science.gov (United States)

    Wooten, Kevin C.; Elden, Max

    2001-01-01

    A competency-based degree program in human resource management was co-generated by six groups of stakeholders who synthesized competency models using group decision support software. The program focuses on core human resource processes, general business management, strategic decision making and problem solving, change management, and personal…

  12. Coteaching as a Model for Preservice Secondary Science Teacher Education

    Science.gov (United States)

    Scantlebury, Kathryn; Gallo-Fox, Jennifer; Wassell, Beth

    2008-01-01

    This paper focuses on a 3-year, longitudinal study of the implementation of coteaching, as an innovative approach for preparing high school science teachers enrolled in an undergraduate science teacher education programme located in the United States. The coteaching/co-generative dialogue/co-respect/co-responsibility dialectic is introduced as a…

  13. Linear programming control of a group of heat pumps

    NARCIS (Netherlands)

    Fink, J.; van Leeuwen, Richard Pieter; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2015-01-01

    For a new district in the Dutch city Meppel, a hybrid energy concept is developed based on bio-gas co-generation. The generated electricity is used to power domestic heat pumps which supply thermal energy for domestic hot water and space heating demand of households. In this paper, we investigate

  14. Peak Shaving and Alternative Power: A Question of Economy, Quality of Life and Quality of Electricity

    National Research Council Canada - National Science Library

    Smith, David

    1999-01-01

    .... Fuel cells offer a variety of options for co-generation and power management. A prudent use of the by-products of electric generation from a fuel cell could increase efficiency of the plant and provide cost savings to the user...

  15. Development of bioenergy conversion alternatives for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Derkyi, Nana S.A.; Sekyere, Daniel [CSIR-FORIG, Kwame Nkrumah University of Science and Technology KNUST Box 63 (Ghana); Okyere, Philip Y. [Electrical Engineering Department, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Darkwa, Nicholas A. [FRNR, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Nketiah, Samuel K. [TROPENBOS International (Ghana)

    2011-07-01

    Traditional charcoal production, firewood sourcing and over-dependence on the national grid for electricity are associated with high greenhouse gas emissions relative to other common energy options. However, there have been few attempts to analyze the potential of cogeneration and briquetting as favourable energy options for climate change mitigation. The possibility of utilizing abundant wood residues to produce energy for domestic and industrial application through co-generation and sawdust briquetting was assessed. Annual residues generated in the three mills studied ranged from 19,230 m3 to 32,610 m3. Annual output of semi-carbonized and carbonized sawdust briquette from the briquette factory studied was 1400 tonnes. Heating values of the wood species ranged from 8.2 to 20.3 MJ/kg. Power requirements for the mills, necessary for sizing co-generation units were derived from their monthly electricity bills. Power ratings for co-generation units were specified between 400 kWe to 2000 kWe with heat to power ratios of 19 to 21. The energy generated could be used to produce electrical power and reduce dependency on the national grid. Conversion of sawdust in the briquette factory potentially contributes a saving of 5,600 tonnes of trees/year that would have been cut from the forest. Thus, adoption of co-generation and sawdust briquetting nationwide could be of immense benefit to the country in terms of climate change mitigation.

  16. A Sustainable Energy System in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2002-01-01

    This paper presents some of the problems in the Latvian energy system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems....

  17. Farm-scale biogas development in Southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Koeberle, E [Biogaskontor, Obermarchtal (Germany)

    1997-08-01

    This work provides a description of the development of farm-scale plants in Bayern and Baden-Wuerttemberg. The historical development is explained as well as the technical. Main topics are digester concepts, stirring system and co-generation with dual-fuel and gas-engines. (au)

  18. Proceedings of the 2. world conference on Pellets

    International Nuclear Information System (INIS)

    2006-07-01

    The conference and exhibition had over 1000 participants from 60 different countries. Subject areas covered by the conference were: Raw Materials For Densification; Pellet Production Technologies; Pellet Burning Technologies; Supply Chain Logistics; Environmental Issues; Marketing of Densified Fuels; Co-Generation of Heat and Electricity from Densified Fuels; 57 contributions have been separately indexed for the database

  19. Energetic potential of coffee residues to coffee industry; Potencialidade energetica da borra de cafe para as industrias de cafe soluvel

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, L.A.H.; Flores, L.F.V. [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1987-12-31

    This work aims to discuss the energetic viability of coffee residues as for steam generators and furnaces. The capacity of co-generation is presented. Economic analysis are also performed concerning the partial substitution of conventional fuel by residue. It was concluded that the above mentioned substitution is economically viable. 6 refs., 3 figs., 1 tab.

  20. New method for protection of parallel generator; Novo metodo para protecao do gerador em paralelismo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M R.C. da [Elfa-Seg Eletronica Ltda. (Brazil)

    1988-07-01

    The protection of synchronous machinery, especially generators working in parallel with the pertaining electric power utility have been extensively discussed specially because of the growing importance of co-generation in Brazil. This work discusses existing efficient methods and suggests new ways of proceeding this protection. 8 refs., 2 figs.

  1. Power-heat coupling plant of the Hacker-Pschorr Braeu AG, Munich

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, K

    1978-01-01

    The power-heat co-generation plan of a large-scale brewery is specified. The specific heat consumption, the cost of in-house power generation, and cost savings gained are determined. In-house power costs and extraneous power costs are contrasted.

  2. IVO`s CHP know-how: experience, inventions, patents

    Energy Technology Data Exchange (ETDEWEB)

    Aeijaelae, M.; Ohtonen, V. [ed.

    1997-11-01

    IVO can justly claim mastery in the co-generation of district heat and electricity - CHP. As well as looking at the issue from the viewpoint of planners, builders and operators, IVO`s engineers also view power plants through the eyes of the product developer and inventor. This approach has resulted in successful power plant configurations, inventions and patents and visions

  3. District heating and cooling system for communities through power plant retrofit and distribution network. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The technical and economic feasibility of retrofitting thermal power plants in Minnesota to accommodate both heat and power generation for district heating was examined and is discussed. Three communities were identified as viable sites for co-generation district heating. (LCL)

  4. The state of the art in Japan's telecommunications energy systems - Strategy for Total Power Management -

    Energy Technology Data Exchange (ETDEWEB)

    Muroyama, Seiichi [NTT Power and Building Facilities Inc., Midori-cho, Musashino-shi, Tokyo (Japan)

    2000-07-01

    The ''strategy for total power management (STPM)'' was developed for managing problems in relation to energy for multimedia services in a comprehensive manner from the viewpoints of risk, cost, and environment. To provide integrated services based on STPM, a DC power supply system, a highly reliable UPS, and a co-generation system have been developed. (orig.)

  5. Least cost analysis of Belarus electricity generation system with focus on nuclear option

    International Nuclear Information System (INIS)

    Mikhalevich, A.; Yakushau, A.

    2004-01-01

    A basic feature of the Belarus electricity system is that about 50% of the installed power capacity is used to produce heat for the central heating supply system. The Republic has one of the most developed districts heating system in Europe. The installation started in 1930, and developed very fast after 1945. Co-generation of electricity and thermal energy in central power plants has played a fundamental role in the local economy. Presently, Belarus electricity generation system includes: Total installed capacities of condensing turbines 3665 MW; Total installed capacities of co-generation turbines 3889 MW. It is expected that in 2020 in accordance with electricity demand forecast peak load demand will be equaled approximately 9500 MW. Taking into account that operation time of 60 % existent co-generation turbine and 70 % of condensing turbine can be extended up to 2020 during the period 2005 - 2020 it is necessity to install about 1500 MW of new co-generation units and about 2000 MW of condensing turbines. To select the least cost scenario for electricity generation system expansion improved computer code WASP-IV for Windows had been used. As far code WASP-IV do not allow finding out optimal solution for electricity generation system with high share of co-generation directly the methodology of application of this program for this case had been developed. Methodology is based on utilization of code WASP-IV for simulation condensing turbines and module BALANCE for modeling co-generation part of the system. The scenarios for the electricity system expansion plan included only conventional technologies. Presently, the works connected with the preparedness for NPP construction in the Republic including site survey for NPP are being carried out. The first stage of siting process according to the IAEA classification has been completed. It was based on a set of criteria answered to A Safety Guide of the IAEA Site Survey for Nuclear Power Plants and requirements to be

  6. TRIGENERATION - A highly energy efficient source for heating, domestic hot water preparation, electricity and air cooling systems for tertiary sector

    International Nuclear Information System (INIS)

    Barbuta, Mariana; Ghitulescu, Mircea; Nicolau, Irina; Athanasovici, Cristian; Constantin, Cristinel; Ivan, Robert

    2004-01-01

    The general concerns relating to sustainable energy development have led to the implementation of certain solutions at the international level that have increased both energy generation and energy consuming processes efficiency. In our country the first steps in this direction have been carried out by the private companies that, after having analyzed the income increase and costs diminishing, have come to the conclusion that a reliable way to save money would be the rational use of the energy resources for utilities. A favorable consequence was the synergetic effect of the measures meant to increase energy efficiency for the energy generation and consumption processes that are also accompanied by benefit effects on the environmental impact by reduction CO 2 emissions. One of the solutions making the utmost of primary energy is the combined heat and power production (co-generation) that has significantly developed in our country within the energy sector as a whole. Co-generation may be considered environmentally friendly because it saves fuel on the one hand and, technologically, generates less emissions as compared to the separate generation of heat and power, on the other hand. The most favorable applications of co-generation at a medium and small scale are in the tertiary sector (hotels, hospitals, and office buildings) where heat consumption is usually high enough and is accompanied by relatively constant electricity consumption. By corroborating the above mentioned facts relating to local cogeneration installation utilization with those relating to the increased need for cooling in the tertiary buildings, a concept named 'TRI-GENERATION' in specialized literature has occurred, representing, in fact, utilization of cogeneration installations for supplying energy to the electricity, heat and cold consumer. Thus, the cogeneration installation utilization time will be practically prolonged over the entire duration of a year a fact that has extremely favorable

  7. Cogeneration/auto production influences form sugar cane bagasse for the electric power market in Northeast

    International Nuclear Information System (INIS)

    Rocha, P.G. da; Fiscina, G.B.

    1990-01-01

    This work intends to evaluate to what extent the co-generation/auto production influences the electric power market. For that purpose, two sceneries have been developed considering sugar cane bagasse remains, taking as a basis the historic content (per Northeast state) and the energy policy for PROALCOOL. The installed potential in plants/distilleries for utilization of the bagasse industrial remains has also been considered. It has been determined the investments required for new facilities, enabling the use of all bagasse remains for electric energy, the benefits for the North/Northeast electric system resulting from such measures (as the decrease in deficit risks), and the value of energy sale by the system auto producers/co-generators. (author)

  8. Cogeneration of electric power in the sugar and alcohol sectors: registration of the power plants in Sao Paulo, Brazil; Cogeracao de energia eletrica no setor sucroalcooleiro: cadastro das usinas em Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Gustavo Goncalves [Federacao das Industrias do Estado de Sao Paulo (FIESP), Sao Paulo, SP (Brazil); Moreira, Helemilton Rios; Silva, Edison da [Agencia Reguladora de Saneamento e Energia do Estado de Sao Paulo (ARSESP), SP (Brazil)

    2008-07-01

    One of the major difficult for the planning of co-generation industry of electricity from the sugar cane bagasse is the determination of their true potential. This question comes up, especially in the lack of information about the sugar and ethanol facilities, therefore for the study of potential, we can not just focus on the issue of the cane grinding, but also in technology, the configuration of the power plant and its capacity to export energy. This paper presents a proposal to minimize this difficulty, detailing a solution dedicated to the development of a database for the registration and monitoring of these plants, part of a series of actions regarding in the Understanding Protocol for the promotion of co-generation of bagasse, signed between FIESP and the Government of the State of Sao Paulo. (author)

  9. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    Science.gov (United States)

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  10. Penetration of natural gas in industrial processes for direct burning: the case of ceramics, cement and glass industries; Penetracao do gas natural em processos industriais de queima direta: caso das industrias ceramica, cimento e vidro

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Mauro Donizeti; Leite, Alvaro A. Furtado [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Dorileo, Ivo Leandro [Universidade Federal do Mato Grosso (NIEPE/UFMT), Cuiaba, MT (Brazil). Nucleo Interdisciplinar de Estudos em Planejamento Energetico; Bajay, Sergio Valdir [Universidade estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], e-mail: bajay@fem.unicamp.com.br

    2008-07-01

    Industrial sector can use the natural gas (NG) as raw material, as fuel and in co-generation. The NG as fuel is used, predominantly, to produce heat in the Brazilian industries. That rate, both main forms of industrial use of the NG are its direct burning in kilns - when the direct contact is had with the product - and the supply of process heat through boilers, for instance. Direct burning is used in the ceramic, cement and glass industries. This work discuss the penetration opportunity of the NG in the direct burning regarding the fuel oil and other energy that it can substitute, the environmental effects and the co-generation possibilities in each one of the analyzed industrial blanches in this work. (author)

  11. Thermophotovoltaic systems for civilian and industrial applications in Japan

    International Nuclear Information System (INIS)

    Yugami, Hiroo; Sasa, Hiromi; Yamaguchi, Masafumi

    2003-01-01

    The potential market for thermophotovoltaic (TPV) applications has been studied for civilian and industrial sectors in Japan. Comparing the performance of gas engines or turbines, as well as the underdeveloped power generation technologies such as fuel cells or chemical batteries, we have discussed the feasible application field of TPV systems to compete with those power generators. From the point of view of applicability for TPV systems in Japan, portable generators, co-generation systems and solar power plants are selected for our system analysis. The cost and performance targets of TPV systems for co-generation are also discussed by assuming a typical daily profile of electricity and hot water demands in Japanese homes. A progress report on the recent TPV research activities is given as well as a feasibility study concerning such TPV systems in Japan. (Author)

  12. Combined heat and power production through biomass gasification with 'Heatpipe-Reformer'

    International Nuclear Information System (INIS)

    Iliev, I.; Kamburova, V.; Terziev, A.

    2013-01-01

    The current report aims is to analyze the system for combined heat and power production through biomass gasification with “heatpipe-reformer” system. Special attention is paid on the process of synthetic gas production in the Reformer, its cleaning and further burning in the co-generation unit. A financial analysis is made regarding the investments and profits generated by the combined heat and power production. (authors)

  13. HTR-PM Progress and Further Commercial Deployment

    International Nuclear Information System (INIS)

    Wu, Frank

    2017-01-01

    Project Milestones: • 2004: industry investment agreement was signed • 2006: decided to use 2×250 MWt reactor modules with a 200 MWe steam turbine, became a key government R&D project • 2008: ATP was issued • 2012.12.9: FCD the first concrete poured. Chinese HTR development: HTR Roles in China - Power generation: supplement to LWR; repowering coal fired plants - Co-generation to supply steam - Hydrogen production

  14. Status of work on gas-cooled reactors in the USSR

    International Nuclear Information System (INIS)

    Grebennik, V.N.

    1988-01-01

    The report presents the status of work on the following concepts for HTGRs: the modular VTR-265 reactor with integrated arrangement of the primary equipment in a single prestressed vessel; the modular VTR-250 reactor with the core and heat exchanging equipment accommodated in separate vessels. The pilot energotechnological installation VG-400 is intended for co-generation of heat, steam and electricity for large power-consuming industries. 5 refs

  15. KWU's modular approach to HTR commercialization

    International Nuclear Information System (INIS)

    Frewer, H.; Weisbrodt, I.

    1983-01-01

    As a way of avoiding the uncertainties, delays and unacceptable commercial risks which have plagued advanced reactor projects in Germany, KWU is advocating a modular approach to commercialization of the high-temperature reactor (HTR), using small size standard reactor units. KWU has received a contract for the study of a co-generation plant based on this modular system. Features of the KWU modular HTR, process heat, gasification, costs and future development are discussed. (UK)

  16. To act in concrete terms for energy transition - The ATEE details its proposals

    International Nuclear Information System (INIS)

    2013-01-01

    The ATEE (Association Technique Energie Environnement) is a professional association which herein formulates eighteen proposals to support and promote energy transition. Before presenting these proposals, the report identifies and discusses two main axis of action: energy efficiency and saving (promotion of energetic renewal of existing buildings, promotion of energy management practices in companies, promotion of co-generation with natural gas) and renewable energies and energy storage (development of the biogas sector, create the conditions for the development of energy storage systems)

  17. Towards an energy self-sufficiency of territories. methanization and biogas, a sector with a bright future

    International Nuclear Information System (INIS)

    Ceron, Pascale; Gorges, Pascale; Cazas, Judith; Dolivet, Sophie; Guy, Lionel; Jacob, Antoine; Schlienger, Marc; Eberhardt, Mathieu

    2012-10-01

    These both publications present and describe methanization, the different models of projects or installations, and the valorisation of products, propose a focus on heat network and co-generation, and on bio-methane and injection, and outline the benefits of methanization. They also propose a set of questions and answers related to technical, social or environmental issues raised by methanization and methanization projects, and present various projects located in different places in France while indicating some key figures for them

  18. The CANDU 80

    International Nuclear Information System (INIS)

    Hart, R.S.

    1998-01-01

    AECL has completed the conceptual design of a small CANDU plant with an output, in the range of 300 MWth (called the CANDU 80), suitable for a variety of electrical and co-generation applications including desalination, oil sands oil extraction and processing, and the provision of electricity and heat to areas with low demand. This paper provides a brief overview of the CANDU 80, and discusses key features contributing to safety and operational margins

  19. Instrumentation, controls and automation in the power industry

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The year 1991 will be remembered as the year EPRI joined with the ISA Power Division to present an outstanding group to technical papers at the First Annual ISA/EPRI Joint Controls and Automation Conference. All papers met the theme for the conference namely Innovative Instrumentation, Controls, and Automation Techniques for the Power Generation Industry and cover a myriad of application ranging from nuclear to conventional fossil to co-generation plants involving nuclear, conventional BTG, and combined cycle equipment applications

  20. Screening of external hazards for NPP with bank type reactor. Modeling of safety related systems and equipment for RBMK. Probabilistic assessment of NPP safety on aircraft impact. Progress report

    International Nuclear Information System (INIS)

    Kostarev, V.

    1999-01-01

    This progress report was produced within the frame of IAEA research project on screening the hazards for NPP with bank type reactor. It covers the following tasks; development of the model for the primary loop system of RBMK; developing the models for safety related equipment of RBMK; developing of models for safety related models of EGP-6 type reactor (Bilibinskaya Nuclear Co-generated heat and Power Plant); and probabilistic assessment of NPP safety on aircraft impact

  1. The IDC’s role in stimulating and supporting infrastructure innovation : Past, Present & Future

    CSIR Research Space (South Africa)

    Matshekga, L

    2017-10-01

    Full Text Available and will achieve this through focus on the following sectors: Energy:  Conventional: coal, gas, nuclear.  Renewables: solar, wind, hydro, biomass, biogas.  Non-conventional: co-generation, waste-to-energy, geothermal, wave, hydrogen/fuel cells....  Infrastructure: power transmission & distribution lines, energy storage (excl. batteries & petroleum  Efficiency: on-grid, off-grid, demand-side management (installation & monitoring) – load limiting & shifting. Logistics (mainly PPP):  Land: road, rail...

  2. Energetic and exergetic analysis of steam production for the extraction of coniferous essential oils

    International Nuclear Information System (INIS)

    Friso, Dario; Grigolato, Stefano; Cavalli, Raffaele

    2011-01-01

    Bioenergy production is optimal when the energy production process is both efficient and benefits from local resources. Energetic and exergetic analyses are applied to highlight efficiency differences between small-size systems that are based on the co-generation of heating and power (CHP) versus the co-generation of heating and power with steam production (CHP-S). Both systems use the Organic fluid Rankine Cycle (ORC). The recovery of heat from flue gases is considered to be a way of increasing energy efficiency. In the CHP-S case, steam (at low pressure) is used to extract essential oils from fresh twigs and needles of coniferous trees throughout a steam distillation process. When the systems work at a thermal combustion power of 1350 kW, energetic analysis shows that the energy efficiency of the CHP-S plant (89.4%) is higher than that of the CHP plant (77.9%). Exergetic analysis shows that the efficiency of the CHP-S plant is 2.2% higher than that of the CHP plant. -- Highlights: → Bioenergy production is optimal when the energy production process is efficient. → Energetic and exergetic analyses are applied to highlight efficiency differences between the co-generation of heating and power (CHP) versus the co-generation of heating and power with steam production (CHP-S). → The recovery of heat from flue gases is a way of increasing energy efficiency. → The energetic and exergetic analysis shows that the efficiency of the CHP-S plant is higher than that of the CHP plant.

  3. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    OpenAIRE

    Setiadipura, T; Irwanto, D; Zuhair, Zuhair

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor ...

  4. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  5. Plans for promoting district energy-saving visions for City of Wakkanai; Wakkanai-shi chiiki sho energy vision suishin keikakusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    The district energy-saving visions and promotion plans therefor are drawn for City of Wakkanai, to promote energy saving and abatement of gas emissions which cause global warming. The conception of the energy-saving introduction project includes introduction of co-generation systems in the facilities of pivotal functions in the city center, and energy-saving systems in a municipal heated pool and public hot spring facilities. The facilities of pivotal functions in the city, e.g., the municipal office buildings, municipal hospital and all-around culture center of the city are supplied with heat in a centralized manner from the energy center, and the energy-saving effect is expected when co-generation systems are introduced in the energy center. The study results indicate that introduction of the co-generation systems in the energy center has a potential energy-saving effect of 2,400Gcal/y. The energy-saving effects are also analyzed for each of the municipal office buildings, municipal hospital, all-around culture center, municipal heated pool and public hot spring facilities, including those potentially realized by improving illumination and air supply/discharge facilities. (NEDO)

  6. Analysis of greenhouse gas emissions from 10 biogas plants within the agricultural sector.

    Science.gov (United States)

    Liebetrau, J; Reinelt, T; Clemens, J; Hafermann, C; Friehe, J; Weiland, P

    2013-01-01

    With the increasing number of biogas plants in Germany the necessity for an exact determination of the actual effect on the greenhouse gas emissions related to the energy production gains importance. Hitherto the life cycle assessments have been based on estimations of emissions of biogas plants. The lack of actual emission evaluations has been addressed within a project from which the selected results are presented here. The data presented here have been obtained during a survey in which 10 biogas plants were analysed within two measurement periods each. As the major methane emission sources the open storage of digestates ranging from 0.22 to 11.2% of the methane utilized and the exhaust of the co-generation units ranging from 0.40 to 3.28% have been identified. Relevant ammonia emissions have been detected from the open digestate storage. The main source of nitrous oxide emissions was the co-generation unit. Regarding the potential of measures to reduce emissions it is highly recommended to focus on the digestate storage and the exhaust of the co-generation.

  7. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-15

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant.

  8. Feasibility. Technical and financial concepts to determine the feasibility of a self-supplying project; Factibilidad. Conceptos tecnicos y financieros para determinar la factibilidad de un proyecto de autoabastecimiento

    Energy Technology Data Exchange (ETDEWEB)

    Vargas A, Enrique [IGSA S.A. de C.V. (Mexico)

    2005-07-01

    The co-generation is the transformation of an energy source to two or more forms. This document deals with the co-generation equipment: gas turbines, steam turbines and reciprocating motors. It also provides a comparison between turbines and motors altogether with an analysis determining how the savings in the co-generation are obtained -an analysis dealing with thermal balance, the advantage of the radiation, the heat of the oil, the heat of the coolant, the exhaust heat and the production cost of 1 kwh. [Spanish] La cogeneracion es la transformacion de una fuente de energia a dos o mas formas. En este documento se analizan los equipos de cogeneracion: turbinas de gas, turbinas de vapor y motores reciprocantes, de la comparacion entre turbinas y motores, de como se logran los ahorros en la cogeneracion, del balance termico, el aprovechamiento de la radiacion, del calor del aceite, del calor del refrigerante, del calor del escape y del costo en la produccion de 1 kwh.

  9. Relation of peer effects and school climate to substance use among Asian American adolescents.

    Science.gov (United States)

    Ryabov, Igor

    2015-07-01

    Using a nationally representative, longitudinal sample of Asian American late adolescents/young adults (ages 18-26), this article investigates the link between peer effects, school climate, on the one hand, and substance use, which includes tobacco, alcohol, and other illicit mood altering substance. The sample (N = 1585) is drawn from the National Longitudinal Study of Adolescent Health (Waves I and III). The study is set to empirically test premises of generational, social capital and stage-environment fit theories. The exploratory variables include individual-level (immigrant generation status, ethnic origin, co-ethnic and co-generational peers - peers from the same immigrant generation) as well as school-level measures (average school socio-economic status and school climate). Multilevel modeling (logistic and negative binomial regression) was used to estimate substance use. Results indicate that preference for co-generational friends is inversely associated with frequency of cannabis and other illicit drug use and preference for co-ethnic peers is inversely associated with other illicit drug use. We also find that school climate is a strong and negative predictor of frequency of cannabis and other illicit drug use as well as of heavy episodic drinking. In terms of policy, these findings suggest that Asian American students should benefit from co-ethnic and co-generational peer networks in schools and, above all, from improving school climate. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  10. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    International Nuclear Information System (INIS)

    1986-06-01

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant

  11. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  12. Power generation using sugar cane bagasse: A heat recovery analysis

    Science.gov (United States)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  13. Low power cogeneration prototype system; Prototipo de sistema de co-geracao de pequena potencia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sara M.; Martins, Jose A.S.; Camara, Paulo R.; Cortes, Breno P.; Neves, Elierton E. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil); F. Filho, Roberto; Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The fuels from oil and natural gas play an important role, not only in the sector of primary energy, but also in almost all the other sectors of the economy, due to its imbrication as insum of these. The use of the natural gas will have great expansion in Brazil, motivated for the Government decision to increase the participation of this fuel in the Brazilian energy matrix from 4% to 12% up to 2010. Then, it's so important the investment in new technologies and also the improvement. In order to reach the objective related to increase the consumption of natural gas in the energy matrix, and to propose solutions to attend the electric requirements, of heat and refrigeration, using natural gas as primary power plant, the Center of Gas Technologies; CTGAS, in partnership with PETROBRAS and the Fockink Group, has developed the first modular system of generation and co-generation of energy by natural gas of low power, of easy installation and shipment with the characteristics techniques to take care of to companies or industrial sectors that consummate this band of power. The equipment generates 35 kW/55 kVA of electric energy, 7TR (Ton of Refrigeration) of energy for refrigeration and posses the ability to heat 2200 l/h of water in the temperature of 85 deg C. The equipment will be able to produce electric and thermal energy simultaneously, from an only fuel, the natural gas. The main objective of this work is to present the main phases of development of the archetype, functions techniques of the co-generator and its field of performance in the market of systems for generation and co-generation of energy by natural gas of low power. (author)

  14. Optimization of a polygeneration system for energy demands of a livestock farm

    Directory of Open Access Journals (Sweden)

    Mančić Marko V.

    2016-01-01

    Full Text Available A polygeneration system is an energy system capable of providing multiple utility outputs to meet local demands by application of process integration. This paper addresses the problem of pinpointing the optimal polygeneration energy supply system for the local energy demands of a livestock farm in terms of optimal system configuration and optimal system capacity. The optimization problem is presented and solved for a case study of a pig farm in the paper. Energy demands of the farm, as well as the super-structure of the polygeneration system were modelled using TRNSYS software. Based on the locally available resources, the following polygeneration modules were chosen for the case study analysis: a biogas fired internal combustion engine co-generation module, a gas boiler, a chiller, a ground water source heat pump, solar thermal collectors, photovoltaic collectors, and heat and cold storage. Capacities of the polygeneration modules were used as optimization variables for the TRNSYS-GenOpt optimization, whereas net present value, system primary energy consumption, and CO2 emissions were used as goal functions for optimization. A hybrid system composed of biogas fired internal combustion engine based co-generation system, adsorption chiller solar thermal and photovoltaic collectors, and heat storage is found to be the best option. Optimal heating capacity of the biogas co-generation and adsorption units was found equal to the design loads, whereas the optimal surface of the solar thermal array is equal to the south office roof area, and the optimal surface of the PV array corresponds to the south facing animal housing building rooftop area. [Projekat Ministarstva nauke Republike Srbije, br. III 42006: Research and development of energy and environmentally highly effective polygeneration systems based on using renewable energy sources

  15. Coal - 97

    International Nuclear Information System (INIS)

    Sparre, C.

    1997-01-01

    The report deals with the use of coal and coke during 1996. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1996 was 1,2 mill tons and 50% higher than in 1995. The increase is probably temporary and due to high prices of electricity because of lack of water power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generation plants. During the top year 1987 coal was used in 18 hotwater plants and 11 co-generation plants. 1996 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1996 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. The coke consumption in the industry was 1,5 mill tons. 0,3 mill tons of coke were imported. The average price of steam coal imported in Sweden in 1996 was 340 SEK/ton or 2% higher than in 1995. For the world, the average import price was 51,5 USD/ton, nearly the same as the year before. The contract prices for delivery during 1997 are about equal as the end of 1996. All Swedish plants meet their emission limits of dust, SO 2 and NO x given by county administrations or concession boards

  16. Low temperature heat from natural gas. Life cycle analysis for efficient systems

    International Nuclear Information System (INIS)

    Zogg, M.

    2000-01-01

    A life cycle analysis drawn up on behalf of the Swiss Federal Office of Energy shows that the combined cycle power plant + heat pump (GuD-WP) combination produces less greenhouse effect and makes only about half the contribution to summer smog formation as the operation of heat pumps with the power mix habitually used in Western Europe today. In the co-generation unit + heat pump (BHKW-WP) combination, the environmental impact shows the same values as in current West European power generation

  17. Datafile: Finland

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    For several years the two Finnish nuclear-owning utilities have obtained consistently high load factors from their four reactors, two of which were supplied from the Soviet Union and two from Sweden. In 1988 nuclear power accounted for 36 per cent of total generation. Electricity supply is a highly competitive market and much emphasis is placed on energy efficiency through the use of co-generation and district heating. The utilities are studying alternative designs for a new nuclear station, but there will be no government decision until after the next election in 1991. (author)

  18. Provably trustworthy systems.

    Science.gov (United States)

    Klein, Gerwin; Andronick, June; Keller, Gabriele; Matichuk, Daniel; Murray, Toby; O'Connor, Liam

    2017-10-13

    We present recent work on building and scaling trustworthy systems with formal, machine-checkable proof from the ground up, including the operating system kernel, at the level of binary machine code. We first give a brief overview of the seL4 microkernel verification and how it can be used to build verified systems. We then show two complementary techniques for scaling these methods to larger systems: proof engineering, to estimate verification effort; and code/proof co-generation, for scalable development of provably trustworthy applications.This article is part of the themed issue 'Verified trustworthy software systems'. © 2017 The Author(s).

  19. Justification of investment projects of biogas systems by the sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Perebijnos Vasilij Ivanovich

    2015-06-01

    Full Text Available Methodical features of sensitivity analysis application for evaluation of biogas plants investment projects are shown in the article. Risk factors of the indicated investment projects have been studied. Methodical basis for the use of sensitivity analysis and calculation of elasticity coefficient has been worked out. Calculation of sensitivity analysis and elasticity coefficient of three biogas plants projects, which differ in direction of biogas transformation: use in co-generation plant, application of biomethane as motor fuel and resulting carbon dioxide as marketable product, has been made. Factors strongly affecting projects efficiency have been revealed.

  20. Microinstallations Based on Renewable Energy Sources in the Construction Sector

    Science.gov (United States)

    Kurzak, Lucjan

    2017-10-01

    The focus of this paper is on the status and prognoses of the use of microinstallations based on renewable energy sources to supply heat and power. The technologies that have been important in Europe and Poland for microgeneration of electricity include photovoltaic systems, micro wind turbines and co-generation systems. Solar collectors, heat pumps and biomass have also been used to generate heat. Microinstallations for renewable energy sources represent the initial point and the foundation for the development of micro networks, intelligent networks and the whole prosumer energy sector.

  1. Potable water cogeneration using nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico); Ramirez, J.R. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Valle, E. del [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico)

    2014-07-01

    Mexico is a country with a diversity of conditions; the Peninsula of Baja California is a semi-arid region with a demand of potable water and electricity where small nuclear power can be used. This part of the country has a low density population, a high pressure over the water resources in the region, and their needs of electricity are small. The SMART reactor will be assessed as co-generator for this region; where five different scenarios of cogeneration of electricity and potable water production are considered, the levelized cost of electricity and potable water are obtained to assess their competitiveness. (author)

  2. Methanization - Status and development perspectives. The synthesis of FranceAgriMer - Number 1

    International Nuclear Information System (INIS)

    Bova, Fabien; Bertrand, Raphael; Gurtler, Jean-Luc

    2012-04-01

    After some generalities on methanization (gas production process, influence of substrates, share of the different sources and level of production), this publication briefly comments the status the four main existing sectors: valorisation of domestic wastes, sewage station sludge, industrial effluents, and co-digestion. It presents the two ways implemented to valorise biogas: co-generation, and injection into town gas network. It indicates and comments the ambitious objectives of biogas valorisation by 2020, discusses how to optimally locate a methanization unit. It presents an economic approach in which public support is crucial for economic profitability

  3. Basic design decisions for advanced AST-type NHRs

    International Nuclear Information System (INIS)

    Gureyeva, L.V.; Egorov, V.V.; Malamud, V.A.

    1997-01-01

    On the basis of the AST-500 reference design decisions and of the experience gained in the RF during the pilot NDHPs development and construction, the advanced NHR AST-500M has been developed recently by OKB Mechanical Engineering, as well as a whole series of heating and co-generation reactor plants of various unit power. All the designs represent enhanced safety reactor plants meeting the contemporary national requirements and international recommendations for nuclear plants of the new generation. The main objectives for the advanced NHR development are considered. New design decisions and engineering improvements are described briefly. (author). 3 refs, 4 figs

  4. Desalination Economic Evaluation Program (DEEP). User's manual

    International Nuclear Information System (INIS)

    2000-01-01

    DEEP (formerly named ''Co-generation and Desalination Economic Evaluation'' Spreadsheet, CDEE) has been developed originally by General Atomics under contract, and has been used in the IAEA's feasibility studies. For further confidence in the software, it was validated in March 1998. After that, a user friendly version has been issued under the name of DEEP at the end of 1998. DEEP output includes the levelised cost of water and power, a breakdown of cost components, energy consumption and net saleable power for each selected option. Specific power plants can be modelled by adjustment of input data including design power, power cycle parameters and costs

  5. Development of dedicated nuclear heating plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Goetzmann, C.A.; Schroeter, K.E.

    1987-01-01

    In many cases district heating is both economically and environmentally superior over directly burning of fossil fuels in individual furnaces primarily because of the efficiency of the usual applied co-generation principle with regard to fuel utilization and flue gas clean up. In principle, this argument should carry even greater weight in conjunction with nuclear energy. The major draw back of dedicated heating reactors as seen up to now concerns the high specific capital cost for the application-dictated small reactor size. The paper discusses by way of a specific example in what directions solutions are being sought. (author)

  6. Resource-based optimization of electric power production (in Iran)

    International Nuclear Information System (INIS)

    Sadeghzadeh, Mohammad

    1999-01-01

    This paper is about electric power production optimization and chiefly discusses on the types of resources available in Iran. The modeling has been based on the marginal cost of different energy resources and types of technologies used. the computed costs are the basic standards for optimization of the production system of energy. the costs associated with environmental pollution and also pollution control are considered. the present paper also studied gas fossil fuel, hydro, nuclear, renewable and co-generation of heat and power. The results are discussed and reported at the last of the paper

  7. Environmental performance of gasified willow from different lands including land-use changes

    DEFF Research Database (Denmark)

    Saez de Bikuna Salinas, Koldo; Hauschild, Michael Zwicky; Pilegaard, Kim

    2017-01-01

    A life-cycle assessment (LCA) of a low-input, short rotation coppice (SRC) willow grown on different Danish lands was performed. Woodchips are gasified, producer gas is used for co-generation of heat and power (CHP) and the ash-char output is applied as soil amendment in the field. A hybrid model...... for abandoned farmland, as a relative C stock loss compared to natural regeneration. ILUC results show that area related GHG emissions are dominant (93% of iLUCfood and 80% of iLUCfeed), transformation being more important (82% of iLUCfood) than occupation (11%) impacts. LCA results show that CHP from willow...

  8. New generation nuclear power units of PWR type integral reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Kurachen Kov, A.V.; Malamud, V.A.; Panov, Yu.K.; Runov, B.I.; Flerov, L.N.

    1997-01-01

    Design bases of new generation nuclear power units (nuclear power plants - NPP, nuclear co-generation plants - NCP, nuclear distract heating plants - NDHP), using integral type PWPS, developed in OKBM, Nizhny Novgorod and trends of design decisions optimization are considered in this report. The problems of diagnostics, servicing and repair of the integral reactor components in course of operation are discussed. The results of safety analysis, including the problems of several accident localization with postulated core melting and keeping corium in the reactor vessel and guard vessel are presented. Information on experimental substantiation of the suggested plant design decisions is presented. (author)

  9. The Midi-Pyrenees regional energy observatory - Release 2005

    International Nuclear Information System (INIS)

    Malvy, Martin; Daubigny, Jean; Fraysse, Jean-Marie; Dedieu-Casties, Francoise; RIEY, Benedicte

    2005-01-01

    Illustrated with maps and graphs, this publication proposes a synthetic and brief energy assessment for the Midi-Pyrenees region. It briefly presents the regional energy situation in terms of final energy consumption between 1990 and 2003, of primary energy production during the same period, of inventories of greenhouse gas emissions, and of CO 2 emissions by the energy sector. It also proposes an overview of the situation, evolution and production of various energy sources: hydroelectricity, wood, wind, solar photovoltaic, solar and thermal energy, co-generation, and other types of energy valorisation modes (biogas, combustion). It proposes a focus on two important sectors, transports and housing

  10. Liberalised electricity markets, new bioenergy technologies, and GHG emission reductions: interactions and CO2 mitigation costs

    International Nuclear Information System (INIS)

    Gustavsson, L.; Madlener, R.

    1999-01-01

    We contrast recent developments in power and heat production with bioenergy, and natural-gas-fired condensing plants with and without decarbonisation, in the light of electricity market liberalisation. Our main focus is on CO 2 mitigation costs and carbon tax sensitivity of production costs. We find that CO 2 mitigation costs are lower for biomass systems using IGCC technology than for natural gas system using decarbonisation. However, based on current fuel prices natural-gas fired co-generation plants have the lowest production costs. Hence energy policy measures will be needed to promote biomass technologies and decarbonisation options on a liberalised market. (author)

  11. Geographically determined Interactions of Distributed Generation, Consumption and the Transmission Network in the Case of Denmark

    DEFF Research Database (Denmark)

    Möller, Bernd

    2002-01-01

    In the past decade, Denmark has dramatically increased the share of distributed power generation from wind power and decentralised co-generation of heat and power (DCHP). This trend will conti-nue, with the consequence that the power transmission network will face capacity problems in the future....... At some times electricity has to be exported to neighbouring countries at market prices pro-bably lower than the costs of generation. To match production and consumption in the future, and at the same time maintain a good economy, alternative regulation instruments have to be found. These could consist...... electricity markets....

  12. GreenGasGrids. A vision for biomethane in France for 2030. Injection of purified gas into the natural gas network

    International Nuclear Information System (INIS)

    2014-10-01

    This publication proposes a presentation of the activity of a work group on the injection of biomethane into natural gas networks, presents some key data and definitions regarding the production of biogas and its valorisation (co-generation and biomethane), some results and a brief presentation of scenarios and their hypotheses about the development of resources and biogas-based energy production. Results are presented for a trend-based scenario and a pro-active scenario. The last part presents the European GreenGasGrids project which aimed at stimulating the biomethane European market

  13. Technology for semi-endless use of lubricating oil, no waste oil, improvement of reliability and keeping high thermal efficiency in engines; Jinzo kino seijo gijutsu ni yoru engine oil no han`eikyu shiyo to haiyu zero, oyobi shinraisei kojo to netsukoritsu teika no boshi (joyosha ni yoru shiken oyobi truck ni okeru jitsuyoka)

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, T [Teikyo University, Tokyo (Japan); Sumimoto, M; Kimura, I

    1997-10-01

    The authors have developed a new technology which enables it to use lubricating oil almost forever without any waste oil, only compensating lost oil and additives. The system has been working well in many marine and co-generation diesel engines. These engines have been also free from most of engine troubles. This paper reports the test results made on a car and some trucks. Besides above mentioned advantages, the results show that high thermal efficiency has been kept for more than ten years in the car tested and that the exhaust gas brake is much improved in the trucks. 8 refs., 4 figs.

  14. Basic design decisions for advanced AST-type NHRs

    Energy Technology Data Exchange (ETDEWEB)

    Gureyeva, L V; Egorov, V V; Malamud, V A [OKBM, Nizhny Novgorod (Russian Federation)

    1997-09-01

    On the basis of the AST-500 reference design decisions and of the experience gained in the RF during the pilot NDHPs development and construction, the advanced NHR AST-500M has been developed recently by OKB Mechanical Engineering, as well as a whole series of heating and co-generation reactor plants of various unit power. All the designs represent enhanced safety reactor plants meeting the contemporary national requirements and international recommendations for nuclear plants of the new generation. The main objectives for the advanced NHR development are considered. New design decisions and engineering improvements are described briefly. (author). 3 refs, 4 figs.

  15. Development of dedicated nuclear heating plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Goetzmann, C.A.; Schroeter, K.E.

    1988-01-01

    In many cases district heating is both economically and environmentally superior over directly burning of fossil fuels in individual furnaces primarily because of the efficiency of the usual applied co-generation principle with regard to fuel utilization and flue gas clean up. In principle, this argument should carry even greater weight in conjunction with nuclear energy. The major draw back of dedicated heating reactors as seen up to now concerns the high specific capital cost for the application-dictated small reactor size. The paper discusses by way of a specific example in what directions solutions are being sought

  16. Validation of a HT-PEMFC stack for CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasupathi, S.; Ulleberg, Oe. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Bujlo, P. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Electrotechnical Institute Wroclaw Division (Poland); Scholta, J. [Centre for Solar Energy and Hydrogen Research (ZSW) (Germany)

    2010-07-01

    Fuel cell systems are very attractive for stationary co-generation applications as they can produce heat and electricity efficiently in a decentralized and environmentally friendly manner. PEMFC stacks operating at temperatures above 120 C, specifically in the range of 140-180 C, are ideal for co-generation purposes. In this study, preliminary results from a HTPEMFC stack designed for CHP applications is presented and discussed. A short, five-cell, HT-PEMFC stack was assembled with Celtec- P-2100 MEAs and validated in terms of electrical performance. The stack was operated with hydrogen and air at 160 C and the utilization curves for anode and cathode were recorded for a wide range of gas utilization at a current density of 0.52 A/cm{sup 2}. The current voltage characteristic was measured at optimal utilization values at 160 C. A 1kW stack is assembled and is currently being validated for its performance under various operating conditions for use in CHP applications. (orig.)

  17. Achievement report for fiscal 2000 on the phase II research and development for the hydrogen utilizing international clean energy system technology (WE-NET). Task 1. Investigations and researched on system assessment; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 1. System hyoka ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for Task-1. Technologies drawing attentions relate to fuel cell driven automobiles and hybrid automobiles in the field of utilizing hydrogen derived from reproducible energies and fossil energies, and fuel cell co-generation and micro gas turbine co-generation in the field of electric power generation. Hydrogen reformed from gasoline on board the automobile as the fuel for fuel cell driven automobiles, hydrogen as a by-product of coke furnace off-gas (COG), and reproducible energy hydrogen have the same fuel consumption performance as in the hybrid automobiles. Particularly the COG is low in cost, and has large supply potential. Liquefied hydrogen is as promising as compressed hydrogen in view of the cost for automotive hydrogen supply stations. What has high economic performance as the self-sustaining systems for islands are photovoltaic and wind power generation, and the system using hydrogen as the secondary energy. Since much of the reproducible energies is used for electric power demand in Japan, the by-product hydrogen and the reformed hydrogen in an amount of 9.3 billion Nm{sup 3}/year would take care of majority of the demand in view of the short time period. For a longer time span, hydrogen originated from the reproduced energies in the Pan-Pacific Region should be introduced. (NEDO)

  18. A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis

    International Nuclear Information System (INIS)

    Botha, Tyron; Blottnitz, Harro von

    2006-01-01

    The energetic utilisation of agricultural residues is considered to be an important element in any strategy to achieve renewable energy targets. In the approximately 80 cane-sugar producing countries there is potential to make better use of the fibrous residue known as bagasse. Subject to improved energy efficiency, sugar producers could supply energy either as 'green', co-generated electricity, or as fuel ethanol through cellulose hydrolysis followed by fermentation. This paper compares their projected environmental benefits from a life-cycle perspective, using South African data. Mass and energy analyses were prepared for the two systems and a base case (producing sugar with current methods), relative to the annual sugarcane production on one hectare. In both cases, the environmental burdens avoided by replacing an equivalent amount of fossil energy were included. The results obtained confirm that for all the impact categories considered, both 'bioenergy' products result in environmental benefits. The co-generation option results in lower energy-related emissions (i.e. lower global warming, acidification and eutrophication potentials), whereas the fuel ethanol option is preferred in terms of resource conservation (since it is assumed to replace oil not coal), and also scores better in terms of human and eco-toxicity if assumed to replace lead-bearing oxygenates

  19. Nuclear floating power desalination complexes

    International Nuclear Information System (INIS)

    Panov, Y.K.; Polunichev, V.I.; Zverev, K.V.

    1998-01-01

    Russia is a single country in the world which possesses a powerful ice-breaker transport fleet that allows a solution of important social-economic tasks of the country's northern regions by maintaining a year-round navigation along the Arctic sea route. A total operating record of the marine nuclear reactors up until till now exceeds 150 reactor-years, with their main equipment operating life reacting 120 thousand hours. Design and constructional progresses have been made continuously during forty years of nuclear-powered ships construction in Russia. Well proven technology of all components experienced in the marine nuclear reactors give grounds to recommend marine NSSSs of KLT-40 type as energy sources for the heat and power co-generation plants and the sea water desalination complexes, particularly as a floating installation. Co-generation stations are considered for deployment in the extreme Northern Region of Russia. Nuclear floating desalination complexes can be used for drinkable water production in the coastal regions of Northern Africa, the Near East, India etc. (author)

  20. Grid-connected integrated community energy system. Phase II, Stage 1, final report. Conceptual design, demand and fuel projections and cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-08

    The Phase I Report, Grid ICES, presented the broad alternatives and implications for development of an energy system satisfying thermal demand with the co-generation of electric power, all predicated on the use of solid fuels. Participants of the system are the University of Minnesota, operator and primary thermal user, and Northern States Power Company, primary electrical user; with St. Mary's Hospital, Fairview Hospital, and Augsburg College as Add-on Customers for the thermal service (Option I). Included for consideration are the Options of (II) solid waste disposal by the Pyrolysis Method, with heat recovery, and (III) conversion of a portion of the thermal system from steam to hot water distribution to increase co-generation capability and as a demonstration system for future expansion. This report presents the conceptual design of the energy system and each Option, with the economic implications identified so that selection of the final system can be made. Draft outline of the Environmental Assessment for the project is submitted as a separate report.

  1. Life-Cycle Evaluation of Domestic Energy Systems

    Science.gov (United States)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  2. Research report for fiscal 1988. Researches into energy conservation centering about boiler facilities; 1998 nendo boiler setsubi wo chushin to shita sho energy chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Boiler facilities in Vietnam were subjected to a feasibility study in a project for making positive use of joint implementation and clean development mechanisms which are prescribed as flexible measures by COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change). Many were small and old, and found to require improvement in terms of operating efficiency and energy conservation. Measures will be taken to wholly replace 159 boilers and partially modify 160, out of the total of 399 subjected to the study. It is expected that there will be a reduction of 173.8-thousand kiloliters per year when converted into fuel oil and a reduction per year of 599.8 kilotons in terms of CO2 gas. It was also concluded that co-generation plants judged high in energy conservation be introduced into 6 factories subjected to the study. Since energy conservation improvement and co-generation plant introduction will both contribute to the prevention of global warming and since there is commonality between the two in terms of facilities involved, it is preferred that the two be carried out under one and the same project. The enterprise will cost 11,544-million yen in total, and 791.5 kilotons/year of CO2 gas will be reduced. Since Vietnam hopes to be financed by Japan, extension of credit in yen will be the optimum policy. (NEDO)

  3. Project report on drawing district energy-saving visions for Town of Nishi Senboku; Nishi Senboku machi sho energy vision sakutei nado jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Studied in this project are concrete energy-saving procedures, and potentially saved energy and abated CO2 emissions in Town of Nishi Senboku, to promote energy saving and abatement of gas emissions which cause global warming. The energy-saving procedures studied include co-generation, utilization of waste heat, wind power generation, utilization of low-temperature heat by snow, fuel-efficient vehicles, use of insulators for houses, energy-saving type electric appliances, energy-saving activities, and eco-driving. The results indicate that the energy-saving activities and eco-driving can potentially more contribute to energy saving than the others. The study on introduction of energy-saving facilities in the 'Nukumori Hot Spring/Umeria' project indicates that the heat pump plus co-generation case is the most advantageous, because it can potentially reduce primary energy by 2,845,215MJ/y and CO2 emissions by 22,688kg-C/y. Introduction of energy-saving facilities is also studied for an information center in the Nishi-Senboku service area for the Akita Highway. The results indicate that the introduction can potentially reduce primary energy and CO2 emissions by 25 and 13%, respectively. (NEDO)

  4. Energy integration into core businesses

    Energy Technology Data Exchange (ETDEWEB)

    Styan, G. [Tolko Industries Ltd., Castlegar, BC (Canada)

    2005-07-01

    An outline of Tolko Industries was presented with reference to their recent focus on biomass energy conversion. Tolko Industries has doubled its size twice over the last 10 year period, and now owns co-generation facilities and electrical generation contracts, along with significant capital investments. Current energy assets of the company are focused on process steam/heat energy with 3 small co-generation facilities. It was suggested that projects displacing natural gas have had the highest potential energy payback in Tolko facilities. A residuals summary for hog fuel, chips, and sawdust and shavings was presented. The company's core business focus is on sawmills, OSB, veneer, plywood and kraft paper. The company also has access to a large volume of biomass. Details of the Tolko's Nexterra Biomass Gasification Project were presented, along with details of the working scale pilot and phased in proposal plans. It was noted that Nexterra now produces enough biomass on site to be self-sufficient throughout its entire operational process. Tolko's expanded use of biomass technology to address emission abatement has resulted in funding from Enercan. Details of greenhouse gas (GHG) offsets were provided. It was concluded that efficient energy use and cost of supply creates a competitive advantage in the manufacturing industry. The Kyoto Protocol has provided advantages for biomass fuel development. tabs., figs.

  5. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    Under the sub-programme on non-electrical applications of advanced reactors, the International Atomic Energy Agency has been providing a worldwide forum for exchange of information on integral reactor concepts. Two Technical Committee meetings were held in 1994 and 1995 on the subject where state-of-the-art developments were presented. Efforts are continuing for the development of advanced nuclear reactors of both evolutionary and innovative design, for electricity, co-generation and heat applications. While single purpose reactors for electricity generation may require small and medium sizes under certain conditions, reactors for heat applications and co-generation would be necessary in the small and medium range and need to be located closer to the load centres. The integral design approach to the development of advanced light water reactors has received special attention over the past few years. Several designs are in the detailed design stage, some are under construction, one prototype is in operation. A need has been felt for guidance on a number of issues, ranging from design objectives to the assessment methodology needed to show how integral designs can meet these objectives, and also to identify their advantages and problem areas. The technical document addresses the current status of the design, safety and operational issues of integral reactors and recommends areas for future development

  6. Costs of renewable energies in France. Release 2016

    International Nuclear Information System (INIS)

    Guillerminet, Marie-Laure; Marchal, David; Gerson, Raphael; Berrou, Yolene; Grouzard, Patrice

    2016-12-01

    For each renewable energy, this study reports the assessment of the range of the theoretical variation of costs with respect to the most important parameters of the concerned sector. Low range notably corresponds to particularly favourable financing modalities added to a good field quality and to low investment costs. At the opposite, the capital cost is particularly high for high ranges. Thus, after a presentation of the adopted methodology, the report addresses the costs of electric power generation for on-shore wind energy, offshore wind energy, sea hydraulics, photovoltaic, thermodynamic solar, and geothermal energy. The next part addresses heat production costs in the case of individuals (biomass, individual thermal solar, individual heat pumps) and of collective housing and office and industrial buildings (collective biomass with or without heat network, industrial biomass, thermal solar in collective housing of in network, collective geothermal heat pumps, deep geothermal energy). The fourth chapter addresses the cost of power and heat production by co-generation (biomass co-generation, methanization). Appendices provide computation hypotheses, and reference data

  7. Non-electrical Application of Nuclear Energy: Some General Issues and Prospects

    International Nuclear Information System (INIS)

    Kuznetsov, Yu. N.

    2008-01-01

    Co-generation power plants (CPP) are widely used in Russia with its harsh climate and low temperatures. The EU directive encourages further development of co-generation plants as the most efficient and rapid way of energy saving and reduction of CO 2 emissions. Nuclear power facilities can be used efficiently at co-generation power plants. The author discuss requirements for nuclear co-generation power plants (NCPP) from the viewpoint of power level, safety and economics, and look into various approaches towards development of dedicated reactor systems and nuclear units for NCPP so as to meet these requirements. It is shown that the most effective approach is consistent implementation of the principles of design simplicity and passive operation of the main reactors systems and components. The implementation of this approach is illustrated on the example of two Russian developments - VK-300 (Russian SBWR) and RUTA (a pool-type facility). The paper describes in detail the findings of a feasibility study on a project of a co-generation nuclear plant in the Arkhangelsk region of Russia. The CNPP's total power is planned to be 1000 MW(e) and district-heating heat production capacity 1600 Gcal /h. The study has proved the feasibility of NCPP construction in the Arkhangelsk region in terms of engineering solutions, economics and, importantly, from the viewpoint of social benefits. The prospects for NCPP development in Russia are analyzed. Considering the increasing global trend towards the use of desalination and the stable growth of demand for such techniques, Russia has been paying great attention to this technology.The authors look into the prospects of NCPP application for sea water desalination. A Nuclear Desalination Complex (NDC) with VK-300 reactor facility is described as an illustration. The most attractive option is coupling of a VK-300 energy source with distillation desalination units operating based on a multi-stage evaporation principle (MED). This is an

  8. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  9. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C

    2000-07-01

    The following report deals with the use of coal and coke during 1998. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used. The use of steam coal for heating purposes during 1998 was 680 000 tons and somewhat lower than in 1997. The extremely high figures of 1996 were due to twice the production of electricity because of lack of waterpower. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. During 1998 these figures are 1 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. Steel-works, however, increase their use of steam coal in order to replace the more expensive coke. The import of metallurgical coal in 1998 was 1.6 mill tons like the year before. 1.1 mill tons of coke were produced. The coke consumption in the industry was 1.4 mill tons from which 0.3 mill tons were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has ordered a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has put a fluid bed boiler for various fuels into operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm Energi, Haesselbyverket, has invested

  10. The use of biomass energy in the pulp and paper industry and the prospects for black liquor gasification combined cycle generation

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, L J [Department of Environmental and Energy Systems Studies, Lund University, Lund (Sweden)

    1995-12-01

    The world production of paper and paperboard products, which increased 3.3% per year since 1980, reached 243 million tonnes in 1991 and is expected to continue to grow by about 2.5% per year over the next decade. Consumption levels in 1990 ranged from 2.8 kg per capita in India to 313 kg per capita in the United States. The biggest producers of pulp are the United States, Canada and the Scandinavian countries, but much of the expansion of pulp production capacity is taking place in countries such as Brazil, Chile and Indonesia. The pulp and paper industry has always relied on biomass as a fuel source to meet process energy demands. Kraft pulping is the most common process accounting for about two thirds of world wood pulp production. Energy recovered from burning black liquor, a lignin-rich by-product, in a chemicals recovery boiler typically provides most of the on-site demand for heat and electricity in a modem kraft pulp mill. Another important fuel source is bark and wood waste generated at the mill. Aging recovery boilers in industrialized countries and increasing electricity/heat demand ratios are stimulating interest in alternative co-generation technologies. Most of the interest in new biomass and black liquor co-generation technologies focuses on those that would utilize gas turbines rather than steam turbines. Gas turbines are generally characterized by higher electricity/heat ratios than steam turbines, as well as lower unit capital costs. With the black liquor and biomass gasification technologies that are now being developed and demonstrated, the energy needs of an energy-efficient kraft pulp mill could be met and 40-50 MW of baseload power would be available for export. Using, in addition, currently unused logging residues for fuel would increase that potential. The pulp and paper industry is likely to be an important early market for advanced biomass-based cogeneration technology owing to its access to biomass fuels and the potential for co-generation

  11. Biomass as an energy source: an Asian-Pacific perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kyi, Lwin [Energy Resources Section, Environment and Natural Resources Management Division, Economic and Social Commission for Asia and the Pacific, United Nations Building, Bangkok (Thailand)

    1995-12-01

    Biomass is the most commonly used renewable source of energy in the region covered by the Economic and Social Commission for Asia and the Pacific, making up an average of 50% of energy supplies in the developing countries. However, experience over the past one and a half decades in rural energy supply in the ESCAP region suggests that biomass resources are unlikely to compete with conventional supplies in meeting expanded rural energy needs for fuel, electricity and fertilizers. Nevertheless, biomass, especially wood and agricultural residues, will remain the main energy source in most countries of the region for the next two decades. The development of biomass energy systems in the ESCAP region is at different stages for different types of biomass resources. Efforts have been concentrated in six areas: direct combustion, gasification, co-generation, anaerobic digestion, densification and dendrothermal processes. Among the biomass technologies presently being promoted in the region, biogas and cooking stove programmes are the largest in terms of scale, operations and coverage. Co-generation is promising as its economic advantages make it attractive to industrial consumers, particularly the booming food and fibre production and processing industries, which produce enough biomass feedstock to warrant installing co-generation facilities. Despite its potential, the production of liquid fuel from energy crops is presently taking place in only a few countries. The major constraints on extending the use of biomass include the difficulty of assessing resources, poor local acceptance of technology (mainly for social and economic reasons), lack of financial resources and manpower, environmental concerns, the absence of up-to-date local technology and the lack of after-sales services. Appropriate technologies to develop and harness the region`s vast biomass resource base to augment energy supplies, particularly in rural areas, has been a major issue in the developing

  12. The use of biomass energy in the pulp and paper industry and the prospects for black liquor gasification combined cycle generation

    International Nuclear Information System (INIS)

    Nilsson, L.J.

    1995-01-01

    The world production of paper and paperboard products, which increased 3.3% per year since 1980, reached 243 million tonnes in 1991 and is expected to continue to grow by about 2.5% per year over the next decade. Consumption levels in 1990 ranged from 2.8 kg per capita in India to 313 kg per capita in the United States. The biggest producers of pulp are the United States, Canada and the Scandinavian countries, but much of the expansion of pulp production capacity is taking place in countries such as Brazil, Chile and Indonesia. The pulp and paper industry has always relied on biomass as a fuel source to meet process energy demands. Kraft pulping is the most common process accounting for about two thirds of world wood pulp production. Energy recovered from burning black liquor, a lignin-rich by-product, in a chemicals recovery boiler typically provides most of the on-site demand for heat and electricity in a modem kraft pulp mill. Another important fuel source is bark and wood waste generated at the mill. Aging recovery boilers in industrialized countries and increasing electricity/heat demand ratios are stimulating interest in alternative co-generation technologies. Most of the interest in new biomass and black liquor co-generation technologies focuses on those that would utilize gas turbines rather than steam turbines. Gas turbines are generally characterized by higher electricity/heat ratios than steam turbines, as well as lower unit capital costs. With the black liquor and biomass gasification technologies that are now being developed and demonstrated, the energy needs of an energy-efficient kraft pulp mill could be met and 40-50 MW of baseload power would be available for export. Using, in addition, currently unused logging residues for fuel would increase that potential. The pulp and paper industry is likely to be an important early market for advanced biomass-based cogeneration technology owing to its access to biomass fuels and the potential for co-generation

  13. Coal -94

    International Nuclear Information System (INIS)

    Sparre, C.

    1994-05-01

    This report deals with use of coal and coke during 1993; information about techniques, environmental questions and markets are also given. Use of steamcoal for heating purposes has been reduced about 3 % during 1993 to 1,0 mill tons. This is the case especially for the heat generating boilers. Production in co-generation plants has been constant and has increased for electricity production. Minor plants have increased their use of forest fuels, LPG and NG. Use of steamcoal will probably go down in the immediate years both in heat generating and co-generating plants. Coal-based electricity has been imported from Denmark during 1993 corresponding to about 400 000 tons of coal, when several of our nuclear plants were stopped. Use of steamcoal in the industry has been constant at 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1993 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. Coke consumption in industry was 1,4 mill tons. 0,2 mill tons of coke were imported. Average price of steamcoal imported to Sweden in 1993 was 308 SEK/ton or 13 % higher than in 1992; this can be explained by the dollar price level increasing 34% in 1993. For the world, the average import price was 50,0 USD/ton, a decrease of 6 %. The coal market during 1993 was affected by less consumption in Europe, shut downs of European mines and decreasing prices. High freight price raises in Russia has affected the Russian export and the market in northern Europe. The prices have been stabilized recently. All Swedish plants meet emission limits of dust, SO 2 and NO x . Co-generation plants all have some sort of SO 2 -removal system; the wet-dry method is mostly used. A positive effect of the recently introduced NO x -duties is a 40% reduction

  14. Biomass as an energy source: an Asian-Pacific perspective

    International Nuclear Information System (INIS)

    Lwin Kyi

    1995-01-01

    Biomass is the most commonly used renewable source of energy in the region covered by the Economic and Social Commission for Asia and the Pacific, making up an average of 50% of energy supplies in the developing countries. However, experience over the past one and a half decades in rural energy supply in the ESCAP region suggests that biomass resources are unlikely to compete with conventional supplies in meeting expanded rural energy needs for fuel, electricity and fertilizers. Nevertheless, biomass, especially wood and agricultural residues, will remain the main energy source in most countries of the region for the next two decades. The development of biomass energy systems in the ESCAP region is at different stages for different types of biomass resources. Efforts have been concentrated in six areas: direct combustion, gasification, co-generation, anaerobic digestion, densification and dendrothermal processes. Among the biomass technologies presently being promoted in the region, biogas and cooking stove programmes are the largest in terms of scale, operations and coverage. Co-generation is promising as its economic advantages make it attractive to industrial consumers, particularly the booming food and fibre production and processing industries, which produce enough biomass feedstock to warrant installing co-generation facilities. Despite its potential, the production of liquid fuel from energy crops is presently taking place in only a few countries. The major constraints on extending the use of biomass include the difficulty of assessing resources, poor local acceptance of technology (mainly for social and economic reasons), lack of financial resources and manpower, environmental concerns, the absence of up-to-date local technology and the lack of after-sales services. Appropriate technologies to develop and harness the region's vast biomass resource base to augment energy supplies, particularly in rural areas, has been a major issue in the developing

  15. US HTGR Deployment Challenges and Strategies HTR 2014 Conference Proceedings

    International Nuclear Information System (INIS)

    Shahrokhi, Farshid; Lommers, Lewis; Mayer, John III; Southworth, Finis

    2014-01-01

    The NGNP Industry Alliance (NIA), LLC (www.NGNPAliance.org), is a consortium of high temperature gas-cooled reactor (HTGR) designers, utility plant owner/operators, critical plant hardware suppliers, and end-user groups. The NIA is promoting the design and commercialization of a HTGR for industrial process heat applications and electricity generation. In 2012, NIA selected the AREVA Steam Cycle HTGR (SC-HTGR) as its primary reactor design choice for its first implementation in mid -2020s. The SC-HTGR can produce 625 MWth of process steam at 550°C or 275 MWe of electricity in a co-generation configuration. The standard plant is a four-pack of 625MWth modules providing steam and electricity co-generation. The safety characteristics of the HTGR technology allows close colocation of the nuclear plant and the industrial end-user. The plant design also allows the process steam used for the industrial applications to be completely segregated and separate from primary Helium coolant and the secondary nuclear steam supply systems. The process steam at temperatures up to 550°C is provided for a variety of direct or indirect applications. End-user requirements are met for a wide range of steam flow, pressure and temperature conditions. Very high reliability (>99.99%) is maintained by the use of multi-reactor modules and conventional gas-fired back-up. Intermittent steam loads can also be efficiently met through co-generation of electricity for internal use or external distribution and sale. The NIA technology development and deployment challenges are met with strategies that provide investment and partnerships opportunities for plant design and equipment supply, and by cooperative government research, sovereign or private investment, and philanthropic opportunities. Our goal is to create intellectual property (IP) and investor value as the design matures and a license is obtained. The strategy also includes involvement of the initial customer in sharing the value created in

  16. Enbridge Inc. 1998 annual report

    International Nuclear Information System (INIS)

    1999-01-01

    As a transporter of energy Enbridge operates, in Canada and the United States, the world's longest crude oil and liquid pipeline system. The company is involved in liquids marketing and international energy projects, and has a growing involvement in natural gas transmission. Enbridge owns and operates Canada's largest natural gas distribution company which provides gas to 1.4 million clients in Ontario, Quebec and New York State. It is involved in the generation and distribution of electricity. Enbridge provides retail energy products and services to a growing number of Canadian and U.S. markets. The company's operative strategies encompass: developing core pipelines and gas distribution business, enhancing profitability through the continued application of incentive rate mechanisms and cost efficient operations, developing natural gas pipelines, expanding internationally, establishing an electric power distribution and related co-generation business, and making a measured entry into unregulated, retail energy services markets

  17. Report on the behalf of the Parliamentary Office for the Assessment of Scientific and Technological Choices on hydrogen: a vector for energy transition? - National Assembly Nr 1672, Senate Nr 253

    International Nuclear Information System (INIS)

    Kalinowski, Laurent; Pastor, Jean-Marc

    2013-01-01

    In its first part, this report describes the role and use hydrogen may have as a possible sustainable energy vector: description of its remarkable properties, description of various production modalities and processes, issues related to storage, transport and distribution. The second part proposes an overview of applications: fuel cells, hydrogen in transports, power-to-gas, co-generation, energy autonomy, mobile devices. The third part describes and discusses the role hydrogen may have in energy transition, notably for the integration of renewable energies, and in the substitution to fossil energies. The last chapter discusses the governance for a hydrogen energy sector in France: a sector with a high potential, a needed intervention by the State, the unavoidable role of territories, the issue of regulation. A description of the situation in foreign countries is provided in appendix

  18. Cyberfeminism: from virtual to political

    Directory of Open Access Journals (Sweden)

    Sonia Reverter-Bañon

    2013-08-01

    Full Text Available This essay is a refection on cyberfeminism and its connection/ disconnection from the feminist agenda. While we fnd more dispersion than union on the cyberfeminist agenda it is still to be seen whether it is counterproductive to feminist praxis or it is an enriching aspect to the new currents of feminism. This paper tries to overcome the dichotomus positioning of the previous decade when measuring the promises of new technologies for the feminist cause, which was aligned with either a utopian discourse or dystopian one. Both dichotomus positions are insufcient today. Against these dualistic positions (highlighting positive or negative the promises of technologies we propose a cyberfeminist approach of the co-construction of gender and technology. This dialectic of co-generation is in harmony with the performative theory that feminism holds from the 90’s as explanatory theory, for both, the inequality of women and their potential for subversion.

  19. Study on the impact assessment for the life cycle assessment (LCA); Kankyo fuka bunseki ni okeru impact assessment ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the impact assessment which is an important step for LCA. For classification of the impact assessment, the existing literature was reviewed and a skeleton for the classification was proposed. The weighting factors for nine selected impact categories, which were used to calculate environmental load point (ELP) for the valuation, were obtained for two overseas groups, i.e., students of Amsterdam University and SETAC Europe members. It was found that the former provided the similar trends to general Japanese, however that the latter gave high weighting in the global warming and depletion of ozone layer. The ELP was proposed and applied to automatic washing machine, coffee maker, waste incineration power generation system, and co-generation system. As a result, its effectiveness was demonstrated. This report also describes problems for the LCA of thermal and material recycling of PS trays. 99 refs., 96 figs., 73 tabs.

  20. Overview and outlook for Maritime markets

    International Nuclear Information System (INIS)

    Kirstiuk, S.

    1998-01-01

    The potential of the Maritime provinces as being among the world leaders in manufacturing and value-added resource processing, low unemployment and steady economic growth was explored. Irving Oil and J.D. Irving Ltd., have actively participated in supporting the Sable Offshore Energy Project and Maritimes and Northeast Projects because of the promise of tremendous economic benefits the projects will have on the Maritime provinces. It was predicted that the projects will create thousands of jobs in Nova Scotia and New Brunswick, but more importantly, they will make the region more cost-effective and more competitive in the global markets. The Sable offshore project will allow Maritimers to compete internationally on a level playing field. With gas becoming available in the region, the opportunity exists to generate electricity at lower costs using natural gas turbines and co-generation facilities. Cheaper electricity will create new opportunities for further industrial expansion, more jobs and a stronger economy for the Maritime provinces

  1. Mechanical systems development of integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Chang, M. H.; Kim, J. I.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Kim, J. H.; Kim, Y. W.; Lee, G. M.

    1997-07-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose applications such as small capacity power generation, co-generation and sea water desalination. This in mind, survey has been made on the worldwide small and medium integral reactors under development. Reviewed are their technical characteristics, development status, design features, application plans, etc. For the mechanical design scope of work, the structural concept compatible with the characteristics and requirements of integral reactor has been established. Types of major components were evaluated and selected. Functional and structural concept, equipment layout and supporting concept within the reactor pressure vessel have also been established. Preliminary mechanical design requirements were developed considering the reactor lifetime, operation conditions, and the expected loading combinations. To embody the concurrent design approach, recent CAD technology and team engineering concept were evaluated. (author). 31 refs.,16 tabs., 35 figs

  2. The directive on energy efficiency: review in progress

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2016-01-01

    Whereas it has not been entirely transposed for all counties yet, the European directive on energy efficiency is to be reviewed to match objectives defined for 2030. Therefore, the European Commission is elaborating an analysis and a consultation on this issue. This article indicates some available data published in the Energy Efficiency Progress Report related to the evolution of final energy consumption and to its objective for 2020, to the evolution of energy consumption in the main sectors, and to the evolution of heat production by co-generation between 2005 and 2013. It also comments the main articles of the directive which address problematic and general objectives, public purchases, energy efficiency obligation schemes (EEOS, which are the main matter of questions), counting and billing, financing, and monitoring

  3. Review of NHR activities in the Russian Federation

    International Nuclear Information System (INIS)

    Malamud, V.A.; Kurachenkov, A.V.; Kusmartsev, E.V.

    1997-01-01

    NHR development activities in the ex-USSR were initiated in the 1970s mainly due to a growing deficiency of organic fuels needed for heating large cities in the European part of the country. Construction of two pilot nuclear district heating plants with AST-500 NHRs was started in the early 1980s, and by 1989 the first unit in Gorky NDHP was nearly 90% completed. Current activity in this field is concentrated on upgrading the AST-500 design and on the development on this basis of a whole series of heating-only and co-generation reactor plants of unit power ranging from 30 to 600 MW. A brief description of the AST-500 reference NHR design features is given, as well as of the R and D activities that have been carried out for the design decisions and safety validation. (author). 12 refs, 1 tab

  4. Costs and profitability of renewable energies in metropolitan France - ground-based wind energy, biomass, solar photovoltaic. Analysis

    International Nuclear Information System (INIS)

    2014-04-01

    After a general presentation of the framework of support to renewable energies and co-generation (purchasing obligation, tendering, support funding), of the missions of the CRE (Commission for Energy Regulation) within the frame of the purchasing obligation, and of the methodology adopted for this analysis, this document reports an analysis of production costs for three different renewable energy sectors: ground-based wind energy, biomass energy, and solar photovoltaic energy. For each of them, the report recalls the context (conditions of purchasing obligation, winning bid installations, installed fleet in France at the end of 2012), indicates the installations taken into consideration in this study, analyses the installation costs and funding (investment costs, exploitation and maintenance costs, project funding, production costs), and assesses the profitability in terms of capital and for stakeholders

  5. Promoting equity in large-scale renewable energy development: the case of Mauritius

    International Nuclear Information System (INIS)

    Deepchand, K.

    2002-01-01

    About 90% of the arable land in Mauritius is under sugar cane, with an annual production of 600,000 tonnes of sugar. Around 1.8 million tonnes of bagasse are available annually, principally for electricity generation in the sugar factories, and lately, for producing power for export to the national grid. Following the enactment of appropriate legislation by Government, and active involvement of the local private entrepreneurs, bagasse-generated electricity exports to the grid have become a major source of revenue. To ensure that all stakeholders in the sugar industry benefit from the sale of electricity to the grid, the Government established the Bagasse Transfer Price Fund and the Sugar Investment Trust, which ensure that revenue from co-generation is equitably shared by all stakeholders. This paper presents the main features of the revenue-sharing mechanism, which ensures that substantial benefits flow to all key stakeholders of the sugar economy, including poor smallholder sugar farmers. (author)

  6. Development of alternative energy technologies. Entrepreneurs, new technologies, and social change

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R

    1985-01-01

    This paper discusses the introduction and development of several alternative energy technologies in countries where the innovation process has enjoyed some measure of success: solar water heating (California, Israel), windmills (Denmark), wood and peat for co-generation (Northern New England, Finland) and geo-thermal power (California) as well as heat pumps designed to save energy (West Germany). It is argued that the introduction and development of new technologies - and the socio-technical systems which utilize these technologies - depend on the initiatives of entrepreneurs and social change agents. They engage in adapting and matching technology and social structure (laws, institutions, norms, political and economic forces and social structure generally). Successful developments - as well as blocked or retarded developments - are discussed in terms of such ''compatibility analysis''. Policy implications are also discussed. (orig.).

  7. Embedded generation for industrial demand response in renewable energy markets

    International Nuclear Information System (INIS)

    Leanez, Frank J.; Drayton, Glenn

    2010-01-01

    Uncertainty in the electrical energy market is expected to increase with growth in the percentage of generation using renewable resources. Demand response can play a key role in giving stability to system operation. This paper discusses the embedded generation for industrial demand response in renewable energy markets. The methodology of the demand response is explained. It consists of long-term optimization and stochastic optimization. Wind energy, among all the renewable resources, is becoming increasingly popular. Volatility in the wind energy sector is high and this is explained using examples. Uncertainty in the wind market is shown using stochastic optimization. Alternative techniques for generation of wind energy were seen to be needed. Embedded generation techniques include co-generation (CHP) and pump storage among others. These techniques are analyzed and the results are presented. From these results, it is seen that investment in renewables is immediately required and that innovative generation technologies are also required over the long-term.

  8. Characterization of iminothiosulfine-type ions [HNCS 2] rad +/ rad - and their neutral counterparts by mass spectrometry and computational chemistry

    Science.gov (United States)

    Vivekananda, S.; Raghunath, P.; Bhanuprakash, K.; Srinivas, R.; Trikoupis, Moschoula A.; Terlouw, Johan K.

    2000-12-01

    Electron ionization of rhodanine yields iminothiosulfine ions H- N C- S- Srad + , 1brad + , which readily communicate with the higher energy cyclic isomer H- N CS2rad + , 1arad + . CBS-QB3 and G AUSSIAN-2 model chemistries predict that one electron reduction reverses the stability order but that the (singlet) neutrals remain connected via a negligible energy barrier. Neutralization-reionization (NR) experiments demonstrate that singlet 1a and its heterocumulene isomer 1b are stable species in the gas-phase. However, the co-generated triplet species readily dissociate into 3S2rad + + HNC. Confirmatory experimental evidence comes from charge reversal (CR) and NR experiments on the cyclic anion H- N CS2rad - , 1arad - .

  9. Nant-De-Chatillon: electric power generation by ORC (organic Rankine cycle) using waste heat from the Chatillon biogas plant; Nant-de-Chatillon: Production d'electricite par ORC a partir des rejets de chaleur du site de methanisation de Chatillon. Resume

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.; Gay, B.

    2005-07-01

    This report prepared for the Swiss Federal Office of Energy (SFOE) describes the practical realisation and testing of a heat recovery system based on a one-stage organic Rankine cycle with R134a as the working fluid. The waste heat has a temperature of 95 {sup o}C and originates from a gas engine that powers a small co-generation plant fuelled with biogas produced on-site. Two similar cycles have been built, ORC1 with one and ORC2 with two turbines. Only ORC1 has been tested so far. The maximum efficiency measured in these tests was 6.64% (theoretical Carnot-efficiency: 17 %) and the electric power output was 5.0 kW. The problems encountered during commissioning are described and recommendations for further improvements are given.

  10. Methanization - how to better figure out profitability

    International Nuclear Information System (INIS)

    Deschaseaux, Christelle

    2013-01-01

    This article discusses the content of a study to be published on the conditions of profitability for methanization installations, in order to enable the assessment of the influence of the modifications of different parameters such as purchase tariffs, subsidies, taxes, investment management and exploitation costs. An analysis has been performed on different categories of projects: farm projects (80 to 250 kW), collective farm projects with a small collective dwelling (350 kW) and local projects (1 to 2,5 MW), hybrid farm-industrial projects, and projects based only on industrial wastes. The analysis has been made with respect to final use: co-generation or bio-methane production. It appears that most of projects still need subsidies but that there is no correlation between installed power and production cost

  11. Feasibility of geothermal space/water heating for Mammoth Lakes Village, California. Final report, September 1976--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.; Racine, W.C.

    1977-12-01

    Results of a study to determine the technical, economic, and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are reported. The geothermal district heating system selected is technically feasible and will use existing technology in its design and operation. District heating can provide space and water heating energy for typical customers at lower cost than alternative sources of energy. If the district heating system is investor owned, lower costs are realized after five to six years of operation, and if owned by a nonprofit organization, after zero to three years. District heating offers lower costs than alternatives much sooner in time if co-generation and/or DOE participation in system construction are included in the analysis. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

  12. Sustainable Development of Regional Power Systems and the Consumption of Electric Energy

    Directory of Open Access Journals (Sweden)

    Evgeny Lisin

    2018-04-01

    Full Text Available Nowadays, one of the most imminent problems facing power systems in post-industrial countries is the sustainable development of power systems under conditions of increasing power consumption irregularity due to the reduction of the industry’s share in consumers’ demand for electric power. In today’s Russia, this issue is becoming very acute due to the significant share of electric power and heat co-generation that is demonstrating low manoeuvrability and poor adaptation to operations in the daily variation of electric power demand. This paper considers the problem of improving the power system steady-state through the optimization of the production structure of thermal power plants. We propose a combinatorial algorithm that improves the planning of the structural and technological modernization of the power equipment configuration, with a glance at the forecast of the increasing irregularity of power consumption.

  13. Revenue opportunities for gas plants arising from electricity deregulation

    International Nuclear Information System (INIS)

    Bachmann, G.C.

    1999-01-01

    A brief overview of deregulation in the electric power industry and an explanation of how these changes can be used to increase revenues of gas processing plants is provided. Deregulation in the electric power industry provides the potential to significantly reduce energy costs for the gas plant and allows technology to be applied to make a better use of a valuable commodity. Owners and operators of gas processing plants increase their operating income by taking advantage of co-generation systems which provide heat and electrical energy to the gas plant. Such an application has three revenue streams, the main one being the power sales to the gas plant, the second one heat sales, and the third increased revenues from the gas plant through a reduction of overall costs, not to mention significantly reduced downtime. Further savings are possible through diversion of excess energy produced to other facilities owned by the gas plant owner

  14. Basic safety principles of KLT-40C reactor plants

    International Nuclear Information System (INIS)

    Beliaev, V.; Polunichev, V.

    2000-01-01

    The KLT-40 NSSS has been developed for a floating power block of a nuclear heat and power station on the basis of ice-breaker-type NSSS (Nuclear Steam Supply System) with application of shipbuilding technologies. Basic reactor plant components are pressurised water reactor, once-through coil-type steam generator, primary coolant pump, emergency protection rod drive mechanisms of compensate group-electromechanical type. Basic RP components are incorporated in a compact steam generating block which is arranged within metal-water shielding tank's caissons. Domestic regulatory documents on safety were used for the NSSS design. IAEA recommendations were also taken into account. Implementation of basic safety principles adopted presently for nuclear power allowed application of the KLT-40C plant for a floating power unit of a nuclear co-generation station. (author)

  15. I-tese Newsletter. Number 33 - Spring 2018

    International Nuclear Information System (INIS)

    Devezeaux de Lavergne, Jean Guy; Agator, Jean Marc; Berthelemy, Michel; Beutier, Didier; Bouyge, Emmanuel; David, Jacques; Dellero, Nicole; Hoai Linh Doan, Phuong; Faudon, Valerie; Kettani, Maryeme; Mansilla, Christine; Molinier, Robin; Rama, Miika; Thomson, Pierre

    2018-01-01

    After a column about the debate on the multi-year energy programming, this issue first proposes a study which addresses the assessment and possible reduction of building costs for third-generation nuclear reactors. It notably discusses building costs and delays, technical objectives, indicates reactor types, comments current building costs, outlines the importance of this building cost in the total electric power generation cost, shows that, based on the analysis of second-generation reactor building costs, a better management of building costs is possible. It discusses the expected evolution of EPR costs. The next article proposes a contribution of the economic analysis of decisions on the chronology of radioactive waste deep geological storage. An article then presents nuclear heat co-generation as a concept which aims at maximizing flexibility. Brief news are then presented (exhibitions and conferences)

  16. Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol

    International Nuclear Information System (INIS)

    Peduzzi, Emanuela; Tock, Laurence; Boissonnet, Guillaume; Maréchal, François

    2013-01-01

    In a carbon and resources constrained world, thermo-chemical conversion of lignocellulosic biomass into fuels and chemicals is regarded as a promising alternative to fossil resources derived products. Methanol is one potential product which can be used for the synthesis of various chemicals or as a fuel in fuel cells and internal combustion engines. This study focuses on the evaluation and optimization of the thermodynamic and economic performance of methanol production from biomass by applying process integration and optimization techniques. Results reveal the importance of the energy integration and in particular of the cogeneration of electricity for the efficient use of biomass. - Highlights: • A thermo-economic model for biomass conversion into methanol is developed. • Process integration and multi-objective optimization techniques are applied. • Results reveal the importance of energy integration for electricity co-generation

  17. HTR Development in China

    International Nuclear Information System (INIS)

    Wang Dazhong

    2014-01-01

    The roles of HTRs in China: 1. Due to the inherent safety features, high efficiency of electricity generation, site flexibility, the modular HTR can act as a supplement to LWR for small and medium size power generation. 2. Co-generation to supply steam up to 600℃, for petroleum refinery, oil sand and oil shale processing, sea water desalination and district heating, etc. 3. Hydrogen production at 900~1000 ℃ by V/HTR. Conclusions and prospects: • China’s energy system will experience transition and reform in the future; • Nuclear energy will play an irreplaceable role in China’s energy development; • Due to the excellent features of inherent safety, the HTR is a promising technology for electricity generation and process heat utilization; • Further international cooperation and exchanges need to be enhanced

  18. methanization of organic matters. Guide for project developers

    International Nuclear Information System (INIS)

    2015-02-01

    This document aims at informing potential project developers (farmers, local communities, industrials) all along the creation of a methanization unit. It precisely indicates administrative procedures required to complete a project. It first presents some generalities about methanization (matters and their performance, methanization cycle, biogas), describes methanization processes (dry and humid), and valorisation processes (co-generation, hot water production, gas injection into the public network), presents digestate characteristics, and discusses benefits and drawbacks of methanization. The different steps of a project management are then analysed. Additional procedures are indicated, and risks and traps of methanization projects are highlighted. The document comes along with a large number of appendices which can be documents released by professional or public bodies

  19. New energy data handbook. Fiscal 1999 edition; Shin energy data shu (1998 nendo ban)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Enumerated concerning new energy in general are the classification of new energy; prospect of energy demand and supply; cost of new energy; policies, laws and regulations, and subsidy systems for new energy in Japan and abroad; etc. Concerning photovoltaic power generation, the introduction of photovoltaic systems, policies toward photovoltaic systems, subsidy systems, the current state of market in Japan and abroad, etc., are mentioned. Similar data are also listed about solar heat exploitation and wind power generation. Concerning fuel cells, the phosphoric acid fuel cell demonstration plant and the result of its operation, the state of development achieved so far in the molten carbonate type, the polymer electrolyte type, and the methanol type are stated. In addition, details are mentioned of refuse-fueled power generation, co-generation, energy remaining unexploited, geothermal power generation, clean energy vehicles, coal liquefaction and gasification, etc. (NEDO)

  20. World`s first fuel cell in a single-family home - The VNG natural gas house: Low-emission energy meets all household needs

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    VNG - Verbundnetz Gas Aktiengesellschaft of Leipzig, Germany, has pioneered the development of a decentral home energy system combining very high efficiencies with extremely low emissions. The company has installed the world`s first fuel cell total energy system using natural gas as an energy source to generate both heat and power in a single-family home. It replaces the gas-fired mini power station operated as part of the VNG natural gas house project which was instrumental in the rapid advancement of small-scale co-generation technology. The objective of VNG and its project partners is to collect reliable data for advancing fuel cell technology development, allowing appliance manufacturers to design a competitive system for introduction on the market within a few years. Discerning consumers will then be able to opt for an innovative, highly efficient system to meet all their household energy needs. (orig.)

  1. Certification of power generation from sewage gas

    International Nuclear Information System (INIS)

    Ronchetti, C.

    2004-01-01

    This article discusses the certification of power generated from sewage gas in packaged co-generation units in Switzerland. Since 2003, such electricity can be sold as 'green power' to consumers, who pay an additional charge for this ecologically generated power. Since the eco-balance of this electricity generated in wastewater treatment plant is considered as being excellent, the prestigious 'Naturemade Star' label has been awarded to it. This label sets most stringent requirements. The Canius wastewater treatment plant in the 'Lenzerheide' in eastern Switzerland is taken as an example to illustrate the procedure that has to be gone through to receive certification. This certification is carried out by independent auditors and guarantees that the 'green' electricity offered by the utility meets the high ecological criteria set by the label

  2. Combined generation of electric and heating energy in future development of Yugoslav energy sector until 2000

    International Nuclear Information System (INIS)

    Djajic, Nenad; Zivanovic, Vladimir

    2000-01-01

    Development of the district heating system in the FR Yugoslavia, beside the combined generation of electric and heating energy presents a necessity for energy, economic and ecological reasons. Although the structure of energy reserves is rather unfavourable considering that the lignite is being predominantly used, available reserves of energy raw material are able to ensure the long-term development of Yugoslav energy sector, and to offer real possibilities for considerable substitution of foreign good quality fuels, especially in district heating systems. Their further development will depend, among other things: on the implementation of new technological solutions for the exploitation of local energy resources; need of reconstruction, revitalisation and transformation of old condensing thermal power plants into the cogeneration plants; installation of remote controlled transmission of heating energy as well as on development of heating plants and smaller co-generation plants based on local energy resources. (Authors)

  3. Synthesis: Renewable energies, January 2016 - January 2017

    International Nuclear Information System (INIS)

    Deharbe, David; Gandet, Stephanie

    2017-01-01

    The authors propose an overview and a comment of evolutions of the legal context of renewable energies during 2016. Thus, they address French decrees related to installations which produce electric power from renewable energies or the recovery of mine gas or co-generation, related to the transfer of mandatory purchase contracts, and related to the control of renewable energy production installations. They review legal and administrative events (decrees or decisions) regarding wind energy (tariffs, bidding, installations, meteorological radars, technical and financial responsibilities), solar energy (tariffing, self-consumption, bidding, installation location in mountain and rural contexts for roof-based or ground-based installations), biogas (gas sector, tariffs, supply threshold for energetic crops), hydroelectricity (bidding for small installations), geothermal energy (definition of objectives, inauguration of the first world deep geothermal plant in Rittershoffen, tariffing, new technical decrees) and miscellaneous aspects

  4. Conceptual design of the cryogenic system for the helical-type fusion power plant FFHR

    International Nuclear Information System (INIS)

    Yamada, S.; Sagara, A.; Imagawa, S.; Mito, T.; Motojima, O.

    2007-01-01

    The force-free helical-type fusion reactor, FFHR, is proposed on the basis of the engineering achievements and confinement properties of the experimental fusion device of LHD. The outputs of the thermal power and electric power are optimized to 3 and 1 GW, respectively. Total weight of the superconducting (SC) coils and their supporting structures of the FFHR are estimated to be 18,000 t. An equivalent refrigeration capacity of 98 kW is necessary for coping with different plant loads. Mass-flow rate of the main circulation compressors is 9.5 kg/s and their power consumption is 29 MW. The FFHR is used for the co-generation system of electricity and hydrogen. The pressurized hydrogen of 100 t per day can be produced, when the stem electrolyzer of 150 MW class is applied. Electric power consumption of the hydrogen liquefaction with 100 t per day is estimated to be 26 MW

  5. Why we must move quickly to open Ontario's power market

    International Nuclear Information System (INIS)

    Brooks, J.

    2001-01-01

    This paper presented issues regarding the reform in Ontario's electricity sector and why the Independent Power Producer's Society of Ontario (IPPSO) believes it is necessary to open the electricity market in the province as soon as possible. The 400 members of IPPSO include developers, suppliers, consultants and various professionals working in the fields of co-generation, small hydro, biomass, wind energy and other technologies with a total generating capacity of about 1600 MW in Ontario. The government of Ontario recently announced four principles for implementing competition in the electricity sector which were protecting the consumers and offering choice, creating a strong business climate, protecting the environment, and supporting innovation and alternative energy development. This paper described the possible indicators of success in implementing these four principles and provided a historical perspective on the motivation for bringing in competition

  6. Development of Residential SOFC Cogeneration System

    Science.gov (United States)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-06-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  7. Thermodynamic cycles of adsorption desalination system

    International Nuclear Information System (INIS)

    Wu, Jun W.; Hu, Eric J.; Biggs, Mark J.

    2012-01-01

    Highlights: ► Thermodynamic cycles of adsorption desalination (AD) system have been identified all possible evaporator temperature scenarios. ► Temperature of evaporator determines the cycle. ► Higher evaporator temperature leads to higher water production if no cooling is required. -- Abstract: The potential to use waste heat to co-generate cooling and fresh water from saline water using adsorption on silica is attracting increasing attention. A variety of different thermodynamic cycles of such an adsorption desalination (AD) system arise as the temperature of the saline water evaporator is varied relative to temperature of the water used to cool the adsorbent as it adsorbs the evaporated water. In this paper, all these possible thermodynamic cycles are enumerated and analysed to determine their relative performances in terms of specific energy consumption and fresh water productivity.

  8. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Furdikova, Zuzana [Department of Environmental Chemistry and Technology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, CZ-61200 Brno (Czech Republic); Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic); Docekal, Bohumil [Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic)], E-mail: docekal@iach.cz

    2009-04-15

    Interference effects of co-generated hydrides of arsenic, antimony and bismuth on trapping behavior of selenium hydride (analyte) within an iridium-modified, transversely heated graphite tube atomizer (THGA) were investigated. A twin-channel hydride generation system was used for independent separate generation and introduction of analyte and interferent hydrides, i.e. in a simultaneous and/or sequential analyte-interferent and interferent-analyte mode of operation. The influence of the analyte and modifier mass, interferent amount, trapping temperature and composition of the gaseous phase was studied. A simple approach for the elimination of mutual interference effects by modification of the gaseous phase with oxygen in a substoichiometric ratio to chemically generated hydrogen is proposed and the suppression of these interference effects is demonstrated. A hypothesis on the mechanism of trapping and mutual interference effects is drawn.

  9. Cogeneration steam turbine plant for district heating of Berovo (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin

    2000-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. A coal dust fraction from B rik' - Berovo coal mine is the main energy resource for cogeneration steam turbine plant. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. All necessary facilities of cogeneration plant is examined and determined. For proposed cogeneration steam turbine power plant for combined heat and electric production it is determined: heat and electric capacity of the plant, annually heat and electrical quantity production and annually coal consumption, the total investment of the plant, the price of both heat and electric energy as well as the pay back period. (Authors)

  10. Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment

    DEFF Research Database (Denmark)

    Santos, Catarina I.; Silva, Constança C.; Mussatto, Solange I.

    2017-01-01

    ). Although, the MJSP calculated for all scenarios are higher than those of the fossil jet fuel reference, the significant potential for environmental impacts reduction (in terms of GHG emissions and primary energy use) are encouraging for further research in costs reduction and technology development....... (i.e. co-generation). From the combination of these key features, 81 scenarios are selected and compared. Furthermore, three potential technological improvements were analysed for selected scenarios: i) recovery of acetic acid and furfural (for cases with bagasse pretreatment); ii) production.......e. greenhouse gas (GHG) emissions and non-renewable energy use (NREU)). Among the scenarios considering biomass pretreatment, the lower MJSP are obtained when 1G/2G sugars are upgraded via ethanol fermentation (ETJ) (i.e. SO2 steam explosion: 3409 US $.ton−1, and wet oxidation: 3230 US $.ton−1). Additional...

  11. Thermal performance and efficiency of supercritical nuclear reactors

    International Nuclear Information System (INIS)

    Romney Duffey; Tracy Zhou; Hussam Khartabil

    2009-01-01

    The paper reviews the major advances and innovative aspects of the thermal performance of recent concepts for super-critical water-cooled nuclear reactors (SCWR). The concepts are based on the extensive experience in the thermal power industry with super and ultra-supercritical boilers and turbines. The challenges and goals of increased efficiency, reduced cost, enhanced safety and co-generation have been pursued over the last ten years, and have resulted both in viable concepts and a vibrant defined R and D effort. The supercritical concept has wide acceptance among industry, as it reflects standard engineering practices and current thermal plant technology that is being already deployed. The SCWR concept represents a continuous development of water-cooled reactor technology, which utilizes the best and latest advances made in the thermal power industry. (author)

  12. The prerequisite for competition in the restructured wholesale Saudi electricity market

    International Nuclear Information System (INIS)

    Al-Muhawesh, Tareq A.; Qamber, Isa S.

    2008-01-01

    Protection of customers against monopoly is the first and main objective of the Saudi Electricity and Co-generation Regulatory Authority (ECRA). The second important objective, as recommended by the present study, is regulating natural monopoly businesses [Saudi electricity national grid (SENG) and Saudi electricity distribution (SED)] in addition to promoting real competition in competitive businesses [power supply providers (PSPs) and customer service providers (CSPs)]. Another four main objectives of ECRA are to promote the efficient use of energy and natural resources, to ensure a reasonable rate of return for PSPs and CSPs and at the same time to be fair to end-users, to ensure reasonable charges to SENG and SED services to be adequate for them to run the organization in a break-even manner and to maintain the system's security and reliability. The present paper discusses the way to improve and restructure the Saudi electricity market

  13. Development of Residential SOFC Cogeneration System

    International Nuclear Information System (INIS)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-01-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the 'Demonstrative Research on Solid Oxide Fuel Cells' Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  14. Multicriteria analysis of the hybrid systems with biogas: fuzzy set and rules; Analise multicriterio de sistemas hibridos com biogas: conjuntos e regras fuzzy

    Energy Technology Data Exchange (ETDEWEB)

    Barin, A.; Canha, L.; Abaide, A.; Magnago, K. [Federal University of Santa Maria (UFSM), RS (Brazil)], E-mail: chbarin@gmail.com; Machado, R. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], E-mail: rquadros@sel.eesc.usp.br

    2009-07-01

    A multicriteria analysis to manage de renewable sources of energy is presented, identifying the most appropriate hybrid system to be used as distributed generation of electric energy using biogas. In this methodology, fuzzy sets and rules are defined simulated in the software MATLAB, where the main characteristics of the operation and application of hybrid systems of electric power generation are considered. The main generation system, that can use the biogas, as micro turbines and fuel cells, are evaluated. Afterwards, the systems of energy storage are analyzed: flywheel, H{sub 2} storage and conventional and redox batteries. For the development of the proposed methodology, it was considered the following criteria: efficiency, costs, technological maturity, environmental impacts, the amplitude of the system action (power range), useful life, co-generation possibility and operation temperature. A classification, by priority order, for the use of the sources and storages associated to the environment and cost scenarios is also presented.

  15. Long-Term Nuclear Industry Outlook - 2004

    Energy Technology Data Exchange (ETDEWEB)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  16. Distributed generation solutions: changes and opportunities for distribution companies

    International Nuclear Information System (INIS)

    Chuddy, B.

    2004-01-01

    'Full text:' The rapid expansion of hydrogen based power alternatives and other significant distributed generation (DG) alternatives is changing the traditional role of the local electricity distributor. This presentation is about opportunities related to incorporating such facilities into LDC and client distribution systems. This ranges from support of large co-generation facilities, such as that under development at Mississauga's Pearson International, to the integration of output from varied new forms small-scale, wind, biomass, and fuel cell power production within local distribution networks. Mr. Chuddy will examine Enersource's present and anticipated role: (1) as a technologies company aiding in developing distribution systems that integrate and fully utilize DG technology into those models and; (2) as an LDC that continues to lead the conservation movement on several fronts, including advocacy of aggregated demand response mechanisms in Ontario's wholesale market design. (author)

  17. Gas-steam turbine plant for cogenerative process at 'Toplifikacija' - Skopje (Joint-Stock Co. for district heating - Macedonia)

    International Nuclear Information System (INIS)

    Cvetkovski, Andrijan

    2003-01-01

    The gas-steam power plant for combined heat and electric power production at A.D. 'Toplifikacija' Skopje - TO 'Zapad' is analyzed and determined. The analyzed plant is consisted of gas turbine, heat recovery steam generator (HRSG) and condensate steam turbine with controlled steam extraction. It operates on natural gas as a main fuel source. The heating of the water for the district heating is dine in the heat exchanger, with // heat of controlled extraction from condensate turbine. The advantages of the both binary plant and centralized co generative production compared with the individual are analyzed. The natural gas consumption of for both specific heating and electrical capacity in join production as well as fuel savings compared to the separate production of the same quantity of energy is also analyzed. (Original)

  18. The merit of cogeneration: Measuring and rewarding performance

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Cogeneration or combined heat and power (CHP) is a thermal power generation cycle with the merit of recovering part or all of the heat that is fatally discarded by such cycles. This merit of higher efficiency is subject of rewarding by public authorities. When the EU enacts CHP promotion in a Directive (1997-2004), crucial measurement and qualification issues remain unsolved. CEN (coordinator of the European Bureaus of Standards) contributes in clarifying the measurement of CHP activities, but shortfalls remain, while CEN bypasses the debate on qualifying CHP performance. This article offers appropriate methods for measuring CHP activities based on design characteristics of the plants. The co-generated electric output is a necessary and sufficient indicator of CHP merit and performance. Regulators can extend this indicator, but should avoid the perverse effects of biased external benchmarking as the EU Directive entails

  19. Steam process supply optimization for Arcelormittal Tubarao consumers; Otimizacao do sistema de fornecimento de vapor de processo para a usina (AMT)

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Gecimar; Oliveira, Heron Domingues de; Silva, Jose Geraldo Lessa; Beccalli, Marcelo; Calente, Paulo Sergio Boni; Monteiro, Sergio Anderson [Companhia Siderurgica de Tubarao ArcelorMittal, Serra, ES (Brazil)

    2010-07-01

    The ArcelorMittal Tubarao Energy Production area is compounded by three units: Air Separation Units, Thermal Power Plants and Thermal Recovery Power Plants. The Thermo Power Plants are co-generated units responsible to generate electrical, mechanical (Blast Furnace blower) energy and also provide Steam to complement the facility internal consumption mainly provided by CDQ plant (CDQ - Coke Dry Quenching). Since RH2 (steel treatment process) start up, the steam consumption increased and the Thermal Power Plant contribution raised to attend this new demand. Solutions were needed to guarantee the steam supply by the Power Plant even in low steam header stoppages for maintenance, since the lack of steam caused by shortage in Power Plant steam supply resulting in steel production diminution in this new scenario. (author)

  20. Pathogen intelligence

    Directory of Open Access Journals (Sweden)

    Michael eSteinert

    2014-01-01

    Full Text Available Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behaviour, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behaviour, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies.

  1. Contemporary marketing trends: from one-to-one marketing and the service-dominant logic to M2M communications and netnography

    Directory of Open Access Journals (Sweden)

    Daj, A.

    2012-01-01

    Full Text Available In recent years, a strong and unexpected growth in take-up and use of digital devices and applications - phenomenon known under the term “Web 2.0” - enabled wide-ranging interaction and collaboration between consumers. Thus, users actually become participants (co-creators not end-users that are strengthened through the network (as a collective resource. The newly acquired knowledge has led to a profound change in the way marketing professionals conceive marketing, as a whole, and the marketing mix, in particular. Therefore, the new mindset of contemporary marketers emphasizes the importance of co-generating value by involving customers in the design and improvement process of goods and rendered services.

  2. Feasibility studies on cogeneration from industrial wood-processing residues in Ghana

    International Nuclear Information System (INIS)

    Brew-Hammond, A.; Atakora, S.B.

    1999-01-01

    Several feasibility studies have been undertaken on cogeneration from wood-processing industrial residues in Ghana; practically all concluded that it was not economically viable because of the low tariffs for electricity in Ghana (around 3.5 US cents per kWh) at the time. Tariffs have more than doubled since September 1998 and average tariffs for industrial consumers are now around 7-8 US cents/kWh. This paper reviews earlier studies and undertakes a sensitivity analysis to determine effects of the new tariff regime and the investment costs for co-generation projects. More detailed technical and economic feasibility studies are needed to prepare the ground for an investment programme in cogeneration from wood residues. (author)

  3. High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2011-08-01

    This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

  4. Distributed technologies in California's energy future. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, M.; Craig, P.; McGuire, C.B.; Simmons, M. (eds.)

    1977-09-01

    This interim report contains eight of the eighteen chapters included in the complete report. In Chapter I, pertinent data, facts, and observations are made following an initial summary. Chapter II is an introduction, citing especially the writings of Amory Lovins. The criteria used in defining distributed systems, suggested by Lovins, are that the technologies be renewable, environmentally benign, local, subject to graceful failure, foolproof, flexible, comprehensible, and matched in energy quality. The following chapters are: The Energy Predicament; The California Setting; Energy Resources for California's Future; Alternative Energy Futures for California; Issues and Problems; and Directions for Future Work. Six appendices deal with residential heating loads and air conditioning, allocations, co-generation, population projections, and the California wind energy resource. (MCW)

  5. Hydrogen [Brief history of the discovery and use of hydrogen since the 16. century

    International Nuclear Information System (INIS)

    Alleau, Thierry

    2015-10-01

    After a brief history of the discovery and use of hydrogen since the 16. century, the author notices that this gas is now mainly used for its chemical properties and energetic performance. He indicates and comments the main chemical, physical and energetic characteristics, and then presents the different production processes: from water (with different electrolytes: alkaline liquid electrolyte, per-fluorinated acid solid electrolyte, ceramic acid solid electrolyte) or from carbonated, fossil or biological fuels. He proposes an overview of issues like transport, storage and distribution, evokes the present cost (great variations between countries), and indicates how it is used in the chemical, petrochemical and energy industries. He briefly discusses other issues: risks, standards and regulation. He proposes a brief overview of international policies and programs, and indicates some research programs: Ene-Farm in Japan for co-generation (heat and electricity from fuel cell) and light vehicles in different countries

  6. Energy Efficiency and Urban Renewal in the Economies in Transition

    International Nuclear Information System (INIS)

    Brendow, K.

    1997-01-01

    The Paper notes the importance of energy consumption in agglomerations (65-70% in the economies in transition) and of related emissions. It assesses the technical and cost-effective potential for a 40% and more decrease in urban energy intensities and SO 2 /NO x emissions by 2020, resulting from a systematic approach to urban as well as energy planning. Compared to approaches worldwide, urban energy renewal in the economies in transition appears, as its beginning, characterized by a traditional focus on existing technological supply sub-systems such as district heating and co-generation. The obstacles to a more systematic approach, including demand side management, are slow progress in urban and energy reforms and a lack of acquaintance with modern planning tools. International cooperation is incommensurate with the long-term challenge of s ustainable urban development . (author)

  7. Electricity generation sectors under purchase obligation: support arrangement analysis

    International Nuclear Information System (INIS)

    2013-04-01

    This report aims at assessing the operation of the support arrangement by which currently benefit some electricity production sectors in France (renewable energies, co-generation) with respect to the evolution of the energy mix within the frame of energy transition. Other support arrangements presently adopted in Europe are also addressed as lessons to be learned. Criteria are established for any support arrangement. The report presents the French and European context regarding such support arrangement with purchasing obligation, and addresses the future evolutions of the European Commission. It highlights challenges for the electric system and for the energy market (impact on investments, optimization of market operation), describes and assesses the French purchasing obligation arrangement, and describes and assesses other existing support arrangements

  8. UASB technology applied to treat industrial spills with high organic load: effluents from a factory of yeast production (Cordoba, Spain); Depuracion de vertidos organicos de alta carga: aplicacion de la tecnologia UASB al tratamiento anaerobio de las vinazas de una fabrica de levadura (Cordoba)

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Aguilar Jimenez, J. M.; Rojas Moreno, F. J.

    2005-07-01

    This paper deals on the yielding obtained in the exploitation of an UASB Water Treatment Plant, which is located in to the La Golondrina Wastewater Treatment Plant (Cordoba, Spain). This UASB Water Treatment Plant is focused to treat spills from yeast production with a treatment capacity of 2.100 m''3/day. From july of 1997 to may of this year, the plant has produced treated waster with 1.446 mg/l of suspended solids (influent, 2.471 mg/l), 1.449 mg/l of BOD{sub 5} (influent, 13.578 mg/l): this implies a global yielding of 70,5%. Furthermore, the UASB plant has generated 2.828 m''3/day of biogas with high quality which is later used in a co-generation system there available. (Author) 15 refs.

  9. EPCOR Utilities Inc. 1998 annual report

    International Nuclear Information System (INIS)

    1999-01-01

    Financial information from EPCOR Utilities Inc. and a review of their 1998 operations was presented. EPCOR was incorporated in 1995 and established as parent of Edmonton Power, Aqualta and Eltec in 1996. The city of Edmonton is the sole shareholder. EPCOR showed strong financial results and operational achievements in 1998. Among the many achievements were the efforts to ensure that the electric power systems are ready for the year 2000. Reduction of CO 2 emissions was another task pursued with good results. The electric power utility also invested in the re-powering of the Rossdale Generating Station and participated in the co-generation project at Joffre. The report provides details of these and other operational activities and presents consolidated financial statements. A new work management system to improve operational excellence and to better serve EPCOR customers during power disturbances was also launched during the year under review. tabs., figs

  10. Evaluation of the HTR-10 Reactor as a Benchmark for Physics Code QA

    International Nuclear Information System (INIS)

    William K. Terry; Soon Sam Kim; Leland M. Montierth; Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-01-01

    The HTR-10 is a small (10 MWt) pebble-bed research reactor intended to develop pebble-bed reactor (PBR) technology in China. It will be used to test and develop fuel, verify PBR safety features, demonstrate combined electricity production and co-generation of heat, and provide experience in PBR design, operation, and construction. As the only currently operating PBR in the world, the HTR-10 can provide data of great interest to everyone involved in PBR technology. In particular, if it yields data of sufficient quality, it can be used as a benchmark for assessing the accuracy of computer codes proposed for use in PBR analysis. This paper summarizes the evaluation for the International Reactor Physics Experiment Evaluation Project (IRPhEP) of data obtained in measurements of the HTR-10's initial criticality experiment for use as benchmarks for reactor physics codes

  11. Energy rational and economic use in a metallurgical industry: opportunity for replacing electricity by natural gas; Uso racional e economico da energia dentro de uma industria metalurgica: oportunidade de troca de eletricidade para gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Luiz Claudio Ribeiro; Kanayama, Paulo Helio; Udaeta, Miguel Edgar Morales [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica]. E-mail: lcgalvao@pea.usp.br; paulo.kanayama@poli.usp.br; udaeta@pea.usp.br; Rocha, Cidar Ramon Oliva; Affonso, Octavio Ferreira [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia (IEE)]. E-mail: cidar_2001@yahoo.com; octavio@pea.usp.br

    2006-07-01

    This paper presents an initial diagnostic on the economic and efficient use of the energy input in metallurgical industries using electrical furnaces. From the foundations of modern energy management and industry characterization the electricity consumption is evaluated for presenting the facility with the energy change to natural gas and the modern methods of complete combustion with oxygen from the air. Taking into consideration the characteristics of real metallurgical industry production, the dimensioning of a natural gas furnace were calculated for replacing the existent electric furnace, with growing margin in the demand. The paper allows to conclude the the possibility is real, also considering the possibility of using the modern methods of co-generation for a complete use of gas which would imply in additional investment to produce electric energy by using a steam turbine.

  12. Hydrogen generation from biogenic and fossil fuels by autothermal reforming

    Science.gov (United States)

    Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard

    Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.

  13. Efficient hydrogen production using heat in neutron shield of fusion reactor

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Asaoka, Yoshiyuki; Hiwatari, Ryouji; Yoshida, Tomoaki

    2001-01-01

    In future perspective of energy supply, a hydrogen energy cycle is expected to play an important role as a CO 2 free fuel for mobile or co-generation systems. Fusion power plants should offer advantages, compatibilities and/or synergistic effects with or in such future energy systems. In this paper, a comprehensive power station, in which a fusion plant is integrated with a hydrogen production plant, is proposed. A tenuous heat source in the outboard shield, which is unsuitable to produce high-pressure and high-temperature steam for efficient electric power generation, is used for the hydrogen production. This integrated system provides some synergistic effects and it would be advantageous over any independent use of each plant. (author)

  14. Open absorption system for cooling and air conditioning using membrane contactors. 2006 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R. [Materials Science and Technology (EMPA), Abteilung Bautechnologien, Duebendorf (Switzerland)

    2006-11-15

    This illustrated annual report for 2006 for the Swiss Federal Office of Energy (SFOE) reports on work being done on the development of an open absorption system for cooling and air-conditioning. The report reviews the construction of a first prototype and the manufacture of its components. The conceptual design of this new type of air handling unit (AHU), operating with a liquid desiccant, is discussed. The AHU is to be autonomous and the system will not require additional mechanical refrigeration. It is to be thermally driven at temperatures below 80 {sup o}C. Waste heat sources, solar collectors, district heating plants and co-generation systems are targeted as providers of thermal energy at this temperature level. Work carried out is reported on, including that on two-stream membrane contactors.

  15. Installation of a small central thermoelectric using biomass and cogeneration with absorption refrigeration system: alternative for small rural isolated communities; Instalacao de uma pequena central termeletrica a biomassa e cogeracao com sistema de refrigeracao por absorcao: alternativa para pequenas comunidades agricolas isoladas

    Energy Technology Data Exchange (ETDEWEB)

    Zukowski Junior, Joel Carlos; Marcon, Rogerio Olavo; Reys, Marcos Alves dos [Centro Universitario Luterano de Palmas (CEULP), TO (Brazil); Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)

    2004-07-01

    The lack of electrical energy in several localities of Brazil results in a slow perspective of in terms of economic growth and scientific and technological development. In order to minimize these problems it is proposed the use of co-generation systems with small thermoelectric plants burning rice rusk (an abundant biomass in certain regions of Brazil, as for example the Tocantins State) as a heat source and to utilize the discharged steam from the turbine to generate cold through an absorption refrigeration system. The work intends to show a possible solution to the problems originated from the absence of electric power in small and isolated rural villages, also problems of processing storage of agricultural residues and to generate cold for several applications. (author)

  16. Operational experience with propulsion nuclear plants

    International Nuclear Information System (INIS)

    Polunichev, V.

    2000-01-01

    Russia possesses a powerful icebreaker transport fleet which offers a solution for important socio-economic tasks of the country's northern regions by maintaining a year-round navigation along the Arctic Sea route. The total operating record of the propulsion nuclear reactors till now exceeds 150 reactor-years, their main equipment items operating life amounted to 120,000 h. Progressive design-constructional solutions being perfected continuously during 40 years of nuclear-powered ships creation in Russia and well proven technology of all components used in the marine nuclear reactors give grounds to recommend marine Nuclear Steam Supply Systems (NSSSs) of KLT-40 type as energy sources for heat and power cogeneration plants and sea water desalination complexes, particularly as floating installations. Co-generation stations are considered for deployment in the extreme north of Russia. Nuclear floating desalination complexes can be used for drinkable water production in coastal regions of Northern Africa, the Near East, India etc. (author)

  17. A new strategy for the restructuring of Polish energy sector

    International Nuclear Information System (INIS)

    Kozlowski, R.H.; Tallat, J.

    2006-01-01

    In accordance with strategic planning in the military, the leader (in this case the Minister of Economy) is responsible for setting goals, finding the right people to accomplish these goals (those working in the energy sector), analysing the current situation (state of the energy sector) and evaluating available resources (conventional and renewable energy resources). In terms of economic planning (this term is proper for an economy that sets numerous laws and quotas), the goal is to get the Polish economy out of economic slump, which is the result of seventeen years of improper government practices, into a state of prosperity corresponding to no less than the European average. The only way of accomplishing this goal of high economic growth and catching up with highly-developed countries is to develop local inexpensive energy resources. This study focuses on the potential to develop abundant Polish geothermal resources as well as natural gas based co-generation. (author)

  18. Review of NHR activities in the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, V A; Kurachenkov, A V; Kusmartsev, E V [OKBM, Nizhny Novgorod (Russian Federation)

    1997-09-01

    NHR development activities in the ex-USSR were initiated in the 1970s mainly due to a growing deficiency of organic fuels needed for heating large cities in the European part of the country. Construction of two pilot nuclear district heating plants with AST-500 NHRs was started in the early 1980s, and by 1989 the first unit in Gorky NDHP was nearly 90% completed. Current activity in this field is concentrated on upgrading the AST-500 design and on the development on this basis of a whole series of heating-only and co-generation reactor plants of unit power ranging from 30 to 600 MW. A brief description of the AST-500 reference NHR design features is given, as well as of the R and D activities that have been carried out for the design decisions and safety validation. (author). 12 refs, 1 tab.

  19. Economic costs and benefits of the renewable energy sources

    International Nuclear Information System (INIS)

    De Leo, G. A.

    2001-01-01

    In this work it has been analysed the potential diffusion of renewable energy sources and co-generation in the Italian market on the basis of the level of maturation of the different technologies, predicted market growth and environmental impacts associated to them. A sensitivity analysis on external costs generated by global climate changes has allowed everybody to assess how possible errors in estimating the potential impact of greenhouse gasses can affect the estimate of the economic performances of different scenarios of energetic development. On the basis of these considerations, it can be outlined a potential doubling of energy production by renewable energies in the next 10 years, with specific reference of small hydroelectric, biogass and eolic power plants [it

  20. Hear recovery properties from fuel cell system for telecommunications use; Tsushin`yo nenryo denchi system no fuirudotesuto ni okeru hainetsu kaishu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, M.; Iida, S.; Abe, I.; Amanuma, H. [NTT Integrated Information and Energy Systems Laboratories Tokyo (Japan); Uekusa, T.; Waragai, S. [NTT Power and Building Eacilities Inc., Tokyo (Japan)

    1997-12-20

    NTT is developing a phosphoric acid fuel cell energy system for telecommunication co-generation systems to reduce energy costs and help preserve the environment. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy that is generated is used by the absorption refrigerator to cool the telecommunication rooms throughout the year. We fieldtested this fuel cell energy system in a telephone office for three years. Heat recovered water from fuel cell stack coolant was supplied to the absorption refrigerator and further extra-heat was recovered by a heat exchanger. The toral heat recovery amount was about 86000 kca/h (the heat recovery efficiency was 20%) under 200kW operation. The absorption refrigerator was supplied about 49000kcal/h of heat and operated with 0.7 of coefficient of performance throughtout the year. The electrical efficiency was maintained more than 38% after 13000h operation. 12 refs., 10 figs., 3 tabs.

  1. Seawater desalination with nuclear power

    International Nuclear Information System (INIS)

    2005-01-01

    Nuclear power helps reduce costs for energy-intensive processes such as seawater desalination. A new generation of innovative small and medium nuclear power plants could co-generate electricity and potable water from seawater, both safely and at competitive prices in today's market. The IAEA provides technical support to Member States facing water shortage problems, on assessing the viability of nuclear power in seawater desalination. The support, usually channelled through national Technical Cooperation (TC) projects, can take several forms, ranging from educational training and technical advice on feasibility studies to design and safety review of demonstration projects. The IAEA offers a software tool (DEEP) that can be used to evaluate the economics of the different desalination and heat source configurations, including nuclear and fossil options

  2. Utility unbundling : large consumer's perspective

    International Nuclear Information System (INIS)

    Block, C.

    1997-01-01

    The perspectives of Sunoco as a large user of electric power on utility unbundling were presented. Sunoco's Sarnia refinery runs up an energy bill of over $60 million per year for electricity, natural gas (used both as a feedstock as well as a fuel), natural gas liquids and steam. As a large customer Sunoco advocates unbundling of all services, leaving only the 'pipes and wires' as true monopolies. In their view, regulation distorts the market place and prevents the lower prices that would result from competition as has been seen in the airline and telephone industries. Sunoco's expectation is that in the post-deregulated environment large and small consumers will have a choice of energy supplier, and large consumers will increasingly turn to co-generation as the most desirable way of meeting their power needs

  3. Picosecond transient absorption study of photodissociated carboxy hemoglobin and myoglobin

    International Nuclear Information System (INIS)

    Janes, S.M.; Dalickas, G.A.; Eaton, W.A.; Hochstrasser, R.M.

    1988-01-01

    The optical transient absorption spectra at 30 ps and 6.5 ns after photolysis are compared for both carboxy hemoglobin (HbCO) and carboxy myoglobin (MbCO). Both 355- and 532-nm excitation pulses were used. In all cases the shapes of the optical difference spectra thus generated are stationary over the complete time-scale studied. The photolysis spectra for MbCO are not significantly different from the equilibrium difference spectra generated on the same picosecond spectrometer when measured to an accuracy of +/- 0.5 nm. In addition, spectral parameters for delegated HbCO generated on the same spectrometer but detected by two different techniques, either by a Vidicon detector or point by point with photomultiplier tubes, are reported; the results are different from some of the previously reported picosecond experiments

  4. Opinion presented on the behalf of the Commission for economic affairs on the finance bill project for 2017 (nr 4061). Nr 4127, Volume V: ecology, sustainable development and mobility, energy

    International Nuclear Information System (INIS)

    Santais, Beatrice

    2016-01-01

    In its first part, this report comments budgets awarded to energy in the finance bill project for 2017 in two programs which respectively concern the implementation of the energy policy in France, the economic and social management of the post-mining era, the struggle against climate change, and the evolution of tax-related expenses for the first one, and the solidarity with areas which are not connected to the metropolitan grid, the protection of users in situation of energy poverty, the support to co-generation, and the energy mediator for the second one. The second part of the report discusses the issue of the future of self-consumption (collective self-consumption today and tomorrow, potential assets of collective self-consumption), outlines the need for a regulation to avoid abuses (risks related to an uncontrolled development of self-consumption, emergence of a legal and regulatory framework), and outlines the importance of setting a steady and virtuous framework

  5. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes.

    Science.gov (United States)

    Clark, Malcolm W; Despland, Laure M; Lake, Neal J; Yee, Lachlan H; Anstoetz, Manuela; Arif, Elisabeth; Parr, Jeffery F; Doumit, Philip

    2017-04-01

    Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia) where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α -quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  6. Applying a small NPP in the Argentine mining industry

    International Nuclear Information System (INIS)

    Barrientos, C.J.; Masriera, N.A.

    1998-01-01

    The CAREM 25 reactor project is a small PWR nuclear power plant of 27 MWe, based on advanced concepts: a self-pressurized integral primary with natural convection of the coolant and a more simple and reliable general design. The CAREM concept has many advantages as a power generator in small electrical grids. Besides, there are some non-electrical applications under consideration, since a co-generation scheme seems very interesting from the economical point of view. In this category two alternatives have been considered: a standard desalination facility and a process plant in the mining industry. In this paper, a conceptual analysis of the second alternative is presented. Mining is a branch of the domestic industry that has shown a remarkable growth in the past three years mainly due to a steady inflow of foreign investments (about two billion dollars for that period). And one of the most attractive markets is in the extraction and manufacturing of non-ferrous minerals, coming from deposits in the northwest of Argentina: sodium sulfate, lithium salts, and boron compounds. Nevertheless it faces an unsolved problem in the energy high prices due to the fact that the production sites are located in remote areas where the only achievable energy source is the transportation of fuel oil. In this scenario, a small NPP may be a competitive source of process heat and electricity, with enough autonomy to uncouple fuel requirements from production strategies. The present study analyses the possible application of the CAREM concept in the non-ferrous mining industry of the Northwest of Argentina, considering a co-generation scheme. The main results of this analysis and the inherent advantages of the approach, show that the alternative may be feasible both from the technical and the economical points of view. (author)

  7. Externalities of energy. Swedish implementation of the ExternE methodology

    International Nuclear Information System (INIS)

    Nilsson, Maans; Gullberg, M.

    1998-01-01

    The growing interest for developing economic instruments for efficient environmental policies has opened up a large area of multi-disciplinary research. ExternE is an example of this research, combining disciplines such as engineering, ecology, immunology and economics expertise to create new knowledge about how environmental pressures from energy production affect our nature and society. The ExternE Project aims to identify and, as far as possible quantify the externalities of energy production in Europe. The Stockholm Environment Institute has carried out a preliminary aggregation: -Coal Fuel Cycle: centred around Vaesteraas Kraftvaermeverk, Vaesteraas. This is the largest co-generation plant in Sweden, with four blocks and a maximum co-generation output of 520 MW electricity and 950 MW heat. The analysis is carried out on boiler B4. -Biomass Fuel Cycle: centred around Haendeloeverket, Norrkoeping. This plant predominately burns forestry residues, but a variety of fuels are combusted. Haendeloeverket has an installed capacity of 100 MW electricity and 375 MW heat, in a total of three boilers and two back-pressure turbines. The analysis is carried out on boiler P13. -Hydro Fuel Cycle: Klippens Kraftstation, Storuman. Built in 1990-1994, it is the youngest hydro power station in Sweden. It has been designed and built with significant efforts to account for and protect environmental values. Installed capacity is 28 MW. The environmental impact assessment from the construction of this plant is carried out, but the evaluation is still not finalized. The preliminary aggregation aimed to test whether ExternE results could be used to make estimates for the entire Swedish electricity production system. Hence, national results as well as results from other partner countries in ExternE has been applied

  8. Introduction of water into the heme distal side by Leu65 mutations of an oxygen sensor, YddV, generates verdoheme and carbon monoxide, exerting the heme oxygenase reaction.

    Science.gov (United States)

    Stranava, Martin; Martínková, Markéta; Stiborová, Marie; Man, Petr; Kitanishi, Kenichi; Muchová, Lucie; Vítek, Libor; Martínek, Václav; Shimizu, Toru

    2014-11-01

    The globin-coupled oxygen sensor, YddV, is a heme-based oxygen sensor diguanylate cyclase. Oxygen binding to the heme Fe(II) complex in the N-terminal sensor domain of this enzyme substantially enhances its diguanylate cyclase activity which is conducted in the C-terminal functional domain. Leu65 is located on the heme distal side and is important for keeping the stability of the heme Fe(II)-O2 complex by preventing the entry of the water molecule to the heme complex. In the present study, it was found that (i) Escherichia coli-overexpressed and purified L65N mutant of the isolated heme-bound domain of YddV (YddV-heme) contained the verdoheme iron complex and other modified heme complexes as determined by optical absorption spectroscopy and mass spectrometry; (ii) CO was generated in the reconstituted system composed of heme-bound L65N and NADPH:cytochrome P450 reductase as confirmed by gas chromatography; (iii) CO generation of heme-bound L65N in the reconstituted system was inhibited by superoxide dismutase and catalase. In a concordance with the result, the reactive oxygen species increased the CO generation; (iv) the E. coli cells overexpressing the L65N protein of YddV-heme also formed significant amounts of CO compared to the cells overexpressing the wild type protein; (v) generation of verdoheme and CO was also observed for other mutants at Leu65 as well, but to a lesser extent. Since Leu65 mutations are assumed to introduce the water molecule into the heme distal side of YddV-heme, it is suggested that the water molecule would significantly contribute to facilitating heme oxygenase reactions for the Leu65 mutants. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Studies on high temperature research reactor in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuanhui; Zuo Kanfen [Institute of Nuclear Energy Technology, Tsinghua Univ., Beijing (China)

    1999-08-01

    China recognises the advantages of Modular HTGRs and has chosen Modular HTGRs as one of advanced reactors to be developed for the further intensive utilisation of nuclear power in the next century. In energy supply systems of the next century, HTGR is supposed to serve: 1. as supplement to water-cooled reactors for electricity generation and 2. as environmentally friendly heat source providing process heat at different temperatures for various applications like heavy oil recovery, coal gasification and liquefaction, etc.. The 10 MW High Temperature Gas-cooled Reactor (HTR-10) is a major project in the energy sector of the Chinese National High Technology Programme as the first step of development of Modular HTGRs in China. Its main objectives are: 1. to acquire know-how in the design, construction and operation of HTGRs, 2. to establish an irradiation and experimental facility, 3. to demonstrate the inherent safety features of Modular HTGR, 4. to test electricity and heat co-generation and closed cycle gas turbine technology and 5. to do research and development work on the nuclear process heat application. Now the HTR-10 is being constructed at the site of Institute of Nuclear Energy Technology (INET). The HTR-10 project is to be carried out in two phases. In the first phase, the reactor with an coolant outlet temperature of 700degC will be coupled with a steam generator providing steam for a steam turbine cycle which works on an electricity and heat co-generation basis. In the second phase, the reactor coolant outlet temperature is planned to be raised to 900degC. As gas turbine cycle and a steam reformer will be coupled to the reactor in addition to the steam turbine cycle. (author)

  10. Citizen Science: Participatory Monitoring of Water Resources Management in Mustang District, Nepal

    Science.gov (United States)

    Regmi, S.; Bhusal, J.; Gurung, P.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2016-12-01

    Abstract The Mustang region of the Himalayas has unique geographical and climatic features. This region is characterized by a cold-arid climate with total annual precipitation of less than 300mm. Agriculture and livestock grazing lands are the major ecosystem services, which support directly the livelihoods of local populations yet, are strongly determined by low water availability. As a result, optimizing water resources management is paramount to support local development, but this is severely complicated by the lack of information about water availability. This problem is further aggravated by increasing pressure on the social, physical and climatic environments. In order to support the management of scarce water in irrigation and domestic uses, stream flow and precipitation monitoring networks were established using a participatory approach under the principle of citizen science. Data collection, and the following interpretation and application of the co-generated knowledge relies on local users, whereas the establishment of the system, knowledge co-generation, and development of application tools particularly is part of a collaboration of members of the general public with professional scientists. We show how the resulting data enable local users to quantify the water balance in the area and reduce the uncertainty associated to data-scarcity, which leads to the generation of useable information about water availability for irrigation, livestock grazing, and domestic demand. We contrast the current scenario of water use, under different conditions of natural variability and environmental change, with an optimized water management strategy generated and agreed with local users. This approach contributes to an optimal use of water, to an improvement in ecosystem services supporting to livelihood development and economic progress of local populations. Key words: ecosystem services, climate change, water balance, knowledge generation, irrigation

  11. Multi-objective optimization of a pressurized solid oxide fuel cell – gas turbine hybrid system integrated with seawater reverse osmosis

    International Nuclear Information System (INIS)

    Eveloy, Valerie; Rodgers, Peter; Al Alili, Ali

    2017-01-01

    To improve the capacity and efficiency of distributed power and fresh water generation in coastal industrial facilities affected by regional water scarcity, a natural gas-fueled, pressurized solid oxide fuel cell-gas turbine (SOFC-GT) hybrid is integrated with a bottoming organic Rankine cycle (ORC) and seawater reverse osmosis (RO) desalination plant. This power and water co-generation system is optimized in terms of two objectives, maximum exergy efficiency and minimum cost rate, using a genetic algorithm. The exergetic and economic performance of three solutions representing maximum exergy efficiency, minimum cost rate, and a compromise between efficiency and cost rate, are compared. When imposing a water production requirement (reference case), the selected compromise multi-objective optimization solution delivers a net power output of 2.4 MWe and 636 m"3/day of permeate, at a co-generation exergy efficiency and cost rate of 71.3% and 0.0256 USD/s, respectively. The system payback time is estimated to be less than six years for typical economic parameters, but would become unprofitable in the most unfavorable economic scenario considered. Overall, the results indicate the thermodynamic and economic benefits of reverse osmosis over thermal desalination processes for integration with high-efficiency power generation systems in coastal regions impacted by domestic gas shortages and water scarcity. - Highlights: • Integration of a pressurized SOFC-GT hybrid system with a reverse osmosis unit. • Multi-objective, exergetic and economic optimization using a genetic algorithm. • Optimum solution delivers 2.4 MWe and 636 m"3/day of desalinated water. • Overall exergy efficiency and cost rate of 71.3% and 0.0256 USD/s, respectively. • System payback time estimated at less than six years for typical economic conditions.

  12. Modelling and control synthesis of a micro-combined heat and power interface for a concentrating solar power system in off-grid rural power applications

    Science.gov (United States)

    Prinsloo, Gerro; Dobson, Robert; Brent, Alan; Mammoli, Andrea

    2016-05-01

    Concentrating solar power co-generation systems have been identified as potential stand-alone solar energy supply solutions in remote rural energy applications. This study describes the modelling and synthesis of a combined heat and power Stirling CSP system in order to evaluate its potential performance in small off-grid rural village applications in Africa. This Stirling micro-Combined Heat and Power (micro-CHP) system has a 1 kW electric capacity, with 3 kW of thermal generation capacity which is produced as waste heat recovered from the solar power generation process. As part of the development of an intelligent microgrid control and distribution solution, the Trinum micro-CHP system and other co-generation systems are systematically being modelled on the TRNSYS simulation platform. This paper describes the modelling and simulation of the Trinum micro-CHP configuration on TRNSYS as part of the process to develop the control automation solution for the smart rural microgrid in which the Trinum will serve as a solar powerpack. The results present simulated performance outputs for the Trinum micro-CHP system for a number of remote rural locations in Africa computed from real-time TRNSYS solar irradiation and weather data (yearly, monthly, daily) for the relevant locations. The focus of this paper is on the parametric modelling of the Trinum Stirling micro-CHP system, with specific reference to this system as a TRNSYS functional block in the microgrid simulation. The model is used to forecast the solar energy harvesting potential of the Trinum micro-CHP unit at a number of remote rural sites in Africa.

  13. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2007-10-01

    Full Text Available A catalytic - DBD plasma reactor was designed and developed for co-generation of synthesis gas and C2+ hydrocarbons from methane. A hybrid Artificial Neural Network - Genetic Algorithm (ANN-GA was developed to model, simulate and optimize the reactor. Effects of CH4/CO2 feed ratio, total feed flow rate, discharge voltage and reactor wall temperature on the performance of catalytic DBD plasma reactor was explored. The Pareto optimal solutions and corresponding optimal operating parameters ranges based on multi-objectives can be suggested for catalytic DBD plasma reactor owing to two cases, i.e. simultaneous maximization of CH4 conversion and C2+ selectivity, and H2 selectivity and H2/CO ratio. It can be concluded that the hybrid catalytic DBD plasma reactor is potential for co-generation of synthesis gas and higher hydrocarbons from methane and carbon dioxide and showed better than the conventional fixed bed reactor with respect to CH4 conversion, C2+ yield and H2 selectivity for CO2 OCM process. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: I. Istadi, N.A.S. Amin. (2007. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 37-44.  doi:10.9767/bcrec.2.2-3.8.37-44][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.8.37-44 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/8][Cited by: Scopus 1 |

  14. New market based price regulation on combined heat and power in Denmark

    International Nuclear Information System (INIS)

    Koch, Jesper; Nielsen, Marianne; Hansen, Anders B.; Lawaetz, Henrik

    2003-01-01

    Major economic risks can become reality when local co-generation plants (L-CHP ) meet the full market penetration with new market based price regulation. Co-generation produces more than 50% of the national electricity consumption and half of the production is generated from L-CHP. The new price regulation is assumed to take action in 2004. The paper will present an analysis of a market based price regulation on the L-CHP-sector. The paper will spotlight on L-CHP in district heating systems supplying heat for domestic purposes. When smaller and medium sized CHP sell electricity they are paid an average price of 46 Euro per MWh. The return of selling electricity shall primarily cover the expenditure of buying gas for electricity production and writing off investments cost of a CHP-plant. With the framework of today it is a fact that the plants (in average) are only slightly competitive compared to individual heat production plants. When CHP meet market conditions there is a high risk that electricity prices will be reduced significantly (prices of 20 - 30 Euro per MWh) for a longer period. Significantly reduced electricity prices will result in dramatically increased heat prices. If no action is taken there will be a potential risk that heat consumers in the smaller and medium sized cities together must pay an extra bill of 200 million Euro each year. It corresponds to an average increase of the heating bill of 300 - 500 Euro per year for an average house. This is far from acceptable. There will also be a high risk that companies with industrial CHP will permanently convert to heat only boiler and only use their CHP occasionally because CHP plants might not be cost-effective when electricity prices are low. These effects can cause a significant increase of the national CO 2 emission

  15. Comparison MAAP5.03 with MAAP5.04 from Recombination of CO point of view

    Energy Technology Data Exchange (ETDEWEB)

    Kim, ChulSoo; Kim, HyoungKi; Ryu, InChul; Moon, YoungTae [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)

    2016-10-15

    To mitigate Molten Core-Concrete Interaction (MCCI) progress, a limestone-like concrete is used to be selected as the reactor cavity floor material. However because of the fact that they contain higher CO than the siliceous concrete, it leads to a lot of CO generation than siliceous case. Basically it has been known that PAR can deplete carbon monoxide (CO) as well as hydrogen. But, MAAP5.03 or earlier does not provide the CO recombination model. To reflect the current issue pertinent to the CO depletion by PARs, the developer of MAAP code, FAI (Fauske and Associate, LLC) implements CO recombination model into MAAP5.04 beta version, very recently. In this paper, CO concentration for the plant application by using MAAP5.03 and MAAP5.04 beta version are compared to investigate the performance of newly implemented CO recombination model in MAAP5.04 beta version. During severe accident in PWR, carbon monoxide may be released in addition to hydrogen due to MCCI. Because carbon monoxide is combustible gas, mass of CO can have an impact on the containment integrity under the combustible gas combustion. In the MAAP5.03 or earlier, PAR is modeled such that it can eliminate hydrogen only. Therefore, mass of carbon monoxide is calculated more than reality. To reflect the possible gap of threats from the combustible gas, MAAP5.04 beta version incorporates CO recombination model very recently based on the experiment. According to the CO mass distribution with and without the consideration of CO recombination by PARs, a massive elimination of CO generated by MCCI is predicted in the containment.

  16. Impacts of the expansion of distributed generation in distribution systems of electrical power; Impactos da expansao da geracao distribuida nos sistemas de distribuicao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Frederico A.S.; Moran, Jesus A.; Abreu, Lisias; Silva, Luiz C.P. da; Freitas, Walmir [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Eletrica e Computacao

    2004-07-01

    Due to the recent Brazilian electricity crisis, the advantages of the centralized rain dependent generation were put under discussion. The co-generation is an option for the consumer that does not want to be harmed by eventual interruptions in the energy supply and nor to pay higher tariffs during pick load. Besides, the excess of co-generation can be sold for the distribution companies, making possible that the independent producer has profits participating of the electricity power market. The distributed generation provides several benefits, for the fact of being a generation that is located close to the load. Besides, it allows the supply of the growing demand in a fast way, since the construction of big hydroelectric plants, that is the generation model more used in Brazil, is a slow process. With that, the insertion of distributed generation in the Brazilian system tends to become every more common year to year, as it has been happening in other countries. It is noticed, however, that few technical studies on the impacts of the distributed generation in the distribution systems were accomplished to the moment. Problems as over-voltages during light load, impacts on the protection system, and dynamic stability problems, very common in large centralized synchronous machines, can also start to happen in the distribution systems. This article presents a preliminary study on the influence of distributed synchronous generators in the operation of a distribution system. The analyzed technical aspects are: voltage profile, voltage stability, active and reactive power losses, and also critical clearing times for eliminating faults considering different sceneries. The simulations results show which are the main operative restrictions for maximizing the penetration level of distributed generation related with the dynamic and steady-state performance of the electricity distribution system. (author)

  17. The RedeGasEnergia and associated technologies to distributed generation, cogeneration and thermoelectric in developing the natural gas in Brazil; A RedeGasEnergia e as tecnologias associadas a geracao distribuida, cogeracao e termeletrica, no desenvolvimento da industria de gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    From the PETROBRAS Strategic Plan, where 2015 mission and vision are defined, one search to reach the corporative strategy: 'to lead the natural gas market (NG) and to act in a integrated way in the energy market'. Amongst the corporative politics to guide the business strategies, we will be focusing the new businesses development, having as guide line the annual average growth in the domestic demand of NG, 14.2%. The Investment Plan foresees for the energy and gas area investments around US$ 1.8 billion for the 2003/2007 period, being approximately US$ 500 million destined to the conclusion of the already initiated projects of thermoelectric plants. The Strategic Technological Committee of Energy and Gas (COMEG 2003) defined as technologies of interest for PETROBRAS: renewed energies; sustainable development; NG chemical transformation; NG transport, distribution and storage; distributed generation, co-generation and thermoelectric; production, distribution and use of hydrogen as energy vector; industrial, commercial and residential applications of NG; energy efficiency; automotive systems applications; high power electrical systems and environment. The technology explained in this work, for development of the Brazilian Natural Gas Industry, highly compliant with the NG mass use plan, is the distributed generation, co-generation and thermoelectric and its associated technologies (combustion, IGCC, thermoelectric cycles optimization, gas turbines, boiler/heat recovers, microturbines, fuel cells, combustion engines, renewed energies and cold generation among others). There are several business strategies related to this technology: to play in the electric energy business to assure the NG and derivatives market commercialized by PETROBRAS; to play in the development of alternative sources of energy and; to invest in conservation of energy and renewable energy to add value to the company business. The RedeGasEnergia portfolio has 22 projects in this

  18. The feasibility of the gas micro-turbines application in the heavy oil produced from onshore mature fields; A viabilidade do uso de micro-turbinas a gas em campos maduros onshore de oleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Arlindo Antonio de; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia

    2004-07-01

    This article presents a synthesis of the fast advances in micro co-generation technology and their possible applications in fields of petroleum. The subject is focus of a research of the authors and the preliminary results indicate a potential of contributing for the optimization of mature fields of heavy oil. In general, this technology involves smaller environmental impact and produces better efficiency in those uses that require heat and electricity. An application interesting it is the use of gas micro-turbines, operating in co-generation in a (heavy) oil fields onshore, where it is possible increment of the production to the if it uses the steam injection as method of secondary recovery. The idea of using the heat to improve the productivity of the wells and to increase the recovery factor is almost as old as the industry of the petroleum. The technique consists of heating up the oil to reduce his/her viscosity and to facilitate the drainage. Nowadays, the use of the steam injection is usual in fields of heavy oils (degree API <20), high viscosity (> 500 cp), reservoirs no deep (<1300 m) and net pay in the interval from 5 to 50 m. The innovation, here, is the use of a group of micro-turbines moved to gas (no rare, burned in the flare) to generate the steam 'in loco' (near to the well) and electricity for own consumption or even commercialization. This article presents a case study of the economical potential the use of four gas micro-turbines, operating in micro cogeneration, in a field of 6,6 km{sup 2} in the Brazilian Northeast. (author)

  19. Large-scale heat pumps in sustainable energy systems: System and project perspectives

    Directory of Open Access Journals (Sweden)

    Blarke Morten B.

    2007-01-01

    Full Text Available This paper shows that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps (HP with existing combined heat and power (CHP plants, is critically sensitive to the operational mode of the HP vis-à-vis the operational coefficient of performance, mainly given by the temperature level of the heat source. When using ground source for low-temperature heat source, heat production costs increases by about 10%, while partial use of condensed flue gasses for low-temperature heat source results in an 8% cost reduction. Furthermore, the analysis shows that when a large-scale HP is integrated with an existing CHP plant, the projected spot market situation in The Nordic Power Exchange (Nord Pool towards 2025, which reflects a growing share of wind power and heat-supply constrained power generation electricity, further reduces the operational hours of the CHP unit over time, while increasing the operational hours of the HP unit. In result, an HP unit at half the heat production capacity as the CHP unit in combination with a heat-only boiler represents as a possibly financially feasible alternative to CHP operation, rather than a supplement to CHP unit operation. While such revised operational strategy would have impacts on policies to promote co-generation, these results indicate that the integration of large-scale HP may jeopardize efforts to promote co-generation. Policy instruments should be designed to promote the integration of HP with lower than half of the heating capacity of the CHP unit. Also it is found, that CHP-HP plant designs should allow for the utilization of heat recovered from the CHP unit’s flue gasses for both concurrent (CHP unit and HP unit and independent operation (HP unit only. For independent operation, the recovered heat is required to be stored. .

  20. Nova Scotia electricity update

    International Nuclear Information System (INIS)

    Crandlemire, A.L.

    2004-01-01

    This paper provides an update of electricity issues concerning Nova Scotia such as supply, capacity, emission commitments, as well as co-generation and the Electricity Marketplace Governance Committee (EMGC). The goals of the strategy were reliability combined with competitive prices and greater environmental responsibility. The scope of these objectives included new capacity, transmission, renewables and co-generation. Other objectives included encouraging wholesale market competition; meeting reciprocity requirements; and a 50 MW renewable energy target. Recommendations of the EMGC included wholesale market competition; a broader market scope with a cost benefit analysis; Open Access Transmission Tariff (OATT); a scheduling and information system; network integration and a point to point service; and a separation of transmission and generation business units. Other recommendations included an open competitive process for new generation; a consideration of emissions and overall efficiency; a Renewable Energy Portfolio Standard (RPS) to start in 2006; the separation of RPS tags from electricity; and net metering of renewables. These recommendations were accepted in 2003, followed by the new Electricity Act in 2004, which made OATT mandatory, established RPS and opened to the wholesale market. Capacity at present was considered to be tight, with preparations for the new regulations under way. Reductions in air pollution were reported at 25 per cent, with renewable energy projects such as 2 windmills currently under way, as well as various other projects. Opportunities for provincial Atlantic cooperation were identified as being management of reserve requirements; trading of lowest cost electricity; new generation on a regional scale; stronger transmission ties; a system operator; a regional approach to RPS; regional management of air emissions; and regional opportunities for Carbon dioxide reductions. tabs., figs

  1. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  2. Thermal design and technical economical and environmental analyses of a hydrogen fired multi-objective cogeneration system

    International Nuclear Information System (INIS)

    Durmaz, A; Yilmazoglu, M. Z.; Pasoglu, A.

    2007-01-01

    Approximately 85% of rapidly increasing world energy demand is supplied by fossil fuels. Extreme usage of fossil fuels causes serious global warming and environmental problems in form of air, soil and water pollutions. The period, in which fossil fuel reserves are decreasing, energy costs are increasing rapidly and new energy sources and technologies do not exist on the horizon, can be called as the expensive and critical energy period. Hydrogen becomes a matter of primary importance as a candidate energy source and carrier in the critical energy period and beyond to solve the energy and environmental problems radically. In this respect, the main obstacle for the use of hydrogen is the high cost of hydrogen production, which is expected to be decreased in the feature. The aim of this study is to examine how hydrogen energy will be able to be integrated with the existing energy substructure with technical and economical dimensions. In this sense, a multi objective hydrogen fired gas turbine cogeneration system is designed and optimized. Technical and economical analyses depending on the load conditions and different hydrogen production cost are carried out. It is possible that the co-generated heat is to be marketed for residence and industrial plants in the surrounding at or under market prices. The produced electricity however can only be sold to the public grid at a high unit support price which is only obtainable in case of the development of new energy technologies. This price should however be kept within the nowadays supportable energy price range. The main mechanism to be used during the design stage of the system to achieve this goal is to decrease the amortization and operational costs which lead to decrease investment and fuel costs and to increase the system load factor and co-generated heat revenues

  3. Design of stationary PEFC system configurations to meet heat and power demands

    Science.gov (United States)

    Wallmark, Cecilia; Alvfors, Per

    This paper presents heat and power efficiencies of a modeled PEFC system and the methods used to create the system configuration. The paper also includes an example of a simulated fuel cell system supplying a building in Sweden with heat and power. The main method used to create an applicable fuel cell system configuration is pinch technology. This technology is used to evaluate and design a heat exchanger network for a PEFC system working under stationary conditions, in order to find a solution with high heat utilization. The heat exchanger network in the system connecting the reformer, the burner, gas cleaning, hot-water storage and the PEFC stack will affect the heat transferred to the hot-water storage and thereby the heating of the building. The fuel, natural gas, is reformed to a hydrogen-rich gas within a slightly pressurized system. The fuel processor investigated is steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation. The system is connected to the electrical grid for backup and peak demands and to a hot-water storage to meet the varying heat demand for the building. The procedure for designing the fuel cell system installation as co-generation system is described, and the system is simulated for a specific building in Sweden during 1 year. The results show that the fuel cell system in combination with a burner and hot-water storage could supply the building with the required heat without exceeding any of the given limitations. The designed co-generation system will provide the building with most of its power requirements and would further generate income by sale of electricity to the power grid.

  4. SCWR Concept in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    AECL is designing the Canadian SCWR concept, which has evolved from the well-established pressuretube type CANDU® reactor. The Canadian SCWR is designed to produce electrical energy as the main product, plus process heat, hydrogen, industrial isotopes, and drinking water (through the desalination process) as supplementary products, all within a more compact reactor building. Another potential application of the available co-generated process heat is the extraction and refining of oil sands, which is presently achieved using co-generation with natural gas turbines and process heat. The extraction and upgrading process requires: thermal power to lower the viscosity and extract the oil; electric power for separation and refining equipment; and hydrogen gas for upgrading the oil product prior to transport. A National Program has been established in Canada to support R&D studies for the Canadian SCWR design. It covers key areas of interest (such as thermal hydraulics, safety, materials, and chemistry) to participants in the Generation-IV International Forum (GIF) SCWR designs. Results generated from the program are contributed to the GIF SCWR project management boards (PMBs). For example, heat transfer correlations have been derived using experimental data primarily obtained from fossil-plant related studies (which were started as early as 1930s. Materials and chemistry studies have evolved from operating experience of fossil-fired power plants to a) develop, and perform targeted testing of, materials for key components, in particular in-core reactor components that will be exposed to conditions not encountered in a fossil-fired boiler (such as irradiation and water radiolysis), and b) develop a suitable water chemistry to minimize corrosion and corrosion product transport.

  5. Sensitivity of district heating system operation to heat demand reductions and electricity price variations: A Swedish example

    International Nuclear Information System (INIS)

    Åberg, M.; Widén, J.; Henning, D.

    2012-01-01

    In the future, district heating companies in Sweden must adapt to energy efficiency measures in buildings and variable fuel and electricity prices. Swedish district heating demands are expected to decrease by 1–2% per year and electricity price variations seem to be more unpredictable in the future. A cost-optimisation model of a Swedish local district heating system is constructed using the optimisation modelling tool MODEST. A scenario for heat demand changes due to increased energy efficiency in buildings, combined with the addition of new buildings, is studied along with a sensitivity analysis for electricity price variations. Despite fears that heat demand reductions will decrease co-generation of clean electricity and cause increased global emissions, the results show that anticipated heat demand changes do not increase the studied system's primary energy use or global CO 2 emissions. The results further indicate that the heat production plants and the fuels used within the system have crucial importance for the environmental impact of district heat use. Results also show that low seasonal variations in electricity price levels with relatively low winter prices promote the use of electric heat pumps. High winter prices on the other hand promote co-generation of heat and electricity in CHP plants. -- Highlights: ► A MODEST optimisation model of the Uppsala district heating system is built. ► The impact of heat demand change on heat and electricity production is examined. ► An electricity price level sensitivity analysis for district heating is performed. ► Heat demand changes do not increase the primary energy use or global CO 2 emissions. ► Low winter prices promote use of electric heat pumps for district heating production.

  6. Studies on high temperature research reactor in China

    International Nuclear Information System (INIS)

    Xu Yuanhui; Zuo Kanfen

    1999-01-01

    China recognises the advantages of Modular HTGRs and has chosen Modular HTGRs as one of advanced reactors to be developed for the further intensive utilisation of nuclear power in the next century. In energy supply systems of the next century, HTGR is supposed to serve: 1. as supplement to water-cooled reactors for electricity generation and 2. as environmentally friendly heat source providing process heat at different temperatures for various applications like heavy oil recovery, coal gasification and liquefaction, etc.. The 10 MW High Temperature Gas-cooled Reactor (HTR-10) is a major project in the energy sector of the Chinese National High Technology Programme as the first step of development of Modular HTGRs in China. Its main objectives are: 1. to acquire know-how in the design, construction and operation of HTGRs, 2. to establish an irradiation and experimental facility, 3. to demonstrate the inherent safety features of Modular HTGR, 4. to test electricity and heat co-generation and closed cycle gas turbine technology and 5. to do research and development work on the nuclear process heat application. Now the HTR-10 is being constructed at the site of Institute of Nuclear Energy Technology (INET). The HTR-10 project is to be carried out in two phases. In the first phase, the reactor with an coolant outlet temperature of 700degC will be coupled with a steam generator providing steam for a steam turbine cycle which works on an electricity and heat co-generation basis. In the second phase, the reactor coolant outlet temperature is planned to be raised to 900degC. As gas turbine cycle and a steam reformer will be coupled to the reactor in addition to the steam turbine cycle. (author)

  7. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes

    Directory of Open Access Journals (Sweden)

    Malcolm W. Clark

    2017-04-01

    Full Text Available Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α −quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product. Keywords: Materials Science, Civil Engineering

  8. BioMeeT. Planning of biomass based methanol energy combine - Trollhaettan region. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brandberg, Aake; Hjortsberg, Hans; Saevbark, Bengt [Ecotraffic R and D AB, Stockholm (Sweden); Ekbom, Tomas; Hjerpe, Carl-Johan; Landaelv, Ingvar [Nykomb Synergetics AB, Stockholm (Sweden)

    2000-04-01

    The conversion of biomass in an energy combine based on primary gasification yields a gas that can be used as fuels gas, for synthesis of motor fuels (methanol or other) or for electric power production. The study gives examples of alternative product mixes. The conclusions of the study are: (1) Potential of new, not yet utilised biomass is available, and new areas of applications, where oil is presently used, are needed to develop the potential. Motor fuel production (methanol, DME) is a presumption in the BioMeeT-study. (2) Yield figures in the energy combine are comparable to those of now used bio-systems for power and co-generation. (3) Which one of the cases in the BioMeeT-project is the most favourable cannot be decided on a plant-to-plant basis alone but the entire system for supply energy carriers in the region has to be considered, as the all plants within the system may change. This would require further investigations. Moreover, the results will be different in various regions in Sweden and Europe due to the markets for all energy carriers. (4) At today's conditions in the Trollhaettan region it must be stated that there is only room for dedicated bio-methanol/DME production (provided such a market will come) with moderate addition to the district heating system as in the BAL-project. (5) In the longer term the future supply of all energy carriers, including new electric power and new bio-fuels, has to be considered for new plants and at renewals. In such a case an energy combine as in the BioMeeT-project may be a central conversion plant with gas deliveries to satellites such as local co-generation, district heat and industries in a regional system within a 50 - 100 km radius. This should be included in regional planning for the future. (6) Estimated investment costs per kW feedstock input is higher for the energy combine compared to present technologies (mature technologies for power and heat) but have to be judged for all plants taken together in the

  9. BioMeeT. Planning of biomass based methanol energy combine - Trollhaettan region. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brandberg, Aake; Hjortsberg, Hans; Saevbark, Bengt [Ecotraffic R and D AB, Stockholm (Sweden); Ekbom, Tomas; Hjerpe, Carl-Johan; Landaelv, Ingvar [Nykomb Synergetics AB, Stockholm (Sweden)

    2000-04-01

    The conversion of biomass in an energy combine based on primary gasification yields a gas that can be used as fuels gas, for synthesis of motor fuels (methanol or other) or for electric power production. The study gives examples of alternative product mixes. The conclusions of the study are: (1) Potential of new, not yet utilised biomass is available, and new areas of applications, where oil is presently used, are needed to develop the potential. Motor fuel production (methanol, DME) is a presumption in the BioMeeT-study. (2) Yield figures in the energy combine are comparable to those of now used bio-systems for power and co-generation. (3) Which one of the cases in the BioMeeT-project is the most favourable cannot be decided on a plant-to-plant basis alone but the entire system for supply energy carriers in the region has to be considered, as the all plants within the system may change. This would require further investigations. Moreover, the results will be different in various regions in Sweden and Europe due to the markets for all energy carriers. (4) At today's conditions in the Trollhaettan region it must be stated that there is only room for dedicated bio-methanol/DME production (provided such a market will come) with moderate addition to the district heating system as in the BAL-project. (5) In the longer term the future supply of all energy carriers, including new electric power and new bio-fuels, has to be considered for new plants and at renewals. In such a case an energy combine as in the BioMeeT-project may be a central conversion plant with gas deliveries to satellites such as local co-generation, district heat and industries in a regional system within a 50 - 100 km radius. This should be included in regional planning for the future. (6) Estimated investment costs per kW feedstock input is higher for the energy combine compared to present technologies (mature technologies for power and heat) but have to be judged for all plants taken together in

  10. Anticancer system created by acrolein and hydroxyl radical generated in enzymatic oxidation of spermine and other biochemical reactions.

    Science.gov (United States)

    Alarcon, R A

    2012-10-01

    A hypothesis suggesting the existence of a ubiquitous physiological anticancer system created by two highly reactive oxidative stress inducers with anticancer properties, acrolein and hydroxyl radical, is reported in this communication. Both components can originate separately or together in several biochemical interactions, among them, the enzymatic oxidation of the polyamine spermine, which appear to be their main source. The foundations of this hypothesis encompass our initial search for growth-inhibitors or anticancer compounds in biological material leading to the isolation of spermine, a polyamine that became highly cytotoxic through the generation of acrolein, when enzymatically oxidized. Findings complemented with pertinent literature data by other workers and observed anticancer activities by sources capable of producing acrolein and hydroxyl radical. This hypothesis obvious implication: spermine enzymatic oxidations or other biochemical interactions that would co-generate acrolein and hydroxyl radical, the anticancer system components, should be tried as treatments for any given cancer. The biochemical generation of acrolein observed was totally unexpected, since this aldehyde was known; as a very toxic and highly reactive xenobiotic chemical produced in the pyrolysis of fats and other organic material, found as an atmospheric pollutant, in tobacco smoke and car emissions, and mainly used as a pesticide or aquatic herbicide. Numerous studies on acrolein, considered after our work a biological product, as well, followed. In them, acrolein widespread presence, its effects on diverse cellular proteins, such as, growth factors, and its anticancer activities, were additionally reported. Regarding hydroxyl radical, the second component of the proposed anticancer system, and another cytotoxic product in normal cell metabolism, it co-generates with acrolein in several biochemical interactions, occurrences suggesting that these products might jointly fulfill some

  11. Mobilizing citizen science to build human and environmental resilience: a synthesis study of four remote mountain communities

    Science.gov (United States)

    Zulkafli, Zed; Buytaert, Wouter; Karpouzoglou, Timothy; Dewulf, Art; Gurung, Praju; Regmi, Santosh; Pandeya, Bhopal; Isaeva, Aiganysh; Mamadalieva, Zuura; Perez, Katya; Alemie, Tilashwork C.; Grainger, Sam; Clark, Julian; Hannah, David M.

    2015-04-01

    Communities that are the most vulnerable to environmental change and hazards, also tend to be those with the least institutional and financial resilience and capacity to cope with consequent impacts. Relevant knowledge generation is a key requisite for empowering these communities and developing adaptation strategies. Technological innovations in data collection, availability, processing, and exchange, are creating new opportunities for knowledge co-generation that may benefit vulnerable communities and bridge traditional knowledge divides. The use of open, web-based technologies and ICT solutions such as mobile phone apps is particularly promising in this regard, because they allow for participation of communities bypassed by traditional mechanisms. Here, we report on efforts to implement such technologies in a citizen science context. We focus on the active engagement of multiple actors (international and local scientists, government officials, NGOs, community associations, and individuals) in the entire process of the research. This ranges from problem framing, to identifying local monitoring needs, to determining the mode of exchange and forms of knowledge relevant for improving resilience related to water dependency. We present 4 case studies in arid, remote mountain regions of Nepal, the Kyrgyz Republic, Peru, and Ethiopia. In these regions, livelihoods depend on the water and soil systems undergoing accelerated degradation from extreme climates, poor agricultural management practices, and changing environmental conditions. However, information on the interlinkages of these processes with people's livelihoods is typically poor and there lies the opportunity for identifying novel forms of joint-creation and sharing of knowledge. Using a centrally-coordinated but locally-adaptable methodological framework comprising of field visits, systematic reviews of white and grey literature, focus group discussions, household questionnaires, semi-structured interviews

  12. Biomass energy in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J M [Biomass Users` Network, Regional Office for Central America and the Caribbean, San Jose (Costa Rica)

    1995-12-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  13. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.

    Science.gov (United States)

    Jeswani, H K; Azapagic, A

    2016-04-01

    Even though landfilling of waste is the least favourable option in the waste management hierarchy, the majority of municipal solid waste (MSW) in many countries is still landfilled. This represents waste of valuable resources and could lead to higher environmental impacts compared to energy recovered by incineration, even if the landfill gas is recovered. Using life cycle assessment (LCA) as a tool, this paper aims to find out which of the following two options for MSW disposal is more environmentally sustainable: incineration or recovery of biogas from landfills, each producing either electricity or co-generating heat and electricity. The systems are compared on a life cycle basis for two functional units: 'disposal of 1 tonne of MSW' and 'generation of 1 kWh of electricity'. The results indicate that, if both systems are credited for their respective recovered energy and recyclable materials, energy from incineration has much lower impacts than from landfill biogas across all impact categories, except for human toxicity. The impacts of incineration co-generating heat and electricity are negative for nine out of 11 categories as the avoided impacts for the recovered energy and materials are higher than those caused by incineration. By improving the recovery rate of biogas, some impacts of landfilling, such as global warming, depletion of fossil resources, acidification and photochemical smog, would be significantly reduced. However, most impacts of the landfill gas would still be higher than the impacts of incineration, except for global warming and human toxicity. The analysis on the basis of net electricity produced shows that the LCA impacts of electricity from incineration are several times lower in comparison to the impacts of electricity from landfill biogas. Electricity from incineration has significantly lower global warming and several other impacts than electricity from coal and oil but has higher impacts than electricity from natural gas or UK grid. At

  14. Biomass energy in Central America

    International Nuclear Information System (INIS)

    Blanco, J.M.

    1995-01-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  15. Preliminary design of S-CO{sub 2} Brayton cycle for APR-1400 with power generation and desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Lee, Won Woong; Jeong, Yong Hoon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [KUSTAR, Abu Dhabi (United Arab Emirates)

    2015-10-15

    This study was conducted to explore the capabilities of the S-CO{sub 2} Brayton cycle for a cogeneration system for APR-1400 application. Three concepts of the S-CO{sub 2} simple recuperated co-generation cycle were designed. A supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle is recently receiving significant attention as a promising power conversion system in wide range of energy applications due to its high efficiency and compact footprint. The main reason why the S-CO{sub 2} Brayton cycle has these advantages is that the compressor operates near the critical point of CO{sub 2} (30.98 .deg. C, 7.38MPa) to reduce the compression work significantly compared to the other Brayton cycles. In this study, the concept of replacing the entire steam cycle of APR-1400 with the S-CO{sub 2} Brayton cycle is evaluated. The power generation purpose S-CO{sub 2} Brayton cycles are redesigned to generate power and provide heat to the desalination system at the same time. The performance of these newly suggested cycles are evaluated in this paper. The target was to deliver 147MW heat to the desalination process. The thermal efficiencies of the three concepts are not significantly different, but the 3{sup rd} concept is relatively simpler than other cycles because only an additional heat exchanger is required. Although the 2{sup nd} concept is relatively complicated in comparison to other concepts, the temperatures at the inlet and outlet of the DHX are higher than that of the others. As shown in the results, the S-CO{sub 2} Brayton cycles are not easy to outperform the steam cycle with very simple layout and general design points under APR-1400 operating condition. However, this study shows that the S-CO{sub 2} Brayton cycles can be designed as a co-generation cycle while producing the target desalination heat with a simple configuration. In addition, it was also found that the S-CO{sub 2} Brayton cycle can achieve higher cycle thermal efficiency than the steam power cycle under

  16. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  17. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  18. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment.; Estudio Preliminar de Proceso de degradacion de residuos biologico-infecciosos en un equipo de plasma termico de 5 kW

    Energy Technology Data Exchange (ETDEWEB)

    Xochihua S M, M C

    1998-12-31

    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO{sub 2} if amount of O{sub 2} is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author).

  19. EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    John W. Rich

    2001-03-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

  20. Map of the portfolio of projects of energy efficiency and of renewable energies by the AFD group and the FFEM

    International Nuclear Information System (INIS)

    Guillaumie, Koulm; Briand, Claude; Ries, Alain

    2007-09-01

    The AFD (the French Agency for Development) and the FFEM (French Fund for World Environment) are involved in cooperation and partnership projects for the development of energy efficiency, notably, but not only, in developing and emerging countries. This report first proposes a classification of these projects according to a typology which comprises the concerned sectors (urban planning and housing, fuels, hydroelectricity and wind energy, electricity distribution, industries and services, transports and mobility, capacity building, multi-sector), the intervener (AFD, FFEM, and Proparco, an AFD's subsidy), the project evolution in time (number of projects, evolution of funding), the funding type (loan types, subsidy, credit line), and the geographical area. The second part discusses the conditions to start projects in energy management: legal framework, economic conditions, funding, social and environmental factors, and technical factors. Appendices propose a set of ten technical sheets which indicate and discuss conditions of success as well as obstacles for different types of projects: big dams, mini hydroelectric projects, wind energy, biomass/biogas co-generation, bio-fuels, decentralised rural electrification based on renewable energy projects, collective transports and energy efficiency in transports, development of partnerships and institutional support, multi-sector tools of investment, and carbon market

  1. Survey report on establishing a new energy and energy saving vision in Fukui Prefecture; Fukuiken shin energy sho energy vision sakutei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Surveys and discussions were given on establishing a new energy and energy saving vision in Fukui Prefecture. The energy consumption in Fukui Prefecture for fiscal 1996 was 25242 x 1 billion kcal, being 0.7% of the nation's total consumption. The per capita energy consumption is about a little greater than the national average. The energy consumption structure is characterized by large consumption in the transportation department, especially in automotive consumption. Carbon dioxide discharge is as little as being ranked 13th among all the prefectures in Japan. The availability and usable quantity of new energies in Fukui Prefecture is estimated as 1659939 x 10{sup 3} kWh/year as electric power, 9436 x 10{sup 6} kcal/year as gas, and 3536720 x 10{sup 6} kcal/year as heat. Energies could be saved most greatly by enhancing automotive fuel consumption rate, followed by effects of energy saving activities based on spontaneous action plans established by the industrial departments. New energies selected to be worked on importantly include: solar energy power generation, wind power generation, clean energy fueled automobiles, wastes energy, co-generation and solar heat. (NEDO)

  2. Survey of HTR related research at IRI, Delft, Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Wallerbos, E.J.M.; Van der Hagen, T.H.J.J.; Van Dam, H. [Interfaculty Reactor Institute IRI, Delft University of Technology, Delft (Netherlands); Tuerkcan, E. [ECN Nuclear Research, Petten (Netherlands)

    1998-09-01

    High temperature helium-cooled reactors have a large potential for inherent safety. Therefore, several projects on HTR research are being carried out or were carried out at the Interfaculty Reactor Institute (IRI) of the Delft University of Technology in Delft, Netherlands. As part of a larger research programme measurements of core reactivity, reactivity worth of safety rods and of small samples being oscillated in the reactor core were carried out at the PROTEUS facility of the Paul Scherrer Institute at Villigen, Switzerland. Together with other partners in the Netherlands a small inherently safe co-generation plant with a pebble-bed HTR core was designed and analysed. It was verified that such a reactor can operate continuously for 10 years by adding continuously fuel pebbles until the maximum available core height is reached. As a new, innovative, inherently safe reactor type the design of a fluidized-bed reactor with coated fuel particles on a helium gas stream is discussed and results are shown for the analysis of inherent criticality safety under varying coolant flow rates. IRI is also taking part in the new IAEA Co-ordinated Research Programme, which involves participation in the start-up experiments of the Japanese HTTR and carrying out calculations for the core physics benchmark test. 11 refs.

  3. Hurricane Sandy and Adaptation Pathways in New York: Lessons from a First-Responder City

    Science.gov (United States)

    Rosenzweig, Cynthia; Solecki, William

    2014-01-01

    Two central issues of climate change have become increasingly evident: Climate change will significantly affect cities; and rapid global urbanization will increase dramatically the number of individuals, amount of critical infrastructure, and means of economic production that are exposed and vulnerable to dynamic climate risks. Simultaneously, cities in many settings have begun to emerge as early adopters of climate change action strategies including greenhouse gas mitigation and adaptation. The objective of this paper is to examine and analyze how officials of one city - the City of New York - have integrated a flexible adaptation pathways approach into the municipality's climate action strategy. This approach has been connected with the City's ongoing response to Hurricane Sandy, which struck in the October 2012 and resulted in damages worth more than US$19 billion. A case study narrative methodology utilizing the Wise et al. conceptual framework (see this volume) is used to evaluate the effectiveness of the flexible adaptation pathways approach in New York City. The paper finds that Hurricane Sandy serves as a ''tipping point'' leading to transformative adaptation due to the explicit inclusion of increasing climate change risks in the rebuilding effort. The potential for transferability of the approach to cities varying in size and development stage is discussed, with elements useful across cities including the overall concept of flexible adaptation pathways, the inclusion of the full metropolitan region in the planning process, and the co-generation of climate-risk information by stakeholders and scientists.

  4. Two approaches in preparation for cogeneration alpha-tocopherol and biodiesel from cottonseed

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Q.-L.; Zang, L.-Y.; Zhang, L.; Yun, Z. [Nanjing University of Technology (China)

    2012-02-15

    Vitamin E is a group of lipid soluble antioxidants that is widely used in the food, cosmetic and medical industries. It is comprised of four tocopherols and four tocotrienols, i.e. alpha, beta, gamma and delta, which are characterized by a chromanol ring structure with a distinct substitution pattern of methyl groups. This paper presents two approaches in preparation for co-generation of alpha-tocopherol and biodiesel from cottonseed. The approaches are a two-step process and a direct alkaline trans-esterification process. Using single factor experiments and an orthogonal design method, the effects of certain factors on the alpha-tocopherol recovery and conversion of cottonseed oil to biodiesel in both processes was systematically studied. In the two-step process, biodiesel and alpha-tocopherol were produced using a two-phase solvent combined with base-catalyzed trans-esterification. It was observed that 95.5% cottonseed oil was converted to biodiesel. In the direct-alkaline trans-esterification process, 98.3% cottonseed oil was converted to biodiesel.

  5. Energy recovery from municipal solid wastes in Italy: Actual study and perspective for future

    International Nuclear Information System (INIS)

    Brunetti, N.; Ciampa, F.; De Cecco, C.

    1992-01-01

    Materials and energy recovery from municipal solid wastes (MSW) and assimilable waste, and their re-use is one of strong points of current regulations and tendencies, both at the national and at community level in Europe. In Italy, the interest in energy recovery from renewable sources has been encouraged by energy-savings law which included financial incentives for thermal plant building if low grade fuels such as MSW were employed. New electric power prices imposed by Italian Electric Power Authority, ENEL, encourage energy recovery from waste burners. This paper aims to point out the present state of energy recovery from wastes in Italy, trends and prospects to satisfy, with new plants, the need for waste thermal destruction and part of the demand for energy in the different Italian regions: only about 10% of MSW are burned and just a small percentage of the estimated amount of recoverable energy (2 MTOE/y) is recuperated. Different technological cycles are discussed: incineration of untreated wastes and energy recovery; incineration (or gasification) of RDF (refuse derived fuels) and heat-electricity co-generation; burning of RDF in industrial plants, in addition to other fuels

  6. Reviews on Solid Oxide Fuel Cell Technology

    Directory of Open Access Journals (Sweden)

    Apinan Soottitantawat

    2009-02-01

    Full Text Available Solid Oxide Fuel Cell (SOFC is one type of high temperature fuel cell that appears to be one of the most promising technology to provide the efficient and clean energy production for wide range of applications (from small units to large scale power plants. This paper reviews the current status and related researches on SOFC technologies. In details, the research trend for the development of SOFC components(i.e. anode, electrolyte, cathode, and interconnect are presented. Later, the current important designs of SOFC (i.e. Seal-less Tubular Design, Segmented Cell in Series Design, Monolithic Design and Flat Plate Design are exampled. In addition, the possible operations of SOFC (i.e. external reforming, indirect internal reforming, and direct internal reforming are discussed. Lastly, the research studies on applications of SOFCs with co-generation (i.e. SOFC with Combined Heat and Power (SOFC-CHP, SOFC with Gas Turbine (SOFC-GT and SOFC with chemical production are given.

  7. Economic Analyses and Potential Market of the 200MW Nuclear Heating Reactor

    International Nuclear Information System (INIS)

    Wang, Yongqing; Wang, Guiying

    1992-01-01

    Based on the 5MW experimental nuclear heating reactor, Intent has developed a 200MW demonstration nuclear heating reactor. Owing to its simplified systems and low operating parameters, the NCR-200 has preferable investment in comparison with that of a nuclear power plant. The pre-feasibility studies for several cities in Northern China have shown that the heat cost of a NCR-200 can be competitive with a coal fired heating plant. As a safe, clean and economic heat source, the NCR could pose a large market in replacement of coal for heating. The R and D work performed up to now has demonstrated that the NCR-200 operating under the present parameters can supply low pressure steam for industrial process and co-generation to enhance it economic benefit. The NCR-200 could also serve a heat source for air condition by using Li Br refrigerator, this application is very interesting to some cities in Central and Southern China. The applications of the NCR in oil recovery by injecting hot water and transportation are very promising for some oil fields in North China. In addition, the study on sea water desalination using the NCR-200 is being carried out at present under international cooperation. All of these will expansion the possible application of the NCR. The paper presents the economic analysis and the potential market of the NCR-200

  8. New emissions targeting strategy for site utility of process industries

    International Nuclear Information System (INIS)

    Manesh, Mohamamd Hasan Khoshgoftar; Amidpour, Majid; Hamedi, Mohammad Hosein; Abadi, Sajad Khamis; Ghalami, Hooman

    2013-01-01

    A new procedure for environmental targeting of co-generation system is presented. The proposed method is based on the concepts of pinch technology for total site targeting of fuel, power, steam, environmental impacts and total annualized cost with considering emissions taxes. This approach provides a consistent, general procedure for determining mass flow rates and efficiencies of the applied turbines. This algorithm utilizes the relationship of entropy with enthalpy and isentropic efficiency. Also, the life cycle assessment (LCA) as a well-known tool for analyzing environmental impacts on a wide perspective with reference to a product system and the related environmental and economic impacts have been applied. In this regard, a damage-oriented impact analysis method based on Eco-indicator 99 and footprints analysis was considered. In addition, the present work demonstrates the effect of including both sensible and latent heating of steam in the extended Site Utility Grand Composite Curve (ESUGCC). It is shown that including sensible heating allows for better thermal matching between the processes. Furthermore, the other representation YSUGCC as the other form of Site Utility Grand Composite has been proposed. Two case studies were used to illustrate the usefulness of the new environmental targeting method

  9. Natural gas mini-power plant constituted by superadiabatic boiler and Tesla turbine; Desenvolvimento de uma micro-termoeletrica a gas natural constituida de caldeira superadiabatica e turbina Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, William M.; Souza, Luis C.E.O de; Couras, Daut de J.P.; Carvalho, Bruno O. de [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2008-07-01

    Environmental impacts from combustion processes, in addition to fuel supply problems, have restricted the use intensification of natural gas thermoelectric, under rigorous action of the control and inspection institutions about emissions. The demand for decentralized energy generation systems has motivated the innovator technology development and, therefore, a diminished natural gas thermoelectric prototype has been developed by the Federal University of Ceara. This prototype utilizes non-conventional technologies: 'Superadiabatic Boiler' and 'Tesla Turbine', in which theoretical and experimental studies are performed. That novel boiler model presents lesser specific consumption and CO and NOx emission levels. A not well known concept at industry is implemented into that project, 'Porous Media Combustion', which modifies the combustion process phenomena. The turbine presents operational robustness and versatility because it allows wide rotation range and simple adaptation to commercial generators. Project parameters are investigated, such as: torque and power-weigh and geometry ratios. That micro-thermoelectric shows potential for the self-sustainable development of geographically distant communities and for co-generation at industry. It is possible to serve to low power energetic demands without requiring much professional experience for operation and maintenance. (author)

  10. Adaptive models for decision making in production management for thermoelectrical plants; Modelos adaptativos para suporte a decisao na gestao da producao de unidades termeletricas

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Carlos Arthur Mattos Teixeira; Nascimento, Ricardo Santos; Pacheco, Luciana de Almeida; Ferreira, Adonias Magdiel S.; Leite, Weliton Emanuel S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica; Barretto, Sergio Torres Sa [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The development of technologies for the efficient production management of increasingly complex and dynamic systems has proven been a competitive differential for businesses world-class. The integrated management systems are currently among the areas of knowledge more defendants by the different branches of human activity. These systems has widely used mathematical modeling and optimization methods, through which it is feasible identify the optimal operational status, which can be translated as the minimum cost, maximum profit or minimum use of equipment, besides other goals. Also, they could measure the technical-economic consequences to operate in an operational status different from optimal. Thus, integrated systems management tools has been increasingly adopted in decision-support in production units. This paper proposes a methodology for the development of adaptive models, embedded in integrated management. This research also incorporates a software development, called Production Planning and Control of Thermo Electrical Co-Generation Unit that, connected to industrial plants' supervision layer, adapt its model in real time. (author)

  11. Which tools for energy transition and the Energiewende?

    International Nuclear Information System (INIS)

    Barthet, Marie-Claire; Nedey, Fabienne; Tourneur, Jean-Claude

    2015-01-01

    In this set of articles, the first one comments the emergence of standard tools to assess energy efficiency within the frame of energy transition. These standards concern eight different fields and can be applied by enterprises and also used by local communities to assess their energy saving policy. The second article comments the content of a French standard elaborated by a professional association gathering actors of the illuminated sign and signing sector; this standard addresses the design and manufacturing of these products, and technical, energetic as well as aesthetic aspects. The third article presents and comments the application in Bordeaux and in Nantes of a new European directive for public lighting which resulted in a renewal of the installation. The fourth article comments the content of the French law on energy transition, notably regarding the production or improvement of buildings and dwellings to save energy, the development of cleaner transports, waste recycling, the development of renewable energies, and the struggle against energy poverty. The next article reports the main parts of an intervention of the German minister of Foreign Affairs on the German policy for energy transition (the so-called Energiewende). The last article comments the road-map for energy transition in Germany as it has been recently defined by the German government. Several topics are notably addressed: co-generation, energy efficiency, transformation of coal power plants, reduction of CO 2 emissions by the coal industry, extension of the electric grid, financing the dismantling of nuclear power stations

  12. Energy storage: potential analysis is still on the way

    International Nuclear Information System (INIS)

    Signoret, Stephane; Dejeu, Mathieu; Deschaseaux, Christelle; De Santis, Audrey; Cygler, Clement; Petitot, Pauline

    2014-01-01

    A set of articles gives an overview of the status and current evolutions of the energy storage sector. The different technologies (flywheel, lithium-ion batteries, NaS or Zebra batteries, compressed air energy storage or CAES, 2. generation CAES, pump storage power plants or PSP) have different applications areas, and also different technological maturity levels. PSPs have probably the best potential nowadays, but investors must be supported. In an interview, a member of the CNRS evokes the main researches, the obstacles in the development of solar thermodynamic plants, technology transfers, and the potential of hydrogen for massive energy storage. An article outlines the need to develop the battery market. Several technological examples and experiments are then presented: Nice Grid (storage at the source level), FlyProd (energy storage by flywheel). An article then addresses the issue of heat storage, notably in a situation of energy co-generation. Researches and prototype development are then presented, the objective of which is to obtain an adiabatic CAES. The last articles address the development of hydrogen to store energy (technologies) and a first technological demonstrator

  13. Thermal expansion measurement of turbine and main steam piping by using strain gages in power plants

    International Nuclear Information System (INIS)

    Na, Sang Soo; Chung, Jae Won; Bong, Suk Kun; Jun, Dong Ki; Kim, Yun Suk

    2000-01-01

    One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shaft alignment problem which sometimes is changed by thermal expansion and external force, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants

  14. Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mohammadnia, Ali

    2014-01-01

    Highlights: • Simulation of an enhanced ICSSWH system combined with PV panel was conducted. • The present model dose not uses any photovoltaic driven water pump. • High packing factor and tank water mass are caused to high PVT system efficiency. • Larger area of the collector is resulted to lower total PVT system efficiency. - Abstract: A photovoltaic–thermal (PVT) module is a combination of a photovoltaic (PV) panel and a thermal collector for co-generation of heat and electricity. An integrated collector-storage solar water heater (ICSSWH) system, due to its simple and compact structure, offers a promising approach for the solar water heating in the varied climates. The combination of the ICSSWH system with a PV solar system has not been reported. In this paper, simulation of an enhanced ICSSWH system combined with the PV panel has been conducted. The proposed design acts passive. Therefore, it does not use any photovoltaic driven water pump to maintain a flow of water inside the collector. The effects of the solar cell packing factor, the tank water mass and the collector area on the performance of the present PVT system have been investigated. The simulation results showed that the high solar cell packing factor and the tank water mass are caused to the high total PVT system efficiency. Also, larger area of the collector is resulted to lower total PVT system efficiency

  15. Energetic and Environmental Impacts Related to Transport and Assembling Processes in ABiogas Production Plant from Marine Macroalgae (FP7 Project BioWALK4Biofuels)

    Science.gov (United States)

    Cappelli, Andrea; Gigli, Emanuele; Muzi, Luca; Renda, Roberto; Simoni, Silvano

    2010-01-01

    GHG emissions, eutrophication and energy dependence are problems that the EU has to face in the near future. The BioWALK4Biofuels project aims to find a common response to these challenges, taking advantage of spontaneous biological processes: the growth of algae and anaerobic digestion of biomass. This project is being built thanks to European funding under the 7th Framework Programme. To evaluate the results obtained, a first LCA study was carried out that, as regards the data on infrastructure and on the assembly of the plant, refers to data supplied by manufacturers, while the study of algal growth was made on the basis of a model of cultivation that takes account of the aspects that most affect this key process among all the ones that cooperate in the whole plant. The electricity and heat produced through a co-generator fueled by biogas produced from algal biomass, according to this study, are responsible for GHG emissions reduced by 52% compared to traditional technologies. The biogas produced during the 4 years of the project allows the substitution of 85 tonnes of oil equivalent (toe).

  16. FY 2000 Report on survey results. Curtailment of the carbon dioxide emission by effective use of woody biomass system waste; 2000 nendo mokushitsu biomass kei haikibutsu no yuko riyo ni yoru nisanka tanso haishutsu no sakugen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    It is estimated that the woody biomass resources in Japan total 42.70 million t/y on a dry basis (indigenous production: 20.00 million t/y), which corresponds to 18.00 million t/y as oil. This project studies effective utilization of low-quality biomass resources now discarded, e.g., thinning materials and demolition woods, by reference to biomass utilization pursued in European and North American countries. The study activities cover the 3 areas of woody biomass wastes, current status of biomass utilization technologies in the overseas countries, and feasibility of introduction of the utilization technologies, after investigating necessity of abatement of the green-effect gases, current status of energy demands and policies, and woody biomass. Utilization of biomass resources for low-temperature heat purposes, which is the central issue in Japan, is not well established both technologically and politically. Moreover, the biomass resources are not exposed to price competition. Based on these premises, a total of 6 scenarios are proposed to promote utilization of biomass resources, including power/heat co-generation at a wood processing center, and dual firing at existing coal-fired boilers. (NEDO)

  17. Hydrogen production by autothermal reforming of ethanol: pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Marin Neto, Antonio Jose; Camargo, Joao Carlos; Lopes, Daniel Gabriel; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil)], Email: antonio@hytron.com.br; Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada; Furlan, Andre Luis [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This work provides information about the development of an integrated unit for hydrogen production by auto thermal reforming of ethanol with nominal capacity of 1 kg/h H{sub 2} 4.5 (99.995%). The unit is composed by a Fuel Processing Module (FPM), resulting from auto thermal and shift reactor integration, responsible for the thermochemical step, plus an over heater of the liquid input (EtOH and H{sub 2}O), operated recovering thermal energy from PSA blown-down (H{sub 2} Purification Module - MPH2), besides other thermal equipment which completes the integration. Using a computational routine for scaling the process and preliminary performance analysis, it was possible to optimize operating conditions, essential along unit operations design. Likewise, performance estimation of the integrated unit proceeds, which shows efficiency about 72.5% from FPM. Coupled with the PSA recovery rate, 72.7%, the unit could achieve overall energy performance of 52.7%, or 74.4% working in co-generation of hydrogen and heat. (author)

  18. Externally fired gas turbine cycles with high temperature heat exchangers utilising Fe-based ODS alloy tubing

    International Nuclear Information System (INIS)

    Olsson, F.; Svensson, S.-A.; Duncan, R.

    2001-01-01

    This work is part of the BRITE / EuRAM Project 'Development of Torsional Grain Structures to Improve Biaxial Creep Performance of Fe-based ODS Alloy Tubing for Biomass Power Plant'. The main goal of this project is to heat exchanger tubes working at 1100 o C and above. The paper deals with design implications of a biomass power plant, using an indirectly fired gas turbine with a high temperature heat exchanger containing Fe-based ODS alloy tubing. In the current heat exchanger design, ODS alloy tubing is used in a radiant section, using a bayonet type tube arrangement. This enables the use of straight sections of ODS tubing and reduces the amount of material required. In order to assess the potential of the power plant system, thermodynamic calculations have been conducted. Both co-generation and condensing applications are studied and results so far indicate that the electrical efficiency is high, compared to values reached by conventional steam cycle power plants of the same size (approx. 5 MW e ). (author)

  19. Fiscal 1999 survey report on basic feasibility in implementing model project for efficient consumption of energy by fiber dyeing and processing plant in Indonesia; 1999 nendo Indonesia ni okeru senshoku kako kojo energy shohi koritsuka model jigyo kihonteki jisshi kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The basic feasibility of a model project was investigated for the purpose of introducing energy saving technology in dyeing and processing by the textile industry, which consumes a great deal of energy in Indonesia. This paper explains the result of fiscal 1999. A questionnaire survey was conducted on 40 companies having a continuous processing plant from spinning to finishing, while seven companies among them were visited for the survey on the status of energy consumption and conservation. Meantime, a survey was also made on the related policies and the state of their implementation in Indonesia as well as on the status of investment on equipment. As energy saving measures for the processing, proposals were made for energy saving in the washing process (exhaust-heat recovery system, monitoring system, and optimization of steam usage in drying process), for introduction of a heat pump system, and for reduced energy consumption in a jet dyeing machine. As energy conservation measures for utilities, reduced energy consumption of boilers was proposed, as was introduction of co-generation system. Essential for the dissemination of the measures are guidance, enlightenment and mentality reform for the entrepreneurs. Needed for the policy are the establishment of a core organization for energy conservation, plans, analyses, model projects, and introduction of an economic support system (e.g., low-interest loan). (NEDO)

  20. Interpretive focus groups: a participatory method for interpreting and extending secondary analysis of qualitative data

    Directory of Open Access Journals (Sweden)

    Michelle Redman-MacLaren

    2014-08-01

    Full Text Available Background: Participatory approaches to qualitative research practice constantly change in response to evolving research environments. Researchers are increasingly encouraged to undertake secondary analysis of qualitative data, despite epistemological and ethical challenges. Interpretive focus groups can be described as a more participative method for groups to analyse qualitative data. Objective: To facilitate interpretive focus groups with women in Papua New Guinea to extend analysis of existing qualitative data and co-create new primary data. The purpose of this was to inform a transformational grounded theory and subsequent health promoting action. Design: A two-step approach was used in a grounded theory study about how women experience male circumcision in Papua New Guinea. Participants analysed portions or ‘chunks’ of existing qualitative data in story circles and built upon this analysis by using the visual research method of storyboarding. Results: New understandings of the data were evoked when women in interpretive focus groups analysed the data ‘chunks’. Interpretive focus groups encouraged women to share their personal experiences about male circumcision. The visual method of storyboarding enabled women to draw pictures to represent their experiences. This provided an additional focus for whole-of-group discussions about the research topic. Conclusions: Interpretive focus groups offer opportunity to enhance trustworthiness of findings when researchers undertake secondary analysis of qualitative data. The co-analysis of existing data and co-generation of new data between research participants and researchers informed an emergent transformational grounded theory and subsequent health promoting action.

  1. World nuclear power once again in the spotlight. Comments on the 13th Pacfic Basin Nuclear Conference

    International Nuclear Information System (INIS)

    Zang Mingchang; Ruan Keqiang

    2004-01-01

    This paper comments on The 13th Pacific Basin Nuclear Conference held in Shenzhen, China, on October 21/25, 2002 and summarizes some key papers presented in the Conference and viewpoints from their following discussions, which indicates that nuclear power in the world is once again in the spotlight. The Conference shows that in the coming 50 years the roadmap to develop nuclear energy would be divided into two stages: Near-Term Deployment by 2010-2015, some advanced designs were developed for Utilities; Generation IV Program, its overall goal is to identify and develop next-generation nuclear power systems that could be deployed over the next 30 years to help meet the world's energy needs throughout the 21st century. Some visions is the future, such as co-generation of electricity and space heating or desalination, and combination of Generation IV and so-called Hydrogen Economy-the use of hydrogen in vehicle transport to replace petroleum, were presented. As a primary energy source nuclear power is particularly well suited to hydrogen production, offering the almost unique position of large-scale hydrogen production with near-zero emissions. (authors)

  2. Study of methanization resource and potential development in Aquitaine - Technical report. To keep on developing the methanization sector in the Dordogne district

    International Nuclear Information System (INIS)

    Priarollo, Jeremie; Michels, Julie; Jimenez, Julien

    2015-05-01

    This study aims at characterising territories of the Aquitaine region in terms of potential of development of individual, collective and territorial methanization units. The territory organic resource potential has first been assessed, and then combined with energetic outlets for biogas and outlets for digestates. A first phase aimed at providing a situational analysis of the methanization sector in the region. During a second phase, different resources of mobilisable organic wastes have been quantified, characterised and mapped at the district level in combination with energetic outlets (gas and heat) and digestate outlets. A third phase aimed at identifying and characterising areas of the different districts of the region displaying a methanization potential. After this report, a set of Power Point presentations is proposed which present this study under another form. Thus, these presentations contain graphs and data which illustrate these different aspects and issues: presentation of the different methanizable resources (quantitative results and maps), energy valorisation potential (co-generation and thermal outlets, injection into natural gas networks, definition and characterisation of areas displaying an interesting potential), presentation of a regional support arrangement (Methaqtion)

  3. Carbon monoxide: from toxin to endogenous modulator of cardiovascular functions

    Directory of Open Access Journals (Sweden)

    R.A. Johnson

    1999-01-01

    Full Text Available Carbon monoxide (CO is a pollutant commonly recognized for its toxicological attributes, including CNS and cardiovascular effects. But CO is also formed endogenously in mammalian tissues. Endogenously formed CO normally arises from heme degradation in a reaction catalyzed by heme oxygenase. While inhibitors of endogenous CO production can raise arterial pressure, heme loading can enhance CO production and lead to vasodepression. Both central and peripheral tissues possess heme oxygenases and generate CO from heme, but the inability of heme substrate to cross the blood brain barrier suggests the CNS heme-heme oxygenase-CO system may be independent of the periphery. In the CNS, CO apparently acts in the nucleus tractus solitarii (NTS promoting changes in glutamatergic neurotransmission and lowering blood pressure. At the periphery, the heme-heme oxygenase-CO system can affect cardiovascular functions in a two-fold manner; specifically: 1 heme-derived CO generated within vascular smooth muscle (VSM can promote vasodilation, but 2 its actions on the endothelium apparently can promote vasoconstriction. Thus, it seems reasonable that the CNS-, VSM- and endothelial-dependent actions of the heme-heme oxygenase-CO system may all affect cardiac output and vascular resistance, and subsequently blood pressure.

  4. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were set up, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  5. Development of the elementary technology and the stack manufacturing process of solid oxide fuel cell (II)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.A.; Seo, I.Y.; Lee, S.H. [Ssangyong Research Center (Korea, Republic of)] [and others

    1996-02-01

    Most of the SOFC components are composed of ceramics. Energy efficiency of SOFC can be obtained up to 80% with co-generation system and is higher than the traditional electricity generation system (30%). SOFC has having highest efficient among the several fuel cell system and is called {sup T}he 3 rd Generation Fuel Cell`. So the every developed countries are competing to develop this high technology. Key points to develop SOFCs are to select a materials having the similar thermal expansion behaviors and to construct a stable design. At present, three common stack configurations have been proposed and fabricated for SOFCs : sealess tubular design, flat-plat design, monolithic design. Although having disadvantages in the stability of performance and structure, the flat-plate design is commonly adopted rather than tubular design in recent SOFC R and D because of economical merit of commercial scale fabrication. In this study flat-plat design is adopted to develop SOFC in this study. The purpose of this study, the 2 nd year of Phase I, was to apply and progress the fabrication technology of 5 x 5 cm{sup 2} sized unit cell that was developed in 1 st year and to develop elementary technologies of stack manufacturing, i. e., design and fabrication of separator, sealing materials and gas sealing technology. (author) 66 refs., 48 tabs., 195 figs.

  6. Developing A Transdisciplinary Process and Community Partnerships to Anticipate Climate Change at the Local Level: The Role of Biophysical and Sociocultural Calendars

    Science.gov (United States)

    Kassam, K. A.; Samimi, C.; Trabucco, A.

    2017-12-01

    Difference is essential to solving the most complex problems faced by humanity. Anthropogenic climate change is one such "wicked problem" that demands cognitive diversity. Biophysical and social scientists must collaborate with scholars from the humanities to address practical issues of concern to local communities, which are at the forefront of impacts of climatic variation. As such, communities of inquirers (e.g. biophysical and social sciences, humanities) must work in tandem with communities of practice (e.g. farmers, fishers, gatherers, herders, hunters). This leads to co-generated knowledge where an adaptation strategy to climatic variation is locally grounded in the biophysical and sociocultural context of the communities where the impacts of climatic variation are most felt. We will present an innovative and `real time' example participatory and transdisciplinary research from an international project where we are developing integrated biophysical and sociocultural calendars, in short, ecological calendars, which are ecologically and culturally grounded in the local context to develop anticipatory capacity to anthropogenic climate change.

  7. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    Science.gov (United States)

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  8. Effect of Cracow program elimination of low emission sources upon the energy management system in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Friedberg, J. [Deputy Mayor of Cracow (Poland); Goerlich, K. [Deputy Mayor of Cracow (Poland); Glowacki, K. [Office of the City of Cracow (Poland)

    1995-12-31

    At the end of the 1980s, the energy management at the local level-like the whole set of such utility services-was based upon respective enterprises subject to a certain supervision of the establishing body and to a control of the District Inspectorate of Energy Management. Those enterprises that deal with generation and supply of heat energy to the local market, with distribution of heat, natural gas and electricity, operated as state companies; the last two branches made a part of either regional or national companies. Irrespective of the aforesaid, the co-generation power plants existed usually outside the heat generation and supply system. The business economics of these enterprises was not subject to any market rules whatsoever, the prices were controlled and the customers had no right of choice of the energy supplier. From the very beginning the low emission elimination program assumed to have commercial rules introduced in the energy management. Thus, it turned out necessary to prepare the market - to draw up inventory of the conditions and needs related with heat supply and to take up market solutions as well. The management system, and in particular the items specified below, is discussed. The co-operation of energy distribution enterprises has been based upon a voluntary agreement (The Team for Energy Suppliers) so as to agree upon the basic actions of the respective partners; joint actions have been taken up more and more willingly.

  9. Survey report on project for drawing district energy-saving visions for Town of Aizu Wakamatsu. Preliminary survey; 2000 nendo Aizu Wakamatsu shi chiiki sho energy vision sakutei nado jigyo (shoki dankai chosa) chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The feasibility study is conducted for introduction of the district energy-saving measures in City of Aizu Wakamatsu, for which the actual situations of energy consumption and promising energy-saving measures are surveyed. The city has a typical basinal weather, cold in winter and very hot and humid in summer, and tends to have a longer air-condition period in a year. It is considered that there are many wasteful energy consumption items to be studied for reduction. In the area of moving means, dependence on public transportation systems is considered to be relatively low, suggesting that there are much space of reducing transportation energy by the measures such as self-imposed control on use of private cars, promotion of utilizing public transportation systems and fuel-saving type driving throughout the city. The promising energy-saving measures studied to verify the effects include introduction of PVM analyzers for establishing better cost/effect relationship between power consumed by air-conditioners and pleasantness; introduction of garbage power generation, co-generation and high-efficiency illuminators; improvement of power-factor; and demand control for air conditioning, rationalization of power-receiving facilities, introduction of systems for saving flushing water and improvement of air conditioners' outdoor facilities. (NEDO)

  10. Legislation framework for Croatian renewable energy sources development

    Directory of Open Access Journals (Sweden)

    Raguzin Igor

    2007-01-01

    Full Text Available The energy sector reform in the Republic of Croatia (started 2001, which comprises restructuring, liberalization, privatization, and changes in the overall energy sector, has a significant effect on the possibilities of introducing and increasing the share of renewable energy sources (RES. The adoption of a new legislative framework within the context of reforming Croatia’s energy sector is of key importance for further development and for the future or RES utilization. The Electricity Market Act sets out the le- gal obligation to purchase electricity produced from RES in the manner that a quota or a minimum obligatory share of RES in electricity production is determined by a Government ordinance combined with Tariff system for the production of electricity from renewable energy sources and co-generation. Consequently, on the one hand, incentive funds needed to cover increased costs of production from RES will be collected from customers through the supplier and distributed to privileged producers (feed-in-tariffs, purchase is guaranteed to RES producers on known terms through the Market Opera- tor. On the other hand, RES investment projects will be encouraged by pur- pose-specific government subsidy and by the Environmental Protection and Energy Efficiency Fund (out of public budget. By applying new energy legislation and associated by-laws (coming into force in 2007, RES projects in Croatia will be provided with a complete and stable legal framework as well as support through incentive measures which will equitably value environmental, social and other benefits of RES use.

  11. Proceedings of the Tenth forum: Croatian Energy Day: Energy sector liberalisation and privatisation in transition-economy and EU countries: experiences and perspectives; Zbornik radova Desetog foruma: Dan energije u Hrvatskoj: liberalizacija i privatizacija energetskog sektora u zemljama tranzicije i Europske unije: iskustva i perspektive

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Political and economic changes in Europe provided an impetus for the creation of an open energy market with an increasing number of participants, while the new energy sale and purchase system enabled everybody engaged (from producers to operators and consumers) to take over an active part. In the launching of these processes some documents played a decisive role: European Energy Treaty, European Union's Directives on Electricity and Gas Market Liberalisation of the Member Countries. Energy sector liberalisation was in most of the countries carried out in two steps, i.e. first the restructuring took place and than privatisation followed. Restructuring covers the change of organisation and economic relations with the aim of increasing efficiency and cost reduction, and privatisation is the process that ought to enable the creation of a market and competition. Market and competition creation is carried out by means of structural changes, i.e. by business and ownership unbundling (energy generation, transport/transmission and distribution). Energy market strengthening depends on energy efficiency, programmes, utilisation of renewable energy sources, co-generation share in the production of electric and thermal energy, etc. All of these activities are followed by adequate legislative framework as well as by defining a regulatory body to supervise the behaviour of the participants. The primary energy sector's reform concept in the Republic of Croatia was a clear political goal that Croatia become a member of the European Union and that the energy market be congruent to the EU market.

  12. The concept of system for chips production need to work demo CHP plant in company 'AGROSAVA' from Šimanovci

    Directory of Open Access Journals (Sweden)

    Dedić Aleksandar Đ.

    2014-01-01

    Full Text Available In this paper according to the calculation of chips productivity needs for gasification in the demo CHP plant for co-generation: electricity and heat, chippers were analyzed due to: the type of mobility, running for chipping and the method of delivering chips to temporary yard. The plant was planned to generate electricity power up to 200kWelec. First, in consideration were taken the chippers with medium capacity, which mainly served for chipping brushwood and leaves that remain after harvest plantations on mostly flat terrain and parks. Later, the comparative characteristics of the world's three largest manufacturers of machinery for the production of wood chips significantly larger amounts (up to 30m3/h were given. These chippers were particularly suitable for the higher density of crops and stationed yard, in which brushwood would be brought and chip. At the end, the types of convective dryers were analyzed that could be successfully used for drying wood chips (drum and pneumatic dryer and based on the calculation proposed the types of dryers that were available in the local market.

  13. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Tong, Liping; Yu, K.N.; Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi; Han, Wei

    2014-01-01

    Highlights: • We show the possibility of modulate proliferation induced by radiation-induced bystander effect with low concentration carbon monoxide. • Carbon monoxide inhibited proliferation via modulating the transforming growth factor β1 (TGF-β1)/nitric oxide (NO) signaling pathway. • Exogenous carbon monoxide has potential application in clinical radiotherapy. - Abstract: Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy

  14. A small-scale modular reactor for electric source for remote places

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Use of a small-scale modular reactor (SMR) as an electric source for remote places is one of scenarios for actual use of SMR parallel to alternative source of present nuclear power stations and co-generation source at urban suburbs, there is not only an actual experience to construct and operate for power source for military use in U.S.A. on 1950s to 1960s, but also four nuclear reactors (LWGR, 12 MW) in Vilyvino Nuclear Power Station in far northern district in Russia are under operation. Recently, Department of Energy in U.S.A. prepared the 'Report to Congress on Small Modular Nuclear Reactors' evaluating on feasibility of SMR as a power source for remote places according to requirement of the Congress. This report evaluated a feasibility study on nine SMRs in the world with 10 to 50 MW of output as electric source for remote places on economical efficiency and so on, together with analysis of their design concepts, to conclude that 'they could perform beginning of operations on 2000s because of no large technical problems and keeping a level capable of competing with power generation cost at remote place on its present economical efficiency'. Here was introduced on outlines of this report. (G.K.)

  15. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    Science.gov (United States)

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A Study on Grid-Square Statistics Based Estimation of Regional Electricity Demand and Regional Potential Capacity of Distributed Generators

    Science.gov (United States)

    Kato, Takeyoshi; Sugimoto, Hiroyuki; Suzuoki, Yasuo

    We established a procedure for estimating regional electricity demand and regional potential capacity of distributed generators (DGs) by using a grid square statistics data set. A photovoltaic power system (PV system) for residential use and a co-generation system (CGS) for both residential and commercial use were taken into account. As an example, the result regarding Aichi prefecture was presented in this paper. The statistical data of the number of households by family-type and the number of employees by business category for about 4000 grid-square with 1km × 1km area was used to estimate the floor space or the electricity demand distribution. The rooftop area available for installing PV systems was also estimated with the grid-square statistics data set. Considering the relation between a capacity of existing CGS and a scale-index of building where CGS is installed, the potential capacity of CGS was estimated for three business categories, i.e. hotel, hospital, store. In some regions, the potential capacity of PV systems was estimated to be about 10,000kW/km2, which corresponds to the density of the existing area with intensive installation of PV systems. Finally, we discussed the ratio of regional potential capacity of DGs to regional maximum electricity demand for deducing the appropriate capacity of DGs in the model of future electricity distribution system.

  17. Planning the network of gas pipelines through modeling tools

    Energy Technology Data Exchange (ETDEWEB)

    Sucupira, Marcos L.L.; Lutif Filho, Raimundo B. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil)

    2009-07-01

    Natural gas is a source of non-renewable energy used by different sectors of the economy of Ceara. Its use may be industrial, residential, commercial, as a source of automotive fuel, as a co-generation of energy and as a source for generating electricity from heat. For its practicality this energy has a strong market acceptance and provides a broad list of clients to fit their use, which makes it possible to reach diverse parts of the city. Its distribution requires a complex network of pipelines that branches throughout the city to meet all potential clients interested in this source of energy. To facilitate the design, analysis, expansion and location of bottlenecks and breaks in the distribution network, a modeling software is used that allows the network manager of the net to manage the various information about the network. This paper presents the advantages of modeling the gas distribution network of natural gas companies in Ceara, showing the tool used, the steps necessary for the implementation of the models, the advantages of using the software and the findings obtained with its use. (author)

  18. Climate Change Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Paul Belard

    2006-09-21

    Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

  19. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Science.gov (United States)

    Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng

    2018-04-01

    In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.

  20. Sugarcane biorefineries: Case studies applied to the Brazilian sugar–alcohol industry

    International Nuclear Information System (INIS)

    Renó, Maria Luiza Grillo; Olmo, Oscar Almazán del; Palacio, José Carlos Escobar; Lora, Electo Eduardo Silva; Venturini, Osvaldo José

    2014-01-01

    Highlights: • Advanced system of co-generation improves the energy performance of biorefineries. • Sugarcane straw as additional source of fuel in the biorefinery resulted positive. • The farming and transport of sugarcane cause the main environmental impacts. - Abstract: The use of biomasses is becoming increasingly appealing alternative, to give an partial solution lack of energy, with an ecofriendly approach, having on sugarcane a solid fundament; that receives the new and valuable complement of the innovative concept of the biorefineries it is productive installations, that can be summarized as to reach the higher overall yield from the raw materials, with the lowest environmental impact, at minimum energy input and giving the maximum of the energy output. The biorefinery is the true valuable option of a wide diversification, with by-products like the single cell protein and biogas from the distillery vinasse, new oxidants like methanol, second generation biofuels, biobutanol, etc. In this context this paper presents a study of five different configurations of biorefineries. Each case study being a system based on an autonomous distillery or sugar mill with an annexed distillery and coproduction of methanol from bagasse. The paper includes the use of sugarcane harvest residues (mainly straw) and a BIG–GT plant (Biomass Integrated Gasification–Gas Turbine) as alternatives to fulfill the energy demands of the complex

  1. Report on FY 2000 project for drawing district energy-saving visions for Village of Satomi; 2000 nendo Satomi-mura chiiki sho energy vision sakutei nado jigy hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The district energy-saving visions are drawn for Village of Satomi, aimed at construction of an energy-saving, resources-recycling type farming village in mountains, friendly to the environments, and the implementation organization is established. The activities include (1) questionnaire survey for energy saving, with the questionnaires sent to the citizens and enterprises, (2) actual situations of energy consumption, (3) setting the hardware and software targets achievable in 5 years, (4) setting the projects for introducing energy-saving facilities, and (5) establishment of the energy-saving spreading committee, and drawing the action programs. Insufficient practices are pointed out, and necessity for the spread/enlightenment activities are clarified. At the same time, it is estimated that the energy consumption can be potentially reduced by 8% in 5 years. It is decided to introduce a co-generation system in the biomass recycling center, systems for photovoltaic power generation and production of hot water by solar heat in the integrated day-care center, and wind power system in Plateau Satomi. (NEDO)

  2. Biomass energy projects for joint implementation of the UN FCCC [Framework Convention on Climate Change

    International Nuclear Information System (INIS)

    Swisher, Joel N.; Renner, Frederick P.

    1998-01-01

    The UN Framework Convention on Climate Change (FCCC) allows for the joint implementation (JI) of measures to mitigate the emissions of greenhouse gases. The concept of JI refers to the implementation of such measures in one country with partial or full financial and/or technical support from another country, potentially fulfilling some of the supporting country's emission-reduction commitment under the FCCC. This paper addresses some key issues related to JI under the FCCC as they relate to the development of biomass energy projects for carbon offsets in developing countries. Issues include the reference case or baseline, carbon accounting and net carbon storage, potential project implementation barriers and risks, monitoring and verification, local agreements and host-country approval. All of these issues are important in project design and evaluation. We discuss briefly several case studies, which consist of a biomass-fueled co-generation projects under development at large sugar mills in the Philippines, India and Brazil, as potential JI projects. The case studies illustrate the benefits of bioenergy for reducing carbon emissions and some of the important barriers and difficulties in developing and crediting such projects. Results to date illustrate both the achievements and the difficulties of this type of project. (author)

  3. Solar Aluminum Production by Vacuum Carbothermal Reduction of Alumina—Thermodynamic and Experimental Analyses

    Science.gov (United States)

    Kruesi, M.; Galvez, M. E.; Halmann, M.; Steinfeld, A.

    2011-02-01

    Thermochemical equilibrium calculations indicate the possibility of significantly lowering the onset temperature of aluminum vapor formation via carbothermal reduction of Al2O3 by decreasing the total pressure, enabling its vacuum distillation while bypassing the formation of undesired by-products Al2O, Al4C3, and Al-oxycarbides. Furthermore, the use of concentrated solar energy as the source of high-temperature process heat offers considerable energy savings and reduced concomitant CO2 emissions. When the reducing agent is derived from a biomass source, the solar-driven carbothermal reduction is CO2 neutral. Exploratory experimental runs using a solar reactor were carried out at temperatures in the range 1300 K to 2000 K (1027 °C to 1727 °C) and with total pressures in the range 3.5 to 12 millibar, with reactants Al2O3 and biocharcoal directly exposed to simulated high-flux solar irradiation, yielding up to 19 pct Al by the condensation of product gases, accompanied by the formation of Al4C3 and Al4O4C within the crucible. Based on the measured CO generation, integrated over the duration of the experimental run, the reaction extent reached 55 pct at 2000 K (1727 °C).

  4. Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model

    Directory of Open Access Journals (Sweden)

    Wenqing Wu

    2016-12-01

    Full Text Available During radiotherapy procedures, radiation-induced bystander effect (RIBE can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2, at a relatively low concentration (20 µM, effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB and micronucleus (MN. In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2 of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2 with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1, MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS andcyclooxygenase-2 (COX-2. The results can help mitigate RIBE-induced hazards during radiotherapy procedures.

  5. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Liping [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Han, Wei, E-mail: hanw@hfcas.cn [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-01-15

    Highlights: • We show the possibility of modulate proliferation induced by radiation-induced bystander effect with low concentration carbon monoxide. • Carbon monoxide inhibited proliferation via modulating the transforming growth factor β1 (TGF-β1)/nitric oxide (NO) signaling pathway. • Exogenous carbon monoxide has potential application in clinical radiotherapy. - Abstract: Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy.

  6. Performance and emission comparison of a supercharged dual-fuel engine fueled by producer gases with varying hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Mohon Roy, Murari [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi (Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo)

    2009-09-15

    This study investigated the effect of hydrogen content in producer gas on the performance and exhaust emissions of a supercharged producer gas-diesel dual-fuel engine. Two types of producer gases were used in this study, one with low hydrogen content (H{sub 2} = 13.7%) and the other with high hydrogen content (H{sub 2} = 20%). The engine was tested for use as a co-generation engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant injection pressure and injection quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. Better combustion, engine performance, and exhaust emissions (except NO{sub x}) were obtained with the high H{sub 2}-content producer gas than with the low H{sub 2}-content producer gas, especially under leaner conditions. Moreover, a broader window of fuel-air equivalence ratio was found with highest thermal efficiencies for the high H{sub 2}-content producer gas. (author)

  7. Development of lean burn gas engines using pilot fuel for ignition source; Developpement d'un moteur a gaz avec pre-injection de carburant pour la source d'allumage

    Energy Technology Data Exchange (ETDEWEB)

    Sakonji, T.; Saito, H.; Sakurai, T. [Tokyo Gas Co., Ltd. (Japan); Hirashima, T.; Kanno, K. [Nissan Diesel Motor Co., Ltd. (Japan)

    2000-07-01

    A development was conducted to investigate the performance of an open chamber gas engine with pilot fuel for ignition source. Experiments were conducted by using a gas engine equipped with a common-rail injection system. Main gas fuel is supplied to the engine cylinder, and then a small quantity of diesel fuel (approximately 1 % of total fuel energy input) was injected into the main chamber for ignition. The single cylinder prototype gas engine has demonstrated superior performance, such as, a shaft-end thermal efficiency of 36.7% with NO{sub x} level of 0.4 g/kW-h, which equals those of conventional spark ignited pre-chamber lean burn gas engines. For the next step, the multi-cylinder gas engine has been developed. That has 138 mm bore, 142 mm stroke, V8 configuration and 229 kW engine output 1500 rpm. This engine can also run with only diesel fuel for Standby-Power-Concurrent Co-generation. (authors)

  8. Study of potentials bio energy, aeolian, miniature hydraulic and solar in Mexico (Annexe 9 in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Estudio de los potenciales bioenergetico, eolico, minihidraulico y solar en Mexico (Anexo 9 en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Saldana Flores, Ricardo; Miranda Miranda, Ubaldo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-08-15

    In this report we can observe maps and studies made about the evaluation of the bio energy potential of co-generation of electricity in the sugar industry and the sweepings, of the wind power potential in Latin America, the Caribbean and the Mexican Republic, of the miniature hydraulic potential and the hydro energy resources whereupon it counts country and, of the solar potential in which the OLADE presents/displays for Mexico the monthly maps of solar radiation maximum direct total and in Wm{sup 2}. [Spanish] En este reporte podemos observar mapas y estudios realizados acerca de la evaluacion del potencial bioenergetico de cogeneracion de electricidad en la industria azucarera y la basura, del potencial eoloenergetico en America Latina, el Caribe y la Republica Mexicana, del potencial minihidraulico y los recursos hidroenergeticos con que cuenta el pais y, del potencial solar en el cual la OLADE presenta para Mexico los mapas mensuales de radiacion solar maxima total y directa en W/m{sup 2}.

  9. Pollution Removal Performance of Laboratory Simulations of Sydney’s Street Stormwater Biofilters

    Directory of Open Access Journals (Sweden)

    James Macnamara

    2017-11-01

    Full Text Available The City of Sydney is constructing more than 21,000 square metres of street biofilter units (raingardens in terms of their Decentralised Water Master Plan (DWMP, for improving the quality of stormwater runoff to Port Jackson, the Cooks River, and the historical Botany Bay. Recharge of the Botany Sand Beds aquifer, currently undergoing remediation by extraction of industrial chlorinated hydrocarbon pollutants, is also envisaged. To anticipate the pollution removal efficiency of field biofilter designs, laboratory soil-column simulations were developed by Western Sydney University partnered with the City. Synthetic stormwater containing stoichiometric amounts of high-solubility pollutant salts in deionised water was passed through 104 mm columns that were layered to simulate monophasic and biphasic field designs. Both designs met the City’s improvement targets for total nitrogen (TN and total phosphorus (TP, with >65% median removal efficiency. Prolonged release of total suspended solids (SS on startup emphasised the need for specifications and testing of proprietary fills. Median removal efficiency for selected heavy metal ecotoxicants was >75%. The researchers suggested that Zinc be added to the targets as proxy for metals, polycyclic aromatic hydrocarbons (PAH and oils/greases co-generated during road use. Simulation results suggested that field units will play an important role in meeting regional stormwater improvement targets.

  10. Mechanism of protection of bystander cells by exogenous carbon monoxide: Impaired response to damage signal of radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Han, W.; Yu, K.N.; Wu, L.J.; Wu, Y.C.; Wang, H.Z.

    2011-01-01

    A protective effect of exogenous carbon monoxide (CO), generated by CO releasing molecule ticarbonyldichlororuthenium (II) dimer (CORM-2), on the bystander cells from the toxicity of radiation-induced bystander effect (RIBE) was revealed in our previous study. In the present work, a possible mechanism of this CO effect was investigated. The results from medium transfer experiments showed that α-particle irradiated Chinese hamster ovary (CHO) cells would release nitric oxide (NO), which was detected with specific NO fluorescence probe, to induce p53 binding protein 1 (BP1) formation in the cell population receiving the medium, and the release peak was found to be at 1 h post irradiation. Treating the irradiated or bystander cells separately with CO (CORM-2) demonstrated that CO was effective in the bystander cells but not the irradiated cells. Measurements of NO production and release with a specific NO fluorescence probe also showed that CO treatment did not affect the production and release of NO by irradiated cells. Protection of CO on cells to peroxynitrite, an oxidizing free radical from NO, suggested that CO might protect bystander cells via impaired response of bystander cells to NO, a RIBE signal in our research system.

  11. Floating nuclear heat. And power station 'Pevec' with KLT-40S type reactor plant for remote regions of Russia

    International Nuclear Information System (INIS)

    Veshnyakov, K.B.; Kiryushin, A.I.; Panov, Yu.K.; Polunichev, V.I.

    2000-01-01

    Floating small nuclear power plants power for local energy systems of littoral regions of Russia, located far from central energy system, open a new line in nuclear power development. Designing a floating power unit of a lead nuclear heat and power generating station for port Pevec at the Chuckchee national district is currently nearing completion. Most labor-intensive components are being manufactured. The co-generation NPP Pevec is to be created on the basis of a floating power unit with KLT-40S type reactor plant. KLT-40S reactor plant is based on similar propulsion plants, verified at operation of Russia's nuclear-powered civil ships, evolutionary improved by elimination of 'weak points' revealed during its prototypes operation or on the basis of safety analysis. KLT-40S reactor plant uses the most wide-spread and developed in the world practice PWR-type reactor. KLT-40S meets contemporary national and international requirements imposed to future reactor plants. The NHPS description, its main technical-economic data, environmental safety indices, basic characteristics of KLT-40S reactor plant are presented. Prospects of small NPPs utilization outside Russia, particularly as an energy source for sea water desalination, are considered. (author)

  12. City/industry/utility partnership leads to innovative combined heat and power project

    Energy Technology Data Exchange (ETDEWEB)

    Savage, J. [Savage and Associates, Quesnel, BC (Canada)

    2010-07-01

    This presentation discussed a combined heat and power (CHP) project that was launched in Quesnel, British Columbia. The CHP is being developed in phases in which new components will enter the system, providing added benefits. Hot oil from a sawmill bioenergy system will be used to heat lumber kilns, generate electricity at an Organic Rankine Cycle co-generation plant, and heat water for a District Energy Loop (DEL) to heat up to 22 existing buildings in the city as well as sawmill and planer buildings. The DEL piping would comprise a 5 kilometre loop. The energy would come from recovered sawmill space heating, recovered stack energy, and additional biomass energy. All of the district heating and 41 per cent of the power would be from heat recovered from the existing industrial operation. This bio-economy vision ultimately involves incorporating a biogas digester into the system to process food, regional organic waste, and pulp mill residuals, relying on bio-solids and heat from the mill. The fertilizer from the digester would then be used in a biomass plantation, which would provide materials to industry for many products, including bio-refining. This project evolved in response to concerns about the ecological effects and long-term economics of aggressive utilization of forest biomass. 15 figs.

  13. Impacts of market liberalization on the electricity supply sector: a comparison of the experience in Austria and Germany

    International Nuclear Information System (INIS)

    Madlener, R.; Jochem, E.

    2001-01-01

    The impacts of market liberalization on the electricity supply sector depend on many different factors and boundary conditions. Comparing these impacts in Austria and Germany, two countries which both participate in the European internal market and have a central geographical location in Western Europe, and which both have borders and important trade relationships with Central and Eastern European countries, provides some important insights with regard to the following aspects: (a) the differences in the primary energy supply mix for electricity generation; (b) the substantial excess capacity, not only in the two countries analyzed but also in the EU as a whole, and its uneven reduction due to different market opening speeds within the Community and differences in the plant stock composition; (c) the utility company structure, including ownership and traditional energy supply and customer relations; (d) the changing situation faced by co-generation and small power producers; and (e) the relevant regulation of third-party access to the grid, electricity transmission, and prices for small/captive consumers. Last but not least, the paper also covers the influence of the expected increase in the volumes of electricity traded in the two countries, also with their Central and Eastern European neighbors (where the level of the playing field may not yet be equalized in the near future), and the concerns that this may lead to conflicts in the achievement of the energy policies, environmental policies, and climate change policies aimed for at the national and European level. (author)

  14. Future Energy Benchmark for Desalination: Is it Better to have a Power (Electricity) Plant With RO or MED/MSF?

    KAUST Repository

    Shahzad, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw

    2016-01-01

    Power and desalination cogeneration plants are common in many water scared courtiers. Designers and planners for cogeneration face tough challenges in deciding the options:- Is it better to operate a power plant (PP) with the reverse osmosis (i.e., PP+RO) or the thermally-driven multi-effect distillation/multi-stage flashed ( PP+MED/MSF) methods. From literature, the RO methods are known to be energy efficient whilst the MED/MSF are known to have excellent thermodynamic synergies as only low pressure and temperature steam are used. Not with-standing the challenges of severe feed seawater of the Gulf, such as the frequent harmful algae blooms (HABs) and high silt contents, this presentation presents a quantitative analyses using the exergy and energetic approaches in evaluating the performances of a real cogeneration plant that was recently proposed in the eastern part of Saudi Arabia. We demonstrate that the process choice of PP+RO versus PP+MED depends on the inherent efficiencies of individual process method which is closely related to innovative process design. In this connection, a method of primary fuel cost apportionment for a co-generation plant with a MED desalination is presented. We show that an energy approach, that captures the quality of expanding steam, is a better method over the conventional work output (energetic) and the energy method seems to be over-penalizing a thermally-driven MED by as much as 22% in the operating cost of water.

  15. Future Energy Benchmark for Desalination: is it Better to have a Power (electricity) Plant with ro or Med/msf?

    Science.gov (United States)

    Shahzad, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw

    2016-06-01

    Power and desalination cogeneration plants are common in many water scared courtiers. Designers and planners for cogeneration face tough challenges in deciding the options:- Is it better to operate a power plant (PP) with the reverse osmosis (i.e., PP+RO) or the thermally-driven multi-effect distillation/multi-stage flashed (PP+MED/MSF) methods. From literature, the RO methods are known to be energy efficient whilst the MED/MSF are known to have excellent thermodynamic synergies as only low pressure and temperature steam are used. Not with-standing the challenges of severe feed seawater of the Gulf, such as the frequent harmful algae blooms (HABs) and high silt contents, this presentation presents a quantitative analyses using the exergy and energetic approaches in evaluating the performances of a real cogeneration plant that was recently proposed in the eastern part of Saudi Arabia. We demonstrate that the process choice of PP+RO versus PP+MED depends on the inherent efficiencies of individual process method which is closely related to innovative process design. In this connection, a method of primary fuel cost apportionment for a co-generation plant with a MED desalination is presented. We show that an energy approach, that captures the quality of expanding steam, is a better method over the conventional work output (energetic) and the energy method seems to be over-penalizing a thermally-driven MED by as much as 22% in the operating cost of water.

  16. Study of supply and development of renewable energies in the Grand-Douaisis - For a mix energy strategy by 2020-2050. Which renewable energies for the Grand-Douaisis?

    International Nuclear Information System (INIS)

    Monier, Jerome; Dupont, Alice; Rivoire-Meley, Benedicte; Janssoone, Thierry; Plankeele, Thomas; Counilh, Agathe; Lesoin, Pierre Emmanuel; Barry, Herve

    2012-06-01

    With the objective of development of the energy mix for the Douai area, a first document reports a study which aimed at examining present modalities of energy supplies and potentials of development of renewable energies on the territory, in order to elaborate a mix energy strategy. This report presents the methodology adopted to acquire data, outlines the necessity to reduce consumptions, comments the distribution of renewable energy production in 2011 and predictions by 2020-2050. It proposes a detailed analysis of mobilisable renewable energies (solar photovoltaic and thermal, wood, geothermal, wind, biogas, waste water heat recovery, micro-hydroelectricity, fatal energies, co-generation). It also discusses the impact on local development in terms of energy dependence, air pollution and financial consequences, and also how to integrate this energetic development into land planning documents. Besides this document, contributions presented during a meeting on renewable energies as a factor of local development are proposed. While addressing the same issues as above, these contributions propose an overview of mobilisable renewable energy sources for the area, outline the interest for local communities to develop their potential in renewable energies, discuss the usefulness of planning documents to promote and ease this development, and discuss how to obtain maximum financial and social fallout from small and large projects of renewable energies

  17. Wood power in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, J.G.; Guessous, L. [Research Triangle Institute, Research Triangle Park, NC (United States)

    1993-12-31

    North Carolina (NC) is one of the most forested states, and supports a major wood products industry. The NC Department of Natural Resources sponsored a study by Research Triangle Institute to examine new, productive uses of the State`s wood resources, especially electric power generation by co-firing with coal. This paper summarizes our research of the main factors influencing wood power generation opportunities, i.e., (1) electricity demand; (2) initiative and experience of developers; (3) available fuel resources; (4) incentives for alternate fuels; and (5) power plant technology and economics. The results cover NC forests, short rotation woody crops, existing wood energy facilities, electrical power requirements, and environmental regulations/incentives. Quantitative assessments are based on the interests of government agencies, utilities, electric cooperatives, developers and independent power producers, forest products industries, and the general public. Several specific, new opportunities for wood-to-electricity in the State are identified and described. Comparisons are made with nationwide resources and wood energy operations. Preferred approaches in NC are co-generation in existing or modified boilers and in dedicated wood power plants in forest industry regions. Co-firing is mainly an option for supplementing unreliable primary fuel supplies to existing boilers.

  18. Implementation of a cogeneration plant for a food processing facility. A case study

    International Nuclear Information System (INIS)

    Bianco, Vincenzo; De Rosa, Mattia; Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • CHP utilization is demonstrated to allow a reduction of primary energy consumption. • The consideration of various investment indexes leads to the determination of different optimal powers. • The choice of a specific investment index to evaluate a CHP is linked to the strategy of the company. - Abstract: The present work presents an investigation regarding the feasibility analysis of a cogeneration plant for a food processing facility with the aim to decrease the cost of energy supply. The monthly electricity and heat consumption profiles are analyzed, in order to understand the consumption profiles, as well as the costs of the current furniture of electricity and gas. Then, a detailed thermodynamic model of the cogeneration cycle is implemented and the investment costs are linked to the thermodynamic variables by means of cost functions. The optimal electricity power of the co-generator is determined with reference to various investment indexes. The analysis highlights that the optimal dimension varies according to the chosen indicator, therefore it is not possible to establish it univocally, but it depends on the financial/economic strategy of the company through the considered investment index.

  19. Point Climat no. 32 'One billion tonnes of CO2 avoided since 2005 in Europe: half due to energy-climate policies and half due to economic context'

    International Nuclear Information System (INIS)

    Gloaguen, Olivier; Alberola, Emilie

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: - CO 2 emissions generated by installations covered by the EU ETS decreased by 12.3 % since 2005, i.e a decline by 2.6% per year during Phase 2 of the EU ETS while the emission cap increased by 1% per year. - The EU ETS ended Phase 2 with a surplus of 1,742 million of allowances. All sectors recorded an overall net surplus, except for the power generation and co-generation sectors. - Based on a 'business-as-usual' scenario, we estimate that around 1.1 GtCO 2 were avoided between 2005 and 2011: around 30% of the reduction was the result of a fall in manufacturing output, while around 60% of the reduction was caused by the development of renewable energy and the improvement of the energy intensity

  20. DC Linked Hybrid Generation System with an Energy Storage Device including a Photo-Voltaic Generation and a Gas Engine Cogeneration for Residential Houses

    Science.gov (United States)

    Lung, Chienru; Miyake, Shota; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    For the past few years, a hybrid generation system including solar panel and gas cogeneration is being used for residential houses. Solar panels can generate electronic power at daytime; meanwhile, it cannot generate electronic power at night time. But the power consumption of residential houses usually peaks in the evening. The gas engine cogeneration system can generate electronic power without such a restriction, and it also can generate heat power to warm up house or to produce hot water. In this paper, we propose the solar panel and gas engine co-generation hybrid system with an energy storage device that is combined by dc bus. If a black out occurs, the system still can supply electronic power for special house loads. We propose the control scheme for the system which are related with the charging level of the energy storage device, the voltage of the utility grid which can be applied both grid connected and stand alone operation. Finally, we carried out some experiments to demonstrate the system operation and calculation for loss estimation.

  1. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  2. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment

    International Nuclear Information System (INIS)

    Xochihua S M, M.C.

    1997-01-01

    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO 2 if amount of O 2 is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author)

  3. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  4. Central Arkansas Energy Project. Coal to medium-Btu gas

    Science.gov (United States)

    1982-05-01

    The Central Arkansas Energy Project has as its objective the conversion of coal in a central location to a more readily usable energy source, medium Btu gas (MBG), for use at dispersed locations as fuel for power production and steam generation, or as a feedstock for chemical processing. The project elements consist of a gasification facility to produce MBG from coal, a pipeline to supply the MBG to the dispersed sites. The end of line users investigated were the repowering or refueling of an existing Arkansas Power and Light Co. Generating station, an ammonia plant, and a combined cycle cogeneration facility for the production of steam and electricity. Preliminary design of the gasification plant including process engineering design bases, process flow diagrams, utility requirements, system description, project engineering design, equipment specifications, plot plan and section plot plans, preliminary piping and instrument diagrams, and facilities requirements. Financial analyses and sensitivities are determined. Design and construction schedules and manpower loadings are developed. It is concluded that the project is technically feasible, but the financial soundness is difficult to project due to uncertainty in energy markets of competing fuels.

  5. Survey on the possibility of introducing new energy to regional development plans

    Science.gov (United States)

    1988-03-01

    This report covers nationwide large-scale resort plans and at the same time studies the possibility of introducing new energy systems, mainly cogeneration, and their effects. Japanese industrial structure is rapidly moving toward information and service areas, and the development of resorts has become very active. With the increase of resort demands, much is expected of resort development as a means of regional promotion. Special features of energy consumption in resort facilities are that annual demand is large, that energy consumption fluctuates greatly, and that energy supply cost is high. These features are especially conspicuous in smaller facilities. Most suited for resort lodging facilities is a co-generation system, especially a diesel engine system. This system is expected to conserve energy; but to promote this system, it is necessary to revise the preferential tax treatment and Fire Service Act to meet the actual circumstances, and to develop a highly reliable system that can be operated unattended. An economical system in view of overall costs is also essential.

  6. Integral nuclear power reactor with natural coolant circulation. Investigation of passive RHR system

    International Nuclear Information System (INIS)

    Samoilov, O.B.; Kuul, V.S.; Malamud, V.A.; Tarasov, G.I.

    1996-01-01

    The development of a small power (up to 240 MWe) integral PWR for nuclear co-generation power plants has been carried out. The distinctive features of this advanced reactor are: primary circuit arrangement in a single pressure vessel; natural coolant circulation; passive safety systems with self-activated control devices; use of a second (guard) vessel housing the reactor; favourable conditions for the most severe accident management. A passive steam condensing channel has been developed which is activated by the direct action of the primary circuit pressure without an automatic controlling action or manual intervention for emergency cooling of an integral reactor with an in-built pressurizer. In an emergency situation as pressure rises in the reactor a self-activated device blows out non-condensable gases from the condenser tube bundle and returns them in the steam-condensing mode of the operation with the returing primary coolant condensate into the reactor. The thermo-physical test facility is constructed and the experimental development of the steam-condensing channels is performed aiming at the verification of mathematical models for these channels operation in integral reactors both at loss-of-heat removal and LOCA accidents. (orig.)

  7. Proceedings of the 24. National seminar on the rational use of energy and exposition of equipment and services and 7. Binational seminar on energy saving [Selected Papers]; 24. Seminario nacional sobre el uso racional de energia y exposicion de equipos y servicios y 7. Seminario binacional de ahorro de energia. Memoria Tecnica. [Ponencias seleccionadas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document contains the technical briefings of the 24. National Seminar on the rational use of energy, and exhibition of the equipment and services and the 7. Binational seminar on energy saving, organized by the Asociacion de Profesionistas y Tecnicos en Aplicacion Energetica (ATPAE), in Ciudad Juarez, Chihuahua, Mexico, from November 9 to 11, 2005. This seminar dealt with subjects such as: electrical energy saving, energy distribution, solar energy, energy saving in compressed air, biomass, administration and control of the demand of the electrical energy, bioclimatic architecture, use of the compressed natural gas, renewable energy, co-generation, qualification and consultancy for the intelligent use of the energy in PyMES. [Spanish] Este documento contiene la memoria tecnica del 24 Seminario Nacional sobre el uso racional de energia, y exposicion de los equipos y servicios y el 7 Seminario binacional de ahorro de energia, organizado por la Asociacion de Tecnicos y Profesionistas en Aplicacion Energetica (ATPAE), en Ciudad Juarez, Chihuahua, Mexico, del 9 al 11 de noviembre del 2005. Este seminario trato temas tales como: ahorro de energia electrica, distribucion de la energia, energia solar, ahorro de energia en aire comprimido, biomasa, administracion y control de la demanda de la energia electrica, arquitectura bioclimatica, uso del gas natural comprimido, energia renovable, cogeneracion, capacitacion y consultoria para el uso inteligente de la energia en las Pymes.

  8. Humidification-Dehumidification (HDH) Spray Column Direct Contact Condenser Part I: Countercurrent Flow

    International Nuclear Information System (INIS)

    Karameldin, A.; Shouman, L.; Fadel, D.

    2016-01-01

    Humidification-De humidification (HDH) is a low grade energy desalination technology. Hot humid air and cooling spray water in counter current flow with direct contact is theoretically analyzed in the present work. Direct contact spray condenser is studied to obtain the effect of various parameters on its performance. A computer program describing the theoretical model is designed to solve one-dimensional differential equations by using Rung-Kutta method. The results show that the column length has a great effect on the performance of the spray condenser. At a column height of 2, 5,10, and 20 m the humidity of the outlet air decreases by 72, 89, 97, and 99% respectively. The humid air temperature has a great influence on the productivity; me an while the temperature difference between the humid air and sprayed water has less effect. A case study of a contiguous co-generation electricity and water in Nuclear Power Plants (NPP) shows that the optimal productivity by HDH is feasible and can reach more than 15 m"3 /day.m"2, enabling a total productivity that varied from 120,000 to 300,000 m"3 /day. The design curves describing the process are obtained together in addition to a formula for the optimal productivity in terms of humid air and sprayed water fluxes at different humid air temperatures is derived

  9. Design and development status of small and medium reactor systems 1995

    International Nuclear Information System (INIS)

    1996-05-01

    There is an increasing interest among Member States in the potential for deployment of smaller nuclear power plant units as energy sources for power production, heat generation, co-generation of heat and electricity, desalination, etc., and the IAEA has made an updated survey of the design and development status of small and medium power reactors (SMR) systems. This publication presents material submitted by different vendors and organizations and conclusions drawn from the discussions of these contributions at a number of consultants meetings and an Advisory Group meeting. In this context, it should be noted that the role of IAEA is not to promote any particular design or solution, but to provide a forum for the exchange of information, and to compile reports on the results of such information exchanges. The objectives of this report are to provide a balanced review of the current discussion on SMR potential and common features to both high level decision makers and technical managers. The report presents a review of the economic market and financial aspects of such systems. It also provides highlights of the incentives for the developments, as well as the main objectives and requirements currently under discussion in many Member States that are interested in nuclear power based on the deployment of small and medium power reactors. Refs, figs, tabs

  10. Economy Aspect for Nuclear Desalination Selection in Muria Peninsula

    International Nuclear Information System (INIS)

    Sudi, Ariyanto; Alimah, Siti

    2011-01-01

    An assessment of economy aspect for nuclear desalination selection has been carried out. This study compares the costs of water production for the Multi Stage Flash Distillation (MSF), Multi Effect Distillation (MED) and Reverse Osmosis (RO) desalination process coupled to PWR. Economic analysis of water cost are performed using the DEEP-3.1. The results of the performed case study of Muria Peninsula showed that the water cost to desalination process coupled with PWR nuclear power plant (at 5% interest rate, 2750 m 3 /day capacity, 28 o C temperature, 28.700 ppm TDS) with MSF plant is the highest (1.353 $/m 3 ), compared to 0.885 $/m 3 and 0.791 $/m 3 with the MED and RO plants respectively. As for MSF process, water cost by RO are also sensitive to variables, such as the interest rate, temperature and total salinity. However, MED process is sensitive to interest rate and temperature based on the economic aspect. MSF and MED plants produce a high-quality product water with a range of 1.0 - 50 ppm TDS, while RO plants produce product water of 200 - 500 ppm TDS. Water requirements for reactor coolant system in PWR type is about 1 ppm. Based on economic aspect and water requirements for reactor coolant system in PWR type, so co-generation of PWR and MED may be a favourable option for being applied in Muria Peninsula. (author)

  11. Interpretive focus groups: a participatory method for interpreting and extending secondary analysis of qualitative data.

    Science.gov (United States)

    Redman-MacLaren, Michelle; Mills, Jane; Tommbe, Rachael

    2014-01-01

    Participatory approaches to qualitative research practice constantly change in response to evolving research environments. Researchers are increasingly encouraged to undertake secondary analysis of qualitative data, despite epistemological and ethical challenges. Interpretive focus groups can be described as a more participative method for groups to analyse qualitative data. To facilitate interpretive focus groups with women in Papua New Guinea to extend analysis of existing qualitative data and co-create new primary data. The purpose of this was to inform a transformational grounded theory and subsequent health promoting action. A two-step approach was used in a grounded theory study about how women experience male circumcision in Papua New Guinea. Participants analysed portions or 'chunks' of existing qualitative data in story circles and built upon this analysis by using the visual research method of storyboarding. New understandings of the data were evoked when women in interpretive focus groups analysed the data 'chunks'. Interpretive focus groups encouraged women to share their personal experiences about male circumcision. The visual method of storyboarding enabled women to draw pictures to represent their experiences. This provided an additional focus for whole-of-group discussions about the research topic. Interpretive focus groups offer opportunity to enhance trustworthiness of findings when researchers undertake secondary analysis of qualitative data. The co-analysis of existing data and co-generation of new data between research participants and researchers informed an emergent transformational grounded theory and subsequent health promoting action.

  12. Development of mechanical design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were setup, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  13. Experiment on the use of a new source of renewable primary energy in Romania for rendering more efficient cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gheorghiu, Ioan Dan; Dragos, Gligor; Carabulea, A.; Popper, Laurentiu; Ungureanu, Ion

    2007-07-01

    The fuel renewing in the coal-running power plants, has been ordered by the competitive market mandatory prices of energy. The compliance with this restriction claims the decrease of fuels share to the energy cost from 75% to 35% by using a new type of fuel (corn) with a heat value ober 4,000 Kcal/Kg, compared with that of the coal, 1700 Kcal/Kg. This renewal applied to Romania, Oradea power plant has resulted in the following performances: reducing to half of the co-generation power costs, the thermal power produced from energy savings can heat, annually, 2.10{sup 6} apartments, the reconfiguration of human resource by the conversion of miners to corn-cultivating farmers, completely environment pollution diminishing the ash resulted from corn combustion, is a performing fertilizer for the cultivated corn. The technical-economic parameters, applied in this particular case to the experiment, show that the capital formation rate increases to 1.5 lei revenue/1 invested leu and the probable resources can be recovered, easily, from the annual resulted profits. (auth)

  14. Performance study of an innovative natural gas CHP system

    International Nuclear Information System (INIS)

    Fu, Lin; Zhao, Xiling; Zhang, Shigang; Li, Yan; Jiang, Yi; Li, Hui; Sun, Zuoliang

    2011-01-01

    In the last decade, technological innovation and changes in the economic and regulatory environment have resulted in increased attention to distributed energy systems (DES). Combined cooling heating and power (CHP) systems based on the gas-powered internal combustion engine (ICE) are increasingly used as small-scale distribution co-generators. This paper describes an innovative ICE-CHP system with an exhaust-gas-driven absorption heat pump (AHP) that has been set up at the energy-saving building in Beijing, China. The system is composed of an ICE, an exhaust-gas-driven AHP, and a flue gas condensation heat exchanger (CHE), which could recover both the sensible and latent heat of the flue gas. The steady performance and dynamic response of the innovative CHP system with different operation modes were tested. The results show that the system's energy utilization efficiency could reach above 90% based on lower heating value (LHV) of natural gas; that is, the innovative CHP system could increase the heat utilization efficiency 10% compared to conventional CHP systems, and the thermally activated components of the system have much more thermal inertia than the electricity generation component. The detailed test results provide important insight into CHP performance characteristics and could be valuable references for the control of CHP systems. The novel CHP system could take on a very important role in the CHP market. (author)

  15. Energy transition. A complete view on costs, performance, flexibility and prices of energies - Journal nr 11

    International Nuclear Information System (INIS)

    Boncorps, Jean-Claude; Larzilliere, Marc; Bomo, Nicole; Bruder, Michel; Buscailhon, Jean-Marie; Cappe, Daniel; DobiaS, Georges; Fregere, Jean-Pierre; Garipuy, Yves; Hougueres, Gerard; Martin, Jean-Loup; Mollard, Dominique; Moncomble, Jean-Eudes; Wiltz, Bruno; Roudier, Jacques

    2013-02-01

    This publication aims at proposing information on the issues of energy prices, of energy production costs and of energy delivery costs, and at showing their complexity while clearing up some wrong ideas about them. After an introduction on the addressed problematic, on information sources and on uncertainties, the authors give a general overview of the definitions of a cost, of a price, of primary, secondary and final energies, of user diversity and energy demand variation in time, of energy production variations in time, and present energy taxing in France and in the European Union, the CO 2 market, and energy savings in France in various sectors (transports, buildings, industry). Then, they address the various primary energies (coal, oil, natural gas, biomass, geothermal heat, thermal solar) and secondary energies (nuclear, hydroelectricity, ground-based wind energy, renewable sea energies, geothermal electricity, electricity grids, heat networks and co-generation) and discuss for each or some of them issues like: world market, costs and pricing, perspectives, resources and constraints, technologies

  16. Effects of long-term price increases for oil

    International Nuclear Information System (INIS)

    Voehringer, F.; Mueller, A.; Boehringer, C.

    2007-03-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the effects of higher oil prices in the long-term. Scenarios examined include those with high oil prices of 80 to 140 dollars per barrel and those with drastic shortages resulting from peak extraction in the years 2010 and 2020. Long-term economic balances form the basis of the report, short-term influences and psychological effects are not addressed. The possible dangers for the earth's climate caused by the substitution of oil by coal-based products are discussed, as well as the sequestration of carbon dioxide. Ethanol and the associated conflicts of land use are examined and the decreasing cost-effectiveness of co-generation power generation is looked at. Alternatives such as atomic power, hydropower, solar energy, geothermal energy, biogas and wind power are discussed. The effect of the changing energy scene on economic growth and welfare aspects in Switzerland are examined. The authors conclude that high oil prices have considerable impacts on the economy and are not a substitute for an internationally co-ordinated climate policy

  17. Scenarios for the popular initiatives 'Strom ohne Atom' (Electricity without nuclear power) and 'Moratorium Plus'

    International Nuclear Information System (INIS)

    Eckerle, K.; Haker, K.; Hofer, P.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the possible effects of two Swiss Popular Initiatives which called for the shutdown of nuclear power stations in Switzerland ('Strom ohne Atom'), the restriction of their operating life and the abstention from building new atomic power stations ('Moratorium Plus'). The report examines the energetic and financial consequences of the initiatives. The approaches used for the analysis are described and the energy policy actions required to avoid gaps in the supply of power after the possible closure of the power stations are discussed. Apart from a reference scenario (long-term utilisation of nuclear energy), scenarios for power generation using co-generation are presented. The problems posed by the resulting CO 2 and NO x emissions are discussed. Further scenarios review the contribution to be made by renewable sources of energy and increasing energy-conservation efforts. The costs of the shutdown of nuclear power stations are discussed and the results of a sensitivity analysis are presented

  18. Techno-Economic Assessment of Redundancy Systems for a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Majid Mohd Amin Abd

    2014-07-01

    Full Text Available The use of distributed power generation has advantage as well as disadvantage. One of the disadvantages is that the plant requires a dependable redundancy system to provide back up of power during failure of its power generation equipment. This paper presents a study on techno-economic assessment of redundancy systems for a cogeneration plant. Three redundancy systems were investigated; using public utility, generator set and gas turbine as back up during failures. Results from the analysis indicate that using public utility provides technical as well as economic advantages in comparison to using generator set or turbine as back up. However, the economic advantage of the public utility depends on the frequency of failures the plant will experience as well on the maximum demand charge. From the break even analysis of the understudied plant, if the number of failures exceeds 3 failures per year for the case of maximum demand charge of RM56.80, it is more economical to install a generator set as redundancy. The study will be useful for the co-generator operators to evaluate the feasibility of redundancy systems.

  19. Design features of SMART for barge mounted application

    International Nuclear Information System (INIS)

    Doo-Jeong Lee; Ju-Hyeon Yoon; Ju-Pyung Kim; Jong-In Kim; Moon-Hee Chang

    2000-01-01

    SMART is an integral reactor of 330 MWt capacity with passive safety features being developed for a wide range of applications including the barge mounted co-generation plant. Its design strives to combine the firmly-established commercial reactor design with new advanced technologies. Thus the use of the industry proven KOFA (Korea Optimized Fuel Assembly) based nuclear fuels is pursued while such radically new technologies as self-pressurizing pressurizer, helical once-through steam generators, and advanced control concepts are being developed. The safety of SMART centers around enhancing the inherent safety characteristics of the reactor and salient features include low core power density, integral arrangement to eliminate large break loss of coolant accident, etc. The progression of emergency situations into accidents is prevented with a number of advanced engineered safety features such as Passive Residual Heat Removal System, Passive Emergency Core Cooling System, Safeguard Vessel, Passive Containment Over-pressure Protection. This paper presents the status of current SMART development, characteristics of SMART safety systems and the possibility of SMART application to barge mounted environment. (author)

  20. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  1. Experiences and plans of portugal in developing energy markets

    International Nuclear Information System (INIS)

    Duic, N.; Carvalho, M. da G. S.

    2000-01-01

    portuguese government energy strategy concentrates on market opening, correction of distorted prices and gradual increase in competition as laid down by the European Union Directives. The national electricity system is divided into two segments, the public and the independent electric systems. Independent power producers are for the time being mainly producers in special regime (co-generation and renewables) and some hydropower plants, making 15% of the installed capacity. The IPP sell the generated electricity to the public system. The transmission is separated into special legal entity, and grid is open to all competitors. Since the beginning of 1999 all consumers that buy more than 9 GWh of electricity annually, so-called eligible customers, are free to chose their electricity provider. In the process of the local electric system restructuring the government decided to privatise 49,5% of the monopolist, EdP, floating most of 30% immediately on the local and international stock exchanges in the biggest Portuguese privatisation event so far, and selling the rest to institutional investors. Later, further 19,5% were similarly privatised. The introduction of natural gas in Portugal started in 1997 by giving local distribution concession and making big consumers eligible to buy directly from the monopolist importer and pipeline owner (GdP). The paper will show the results expected from gradual demonopolisation and privatisation of electric and gas systems in Portugal. (author)

  2. Climate protection in Mecklenburg-Vorpommern. A selection of innovative plants

    International Nuclear Information System (INIS)

    Behling, Hans

    2008-01-01

    The publication covers the following contributions: Competence centre RegioStrom Ivenack - sustainable solutions using renewable energy; The envelope power greenhouse - centre for technology transfer and product development at the solar centre Mecklenburg-Vorpommern in Wietow; cooling of crystalline solar cells by geothermal energy; regional economic cycles - sustainable development in the region Mueritz - biomass farm GbR Varchentin; wind power driven seawater desalination - WME pilot plant in Ruegen; heat recovery from bathroom exhaust air in high-rise buildings; world largest biomass power plant NAWARO in Mecklenburg-Vorpommern; hydrogen hybrid car - alternative traffic concepts for touristic centres - a development of ibz Hohen Luckow; the ''Klanghaus am See'' in Klein Jasedow - studio appropriate building appliances based on renewable energy; public utility Neutrelitz - biomass co-generation power plant; energy production from waste materials with innovative ESS (fluidized bed technology) - fluidized bed combustion of landfill gas; thermal usage of ground water for the heating and cooling base load supply of the MedClin Mueritz-Klinikum Waren; the ratiodomo Energy monitoring - energy saving by plant efficiency; ''heat from the forest'' for the Diakonisches Zentrum Serrahn

  3. Experimental investigations on the compatibility of a SNR-type corium with graphite

    International Nuclear Information System (INIS)

    Peehs, M.; Friedrich, H.J.; Heuvel, H.J.

    1976-01-01

    Tests on the compatibility between UO 2 -pellets, UO 2 /stainless steel mixtures (70 w/o UO 2 , 30 w/o SS) and graphite were carried out at 1600, 2000, and 2400 0 C. The test duration was 0.5 h. UO 2 -pellets are only completely converted to carbides at 2400 0 C, when liquid U-carbide phases occur. In the presence of SS the liquefaction temperature was lowered to 2000 0 C. The conversion rates in the case of UO 2 -liquefaction as indicated by the corresponding CO-generation are high. The interactions are completed within a quarter of an hour. Apart from the release of O in the form of CO, the pick-up of C and the evaporation losses at the highest temperatures no significant changes in the chemical composition could be found. Post melting analyses by microsections, microprobe and X-ray investigations detected UFeC 2 -phases and carbides from the M 7 C 3 -type together with austenite. A thermodynamic evaluation revealed that the C-activity of the melts after UO 2 -liquefaction is nearly 1

  4. Mechanism of protection of bystander cells by exogenous carbon monoxide: Impaired response to damage signal of radiation-induced bystander effect

    Energy Technology Data Exchange (ETDEWEB)

    Han, W. [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Wu, L.J. [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Y.C. [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029 (China); Wang, H.Z. [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2011-05-10

    A protective effect of exogenous carbon monoxide (CO), generated by CO releasing molecule ticarbonyldichlororuthenium (II) dimer (CORM-2), on the bystander cells from the toxicity of radiation-induced bystander effect (RIBE) was revealed in our previous study. In the present work, a possible mechanism of this CO effect was investigated. The results from medium transfer experiments showed that {alpha}-particle irradiated Chinese hamster ovary (CHO) cells would release nitric oxide (NO), which was detected with specific NO fluorescence probe, to induce p53 binding protein 1 (BP1) formation in the cell population receiving the medium, and the release peak was found to be at 1 h post irradiation. Treating the irradiated or bystander cells separately with CO (CORM-2) demonstrated that CO was effective in the bystander cells but not the irradiated cells. Measurements of NO production and release with a specific NO fluorescence probe also showed that CO treatment did not affect the production and release of NO by irradiated cells. Protection of CO on cells to peroxynitrite, an oxidizing free radical from NO, suggested that CO might protect bystander cells via impaired response of bystander cells to NO, a RIBE signal in our research system.

  5. Pioneering SUPER - Small Unit Passively-safe Enclosed Reactor - 15559

    International Nuclear Information System (INIS)

    Bhownik, P.K.; Gairola, A.; Shamim, J.A.; Suh, K.Y.; Suh, K.S.

    2015-01-01

    This paper presents the basic features of the Small Unit Passively-safe Enclosed Reactor abbreviated as SUPER, a new reactor system that has been designed and proposed at the Seoul National University's Department of Energy Systems Engineering. SUPER is a small modular reactor system or SMR that is cooled by sub-cooled as well as supercritical water. As a new member of SMRs, SUPER is a small-scale nuclear plant that is designed to be factory-manufactured and shipped as modules to be assembled at a site. The concept offers promising answers to many questions about nuclear power including proliferation resistance, waste management, safety, and startup costs. SUPER is a customized paradigm of a supercritical water reactor or SCWR, a type sharing commonalities with the current fleet of light water reactors, or LWRs. SUPER has evolved from the System-integrated Modular Advance Reactor, or SMART, being developed at the Korea Atomic Energy Research Institute, or KAERI. SUPER enhanced the safety features for robustness, design/equipment simplification for natural convection, multi-purpose application for co-generation flexibilities, suitable for isolated or small electrical grids, just-in-time capacity addition, short construction time, and last, but not least, lower capital cost per unit. The primary objectives of SUPER is to develop the conceptual design for a safe and economic small, natural circulation SCWR, to address the economic and safety attributes of the concept, and to demonstrate its technical feasibilities. (authors)

  6. Evaluation of environmental impact produced by different economic activities with the global pollution index.

    Science.gov (United States)

    Zaharia, Carmen

    2012-07-01

    The paper analyses the environment pollution state in different case studies of economic activities (i.e. co-generation electric and thermal power production, iron profile manufacturing, cement processing, waste landfilling, and wood furniture manufacturing), evaluating mainly the environmental cumulative impacts (e.g. cumulative impact against the health of the environment and different life forms). The status of the environment (air, water resources, soil, and noise) is analysed with respect to discharges such as gaseous discharges in the air, final effluents discharged in natural receiving basins or sewerage system, and discharges onto the soil together with the principal pollutants expressed by different environmental indicators corresponding to each specific productive activity. The alternative methodology of global pollution index (I (GP)*) for quantification of environmental impacts is applied. Environmental data analysis permits the identification of potential impact, prediction of significant impact, and evaluation of cumulative impact on a commensurate scale by evaluation scores (ES(i)) for discharge quality, and global effect to the environment pollution state by calculation of the global pollution index (I (GP)*). The I (GP)* values for each productive unit (i.e. 1.664-2.414) correspond to an 'environment modified by industrial/economic activity within admissible limits, having potential of generating discomfort effects'. The evaluation results are significant in view of future development of each productive unit and sustain the economic production in terms of environment protection with respect to a preventive environment protection scheme and continuous measures of pollution control.

  7. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik

    2015-01-01

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized

  8. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania

  9. Nuclear source of district heating in the north-east region of Russia

    International Nuclear Information System (INIS)

    Dolgov, V.V.

    1998-01-01

    The operation of the Bilibin Nuclear Co-generation Plant (BNCP) as a local district heating source is reviewed in this paper. Specific features of the BNCP power unit are given with special emphases on the components of the technological scheme, which are involved in the heat production and supply to the consumers. The scheme of steam extraction from the turbine, the flow diagram of steam in the turbine, as well as the three circuit heat removal system are described. The numerical characteristics of the nuclear heat supply system in various operating modes are presented. The real information characterizing current radiological conditions in the vicinity of the heat generation and distribution equipment is also presented in the paper. The BNCP technical and economical characteristics are compared with those of conventional energy sources. Both advantages and some problems revealed during the twenty-year experience of the BNCP nuclear heat utilization are generally assessed. Safety and reliability characteristics of the reactor and the heat supply system are also described. (author)

  10. Advanced marine reactor MRX and application to nuclear barge supplying electricity and heat

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Odano, Naoteru; Yoritsune, Tsutomu; Fukuhara, Yoshifumi; Ochiai, Masa-aki

    2000-01-01

    The basic design concept of an advanced marine reactor MRX has been established with adoption of several new technologies. The MRX is an integral-type PWR with 100 MWt aimed basically for use of ship propulsion. Adoption of a water-filled containment together with the integral type reactor makes the reactor light-weight and compact greatly. A engineered safety system is a simplified passive system, function of which is confirmed by the safety analysis. The MRX can be applied to an energy supply system of electricity and heat co-generation by installing it on a barge. Concept of a nuclear barge with the MRX of 334 MWt output is presented for use of supplying electricity, fresh water and hot water. Combined system of electric generation and desalination with the RO process can deliver variable output of electricity and fresh water according a demand. Latent heat of the exhausted steam from the turbine can be used effectively to raise the temperature of cold water as heat supply. (author)

  11. Tri generation with combined cycle, HVAC and desalinisation; Trigeneracion con ciclo combinado, climatizacion y desalacion

    Energy Technology Data Exchange (ETDEWEB)

    Cuviella Suarez, C.

    2008-07-01

    The current need of mankind to seek for new ways of efficient usable controllable energy production from the economic and environmental points of view is obvious. The current trend towards renewable energies, states this fact though it is not the definitive solution. This is why a fundamental step in saving energy is to prevent any misuse or unnecessary energy consumption. Co-generation, with all its variants, is an answer to this problem through the use of the residual thermal energy within electrical production as an usable product instead of as waste to be dissipated in a thermodynamic cooling process in an approximate ratio of 2:1. The basis of the approach is to optimize the management of thermal energy produced during electricity generation to prevent other fuel firing consumptions which can be assumed as heating, air conditioning, desalinisation, industrial processes, etc. The profusion of tinstallations of this kind would imply a gross saving of 60% of the general primary fuel(Author)

  12. Study of fuel spray characteristics for premixed lean diesel combustion; Kihaku yokongo diesel kikan ni okeru nenryo funmu keisei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S.; Miyamoto, T.; Harada, A.; Akagawa, H.; Tsujimura, K. [New ACE Institute Co. Ltd., Tokyo (Japan)

    1998-05-01

    A study is being made on premixed lean diesel combustion (PREDIC) by means of early fuel injection in diesel engines. The PREDIC makes it possible to largely reduce NOx emission, but has such problems as ignition control and increase in THC and CO generation. In order to clarify the relationship between fuel spray characteristics in the PREDIC and properties of gas mixture and exhausts, the present study has investigated spread and internal structure of the spray by means of spray observation experiment using a pintle swirl nozzle. Based on the result therefrom, simulations were used to investigate effects of spatial dispersion characteristics of the spray on properties of the gas mixture and exhausts before ignition. The pintle swirl nozzle forms conical spray having an air layer inside the spray, where penetration is suppressed even under low atmospheric pressure. By forming hollow spray or solid spray in the conical spray, a possibility was indicated that equivalent ratio distribution of the gas mixture can be controlled and NO emission may be reduced. 8 refs., 12 figs., 1 tab.

  13. Economic Aspect for Nuclear Desalination Selection in Muria Peninsula

    International Nuclear Information System (INIS)

    Sudi, Ariyanto; Alimah, Siti

    2011-01-01

    An assessment of economy aspect for nuclear desalination selection has been carried out. This study compares the costs of water production for the Multi Stage Flash Distillation (MSF), Multi Effect Distillation (MED) and Reverse Osmosis (RO) desalination process coupled to PWR. Economic analysis of water cost are performed using the DEEP-3.1. The results of the performed case study of Muria Peninsula showed that the water cost to desalination process coupled with PWR nuclear power plant (at 5% interest rate, 2750 m 3 /day capacity, 28 o C temperature, 28.700 ppm TDS) with MSF plant is the highest (1.353 $/m 3 ), compared to 0.885 $/m 3 and 0.791 $/m 3 with the MED and RO plants respectively. As for MSF process, water cost by RO are also sensitive to variables, such as the interest rate, temperature and total salinity. However, MED process is sensitive to interest rate and temperature based on the economic aspect. MSF and MED plants produce a high-quality product water with a range of 1.0 - 50 ppm TDS, while RO plants produce product water of 200 - 500 ppm TDS. Water requirements for reactor coolant system in PWR type is about 1 ppm. Based on economic aspect and water requirements for reactor coolant system in PWR type, so co-generation of PWR and MED may be a favourable option for being applied in Muria Peninsula. (author)

  14. Distance determination of NPP and oil reservoir on enhanced oil recovery based on heat loss and safety in view point

    International Nuclear Information System (INIS)

    Erlan Dewita; Dedy Priambodo; Sudi Ariyanto

    2013-01-01

    EOR is a method used to increasing oil recovery by injecting material or other to the reservoir. There are 3 EOR technique have been used in the world, namely thermal injection, chemical injection dan Miscible. Thermal injection method is the method most widely used in the world, however, one drawback is the loss of heat during steam distribution to the injection wells. In Indonesia, EOR application has been successfully done in the field of Duri, Chevron uses steam injection method, but still use petroleum as a fuel for steam production. In order to save oil reserves, it was done the introduction of co-generation nuclear power plants to supply some of the heat of nuclear power plants for EOR processes. In cogeneration nuclear power plant, the safety aspect is main priority. The purpose of the study was to evaluate the distance NPP with oil wells by considering heat loss and safety aspects. The method of study and calculations done using Tempo Cycle program. The study results showed that in the distance of 400 meter as exclusion zone of PBMR reactor, with pipe insulation thickness 1 in, the amount of heat loss of 277, 883 kw, while in pipe isolation thickness 2 in, amount of heat loss became 162,634 kw and with isolation thickness 3 in, amount of heat loss 120,767 kw., heat loss can be overcome and provide insulation pipes and improve the quality of saturated steam into superheated. (author)

  15. Offshore Energy Mapping for Northeast Atlantic and Mediterranean: MARINA PLATFORM project

    Science.gov (United States)

    Kallos, G.; Galanis, G.; Spyrou, C.; Kalogeri, C.; Adam, A.; Athanasiadis, P.

    2012-04-01

    Deep offshore ocean energy mapping requires detailed modeling of the wind, wave, tidal and ocean circulation estimations. It requires also detailed mapping of the associated extremes. An important issue in such work is the co-generation of energy (generation of wind, wave, tides, currents) in order to design platforms on an efficient way. For example wind and wave fields exhibit significant phase differences and therefore the produced energy from both sources together requires special analysis. The other two sources namely tides and currents have different temporal scales from the previous two. Another important issue is related to the estimation of the environmental frequencies in order to avoid structural problems. These are issues studied at the framework of the FP7 project MARINA PLATFORM. The main objective of the project is to develop deep water structures that can exploit the energy from wind, wave, tidal and ocean current energy sources. In particular, a primary goal will be the establishment of a set of equitable and transparent criteria for the evaluation of multi-purpose platforms for marine renewable energy. Using these criteria, a novel system set of design and optimisation tools will be produced addressing new platform design, component engineering, risk assessment, spatial planning, platform-related grid connection concepts, all focussed on system integration and reducing costs. The University of Athens group is in charge for estimation and mapping of wind, wave, tidal and ocean current resources, estimate available energy potential, map extreme event characteristics and provide any additional environmental parameter required.

  16. Design and development status of small and medium reactor systems 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    There is an increasing interest among Member States in the potential for deployment of smaller nuclear power plant units as energy sources for power production, heat generation, co-generation of heat and electricity, desalination, etc., and the IAEA has made an updated survey of the design and development status of small and medium power reactors (SMR) systems. This publication presents material submitted by different vendors and organizations and conclusions drawn from the discussions of these contributions at a number of consultants meetings and an Advisory Group meeting. In this context, it should be noted that the role of IAEA is not to promote any particular design or solution, but to provide a forum for the exchange of information, and to compile reports on the results of such information exchanges. The objectives of this report are to provide a balanced review of the current discussion on SMR potential and common features to both high level decision makers and technical managers. The report presents a review of the economic market and financial aspects of such systems. It also provides highlights of the incentives for the developments, as well as the main objectives and requirements currently under discussion in many Member States that are interested in nuclear power based on the deployment of small and medium power reactors. Refs, figs, tabs.

  17. Special COP 21 - Stakes and actors

    International Nuclear Information System (INIS)

    Chauveau, Loic; Dupain, Julien; Descamps, Olivier; Blosseville, Thomas; Connors, Anne; Canto, Albane; Robischon, Christian; Boedec, Morgan; Tubiana, Fabian; Bomstein, Dominique

    2015-01-01

    A first set of article comments and discusses the various stakes and challenges of the 21. Conference of Parties (COP 21): the negotiation process which resulted in a synthesis which is to be signed by 95 States in Paris, the elaboration of an Agenda of solutions with the commitment of enterprises and local authorities, the issue of international financing as some promises remained not kept for the support to adaptation of developing countries. A second set of articles addresses the involved actors and their technological or economic challenges: the needed evolution of energy (electricity, heat, gas, fuel) producers away from fossil energies to reduce greenhouse gas emissions, the strategy of the French company Engie in the field of photovoltaic, wind and more generally renewable energies, innovating trends of decentralisation of energy production (offshore wind energy, hydrogen, plasma torch, flexible photovoltaic arrays, the wind tree, the floating wind turbine, new technologies for solar arrays), the perspectives for industrial sectors concerned by energy transition (with the example of Schneider Electric), emerging technologies (oil lamp, new boilers, desalination equipment, storage of wind energy, co-generation), developments and perspectives in the transport sector (example of Renault, new technologies for hybrid propulsion, bio-refineries, reduction of fuel consumption, hybrid aircraft, and heat management in railways) and in the building sector (new standards and applications, new building materials). A last article outlines the threat that climate can be for profitability and the taking of the carbon risk into account by the insurance and financial sectors

  18. Hydrogen - A new green energy

    International Nuclear Information System (INIS)

    Barnu, Franck

    2013-01-01

    A set of articles proposes an overview of the role hydrogen might have as energy in the energy transition policy, a review of different areas of research related to the hydrogen sector, and presentations of some remarkable innovations in different specific fields. Hydrogen might be an asset in energy transition because production modes (like electrolysis) result in an almost carbon-free or at least low-carbon hydrogen production. Challenges and perspectives are evoked: energy storage for intermittent energies (the MYRTE platform), the use of a hydrogen-natural mix (GRHYD program), the development of fuel cells for transport applications, and co-generation (Japan is the leader). Different French research organisations are working on different aspects and areas: the H2E program by Air Liquide, fuel cell technologies by GDF Suez, power electrolyzers and cells by Areva. Some aspects and research areas are more specifically detailed: high temperature electrolysis (higher efficiencies, synthesis of methane from hydrogen), fuel cells (using less platinum, and using ceramics for high temperatures), the perspective of solid storage solutions (hydrogen bottles in composite materials, development of 'hydrogen sponges', search for new hydrides). Innovations concern a project car, storage and production (Greenergy Box), the McPhy Energy storage system, an electric bicycle with fuel cell, easy to transport storage means by Air Liquide and Composites Aquitaine, development of energy autonomy, fuel cells for cars, electrolyzers using the Proton Exchange Membrane or PEM technology

  19. Gasolimp: biodegradable protector for gasoline pumps; Gasolimp: protetor biodegradavel para bomba de gasolina

    Energy Technology Data Exchange (ETDEWEB)

    Vinas Cortez, Juan Carlos [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Psicologia. Setor Organizacional do Trabalho

    2004-07-01

    It is made from an absorbent material that has natural fibers and cellulose in its composition. The polyurethane bio-foam presented excellent levels of absorption of the toxic residues left by gasoline such as carbon monoxide, hydrocarbons, oxygen, nitrogen and sulfur. All the materials used in the composition of Gasolimp are biodegradable. After a four-year research period we found out that from five to eight drops of gasoline are spilt at the moment that car pump is being filled up and they end up either in the cloth the attendant holds in his hand, on his hand, on his clothes, on the car paint or on the soil. The research shows that the toxic effects the gasoline hydrocarbons cause health problems to the attendants such as headaches, lesions on their hands and eyes, dizziness, gastro-intestine problems, heart palpitation, breathing problems and can even affect the central nerve system. The final use of the product has the utmost importance: after thirty days of use Gasolimp must be replaced and when re-used it may be sent to mills and earthenware factories and there it will function as a product that will co-generate power. (author)

  20. Bidirectional decentralized energy management in the low voltage grid based on centralized and decentralized informations; Bidirektionales dezentrales Energiemanagement im Niederspannungsnetz auf Basis zentraler und dezentraler Informationen

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, C.; Nestle, D.; Ringelstein, J. [Inst. fuer Solare Energieversorgungstechnik e.V., Verein an der Univ. Kassel (Germany)

    2006-07-01

    Decentralized electrical generation units (DG units) are connected to the network in Europe with an increasing number and generation capacity. This includes renewable energy sources with fluctuating generation characteristics as well as more controllable generation from biomass and co-generation. Severe problems with grid operation are expected among experts when the share of DG without controllability exceeds approx. 20 to 25% of the total generation within the power system, so a new strategy for the integration of DG into grid operation will be required. This strategy will include energy management with controllable generators as well as controllable loads. Today, however, this potential in most cases cannot be activated due to lack of standards and missing economical incentives. In the concept presented in this work the grid connection point is extended by intelligent components to a Bidirectional Energy Management Interface (BEMI). This allows a technically efficienct design of an energy management system and avoids fundamental organizational changes to the current grid regime. The concept of decentralized decision based on information from a central control station covers the requirements of the system operators as well as the local customer. Using the same concept the management of a pool of devices, containing BEMI-equipped households as well as other decentralized resources is possible. This is expected to bring additional benefits for both system operators and local customers. Therefore an approach for upscaling the existing BEMI technology is outlined as an outlook. (orig.)

  1. Fluid Petri Nets and hybrid model-checking: a comparative case study

    International Nuclear Information System (INIS)

    Gribaudo, M.; Horvath, A.; Bobbio, A.; Tronci, E.; Ciancamerla, E.; Minichino, M.

    2003-01-01

    The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain conformity and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures). This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid systems based on Fluid Petri Nets (FPNs). FPNs can be analyzed directly using appropriate tools. Our paper shows that the same FPN model can be fed to different functional analyzers for model checking. In order to extensively explore the capability of the technique, we have converted the original FPN into languages for discrete as well as hybrid as well as stochastic model checkers. In this way, a first comparison among the modeling power of well known tools can be carried out. Our approach is illustrated by means of a 'real world' hybrid system: the temperature control system of a co-generative plant

  2. Critical dialogical approach: A methodological direction for occupation-based social transformative work.

    Science.gov (United States)

    Farias, Lisette; Laliberte Rudman, Debbie; Pollard, Nick; Schiller, Sandra; Serrata Malfitano, Ana Paula; Thomas, Kerry; van Bruggen, Hanneke

    2018-05-03

    Calls for embracing the potential and responsibility of occupational therapy to address socio-political conditions that perpetuate occupational injustices have materialized in the literature. However, to reach beyond traditional frameworks informing practices, this social agenda requires the incorporation of diverse epistemological and methodological approaches to support action commensurate with social transformative goals. Our intent is to present a methodological approach that can help extend the ways of thinking or frameworks used in occupational therapy and science to support the ongoing development of practices with and for individuals and collectives affected by marginalizing conditions. We describe the epistemological and theoretical underpinnings of a methodological approach drawing on Freire and Bakhtin's work. Integrating our shared experience taking part in an example study, we discuss the unique advantages of co-generating data using two methods aligned with this approach; dialogical interviews and critical reflexivity. Key considerations when employing this approach are presented, based on its proposed epistemological and theoretical stance and our shared experiences engaging in it. A critical dialogical approach offers one way forward in expanding occupational therapy and science scholarship by promoting collaborative knowledge generation and examination of taken-for-granted understandings that shape individuals assumptions and actions.

  3. Proceedings of Synergy 1998 : Canada's energy congress

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this conference was to help energy companies understand what deregulation of the electricity industry means and to meet the challenges of the increasingly competitive and volatile market environment that will inevitably follow deregulation. Accordingly, individual speakers and panels addressed the likely impacts of deregulation on energy markets, strategies to capitalize on restructuring, world market developments in the post monopoly era, strategies for gas buyers, and new opportunities for small co-generation companies and independent power producers using natural gas. Other topics dealt with included predictions about the role of the regulator in the new electricity market, the allocation of stranded costs, and the effects of FERC ruling in the USA on competition in Canada. Consumer concerns were also addressed by presentations about the bottom line for consumers, the operation of the Independent Market Operator, the influence of major power consumers on restructuring, the question of reliability in the new regime, and the effects of convergence. Experiences gained with industry restructuring in California, in the United Kingdom, in the New England States, in Scandinavian countries and in New Zealand were also reviewed as background for understanding the restructuring about to go into effect in various provinces of Canada. tabs., figs

  4. Role of nuclear and other energy sources in the Cuban electricity grid

    International Nuclear Information System (INIS)

    Lopez, I.; Perez, D.

    2000-01-01

    Energy options to cover electricity demand in Cuba for next years are limited. Expected increase in the oil companion gas, domestic crude oil production and biomass co-generation can not cover the 3-4% growth of the electricity demand. An important option could be the conclusion of Juragua Nuclear Power Plant. The paper presents the country energy supply situation for electricity generation and how can be covered the electricity demand forecast until 2015. A short description of the methodology, to evaluate the expansion of the electricity system using DECADES tools is presented. Results of the optimal expansion plan considering the introduction of NPP in combination with increase in the use of renewable sources is analyzed in the framework of small country electricity grid from economical and environmental point of view. Finally, in the conclusions the paper shows the role of NPP to cover electricity demand and in the reduction of Greenhouse Gas emissions. The contribution of renewable energy sources to these objectives is also presented. (author)

  5. China: to invest in energy management. Proceedings of the French-Chinese seminar, Chengdu (Sichuan), 2006

    International Nuclear Information System (INIS)

    Bourguinat, Elisabeth; Gromard, Christian de; Breton, Herve; Francoz, Eric J.F.; Richard, Christophe; Henry, Alain; Xuhong, Liu; Henry, Alain; Yaping, Li; Dumasy, Jacques; Fabre, Thibaut; Lopez, Jose; Yazhong, Liu; Wenbin, Lu; Huang, Zhou; Plazy, Jean-Louis; Irigoin, Michel; Raoust, Michel; Devillier, Thierry; Jianping, Chen; Mezghani, Mohamed; Delcroix, Jean; Gerbeaux, Jean-Marie; Yande, Dai; Mulet, Jean-Charles; Junfeng, Li; Crepon, Olivier; Tournaye, Dominique; Thornald Decrop, Louis

    2008-01-01

    Energy management encompasses demand regulation (energy sobriety), efficiency improvements (energy efficiency), and the promotion of renewable energies. After opening speeches, a first set of contributions addressed methodological issues and status of energy management, with notably a characterisation of investments in energy efficiency (organisation per sector, economic elaboration combining regulative and financial measures, combination of incentive measures to correct market insufficiencies), an overview of R and D activities in France, a discussion of lessons learned for emerging countries for the experience of energy efficiency in Europe, an overview of actions and investments in China, and of the Chinese policy for renewable energies. The next sessions addressed various themes like urban organisation (energy efficient cities, actions by the AFD, twenty years of energy efficiency in Montpellier in France), the building sector (thermal rehabilitation, equipment and training in China, heat pumps and energy storage), the transport sector (urban transport, reduction of emissions by urban transport, railways), the industrial sector, the production of renewable or efficient energy (promotion of renewable energies in European grids, market perspectives in China). Some case studies are then reported: tri-generation in Montpellier, the revival of small hydraulic plants, development of geothermal energy in France and opportunities in China, coal-bagasse co-generation in France and Maurice Island. The last part addressed financial tools for a high energy quality in China

  6. Activities in the field of small nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baranaev, Yu.D.; Dolgov, V.V.; Sergeev, Yu.A. [Physics and Power Eng. Inst., Obninsk (Russian Federation). State Res. Centre

    1997-10-01

    Considerable efforts have been undertaken for development, design, construction and operation of small nuclear power plants (SNPP) in Russia. Systematic work in this area was started in the mid-1950s. The driving force for this activity was the awareness that the use of nuclear fuel would practically solve the problem of fuel transportation. As far as the remote northern regions are concerned, this provides the key advantage of nuclear over conventional energy sources. The activity in the field of SNPP has included pre-design analytical feasibility studies and experimental research including large-scale experiments on critical assemblies, thermal and hydraulic test facilities, research and development work, construction and operation of pilot and demonstration SNPPs, and finally, construction and more than 20 years of operation of the commercial SNPP, namely Bilibino nuclear co-generation plant (NCGP) located in Chukotka autonomous district, which is one of the most remote regions in the far north-east of Russia. In recent years, studies have been carried out on the development of several new SNPP designs using advanced reactors of the new generation. Among these are the second stage of Bilibino NCGP, floating NCGP VOLNOLOM-3, designated for siting in the Arctic sea coast area, and a nuclear district heating plant for the town of Apatity, in the Murmansk region. In this paper, the background and current status of the SNPPs are given, and the problems as well as prospects of small nuclear reactors development and implementation are considered. (orig.) 20 refs.

  7. Impact of single versus multiple policy options on the economic feasibility of biogas energy production: Swine and dairy operations in Nova Scotia

    International Nuclear Information System (INIS)

    Brown, Bettina B.; Yiridoe, Emmanuel K.; Gordon, Robert

    2007-01-01

    The economic feasibility of on-farm biogas energy production was investigated for swine and dairy operations under Nova Scotia, Canada farming conditions, using net present value (NPV), internal rate of return (IRR), and payback period (PP) economic decision criteria. In addition, the effects of selected environmental and 'green' energy policy schemes on co-generation of on-farm biogas energy production and other co-benefits from anaerobic digestion of livestock manure were investigated. Cost-efficiencies arising from economies of scale for on-farm anaerobic biogas production were found for swine farms, and less so for dairy production systems. Without incentive schemes, on-farm biogas energy production was not economically feasible across the farm size ranges studied, except for 600- and 800-sow operations. Among single policy schemes investigated, green energy credit policy schemes generated the highest financial returns, compared to cost-share and low-interest loan schemes. Combinations of multiple policies that included cost-share and green energy credit incentive schemes generated the most improvement in financial feasibility of on-farm biogas energy production, for both swine and dairy operations

  8. Future Energy Benchmark for Desalination: Is it Better to have a Power (Electricity) Plant With RO or MED/MSF?

    KAUST Repository

    Shahzad, Muhammad Wakil

    2016-06-23

    Power and desalination cogeneration plants are common in many water scared courtiers. Designers and planners for cogeneration face tough challenges in deciding the options:- Is it better to operate a power plant (PP) with the reverse osmosis (i.e., PP+RO) or the thermally-driven multi-effect distillation/multi-stage flashed ( PP+MED/MSF) methods. From literature, the RO methods are known to be energy efficient whilst the MED/MSF are known to have excellent thermodynamic synergies as only low pressure and temperature steam are used. Not with-standing the challenges of severe feed seawater of the Gulf, such as the frequent harmful algae blooms (HABs) and high silt contents, this presentation presents a quantitative analyses using the exergy and energetic approaches in evaluating the performances of a real cogeneration plant that was recently proposed in the eastern part of Saudi Arabia. We demonstrate that the process choice of PP+RO versus PP+MED depends on the inherent efficiencies of individual process method which is closely related to innovative process design. In this connection, a method of primary fuel cost apportionment for a co-generation plant with a MED desalination is presented. We show that an energy approach, that captures the quality of expanding steam, is a better method over the conventional work output (energetic) and the energy method seems to be over-penalizing a thermally-driven MED by as much as 22% in the operating cost of water.

  9. Risk averse optimal operation of a virtual power plant using two stage stochastic programming

    International Nuclear Information System (INIS)

    Tajeddini, Mohammad Amin; Rahimi-Kian, Ashkan; Soroudi, Alireza

    2014-01-01

    VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mixed integer linear programming in order to maximize a GenCo (generation companies) expected profit. Furthermore, the CVaR (Conditional Value at Risk) is used as a risk measure technique in order to control the risk of low profit scenarios. The uncertain parameters, including the PV power output, wind power output and day-ahead market prices are modelled through scenarios. The proposed model is successfully applied to a real case study to show its applicability and the results are presented and thoroughly discussed. - Highlights: • Virtual power plant modelling considering a set of energy generating and conversion units. • Uncertainty modelling using two stage stochastic programming technique. • Risk modelling using conditional value at risk. • Flexible operation of renewable energy resources. • Electricity price uncertainty in day ahead energy markets

  10. Potential of low-temperature nuclear heat applications

    International Nuclear Information System (INIS)

    1986-12-01

    At present, more than one third of the fossil fuel currently used is being consumed to produce space heating and to meet industrial needs in many countries of the world. Imported oil still represents a large portion of this fossil fuel and despite its present relatively low price future market evolutions with consequent upward cost revisions cannot be excluded. Thus the displacement of the fossil fuel by cheaper low-temperature heat produced in nuclear power plants is a matter which deserves careful consideration. Technico-economic studies in many countries have shown that the use of nuclear heat is fully competitive with most of fossil-fuelled plants, the higher investment costs being offset by lower production cost. Another point in favour of heat generation by nuclear source is its indisputable advantage in terms of benefits to the environment. The IAEA activity plans for 1985-86 concentrate on information exchange with specific emphasis on the design criteria, operating experience, safety requirements and specifications of heat-only reactors, co-generation plants and existing power plants backfitted for additional heat applications. The information gained up to 1985 was discussed during the Advisory Group Meeting on the Potential of Low-Temperature Nuclear Heat Applications held in the Federal Institute for Reactor Research, Wuerenlingen, Switzerland in September 1985 and, is included in the present Technical Document

  11. Low-temperature nuclear heat applications: Nuclear power plants for district heating

    International Nuclear Information System (INIS)

    1987-08-01

    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  12. Liquid fuel from biomass

    International Nuclear Information System (INIS)

    Breinholt, T.; Gylling, M.; Parsby, M.; Meyer Henius, U.; Sander Nielsen, B.

    1992-09-01

    Various options for Danish production of liquid motor fuels from biomass have been studied in the context of the impact of EEC new common agricultural policy on prices and production quantities of crops, processes and production economy, restraints concerning present and future markets in Denmark, environmental aspects, in particular substitution of fossil fuels in the overall production and end-use, revenue loss required to assure competition with fossil fuels and national competence in business, industry and research. The options studied are rapeseed oil and derivates, ethanol, methanol and other thermo-chemical conversion products. The study shows that the combination of fuel production and co-generation of heat and electricity carried out with energy efficiency and utilization of surplus electricity is important for the economics under Danish conditions. Considering all aspects, ethanol production seems most favorable but in the long term, pyrolyses with catalytic cracking could be an interesting option. The cheapest source of biomass in Denmark is straw, where a considerable amount of the surplus could be used. Whole crop harvested wheat on land otherwise set aside to be fallow could also be an important source for ethanol production. Most of the options contribute favorably to reductions of fossil fuel consumption, but variations are large and the substitution factor is to a great extent dependent on the individual case. (AB) (32 refs.)

  13. Canadian Association of Petroleum Producers voluntary challenge action plans - 1996 progress report

    International Nuclear Information System (INIS)

    1996-01-01

    The Canadian Association of Petroleum Producers (CAPP) has helped 85 of its' 170 member companies to develop climate change management policies. CAPP believes that participation through a voluntary approach allows for the development of creative, cost-effective solutions without the associated costs of regulatory measures for government and industry. Industry efforts to reduce greenhouse gases have focused primarily on five areas. These were: (1) energy efficiency, (2) methane capture and recovery, (3) acid gas injection, (4) co-generation, (5) and other actions. Petroleum industry accomplishment in 1996 were reported. In terms of future plans, it was asserted that CAPP member companies will continue to broaden and deepen their commitment to the voluntary challenge. Technological enhancements that increase production efficiency, also have the potential to reduce greenhouse gas emissions, and for this reason, CAPP will undertake assessment of their greenhouse gas emission potential. Further, it was noted that greenhouse gas (GHG) emissions from the upstream petroleum industry will likely increase because overall production is expected to increase through the year 2000. However, much of this increased production will be exported to the United States, and will help them to reduce their carbon and greenhouse gas emissions. Since climate change is a global issue, it requires global solutions, hence increasing production efficiency may be viewed as an appropriate response to the climate change issue. Statistical information regarding Canada's natural gas and crude oil production, and the impact that the VCR program has had on the industry to date, was reviewed. 13 tabs., 7 figs

  14. Prospects for the utilization of small nuclear plants for civil ships, floating heat and power stations and power seawater desalination complexes

    International Nuclear Information System (INIS)

    Polunichev, V.I.

    2000-01-01

    Small power nuclear reactor plants developed by OKB Mechanical Engineering are widely used as propulsion plants in various civil ships. Russia is the sole country in the world that possesses a powerful icebreaker and transport fleet which offers effective solution for vital socio-economic tasks of Russia's northern regions by maintaining a year-round navigation along the Arctic sea route. In the future, intensification of freighting volumes is expected in Arctic seas and at estuaries of northern rivers. Therefore, further replenishment of nuclear-powered fleet is needed by new generation ice-breakers equipped with advanced reactor plants. Adopted progressive design and technology solutions, reliable equipment and safety systems being continuously perfected on the basis of multi year operation experience feedback, addressing updated safety codes and achievement of science and technology, allow the advanced propulsion reactor plants of this type to be recommended as energy sources for floating heat and power co-generation stations and power-seawater desalination complexes. (author)

  15. Electricity and combined heat and power from municipal solid waste; theoretically optimal investment decision time and emissions trading implications.

    Science.gov (United States)

    Tolis, Athanasios; Rentizelas, Athanasios; Aravossis, Konstantin; Tatsiopoulos, Ilias

    2010-11-01

    Waste management has become a great social concern for modern societies. Landfill emissions have been identified among the major contributors of global warming and climate changes with significant impact in national economies. The energy industry constitutes an additional greenhouse gas emitter, while at the same time it is characterized by significant costs and uncertain fuel prices. The above implications have triggered different policies and measures worldwide to address the management of municipal solid wastes on the one hand and the impacts from energy production on the other. Emerging methods of energy recovery from waste may address both concerns simultaneously. In this work a comparative study of co-generation investments based on municipal solid waste is presented, focusing on the evolution of their economical performance over time. A real-options algorithm has been adopted investigating different options of energy recovery from waste: incineration, gasification and landfill biogas exploitation. The financial contributors are identified and the impact of greenhouse gas trading is analysed in terms of financial yields, considering landfilling as the baseline scenario. The results indicate an advantage of combined heat and power over solely electricity production. Gasification, has failed in some European installations. Incineration on the other hand, proves to be more attractive than the competing alternatives, mainly due to its higher power production efficiency, lower investment costs and lower emission rates. Although these characteristics may not drastically change over time, either immediate or irreversible investment decisions might be reconsidered under the current selling prices of heat, power and CO(2) allowances.

  16. Fuel Economy and Emissions Effects of Low Tire Pressure, Open Windows, Roof Top and Hitch-Mounted Cargo, and Trailer

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

    2014-01-01

    To quantify the fuel economy (FE) effect of some common vehicle accessories or alterations, a compact passenger sedan and a sport utility vehicle (SUV) were subjected to SAE J2263 coastdown procedures. Coastdowns were conducted with low tire pressure, all windows open, with a roof top or hitch-mounted cargo carrier, and with the SUV pulling an enclosed cargo trailer. From these coastdowns, vehicle dynamometer coefficients were developed which enabled the execution of vehicle dynamometer experiments to determine the effect of these changes on vehicle FE and emissions over standard drive cycles and at steady highway speeds. The FE penalty associated with the rooftop cargo box mounted on the compact sedan was as high as 25-27% at higher speeds, where the aerodynamic drag is most pronounced. For both vehicles, use of a hitch mounted cargo tray carrying a similar load resulted in very small FE penalties, unlike the rooftop cargo box. The results for the SUV pulling a 3500 pound enclosed cargo trailer were rather dramatic, resulting in FE penalties ranging from 30%, for the city cycle, to 50% at 80 mph, at which point significant CO generation indicated protective enrichment due to high load. Low tire pressure cases resulted in negligible to 10% FE penalty depending on the specific case and test point. Driving with all four windows open decreased FE by 4-8.5% for the compact sedan, and 1-4% for the SUV.

  17. The HTR-10 project and its further development

    International Nuclear Information System (INIS)

    Xu Yuanhui

    2002-01-01

    The 10 MW High Temperature Gas-cooled Reactor-Test Module (termed as HTR-10) is one of key project in the National High Technology Research and Development Program (1986-2000). Main objectives for the HTR-10 are: (1). To acquire know-how to design, construct and operate the HTGRs, (2). To establish an experimental facility, (3). To demonstrate the inherent safety features of the Modular HTGR, (4). To test electricity and heat co-generation and closed cycle gas turbine technology and (5). To do research and development work for high temperature process heat application. The Institute of Nuclear Energy Technology (INET) of Tsinghua University was appointed as the leading institute to be responsible for design, license applications, construction and operation of the HTR-10. The HTR-10 technical design represents the features of HTR-Module design. After five years construction, installation and pre-operation the HTR-10 reached the criticality in December 2000. Up to now all of results on zero point experiments and fuel elements irradiation test are fine. China will continue to develop the high temperature gas-cooled reactor in the future using the HTR-10 base

  18. Performance of Generating Plant: Managing the Changes. Part 2: Thermal Generating Plant Unavailability Factors and Availability Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Curley, G. Michael [North American Electric Reliability Corporation (United States); Mandula, Jiri [International Atomic Energy Agency (IAEA)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 2 (WG2). WG2's main task is to facilitate the collection and input on an annual basis of power plant performance data (unit-by-unit and aggregated data) into the WEC PGP database. The statistics will be collected for steam, nuclear, gas turbine and combined cycle, hydro and pump storage plant. WG2 will also oversee the ongoing development of the availability statistics database, including the contents, the required software, security issues and other important information. The report is divided into two sections: Thermal generating, combined cycle/co-generation, combustion turbine, hydro and pumped storage unavailability factors and availability statistics; and nuclear power generating units.

  19. Biomass for generation of electrical energy in the Bolivariana Republic of Venezuela

    International Nuclear Information System (INIS)

    Rodriguez Peraza, Alejandro; Perez Matos, Richard; Robles Guillen, Charlee

    2009-01-01

    In Venezuela, the MENPET (Ministry of Popular Power for Energy and Oil), advances a project to national level with the general objective to consider the potential of Biomass with power aims, in sugar plants and the following specific objectives: to determine the autogeneration of energy with cane bagasse used like fuel in the boilers that generate the steam, that needs the turbines to drive the generator ELTs, mills, centrifugal pumps, ventilators, etc. and the steam, destined to the process of sugar manufacture; To determine the leftover bagasse with possibility for co-generation of electrical energy in plant. The pressure and temperature of the steam generated in the boilers it is relatively low, but sufficient to obtain balance, between driving force and steam for processes. Increasing pressure and temperature of the steam, a turbine with a generator ELT can be driven, of greater power to cover needs with energy in factory and to have surpluses to inject to the distribution network, without increase of fuel costs; To determine the interchange of energy with the network of distribution, located in the surroundings of the plants. Energy to fortify the communities that inhabit the rural areas of the surroundings; To have a diagnosis, of the state of the distribution, communications nets, substation and circuit in these areas of rural development. (author)

  20. Effects of long-term price increases for oil; Auswirkungen langfristig hoher Oelpreise. Einfluss eines hohen langfristigen Oelpreises auf Wirtschaftswachstum, Strukturwandel sowie Energieangebot und -nachfrage

    Energy Technology Data Exchange (ETDEWEB)

    Voehringer, F.; Mueller, A. [Ecoplan, Berne (Switzerland); Boehringer, C. [Zentrum fuer Europaeische Wirtschaftsforschung ZEW, Mannheim (Germany)

    2007-03-15

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the effects of higher oil prices in the long-term. Scenarios examined include those with high oil prices of 80 to 140 dollars per barrel and those with drastic shortages resulting from peak extraction in the years 2010 and 2020. Long-term economic balances form the basis of the report, short-term influences and psychological effects are not addressed. The possible dangers for the earth's climate caused by the substitution of oil by coal-based products are discussed, as well as the sequestration of carbon dioxide. Ethanol and the associated conflicts of land use are examined and the decreasing cost-effectiveness of co-generation power generation is looked at. Alternatives such as atomic power, hydropower, solar energy, geothermal energy, biogas and wind power are discussed. The effect of the changing energy scene on economic growth and welfare aspects in Switzerland are examined. The authors conclude that high oil prices have considerable impacts on the economy and are not a substitute for an internationally co-ordinated climate policy.

  1. FY 1998 annual report on the introduction/dissemination working group. 19th R and D activity report; 1998 nendo donyu fukyu jigyo bunkakai. Dai 19 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 R and D activities by the introduction/dissemination working group, extracted from the 19th R and D activity report by NEDO. Mr. Yamaho, a NEDO's director, reports (General situations of the new energy introduction promotion department). The R and D project results include those of renewable energy sources, such as the results of the field test and supporting projects for solar light power generation, wind power generation and solar heat utilization; and those of recycling type energy, such as the results of the field test projects for power generation by wastes and fuel cells, and the results of the projects for district heat supply by co-generation systems. The other results presented include those of the projects for dissemination of clean energy vehicles, supporting new energy entrepreneurs, promotion of introducing district new energy, drawing visions for district new energy, field tests for introducing high-performance industrial furnaces, modeling for introducing facilities for rationalized use of pioneer energy, promotion of disseminating ice-aided, heat-storage type air conditioning systems, and promotion of introducing decentralized gas-aided air conditioning for existing small- to medium-sized buildings. (NEDO)

  2. LiCl+CaCl/sub 2//H/sub 2/O pair

    Energy Technology Data Exchange (ETDEWEB)

    Isshiki, N; Kamoshida, J

    1985-01-01

    Absorption heat pump is very useful for the utilization of new energy of low temperature difference by the following four view points. (a) possibility of using any kind of heat source of low temperature difference natural energy and industrial waste heat. (b) Possibility of being used for either of both generation of heat and power (co-generation), (c) good for long term storage and distance transportation of energy. (d) Possibility of applying any kind of chemical pair which have reversible thermo-chemical reaction with a lot of varieties. Among many thermo-chemical pairs, the pair of LiCl + CaCl/sub 2//H/sub 2/O has been selected and investigated in the R and D of developing power generation system. The reason of this selection is that this pair have been thought to be most practical, inexpensive, and powerful for our purpose. The system of heat and power cogeneration system has been selected as the object of application of the absorption system, and especially power generation has been studied. Then, in order to inquire the possibility of power generation and energy storage, a four wheeled vehicle driven by the power of the pair of L1Cl = CaCl/sub 2//H/sub 2/O has been assembled and tested with success. In this paper the general aspects of this study is reported briefly, and the future possibility of the absorption heat pump and power generation is discussed.

  3. Viability of HTR-10 as a Primary Driver of an Energy Complex for Remote Settlement

    International Nuclear Information System (INIS)

    Choong, Philip T.

    2014-01-01

    HTR-10, a proven 10 MWt prototype pebble bed reactor, is capable of generating 4 MWe to the power grid. However; with evolutional power upgrades, its output performance can be substantially enhanced to drive an energy complex to co-generate electricity, hydrogen, desalinated water and process heat for a remote island or settlement of several thousand people. Unlike the much publicized SMR power concepts in the literature, HTR-10 is the only full-blown stand-alone power system that has been demonstrated to be inherently safe and capable of high temperature output. Furthermore, this particular HTR family of reactors is proliferation-resistant and possesses many desirable market-competitive advantages such as high thermal efficiency, low thermal pollution, zero carbon footprints and minimal exclusion zones. An innovative classroom project course is structured to stimulate science and engineering students to explore novel use of HTR-10 as a high temperature heat source to be the core of an intelligent zero emission energy (Smart-ZEE) module capable of providing all energy needs of a remote community or island. (author)

  4. DOLOMITE THERMAL-DECOMPOSITION MACROKINETIC MODELS FOR EVALUATION OF THE GASGENERATORS SORBENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2015-01-01

    Full Text Available Employing dolomite in the capacity of a sorbent for generator gas purification is of considerable interest nowadays, as it is the impurity of generator gas that causes the major problem for creating cheep and effective co-generator plants. Designing gas purification systems employs simple but physically adequate macrokinetic models of dolomite thermal decomposition.  The  paper  analyzes  peculiarities  of  several  contemporaneous  models  of  dolomite and calcite thermal decomposition and infers on reasonable practicality for creating compact engineering dolomite-decomposition macrokinetic models and universal techniques of these models parameter reconstruction for specific dolomite samples. Such technics can be founded on thermogravimetric data and standard approximation error minimizing algorithms.The author assumes that CO2  evacuation from the reaction zone within the particle may proceed by diffusion mechanism and/or by the Darcy filtration and indicates that functional dependence of the thermal-decomposition rate from the particle sizes and the temperature differs for the specified mechanisms. The paper formulates four macrokinetic models whose correspondence verification is grounded on the experimental data. The author concludes that further work in this direction should proceed with the dolomite samples investigation and selecting the best approximation model describing experimental data in wide range of temperatures, warming up rates and the particle sizes.

  5. Characterization of a microwave microstrip helium plasma with gas-phase sample introduction for the optical emission spectrometric determination of bromine, chlorine, sulfur and carbon using a miniaturized optical fiber spectrometer

    International Nuclear Information System (INIS)

    Pohl, Pawel; Zapata, Israel Jimenez; Amberger, Martin A.; Bings, Nicolas H.; Broekaert, Jose A.C.

    2008-01-01

    Continuous flow generation of Br 2 , Cl 2 and H 2 S coupled to a low-power 2.45 GHz microwave microstrip He plasma exiting from a capillary gas channel in a micro-fabricated sapphire wafer with microstrip lines has been used for the optical emission spectrometric determination of Br, Cl and S using a miniaturized optical fiber CCD spectrometer. Under optimized conditions, detection limits (3σ) of 330, 190 and 220 μg l -1 for Br, Cl and S, respectively, under the use of the Br II 478.5 nm, Cl I 439.0 nm and S I 469.0 nm lines were obtained and the calibration curves were found to be linear over 2 orders of magnitude. In addition, when introducing CO 2 and using the rotational line of the CN molecular band at 385.7 nm the detection limit for C was 4.6 μg l -1 . The procedure developed was found to be free from interferences from a number of metal cations and non-metal anions. Only the presence of CO 3 2- and CN - was found to cause severe spectral interferences as strong CN and C 2 molecular bands occurred as a result of an introduction of co-generated CO 2 and HCN into the plasma. With the procedure described Br, Cl and S could be determined at a concentration level of 10-30 mg l -1 with accuracy and precision better than 2%

  6. The shanai, the pseudosphere and other imaginings: envisioning culturally contextualised mathematics education

    Science.gov (United States)

    Luitel, Bal Chandra; Taylor, Peter Charles

    2007-07-01

    Adopting a self-conscious form of co-generative writing and employing a bricolage of visual images and literary genres we draw on a recent critical auto/ethnographic inquiry to engage our readers in pedagogical thoughtfulness about the problem of culturally decontextualised mathematics education in Nepal, a country rich in cultural and linguistic diversity. Combining transformative, critical mathematics and ethnomathematical perspectives we develop a critical cultural perspective on the need for a culturally contextualized mathematics education that enables Nepalese students to develop (rather than abandon) their cultural capital. We illustrate this perspective by means of an ethnodrama which portrays a pre-service teacher's point of view of the universalist pedagogy of Dr. Euclid, a semi-fictive professor of undergraduate mathematics. We deconstruct the naivety of this conventional Western mathematics pedagogy arguing that it fails to incorporate salient aspects of Nepali culture. Subsequently we employ metaphorical imagining to envision a culturally inclusive mathematics education for enabling Nepalese teachers to (i) excavate multiple mathematical knowledge systems embedded in the daily practices of rural and remote villages across the country, and (ii) develop contextualized pedagogical perspectives to serve the diverse interests and aspirations of Nepali school children.

  7. Energy conservation in the Netherlands 1995-2006. Including decomposition of the energy consumption trend; Energiebesparing in Nederland 1995-2007. Inclusief decompositie energieverbruikstrend

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, J.; Boonekamp, P.G.M. [ECN Beleidsstudies, Petten (Netherlands); Vreuls, H. [SenterNovem, Utrecht (Netherlands); Verdonk, M. [Planbureau voor de Leefomgeving PBL, Bilthoven (Netherlands); Pouwelse, J.W. [Centraal Planbureau CPB, Den Haag (Netherlands)

    2009-08-15

    Realized energy savings in the Netherlands for the period 1995-2007 are presented for the sectors households, industry, agriculture, services, transport, refineries and electricity, and on a national level. The figures on energy savings are based on the 'Protocol Monitoring Energy Savings', a common methodology and database for calculating energy savings. Results are presented for savings on final energy use, conversion in end-use sectors (co-generation) and conversion in the energy sector. National savings for the period 1995-2007 equal 0.9% per year on average, with a decreasing tendency in recent years. Continuing the trends of last year, the highest figure for end-use sectors is found for agriculture (2.6%) and the lowest figure for transport (0.1%). An uncertainty analysis reveals that the margin for the national savings figure is {+-}0.3 percent-point. At the request of PBL, a decomposition of the change in energy use into 14 different factors has been conducted. This shows that the growth of energy use from 1995 to 2007, if no savings would have been achieved, would have been almost twice as high. [Dutch] In dit rapport worden de energiebesparingcijfers gepresenteerd voor de periode 1995-2007, berekend volgens het Protocol Monitoring Energiebesparing (PME). De besparing wordt berekend voor de verbruiksectoren industrie, huishoudens, transport, land- en tuinbouw, diensten en raffinaderijen, de elektriciteitscentrales en het nationale niveau.

  8. Efficient, Low Cost Dish Concentrator for a CPV Based Cogeneration System

    Science.gov (United States)

    Chayet, Haim; Kost, Ori; Moran, Rani; Lozovsky, Ilan

    2011-12-01

    Zenith Solar Ltd has developed efficient electricity and heat co-generation system based on segmented-parabolic dish of total aperture area of 11 m2 and water cooled dense array module combined of triple junction cells. Conventional parabolic dishes are inherently inefficient in the sense that the radiant flux distribution is non uniform causing inefficient generation by the PV array. Secondary optics improves uniformity but introduces additional complexity and losses to the system. Zenith's dish is assembled of 1200 flat mirrors of approximately 100 cm2 each. Every mirror facet has a unique shape such that the geometrical projection from each mirror on the focal plane is essentially the same. When perfectly aligned, the projected radiation from all mirrors overlaps uniformly on the PV surface. The low cost construction of the dish utilizes plastic mount supported by a precise metal frame. The precision of the metal frame affects the overall optical efficiency of the mirror and hence the efficiency of the system. State of the art dish of 11 m2 active aperture results in output of 2.25 kWp (900 W/m2) electrical and 5 kWp thermal power from one dish system representing 21% electrical and 50% thermal conversion efficiency adding to 71% overall system efficiency.

  9. Proceedings of the Tenth forum: Croatian Energy Day: Energy sector liberalisation and privatisation in transition-economy and EU countries: experiences and perspectives

    International Nuclear Information System (INIS)

    2001-01-01

    Political and economic changes in Europe provided an impetus for the creation of an open energy market with an increasing number of participants, while the new energy sale and purchase system enabled everybody engaged (from producers to operators and consumers) to take over an active part. In the launching of these processes some documents played a decisive role: European Energy Treaty, European Union's Directives on Electricity and Gas Market Liberalisation of the Member Countries. Energy sector liberalisation was in most of the countries carried out in two steps, i.e. first the restructuring took place and than privatisation followed. Restructuring covers the change of organisation and economic relations with the aim of increasing efficiency and cost reduction, and privatisation is the process that ought to enable the creation of a market and competition. Market and competition creation is carried out by means of structural changes, i.e. by business and ownership unbundling (energy generation, transport/transmission and distribution). Energy market strengthening depends on energy efficiency, programmes, utilisation of renewable energy sources, co-generation share in the production of electric and thermal energy, etc. All of these activities are followed by adequate legislative framework as well as by defining a regulatory body to supervise the behaviour of the participants. The primary energy sector's reform concept in the Republic of Croatia was a clear political goal that Croatia become a member of the European Union and that the energy market be congruent to the EU market

  10. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  11. Advanced reactor development for non-electric applications

    International Nuclear Information System (INIS)

    Chang, M.H.; Kim, S.H.

    1996-01-01

    Advance in the nuclear reactor technology achieved through nuclear power programs carried out in the world has led nuclear communities to direct its attention to a better and peaceful utilization of nuclear energy in addition to that for power generation. The efforts for non-electric application of nuclear energy has been pursued in a limited number of countries in the world for their special needs. However, those needs and the associated efforts contributed largely to the development and practical realization of advanced reactors characterized by highly improved reactor safety and reliability by deploying the most up-to-date safety technologies. Due mainly to the special purpose of utilization, economic reasons and ease in implementation of new advanced technologies, small and medium reactors have become a major stream in the reactor developments for non-electric applications. The purpose of this paper is to provide, to the interested nuclear society, the overview of the development status and design characteristics of selected advanced nuclear reactors previously developed and/or currently under development specially for non-electric applications. Major design technologies employed in those reactors to enhance the reactor safety and reliability are reviewed to present the underlying principles of the design. Along with the overview, this paper also introduces a development program and major design characteristics of an advanced integral reactor (SMART) for co-generation purpose currently under conceptual development in Korea. (author)

  12. Economic costs and benefits of the renewable energy sources; Costi e benefici economici delle fonti rinnovabili

    Energy Technology Data Exchange (ETDEWEB)

    De Leo, G. A. [Parma Univ., Parma (Italy). Dipt. di Scienze Ambientali; Rizzi, L. [Milan Politecnico, Milan (Italy). Dipt. di Elettronica; Caizzi, A. [Cesi Spa, Business Unit Ambiente, Milan (Italy)

    2001-08-01

    In this work it has been analysed the potential diffusion of renewable energy sources and co-generation in the Italian market on the basis of the level of maturation of the different technologies, predicted market growth and environmental impacts associated to them. A sensitivity analysis on external costs generated by global climate changes has allowed everybody to assess how possible errors in estimating the potential impact of greenhouse gasses can affect the estimate of the economic performances of different scenarios of energetic development. On the basis of these considerations, it can be outlined a potential doubling of energy production by renewable energies in the next 10 years, with specific reference of small hydroelectric, biogass and eolic power plants. [Italian] Viene analizzata la capacita' di penetrazione delle fonti di energia rinnovabile e della cogenerazione nel mercato italiano sulla base dello stato di maturazione delle varie tecnologie e gli impatti ambientali ad esse associate. L'articolo mostra che il rispetto del vincolo di Kyoto comporterebbe in ultima analisi non un aggravio dei costi per la collettivita', ma addirittura un risparmio di 11 lire per ogni kWh prodotto, ovvero oltre il 10% rispetto ai costi totali.

  13. Ethane dehydrogenation over nano-Cr{sub 2}O{sub 3} anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xian-Zhu; Luo, Xiao-Xiong; Luo, Jing-Li; Chuang, Karl T.; Sanger, Alan R. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G2G6 (Canada); Krzywicki, Andrzej [NOVA Chemicals Corp., Calgary, Alberta T2P5C6 (Canada)

    2011-02-01

    Ethane and electrical power are co-generated in proton ceramic fuel cell reactors having Cr{sub 2}O{sub 3} nanoparticles as anode catalyst, BaCe{sub 0.8}Y{sub 0.15}Nd{sub 0.05}O{sub 3-{delta}} (BCYN) perovskite oxide as proton conducting ceramic electrolyte, and Pt as cathode catalyst. Cr{sub 2}O{sub 3} nanoparticles are synthesized by a combustion method. BaCe{sub 0.8}Y{sub 0.15}Nd{sub 0.05}O{sub 3-{delta}} (BCYN) perovskite oxides are obtained using a solid state reaction. The power density increases from 51 mW cm{sup -2} to 118 mW cm{sup -2} and the ethylene yield increases from about 8% to 31% when the operating temperature of the solid oxide fuel cell reactor increases from 650 C to 750 C. The fuel cell reactor and process are stable at 700 C for at least 48 h. Cr{sub 2}O{sub 3} anode catalyst exhibits much better coke resistance than Pt and Ni catalysts in ethane fuel atmosphere at 700 C. (author)

  14. Heat recovery properties from fuel cell system for telecommunications use; Tsushin`yo nenryo denchi system ni okeru hainetsu kaishu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, M.; Iida, S.; Abe, I.; Yamamoto, M. [NTT Integrated Information and Energy Systems Laboratories, Tokyo (Japan)

    1997-08-20

    NTT is developing a phosphoric-acid fuel-cell energy system for telecommunication co-generation systems to reduce energy costs and help preserve the environment. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy that is generated is used by the absorption refrigerators to cool the telecommunication rooms throughout the year. We field-tested this fuel-cell energy system in a telephone office. Two heat recovery methods were applied in the test: one uses direct steam heat recovery from fuel-cell stack coolant to keep the heat recovery temperature high and to avoid requiring a heat exchanger for the recovery; the other uses heat recovery from the reformer exhaust gas that is directly in contact with the heat recovery water to recover heat more economically. Our field tests confirmed that the average efficiency of heat recovery from fuel-cell stack coolant is 16%, and from the reformer exhaust gas is 9% under 80-kW continuous operation. Maximum total efficiency including electrical power efficiency was confirmed to be about 73% under the condition of 100-kW and an S/C ratio of 2.5 in the winter period: heat recovery from the fuel-cell stack coolant was 23%, from the reformer exhaust gas was 10%, and from electrical conversion was about 40%. 9 refs., 12 figs., 1 tab.

  15. CO{sub 2} emissions on the brazilian economy: a decomposition analysis; Emissoes de CO{sub 2} na economia brasileira: uma analise de decomposicao

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Hercules Souza de; Dezidera, Daniela Arduino [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Programa de Pos-Graduacao em Planejamento de Sistemas Energeticos

    2006-07-01

    The article intends to estimate the direct and indirect emissions of carbon gas through of the Brazilian economy official data and data from the National Energy Balance (BEN), trying to correlate the results. For this, the decomposition methodology will be used by indexes (IDA), accomplishing evaluations in the temporary variations of indicators as: pollution coefficient, energy intensity, effect structures and economical activity. Besides the temporary evaluation of the results considering the available data between 1970 and 2004, the results were compared with other similar studies, whose savings of the studied countries possess relative similarity with the Brazilian economy. The results demonstrated that so in Brazil as in other countries where the methodology was applied was obtained the level of economical growth as main indicator of the CO{sub 2} emissions alterations for each economy. For Brazil, it is also reality, but it is considered in each period by other factors. Another important comparison is in the carbon intensity of each one of the two compared savings. The Brazilian energetic matrix, for their characteristics, propitiates positive impact on carbon emissions results. It also demonstrated that the increase of the participation of the natural gas in the matrix can mitigate the carbon intensity effect, mainly as alternative for the power generation and transport. The use of cleaner fuels and the application of distributed generation and the co-generation energy technologies can be good alternatives for the future and the study of the indexes can help to end which viable and responsible alternatives. (author)

  16. New safe reactor, but not first of a kind engineering

    International Nuclear Information System (INIS)

    Nurdin, M.

    1997-01-01

    New safe reactor but not a first of a kind engineering is a new reactor concept to fulfill the need on Small Reactor for power generation, both for electricity and for co-generation. Nuclear reactor system of this concept in certain degree has similar design compared to the established and successful reactor systems now in operation; so the material used for the same function and purpose is not the same. The strategy or choice adopted in achieving this concept will be automatically shown by the inspiration or philosophy of ''not to re-invent the wheel.'' Based on the above mentioned strategy, a certain degree of experimental verification and justification are of course needed/necessary to know better the deviations and the differences from the existing nuclear reactor concepts and further to anticipate of course precisely engineering behaviour of the proposed concept. Physical and engineering discussion on the proposed concept are main objectives of this paper in which most of the scope and objectives of this IAEA TCM on Small Reactors with minimized Staffing and/or Remote Monitoring are elaborated. They are discussed in such a way to give the technical and economical background of the proposed concept. (author)

  17. Inhibition Effect of Phosphorus Flame Retardants on the Fire Disasters Induced by Spontaneous Combustion of Coal

    Directory of Open Access Journals (Sweden)

    Yibo Tang

    2017-01-01

    Full Text Available Coal spontaneous combustion (CSC generally induces fire disasters in underground mines, thus causing serious casualties, environmental pollution, and property loss around the world. By using six P-containing additives to process three typical coal samples, this study investigated the variations of the self-ignition characteristics of the coal samples before and after treatment. The analysis was performed by combining thermogravimetric analysis/differential scanning calorimetry (TG/DSC Fourier transform infrared spectrometer (FTIR and low temperature oxidation. Experimental results showed that P-containing inhibitors could effectively restrain the heat emitted in the combustion of coal samples and therefore the ignition temperature of the coal samples was delayed at varying degrees. The combustion rate of the coal samples was reduced as well. At the temperatures ranging from 50°C to 150°C, the activation energy of the coal samples after the treatment was found to increase, which indicated that the coal samples were more difficult to be oxidized. After being treated with phosphorus flame retardants (PFRs, the content of several active groups represented by the C-O structure in the three coal samples was proved to be obviously changed. This suggested that PFRs could significantly inhibit the content of CO generated by the low temperature oxidation of coal, and the flame-retardant efficiency grew with the increasing temperature. At 200°C, the maximal inhibition efficiency reached approximately 85%.

  18. Nuclear desalination in the Arab world. Part I: Relevant data

    International Nuclear Information System (INIS)

    Mekhemar, S.; Karameldin, A.

    2003-01-01

    Middle Eastern and North African countries suffer from a shortage of fresh water resources. Statistical analysis shows that fresh water resources in these countries constitute less than 13% of the average world resources per capita. In the Arab world, the rapid increase in population and an increase in living standards led to a greater demand for fresh water and electricity. Accordingly, the Arab world has assumed (a leading role in the) desalination industry, contributing about 60% of total world production. Desalination processes are highly power intensive. Thus, different types of energies are used to bridge the gap between these processes and the general increased demand in production. Projections for water and electricity demand in the Arab world, up to 2030, are made according to population and its growth rates. The present study (according to these projections) indicates that population in the Arab world will double by the year 2030. At that time, domestic and industrial water demand will be 360 million m 3 d -1 ; meanwhile, electrical power consumption will be 4.5 trillion kWh d -1 . Accordingly, the Advanced Inherent Safe Nuclear Power Plants adapted for water-electricity co-generation could meet the demand, as a clean energy source. (author)

  19. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  20. Performance improvement of the finned passive PVT system using reflectors like removable insulation covers

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mokhtari, Farhad

    2016-01-01

    Highlights: • A passive PVT system means the combination of a PV panel and a compact solar water heater. • Comparative study was done on performance characteristics in passive and hybrid PVT systems. • Reflectors effects on performance of a finned passive PVT system were numerically studied. • Results show that the finned passive PVT system has higher performance than the hybrid type. • Reflectors reduce the night heat losses and increase the solar radiation rate on PVT system. - Abstract: A passive photovoltaic–thermal system (PVT) is the combination of a photovoltaic (PV) panel and a compact solar water heater for co-generation of heat and electricity. This system bears considerable heat losses to ambient, particularly at noncollection times. One simple way to overcome this problem is to use a removable insulation cover on the collector's outer glazing. In this paper, the effects of the reflectors on day and night performance of a finned passive PVT system were numerically studied. At nonenergy collection time, the reflectors can turn and cover the collector cover glass as a nonconductor material. Simulation results showed that the reflectors reduce the night heat losses and increase the solar radiation rate on the absorber plate. The use of removable insulation reflectors resulted to saving extra sensibly thermal energy. Also, the solar cells power generation (P_s_c), in the case of reflectors installed, was reinforced.

  1. Characteristics and properties of sugar cane trash; Caracteristicas e propriedades do palhico de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Innocente, Andreia F. [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Saglietti, Jose R. C. [Universidade Estadual Paulista (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias de Botucatu], E-mail: jroberto@ibb.unesp.br

    2010-07-01

    The sugar cane processing wastes (bagasse and trash) became an important energy source which may be used in the electrical energy co-generation. This work is aimed to determine the trash physical properties, define its energetic value and ideal combination of bagasse + trash to use in conventional boilers. The trash productivity (20 t/ha), green (14.9%) and dry (71.3%) leaves, and remaining material (8.3%) was found one day after the cane crop. The trash moisture content was measured for each component and the final average value was 28.7%. The bagasse showed a 49.81% moisture average content. The higher heating value (HHV) was found for the bagasse (19.27 MJ/kg), trash (17.90 MJ/kg) and bagasse + trash mixtures in different proportions. For the lower heating value (LHV), we observed that the released energy in the trash (12.11 MJ/kg) was higher than the one in the bagasse (8.55 MJ/kg). This result was expected due to the higher bagasse moisture content. From the analysed mixtures, the 50%-50% one had the highest LHV (10.08 MJ/kg), showing that the trash left in the field after the crop may be efficient for the energy production mixed to the bagasse in 50% proportion. (author)

  2. System of lower cogeneration in the cement industry; Sistema de cogeneracion inferior en la industria del cemento

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes, H.; Vazquez, A; Ambriz, J. J.; Fosado, A.; Cedillo, D.; Sanchez, R. [Universidad Autonoma Metropolitana-Iztapalapa (Mexico)

    1999-07-01

    In this paper present work, the design of a cogeneration system was made, taking advantage of the waste thermal flows in a cement manufacturing industry. The costs by concept of energy sources in the cement industry represent between 30 and 60% of the production costs, reason why any diminution in its consumption, will be reflected considerably in the productivity of the company. In order to determine the available capacity of waste energy and to establish the dimension of the cogeneration system it was decided to initially conduct balances of matter and energy of a cement production train. For the evaluation and numerical simulation a case study of a national plant was taken. The analysis takes only into account the rotary kiln, the pre roaster, the gas cooler or conditioner, the cooler of clinker and the separators or dust recuperators. In this study the electrical mills nor the systems that operate all over the plant have been taken in consideration. The results show that in general a high potential of co-generation exists since in some cases the heat losses can reach up to a 50% of the calorific energy input. The capacity of electrical generation by means of a steam turbine when taking advantage of a fraction (in the order of 60%) the residual heat, can be between 200 and 300 watts per kilogram of clinker produced. In conclusion, when recovering by means of appropriate heat exchangers for each one of the mentioned equipment the wasted energy and a network of heat interchange optimized by means of modern technologies an important part of the electrical energy that a cement mill uses can be generated. The method used has been very attractive and with the possibility of applying it to any cement mill and thus evaluate the potentials of energy co-generation. [Spanish] En el presente trabajo, se realizo el diseno de un sistema de cogeneracion aprovechando las corrientes termicas de desecho en una industria de fabricacion de cemento. Los costos por concepto de

  3. Potential utilization of biomass in production of electricity, heat and transportation fuels including energy combines - Regional analyses and examples; Potentiell avsaettning av biomassa foer produktion av el, vaerme och drivmedel inklusive energikombinat - Regionala analyser och raekneexempel

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Karin; Boerjesson, Paal

    2008-01-15

    The objective of this study is to analyse how the use of biomass may increase in the next 10-20 years in production of heat, electricity and transportation fuels in Sweden. In these analyses, the biomass is assumed to be used in a resource and cost efficient way. This means for example that the demand for heat determines the potential use of biomass in co-generation of heat and electricity and in energy combines, and that the markets for by-products determine the use of biomass in production of certain transportation fuels. The economic conditions are not analysed in this study. In the heat and electricity production sector, we make regional analyses of the potential use of biomass in production of small-scale heat, district heat, process heat in the forest industry and electricity produced in co-generation with heat in the district heating systems and forest industry. These analyses show that the use of biomass in heat and electricity production could increase from 87 TWh (the use in 2004/2005, excluding small-scale heat production with firewood) to between 113 TWh and 134 TWh, depending on the future expansion of the district heating systems. Geographically, the Stockholm province accounts for a large part of the potential increase owing to the great opportunities for increasing the use of biomass in production of district heat and CHP in this region. In the sector of transportation fuels we applied a partly different approach since we consider the market for biomass-based transportation fuels to be 'unconstrained' within the next 10-20 years. Factors that constrain the production of these fuels are instead the availability of biomass feedstock and the local conditions required for achieving effective production systems. Among the first generation biofuels this report focuses on RME and ethanol from cereals. We estimate that the domestic production of RME and ethanol could amount to up to 1.4 TWh/y and 0.7-3.8 TWh/y, respectively, where the higher figure

  4. Ironmaking Process Alternative Screening Study, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood Greene, . .

    2005-01-06

    charge and those producing Hot Metal for charge to the EAF. (2) A pronounced sensitivity to Steel Scrap Cost was felt less by the Hot Metal Processes and the Fine Ore Processes that typically do not utilize much purchased scrap. (3) In terms of evolving processes, the Tecnored Process (and in particular, the lower-operating cost process with integral co-generation of electrical power) was in the most favorable groupings at all scrap cost sensitivities. (4) It should be noted also that the Conventional Blast Furnace process utilizing Non-Recovery coke (from a continuous coking process with integral co-generation of electrical power) and the lower-capital cost Mini Blast Furnace also showed favorable Relative Economics for the low and median Scrap Cost sensitivities. (5) The lower-cost, more efficient MauMee Rotary Hearth Process that uses a Briquetted Iron Unit Feed (instead of a dried or indurated iron ore pellet) also was in the most favorable process groupings. Those processes with lower-cost raw materials (i.e. fine ore and/or nonmetallurgical coal as the reductant) had favorable combined economics. In addition, the hot metal processes (in part due to the sensible heat impacts in the EAF and due to their inherently lower costs) also had favorable combined economics.

  5. Economic and environmental impact of the utilization of the industrial potential of viable cogeneration for period 1998 - 2007; Impacto economico y ambiental de aprovechamiento del potencial industrial de cogeneracion viable para el periodo 1998 - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, Gabriel; Mendoza Gonzslez, Lourdes [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2001-07-01

    The utilization of the industrial potential of cogeneration offers a significant contribution to the construction of the electrical infrastructure that the growth of the country will require for the period 1998 - 2007. The conditions of growth of the co-generation potential and their levels of utilization are related to a on isolated growth of the other inter actors of the processes of power supply; As levels of economic viability, economic savings to industry, requirements of additional electrical capacity, growth of the industrial activity, costs, use of fuels, environmental impact. Rates of average growth for period 1998 - 2007 are considered and what levels of economic and environmental benefit offers this development to the industry, to the electrical company and to the country. And to what proportion can contribute the utilization of the industrial potential of electrical cogeneration to the requirements of additional electrical capacity that will require the development of the country during this period. With the rates of viable growth of the co-generation the equivalent reduction of fuel consumption is estimated for the industrial sector, given by the improvement in the generation efficiency and with the change in the proportion of fuels used in Comision Federal de Electricidad (CFE) for this period. Evaluating the emissions of the main fuels avoided with this growth and its repercussion at national level via the CFE, and showing the possible international implications of this reduction. [Spanish] El aprovechamiento del potencial industrial de cogeneracion ofrece una significativa aportacion a la construccion de la infraestructura electrica que el crecimiento del pais requerira para el periodo 1998 -2007. Las condiciones de crecimiento del potencial de cogeneracion y sus niveles de aprovechamiento estan relacionados con un crecimiento o aislado de los demas inter actores de los procesos de abasto energetico; Como niveles de viabilidad economica, ahorros

  6. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    Many novel and needed applications of nuclear energy arise in today's energy-hungry, economically challenged world, and in solving tomorrow's search for a globally carbon-constrained and sustainable energy supply. Not only can nuclear power produce low cost electricity, it can provide co-generation of process heat, desalinated water, and hydrogen with negligible greenhouse gas emissions. In each of these new applications, nuclear energy is competing against, or displacing conventional and established use of natural gas or coal in thermal power plants and boilers. Therefore, there must be a compelling case, in terms of supply certainty, stability, safety, security, and acceptability. In addition, a synergistic relation must exist or be created with the existing power and energy markets, the use of windpower, and the needs for low-cost supply with negligible greenhouse gas emissions and carbon 'footprint'. The development of Canada's oil sands resource depends on a substantial energy input for extraction and upgrading. So far, this input has been supplied by natural gas, a resource that (a) is a premium fuel; (b) has constrained availability; and (c) produces significant CO 2 emissions. For the oil sands extraction process, natural gas is the current energy source used to generate the steam for in-situ heating, the power to drive the separation equipment, and the hydrogen for varying degrees of upgrading before piping. Nothwithstanding the current imbalance between supply and demand for gas within North America, the very demand of the oil sands for prodigious amounts of natural gas has itself the potential to force higher prices and create supply constraints for natural gas. Rooted in the energy equivalence of oil and gas, there is a long-established link between American gas prices whereby one bbl of oil is worth 7 GJ of natural gas. Temporary supply/demand imbalances apart, only cheap oil can maintain cheap gas. Only the improbability of cheap oil will maintain low

  7. Fuel-Flexible Combustion System for Co-production Plant Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  8. Development of a regional capacity expansion plan in the Russian Federation. Application of the WASP Model

    International Nuclear Information System (INIS)

    Chernilin, Yu.; Kononov, S.; Zakharova, E.; Kagramanyan, V.; Malenkov, A.

    1997-01-01

    The Wien Automatic System Planning Package (WASP) is used for the development of optimal capacity expansion plans in Russia. The object of the WASP study is the Central power pool, which is the largest power pool in Russia and has an essential share of nuclear power in electricity generation. The objective of the study is to assess the long-term competitiveness of nuclear power in the region. The major features of the power system analyzed with WASP are the following: 1) four types of electricity generators are considered: condensity fossil fuel plants, cogeneration fossil fuel plants, nuclear power plants and hydraulic plants; 2) nine fuel categories are considered: gas/fuel oil fuel, several types of coal and several nuclear fuels; 3) escalation of capital, operation and maintenance, and fuel costs as a result of economic transition is explicitly modeled. Under these assumptions, a regional optimal capacity expansion plan is developed that showed the following: (a) Until 2004 there is no need for new electricity generation capacities due to the drop in demand in the 90s, certain lifetime margin of existing capacities, committed additions of co-generators and planned refurbishment/repowering measures; (b) The structure of the optimal capacity mix confirms that nuclear power can retain its role as one of the major electricity generation sources in the region. The most important factor with a positive of effect upon the competitiveness of nuclear power plants is the projected escalation of the prices of fossil fuels; (c) The application of WASP has proved that the model can serve as a valuable planning tool at the power pool level in Russia. (author). 14 refs, 8 figs, 10 tabs

  9. Wave power potential in Malaysian territorial waters

    Science.gov (United States)

    Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul

    2016-06-01

    Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.

  10. Energy analysis of tubular digesters using swine residues; Analise energetica de biodigestores tubulares usando dejetos de suinos

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Alessandro Torres; Daga, Jacir [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Grupo de Pesquisas em Ambiencia do Oeste do Parana; Campos, Aloisio Torres de [EMBRAPA Gado de Leite, Juiz de Fora, MG (Brazil). Grupo Pesquisador em Educacao Ambiental; Santos, Elenara Pinto dos; Casimiro, Evandro Luiz Nogarolli; Nagae, Ricardo Yuiti; Weiss Filho, Waldemiro [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Centro de Ciecias Agraras

    2004-07-01

    Overcoming another financial crisis, the swine production has the great challenge, in this and next decades, of also reaching the sustainability in the ecosystem ambit. The Parana State/Brazil west area is known because of it's residues high production, with high pollution level, it possesses the added difficulty of presenting high concentration of animals, inserted in production centers in reduced areas. However, this situation reversion, changing the 'trouble called residue' in a 'energy source solution', by means of digesters, became a reality, with the initiative of some producers and researchers. Present work objective was to evaluate the energy production, by means of the digesters use, as alternative energy co-generation. The work was developed at a commercial farm located at the Parana State west area, with 1,700 sows, in an piglet unit producing, with production of 3,400 piglet per mouth. The studied system is constituted by two parallel digesters, with continuous flow and total capacity of 1,275 m3 per digester, with 30 days of hydraulic retention time. The generated biogas feeds a 4.1 cc engine, with six cylinders, 80 cv, 3,600 rpm, coupled to an generator, that constitutes an 50 kW electric engine. The system promoted a 58% reduction of chemical demand of oxygen. The daily gas production estimated was 208 m3, with production of electric energy of 35.2 kWh per day. For most of the year, the system has the potential of provisioning the farm of electricity for all its needs, promoting economy that is transformed into income for the activity. (author)

  11. European wind power integration study. Periodic report 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This periodic report no. 1 describes the work done in the Danish part of the European Wind Power Integration Study in the period until 1.4.1991. The R and D project was initiated January 1, 1989 upon prior establishment of registration equipment at 7 wind farms and at the Tjaereborg turbine. ELSAM and the meteorological service centre in Karup (VTC-Karup) have supplied data for the task. Wind Predictability, Potential and Benefits, Wind Farm - Grid Interface, Distribution System Strength, Wind Farm Cost and Operation, and Co-generation Wind Turbines/Other renewables were measured and modelled. The statistical distribution of the wind speed variations (changes in wind speed from one period of time to another) has been established with great certainty in the report. The wind speed variations follow a Weibull distribution, irrespective of the time intervals with which the data are considered. Duration curves and power distributions for the 7 wind farms have been estimated. Registration equipment for one-minute measurements was chosen in order to clarify the short-term variations in the wind power production. The possibility of working out production forecasts, to be applied in the daily load dispatching, were to be assessed for the total amount of wind power production in Jutland and Funen. The report has examined whether it would be possible to have only one wind measurement and then let it be `guiding` for the total wind farm production. Some simulations are to be carried out in the attempt to set up guidelines for the connection between the strength of distribution systems and the requirements which must be made to the wind farms which are to be places in the system. (EG)

  12. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-01-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180 degrees C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200 degrees C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air

  13. Generation rate of carbon monoxide from CO2 arc welding.

    Science.gov (United States)

    Ojima, Jun

    2013-01-01

    CO poisoning has been a serious industrial hazard in Japanese workplaces. Although incomplete combustion is the major cause of CO generation, there is a risk of CO poisoning during some welding operations. The aim of the present study was to evaluate the generation rate of CO from CO2 arc welding under controlled laboratory conditions and estimate the ventilation requirements for the prevention of CO poisoning. Bead on plate welding was carried out with an automatic welding robot on a rolled steel base metal under several conditions. The concentration of emitted CO from the welding was measured by a real-time CO monitor in a well-ventilated laboratory that was free from ambient CO contamination. The generation rate of CO was obtained from the three measurements-the flow rate of the welding exhaust gas, CO concentration in the exhaust gas and the arcing time. Then the ventilation requirement to prevent CO poisoning was calculated. The generation rate of CO was found to be 386-883 ml/min with a solid wire and 331-1,293 ml/min with a flux cored wire respectively. It was found that the CO concentration in a room would be maintained theoretically below the OSHA PEL (50 ppm) providing the ventilation rate in the room was 6.6-25.9 m3/min. The actual ventilation requirement was then estimated to be 6.6-259 m3/min considering incomplete mixing. In order to prevent CO poisoning, some countermeasures against gaseous emission as well as welding fumes should be taken eagerly.

  14. Five principles for the practice of knowledge exchange in environmental management.

    Science.gov (United States)

    Reed, M S; Stringer, L C; Fazey, I; Evely, A C; Kruijsen, J H J

    2014-12-15

    This paper outlines five principles for effective practice of knowledge exchange, which when applied, have the potential to significantly enhance the impact of environmental management research, policy and practice. The paper is based on an empirical analysis of interviews with 32 researchers and stakeholders across 13 environmental management research projects, each of which included elements of knowledge co-creation and sharing in their design. The projects focused on a range of upland and catchment management issues across the UK, and included Research Council, Government and NGO funded projects. Preliminary findings were discussed with knowledge exchange professionals and academic experts to ensure the emerging principles were as broadly applicable as possible across multiple disciplines. The principles suggest that: knowledge exchange needs to be designed into research; the needs of likely research users and other stakeholders should be systematically represented in the research where possible; and long-term relationships must be built on trust and two-way dialogue between researchers and stakeholders in order to ensure effective co-generation of new knowledge. We found that the delivery of tangible benefits early on in the research process helps to ensure continued motivation and engagement of likely research users. Knowledge exchange is a flexible process that must be monitored, reflected on and continuously refined, and where possible, steps should be taken to ensure a legacy of ongoing knowledge exchange beyond initial research funding. The principles have been used to inform the design of knowledge exchange and stakeholder engagement guidelines for two international research programmes. They are able to assist researchers, decision-makers and other stakeholders working in contrasting environmental management settings to work together to co-produce new knowledge, and more effectively share and apply existing knowledge to manage environmental change

  15. Total energy supply-system for manned spaceship using nuclear reactor

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Honma, Yuji; Yoshida, Yutaka; Shimazu, Yoichiro

    2007-01-01

    In order to explore the deep space, such as Mars, Jupiter, Saturn, etc in the future, a spacecraft that will be driven by nuclear power should be developed. At present, satellites or space probes have been using mainly electric source of chemical battery, fuel battery, solar battery, and RI battery. However, considering highly developed and extensive space exploration in the future, it is obvious that larger electric power is required over the long term space travel more than several years. Additionally, the solar battery used in space will be fundamentally impossible to use in planetary exploration father away form Mars because sunlight is attenuated. Therefore, larger electric power source must be installed in the space craft. In this study, we consider about co-generation system for heat and electricity using nuclear power. We think that the nuclear power is appropriate for using in deep space because of a long time operation without refueling and possibility in downsizing due to higher power density. We selected the fast reactor system of about 18 MWth compared with other type of reactors, such as PWR and high temperature gas reactor (Honma, 2006). With regard to a power generation system, we examined about efficiency of Stirling engine compared with a gas-turbine engine. Theoretical efficiency of Stirling engine is much higher than that of gas-turbine engine. Therefore, we selected Stirling engine and we have started the model test of a Stirling engine. Total power generation at International Space Station (ISS) that has been built since 1998 is about 110kWe. We estimated that about 5 times as much electricity as that of ISS is enough to explore or developed the space. In that case, 2.5MWe will be generated by the system, number of crews will be about 10 and 2MW will be used to electric propulsion. (author)

  16. Improving the performances of gas turbines operated on natural gas in combined cycle power plants with application of mathematical models

    International Nuclear Information System (INIS)

    Dimkovski, Sasho

    2014-01-01

    The greater energy demand by today society sets a number of new challenges in the energy sector. The climate extremes impose new modes of operation of the power plants, with high flexibility in production. Combined cycle co generative power plants are the latest trend in the energy sector. Their high prevalence is due to the great efficiency and the good environmental characteristics. The main work horse in these cogeneration plants is the gas turbine, which power production and efficiency strongly depends on the external climate conditions. In warmer periods when there is increased demand for electricity, the power production from the gas turbines significantly declines. Because of the high electricity demand from the grid and reduced power production from the gas turbines at the same time, the need for application of appropriate technology for preserving the performances and power of the gas turbines arises. This master thesis explores different methods to improve the power in gas turbines by cooling the air on the compressor inlet, analyzing their applicability and effectiveness in order to choose the optimal method for power augmentation for the climatic conditions in the city Skopje. The master thesis gives detailed analysis of the weather in Skopje and the time frame in which the chosen method is applicable. At the end in the master thesis, the economic feasibility of the given method for power augmentation is clearly calculated, using a model of a power plant and calculating the resulting amount of gained energy, the amount of the initial investment, the cost for maintenance and operation of the equipment. By these calculations the period for initial return of investment is obtained. As an added benefit the positive environmental impacts of the applied technology for inlet air cooling is analyzed. (author)

  17. A Benders decomposition approach for a combined heat and power economic dispatch

    International Nuclear Information System (INIS)

    Abdolmohammadi, Hamid Reza; Kazemi, Ahad

    2013-01-01

    Highlights: • Benders decomposition algorithm to solve combined heat and power economic dispatch. • Decomposing the CHPED problem into master problem and subproblem. • Considering non-convex heat-power feasible region efficiently. • Solving 4 units and 5 units system with 2 and 3 co-generation units, respectively. • Obtaining better or as well results in terms of objective values. - Abstract: Recently, cogeneration units have played an increasingly important role in the utility industry. Therefore the optimal utilization of multiple combined heat and power (CHP) systems is an important optimization task in power system operation. Unlike power economic dispatch, which has a single equality constraint, two equality constraints must be met in combined heat and power economic dispatch (CHPED) problem. Moreover, in the cogeneration units, the power capacity limits are functions of the unit heat productions and the heat capacity limits are functions of the unit power generations. Thus, CHPED is a complicated optimization problem. In this paper, an algorithm based on Benders decomposition (BD) is proposed to solve the economic dispatch (ED) problem for cogeneration systems. In the proposed method, combined heat and power economic dispatch problem is decomposed into a master problem and subproblem. The subproblem generates the Benders cuts and master problem uses them as a new inequality constraint which is added to the previous constraints. The iterative process will continue until upper and lower bounds of the objective function optimal values are close enough and a converged optimal solution is found. Benders decomposition based approach is able to provide a good framework to consider the non-convex feasible operation regions of cogeneration units efficiently. In this paper, a four-unit system with two cogeneration units and a five-unit system with three cogeneration units are analyzed to exhibit the effectiveness of the proposed approach. In all cases, the

  18. Developing an assessment framework to improve the efficiency of R and D and the market diffusion of energy technologies - EduaR and D. Report

    Energy Technology Data Exchange (ETDEWEB)

    Bradke, H.; Cremer, C.; Dreher, C. (and others)

    2007-01-31

    The energy R and D and innovation policy will have to concentrate on accelerating innovation processes and the market penetration of those technologies capable of meeting challenges in the future and reducing the risks. The lack of financing available to substantially enlarge public funds for energy-related R and D and market diffusion policies is a major bottleneck to meeting these challenges. One way to tackle this dilemma is to improve the efficiency of energy R and D and relevant innovations including market entrance and diffusion. Unfortunately, little is understood about how to make the best choices from among the myriad research ideas and proposals in order to reduce the risks of R and D funding and to maximise the outcome of public (or private) R and D funds. This was the starting point of a small research programme called EduaR and D (Energy data and Analysis of Research and Development) initiated by the Federal Ministry of Economics and Technology (BMWi) with five analytical projects on energy systems and related research and development. Two of them focus on methodological questions ('Decision criteria for efficient R and D policy strategies' and 'Priority setting by methods of innovation and technology cycle research') and three on concrete technological areas ('systemic evaluation of new co-generation technologies', 'multi-criteria technology assessment applied to electricity generation', 'highly insulated buildings and intelligent building management'). The results of the second methodological project are reported here. During the analysis of this project, several meetings were held among the participating research teams to exchange and discuss intermediate results. (orig.)

  19. Plant management tools tested with a small-scale distributed generation laboratory

    International Nuclear Information System (INIS)

    Ferrari, Mario L.; Traverso, Alberto; Pascenti, Matteo; Massardo, Aristide F.

    2014-01-01

    Highlights: • Thermal grid innovative layouts. • Experimental rig for distributed generation. • Real-time management tool. • Experimental results for plant management. • Comparison with results from an optimization complete software. - Abstract: Optimization of power generation with smart grids is an important issue for extensive sustainable development of distributed generation. Since an experimental approach is essential for implementing validated optimization software, the TPG research team of the University of Genoa has installed a laboratory facility for carrying out studies on polygeneration grids. The facility consists of two co-generation prime movers based on conventional technology: a 100 kWe gas turbine (mGT) and a 20 kWe internal combustion engine (ICE). The rig high flexibility allows the possibility of integration with renewable-source based devices, such as biomass-fed boilers and solar panels. Special attention was devoted to thermal distribution grid design. To ensure the possibility of application in medium-large districts, composed of several buildings including energy users, generators or both, an innovative layout based on two ring pipes was examined. Thermal storage devices were also included in order to have a complete hardware platform suitable for assessing the performance of different management tools. The test presented in this paper was carried out with both the mGT and the ICE connected to this innovative thermal grid, while users were emulated by means of fan coolers controlled by inverters. During this test the plant is controlled by a real-time model capable of calculating a machine performance ranking, which is necessary in order to split power demands between the prime movers (marginal cost decrease objective). A complete optimization tool devised by TPG (ECoMP program) was also used in order to obtain theoretical results considering the same machines and load values. The data obtained with ECoMP were compared with the

  20. HTGR Economic / Business Analysis and Trade Studies Market Analysis for HTGR Technologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Matt [Ultra Safe Nuclear Corporation, Los Alamos, NM (United States); Hamilton, Chris [Ultra Safe Nuclear Corporation, Los Alamos, NM (United States)

    2013-11-01

    This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal to liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.

  1. Chinese development of water-cooled reactors for non-electric applications

    International Nuclear Information System (INIS)

    Sun Yuliang; Duo Dong

    1997-01-01

    China is very densely inhabited land where approximately 75% of the primary energy consumption is contributed by coal. The strong dependence on coal results in two significant problems, the burden on transportation and the emission of environmental pollutants. Distances between coal production and consumption result in a burden on China's railway, road and water transport systems of approximately 40%, 25%, and 20% of their respective capacities. Environmentally, although the per capita annual CO2 emission is well under the world average, China ranks third after the USA and Russia in CO2 emission. Both of these problems can be alleviated through the increase use of nuclear energy. A dominant consumer of China's primary energy is in the form of heat application, of which district heating is a significant portion. The State is supporting the development of nuclear heating reactors for district heating purposes. The Institute of Nuclear Energy Technology (INET), with the support of the State, completed the construction of a 5MW test nuclear heating reactor in 1989. Since then, this reactor has been successfully operated for heating purposes, safety demonstration experiments and for tests on other applications. Subsequently, a 200MW commercial nuclear heating demonstration plant was approved by the State Council and design and licensing work on this plant is currently in progress at INET. This paper provides a review of the design parameters for these two nuclear heating plants. Other applications of the nuclear heating reactor, including seawater desalination, air conditioning and as an industrial process steam supply are currently under consideration. INET has considered two designs of a nuclear desalination plant (steam only and co-generation) coupled with the 200MW nuclear heating reactor. Also, INET is investigating use of this reactor for air conditioning and process chilled water production. The current status of these efforts are described in this paper. (author

  2. Valorisation of organic wastes: little biogas plant will grow big

    International Nuclear Information System (INIS)

    Richard, Aude; Talpin, Juliette; Tuille, Frederic; Courtel, Julien

    2016-01-01

    This set of articles first proposes a description of the operation principle of biogas production from the recovery of organic wastes from various origins to their processing to produce biogas and use this bio gas for fuel production or energy co-generation. It addresses the present situation in France where the publication of a new electricity purchase support mechanism is expected and will help reaching ambitious objectives defined in the French multi-year energy planning. The number of projects and the level of supports are indeed increasing. A third article presents an example of biogas production in a farm in Normandy, and outlines that this production is profitable. The next article evokes an Ademe's study which is to be published, which addresses returns on experience from small biogas production units (less than 75 kW), identifies that the liquid process gives a lower kWe cost than the dry process, and outlines the positive influence of new electricity purchase tariffs. An article outlines the role of cooperatives in the emergence of farm biogas production. Issues to be addressed and assessed before launching a project are evoked in an interview. An article then gives an historical overview of the development of waste-based biogas production in France since the 1970's: it was first considered only as a waste processing way, and became a mean for energy production. The types of installations and their share in heat production are indicated. The evolutions (in terms of number and of production) of farm-based installations, of centralised installation, of installations of processing domestic wastes, of industrial installations, of urban water treatment plants are indicated and commented. Finally, the Sinoe database is presented: it contains information about all biogas production installations in France

  3. Visible-light-driven methane formation from CO2 with a molecular iron catalyst

    Science.gov (United States)

    Rao, Heng; Schmidt, Luciana C.; Bonin, Julien; Robert, Marc

    2017-08-01

    Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.

  4. Transpiration of helium and carbon monoxide through a multihundred watt, PICS filter

    International Nuclear Information System (INIS)

    Schaeffer, D.R.

    1976-01-01

    The transpiration of CO through the Multihundred Watt (MHW) filter can be described by Fick's first law or as a first order, reversible reaction. From Fick's first law, a ''diffusion'' coefficient of 7.8 x 10 -4 cm.L/sec (L is the average path length through the filter) was determined. For the first order reversible reaction, a rate constant of 0.0058 hr -1 was obtained for both the forward and reverse reactions (they were assumed to be equal). This corresponds to a half-life of 120 hr. It was also concluded that the rate constants and thus the transpiration rates, which were determined for the test, are smaller than those expected in the IHS. The effect of increasing the number of filters, changing the volumes, and increasing the temperature, changes the rate constant of the transpiration into the PICS to roughly 0.074 hr -1 (t/sub 1 / 2 / = 9.4 hr) and out of the PICS to 0.84 hr -1 (t/sub 1/2/ = 0.8 hr). Of the two suggested mechanisms for the generation of CO inside the IHS, the cyclic process requires a much larger rate of transpiration than the process requiring oxygen exchange of CO given off by the graphite. The data indicate that the cyclic process can provide the CO generation rates observed in the IHS gas taps if there is no delay in time for any other kinetic process involved in the formation of CO or CO 2 . Since the cyclic process (which requires the fastest rate of transpiration) appears possible, this study does not indicate which reaction is occurring but concludes both are possible

  5. Partnering with Indigenous student co-researchers: improving research processes and outcomes.

    Science.gov (United States)

    Genuis, Shelagh K; Willows, Noreen; Jardine, Cindy G

    2015-01-01

    To examine the contribution of student co-researchers to a community-based participatory Photovoice investigation of Indigenous children's food-related lived experience. We examine co-researchers' contributions to the research process, their role in knowledge co-generation and dissemination, and factors that fostered research partnership with the teenage co-researchers. High school students attending a First Nation community school in Canada were trained as research partners. They contributed to aspects of research design, conducted interviews with grades 3 and 4 Photovoice participants, and participated in data analysis and the development of a culturally relevant photobook. The study was initiated by the community's research committee. It is informed by critical consciousness theory and the positive youth development framework. Student co-researchers incorporated culturally appropriate strategies as they interviewed participants. Co-researchers adopted conversational approaches, built rapport by articulating personal and cultural connections, and engaged in mentoring and health promotion as they interviewed participants. They made critical contributions to dissemination by developing photobook content that promoted the importance of traditional foods and the vital role of family and community in healthy eating practices. Relationships and "dialogic" space were important to building partnership with and promoting capacity development among youth co-researchers. Partnership between university researchers and Indigenous student co-researchers holds great promise for health promotion in communities. Co-researchers developed research and leadership skills, gained understanding of health challenges facing their community, and initiated health and cultural promotion through the project's Photobook. This investigation supports the powerful potential of student co-researchers to meaningfully contribute to research processes and to build knowledge that is relevant and

  6. Partnering with Indigenous student co-researchers: improving research processes and outcomes

    Directory of Open Access Journals (Sweden)

    Shelagh K. Genuis

    2015-07-01

    Full Text Available Objective: To examine the contribution of student co-researchers to a community-based participatory Photovoice investigation of Indigenous children's food-related lived experience. We examine co-researchers’ contributions to the research process, their role in knowledge co-generation and dissemination, and factors that fostered research partnership with the teenage co-researchers. Methods: High school students attending a First Nation community school in Canada were trained as research partners. They contributed to aspects of research design, conducted interviews with grades 3 and 4 Photovoice participants, and participated in data analysis and the development of a culturally relevant photobook. The study was initiated by the community's research committee. It is informed by critical consciousness theory and the positive youth development framework. Results: Student co-researchers incorporated culturally appropriate strategies as they interviewed participants. Co-researchers adopted conversational approaches, built rapport by articulating personal and cultural connections, and engaged in mentoring and health promotion as they interviewed participants. They made critical contributions to dissemination by developing photobook content that promoted the importance of traditional foods and the vital role of family and community in healthy eating practices. Relationships and “dialogic” space were important to building partnership with and promoting capacity development among youth co-researchers. Conclusions: Partnership between university researchers and Indigenous student co-researchers holds great promise for health promotion in communities. Co-researchers developed research and leadership skills, gained understanding of health challenges facing their community, and initiated health and cultural promotion through the project's Photobook. This investigation supports the powerful potential of student co-researchers to meaningfully contribute to

  7. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.

    Science.gov (United States)

    Wu, May; Wu, Ye; Wang, Michael

    2006-01-01

    We conducted a mobility chains, or well-to-wheels (WTW), analysis to assess the energy and emission benefits of cellulosic biomass for the U.S. transportation sector in the years 2015-2030. We estimated the life-cycle energy consumption and emissions associated with biofuel production and use in light-duty vehicle (LDV) technologies by using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Analysis of biofuel production was based on ASPEN Plus model simulation of an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity. Our study revealed that cellulosic biofuels as E85 (mixture of 85% ethanol and 15% gasoline by volume), FTD, and DME offer substantial savings in petroleum (66-93%) and fossil energy (65-88%) consumption on a per-mile basis. Decreased fossil fuel use translates to 82-87% reductions in greenhouse gas emissions across all unblended cellulosic biofuels. In urban areas, our study shows net reductions for almost all criteria pollutants, with the exception of carbon monoxide (unchanged), for each of the biofuel production option examined. Conventional and hybrid electric vehicles, when fueled with E85, could reduce total sulfur oxide (SO(x)) emissions to 39-43% of those generated by vehicles fueled with gasoline. By using bio-FTD and bio-DME in place of diesel, SO(x) emissions are reduced to 46-58% of those generated by diesel-fueled vehicles. Six different fuel production options were compared. This study strongly suggests that integrated heat and power co-generation by means of gas turbine combined cycle is a crucial factor in the energy savings and emission reductions.

  8. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    Science.gov (United States)

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Conflicting strategies towards sustainable heating at an urban junction of heat infrastructure and building standards

    International Nuclear Information System (INIS)

    Späth, Philipp; Rohracher, Harald

    2015-01-01

    Approaches to ‘sustainability transitions’ stress the possibility of aligning actors around a shared vision of the future, e.g. at the scale of a city. Empirical accounts reveal how difficult such coordination often is due to contradictory views involved. How can we better understand related processes of searching and negotiation? What does this mean for the organization of decision making processes regarding long-term infrastructural change? We analyze a conflict which erupted in Freiburg, Germany when two strategies of reducing environmental impacts of space heating were to be applied in the Vauban ‘model district’: A) Efficient co-generation of heat and power (CHP) combined with district heating systems (DHS), and B) Reducing heat demand by low-energy designs and ambitious energy standards (‘passive house standard’). In order to understand the politics of infrastructure development, we unravel 1) enabling factors and driving forces of the conflict, 2) normative content of opposing viewpoints, 3) resources tapped into for settling the disagreement, and 4) the institutional setup of such decision making about energy policy priorities in the municipality. We reflect on implications of such a perspective on how policies and how governance arrangements should ideally be shaped and take a brief outlook on further research needed. - Highlights: • Foregrounds likeliness of conflicts over strategies within sustainability transitions. • District heating systems can be incommensurate with low energy building standards. • Studies one such conflict in an urban context (Freiburg, Germany) in depth. • Processes of urban planning can reveal frictions within and between infrastructures. • Can such junctions as opportunities for re-negotiation of strategies be anticipated?

  10. Technical and economical analysis of concepts for using the heat of biogas plants in rural areas; Technische und betriebswirtschaftliche Analyse von Konzepten zur ganzjaehrigen Nutzung der Abwaerme einer Biogasanlage im dezentralen laendlichen Raum

    Energy Technology Data Exchange (ETDEWEB)

    Kaths, Friederike Annette

    2012-08-15

    Since the implementation of the EEG in Germany the biogas production becomes an independent branch of industry in the agriculture. At this time more than 90 percent of the biogas plants work with co-generation plant for heat and power with a thermal engine efficiencies of more than 50 percent. Because of the location in the rural area heat costumers with a continuous demand of heat over the whole year are rare. This research had a closer look how to use the heat of biogas production efficiently and also generating profit. The aim of the study was to use heat over the whole year, a profitable heat concept without counting the KWK-bonus and an added value on the farm. During the study the following concepts were analyzed: asparagus production using soil heating, drying equipment for different products, the production of fish in aquaculture, the poultry production and the heated production of tomatoes. The results showed different concepts using heat of biogas plants as efficient for farmers. However with only one concept the aims - to use the heat over the whole year, generating a profitable heat concept without counting the KWK-bonus, add an value on the farm - mostly can not be achieved. The combination of different heat concepts is necessary. In this analysis the poultry production in combination with the dryer can be considered as the most efficient concept. Bearing in mind the benefit which can be generated with a heat concept as well as the higher income and the higher technical efficiency of biogas plants operators should implement an individual concept for their heat.

  11. Nuclear desalination option for the international reactor innovative and secure (IRIS) design

    International Nuclear Information System (INIS)

    Ingersoll, D. T.; Binder, J. L.; Conti, D.; Ricotti, M. E.

    2004-01-01

    The worldwide demand for potable water is on the rise. A recent market survey by the World Resources Institute shows a doubling in desalinated water production every ten years from both seawater and brackish water sources. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh per cubic meter of produced desalted water. At current U.S. water use rates, 1 kW of energy capacity per capita (or 1000 MW for every one million people) would be required to meet water needs with desalted water. The choice of the desalination technology determines the form of energy required: electrical energy for reverse osmosis systems, relatively low quality thermal energy for distillation systems, and both electrical and thermal energy for hybrid systems such as pre-heat RO systems. Nuclear energy plants are attractive for large scale desalination application. Nuclear plants can provide both electrical and thermal energy in an integrated, co-generated fashion to produce a spectrum of energy products including electricity, desalted water, process heat, district heating, and potentially hydrogen generation. A particularly attractive option for nuclear desalination is to couple it with an advanced, modular, passively safe reactor design such as the International Reactor Innovative and Secure (IRIS) plant. This allows for countries with smaller electrical grid needs and infrastructure to add new electrical and desalination capacity in smaller increments and at distributed sites. The safety by design nature of the IRIS reactor will ensure a safe and reliable source of energy even for countries with limited nuclear power experience and infrastructure. Two options for the application of the IRIS nuclear power plant to the cogeneration of electricity and desalted water are presented, including a coupling to a reverse osmosis plant and a multistage flash distillation plant. The results from an economic assessment of the two options are also presented.(author)

  12. Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Alessandra eFusi

    2016-03-01

    Full Text Available The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry and tomato waste as feedstocks and co-generating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system which uses animal slurry is the best option, except for the marine and terrestrial eco-toxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and

  13. Protecting consumer interests in Alberta's deregulated electricity market

    International Nuclear Information System (INIS)

    Bradford, J.A.

    2003-01-01

    This paper explains why the province of Alberta decided to deregulate its electricity sector. In the early 1990s, electricity rates were reasonable in Alberta, there was no utility debt, and electricity costs were low. In 1994 California's open access transmission system suggested that open markets would result in lower electricity rates and attract new economic activity. The government of Alberta also believed that competitive markets would set prices with no need for economic regulation. In the initial transition to competition, regulated electricity rates were offered to customers who were not ready to switch to the new competitive market. The RRO rate was set by the Alberta Energy and Utilities Board (EUB). The rates included the forecasted cost of purchasing energy from markets, cost of system access, and retail service costs. The end of the RRO rate was scheduled for 2005 when the market was expected be well developed. This paper also describes other protection mechanisms for consumers. Alberta's new electricity policy (NEP) eliminates generator participant costs related to transmission. EUB's zonal interconnection charges are also overruled along with the EUB-approved 50/50 division of transmission costs. Under the NEP, the ISO is to build transmission in anticipation of new generation. Consumers will fund the total cost to build new transmission capacity for exports and imports. This new transmission policy is a complete change from the original government policy which allocated some transmission costs to generators. The sudden change in policy was due to pressure from oil sands producers and oil sands co-generation developers. The claimed benefit to Albertans is a 25 per cent reduction in pool price and greater system reliability. However, the author cautioned that government interference with competitive electricity markets will cripple the electric power industry in the foreseeable future because it interferes with market prices

  14. Voluntary Challenge and Registry 1997 progress report: Wascana Energy Inc

    International Nuclear Information System (INIS)

    1998-10-01

    Graphs are included of the net production, carbon dioxide equivalent emissions, production carbon intensity and production energy intensity separately for each company that comprise Wascana Energy Inc. to 1996, and for the combined company in 1997. In comparing 1997 data with 1995, improvements to both the carbon intensity and the energy efficiency of the operations of the combined company, of 6% and 27% respectively, are indicated over the last two years. These gains are due to continued efforts made by field staff to cut energy consumption and reduce flaring throughout the company's operations, the sale of the Mazeppa gas plant, and increased throughput at the Paddle River gas processing plant. An outline is included of several specific projects and studies undertaken by Wascana in 1997 to reduce greenhouse gas emissions now or in the near future. At Plover Lake Wascana has started planning on a co-generation plant to produce electricity from waste natural gas. At a heavy oil flowline, about 200 wells were tied to batteries through flowlines, significantly reducing the amount of gas which would be vented during normal well operations. At the Paddle River Gas Plant, a study was completed on replacing gas treatment solvent, resulting in projected savings of 135 kW of electrical energy and 0.9 e3m3/d of fuel gas for a total savings of 1800 t/yr. carbon dioxide E. At the Barzac Gas Plant, the de-aerators of the steam boiler system were redesigned, significantly reducing the steam and the fuel gas requirements. Wascana is participating in a pilot project to use associated gas which would otherwise be flared to fuel a small scale gas turbine. A study was initiated on capture of vent gases from heavy oil tanks. Provisions were made in the design of the Hay River Battery for waste heat recovery from the gas turbine powering the electrical generation system. tabs., figs

  15. Abatement cost of GHG emissions for wood-based electricity and ethanol at production and consumption levels.

    Directory of Open Access Journals (Sweden)

    Puneet Dwivedi

    Full Text Available Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG intensity of electricity and ethanol derived from slash pine (Pinus elliottii at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ-1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ-1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ-1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km-1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e-1 and $30 Mg CO2e-1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation.

  16. Effect of anaerobic digestion and liming on plant availability of phosphorus in iron- and aluminium-precipitated sewage sludge from primary wastewater treatment plants.

    Science.gov (United States)

    Alvarenga, Emilio; Øgaard, Anne Falk; Vråle, Lasse

    2017-04-01

    More efficient plant utilisation of the phosphorus (P) in sewage sludge is required because rock phosphate is a limited resource. To meet environmental legislation thresholds for P removal from wastewater (WW), primary treatment with iron (Fe) or aluminium (Al) coagulants is effective. There is also a growing trend for WW treatment plants (WWTPs) to be coupled to a biogas process, in order to co-generate energy. The sludge produced, when stabilised, is used as a soil amendment in many countries. This study examined the effects of anaerobic digestion (AD), with or without liming as a post-treatment, on P release from Fe- and Al-precipitated sludges originating from primary WWTPs. Plant uptake of P from Fe- and Al-precipitated sludge after lime treatment but without AD was also compared. Chemical characterisation with sequential extraction of P and a greenhouse experiment with barley (Hordeum vulgare) were performed to assess the treatment effects on plant-available P. Liming increased the P-labile fraction in all cases. Plant P uptake increased from 18.5 mg pot -1 to 53 mg P pot -1 with liming of Fe-precipitated sludge and to 35 mg P pot -1 with liming of the digestate, while it increased from 18.7 mg pot -1 to 39 and 29 mg P pot -1 for the Al-precipitated substrate and digestate, respectively. Thus, liming of untreated Fe-precipitated sludge and its digestate resulted in higher P uptake than liming its Al-precipitated counterparts. AD had a negative impact on P mobility for both sludges.

  17. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  18. Investigation of small and modular-sized fast reactor

    International Nuclear Information System (INIS)

    Kubota, Kenichi; Kawasaki, Nobuchika; Umetsu, Yoichiro; Akatsu, Minoru; Kasai, Shigeo; Konomura, Mamoru; Ichimiya, Masakazu

    2000-06-01

    In this paper, feasibility of the multipurpose small fast reactor, which could be used for requirements concerned with various utilization of electricity and energy and flexibility of power supply site, is discussed on the basis of examination of literatures of various small reactors. And also, a possibility of economic improvement by learning effect of fabrication cost is discussed for the modular-sized reactor which is expected to be a base load power supply system with lower initial investment. (1) Multipurpose small reactor (a) The small reactor with 10MWe-150MWe has a potential as a power source for large co-generation, a large island, a middle city, desalination and marine use. (b) Highly passive mechanism, long fuel exchange interval, and minimized maintenance activities are required for the multipurpose small reactor design. The reactor has a high potential for the long fuel exchange interval, since it is relatively easy for FR to obtain a long life core. (c) Current designs of small FRs in Japan and USA (NERI Project) are reviewed to obtain design requirements for the multipurpose small reactor. (2) Modular-sized reactor (a) In order that modular-sized reactor could be competitive to 3200MWe twin plant (two large monolithic reactor) with 200kyenWe, the target capital cost of FOAK is estimated to be 260kyen/yenWe for 800MWe modular, 280kyen/yenWe for 400MWe modular and 290kyen/yenWe for 200MWe by taking account of the leaning effect. (b) As the result of the review on the current designs of modular-sized FRs in Japan and USA (S-PRISM) from the viewpoint of economic improvement, since it only be necessary to make further effort for the target capital cost of FOAK, since the modular-sized FRs requires a large amount of material for shielding, vessels and heat exchangers essentially. (author)

  19. Important role of calcium chloride in preventing carbon monoxide generation during desflurane degradation with alkali hydroxide-free carbon dioxide absorbents.

    Science.gov (United States)

    Ando, Takahiro; Mori, Atsushi; Ito, Rie; Nishiwaki, Kimitoshi

    2017-12-01

    We investigated whether calcium chloride (CaCl 2 ), a supplementary additive in carbon dioxide (CO 2 ) absorbents, could affect carbon monoxide (CO) production caused by desflurane degradation, using a Japanese alkali-free CO 2 absorbent Yabashi Lime ® -f (YL-f), its CaCl 2 -free and 1% CaCl 2 -added derivatives, and other commercially available alkali-free absorbents with or without CaCl 2 . The reaction between 1 L of desflurane gas (3-10%) and 20 g of desiccated specimen was performed in an artificial closed-circuit anesthesia system for 3 min at 20 or 40 °C. The CO concentration was measured using a gas chromatograph equipped with a semiconductor sensor detector. The systems were validated by detecting dose-dependent CO production with an alkali hydroxide-containing CO 2 absorbent, Sodasorb ® . Compared with YL-f, the CaCl 2 -free derivative caused the production of significantly more CO, while the 1% CaCl 2 -added derivative caused the production of a comparable amount of CO. These phenomena were confirmed using commercially available absorbents AMSORB ® PLUS, an alkali-free absorbent with CaCl 2 , and LoFloSorb™, an alkali-free absorbent without CaCl 2 . These results suggest that CaCl 2 plays an important role in preventing CO generation caused by desflurane degradation with alkali hydroxide-free CO 2 absorbents like YL-f.

  20. Energy potential of Finnish peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, K. (Geological Survey of Finland, Kuopio (Finland)); Valpola, S. (Geological Survey of Finland, Kokkola (Finland)), e-mail: kimmo.virtanen@gtk.fi, e-mail: samu.valpola@gtk.fi

    2011-07-01

    One-third of the Finnish land area is covered by mires and peat. GTK has investigated 2.0 million ha of the 9.3 million ha area covered by mires in Finland. According to the EU Commission, the broadly-based Finnish energy economy, with various energy sources, is the best in the EU. As a fuel, peat fulfils the goals of the EU energy policy in Finland well: it is local, its availability is good and the price is stable. The use of peat also enhances national security. At present, peat is used in around one hundred larger applications that co-generate electricity and heat. In Finland, the development of mires has led to several mire complex types and three main types: raised bogs in Southern Finland, aapa mires in Ostrobothnia and Lapland, and palsa mires in Northern Lapland. Peat layers are deepest in southern Finland and partly in the southern Finnish Lake area, the Region of North Karelia and in the area of central Lapland. The mean depth of geological mires is 1.41 m and the thickest drilled peat is 12.3 m. According to peat investigations, the national peat reserve totals 69.3 billion m3 in situ (peatlands larger than 20 hectares). The dry solids of peat are estimated at 6.3 billion tones. Sphagnum peat accounts for 54% and Carex peat for 45% of feasible peat reserves. Peatlands that are technically suitable for the peat industry cover a total area of 1.2 million ha and contain 29.6 billion m3 of peat in situ. Slightly humified peat suitable for horticultural and environmental use totals 5.9 billion m3 in situ. The energy peat reserve is 23.7 billion m3 in situ and its energy content is 12 800 TWh. (orig.)

  1. Which way to go. Observations based on discussion on global perspectives and energy strategies

    Energy Technology Data Exchange (ETDEWEB)

    Sassin, W; Lovins, A; Meadows, D; Penczynski, P

    1977-09-01

    One of the most controversial topics of the present time seems to be the world's future energy supply and demand. To establish a balanced view, the IIASA Energy Systems Program has sought periodically to compare its own work with that of other groups researching similar areas. At the beginning of 1977, Dennis Meadows, co-author of the Club-of-Rome study ''Limits to Growth'', and Amory Lovins of ''Friends of the Earth'' joined IIASA for a limited time. Both of them favor a ''soft technology'' path for the world's future energy system. Their stay at IIASA was an opportunity to check whether or not their results provide for a deeper understanding of a complex global future. This short note summarizes some conclusions that emerged from discussions of D. Meadows, A. Lovins, and members of the Energy Systems Program. In searching for the sources of opposing conclusions with respect to nuclear, large-scale solar, coal, renewable sources in a local or regional context (like wind, wave power, biomass utilization, and small-scale solar heat) and energy conservation measures such as better insulation or the co-generation of electricity and process heat, it turned out to be helpful to address the following questions: (1) Which long-term fundamental problems other than energy questions have to be faced by mankind within the coming 50 years. (2) Is the appropriate scale for analyzing these problems global, regional, or local. (3) In which subsectors should the economy be disaggregated in order to tackle the problem of self-reliance and resilience. (4) How can one define a technological solution for the energy supply with respect to the anticipated state of affairs in terms of do's and not in terms of don'ts. (5) How can one specify an energy strategy leading from today's situation into a long-term future when the goals to be achieved vary with time and in principle are subject to revision. (MCW)

  2. A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power

    International Nuclear Information System (INIS)

    Tapia-Ahumada, K.; Pérez-Arriaga, I.J.; Moniz, E.J.

    2013-01-01

    Co-generation at small kW-e scale has been stimulated in recent years by governments and energy regulators as one way to increasing energy efficiency and reducing CO 2 emissions. If a widespread adoption should be realized, their effects from a system's point of view are crucial to understand the contributions of this technology. Based on a methodology that uses long-term capacity planning expansion, this paper explores some of the implications for an electric power system of having a large number of micro-CHPs. Results show that fuel cells-based micro-CHPs have the best and most consistent performance for different residential demands from the customer and system's perspectives. As the penetration increases at important levels, gas-based technologies—particularly combined cycle units—are displaced in capacity and production, which impacts the operation of the electric system during summer peak hours. Other results suggest that the tariff design impacts the economic efficiency of the system and the operation of micro-CHPs under a price-based strategy. Finally, policies aimed at micro-CHPs should consider the suitability of the technology (in size and heat-to-power ratio) to meet individual demands, the operational complexities of a large penetration, and the adequacy of the economic signals to incentivize an efficient and sustainable operation. - Highlights: • Capacity displacements and daily operation of an electric power system are explored. • Benefits depend on energy mix, prices, and micro-CHP technology and control scheme. • Benefits are observed mostly in winter when micro-CHP heat and power are fully used. • Micro-CHPs mostly displace installed capacity from natural gas combined cycle units. • Tariff design impacts economic efficiency of the system and operation of micro-CHPs

  3. Environmental systems analysis of biogas systems-Part I: Fuel-cycle emissions

    International Nuclear Information System (INIS)

    Boerjesson, Pal; Berglund, Maria

    2006-01-01

    Fuel-cycle emissions of carbon dioxide (CO 2 ), carbon oxide (CO), nitrogen oxides (NO x ), sulphur dioxide (SO 2 ), hydrocarbons (HC), methane (CH 4 ), and particles are analysed from a life-cycle perspective for different biogas systems based on six different raw materials. The gas is produced in large- or farm-scale biogas plants, and is used in boilers for heat production, in turbines for co-generation of heat and electricity, or as a transportation fuel in light- and heavy-duty vehicles. The analyses refer mainly to Swedish conditions. The levels of fuel-cycle emissions vary greatly among the biogas systems studied, and are significantly affected by the properties of the raw material digested, the energy efficiency of the biogas production, and the status of the end-use technology. For example, fuel-cycle emission may vary by a factor of 3-4, and for certain gases by up to a factor of 11, between two biogas systems that provide an equivalent energy service. Extensive handling of raw materials, e.g. ley cropping or collection of waste-products such as municipal organic waste, is often a significant source of emissions. Emission from the production phase of the biogas exceeds the end-use emissions for several biogas systems and for specific emissions. Uncontrolled losses of methane, e.g. leakages from stored digestates or from biogas upgrading, increase the fuel-cycle emissions of methane considerably. Thus, it is necessary to clearly specify the biogas production system and end-use technology being studied in order to be able to produce reliable and accurate data on fuel-cycle emission

  4. Technical and economical analysis of concepts for using the heat of biogas plants in rural areas

    International Nuclear Information System (INIS)

    Kaths, Friederike Annette

    2012-08-01

    Since the implementation of the EEG in Germany the biogas production becomes an independent branch of industry in the agriculture. At this time more than 90 percent of the biogas plants work with co-generation plant for heat and power with a thermal engine efficiencies of more than 50 percent. Because of the location in the rural area heat costumers with a continuous demand of heat over the whole year are rare. This research had a closer look how to use the heat of biogas production efficiently and also generating profit. The aim of the study was to use heat over the whole year, a profitable heat concept without counting the KWK-bonus and an added value on the farm. During the study the following concepts were analyzed: asparagus production using soil heating, drying equipment for different products, the production of fish in aquaculture, the poultry production and the heated production of tomatoes. The results showed different concepts using heat of biogas plants as efficient for farmers. However with only one concept the aims - to use the heat over the whole year, generating a profitable heat concept without counting the KWK-bonus, add an value on the farm - mostly can not be achieved. The combination of different heat concepts is necessary. In this analysis the poultry production in combination with the dryer can be considered as the most efficient concept. Bearing in mind the benefit which can be generated with a heat concept as well as the higher income and the higher technical efficiency of biogas plants operators should implement an individual concept for their heat.

  5. Real-time management solutions for a smart polygeneration microgrid

    International Nuclear Information System (INIS)

    Rossi, Iacopo; Banta, Larry; Cuneo, Alessandra; Ferrari, Mario Luigi; Traverso, Alberto Nicola; Traverso, Alberto

    2016-01-01

    Highlights: • Different management systems are compared on the basis of experimental results. • Target system is a real smart microgrid composed by different co-generative systems. • A complex demand scenario was used to test decision-making of the controllers. • Experimental results were analyzed from both economic and reliability viewpoints. - Abstract: In recent years, many different concepts to manage smart distributed systems were proposed and solutions developed. Smart grids and the increasing influence of renewable sources on energy production lead to concerns about grid stability and load balance. Combined Heat and Power (CHP) generators coupled with solar or other renewable sources offer the opportunity to satisfy both electric and thermal power economically. Both electric and thermal demand and supply change continuously, and sources such as solar and wind are not dispatchable or accurately predictable. At the same time, it is essential to use the most efficient and cost effective sources to satisfy the demand. This problem has been studied at the University of Genoa (UNIGE), Italy, using different generators and energy storage device that can supply both electric and thermal energy to consumer buildings. Here the problem is formulated as a constrained Multi-Input Multi-Output (MIMO) problem with sometimes conflicting requests that must be satisfied. The results come from experiments carried out on the test rig located at the Innovative Energy System Laboratories (IESL) of the Thermochemical Power Group (TPG) of UNIGE. This paper compares three different control approaches to manage the distributed generation system: Simplified Management Control (SMC), Model Predictive Control (MPC), and Multi-Commodity Matcher (MCM). Control systems and their control actions are evaluated through economic and performance key indicators.

  6. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells

    International Nuclear Information System (INIS)

    Ding, M.; Kisin, E.R.; Zhao, J.; Bowman, L.; Lu, Y.; Jiang, B.; Leonard, S.; Vallyathan, V.; Castranova, V.; Murray, A.R.; Fadeel, B.; Shvedova, A.A.

    2009-01-01

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-κB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P + ). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P + cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-κB more efficiently in JB6 +/+ cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6 +/+ cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  7. Multi-fuel multi-product operation of IGCC power plants with carbon capture and storage (CCS)

    International Nuclear Information System (INIS)

    Cormos, Ana-Maria; Dinca, Cristian; Cormos, Calin-Cristian

    2015-01-01

    This paper investigates multi-fuel multi-product operation of IGCC plants with carbon capture and storage (CCS). The investigated plant designs co-process coal with different sorts of biomass (e.g. sawdust) and solid wastes, through gasification, leading to different decarbonised energy vectors (power, hydrogen, heat, substitute natural gas etc.) simultaneous with carbon capture. Co-gasification of coal with different renewable energy sources coupled with carbon capture will pave the way towards zero emissions power plants. The energy conversions investigated in the paper were simulated using commercial process flow modelling package (ChemCAD) in order to produce mass and energy balances necessary for the proposed evaluation. As illustrative cases, hydrogen and power co-generation and Fischer–Tropsch fuel synthesis (both with carbon capture), were presented. The case studies investigated in the paper produce a flexible ratio between power and hydrogen (in the range of 400–600 MW net electricity and 0–200 MW th hydrogen considering the lower heating value) with at least 90% carbon capture rate. Special emphasis were given to fuel selection criteria for optimisation of gasification performances (fuel blending), to the selection criteria for gasification reactor in a multi-fuel multi-product operation scenario, modelling and simulation of whole process, to thermal and power integration of processes, flexibility analysis of the energy conversion processes, in-depth techno-economic and environmental assessment etc. - Highlights: • Assessment of IGCC-based energy vectors poly-generation systems with CCS. • Optimisation of gasification performances and CO 2 emissions by fuel blending. • Multi-fuel multi-product operation of gasification plants

  8. Ecobalances of technical options for the supply and utilization of bioenergy; Oekobilanzen technischer Optionen zur Bioenergiebereitstellung und -nutzung

    Energy Technology Data Exchange (ETDEWEB)

    Dunkelberg, Elisa; Aretz, Astrid

    2013-05-15

    In Germany bioenergy production and consumption are promoted and encouraged by means of the Renewable Energy Law, which has as its objectives transforming the energy system and preventing climate change. In recent years several forms of bioenergy have been criticized as leading to ecological and socioeconomic risks. This study presents life cycle assessments (LCA) for existing bioenergy processes. The LCAs were conducted as a part of the Project ''Renewable Energy Regions: Socio-Ecology of Self-Sufficiency''; the objective was to assess the ecological impact of the selected bioenergy processes in order to calculate the overall ecological impact of existing bioenergy plants. The results prove that the usage of agricultural biomass such as corn and wheat for biogas production leads to negative ecological impacts such as eutrophication and acidification. If greenhouse gas emissions from land-use change are included, the net effect in comparison to the usage of fossil energies will only be small or even negative; however, when residues such as manure or materials from landscape management are used as substrates for biogas production they lead to several positive ecological impacts. Residual forest wood or wood from short-rotation coppices used in co-generation show the highest greenhouse gas reduction potential among the investigated processes. It must, however, be assumed that the potential of residual forest wood in Germany is already largely being tapped. Regions that have made bioenergy a priority thus should limit the usage of agricultural biomass for energy production to specific crops such as short-rotation coppices and floral and herbaceous perennials. Additionally, future challenges will require strategies to improve cascade utilization and gathering and efficient usage of residues.

  9. Design of the steam generator in an energy conversion system based on the aluminum combustion with water

    International Nuclear Information System (INIS)

    Mercati, Stefano; Milani, Massimo; Montorsi, Luca; Paltrinieri, Fabrizio

    2012-01-01

    Highlights: ► Development of a numerical approach for the analysis of a co-generation system based on the aluminum water reaction. ► Construction of system operating maps for estimating the system behavior. ► Comparison of two different designs of the steam generator for the system. ► Definition of the operating range where each configuration provides the best performance. -- Abstract: The paper shows the preliminary design of the superheated steam generator to be used in a novel hydrogen production and energy conversion system based on the combustion of aluminum particles with water. The system is aimed at producing hydrogen and pressurized superheated steam, using the heat released by the Al–H 2 O reaction. The interest on this type of technology arises because of the possibility of obtaining hydrogen with very low pollutant and greenhouse gas emissions, compared to the traditional hydrogen production systems, such as the steam reforming from methane. The analysis of the combustion chamber and the heat recovery system is carried out by means of a lumped and distributed parameter numerical approach. The multi phase and gas mixture theoretical principles are used both to characterize the mass flow rate and the heat release in the combustion chamber and within the heat exchangers in order to relate the steam generator performance to the system operating parameters. Finally, the influence of the steam generator performance on the whole energy conversion system behavior is addressed, with particular care to the evaluation of the total power and efficiency variation with the combustion parameters.

  10. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    Science.gov (United States)

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  11. Design, analysis, operation, and advanced control of hybrid renewable energy systems

    Science.gov (United States)

    Whiteman, Zachary S.

    Because using non-renewable energy systems (e.g., coal-powered co-generation power plants) to generate electricity is an unsustainable, environmentally hazardous practice, it is important to develop cost-effective and reliable renewable energy systems, such as photovoltaics (PVs), wind turbines (WTs), and fuel cells (FCs). Non-renewable energy systems, however, are currently less expensive than individual renewable energy systems (IRESs). Furthermore, IRESs based on intermittent natural resources (e.g., solar irradiance and wind) are incapable of meeting continuous energy demands. Such shortcomings can be mitigated by judiciously combining two or more complementary IRESs to form a hybrid renewable energy system (HRES). Although previous research efforts focused on the design, operation, and control of HRESs has proven useful, no prior HRES research endeavor has taken a systematic and comprehensive approach towards establishing guidelines by which HRESs should be designed, operated, and controlled. The overall goal of this dissertation, therefore, is to establish the principles governing the design, operation, and control of HRESs resulting in cost-effective and reliable energy solutions for stationary and mobile applications. To achieve this goal, we developed and demonstrated four separate HRES principles. Rational selection of HRES type: HRES components and their sizes should be rationally selected using knowledge of component costs, availability of renewable energy resources, and expected power demands of the application. HRES design: by default, the components of a HRES should be arranged in parallel for increased efficiency and reliability. However, a series HRES design may be preferred depending on the operational considerations of the HRES components. HRES control strategy selection: the choice of HRES control strategy depends on the dynamics of HRES components, their operational considerations, and the practical limitations of the HRES end-use. HRES data

  12. An economic evaluation of forest improvement opportunities and impacts from the emergence of a biomass fuel market in southwestern Nova Scotia

    International Nuclear Information System (INIS)

    Manley, A.L.; Savage, G.D.

    1993-01-01

    In 1991, Nova Scotia's public power utility initiated a process to purchase privately produced electrical power. A proposal was received to produce 20--25 megawatts from the burning of 350 to 400,000 tonnes annually of wood residue and forest biomass in a co-generation facility in southwestern Nova Scotia, Canada. This proposal has been proceeding and is nearing the construction phase. As a result of this potential market, there is an opportunity for increasing the scope and extent of forest improvement operations. Options for a closer integration of planning, harvesting, and silviculture activities will emerge. Optimum end use allocation could occur and enhance overall economic efficiency. The objective of this project is to assess the effect that this emerging market for forest biomass could have on forest management in the supply area. This project has two phases. Phase 1, presented here, develops the framework and methodology. Phase 2 will apply a linear programming-based analytical model for evaluation. Phase 1 accumulated the required data and information for both the current management and marketing situation and that including the emerging biomass market. Growth and yield of the natural stand types were calculated for a mixture of conventional roundwood products and chip equivalents. Management regimes, based on current forest type, site class, and appropriate silviculture treatments, were established. Expected multiproduct yields, by regime were estimated. Silviculture and harvest costs along with product revenues were used to calculate standing timber and soil expectation values. In Phase 2, a stand-based optimization model will be developed to explore and evaluate the long term opportunities and differences between the present and emerging management and market situations

  13. The challenge of introducing HTR plants on to the international power plant market

    International Nuclear Information System (INIS)

    Bogen, J.; Stoelzl, D.

    1987-01-01

    The international power plant market today is characterized by high increase in energy consumption for developing countries with limitations of investment capital and low increase in energy consumption for industrialized countries with limitations of additional power plant capacities. As a consequence there is a low demand for large new power stations. This leads to a tendency for small and medium sized power plant units - meeting high environmental standards - for which the total investment volume is low and full load operation of a plant can be realized earlier due to the small block capacity. - For nuclear power plants the High-Temperature-Reactor (HTR)-line with spherical fuel elements and a core structure of graphite is specially suited for this small and medium sized nuclear reactor (SMSNR) capacity. The excellent safety characteristics, the high availability, the low radiation doses for the operation personnel and the environment of the HTR line has been demonstrated by 20 years of operation of the AVR-15 MWe experimental power plant in Juelich F.R.G. and since 1985 by operation of the THTR-300 MWe prototype plant at Hamm-Uentrop F.R.G. Up-dated concepts of the HTR-line are under design for electricity generation (HTR-500), for co-generation of power and heat (HTR-100) and for district heating purposes only (GHR-10). By implementing two HTR projects the Brown Boveri Group is in the position to realize the collected experiences from design, licensing, erection, commissioning and operation for the follow-on projects. This leads to practical and sound technical solutions convenient for existing manufacturing processes, well known materials, standardized components and usual manufacturing tolerances. Specific plant characteristics can be used for advantages in the competition. (author)

  14. Relentless: decipher, explain, propose... 'Les Cahiers de Global Chance' Nr 38 - January 2016

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Guillemette, Andre; Zerbib, Jean Claude; Autret, Jean-Claude; Larochelambert, Thierry

    2016-01-01

    After a retrospective overview of the 42 previous releases of the Cahiers de Global Chance which notably addressed issues related to climate change, to energy transition, to renewable energies, and more generally to the relationship between science, culture, power and society, an article proposes a detailed analysis of the Danish energy transition considered as a model of European democratic planning. It describes and comments the long way towards energy planning in Denmark after the first oil crisis, with notably the emergence of renewable energies and co-generation, then the emergence of the climate issue, and the evolution towards an ecologic planning. The Energy Plan 2030 is presented; some specific projects are evoked as well as the planning for phasing out fossil energy. The energy efficiency of the Danish system is outlined, and energy scenarios for 2050 are evoked, based on a massive and sometimes exclusive use of renewable energies, and on the development of smart grids. The next article addresses the return to their country of origin of nuclear wastes produced by the processing of imported used fuels from light water reactors: regulatory framework, assessments of returns, role of the Turpin Commission, situation of foreign fuels processed in La Hague at the end of 2012, situation of the various categories of wastes from imported used fuels. The next article proposes a discussion of available information regarding the recycling of used fuels from EDF PWRs from 1976 to 2012. The last article proposes an assessment of the civilian plutonium stock in France at the end of 2013

  15. Sustainability and cogeneration of energy in Brazilian ethanol production; Sustentabilidade e cogeracao de energia na producao de etanol brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Paixao, Marcia Cristina Silva; Fonseca, Marcia Batista da [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Economia

    2008-07-01

    In the beginning of the 21st century, the world discusses and promotes the use of policies to encourage the replacement of fossil fuels by renewable energy sources like biomass. In Brazil, since the 70's the production of ethanol has been representing an ecological alternative of low costs and high productivity, generating employment and income. Because of the advantages of production costs due to natural resources and abundant workforce, the Brazilian ethanol is currently exported mainly to the United States and European Union. However, there are export barriers to these markets because the ethanol production from sugar cane is considered an activity that generates environmental damage. In respect to this subject, the purpose of this work is to discuss aspects of sustainability of the activity, such as the co-generation of energy. The research is exploratory, descriptive, bibliographical and based on secondary figures. The results indicate solutions based on cooperation, such as the Agro-environmental Protocol, an agreement of cooperation between the government of the State of Sao Paulo and the sugarcane ethanol producing sector of this state. As a characteristic of sustainability the ethanol industry has developed techniques for the re-use of production waste, such as the use of vinasse for fertilization and cogeneration by using biomass. Moreover, the intercropping and the rotation of cane with food crops have been used to preserve the soil. It has become clear that the quest for sustainability in the production of Brazilian ethanol has increased foreign participation in this industry, and this factor is regarded as responsible for the incorporation of new technologies and for the automation of the ethanol industrial production in agreement to environmental requirements. (author)

  16. The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant

    Directory of Open Access Journals (Sweden)

    Emanuele Bonamente

    2015-10-01

    Full Text Available The Multifunctional Environmental Energy Tower (MEET is a single, vertical, stand-alone renewable energy plant designed to decrease the primary energy consumption from fossil fuels, to reduce greenhouse gas emissions, to maximize the energy production from renewable sources available in place and to minimize land use. A feasibility case study was performed for the city of Rome, Italy. Several technologies are exploited and integrated in a single system, including a photovoltaic plant, a geothermal plant and a biomass digester for urban organic waste and sewage sludge. In the proposed configuration, the MEET could cover more than 11% of the electric power demand and up to 3% of the space heating demand of the surrounding urban area. An LCA analysis evaluates the environmental impact in a cradle-to-grave approach for two impact categories: global warming (carbon footprint and land use (land occupation and land transformation. The functional unit is a mix of electric (49.1% and thermal (50.9% energy (kWhmix. The carbon footprint is 48.70 g CO2eq/kWhmix; the land transformation is 4.058 m2/GWhmix; and the land occupation is 969.3 m2y/GWhmix. With respect to other energy production technologies, the carbon footprint is lower and similar to the best-performing ones (e.g., co-generation from wood chips; both of the land use indicators are considerably smaller than the least-impacting technologies. A systematic study was finally performed, and possible optimizations of the original design are proposed. Thanks to the modular design, the conceptual idea can be easily applied to other urban and non-urban scenarios.

  17. Customization creates more efficient, cleaner rigs

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-08-01

    Technological advances in drilling equipment are essential to improving efficiency in the oilpatch; getting the technological upper hand on the competition is no less important for drilling equipment manufacturers than for actors in other sectors of the industry. While off-the-shelf uniformity that reduces unit cost has been the trend in fabricating field gas compression modules, custom manufacturing has become very popular in the rig manufacturing sector. Examples from Crown Energy Technologies and Tesco Corporation, both of Calgary, Aecon Industrial's Edmonton operations, PCL Industrial Construction Ltd of Nisku, and Toromont Process Systems of Houston and Calgary are described to illustrate the widespread demand for customized drilling rigs, including the growing preference for electric drives. Top drive systems, as opposed to rotary drives also have become very popular; six out of ten rigs are sold with electric top drives today compared with fewer than 10 rigs a decade ago. At the same time, Tesco has recently signed a deal with Conoco Inc to construct three revolutionary drilling rigs using Tesco's proprietary Casing Drilling Technology, which uses standard oilfield casing instead of drill pipe, allowing operators to simultaneously drill, case and evaluate oil and gas wells. Aecon and PCL Industrial Construction have had much demand for customized spools and modules particularly from the oil sands industry, while Toro