WorldWideScience

Sample records for co-cultured rat striatal

  1. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...... differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......-culture, large numbers of tyrosine hydroxylase (TH)-immunoreactive, catecholaminergic cells could be found underneath individual striatal slices. Cell counting revealed that up to 25.3% (average 16.1%) of the total number of cells in these areas were TH-positive, contrasting a few TH-positive cells (

  2. The presence of cortical neurons in striatal-cortical co-cultures alters the effects of dopamine and BDNF on Medium Spiny Neuron dendritic development

    Directory of Open Access Journals (Sweden)

    Rachel D Penrod

    2015-07-01

    Full Text Available Medium spiny neurons (MSNs are the major striatal neuron and receive synaptic input from both glutamatergic and dopaminergic afferents. These synapses are made on MSN dendritic spines, which undergo density and morphology changes in association with numerous disease and experience-dependent states. Despite wide interest in the structure and function of mature MSNs, relatively little is known about MSN development. Furthermore, most in vitro studies of MSN development have been done in simple striatal cultures that lack any type of non-autologous synaptic input, leaving open the question of how MSN development is affected by a complex environment that includes other types of neurons, glia, and accompanying secreted and cell-associated cues. Here we characterize the development of MSNs in striatal-cortical co-culture, including quantitative morphological analysis of dendritic arborization and spine development, describing progressive changes in density and morphology of developing spines. Overall, MSN growth is much more robust in the striatal-cortical co-culture compared to striatal mono-culture. Inclusion of dopamine in the co-culture further enhances MSN dendritic arborization and spine density, but the effects of dopamine on dendritic branching are only significant at later times in development. In contrast, exogenous Brain Derived Neurotrophic Factor (BDNF has only a minimal effect on MSN development in the co-culture, but significantly enhances MSN dendritic arborization in striatal mono-culture. Importantly, inhibition of NMDA receptors in the co-culture significantly enhances the effect of exogenous BDNF, suggesting that the efficacy of BDNF depends on the cellular environment. Combined, these studies identify specific periods of MSN development that may be particularly sensitive to perturbation by external factors and demonstrate the importance of studying MSN development in a complex signaling environment.

  3. Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Qin; Wang Han; Zhigang Yu

    2012-01-01

    A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro.

  4. Striatal grafts in a rat model of Huntington's disease

    DEFF Research Database (Denmark)

    Guzman, R; Meyer, M; Lövblad, K O;

    1999-01-01

    Survival and integration into the host brain of grafted tissue are crucial factors in neurotransplantation approaches. The present study explored the feasibility of using a clinical MR scanner to study striatal graft development in a rat model of Huntington's disease. Rat fetal lateral ganglionic...... eminences grown as free-floating roller-tube cultures can be successfully grafted in a rat Huntington model and that a clinical MR scanner offers a useful noninvasive tool for studying striatal graft development....

  5. Striatal trophic activity is reduced in the aged rat brain.

    Science.gov (United States)

    Ling, Z D; Collier, T J; Sortwell, C E; Lipton, J W; Vu, T Q; Robie, H C; Carvey, P M

    2000-02-21

    Our previous studies demonstrated that the survival of a mesencephalic graft was reduced in aged animals suggesting an age-related decline in target-derived neurotrophic activity. We tested this hypothesis by examining dopamine (DA) and trophic activities from the striatum of intact or unilateral 6-hydroxydopamine (6-OHDA) lesioned rats of increasing age. Fisher 344 rats were 4, 12, 18, and 23 months old (m.o.) at sacrifice. Half the animals had received unilateral 6-OHDA lesions of the mesostriatal DA pathway 8 weeks earlier. Striatal tissue punches were analyzed for DA, homovanillic acid (HVA), and DA activity (HVA/DA) using HPLC. The remainder of the striatal tissue was homogenized to generate tissue extracts which were added to E14.5 ventral mesencephalic cultures to test trophic activity. In the non-lesioned animals, striatal DA was reduced and striatal DA activity was increased in the 18 and 23 m.o. animals relative to the 4 and 12 m.o. animals. Striatal trophic activity was inversely related to age. In the lesioned animals, striatal DA ipsilateral to 6-OHDA infusion was below detection limits while the contralateral striatum exhibited age-related changes in DA similar to those seen in the non-lesioned animals. In 4 m.o. lesioned rats, striatal trophic activity ipsilateral to 6-OHDA infusion was elevated by 26% relative to the contralateral side. The ipsi/contra-lateral differences in striatal trophic activity were reduced in 12 m.o. animals and absent in the 18 and 23 m.o. groups. These data suggest that advancing age is associated with a reduction in striatal DA as well as trophic activity. Moreover, the aged striatum loses its ability to biochemically and trophically compensate for DA reduction and therefore may represent a more challenging environment for the survival, growth, and function of a fetal graft.

  6. Differentiation of rat embryonic neural stem cells promoted by co-cultured Schwann cells

    Institute of Scientific and Technical Information of China (English)

    万虹; 安沂华; 张泽舜; 张亚卓; 王忠诚

    2003-01-01

    Objective To explore the factors which induce differentiation of embryonic neural stem cells. Methods Rat embryonic neural stem cells were co-cultured with newborn rat Schwann cells in serum-free medium. The phenotype and specific-markers including tubulin-β, glial fibrillary acidic protein (GFAP) and galactorcerebroside (GalC), were domonstrated by phase contrast microscopy and double immunofluorescence staining. Results Overall, 80%±5% of neural stem cells protruded several elongated processes and expressed tubulin-β antigen at high levels, while 20±3% of them protruded several short processes and were GalC or GFAP positive. Conclusion The factors secreted by Schwann cells could induce rat embryonic neural stem cell to differentiate.

  7. Bilaminar co-culture of primary rat cortical neurons and glia.

    Science.gov (United States)

    Shimizu, Saori; Abt, Anna; Meucci, Olimpia

    2011-11-12

    This video will guide you through the process of culturing rat cortical neurons in the presence of a glial feeder layer, a system known as a bilaminar or co-culture model. This system is suitable for a variety of experimental needs requiring either a glass or plastic growth substrate and can also be used for culture of other types of neurons. Rat cortical neurons obtained from the late embryonic stage (E17) are plated on glass coverslips or tissue culture dishes facing a feeder layer of glia grown on dishes or plastic coverslips (known as Thermanox), respectively. The choice between the two configurations depends on the specific experimental technique used, which may require, or not, that neurons are grown on glass (e.g. calcium imaging versus Western blot). The glial feeder layer, an astroglia-enriched secondary culture of mixed glia, is separately prepared from the cortices of newborn rat pups (P2-4) prior to the neuronal dissection. A major advantage of this culture system as compared to a culture of neurons only is the support of neuronal growth, survival, and differentiation provided by trophic factors secreted from the glial feeder layer, which more accurately resembles the brain environment in vivo. Furthermore, the co-culture can be used to study neuronal-glial interactions(1). At the same time, glia contamination in the neuronal layer is prevented by different means (low density culture, addition of mitotic inhibitors, lack of serum and use of optimized culture medium) leading to a virtually pure neuronal layer, comparable to other established methods(1-3). Neurons can be easily separated from the glial layer at any time during culture and used for different experimental applications ranging from electrophysiology(4), cellular and molecular biology(5-8), biochemistry(5), imaging and microscopy(4,6,7,9,10). The primary neurons extend axons and dendrites to form functional synapses(11), a process which is not observed in neuronal cell lines, although some

  8. Effects of pyridoxine on rat testes by means of Sertoli-germ cell co-culture system in vitro

    Institute of Scientific and Technical Information of China (English)

    Huang Houjin

    2001-01-01

    Objective To investigate the effects of pyridoxine on rat testis in vitro. Method an in vitro systen of Sertoligem cell co-culture was applied, the toxic effects of pyridoxine at different concentrations an exposed duration were olserved. Results The detachment of germ cells from sertoli cells showed marked dose-response and time response relafionships with the exposure of pyridoxine. Meanwhile, the characteristic of loosing and ratracting skeletun in the Sertoli cells was found. Conclusions The effects induced by pyridoxine in vitro may reflect damage to Sertoli cells, and testicular cells co-culture could be of value for the study of underlying mechanisms of toxic effects of pyridoxine on rat testis.

  9. Motor tics evoked by striatal disinhibition in the rat

    Directory of Open Access Journals (Sweden)

    Maya eBronfeld

    2013-09-01

    Full Text Available Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS. Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure – the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1-4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders.

  10. Co-culture of primary rat hepatocytes with rat liver epithelial cells enhances interleukin-6-induced acute-phase protein response

    NARCIS (Netherlands)

    Peters, S.J.A.C.; Vanhaecke, T.; Papeleu, P.; Rogiers, V.; Haagsman, H.P.; Norren, van K.

    2010-01-01

    Three different primary rat hepatocyte culture methods were compared for their ability to allow the secretion of fibrinogen and albumin under basal and IL-6- stimulated conditions. These culture methods comprised the co-culture of hepatocytes with rat liver epithelial cells (CCRLEC), a collagen type

  11. Striatal neuroinflammation promotes Parkinsonism in rats.

    Directory of Open Access Journals (Sweden)

    Dong-Young Choi

    Full Text Available BACKGROUND: Sporadic Parkinson's disease (PD is a progressive neurodegenerative disorder with unknown cause, but it has been suggested that neuroinflammation may play a role in pathogenesis of the disease. Neuroinflammatory component in process of PD neurodegeneration was proposed by postmortem, epidemiological and animal model studies. However, it remains unclear how neuroinflammatory factors contribute to dopaminergic neuronal death in PD. FINDINGS: In this study, we analyzed the relationship among inducible nitric oxide synthase (iNOS-derived NO, mitochondrial dysfunction and dopaminergic neurodegeneration to examine the possibility that microglial neuroinflammation may induce dopaminergic neuronal loss in the substantia nigra. Unilateral injection of lipopolysaccharide (LPS into the striatum of rat was followed by immunocytochemical, histological, neurochemical and biochemical analyses. In addition, behavioral assessments including cylinder test and amphetamine-induced rotational behavior test were employed to validate ipsilateral damage to the dopamine nigrostriatal pathway. LPS injection caused progressive degeneration of the dopamine nigrostriatal system, which was accompanied by motor impairments including asymmetric usage of forelimbs and amphetamine-induced turning behavior in animals. Interestingly, some of the remaining nigral dopaminergic neurons had intracytoplasmic accumulation of alpha-synuclein and ubiquitin. Furthermore, defect in the mitochondrial respiratory chain, and extensive S-nitrosylation/nitration of mitochondrial complex I were detected prior to the dopaminergic neuronal loss. The mitochondrial injury was prevented by treatment with L-N(6-(l-iminoethyl-lysine, an iNOS inhibitor, suggesting that iNOS-derived NO is associated with the mitochondrial impairment. CONCLUSIONS: These results implicate neuroinflammation-induced S-nitrosylation/nitration of mitochondrial complex I in mitochondrial malfunction and subsequent

  12. Evaluation of PFOS-mediated neurotoxicity in rat primary neurons and astrocytes cultured separately or in co-culture.

    Science.gov (United States)

    Li, Zhenwei; Liu, Qi; Liu, Chang; Li, Chunna; Li, Yachen; Li, Shuangyue; Liu, Xiaohui; Shao, Jing

    2017-02-01

    Perfluorooctane sulfonate (PFOS) is a potential neurotoxicant reported by epidemiological investigations and experimental studies, while the underlying mechanisms are still unclear. Astrocytes not only support for the construction of neurons, but also conduct neuronal functions through glutamate-glutamine cycle in astrocyte-neuron crosstalk. In the present study, the effect of PFOS exposure on rat primary hippocampal neurons or cortex astrocytes was evaluated. Then the role of the astrocytes in PFOS-induced toxic effect on neurons was explored with astrocyte-neuron co-culture system. Exposure of rat primary hippocampal neurons to PFOS has led to oxidation-antioxidation imbalance, increased apoptosis and abnormal autophagy. The adverse effect of PFOS on rat primary cortex astrocytes manifested in the form of altered extracellular glutamate and glutamine concentrations, decreased glutamine synthase activity, as well as decreased gene expression of glutamine synthase, glutamate transporters and glutamine transporters in the glutamate-glutamine cycle. Especially, the alleviation of PFOS-inhibited neurite outgrowth in neurons could be observed in astrocyte-neuron co-culture system, though the ability of astrocytes in fostering neurite outgrowth was affected by PFOS. These results indicated that both astrocytes and neurons might be the targets of PFOS-induced neurotoxicity, and astrocytes could protect against PFOS-inhibited neurite outgrowth in primary cultured neurons. Our research might render some information in explaining the mechanisms of PFOS-induced neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effects of postnatal anoxia on striatal dopamine metabolism and prepulse inhibition in rats

    DEFF Research Database (Denmark)

    Sandager-Nielsen, Karin; Andersen, Maibritt B; Sager, Thomas N;

    2004-01-01

    . Anoxia was experimentally induced by placing 9-day-old rat pups for 6 min in a chamber saturated with 100% nitrogen (N(2)). Exposure to anoxia on postnatal day (PND) 9 resulted in significantly reduced subcortical dopamine metabolism and turnover, as measured by striatal 3,4-dihydroxyphenylacetic acid...

  14. The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons

    OpenAIRE

    Sciamanna, Giuseppe; Wilson, Charles J.

    2011-01-01

    Striatal fast-spiking (FS) cells in slices fire in the gamma frequency range and in vivo are often phase-locked to gamma oscillations in the field potential. We studied the firing patterns of these cells in slices from rats ages 16–23 days to determine the mechanism of their gamma resonance. The resonance of striatal FS cells was manifested as a minimum frequency for repetitive firing. At rheobase, cells fired a doublet of action potentials or doublets separated by pauses, with an instantaneo...

  15. Elevated striatal Fos immunoreactivity following 6-hydroxydopamine lesioning of the rat is mediated by excitatory amino acid transmission.

    Science.gov (United States)

    Cooper, A J; Wooller, S; Mitchell, I J

    1995-07-14

    Pharmacological depletion of dopaminergic neurotransmission can result in an elevation in striatal Fos levels. This elevation may occur as a direct result of decreased dopaminergic neurotransmission or indirectly via elevated corticostriatal glutamatergic neurotransmission which occurs secondary to dopamine depletion. To test the hypothesis that elevated N-methyl-D-aspartic acid (NMDA)-mediated corticostriatal transmission may underlie the increase in striatal Fos levels upon dopamine depletion, rats were unilaterally 6-hydroxydopamine lesioned under anaesthesia induced by either barbiturate or the NMDA antagonist, ketamine. Following surgery the animals remained under light anaesthesia for 6 h prior to sacrifice and quantification of striatal Fos immunoreactivity. The results demonstrate that dopamine depletion following 6-hydroxydopamine lesioning can result in elevated striatal Fos levels which can be attenuated by contiguous treatment with an NMDA antagonist. This suggests that the increase in striatal Fos levels observed following dopamine depletion may occur as a result of elevated cytoplasmic calcium levels in the striatal cells.

  16. Cortical regulation of striatal projection neurons and interneurons in a Parkinson's disease rat model

    Directory of Open Access Journals (Sweden)

    Jia-jia Wu

    2016-01-01

    Full Text Available Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 kDa, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.

  17. Long-term alterations of striatal parvalbumin interneurons in a rat model of early exposure to alcohol

    OpenAIRE

    De Giorgio, Andrea; Comparini, Sara E; Intra, Francesca Sangiuliano; Granato, Alberto

    2012-01-01

    Background Exposure to alcohol in utero is a known cause of mental retardation. Although a certain degree of motor impairment is always associated with fetal alcohol spectrum disorder, little is known about the neurobiological basis of the defective motor control. We have studied the striatal interneurons containing parvalbumin in a rat model of fetal alcohol spectrum disorder. Methods Newborn rats received ethanol by inhalation from postnatal day two through six and parvalbumin striatal neur...

  18. Histaminergic system in co-cultures of hippocampus and posterior hypothalamus: a morphological and electrophysiological study in the rat.

    Science.gov (United States)

    Diewald, L; Heimrich, B; Büsselberg, D; Watanabe, T; Haas, H L

    1997-11-01

    Neurons of the tuberomammillary nucleus in the posterior hypothalamus diffusely project to most parts of the central nervous system, where their main transmitter, histamine, modulates the excitability of the target neurons. The development of a histaminergic hypothalamo-hippocampal pathway and its function were studied in organotypic co-cultures. Immunocytochemistry for histidine decarboxylase, the specific synthesizing enzyme, stained clusters of neurons in the hypothalamic tuberomammillary area. Immunolabelled varicose processes innervated the co-cultured hippocampus and established a few synaptic contacts on dendrites. Cultured tuberomammillary neurons displayed their typical membrane properties and were spontaneously active. In hippocampal pyramidal cells of the CA3 region the long-lasting afterhyperpolarization was reduced by histamine or impromidine and increased by the H2 antagonist cimetidine, but not by the H1 antagonist mepyramine. The membrane potential was depolarized in presence of an H2 agonist and hyperpolarized by an H2 antagonist. In single hippocampal cultures histamine antagonists did not affect afterhyperpolarization and membrane potential. Histaminergic neurons retain their main morphological and physiological characteristics in slice cultures and establish a functional connection with co-cultured target cells.

  19. Effects on DHEA levels by estrogen in rat astrocytes and CNS co-cultures via the regulation of CYP7B1-mediated metabolism

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Wicher, Grzegorz; Lundqvist, Johan

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA) is formed locally in the CNS and has been implicated in several processes essential for CNS function, including control of neuronal survival. An important metabolic pathway for DHEA in the CNS involves the steroid hydroxylase CYP7B1. In previous...... studies, CYP7B1 was identified as a target for estrogen regulation in cells of kidney and liver. In the current study, we examined effects of estrogens on CYP7B1-mediated metabolism of DHEA in primary cultures of rat astrocytes and co-cultures of rat CNS cells. Astrocytes, which interact with neurons...... in several ways, are important for brain neurosteroidogenesis. We found that estradiol significantly suppressed CYP7B1-mediated DHEA hydroxylation in primary mixed CNS cultures from fetal and newborn rats. Also, CYP7B1-mediated DHEA hydroxylation and CYP7B1 mRNA were markedly suppressed by estrogen...

  20. Specific reactions of different striatal neuron types in morphology induced by quinolinic acid in rats.

    Directory of Open Access Journals (Sweden)

    Qiqi Feng

    Full Text Available Huntington's disease (HD is a neurological degenerative disease and quinolinic acid (QA has been used to establish HD model in animals through the mechanism of excitotoxicity. Yet the specific pathological changes and the underlying mechanisms are not fully elucidated. We aimed to reveal the specific morphological changes of different striatal neurons in the HD model. Sprague-Dawley (SD rats were subjected to unilaterally intrastriatal injections of QA to mimic the HD model. Behavioral tests, histochemical and immunhistochemical stainings as well as Western blots were applied in the present study. The results showed that QA-treated rats had obvious motor and cognitive impairments when compared with the control group. Immunohistochemical detection showed a great loss of NeuN+ neurons and Darpp32+ projection neurons in the transition zone in the QA group when compared with the control group. The numbers of parvalbumin (Parv+ and neuropeptide Y (NPY+ interneurons were both significantly reduced while those of calretinin (Cr+ and choline acetyltransferase (ChAT+ were not changed notably in the transition zone in the QA group when compared to the controls. Parv+, NPY+ and ChAT+ interneurons were not significantly increased in fiber density while Cr+ neurons displayed an obvious increase in fiber density in the transition zone in QA-treated rats. The varicosity densities of Parv+, Cr+ and NPY+ interneurons were all raised in the transition zone after QA treatment. In conclusion, the present study revealed that QA induced obvious behavioral changes as well as a general loss of striatal projection neurons and specific morphological changes in different striatal interneurons, which may help further explain the underlying mechanisms and the specific functions of various striatal neurons in the pathological process of HD.

  1. Striatal activation by optogenetics induces dyskinesias in the 6-hydroxydopamine rat model of Parkinson disease.

    Science.gov (United States)

    F Hernández, Ledia; Castela, Ivan; Ruiz-DeDiego, Irene; Obeso, Jose A; Moratalla, Rosario

    2017-04-01

    Long-term levodopa (l-dopa) treatment is associated with the development of l-dopa-induced dyskinesias in the majority of patients with Parkinson disease (PD). The etiopathogonesis and mechanisms underlying l-dopa-induced dyskinesias are not well understood. We used striatal optogenetic stimulation to induce dyskinesias in a hemiparkinsonian model of PD in rats. Striatal dopamine depletion was induced unilaterally by 6-hydroxydopamine injection into the medial forebrain bundle. For the optogenetic manipulation, we injected adeno-associated virus particles expressing channelrhodopsin to stimulate striatal medium spiny neurons with a laser source. Simultaneous optical activation of medium spiny neurons of the direct and indirect striatal pathways in the 6-hydroxydopamine lesion but l-dopa naïve rats induced involuntary movements similar to l-dopa-induced dyskinesias, labeled here as optodyskinesias. Noticeably, optodyskinesias were facilitated by l-dopa in animals that did not respond initially to the laser stimulation. In general, optodyskinesias lasted while the laser stimulus was applied, but in some instances remained ongoing for a few seconds after the laser was off. Postmortem tissue analysis revealed increased FosB expression, a molecular marker of l-dopa-induced dyskinesias, primarily in medium spiny neurons of the direct pathway in the dopamine-depleted hemisphere. Selective optogenetic activation of the dorsolateral striatum elicits dyskinesias in the 6-hydroxydopamine rat model of PD. This effect was associated with a preferential activation of the direct striato-nigral pathway. These results potentially open new avenues in the understanding of mechanisms involved in l-dopa-induced dyskinesias. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  2. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    Science.gov (United States)

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  3. Transient global ischemia in rats yields striatal projection neuron and interneuron loss resembling that in Huntington's disease.

    Science.gov (United States)

    Meade, C A; Figueredo-Cardenas, G; Fusco, F; Nowak, T S; Pulsinelli, W A; Reiner, A

    2000-12-01

    The various types of striatal projection neurons and interneurons show a differential pattern of loss in Huntington's disease (HD). Since striatal injury has been suggested to involve similar mechanisms in transient global brain ischemia and HD, we examined the possibility that the patterns of survival for striatal neurons after transient global ischemic damage to the striatum in rats resemble that in HD. The perikarya of specific types of striatal interneurons were identified by histochemical or immunohistochemical labeling while projection neuron abundance was assessed by cresyl violet staining. Projectionneuron survival was assessed by neurotransmitter immunolabeling of their efferent fibers in striatal target areas. The relative survival of neuron types was determined quantitatively within the region of ischemic damage, and the degree of fiber loss in striatal target areas was quantified by computer-assisted image analysis. We found that NADPHd(+) and cholinergic interneurons were largely unaffected, even in the striatal area of maximal damage. Parvalbumin interneurons, however, were as vulnerable as projection neurons. Among immunolabeled striatal projection systems, striatoentopeduncular fibers survived global ischemia better than did striatopallidal or striatonigral fibers. The order of vulnerability observed in this study among the striatal projection systems, and the resistance to damage shown by NADPHd(+) and cholinergic interneurons, is similar to that reported in HD. The high vulnerability of projection neurons and parvalbumin interneurons to global ischemia also resembles that seen in HD. Our results thus indicate that global ischemic damage to striatum in rat closely mimics HD in its neuronal selectivity, which supports the notion that the mechanisms of injury may be similar in both.

  4. Differential alterations in striatal acetylcholine function in rats during 12 months' continuous administration of haloperidol, sulpiride, or clozapine.

    Science.gov (United States)

    Rupniak, N M; Briggs, R S; Petersen, M M; Mann, S; Reavill, C; Jenner, P; Marsden, C D

    1986-01-01

    Rats were treated continuously for 12 months with therapeutically equivalent doses of either haloperidol (1.4-1.6 mg/kg/day), sulpiride (102-109 mg/kg/day), or clozapine (24-27 mg/kg/day). After treatment for 3 and 12 months with haloperidol or clozapine but not sulpiride, striatal acetylcholine levels were increased. Striatal choline acetyltransferase activity was not altered by any drug treatment. Vmax for striatal acetylcholinesterase activity during the course of 12 months' treatment with haloperidol or clozapine, but not with sulpiride, tended to increase; Km was not altered by any drug treatment. Bmax for specific striatal [3H]quinuclidinyl benzilate binding was not altered by haloperidol or sulpiride treatment but was transiently elevated after 6 months of clozapine treatment, thereafter returning to control levels. Kd was not altered by any drug treatment. These findings indicate that alterations in striatal acetylcholine content caused by chronic treatment with some but not all neuroleptics are due to changes in cholinergic neuronal activity rather than neurotransmitter synthesis or destruction. The effects of haloperidol but not those of clozapine may be related to the emergence of functional striatal dopamine receptor supersensitivity. Since haloperidol (which is associated with a high prevalence of tardive dyskinesias) but not clozapine (which is not) had similar effects on striatal cholinergic function, the latter may not be related to the emergence of tardive dyskinesias during chronic therapy.

  5. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Directory of Open Access Journals (Sweden)

    Tanara Vieira Peres

    2013-01-01

    Full Text Available The molecular mechanisms mediating manganese (Mn-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs and tyrosine hydroxylase (TH could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old. The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK 1/2, as well as c-Jun N-terminal kinase (JNK 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3 in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain.

  6. Morphological characteristics of the striatal neural pathway by biotinylated dextran amine tracing in rats

    Institute of Scientific and Technical Information of China (English)

    Bingbing Liu; Shuhua Mu; Lisi Ouyang; Yaxi Zhu; Keyi Li; Mali Zhan; Zongwei Liu; Yu Jia; Wanlong Lei

    2011-01-01

    Using neural pathway tracing and immunohistochemical technique, the striato-direct pathway (BDA3 kDa injected into the rat lateral globus pallidus) and striato-indirect pathway (BDA3 kDa injected into the substantia nigra pars reticulata) neurons were specifically labeled, and then subjected to double-labeled immunohistochemistry for mu-OPIOID Receptor (specifically-labeled striatal patch compartment), D1, and D2, respectively. The experimental findings showed that there are no statistically significant differences in the soma diameter and the number of primary dendrites between the striato-direct (substantia nigra pars reticularis) and indirect (globus pallidum externum) neurons labeled retrograde by BDA3 kDa. In addition, these two kinds of projection neurons revealed no obvious coexistence. This evidence indicates that as a highly sensitive neural pathway tracer, BDA could yield reliably and exquisitely detailed labeling of target neurons and synaptic structures. The variance of the morphologic structures and the localization of neurons were not statistically significant between the striato-substantia nigra pars reticularis and the globus pallidum externum projection neurons. Mesencephalic and thalamic neurons correlated with striatal neurons in morphology. Especially the latter which make typical excitatory synaptic contacts with striato-direct and -indirect neurons. Thus, this evidence suggests that thalamic neurons may extensively excite striatal neurons.

  7. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Science.gov (United States)

    Peres, Tanara Vieira; Pedro, Daniela Zótico; de Cordova, Fabiano Mendes; Lopes, Mark William; Gonçalves, Filipe Marques; Mendes-de-Aguiar, Cláudia Beatriz Nedel; Walz, Roger; Farina, Marcelo; Aschner, Michael; Leal, Rodrigo Bainy

    2013-01-01

    The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain. PMID:24324973

  8. Modulation of Corpus Striatal Neurochemistry by Astrocytes and Vasoactive Intestinal Peptide (VIP) in Parkinsonian Rats.

    Science.gov (United States)

    Yelkenli, İbrahim Halil; Ulupinar, Emel; Korkmaz, Orhan Tansel; Şener, Erol; Kuş, Gökhan; Filiz, Zeynep; Tunçel, Neşe

    2016-06-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used in animal models of Parkinson's disease. In various neurodegenerative diseases, astrocytes play direct, active, and critical roles in mediating neuronal survival and functions. Vasoactive intestinal peptide (VIP) has neurotrophic actions and modulates a number of astrocytic activities. In this study, the effects of VIP on the striatal neurochemistry were investigated in parkinsonian rats. Adult Sprague-Dawley rats were divided into sham-operated, unilaterally 6-OHDA-lesioned, and lesioned + VIP-administered (25 ng/kg i.p.) groups. VIP was first injected 1 h after the intrastriatal 6-OHDA microinjection and then every 2 days throughout 15 days. Extracellular striatal concentration of glutathione (GSH), gamma-aminobutyric acid (GABA), glutamate (GLU), and lactate were measured in microdialysates by high-performance liquid chromatography (HPLC). Quantification of GABA and activity dependent neuroprotective protein (ADNP)-expressing cells were determined by glutamic acid decarboxylase (GAD)/ADNP + glial fibrillary acidic protein (GFAP) double immunohistochemistry. Our results demonstrated that a 6-OHDA lesion significantly increased the density of astrocytes in the striatum and VIP treatment slightly reduced the gliosis. Extracellular concentration of GABA, GLU, and lactate levels did not change, but GSH level significantly increased in the striatum of parkinsonian rats. VIP treatment reduced GSH level comparable to sham-operated groups, but enhanced GABA and GLU levels. Our double labeling results showed that VIP primarily acts on neurons to increase ADNP and GAD expression for protection. These results suggest that, in the 6-OHDA-induced neurodegeneration model, astrocytes were possibly activated for forefront defensiveness by modulating striatal neurochemistry.

  9. Up-regulation of striatal adenosine A(2A) receptors with iron deficiency in rats: effects on locomotion and cortico-striatal neurotransmission.

    Science.gov (United States)

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi

    2010-07-01

    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A(2A) receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A(2A) receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A(2A) receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A(2A) receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A(2A) receptors was found in rats fed during 3 weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A(2A) receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A(2A) receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A(2A) receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A(2A) receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS. Copyright 2010. Published by Elsevier Inc.

  10. Up-regulation of striatal adenosine A2A receptors with iron deficiency in rats. Effects on locomotion and cortico-striatal neurotransmission

    Science.gov (United States)

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi

    2010-01-01

    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A2A receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A2A receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A2A receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A2A receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A2A receptors was found in rats fed during three weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A2A receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A2A receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A2A receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A2A receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS. PMID:20385128

  11. Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats.

    Science.gov (United States)

    Balon, Norbert; Kriem, Badreddine; Dousset, Erick; Weiss, Michel; Rostain, Jean-Claude

    2002-08-30

    Nitrogen-oxygen breathing mixtures, for pressures higher than 0.5 MPa, decrease the release of dopamine in the rat striatum, due to the narcotic potency of nitrogen. In contrast, high pressures of helium-oxygen breathing mixtures of more than 1-2 MPa induce an increase of the striatal dopamine release and an enhancement of motor activity, referred to as the high pressure nervous syndrome (HPNS), and attributed to the effect of pressure per se. It has been demonstrated that the effect of pressure could be antagonized by narcotic gas in a ternary mixture, but most of the narcotic gas studies measuring DA release were executed below the threshold for pressure effect. To examine the effect of narcotic gases at pressure on the rat striatal dopamine release, we have used two gases, with different narcotic potency, at sublethargic pressure, nitrogen at 3 MPa and argon at 2 MPa. In addition, to dissociate the effect of the pressure, we have used nitrous oxide at 0.1 MPa to induce narcosis at very low pressure, and helium at 8 MPa to study the effect of pressure per se. In all the narcotic conditions we have recorded a decrease of the striatal dopamine release. In contrast, helium pressure induced an increase of DA release. For the pressures used, the results suggest that the decrease of dopamine release was independent of such an effect of the pressure. However, for the same narcotic gas, the measurements of the extracellular DA performed in the striatum seem to reflect an opposing effect of pressure, since the decrease in DA release is lower with increasing pressure.

  12. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.

  13. Graft-induced Recovery of Inhibitory Avoidance Conditioning in Striatal Lesioned Rats is Related to Choline Acetyltransferase Activity

    Science.gov (United States)

    Piña, Ana Luisa; Ormsby, Christopher Edward; Miranda, María Isabel; Jiménez, Nicolás; Tapia, Ricardo; Bermúdez-Rattoni, Federico

    1994-01-01

    Four groups of male Wistar rats showing disrupted inhibitory avoidance conditioning due to striatal lesions received either striatal or ventral mesencephalic brain grafts. Two additional non-lesioned groups were used as controls. Half of the groups was retrained in an inhibitory avoidance task at fifteen days postgraft and the other half at sixty days postgraft. Those animals receiving striatal grafts significantly improved their ability to acquire the inhibitory avoidance task at fifteen and sixty days postgraft, as opposed to those receiving mesencephalic grafts, which did not show behavioral recovery. Choline acetyltransferase and glutamate decarboxylase activities, as well as dopamine content, were measured in the grafted tissue. Striatal grafts showed levels of choline acetyltransferase activity similar to the control group. Moreover, a positive correlation was found between the choline acetyltransferase activity and the behavioral recovery. In contrast, both glutamate decarboxylase activity and dopamine levels were significantly lower in striatal and in mesencephalic grafts, as compared to the controls. These results show that striatal but not mesencephalic grafts can promote the restoration of the ability to acquire an inhibitory avoidance task even at early stages (15 days) of the development of the grafts. The results also suggest that acetylcholine plays an important role in behavioral recovery. PMID:7819369

  14. Early deficits in glycolysis are specific to striatal neurons from a rat model of huntington disease.

    Directory of Open Access Journals (Sweden)

    Caroline Gouarné

    Full Text Available In Huntington disease (HD, there is increasing evidence for a link between mutant huntingtin expression, mitochondrial dysfunction, energetic deficits and neurodegeneration but the precise nature, causes and order of these events remain to be determined. In this work, our objective was to evaluate mitochondrial respiratory function in intact, non-permeabilized, neurons derived from a transgenic rat model for HD compared to their wild type littermates by measuring oxygen consumption rates and extracellular acidification rates. Although HD striatal neurons had similar respiratory capacity as those from their wild-type littermates when they were incubated in rich medium containing a supra-physiological glucose concentration (25 mM, pyruvate and amino acids, respiratory defects emerged when cells were incubated in media containing only a physiological cerebral level of glucose (2.5 mM. According to the concept that glucose is not the sole substrate used by the brain for neuronal energy production, we provide evidence that primary neurons can use lactate as well as pyruvate to fuel the mitochondrial respiratory chain. In contrast to glucose, we found no major deficits in HD striatal neurons' capacity to use pyruvate as a respiratory substrate compared to wild type littermates. Additionally, we used extracellular acidification rates to confirm a reduction in anaerobic glycolysis in the same cells. Interestingly, the metabolic disturbances observed in striatal neurons were not seen in primary cortical neurons, a brain region affected in later stages of HD. In conclusion, our results argue for a dysfunction in glycolysis, which might precede any defects in the respiratory chain itself, and these are early events in the onset of disease.

  15. Long-term alterations of striatal parvalbumin interneurons in a rat model of early exposure to alcohol

    OpenAIRE

    De Giorgio Andrea; Comparini Sara E; Intra Francesca; Granato Alberto

    2012-01-01

    Abstract Background Exposure to alcohol in utero is a known cause of mental retardation. Although a certain degree of motor impairment is always associated with fetal alcohol spectrum disorder, little is known about the neurobiological basis of the defective motor control. We have studied the striatal interneurons containing parvalbumin in a rat model of fetal alcohol spectrum disorder. Methods Newborn rats received ethanol by inhalation from postnatal day two through six and parvalbumin stri...

  16. Exercise-induced rescue of tongue function without striatal dopamine sparing in a rat neurotoxin model of Parkinson disease.

    Science.gov (United States)

    Ciucci, Michelle R; Schaser, Allison J; Russell, John A

    2013-09-01

    Unilateral lesions to the medial forebrain bundle with 6-hydroxydopamine (6-OHDA) lead to force and timing deficits during a complex licking task. We hypothesized that training targeting tongue force generation during licking would improve timing and force measures and also lead to striatal dopamine sparing. Nine month-old male Fisher344/Brown Norway rats were used in this experiment. Sixteen rats were in the control condition and received tongue exercise (n=8) or no exercise (n=8). Fourteen rats were in the 6-OHDA lesion condition and underwent tongue exercise (n=7) and or no exercise (n=7). Following 4 weeks of training and post-training measures, all animals underwent bilateral stimulation of the hypoglossal nerves to measure muscle contractile properties and were then transcardially perfused and brain tissues collected for immunohistochemistry to examine striatal dopamine content. Results demonstrated that exercise animals performed better for maximal force, average force, and press rate than their no-exercise counterparts, and the 6-OHDA animals that underwent exercise performed as well as the Control No Exercise group. Interestingly, there were no group differences for tetanic muscle force, despite behavioral recovery of forces. Additionally, behavioral and neurochemical analyses indicate that there were no differences in striatal dopamine. Thus, targeted exercise can improve tongue force and timing deficits related to 6-OHDA lesions and this exercise likely has a central, versus peripheral (muscle strength) mechanism. However, this mechanism is not related to sparing of striatal dopamine content. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Interactions between alpha-latrotoxin and trivalent cations in rat striatal synaptosomal preparations

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, H.W.

    1989-05-01

    The interactions between alpha-latrotoxin (alpha-LTx), a neurosecretagogue purified from the venom of the black widow spider, and the trivalent cations Al3+, Y3+, La3+, Gd3+, and Yb3+ were investigated in rat striatal synaptosomal preparations. All trivalent cations tested were inhibitors of alpha-LTx-induced (/sup 3/H)dopamine ((/sup 3/H)DA) release (order of potency: Yb3+ greater than Gd3+ approximately Y3+ greater than La3+ greater than Al3+). Only with Al3+ could inhibition of (/sup 3/H)DA release be attributed to a block of /sup 125/I-alpha-LTx specific binding to synaptosomal preparations. The inhibitory effect of trivalent ions was reversible provided synaptosomes were washed with buffer containing EDTA. Trivalent ions also inhibited alpha-LTx-induced (/sup 3/H)DA release at times when alpha-LTx-stimulated release was already evident. alpha-LTx-induced synaptosomal membrane depolarization was blocked by La3+, but not affected by Gd3+, Y3+, and Yb3+. alpha-LTx-stimulated uptake of /sup 45/Ca/sup 2 +/ was inhibited by all trivalent cations tested. These results demonstrate that there exist at least three means by which trivalent cations can inhibit alpha-LTx action in rat striatal synaptosomal preparations: (1) inhibition of alpha-LTx binding (Al3+); (2) inhibition of alpha-LTx-induced depolarization (La3+); and (3) inhibition of alpha-LTx-induced /sup 45/Ca/sup 2 +/ uptake (Gd3+, Y3+, Yb3+, La3+).

  18. Proliferation of bone marrow mesenchymal stem cells, skeletal muscle cells and co-culture of both for cell myocardium therapy in Wistar rats.

    Science.gov (United States)

    Carvalho, K A T; Guarita-Souza, L C; Simeone, R B; Francisco, J C; Olandoski, M; Gremski, W

    2006-01-01

    The best results of cell therapy are achieved by a greater quantity of cells, delivery to the correct place, and cell conditions of viability with proliferation and without apoptosis. The quantification of cellular growth, including proliferation and viability, has become an essential tool. The objective of this study was to analyze cell proliferation in 14-day cultures of bone marrow mesenchymal stem cells (BMMSC), skeletal muscle cells (SMC), and co-culture of both types of cells (CO). Forty-four adult Wistar male rats (250-300g) received cultured cells CO (n = 22), BMMSC (n = 10), and SMC (n = 12). All cultured cells were started with the same concentration: 5 x 10(5)/mL, under similar conditions and maintained in an incubator with 5% CO(2) at 37 degrees C, which was changed every 48 hours for 14 days. The cell count was performed in Neubauer's chamber to calculate the proliferation index (IP). Statistical analysis was performed by the nonparametric Kruskal-Wallis and Wilcoxon tests. P values statistically significant. The results showed that IP was positive in all groups. In conclusion, proliferation capacity was demonstrated in all groups. SMC IP was greater than the others, although it was the most heterogeneous.

  19. Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of glutaric acidemia-I.

    Directory of Open Access Journals (Sweden)

    Silvia Olivera-Bravo

    Full Text Available BACKGROUND: We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA, a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I, an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such astrocytic dysfunction is sufficient to trigger striatal neuronal loss. METHODOLOGY/PRINCIPAL FINDINGS: A single intracerebroventricular dose of GA was administered to rat pups at postnatal day 0 (P0 to induce an acute, transient rise of GA levels in the central nervous system (CNS. GA administration potently elicited proliferation of astrocytes expressing S100β followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45. Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures, GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss in vitro. CONCLUSIONS/SIGNIFICANCE: Taken together, these results indicate that a transient metabolic insult with GA induces long lasting phenotypic changes in astrocytes that cause them to promote striatal

  20. The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons.

    Science.gov (United States)

    Sciamanna, Giuseppe; Wilson, Charles J

    2011-12-01

    Striatal fast-spiking (FS) cells in slices fire in the gamma frequency range and in vivo are often phase-locked to gamma oscillations in the field potential. We studied the firing patterns of these cells in slices from rats ages 16-23 days to determine the mechanism of their gamma resonance. The resonance of striatal FS cells was manifested as a minimum frequency for repetitive firing. At rheobase, cells fired a doublet of action potentials or doublets separated by pauses, with an instantaneous firing rate averaging 44 spikes/s. The minimum rate for sustained firing was also responsible for the stuttering firing pattern. Firing rate adapted during each episode of firing, and bursts were terminated when firing was reduced to the minimum sustainable rate. Resonance and stuttering continued after blockade of Kv3 current using tetraethylammonium (0.1-1 mM). Both gamma resonance and stuttering were strongly dependent on Kv1 current. Blockade of Kv1 channels with dendrotoxin-I (100 nM) completely abolished the stuttering firing pattern, greatly lowered the minimum firing rate, abolished gamma-band subthreshold oscillations, and slowed spike frequency adaptation. The loss of resonance could be accounted for by a reduction in potassium current near spike threshold and the emergence of a fixed spike threshold. Inactivation of the Kv1 channel combined with the minimum firing rate could account for the stuttering firing pattern. The resonant properties conferred by this channel were shown to be adequate to account for their phase-locking to gamma-frequency inputs as seen in vivo.

  1. Copper reduces striatal protein nitration and tyrosine hydroxylase inactivation induced by MPP+ in rats.

    Science.gov (United States)

    Rubio-Osornio, M; Montes, S; Pérez-Severiano, F; Aguilera, P; Floriano-Sánchez, E; Monroy-Noyola, A; Rubio, C; Ríos, C

    2009-06-01

    Striatal administration of 1-methyl-4-phenylpyridinium (MPP(+)), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causes nigrostriatal dopaminergic pathway damage similar to that observed in Parkinson's disease. Copper acts as a prosthetic group of several antioxidant enzymes and recent data show that copper attenuated MPP(+)-evoked neurotoxicity. We evaluated the effect of copper (as a supplement) upon proteins nitration (60 kDa) and tyrosine hydroxylase (TH) inactivation induced by MPP(+) (10 microg/8 microL) injection into the rat striatum. Copper pretreatment (10 micromol/kg i.p.) prevented both MPP(+)-induced proteins nitration and TH inactivation. Copper treatment also prevented the dopamine-depleting effect of MPP(+) injection. Those results were accompanied by a significant reduction of enzymatic activity of the constitutive nitric oxide synthase (cNOS), whereas, the protein levels of the three isoforms of NOS remained unchanged. Results indicate that the effect of copper against MPP(+)-induced proteins nitration and TH inactivation in the striatum of rat may be mediated by a reduction of cNOS activity.

  2. Comparison of nitrogen narcosis and helium pressure effects on striatal amino acids: a microdialysis study in rats.

    Science.gov (United States)

    Vallée, Nicolas; Rostain, Jean-Claude; Boussuges, Alain; Risso, Jean-Jacques

    2009-05-01

    Exposure to nitrogen-oxygen mixture at high pressure induces narcosis, which can be considered as a first step toward general anaesthesia. Narcotic potencies of inert gases are attributed to their lipid solubility. Nitrogen narcosis induces cognitive and motor disturbances that occur from 0.3 MPa in man and from 1 MPa in rats. Neurochemical studies performed in rats up to 3 MPa have shown that nitrogen pressure decreases striatal dopamine release like argon, another inert gas, or nitrous oxide, an anaesthetic gas. Striatal dopamine release is under glutamatergic and other amino acid neurotransmission regulations. The aim of this work was to study the effects of nitrogen at 3 MPa on striatal amino acid levels and to compare to those of 3 MPa of helium which is not narcotic at this pressure, by using a new technique of microdialysis samples extraction under hyperbaric conditions, in freely moving rats. Amino acids were analysed by HPLC coupled to fluorimetric detection in order to appreciate glutamate, aspartate, glutamine and asparagine levels. Nitrogen-oxygen mixture exposure at 3 MPa decreased glutamate, glutamine and asparagine concentrations. In contrast, with helium-oxygen mixture, glutamate and aspartate levels were increased during the compression phase but not during the stay at maximal pressure. Comparison between nitrogen and helium highlighted the narcotic effects of nitrogen at pressure. As a matter of fact, nitrogen induces a reduction in glutamate and in other amino acids that could partly explain the decrease in striatal dopamine level as well as the motor and cognitive disturbances reported in nitrogen narcosis.

  3. Longitudinal magnetic resonance imaging reveals striatal hypertrophy in a rat model of long-term stimulant treatment.

    Science.gov (United States)

    Biezonski, D; Shah, R; Krivko, A; Cha, J; Guilfoyle, D N; Hrabe, J; Gerum, S; Xie, S; Duan, Y; Bansal, R; Leventhal, B L; Peterson, B S; Kellendonk, C; Posner, J

    2016-09-06

    Stimulant treatment is highly effective in mitigating symptoms associated with attention-deficit/hyperactivity disorder (ADHD), though the neurobiological underpinnings of this effect have not been established. Studies using anatomical magnetic resonance imaging (MRI) in children with ADHD have suggested that long-term stimulant treatment may improve symptoms of ADHD in part by stimulating striatal hypertrophy. This conclusion is limited, however, as these studies have either used cross-sectional sampling or did not assess the impact of treatment length on their dependent measures. We therefore used longitudinal anatomical MRI in a vehicle-controlled study design to confirm causality regarding stimulant effects on striatal morphology in a rodent model of clinically relevant long-term stimulant treatment. Sprague Dawley rats were orally administered either lisdexamfetamine (LDX, 'Vyvanse') or vehicle (N=12 per group) from postnatal day 25 (PD25, young juvenile) until PD95 (young adult), and imaged one day before and one day after the 70-day course of treatment. Our LDX dosing regimen yielded blood levels of dextroamphetamine comparable to those documented in patients. Longitudinal analysis of striatal volume revealed significant hypertrophy in LDX-treated animals when compared to vehicle-treated controls, with a significant treatment by time point interaction. These findings confirm a causal link between long-term stimulant treatment and striatal hypertrophy, and support utility of longitudinal MRI in rodents as a translational approach for bridging preclinical and clinical research. Having demonstrated comparable morphological effects in both humans and rodents using the same imaging technology, future studies may now use this rodent model to identify the underlying cellular mechanisms and behavioral consequences of stimulant-induced striatal hypertrophy.

  4. Longitudinal magnetic resonance imaging reveals striatal hypertrophy in a rat model of long-term stimulant treatment

    Science.gov (United States)

    Biezonski, D; Shah, R; Krivko, A; Cha, J; Guilfoyle, D N; Hrabe, J; Gerum, S; Xie, S; Duan, Y; Bansal, R; Leventhal, B L; Peterson, B S; Kellendonk, C; Posner, J

    2016-01-01

    Stimulant treatment is highly effective in mitigating symptoms associated with attention-deficit/hyperactivity disorder (ADHD), though the neurobiological underpinnings of this effect have not been established. Studies using anatomical magnetic resonance imaging (MRI) in children with ADHD have suggested that long-term stimulant treatment may improve symptoms of ADHD in part by stimulating striatal hypertrophy. This conclusion is limited, however, as these studies have either used cross-sectional sampling or did not assess the impact of treatment length on their dependent measures. We therefore used longitudinal anatomical MRI in a vehicle-controlled study design to confirm causality regarding stimulant effects on striatal morphology in a rodent model of clinically relevant long-term stimulant treatment. Sprague Dawley rats were orally administered either lisdexamfetamine (LDX, ‘Vyvanse') or vehicle (N=12 per group) from postnatal day 25 (PD25, young juvenile) until PD95 (young adult), and imaged one day before and one day after the 70-day course of treatment. Our LDX dosing regimen yielded blood levels of dextroamphetamine comparable to those documented in patients. Longitudinal analysis of striatal volume revealed significant hypertrophy in LDX-treated animals when compared to vehicle-treated controls, with a significant treatment by time point interaction. These findings confirm a causal link between long-term stimulant treatment and striatal hypertrophy, and support utility of longitudinal MRI in rodents as a translational approach for bridging preclinical and clinical research. Having demonstrated comparable morphological effects in both humans and rodents using the same imaging technology, future studies may now use this rodent model to identify the underlying cellular mechanisms and behavioral consequences of stimulant-induced striatal hypertrophy. PMID:27598968

  5. Maternal obesity caused by overnutrition exposure leads to reversal learning deficits and striatal disturbance in rats.

    Science.gov (United States)

    Wu, Ting; Deng, Shining; Li, Wei-Guang; Yu, Yongguo; Li, Fei; Mao, Meng

    2013-01-01

    Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life.

  6. Maternal obesity caused by overnutrition exposure leads to reversal learning deficits and striatal disturbance in rats.

    Directory of Open Access Journals (Sweden)

    Ting Wu

    Full Text Available Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life.

  7. Long-term alterations of striatal parvalbumin interneurons in a rat model of early exposure to alcohol

    Directory of Open Access Journals (Sweden)

    De Giorgio Andrea

    2012-07-01

    Full Text Available Abstract Background Exposure to alcohol in utero is a known cause of mental retardation. Although a certain degree of motor impairment is always associated with fetal alcohol spectrum disorder, little is known about the neurobiological basis of the defective motor control. We have studied the striatal interneurons containing parvalbumin in a rat model of fetal alcohol spectrum disorder. Methods Newborn rats received ethanol by inhalation from postnatal day two through six and parvalbumin striatal neurons were labeled by immunohistochemistry on postnatal day 60. The spatial distribution of parvalbumin interneurons was studied using Voronoi spatial tessellation and their dendritic trees were completely reconstructed. Results Parvalbumin interneurons of ethanol-treated animals showed a clustered spatial distribution similar to that observed in control animals. The dendritic tree of parvalbumin interneurons was significantly reduced in ethanol-treated animals, as compared with controls. Conclusions Striatal parvalbumin interneurons are crucial components of the brain network serving motor control. Therefore, the shrinkage of their dendrites could contribute to the motor and cognitive symptoms observed in fetal alcohol spectrum disorder.

  8. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats.

    Science.gov (United States)

    Colle, Dirleise; Santos, Danúbia Bonfanti; Moreira, Eduardo Luiz Gasnhar; Hartwig, Juliana Montagna; dos Santos, Alessandra Antunes; Zimmermann, Luciana Teixeira; Hort, Mariana Appel; Farina, Marcelo

    2013-01-01

    Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD involve oxidative stress and mitochondrial dysfunction. Administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, in rodents has been proposed as a useful experimental model of HD. This study evaluated the effects of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, on the biochemical parameters related to oxidative stress, as well as on the behavioral parameters related to motor function in an in vivo HD model based on 3-NP intoxication in rats. Animals were treated with 3.5 mg/kg of probucol in drinking water daily for 2 months and, subsequently, received 3-NP (25 mg/kg i.p.) once a day for 6 days. At the end of the treatments, 3-NP-treated animals showed a significant decrease in body weight, which corresponded with impairment on motor ability, inhibition of mitochondrial complex II activity and oxidative stress in the striatum. Probucol, which did not rescue complex II inhibition, protected against behavioral and striatal biochemical changes induced by 3-NP, attenuating 3-NP-induced motor impairments and striatal oxidative stress. Importantly, probucol was able to increase activity of glutathione peroxidase (GPx), an enzyme important in mediating the detoxification of peroxides in the central nervous system. The major finding of this study was that probucol protected against 3-NP-induced behavioral and striatal biochemical changes without affecting 3-NP-induced mitochondrial complex II inhibition, indicating that long-term probucol treatment resulted in an increased resistance against neurotoxic events (i.e., increased oxidative damage) secondary to mitochondrial dysfunction. These data appeared to be of great relevance when

  9. Prenatal ethanol enhances rotational behavior to apomorphine in the 24-month-old rat offspring with small striatal lesion.

    Science.gov (United States)

    Gomide, Vânia C; Chadi, Gerson

    2004-01-01

    Pregnant Wistar rats received a hyperproteic liquid diet containing 37.5% ethanol-derived calories during gestation. Isocaloric amount of liquid diet, with maltose-dextrin substituted for ethanol, was given to control pair-fed dams. Offsprings were allowed to survive until 24 months of age. A set of aged female offsprings of both control diet and ethanol diet groups was registered for spontaneous motor activity, by means of an infrared motion sensor activity monitor, or for apomorphine-induced rotational behavior, while another lot of male offsprings was submitted to an unilateral striatal small mechanical lesion by a needle, 6 days before rotational recordings. Prenatal ethanol did not alter spontaneous motor parameters like resting time as well as the events of small and large movements in the aged offsprings. Bilateral circling behavior was already increased 5 min after apomorphine in the unlesioned offsprings of both the control and ethanol diet groups. However, it lasted more elevated for 45- to 75-min time intervals in the gestational ethanol-exposed offsprings, while decreasing faster in the control offsprings. Apomorphine triggered a strong and sustained elevation of contraversive turns in the striatal-lesioned 24-month-old offsprings of the ethanol group, but only a small and transient elevation was seen in the offsprings of the control diet group. Astroglial and microglial reactions were seen surrounding the striatal needle track lesion. Microdensitometric image analysis demonstrated no differences in the levels of tyrosine hydroxylase immunoreactivity in the striatum of 24-month-old unlesioned and lesioned offsprings of control and alcohol diet groups. The results suggest that ethanol exposure during gestation may alter the sensitivity of dopamine receptor in aged offsprings, which is augmented by even a small striatal lesion.

  10. Behavioural inflexibility in a comorbid rat model of striatal ischemic injury and mutant hAPP overexpression.

    Science.gov (United States)

    Levit, Alexander; Regis, Aaron M; Garabon, Jessica R; Oh, Seung-Hun; Desai, Sagar J; Rajakumar, Nagalingam; Hachinski, Vladimir; Agca, Yuksel; Agca, Cansu; Whitehead, Shawn N; Allman, Brian L

    2017-08-30

    Alzheimer disease (AD) and stroke coexist and interact; yet how they interact is not sufficiently understood. Both AD and basal ganglia stroke can impair behavioural flexibility, which can be reliably modeled in rats using an established operant based set-shifting test. Transgenic Fischer 344-APP21 rats (TgF344) overexpress pathogenic human amyloid precursor protein (hAPP) but do not spontaneously develop overt pathology, hence TgF344 rats can be used to model the effect of vascular injury in the prodromal stages of Alzheimer disease. We demonstrate that the injection of endothelin-1 (ET1) into the dorsal striatum of TgF344 rats (Tg-ET1) produced an exacerbation of behavioural inflexibility with a behavioural phenotype that was distinct from saline-injected wildtype & TgF344 rats as well as ET1-injected wildtype rats (Wt-ET1). In addition to profiling the types of errors made, interpolative modeling using logistic exposure-response regression provided an informative analysis of the timing and efficiency of behavioural flexibility. During set-shifting, Tg-ET1 committed fewer perseverative errors than Wt-ET1. However, Tg-ET1 committed significantly more regressive errors and had a less efficient strategy change than all other groups. Thus, behavioural flexibility was more vulnerable to striatal ischemic injury in TgF344 rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of striatal nitric oxide production on regional cerebral blood flow and seizure development in rats exposed to extreme hyperoxia.

    Science.gov (United States)

    Gasier, Heath G; Demchenko, Ivan T; Allen, Barry W; Piantadosi, Claude A

    2015-12-01

    The endogenous vasodilator and signaling molecule nitric oxide has been implicated in cerebral hyperemia, sympathoexcitation, and seizures induced by hyperbaric oxygen (HBO2) at or above 3 atmospheres absolute (ATA). It is unknown whether these events in the onset of central nervous system oxygen toxicity originate within specific brain structures and whether blood flow is diverted to the brain from peripheral organs with high basal flow, such as the kidney. To explore these questions, total and regional cerebral blood flow (CBF) were measured in brain structures of the central autonomic network in anesthetized rats in HBO2 at 6 ATA. Electroencephalogram (EEG) recordings, cardiovascular hemodynamics, and renal blood flow (RBF) were also monitored. As expected, mean arterial blood pressure and total and regional CBF increased preceding EEG spikes while RBF was unaltered. Of the brain structures examined, the earliest rise in CBF occurred in the striatum, suggesting increased neuronal activation. Continuous unilateral or bilateral striatal infusion of the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester attenuated CBF responses in that structure, but global EEG discharges persisted and did not differ from controls. Our novel findings indicate that: 1) cerebral hyperemia in extreme HBO2 in rats does not occur at the expense of renal perfusion, highlighting the remarkable autoregulatory capability of the kidney, and 2) in spite of a sentinel increase in striatal blood flow, additional brain structure(s) likely govern the pathogenesis of HBO2-induced seizures because EEG discharge latency was unchanged by local blockade of striatal nitric oxide production and concomitant hyperemia.

  12. Secretory phospholipase A2 potentiates glutamate-induced rat striatal neuronal cell death in vivo

    DEFF Research Database (Denmark)

    Kolko, M; Bruhn, T; Christensen, Thomas

    1999-01-01

    no tissue damage or neurological abnormality. After injection of 5.0 micromol Glu, the animals initially circled towards the side of injection, and gradually developed generalized clonic convulsions. These animals showed a well demarcated striatal infarct. When non-toxic concentrations of 20 pmol OS2 and 2...

  13. Effects of repeated hyperbaric nitrogen-oxygen exposures on the striatal dopamine release and on motor disturbances in rats.

    Science.gov (United States)

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2005-09-14

    Previous studies have demonstrated disruptions of motor activities and a decrease of extracellular dopamine level in the striatum of rats exposed to high pressure of nitrogen. Men exposed to nitrogen pressure develop also motor and cognitive disturbances related to inert gas narcosis. After repetitive exposures, adaptation to narcosis was subjectively reported. To study the effects of repetitive exposures to hyperbaric nitrogen-oxygen, male Sprague-Dawley rats were implanted in the striatum with multifiber carbon dopamine-sensitive electrodes. After recovery from surgery, free-moving rats were exposed for 2 h up to 3 MPa of nitrogen-oxygen mixture before and after one daily exposure to 1 MPa of nitrogen-oxygen, for 5 consecutive days. Dopamine release was measured by differential pulse voltammetry and motor activities were quantified using piezo-electric captor. At the first exposure to 3 MPa, the striatal dopamine level decreased during the compression (-15%) to reach -20% during the stay at 3 MPa. Motor activities were increased during compression (+15%) and the first 60 min at constant pressure (+10%). In contrast, at the second exposure to 3 MPa, an increase of dopamine of +15% was obtained during the whole exposure. However, total motor activities remained unchanged as compared to the first exposure. Our results confirm that nitrogen exposure at 3 MPa led to a decreased striatal dopamine release and increased motor disturbances in naïve rats. Repetitive exposures to 1 MPa of nitrogen induced a reversal effect on the dopamine release which suggests a neurochemical change at the level of the neurotransmitter regulation processes of the basal ganglia. In contrast, motor activity remained quantitatively unchanged, thus suggesting that dopamine is not involved alone in modulating these motor disturbances.

  14. Repeated administration of D-amphetamine induces loss of [{sup 123}I]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan [Department of Nuclear Medicine, Academic Medical Center, 1105 AZ Amsterdam (Netherlands)]. E-mail: j.booij@amc.uva.nl; Bruin, Kora de [Department of Nuclear Medicine, Academic Medical Center, 1105 AZ Amsterdam (Netherlands); Gunning, W. Boudewijn [Department of Neurology, Epilepsy Centre Kempenhaeghe, 5590 AB Heeze (Netherlands)

    2006-04-15

    In recent years, several PET and SPECT studies have shown loss of striatal dopamine transporter (DAT) binding in amphetamine (AMPH) users. However, the use of DAT SPECT tracers to detect AMPH-induced changes in DAT binding has not been validated. We therefore examined if repeated administration of D-AMPH or methamphetamine (METH) may induce loss of binding to striatal DATs in rats by using an experimental biodistribution study design and a SPECT tracer for the DAT ([{sup 123}I]FP-CIT). Methods: Groups of male rats (n=10 per group) were treated with D-AMPH (10 mg/kg body weight), METH (10 mg/kg body weight), or saline, twice a day for 5 consecutive days. Five days later, [{sup 123}I]FP-CIT was injected intravenously, and 2 h later, the rats were sacrificed and radioactivity was assayed. Results: In D-AMPH but not METH-treated rats, striatal [{sup 123}I]FP-CIT uptake was significantly lower (approximately 17%) than in the control group. Conclusion: These data show that [{sup 123}I]FP-CIT can be used to detect AMPH-induced changes in DAT binding and may validate the use of DAT radiotracers to study AMPH-induced changes in striatal DAT binding in vivo.

  15. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity.

    Science.gov (United States)

    Robinson, Mike J F; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-08-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.

  16. Nonequilibrium Calcium Dynamics Regulate the Autonomous Firing Pattern of Rat Striatal Cholinergic Interneurons

    OpenAIRE

    Goldberg, Joshua A.; Teagarden, Mark A.; Foehring, Robert C.; Wilson, Charles J.

    2009-01-01

    Striatal cholinergic interneurons discharge rhythmically in two patterns associated with different afterhyperpolarization timescales, each dictated by a different calcium-dependent potassium current. Single spiking depends on a medium-duration afterhyperpolarization (mAHP) generated by rapid SK currents that are associated with N-type calcium channels. Periodic bursting is driven by a delayed and slowly decaying afterhyperpolarization (sAHP) current associated with L-type channels. Using calc...

  17. Morphometric analysis of NADPH diaphorase reactive neurons in a rat model of focal excitotoxic striatal injury.

    Science.gov (United States)

    Freire, Marco Aurelio M; Guimaraes, Joanilson S; Santos, Jose Ronaldo; Simplício, Hougelle; Gomes-Leal, Walace

    2016-12-01

    Excitotoxicity is the major component in neuropathological conditions, related to harmful action of imbalanced concentrations of glutamate and its agonists in the nervous tissue, ultimately resulting in cell death. In the present study, we evaluated the effects of an acute striatal lesion induced by a focal N-methyl-D-aspartate (NMDA) microinjection on the morphometry of NADPH diaphorase-reactive neurons (NADPH-d(+) ), a subset of cells which release nitric oxide (NO) in the brain and are known by its resistance in pathological conditions. Two hundred and forty NADPH-d neurons from NMDA-lesioned striatum and contralateral counterpart were tridimensionally reconstructed at 1, 3 and 7 post-lesion days (PLDs). Cell body and dendritic field areas, length of dendrites by order and fractal dimension were analyzed. There were no significant morphometric differences when NADPH-d(+) neurons from lesioned and control striatal regions were compared among PLDs evaluated. Conversely, a conspicuous pallor in striatal neuropil reactivity was evidenced, especially in latter survival time. In addition, we observed a noticeable inflammatory response induced by NMDA. Our results suggest that NADPH-d(+) neurons were spared from deleterious effects of acute NMDA excitotoxic damage in the striatum, reinforcing the notion that this cell group is selectively resistant to injury in the nervous system.

  18. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats.

    Science.gov (United States)

    Walters, Jennifer L; Lansdell, Theresa A; Lookingland, Keith J; Baker, Lisa E

    2015-12-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning.

  19. Effects of the NMDA receptor antagonists on deltamethrin-induced striatal dopamine release in conscious unrestrained rats.

    Science.gov (United States)

    Morikawa, Takuya; Furuhama, Kazuhisa

    2009-08-01

    To better understand the neurotoxicity caused by the pyrethroid pesticide, we examined the effects of the N-methyl-D-aspartate (NMDA) receptor antagonists MK-801, a non-competitive cation channel blocker, and 2-amino-5-phosphonovaleric acid (APV), a competitive Na(+) channel blocker, on extracellular dopamine levels in male Sprague-Dawley rats receiving the type II pyrethroid deltamethrin using an in vivo microdialysis system. Deltamethrin (60 mg/kg, i.p.) evidently increased striatal dopamine levels with a peak time of 120 min, and the local infusion (i.c.) of either MK-801(650 muM) or APV (500 muM) completely blocked these actions. The fluctuation in the dopamine metabolite 3-MT also resembled that in dopamine. Our results suggest that dopamine-releasing neurons would be modulated via the NMDA receptor by the excitatory glutamatergic neurons after deltamethrin treatment.

  20. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    Science.gov (United States)

    Walters, Jennifer L.; Lansdell, Theresa A.; Lookingland, Keith J.; Baker, Lisa E.

    2016-01-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 µg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. PMID:26440580

  1. Serotonin axons of the neostriatum show a higher affinity for striatal than for ventral mesencephalic transplants: a quantitative study in adult and immature recipient rats.

    Science.gov (United States)

    Pierret, P; Vallée, A; Bosler, O; Dorais, M; Moukhles, H; Abbaszadeh, R; Lepage, Y; Doucet, G

    1998-07-01

    We previously showed that grafts of fetal ventral mesencephalic tissue are practically not innervated by host serotonin (5-HT) axons after implantation into the striatum of rats aged more than 14 days, at variance with transplants of cortical or striatal tissue into the adult striatum, which are well innervated by these axons. Using 5-HT immunohistochemistry and in vitro [3H]5-HT uptake/autoradiography, we have examined and quantified the innervation of ventral mesencephalic versus striatal grafts several months after implantation into the striatum of neonatal (postnatal day 5 or P5), juvenile (P15), and adult rats. Ventral mesencephalic grafts implanted in P5 rats received a moderate 5-HT innervation, while similar grafts implanted in P15 or adult recipients were almost free of any 5-HT fibers (-80%, compared to P5). The density of 5-HT innervation showed a tendency toward higher values in striatal than in ventral mesencephalic grafts (1.6-2 times higher in P5 and adult recipients; 4 times higher in P15 recipients). The difference was more striking, and significant, when only the true striatal portions of the striatal grafts were considered, i.e., DARPP-32-immunopositive areas (4-5 times higher in P5 and adult recipients; 10 times higher in P15 recipients). Accordingly, these DARPP-32-positive areas were also more densely innervated than the DARPP-32-negative zones of the same grafts (3 times higher at any age). The 5-HT innervation density also decreased with increasing age of the recipients in DARPP-32-positive, as well as DARPP-32-negative compartments of the striatal grafts (-75% in adults), but this decrease appeared more gradual (-50% in juveniles) than with mesencephalic grafts. It is concluded that the 5-HT axons innervating the neostriatum have a better affinity for striatal grafts than for ventral mesencephalic grafts or the nonstriatal portions of striatal grafts. In adulthood, the relative affinity of these axons for the different types of grafts is

  2. Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine.

    Directory of Open Access Journals (Sweden)

    Henrike Planert

    Full Text Available D1 and D2 receptor expressing striatal medium spiny neurons (MSNs are ascribed to striatonigral ("direct" and striatopallidal ("indirect" pathways, respectively, that are believed to function antagonistically in motor control. Glutamatergic synaptic transmission onto the two types is differentially affected by Dopamine (DA, however, less is known about the effects on MSN intrinsic electrical properties. Using patch clamp recordings, we comprehensively characterized the two pathways in rats and mice, and investigated their DA modulation. We identified the direct pathway by retrograde labeling in rats, and in mice we used transgenic animals in which EGFP is expressed in D1 MSNs. MSNs were subjected to a series of current injections to pinpoint differences between the populations, and in mice also following bath application of DA. In both animal models, most electrical properties were similar, however, membrane excitability as measured by step and ramp current injections consistently differed, with direct pathway MSNs being less excitable than their counterparts. DA had opposite effects on excitability of D1 and D2 MSNs, counteracting the initial differences. Pronounced changes in AP shape were seen in D2 MSNs. In direct pathway MSNs, excitability increased across experimental conditions and parameters, and also when applying DA or the D1 agonist SKF-81297 in presence of blockers of cholinergic, GABAergic, and glutamatergic receptors. Thus, DA induced changes in excitability were D1 R mediated and intrinsic to direct pathway MSNs, and not a secondary network effect of altered synaptic transmission. DAergic modulation of intrinsic properties therefore acts in a synergistic manner with previously reported effects of DA on afferent synaptic transmission and dendritic processing, supporting the antagonistic model for direct vs. indirect striatal pathway function.

  3. Mathematical Identification of a Neuronal Network Consisting of GABA and DA in Striatal Slices of the Rat Brain

    Directory of Open Access Journals (Sweden)

    L. Ramrath

    2009-01-01

    Full Text Available High frequency stimulation (HFS has been used to treat various neurological and psychiatric diseases. Although further disorders are under investigation to extend the clinical application of HFS, the complex effect of HFS within a neuronal network is still unknown. Thus, it would be desirable to find a theoretical model that allows an estimation of the expected effect of applied HFS. Based on the neurochemical analysis of effects of the γ-aminobutyric acid (GABAA receptor antagonist bicuculline, the D2-like receptor antagonist sulpiride and the D1-like receptor antagonist SCH-23390 on HFS evoked GABA and dopamine (DA release from striatal slices of the rat brain, a mathematical network model is proposed including the neurotransmitters GABA, DA and glutamate (GLU. The model reflects inhibitory and excitatory interactions of the neurotransmitters outflow in the presence of HFS. Under the assumption of linear interactions and static measurements, the model is expressed analytically. Numerical identification of inhibition and excitation is performed on a basis of real outflow levels of GABA and DA in the rat striatum. Results validate the nature of the proposed model. Therefore, this leads to an analytical model of the interactions within distinct neural network components of the rat striatum.

  4. Establishment of a Parkinson's disease model in rats via striatal one-site double injection Feasibility observation

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Li Ma; Yulong Shi; Boli Zhang

    2008-01-01

    BACKGROUND: To date, many 6-hydroxydopamine (6-OHDA)-lesioned rat models have been established by injecting 6-OHDA into two or more sites in the substantia nigra pars compacta, striatum or median forebrain bundle. The success rate of models established by this method is satisfactory, but it can raise the death rate, and is elaborate and tedious to perform.OBJECTIVE: To observe the difference between injections of 6-OHDA into the striatum from one site and two sites, and to explore the feasibility of establishing Parkinson's disease rat models via striatal one-site double injection.DESIGN, TIME AND SETTING: A randomized, controlled animal experiment based on a modeling comparison was performed at the Pharmacology Laboratory of Traditional Chinese Medicine, Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine between August 2005 and April 2006.MATERIALS: A total of 46 male Wistar rats were purchased from Beijing Weitong Lihua Experimental Animal Technical Co., Ltd., China. 6-OHDA hydrogen bromide was sourced from Sigma Co., Ltd., USA.METHODS: All 46 rats were randomized to three groups: one-site injection (n = 18), two-site injection (n = 18), and control (n = 10). Lesions in rat brains were established by infusing 5 p g 6-OHDA into the striatum at the following coordinates: anteroposterior (AP) 1.0 ram, mediolateral (ML) 2.7 mm,dorsoventral (DV) -5.2 or -6.0 mm for the one-site injection group, and AP 1.0 mm, ML 2.5 ram, DV -4.5 mm/AP -0.4 ram, ML 3.5 mm, DV -4.5 mm for the two-site injection group, respectively. Rats in the control group were injected with the same volume of 0.01% ascorbic acid as above.MAIN OUTCOME MEASURES: Tyrosine hydroxylase-positive neurons were detected by immunohistochemistry. Success rates of PD models established by one-site and two-site injection techniques were examined.RESULTS: One rat died in the one-site injection group and four in the two-site injection group. Thus behavioral testing was

  5. Methylphenidate administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene expression.

    Science.gov (United States)

    Adriani, Walter; Leo, Damiana; Greco, Dario; Rea, Monica; di Porzio, Umberto; Laviola, Giovanni; Perrone-Capano, Carla

    2006-09-01

    Administration of methylphenidate (MPH, Ritalin) to children with attention deficit hyperactivity disorder (ADHD) is an elective therapy, but raises concerns for public health, due to possible persistent neurobehavioral alterations. Wistar adolescent rats (30 to 46 day old) were administered MPH or saline (SAL) for 16 days, and tested for reward-related and motivational-choice behaviors. When tested in adulthood in a drug-free state, MPH-pretreated animals showed increased choice flexibility and economical efficiency, as well as a dissociation between dampened place conditioning and more marked locomotor sensitization induced by cocaine, compared to SAL-pretreated controls. The striatal complex, a core component of the natural reward system, was collected both at the end of the MPH treatment and in adulthood. Genome-wide expression profiling, followed by RT-PCR validation on independent samples, showed that three members of the postsynaptic-density family and five neurotransmitter receptors were upregulated in the adolescent striatum after subchronic MPH administration. Interestingly, only genes for the kainate 2 subunit of ionotropic glutamate receptor (Grik2, also known as KA2) and the 5-hydroxytryptamine (serotonin) receptor 7 (Htr7) (but not GABA(A) subunits and adrenergic receptor alpha1b) were still upregulated in adulthood. cAMP responsive element-binding protein and Homer 1a transcripts were modulated only as a long-term effect. In summary, our data indicate short-term changes in neural plasticity, suggested by modulation of expression of key genes, and functional changes in striatal circuits. These modifications might in turn trigger enduring changes responsible for the adult neurobehavioral profile, that is, altered processing of incentive values and a modified flexibility/habit balance.

  6. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations

    Directory of Open Access Journals (Sweden)

    Vilma Consuelo Muñeton-Gomez

    2012-08-01

    Full Text Available The increased risk and prevalence of lacunar stroke and Parkinson's disease makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra of the rat after stereotaxic administration of endothelin-1, a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize green fluorescent-derived neurons. 48h after endothelin-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterised with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive and into neurons of diverse neurotransmitter-striatal subtypes, suggesting that they were functional. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting their implication in angiogenesis during recovery from stroke. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism.

  7. Reduction in subventricular zone-derived olfactory bulb neurogenesis in a rat model of Huntington's disease is accompanied by striatal invasion of neuroblasts.

    Directory of Open Access Journals (Sweden)

    Mahesh Kandasamy

    Full Text Available Huntington's disease (HD is an inherited progressive neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene (HTT. The primary neuropathology of HD has been attributed to the preferential degeneration of medium spiny neurons (MSN in the striatum. Reports on striatal neurogenesis have been a subject of debate; nevertheless, it should be considered as an endogenous attempt to repair the brain. The subventricular zone (SVZ might offer a close-by region to supply the degenerated striatum with new cells. Previously, we have demonstrated that R6/2 mice, a widely used preclinical model representing an early onset HD, showed reduced olfactory bulb (OB neurogenesis but induced striatal migration of neuroblasts without affecting the proliferation of neural progenitor cell (NPCs in the SVZ. The present study revisits these findings, using a clinically more relevant transgenic rat model of late onset HD (tgHD rats carrying the human HTT gene with 51 CAG repeats and mimicking many of the neuropathological features of HD seen in patients. We demonstrate that cell proliferation is reduced in the SVZ and OB of tgHD rats compared to WT rats. In the OB of tgHD rats, although cell survival was reduced, the frequency of neuronal differentiation was not altered in the granule cell layer (GCL compared to the WT rats. However, an increased frequency of dopamenergic neuronal differentiation was noticed in the glomerular layer (GLOM of tgHD rats. Besides this, we observed a selective proliferation of neuroblasts in the adjacent striatum of tgHD rats. There was no evidence for neuronal maturation and survival of these striatal neuroblasts. Therefore, the functional role of these invading neuroblasts still needs to be determined, but they might offer an endogenous alternative for stem or neuronal cell transplantation strategies.

  8. Triple monoamine inhibitor tesofensine decreases food intake, body weight, and striatal dopamine D2/D3 receptor availability in diet-induced obese rats.

    Science.gov (United States)

    van de Giessen, Elsmarieke; de Bruin, Kora; la Fleur, Susanne E; van den Brink, Wim; Booij, Jan

    2012-04-01

    The novel triple monoamine inhibitor tesofensine blocks dopamine, serotonin and norepinephrine re-uptake and is a promising candidate for the treatment of obesity. Obesity is associated with lower striatal dopamine D2 receptor availability, which may be related to disturbed regulation of food intake. This study assesses the effects of chronic tesofensine treatment on food intake and body weight in association with changes in striatal dopamine D2/D3 receptor (D2/3R) availability of diet-induced obese (DIO) rats. Four groups of 15 DIO rats were randomized to one of the following treatments for 28 days: 1. tesofensine (2.0 mg/kg), 2. vehicle, 3. vehicle+restricted diet isocaloric to caloric intake of group 1, and 4. tesofensine (2.0 mg/kg)+ a treatment-free period of 28 days. Caloric intake and weight gain decreased significantly more in the tesofensine-treated rats compared to vehicle-treated rats, which confirms previous findings. After treatment discontinuation, caloric intake and body weight gain gradually increased again. Tesofensine-treated rats showed significantly lower D2/3R availability in nucleus accumbens and dorsal striatum than both vehicle-treated rats and vehicle-treated rats on restricted isocaloric diet. No correlations were observed between food intake or body weight and D2/3R availability. Thus, chronic tesofensine treatment leads to decreased food intake and weight gain. However, this appears not to be directly related to the decreased striatal D2/3R availability, which is mainly a pharmacological effect. Copyright © 2011 Elsevier B.V. and ECNP. All rights reserved.

  9. The effect of venlafaxine on behaviour, body weight and striatal monoamine levels on sleep-deprived female rats.

    Science.gov (United States)

    de Oliveira, Ricardo A; Cunha, Geanne M A; Borges, Karla Daisy M; de Bruin, Gabriela S; dos Santos-Filho, Emídio A; Viana, Glauce S B; de Bruin, Veralice M S

    2004-11-01

    Partial sleep deprivation is clinically associated with fatigue, depressive symptoms and reduced memory. Previously, it has been demonstrated that venlafaxine, an atypical antidepressant, increases the levels of noradrenaline and serotonin in rat hippocampus. The aim of this study was to evaluate the effects of venlafaxine on depression, anxiety, locomotor activity and memory in a model of REM sleep (REMs) deprivation in rats. We have also studied the influence of venlafaxine on monoamine levels in the striatum. Six groups of animals (N=20 each) were treated with saline or venlafaxine (1 or 10 mg/kg) during 10 days, submitted or not to REMs deprivation and studied with the forced swimming test of Porsolt (STP), plus-maze, passive avoidance and open-field tests right after sleep deprivation. Animals were also studied for passive avoidance 24 h later (rebound period). Brain samples for monoamine measurements were collected either immediately after REMs deprivation or after 24 h. Both REMs deprivation and venlafaxine showed an antidepressant effect. An anxiolytic effect was also observed after REMs deprivation. Previous treatment with venlafaxine blocked the antidepressant and anxiolytic effects of REMs deprivation. REMs deprivation alone and treatment with venlafaxine 10 mg/kg increased locomotor activity, and this effect was inhibited by venlafaxine in REMs deprived rats. Both venlafaxine treatment and REMs deprivation induced weight loss. Venlafaxine treatment, but not REMs deprivation, induced an increase in striatal dopamine (DA) levels. The combination of REMs deprivation and venlafaxine treatment was associated with an increase in serotonin turnover 24 h after rebound sleep. In this study, venlafaxine treatment hindered most behavioral effects of REMs deprivation and was associated with an interference on dopamine and serotonin systems in the striatum.

  10. Striatal inhibition of calpains prevents levodopa-induced neurochemical changes and abnormal involuntary movements in the hemiparkinsonian rat model.

    Science.gov (United States)

    Chagniel, Laure; Robitaille, Christine; Lebel, Manon; Cyr, Michel

    2012-01-01

    Pharmacological dopamine replacement with l-3,4-dihydroxyphenylalanine (L-DOPA) remains the most effective approach to treat the motor symptoms of Parkinson's disease (PD). However, as the disease progresses, the therapeutic response to L-DOPA gradually becomes erratic and is associated with the emergence of dyskinesia in the majority of patients. The pathogenesis of L-DOPA-induced dyskinesia (LID) is still unknown. In the current study, using the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD, we demonstrated that the calcium-dependent proteins calpains and cdk5 of the striatum play a critical role in the behavioral and molecular changes evoked by L-DOPA therapy. We first confirmed that L-DOPA reversed PD symptoms, assessed by the cylinder, stepping and vibrissae-elicited reaching tests in this animal model, and elicited robust abnormal involuntary movements (AIMs) reminiscent of LID. Interestingly, intrastriatal infusion of the calpains inhibitor MDL28170, and to a lower extent the cdk5 inhibitor roscovitine, reduced the severity and amplitude of AIMs without affecting L-DOPA's antiparkinsonian effects. Notably, the calpains and cdk5 inhibitors totally reversed the striatal molecular changes attributed to L-DOPA therapy, such as ERK1/2 and dynamin phosphorylation. Another fascinating observation was that L-DOPA therapy, in combination with intrastriatal infusion of MDL28170, augmented tyrosine hydroxylase levels in the striatum of lesioned rats without affecting the number of dopaminergic cells in the substantia nigra. These findings disclose a novel mechanism underlying the maladaptive alterations induced by L-DOPA therapy in the 6-OHDA rat model of PD.

  11. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs.

    Science.gov (United States)

    Chen, Wenchuan; Liu, Xian; Chen, Qianmin; Bao, Chongyun; Zhao, Liang; Zhu, Zhimin; Xu, Hockin H K

    2017-01-18

    Angiogenesis is a limiting factor in regenerating large bone defects. The objective of this study was to investigate angiogenic and osteogenic effects of co-culture on calcium phosphate cement (CPC) scaffold using human umbilical vein endothelial cells (hUVECs) and mesenchymal stem cells (MSCs) from different origins for the first time. hUVECs were co-cultured with four types of cell: human umbilical cord MSCs (hUCMSCs), human bone marrow MSCs (hBMSCs) and MSCs from induced pluripotent stem cells (hiPSC-MSCs) and embryonic stem cells (hESC-MSCs). Constructs were implanted in 8 mm cranial defects of rats for 12 weeks. CPC without cells served as control 1. CPC with hBMSCs served as control 2. Microcapillary-like structures were successfully formed on CPC in vitro in all four co-cultured groups. Microcapillary lengths increased with time (p cultured cells increased with time (p cultured groups were much greater than controls (p animal study. hUVECs co-cultured with hUCMSCs, hiPSC-MSCs and hESC-MSCs achieved new bone and vessel density similar to hUVECs co-cultured with hBMSCs (p > 0.1). Therefore, hUCMSCs, hiPSC-MSCs and hESC-MSCs could serve as alternative cell sources to hBMSCs, which require an invasive procedure to harvest. In conclusion, this study showed for the first time that co-cultures of hUVECs with hUCMSCs, hiPSC-MSCs, hESC-MSCs and hBMSCs delivered via CPC scaffold achieved excellent osteogenic and angiogenic capabilities in vivo. The novel co-culture constructs are promising for bone reconstruction with improved angiogenesis for craniofacial/orthopaedic applications. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory

    Science.gov (United States)

    Clemensson, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients. PMID:28045968

  13. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory.

    Science.gov (United States)

    Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.

  14. Nonequilibrium calcium dynamics regulate the autonomous firing pattern of rat striatal cholinergic interneurons.

    Science.gov (United States)

    Goldberg, Joshua A; Teagarden, Mark A; Foehring, Robert C; Wilson, Charles J

    2009-07-01

    Striatal cholinergic interneurons discharge rhythmically in two patterns associated with different afterhyperpolarization timescales, each dictated by a different calcium-dependent potassium current. Single spiking depends on a medium-duration afterhyperpolarization (mAHP) generated by rapid SK currents that are associated with N-type calcium channels. Periodic bursting is driven by a delayed and slowly decaying afterhyperpolarization (sAHP) current associated with L-type channels. Using calcium imaging we show that the calcium transients underlying these currents exhibit two corresponding timescales throughout the somatodendritic tree. This result is not consistent with spatial compartmentalization of calcium entering through the two calcium channels and acting on the two potassium currents, or with differences in channel gating kinetics of the calcium dependent potassium currents. Instead, we show that nonequilibrium dynamics of calcium redistribution among cytoplasmic binding sites with different calcium binding kinetics can give rise to multiple timescales within the same cytoplasmic volume. The resulting independence of mAHP and sAHP currents allows cytoplasmic calcium to control two different and incompatible firing patterns (single spiking or bursting and pausing), depending on whether calcium influx is pulsatile or sustained. During irregular firing, calcium entry at both timescales can be detected, suggesting that an interaction between the medium and slow calcium-dependent afterhyperpolarizations may underlie this firing pattern.

  15. Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington's disease.

    Science.gov (United States)

    Roberts, T J; Price, J; Williams, S C R; Modo, M

    2006-01-01

    Cell replacement has the potential to become a frontline therapy to remedy behavioral impairments in Huntington's disease. To determine the efficacy of stem cell transplantation, behavioral assessment and in vivo monitoring of the lesion environment are paramount. We here demonstrate that neural stem cells from the MHP36 cell line prevented the development of a deficit on the beam walk test while providing partial recovery of learning in the water maze. However, no beneficial effect on rats' impairment in the staircase test was observed. By quantification of the lesion from serial magnetic resonance images, no effect of neural stem cells on lesion volume was observed. Instead, a preservation of striatal volume over time and its correlation with performance on the beam walk test suggested that sparing of behavioral function was associated with a stagnation of ongoing tissue loss rather than a reduction in lesion size. Serial imaging therefore warrants further implementation in clinical trials of neural grafts to monitor in vivo changes in the damaged brain due to transplantation.

  16. Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox.

    Science.gov (United States)

    Cordova, Fabiano M; Aguiar, Aderbal S; Peres, Tanara V; Lopes, Mark W; Gonçalves, Filipe M; Pedro, Daniela Z; Lopes, Samantha C; Pilati, Célso; Prediger, Rui D S; Farina, Marcelo; Erikson, Keith M; Aschner, Michael; Leal, Rodrigo B

    2013-07-01

    While manganese (Mn) is essential for proper central nervous system (CNS) development, excessive Mn exposure may lead to neurotoxicity. Mn preferentially accumulates in the basal ganglia, and in adults it may cause Parkinson's disease-like disorder. Compared to adults, younger individuals accumulate greater Mn levels in the CNS and are more vulnerable to its toxicity. Moreover, the mechanisms mediating developmental Mn-induced neurotoxicity are not completely understood. The present study investigated the developmental neurotoxicity elicited by Mn exposure (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 to PN27 in rats. Neurochemical analyses were carried out on PN29, with a particular focus on striatal alterations in intracellular signaling pathways (MAPKs, Akt and DARPP-32), oxidative stress generation and cell death. Motor alterations were evaluated later in life at 3, 4 or 5 weeks of age. Mn exposure (20 mg/kg) increased p38(MAPK) and Akt phosphorylation, but decreased DARPP-32-Thr-34 phosphorylation. Mn (10 and 20 mg/kg) increased caspase activity and F2-isoprostane production (a biological marker of lipid peroxidation). Paralleling the changes in striatal biochemical parameters, Mn (20 mg/kg) also caused motor impairment, evidenced by increased falling latency in the rotarod test, decreased distance traveled and motor speed in the open-field test. Notably, the antioxidant Trolox™ reversed the Mn (20 mg/kg)-dependent augmentation in p38(MAPK) phosphorylation and reduced the Mn (20 mg/kg)-induced caspase activity and F2-isoprostane production. Trolox™ also reversed the Mn-induced motor coordination deficits. These findings are the first to show that long-term exposure to Mn during a critical period of neurodevelopment causes motor coordination dysfunction with parallel increment in oxidative stress markers, p38(MAPK) phosphorylation and caspase activity in the striatum. Moreover, we establish Trolox™ as a potential neuroprotective agent given its

  17. The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain; II. Correlation between positron emission tomography and reaching behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, S.B. [Department of Experimental Psychology and MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge (United Kingdom); Brooks, D.J.; Ashworth, S.; Opacka-Juffrey, J.; Myers, R.; Hume, S.P. [PET Methodology Group, Cyclotron Unit, MRC Clinical Science Centre, Hammersmith Hospital, London (United Kingdom); Torres, E.M.; Fricker, R.A. [Department of Experimental Psychology and MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge (United Kingdom)

    1997-05-26

    Grafts of embryonic striatal primordia are able to elicit behavioural recovery in rats which have received an excitotoxic lesion to the striatum, and it is believed that the P zones or striatal-like tissue within the transplants play a crucial role in these functional effects. We performed this study to compare the effects of different donor stage of embryonic tissue on both the morphology (see accompanying paper) and function of striatal transplants. Both the medial and lateral ganglionic eminence was dissected from rat embryos of either 10 mm, 15 mm, 19 mm, or 23 mm crown-rump length, and implanted as a cell suspension into adult rats which had received an ibotenic acid lesion 10 days prior to transplantation. After four months the animals were tested on the 'staircase task' of skilled forelimb use. At 10-14 months rats from the groups which had received grafts from 10 mm or 15 mm donor embryos were taken for positron emission tomography scanning in a small diameter postiron emission tomography scanner, using ligands to the dopamine D{sub 1} and D{sub 2} receptors, [{sup 11}C]SCH 23390 and [{sup 11}C]raclopride, respectively. A lesion-alone group was also scanned with the same ligands for comparison. Animals which had received transplants from the 10 mm donors showed a significant recovery with their contralateral paw on the 'staircase test'. No other groups showed recovery on this task. Similarly, the animals with grafts from the youngest donors showed a significant increase in D{sub 1} and D{sub 2} receptor binding when compared to the lesion-alone group. No increase in signal was observed with either ligand in the group which had received grafts from 15 mm donors. Success in paw reaching showed a strong correlation to both the positron emission tomography signal obtained and the P zone volume of the grafts.These results suggest that striatal grafts from younger donors (10 mm CRL) give greater behavioural recovery than grafts preparedfrom

  18. ÉTUDE NEUROCHIMIQUE ET COMPORTEMENTALE DES MODULATIONS INDUITES PAR LES RÉCEPTEURS OPIOÏDES DE TYPE δ SUR LES LIBÉRATIONS STRIATALES DE GLUTAMATE ET DE DOPAMINE CHEZ LE RAT

    OpenAIRE

    Billet, Fabrice

    2007-01-01

    Enkephalins, endogenous ligands of δ-opioid receptors, are the most abundant neuropeptides in the striatum, structure in which they stimulate dopamine release. However, the effect of δ-opioid receptors on striatal glutamate, which is mainly released by cortico-striatal neurons, is unknown. Nevertheless, some data suggest its involvement in the dopamine release induced by DPDPE, a δ-opioid selective agonist. This hypothesis was tested in the rat. For this purpose, we studied the effect of DPDP...

  19. Subchronic nicotine exposure in adolescence induces long-term effects on hippocampal and striatal cannabinoid-CB1 and mu-opioid receptors in rats.

    Science.gov (United States)

    Marco, Eva M; Granstrem, Oleg; Moreno, Enrique; Llorente, Ricardo; Adriani, Walter; Laviola, Giovanni; Viveros, Maria-Paz

    2007-02-14

    There is evidence for the existence of functional interactions between nicotine and cannabinoids and opioid compounds in adult experimental animals. However, there is scarce information about these relationships in young animals. In the present study we evaluated short and long-term effects of a subchronic nicotine treatment [0.4 mg/kg daily i.p. injections from postnatal day (PND) 34 to PND 43], upon hippocampal and striatal cannabinoid-CB(1) and mu-opioid receptors in Wistar rats of both genders. Rats were sacrificed 2 h after the last nicotine injection (short-term effects, PND 43) or one month later (long-term effects, PND 75). Hippocampal and striatal cannabinoid CB(1) and mu-opioid receptors were quantified by Western blotting. The subchronic nicotine treatment induced a region-dependent long-lasting effect in cannabinoid CB(1) receptor: a significant increase in hippocampal cannabinoid CB(1) receptors and a significant decrease in striatal cannabinoid CB(1) receptors, with these effects being similar in males and females. With respect to mu-opioid receptors, subchronic nicotine induced a significant down-regulation in hippocampal and striatal mu-opioid receptors in the long-term, and within the striatum the effects were more marked in adult males than in females. The present results indicate that juvenile nicotine taking may have implications for the endocannabinoid and endogenous opioid function and for the behaviors served by those systems, this includes possible modification of the response of adults to different psychotropic drugs, i.e. cannabis and morphine/heroin when taken later in life.

  20. Antagonism of quercetin against tremor induced by unilateral striatal lesion of 6-OHDA in rats.

    Science.gov (United States)

    Mu, Xin; Yuan, Xia; Du, Li-Da; He, Guo-Rong; Du, Guan-Hua

    2016-01-01

    Quercetin, a flavonoid present in many plants, is reported to be effective in models of neurodegenerative diseases. The aim of the present study was to evaluate the anti-tremor effects of quercetin in 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease. In rats, quercetin had no effect on apomorphine-induced rotations, but it could significantly attenuate muscle tremor of 6-OHDA lesioned rats. Interestingly, quercetin could decrease the burst frequency in a dose- and time-dependent manner. These results suggest that quercetin may have a protective effect on models to mimic muscle tremors of Parkinson's disease. This effect of quercetin may be associated with serotonergic system, but further study is needed.

  1. Postnatal functional inactivation of the entorhinal cortex or ventral subiculum has different consequences for latent inhibition-related striatal dopaminergic responses in adult rats.

    Science.gov (United States)

    Meyer, F; Peterschmitt, Y; Louilot, A

    2009-05-01

    Latent inhibition has been found to be disrupted in patients with acute schizophrenia. Striatal dopaminergic dysregulation is commonly acknowledged in schizophrenia. This disease may be consecutive to a functional disconnection between integrative regions, stemming from neurodevelopmental failures. Various anomalies suggesting early abnormal brain development have been described in the entorhinal cortex (ENT) and ventral subiculum (SUB) of patients. This study examines the consequences of a neonatal transitory blockade of the left ENT or left SUB for latent inhibition-related dopamine responses in the anterior part of the dorsal striatum using in-vivo voltammetry in freely moving adult rats. Reversible inactivation of both structures in different animals was achieved by local microinjection of tetrodotoxin (TTX) at postnatal day 8. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the functional neonatal disconnection of the ENT or SUB caused the behavioural latent inhibition expression in pre-exposed (PE)-TTX-conditioned adult rats to disappear. After postnatal inactivation of the SUB, PE-TTX-conditioned rats displayed a reversal of the latent inhibition-related striatal dopamine responses, whereas after neonatal blockade of the ENT, dopamine changes in PE-TTX-conditioned rats monitored in the anterior striatum were between those observed in PE-phosphate-buffered-saline-conditioned and non-PE-TTX-conditioned animals. These data suggest that neonatal functional inactivation of the SUB disrupts latent inhibition-related striatal dopamine responses in adult animals more than that of the ENT. They may help improve understanding of the pathophysiology of schizophrenia.

  2. An analysis of the responses of rat striatal neurones to scrotal skin temperature.

    Science.gov (United States)

    Taylor, D C; Steele, J E; Gayton, R J

    1987-09-01

    The responses of neurones in the caudate-putamen complex of anaesthetised rats to different scrotal skin temperatures were examined, together with the electroencephalogram (EEG). Caudate neuronal firing patterns did not change independently of rate, unlike the thermo-responsive cells of the hypothalamus previously reported. The scrotal skin temperature threshold for the caudate neuronal response corresponds precisely with the temperature which provokes desynchronisation of the EEG.

  3. The effects of endomorphins on striatal [3H]GABA release induced by electrical stimulation: an in vitro superfusion study in rats.

    Science.gov (United States)

    Bagosi, Zsolt; Jászberényi, Miklós; Telegdy, Gyula

    2009-05-01

    The endomorphins (EM1 and EM2) are selective endogenous ligands for mu-opioid receptors (MOR1 and MOR2) with neurotransmitter and neuromodulator roles in mammals. In the present study we investigated the potential actions of EMs on striatal GABA release and the implication of different MORs in these processes. Rat striatal slices were preincubated with tritium-labelled GABA ([(3)H]GABA), pretreated with selective MOR1 and MOR2 antagonist beta-funaltrexamine and selective MOR1 antagonist naloxonazine and then superfused with the selective MOR agonists, EM1 and EM2. EM1 significantly decreased the striatal [(3)H]GABA release induced by electrical stimulation. Beta-funaltrexamine antagonized the inhibitory action of EM1, but naloxonazine did not affect it considerably. EM2 was ineffective, even in case of specific enzyme inhibitor diprotin A pretreatment. The results demonstrate that EM1 decreases GABA release in the basal ganglia through MOR2, while EM2 does not influence it.

  4. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations

    Science.gov (United States)

    Muñetón-Gómez, Vilma C.; Doncel-Pérez, Ernesto; Fernandez, Ana P.; Serrano, Julia; Pozo-Rodrigálvarez, Andrea; Vellosillo-Huerta, Lara; Taylor, Julian S.; Cardona-Gómez, Gloria P.; Nieto-Sampedro, Manuel; Martínez-Murillo, Ricardo

    2012-01-01

    The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism. PMID:22876219

  5. Involvement of striatal lipid peroxidation and inhibition of calcium influx into brain slices in neurobehavioral alterations in a rat model of short-term oral exposure to manganese.

    Science.gov (United States)

    Avila, Daiana Silva; Gubert, Priscila; Fachinetto, Roselei; Wagner, Caroline; Aschner, Michael; Rocha, João Batista Teixeira; Soares, Félix Alexandre Antunes

    2008-11-01

    Manganese is an essential element for biological systems, nevertheless occupational exposure to high levels of Mn can lead to neurodegenerative disorder, characterized by excessive Mn accumulation, especially in astrocytes of basal ganglia and symptoms closely resembling idiopathic Parkinson's disease (PD). The purpose of this study was to evaluate behavioral and biochemical alterations in adult rats exposed for 30 days to 10 and 25mg/mL of MnCl(2) in their drinking water. MnCl(2) intoxicated rats showed impaired locomotor activity in comparison to control animals. Furthermore, lipid peroxidation were increased, delta-aminolevulinate dehydratase (delta-ALA-D, an enzyme sensitive to pro-oxidant situations) activity was inhibited and (45)Ca(2+) influx into striatal slices was decreased in rats exposed to 25mg/mL of Mn, indicating that this brain region was markedly affected by short-term Mn exposure. In contrast, Mn exposure was not associated with characteristic extrapyramidal effects and did not modify protein oxidation, suggesting that the striatal damage represents early stages of Mn-induced damage. In addition, treatment with Mn was associated with reduced body weight gain, but there were no discernible alterations in liver and kidney function. In conclusion, Mn caused increased oxidative stress and decreased (45)Ca(2+) influx into the striatum, which are likely linked to impaired locomotor activity, but not with the occurrence of orofacial dyskinesia.

  6. Striatal dopamine receptors modulate the expression of insulin receptor, IGF-1 and GLUT-3 in diabetic rats: effect of pyridoxine treatment.

    Science.gov (United States)

    Anitha, M; Abraham, Pretty Mary; Paulose, C S

    2012-12-05

    The incidence of type 2 diabetes mellitus is rising at alarming proportions. Central nervous system plays an important part in orchestrating glucose metabolism, with accumulating evidence linking dysregulated central nervous system circuits to the failure of normal glucoregulatory mechanisms. Pyridoxine is a water soluble vitamin and it has important role in brain function. This study aims to evaluate the role of pyridoxine in striatal glucose regulation through dopaminergic receptor expressions in streptozotocin induced diabetic rats. Radio receptor binding assays for dopamine D(1), D(2) receptors were done using [(3)H] 7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol and [(3)H] 5-chloro-2-methoxy-4-methylamino-N-[-2-methyl-1-(phenylmethyl)pyrrolidin-3-yl]benzamide. Gene expressions were done using fluorescently labeled Taqman probes of dopamine D(1), D(2) receptor, Insulin receptor, Insulin like growth factor-1(IGF-1) and Glucose transporter-3 (GLUT-3). Bmax of dopamine D(1) receptor is decreased and B(max) of dopamine D(2) was increased in diabetic rats compared to control. Gene expression of dopamine D(1) receptor was down regulated and dopamine D(2) receptor was up regulated in diabetic rats. Our results showed decreased gene expression of Insulin receptor, IGF-1 and increased gene expression of GLUT-3 in diabetic rats compared to control. Pyridoxine treatment restored diabetes induced alterations in dopamine D(1), D(2) receptors, Insulin receptor, IGF-1, GLUT-3 gene expressions in striatum compared to diabetic rats. Insulin treatment reversed dopamine D(1), D(2) receptor, GLUT-3 mRNA expression, D(2) receptor binding parameters in the striatum compared to diabetic group. Our results suggest the potential role of pyridoxine supplementation in ameliorating diabetes mediated dysfunctions in striatal dopaminergic receptor expressions and insulin signaling. Thus pyridoxine has therapeutic significance in diabetes management.

  7. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan;

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal...... levels of IL-6, TNF-a and PGE(2) in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2). Lipolysis, measured as glycerol release, was similar...... in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited...

  8. No significant effects of single intravenous, single oral and subchronic oral administration of acetylcholinesterase inhibitors on striatal [{sup 123}I]FP-CIT binding in rats

    Energy Technology Data Exchange (ETDEWEB)

    Knol, R.J.J.; Booij, J. [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Graduate School of Neurosciences, Amsterdam (Netherlands); Bruin, K. de; Eck-Smit, B.L.F. van [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands)

    2008-03-15

    [{sup 123}I]FP-CIT SPECT is a valuable diagnostic tool to discriminate Lewy body dementia from Alzheimer's dementia. To date, however, it is uncertain whether the frequently used acetylcholinesterase inhibitors (AChEIs) by demented patients, have an effect on [{sup 123}I]FP-CIT binding to dopamine transporters (DATs). Earlier animal studies showed a decline of DAT availability after acute intravenous injection of AChEIs. The aim of this study was to investigate effects of single intravenous, single oral and subchronic oral administration of AChEIs on DAT availability in the rat brain as measured by [{sup 123}I]FP-CIT. Biodistribution studies were performed in Wistar rats (n = 5-16 per group). Before [{sup 123}I]FP-CIT injection, rats were injected intravenously with a single dose of the AChEI rivastigmine (2.5 mg/kg body weight) or donepezil (0.5 mg/kg), the DAT-blocker methylphenidate (10 mg/kg) or saline. A second group was orally treated with a single dose of rivastigmine or donepezil (2.5 mg/kg), methylphenidate (10 mg/kg) or saline before injection of [{sup 123}I]FP-CIT. Studies were also performed in rats that were orally treated during 14 consecutive days with either rivastigmine (1 mg/kg daily), donepezil (1.5 mg/kg daily), methylphenidate (2.5 mg/kg) or saline. Brain parts were assayed in a gamma counter, and specific striatum/cerebellum ratios were calculated for the [{sup 123}I]FP-CIT binding to DATs. No significant effects of either single intravenous, single oral or subchronic oral administration of AChEIs on striatal FP-CIT binding could be detected. Single pretreatment with methylphenidate resulted in an expected significantly lower striatal FP-CIT binding. We conclude that in rats, single intravenous and single or subchronic oral administration of the tested AChEIs does not lead to an important alteration of [{sup 123}I]FP-CIT binding to striatal DATs. Therefore, it is unlikely that these drugs will induce large effects on the interpretation of

  9. Histamine H3 receptor activation stimulates calcium mobilization in a subpopulation of rat striatal neurons in primary culture, but not in synaptosomes.

    Science.gov (United States)

    Rivera-Ramírez, Nayeli; Montejo-López, Wilber; López-Méndez, María-Cristina; Guerrero-Hernández, Agustín; Molina-Hernández, Anayansi; García-Hernández, Ubaldo; Arias-Montaño, José-Antonio

    2016-12-01

    The histamine H3 receptor (H3R) is abundantly expressed in the Central Nervous System where it regulates several functions pre and postsynaptically. H3Rs couple to Gαi/o proteins and trigger or modulate several intracellular signaling pathways, including the cAMP/PKA pathway and the opening of N- and P/Q-type voltage-gated Ca(2+) channels. In transfected cells, activation of the human H3R of 445 amino acids (hH3R445) results in phospholipase C (PLC) stimulation and release of Ca(2+) from intracellular stores. In this work we have studied whether H3R activation induces Ca(2+) mobilization from intracellular stores in native systems, either isolated nerve terminals (synaptosomes) or neurons in primary culture. In rat striatal synaptosomes H3R activation induced inositol 1,4,5-trisphosphate (IP3) formation but failed to increase the intracellular calcium concentration ([Ca(2+)]i). In striatal primary cultures H3R activation resulted in IP3 formation and increased the [Ca(2+)]i in 18 out of 70 cells that responded with an elevation in the [Ca(2+)]i to membrane depolarization with KCl (100 mM) as evaluated by microfluorometry. Confocal microscopy studies corroborated the increase in [Ca(2+)]i induced by H3R activation in a fraction of those cells that were responsive to membrane depolarization. These results indicate that H3R activation stimulates the PLC/IP3/Ca(2+) pathway but only in a subpopulation of striatal neurons.

  10. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia.

    Science.gov (United States)

    Cameron, Stella H; Alwakeel, Amr J; Goddard, Liping; Hobbs, Catherine E; Gowing, Emma K; Barnett, Elizabeth R; Kohe, Sarah E; Sizemore, Rachel J; Oorschot, Dorothy E

    2015-09-01

    Perinatal hypoxia-ischemia is a major cause of striatal injury and may lead to cerebral palsy. This study investigated whether delayed administration of bone marrow-derived mesenchymal stem cells (MSCs), at one week after neonatal rat hypoxia-ischemia, was neurorestorative of striatal medium-spiny projection neurons and improved motor function. The effect of a subcutaneous injection of a high-dose, or a low-dose, of MSCs was investigated in stereological studies. Postnatal day (PN) 7 pups were subjected to hypoxia-ischemia. At PN14, pups received treatment with either MSCs or diluent. A subset of high-dose pups, and their diluent control pups, were also injected intraperitoneally with bromodeoxyuridine (BrdU), every 24h, on PN15, PN16 and PN17. This permitted tracking of the migration and survival of neuroblasts originating from the subventricular zone into the adjacent injured striatum. Pups were euthanized on PN21 and the absolute number of striatal medium-spiny projection neurons was measured after immunostaining for DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32), double immunostaining for BrdU and DARPP-32, and after cresyl violet staining alone. The absolute number of striatal immunostained calretinin interneurons was also measured. There was a statistically significant increase in the absolute number of DARPP-32-positive, BrdU/DARPP-32-positive, and cresyl violet-stained striatal medium-spiny projection neurons, and fewer striatal calretinin interneurons, in the high-dose mesenchymal stem cell (MSC) group compared to their diluent counterparts. A high-dose of MSCs restored the absolute number of these neurons to normal uninjured levels, when compared with previous stereological data on the absolute number of cresyl violet-stained striatal medium-spiny projection neurons in the normal uninjured brain. For the low-dose experiment, in which cresyl violet-stained striatal medium-spiny neurons alone were measured, there was a lower statistically

  11. Dissection and culture of mouse dopaminergic and striatal explants in three-dimensional collagen matrix assays.

    Science.gov (United States)

    Schmidt, Ewoud R E; Morello, Francesca; Pasterkamp, R Jeroen

    2012-03-23

    Midbrain dopamine (mdDA) neurons project via the medial forebrain bundle towards several areas in the telencephalon, including the striatum(1). Reciprocally, medium spiny neurons in the striatum that give rise to the striatonigral (direct) pathway innervate the substantia nigra(2). The development of these axon tracts is dependent upon the combinatorial actions of a plethora of axon growth and guidance cues including molecules that are released by neurites or by (intermediate) target regions(3,4). These soluble factors can be studied in vitro by culturing mdDA and/or striatal explants in a collagen matrix which provides a three-dimensional substrate for the axons mimicking the extracellular environment. In addition, the collagen matrix allows for the formation of relatively stable gradients of proteins released by other explants or cells placed in the vicinity (e.g. see references 5 and 6). Here we describe methods for the purification of rat tail collagen, microdissection of dopaminergic and striatal explants, their culture in collagen gels and subsequent immunohistochemical and quantitative analysis. First, the brains of E14.5 mouse embryos are isolated and dopaminergic and striatal explants are microdissected. These explants are then (co)cultured in collagen gels on coverslips for 48 to 72 hours in vitro. Subsequently, axonal projections are visualized using neuronal markers (e.g. tyrosine hydroxylase, DARPP32, or βIII tubulin) and axon growth and attractive or repulsive axon responses are quantified. This neuronal preparation is a useful tool for in vitro studies of the cellular and molecular mechanisms of mesostriatal and striatonigral axon growth and guidance during development. Using this assay, it is also possible to assess other (intermediate) targets for dopaminergic and striatal axons or to test specific molecular cues.

  12. Serotonin mediates rapid changes of striatal glucose and lactate metabolism after systemic 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") administration in awake rats

    DEFF Research Database (Denmark)

    Gramsbergen, Jan Bert; Cumming, Paul

    2007-01-01

    metabolism in freely moving rats using rapid sampling microdialysis (every minute) coupled to flow-injection analysis (FIA) with biosensors for glucose and lactate. Blood samples for analysis of glucose and lactate were taken at 30-45 min intervals before and after drug dosing and body temperature...... The pathway for selective serotonergic toxicity of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") is poorly understood, but has been linked to hyperthermia and disturbed energy metabolism. We investigated the dose-dependency and time-course of MDMA-induced perturbations of cerebral glucose...... depletions of striatal serotonin. Blood glucose and lactate levels were also transiently elevated (163 and 135%) at the highest MDMA doses. The blood glucose rises were significantly related to brain glucose and brain lactate changes. The metabolic perturbations in striatum and the hyperthermic response (+1...

  13. Development of DARPP-32-positive parts of fetal pig ganglionic eminence and ventral mesencephalon in organotypic slice co-cultures

    DEFF Research Database (Denmark)

    Dall, Annette Møller; Rasmussen, Jens Zimmer

    2006-01-01

    Neurons from the fetal pig dopaminergic ventral mesencephalon (VM) and basal ganglia anlage (the ganglionic eminence) were co-cultured as organotypic slice cultures to study the development of the two interconnected brain areas. During a short developmental period (E35-E42), a groove separates th...... esterase (AChE) and were the preferred target areas for TH-positive fibers from the co-cultured VM....... (TH)-positive, dopaminergic fibers from co-cultured slices of the ventral mesencephalon. DARPP-32 expression was more extensive and dense in cultures of the lateral part of the striatal anlage than the medial part. The DARPP-32-positive areas moreover overlapped with areas rich in acetylcholine...

  14. Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells.

    Science.gov (United States)

    Gurel Pekozer, Gorke; Torun Kose, Gamze; Hasirci, Vasif

    2016-11-01

    Co-culture of bone forming cells and endothelial cells to induce pre-vascularization is one of the strategies used to solve the insufficient vascularization problem in bone tissue engineering attempts. In the study, primary cells isolated from 2 different tissues of the same animal, rat bone marrow stem cells (RBMSCs) and rat aortic endothelial cells (RAECs) were co-cultured to study the effects of co-culturing on both osteogenesis and angiogenesis. The formation of tube like structure in 2D culture was observed for the first time in the literature by the co-culture of primary cells from the same animal and also osteogenesis and angiogenesis were investigated at the same time by using this co-culture system. Co-cultured cells mineralized and formed microvasculature beginning from 14days of incubation. After 28days of incubation in the osteogenic medium, expression of osteogenic genes in co-cultures was significantly upregulated compared to RBMSCs cultured alone. These results suggest that the co-culture of endothelial cells with mesenchymal stem cells induces both osteogenesis and angiogenesis.

  15. Effects of NMDA administration in the substantia nigra pars compacta on the striatal dopamine release before and after repetitive exposures to nitrogen narcosis in rats.

    Science.gov (United States)

    Lavoute, C; Weiss, M; Rostain, J C

    2006-01-01

    Hyperbaric nitrogen-oxygen exposure developed in rats a decrement of the striatal dopamine release, which was reversed by repetitive exposures. This dopamine decrease could be the result of the antagonistic effect of nitrogen on NMDA receptors. The increment of the dopamine release, following repetitive exposures to nitrogen, could be attributed to a desensitisation of NMDA receptors to the effects of nitrogen. To test these hypotheses, male Sprague-Dawley rats were implanted with electrodes in the striatum to measure dopamine release by voltammetry and cannula in the substantia nigra pars compacta for NMDA injection. Free-moving rats were exposed up to 3MPa of nitrogen-oxygen mixture before and after 5 exposures to 1MPa. At the first exposure to 3MPa, the dopamine level decreased (-15%) but is counteracted by NMDA administration. In contrast, after repetitive exposure, the second exposure to 3MPa, induces a 10% dopamine increase. NMDA administration significantly potentiated this increase. Our results neither support the hypothesis of an antagonist effect of nitrogen on NMDA receptors at the first exposure, nor that of a NMDA receptor desensitization following repetitive exposures to hyperbaric nitrogen.

  16. Spatial reference- (not working- or procedural-) memory performance of aged rats in the water maze predicts the magnitude of sulpiride-induced facilitation of acetylcholine release by striatal slices.

    Science.gov (United States)

    Cassel, Jean-Christophe; Lazaris, Anelise; Birthelmer, Anja; Jackisch, Rolf

    2007-08-01

    Cluster analysis of water-maze reference-memory performance distinguished subpopulations of young adult (3-5 months), aged (25-27 months) unimpaired (AU) and aged impaired (AI) rats. Working-memory performances of AU and AI rats were close to normal (though young and aged rats differed in exploration strategies). All aged rats showed impaired procedural-memory. Electrically evoked release of tritium was assessed in striatal slices (preloaded with [(3)H]choline) in the presence of oxotremorine, physostigmine, atropine+physostigmine, quinpirole, nomifensine or sulpiride. Aged rats exhibited reduced accumulation of [(3)H]choline (-30%) and weaker transmitter release. Drug effects (highest concentration) were reductions of release by 44% (oxotremorine), 72% (physostigmine), 84% (quinpirole) and 65% (nomifensine) regardless of age. Sulpiride and atropine+physostigmine facilitated the release more efficiently in young rats versus aged rats. The sulpiride-induced facilitation was weaker in AI rats versus AU rats; it significantly correlated with reference-memory performance. The results confirm age-related alterations of cholinergic and dopaminergic striatal functions, and point to the possibility that alterations in the D(2)-mediated dopaminergic regulation of these functions contribute to age-related reference-memory deficits.

  17. Western Diet Chow Consumption in Rats Induces Striatal Neuronal Activation While Reducing Dopamine Levels without Affecting Spatial Memory in the Radial Arm Maze

    Science.gov (United States)

    Nguyen, Jason C. D.; Ali, Saher F.; Kosari, Sepideh; Woodman, Owen L.; Spencer, Sarah J.; Killcross, A. Simon; Jenkins, Trisha A.

    2017-01-01

    Rats fed high fat diets have been shown to be impaired in hippocampal-dependent behavioral tasks, such as spatial recognition in the Y-maze and reference memory in the Morris water maze (MWM). It is clear from previous studies, however, that motivation and reward factor into the memory deficits associated with obesity and high-fat diet consumption, and that the prefrontal cortex and striatum and neurotransmitter dopamine play important roles in cognitive performance. In this series of studies we extend our research to investigate the effect of a high fat diet on striatal neurochemistry and performance in the delayed spatial win-shift radial arm maze task, a paradigm highly reliant on dopamine-rich brain regions, such as the striatum after high fat diet consumption. Memory performance, neuronal activation and brain dopaminergic levels were compared in rats fed a “Western” (21% fat, 0.15% cholesterol) chow diet compared to normal diet (6% fat, 0.15% cholesterol)-fed controls. Twelve weeks of dietary manipulation produced an increase in weight in western diet-fed rats, but did not affect learning and performance in the delayed spatial win-shift radial arm maze task. Concurrently, there was an observed decrease in dopamine levels in the striatum and a reduction of dopamine turnover in the hippocampus in western diet-fed rats. In a separate cohort of rats Fos levels were measured after rats had been placed in a novel arena and allowed to explore freely. In normal rats, this exposure to a unique environment did not affect neuronal activation. In contrast, rats fed a western diet were found to have significantly increased Fos expression in the striatum, but not prefrontal cortex or hippocampus. Our study demonstrates that while western diet consumption in rats produces weight gain and brain neuronal and neurotransmitter changes, it did not affect performance in the delayed spatial win-shift paradigm in the radial arm maze. We conclude that modeling the cognitive

  18. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    Science.gov (United States)

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  19. Effect of Jian-Pi-Zhi-Dong Decoction on striatal glutamate and γ-aminobutyric acid levels detected using microdialysis in a rat model of Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Zhang W

    2016-05-01

    Full Text Available Wen Zhang,1,* Li Wei,2,* Wenjing Yu,1 Xia Cui,1 Xiaofang Liu,2 Qian Wang,1 Sumei Wang2 1Department of Pediatrics, The Third Affiliated Hospital, 2Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China *These authors contributed equally to this work Background: Jian-Pi-Zhi-Dong Decoction (JPZDD is a dedicated treatment of Tourette syndrome (TS. The balance of neurotransmitters in the cortico-striato-pallido-thalamo-cortical network is crucial to the occurrence of TS and related to its severity. This study evaluated the effect of JPZDD on glutamate (Glu and γ-aminobutyric acid (GABA and their receptors in a TS rat model.Materials and methods: Rats were divided into four groups (n=12 each. TS was induced in three of the groups by injecting them with 3,3'-iminodipropionitrile for 7 consecutive days. Two model groups were treated with tiapride (Tia or JPZDD, while the control and the remaining model group were gavaged with saline. Behavior was assessed by stereotypic score and autonomic activity. Striatal Glu and GABA contents were detected using microdialysis. Expressions of N-methyl-D-aspartate receptor 1 and GABAA receptor (GABAAR were observed using Western blot and real-time polymerase chain reaction.Results: Tia and JPZDD groups had decreased stereotypy compared with model rats; however, the JPZDD group showed a larger decrease in stereotypy than the Tia group at a 4-week time point. In a spontaneous activity test, the total distance of the JPZDD and Tia groups was significantly decreased compared with the model group. The Glu levels of the model group were higher than the control group and decreased with Tia or JPZDD treatment. The GABA level was higher in the model group than the control group. Expressions of GABAAR protein in the model group were higher than in the control group. Treatment with Tia or JPZDD reduced the expression of GABAAR protein. In the case of the m

  20. Mechanism of action of nitrogen pressure in controlling striatal dopamine level of freely moving rats is changed by recurrent exposures to nitrogen narcosis.

    Science.gov (United States)

    Lavoute, Cécile; Weiss, Michel; Risso, Jean-Jacques; Rostain, Jean-Claude

    2012-03-01

    In rats, a single exposure to 3 MPa nitrogen induces change in motor processes, a sedative action and a decrease in dopamine release in the striatum. These changes due to a narcotic effect of nitrogen have been attributed to a decrease in glutamatergic control and the facilitation of GABAergic neurotransmission involving NMDA and GABA(A) receptors, respectively. After repeated exposure to nitrogen narcosis, a second exposure to 3 MPa increased dopamine levels suggesting a change in the control of the dopaminergic pathway. We investigated the role of the nigral NMDA and GABA(A) receptors in changes in the striatal dopamine levels. Dopamine-sensitive electrodes were implanted into the striatum under general anesthesia, together with a guide-cannula for drug injections into the SNc. Dopamine level was monitored by in vivo voltammetry. The effects of NMDA/GABA(A) receptor agonists (NMDA/muscimol) and antagonists (AP7/gabazine) on dopamine levels were investigated. Rats were exposed to 3 MPa nitrogen before and after five daily exposures to 1 MPa. After these exposures to nitrogen narcosis, gabazine, NMDA and AP7 had no effect on the nitrogen-induced increase in dopamine levels. By contrast, muscimol strongly enhanced the increase in dopamine level induced by nitrogen. Our findings suggest that repeated nitrogen exposure disrupted NMDA receptor function and decreased GABAergic input by modifying GABA(A) receptor sensitivity. These findings demonstrated a change in the mechanism of action of nitrogen at pressure.

  1. The pan-Kv7 (KCNQ) Channel Opener Retigabine Inhibits Striatal Excitability by Direct Action on Striatal Neurons In Vivo

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Weikop, Pia; Mikkelsen, Maria D

    2017-01-01

    administration on striatal neuronal excitability in the rat determined by c-Fos immunoreactivity, a marker of neuronal activation. When retigabine was applied locally in the striatum, this resulted in a marked reduction in the number of c-Fos-positive neurons after a strong excitatory striatal stimulus induced...

  2. Co-culture of astrocytes with neurons from injured brain A time-dependent dichotomy

    Institute of Scientific and Technical Information of China (English)

    Xiaojing Xu; Min Wang; Jing Liu; Jingya Lv; Yanan Hu; Huanxiang Zhang

    2011-01-01

    As supportive cells for neuronal growth and development, much effort has been devoted to the role of astrocytes in the normal state. However, the effect of the astrocytes after injury remains elusive. In the present study, neurons isolated from the subventricular zone of injured neonatal rat brains were co-cultured with astrocytes. After 6 days, these astrocytes showed a mature neuron-like appearance and the number of survivingneurons, primary dendrites and total branches was significantly higher than those at 3 days. The neurons began to shrink at 9 days after co-culture with shorter and thinner processes and the number of primary dendrites and total branches was significantly reduced. These experimental findings indicate that astrocytes in the injured brain promote the development of neurons in the early stages of co-culture while these cells reversely inhibit neuronal growth and development at the later states.

  3. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes.

    Directory of Open Access Journals (Sweden)

    Zhen-Yu Du

    Full Text Available We have developed an in vitro hepatocyte-adipose tissue explant (ATE co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal adipose tissues. Expressions of inflammation related genes (IL-6, TNF-α, COX-2 were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64 were higher in the stromal vascular fraction (SVF isolated from inguinal ATE than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1 were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2 was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total levels of IL-6, TNF-α and PGE(2 in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2. Lipolysis, measured as glycerol release, was similar in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs, particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance.

  4. Effect of Buspirone, Fluoxetine and 8-OH-DPAT on Striatal Expression of Bax, Caspase-3 and Bcl-2 Proteins in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rats.

    Science.gov (United States)

    Sharifi, Hamdollah; Mohajjel Nayebi, Alireza; Farajnia, Safar; Haddadi, Rasool

    2015-11-01

    The exact pathogenesis of sporadic parkinson's disease (PD) is still unclear. Numerous evidences suggest involvement of apoptosis in the death of dopaminergic neurons. In this study we investigated the effect of sub-chronic administration of buspirone, fluoxetine and 8-hydroxy-2-[di-n-propylamino]tetralin (8-OH-DPAT) in 6-hydroxydopamine (6-OHDA)-lesioned rats and assayed striatal concentrations of apoptotic (Bax, Caspase3) and anti-apoptotic (Bcl-2) proteins. 6-OHDA (8μg/2μl/rat) was injected unilaterally into the central region of the substantia nigra pars copmacta (SNc) of male Wistar rats and then, after 21 days lesioned rats were treated with intraperitonel (i.p) 1 mg/kg injections of buspirone, fluoxetine and 8-OH-DPAT for 10 consecutive days. Striatum of rats was removed at tenth day of drugs administration and were analyzed by western blotting method to measure Bax, caspase3 and Bcl-2 expression. The results showed that the expression of Bax and caspase3 proteins was increased three weeks after 6-OHDA injection while they were decreased significantly in parkinsonian rats which were treated by buspirone, fluoxetine and 8-OH-DPAT. Bcl-2 was decreased and increased in parkinsonian rats and parkinsonian rats treated with buspirone, fluoxetine and 8-OH-DPAT, respectively. Our study indicates that sub-chronic administration of serotonergic drugs such as buspirone, fluoxetine and 8-OH-DPAT restores striatal concentration of apoptotic and anti-apoptotic factors to the basal levels of normal non-lesioned rats. We suggest that these drugs can be used as a potential adjunctive therapy in PD through attenuating neuronal apoptotic process.

  5. The characterization of neuroenergetic effects of chronic L-tyrosine administration in young rats: evidence for striatal susceptibility.

    Science.gov (United States)

    Ferreira, Gabriela K; Carvalho-Silva, Milena; Gomes, Lara M; Scaini, Giselli; Teixeira, Leticia J; Mota, Isabella T; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2015-02-01

    Tyrosinemia type II is an inborn error of metabolism caused by a deficiency in hepatic cytosolic aminotransferase. Affected patients usually present a variable degree of mental retardation, which may be related to the level of plasma tyrosine. In the present study we evaluated effect of chronic administration of L-tyrosine on the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase and complexes I, II, II-III and IV in cerebral cortex, hippocampus and striatum of rats in development. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old); rats were killed 12 h after last injection. Our results demonstrated that L-tyrosine inhibited the activity of citrate synthase in the hippocampus and striatum, malate dehydrogenase activity was increased in striatum and succinate dehydrogenase, complexes I and II-III activities were inhibited in striatum. However, complex IV activity was increased in hippocampus and inhibited in striatum. By these findings, we suggest that repeated administrations of L-tyrosine cause alterations in energy metabolism, which may be similar to the acute administration in brain of infant rats. Taking together the present findings and evidence from the literature, we hypothesize that energy metabolism impairment could be considered an important pathophysiological mechanism underlying the brain damage observed in patients with tyrosinemia type II.

  6. Modification of the striatal dopaminergic neuron system by carbon monoxide exposure in free-moving rats, as determined by in vivo brain microdialysis

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Shuichi; Kurosaki, Kunihiko; Kuriiwa, Fumi; Endo, Takahiko [Department of Forensic Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Mukai, Toshiji [Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-0015 (Japan)

    2002-10-01

    Acute carbon monoxide (CO) intoxication in humans results in motor deficits, which resemble those in Parkinson's disease, suggesting possible disturbance of the central dopaminergic (DAergic) neuronal system by CO exposure. In the present study, therefore, we explored the effects of CO exposure on the DAergic neuronal system in the striatum of freely moving rats by means of in vivo brain microdialysis. Exposure of rats to CO (up to 0.3%) for 40 min caused an increase in extracellular dopamine (DA) levels and a decrease in extracellular levels of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum depending on the CO concentration. Reoxygenation following termination of the CO exposure resulted in a decline of DA to the control level and an overshoot in the recovery of DOPAC and HVA to levels higher than the control. A monoamine oxidase type A (MAO-A) inhibitor, clorgyline, significantly potentiated the CO-induced increase in DA and completely abolished the subsequent overshoot in the recovery of DOPAC and HVA. Tetrodotoxin, a Na{sup +} channel blocker, completely abolished both the CO-induced increase in DA and the overshoot of DOPAC and HVA. A DA uptake inhibitor, nomifensine, strongly potentiated the CO-induced increase in DA without affecting the subsequent overshoot of DOPAC and HVA. Clorgyline further potentiated the effect of nomifensine on the CO-induced increase in DA, although a slight overshoot of DOPAC and HVA appeared. These findings suggest that (1) CO exposure may stimulate Na{sup +}-dependent DA release in addition to suppressing DA metabolism, resulting in a marked increase in extracellular DA in rat striatum, and (2) CO withdrawal and subsequent reoxygenation may enhance the oxidative metabolism, preferentially mediated by MAO-A, of the increased extracellular DA. In the light of the neurotoxicity of DA per se and reactive substances, such as quinones and activated oxygen species

  7. [Halothane anesthesia decreases the level of interstitial striatal dopamine of awake freely moving rats in an in vivo microdialysis study].

    Science.gov (United States)

    Adachi, Y; Uchihashi, Y; Watanabe, K; Satoh, T

    2000-02-01

    We investigated the effect of halothane on the level of interstitial dopamine of in vivo awake, free moving rats brain striatum using microdialysis techniques. Rats were implanted a microdialysis probe to right striatum of the brain and administered 1.5% of halothane (approximately 1.2 MAC) for 1 or 2 hours, and dialysates from the probe were determined every 20 minutes. Halothane anesthesia reduced the amount of dopamine derived from dialysate, and after discontinuation of halothane and at emergence from anesthesia, the level of dopamine was increased. The levels of metabolites of dopamine during anesthesia were increased lineally in a time dependent manner. We hypothesized that halothane might increase the rate of re-uptake of dopamine at nerve endings and decreased level of interstitial dopamine is compensated by dopamine releases during anesthesia.

  8. The effects of endomorphins and diprotin A on striatal dopamine release induced by electrical stimulation-an in vitro superfusion study in rats.

    Science.gov (United States)

    Bagosi, Zsolt; Jászberényi, Miklós; Bujdosó, Erika; Szabó, Gyula; Telegdy, Gyula

    2006-12-01

    The endomorphins (EM1: Tyr-Pro-Trp-Phe-NH2, and EM2: Tyr-Pro-Phe-Phe-NH2) are recently discovered endogenous ligands for mu-opioid receptors (MORs) with role of neurotransmitters or neuromodulators in mammals. Cessation of their physiological action may be effected through rapid enzymatic degradation by the dipeptidyl-peptidase IV (DPPIV) found in the brain synaptic membranes. An in vitro superfusion system was utilized to investigate the actions of EM1, EM2 and specific DPPIV inhibitor diprotin A on the striatal release of dopamine (DA) induced by electrical stimulation in rats. The involvement of the different MORs (MOR1 and MOR2) in this process was studied by pretreatment with MOR antagonists beta-funaltrexamine (a MOR1 and MOR2 antagonist) and naloxonazine (a MOR1 antagonist). EM1 significantly increased the tritium-labelled dopamine DA release induced by electrical stimulation. EM2 was effective only when the slices were pretreated with diprotin A. beta-Funaltrexamine antagonized the stimulatory effects of both EM1 and EM2. The administration of naloxonazine did not appreciably influence the action of EM1, but blocked the action of EM2, at least when the slices were pretreated with diprotin A. These data suggest that both EM1 and EM2 increase DA release from the striatum and, though diprotin A does not affect the action of EM1, it inhibits the enzymatic degradation of EM2. The DA-stimulating action induced by EM1 seems to be mediated by MOR2, while that evoked by EM2 appears to be transmitted by MOR1.

  9. Development and differentiation of neural stem cells co-cultured with epileptic neurons in vitro in rats%大鼠神经干细胞与"癫痫样细胞"体外共培养后的分化发育料

    Institute of Scientific and Technical Information of China (English)

    刘利; 林志国; 沈红; 车彦军; 张帆; 白云龙; 张风民; 杨富明

    2008-01-01

    ,免疫荧光检测均显示80%(12/15)表达绿色荧光蛋白的干细胞突触索抗体染色阳性.③60%(9/15)干细胞分化的神经元在"无镁"外液中出现14次/5 min时程约10 s的兴奋性突触后电位,未记录到"癫痫样放电".结论:大鼠海马神经干细胞与"癫痫神经元"体外共培养后可形成功能性突触,未转变成"癫痫神经元".%BACKGROUND: Can neural stem cells (NSCs) differentiate into "epileptic neurons" in epileptic microenvironment in vitro? Epileptic microenvironmcut includes magnesium-free media and co-culture with "epileptic neuron", the former is stronger than the latter to induce epilepsy.OBJECTIVE: To model the rnicroenvironment in vivo, and to co-culture the NSCs with normal hippocampal neuron and "epileptic neuron" for the observation of NSCs development.DESIGN: Repeated measurement and observation.SETTING: The First Affiliated Hospital of Harbin Medical University (Harbin, Heilongjiang Province, China).MATERIALS: Experiment was done in Department of Microorganism and Department of Pharmacology in Harbin Medical University from August 2005 to April 2007. A total of 150 neonatal Wistar rats, irrespective of genders, were applied by the Experimental Animal Center of the Second Affiliated Hospital of Harbin Medical University. All the procedures were in line with ethical standards of animal. Rabbit anti-rat synaptophysin antibody was purchased from Lab Vision Company (USA). Adeno-associated virus containing enhanced green fluorescent protein gone was applied by Beijing Vector Geue Technology Company., Ltd (China). Axopatch 200B magnification was.the product of Axon (USA). 5111A oscillograph was the product of Tektronix (USA).METHODS: Rat hippocampal neurons were isolated and cultured, magnesium-free media treatment was applied to establish the model of "epileptic neuron". NSCs were cultured according to regular me, thods. After labeled by green fluorescence protein, NSCs were co-cultured with normal hippocampal

  10. N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine in striatal compartments of the rat: regulatory roles of dopamine and GABA

    Energy Technology Data Exchange (ETDEWEB)

    Glowinski, J.; Perez, S.; Desban, M.; Gauchy, C.; Kemel, M.L.; Blanchet, F. [Chaire de Neuropharmacologie, INSERM U114, College de France, 11 place Marcelin Berthelot, 75231 Paris (France)

    1997-08-26

    The N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine previously formed from [{sup 3}H]choline was estimated in striosome- (identified by [{sup 3}H]naloxone binding) or matrix-enriched areas of the rat striatum using an in vitro microsuperfusion procedure. Experiments were performed in either the absence or the presence of dopaminergic and/or GABAergic receptor antagonists. Although the cell bodies of the cholinergic interneurons were mainly found in the matrix, in the absence of magnesium, N-methyl-d-aspartate (50 {mu}M) stimulated the release of [{sup 3}H]acetylcholine in both striatal compartments. These responses were blocked by either magnesium, dizocilpine maleate, 7-chlorokynurenate or tetrodotoxin. N-Methyl-d-aspartate responses were concentration-dependent, but the 1 mM N-methyl-d-aspartate response was higher in striosomes than in the matrix. The co-application of d-serine (10 {mu}M) enhanced the 10 {mu}M N-methyl-d-aspartate response in both compartments, but reduced those induced by 1 mM N-methyl-d-aspartate, this reduction being higher in striosomes. The blockade of dopaminergic transmission with the D{sub 2} and D{sub 1} dopaminergic receptor antagonists, (-)-sulpiride (1 {mu}M) and SCH23390 (1 {mu}M), was without effect on the 50 {mu}M N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine, but markedly enhanced the 1 mM N-methyl-d-aspartate + d-serine-evoked response in striosomes and to a lesser extent in the matrix. Disinhibitory responses of similar amplitude were observed not only in striosomes but also in the matrix when (-)-sulpiride was used alone, while SCH23390 alone enhanced the 1 mM N-methyl-d-aspartate + d-serine response only in striosomes and to a lower extent than (-)-sulpiride. These results indicate that D{sub 2} receptors are mainly involved in the inhibitory effect of dopamine on the 1 mM N-methyl-d-aspartate + d-serine-evoked release of [{sup 3}H]acetylcholine. They also show that the stimulation of D{sub 1

  11. Early Biomarkers in 1H Nuclear Magnetic Resonance Spectroscopy of Striatal Pathological Mechanisms after Acute Carbon Monoxide Poisoning in Rats

    Institute of Scientific and Technical Information of China (English)

    GUAN Li; LI Zong Yang; ZHANG Yan Lin; CONG Cui Cui; ZHAO Jin Yuan

    2015-01-01

    Objective In vivo Proton Magnetic Resonance Spectroscopy (1H-MRS) can be used to evaluate the levels of specific neurochemical biomarkers of pathological mechanisms in the brain. Methods We conducted T2-Weighted Magnetic Resonance Imaging (MRI) and 1H-MRS with a 3.0-Tesla animal MRI system to investigate the early microstructural and metabolic profiles in vivo in the striatum of rats following carbon monoxide (CO) poisoning. Results Compared to baseline, we found significant cortical surface deformation, cerebral edema changes, which were indicated by the unclear gray/white matter border, and lateral ventricular volume changes in the brain. A significant reduction in the metabolite to total creatine (Cr) ratios of N-acetylaspartate (NAA) was observed as early as 1 h after the last CO administration, while the lactate (Lac) levels increased marginally. Both the Lac/Cr and NAA/Cr ratios leveled off at 6 h and showed no subsequent significant changes. In addition, compared to the control, the choline (Cho)/Cr ratio was slightly reduced in the early stages and significantly increased after 6 h. In addition, a pathological examination revealed mild cerebral edema on cessation of the insult and more severe cerebral injury after additional CO poisoning. Conclusion The present study demonstrated that 1H-MRS of the brain identified early metabolic changes after CO poisoning. Notably, the relationship between the increased Cho/Cr ratio in the striatum and delayed neuropsychologic sequelae requires further research.

  12. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    Science.gov (United States)

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  13. Repeated administration of D-amphetamine induces loss of [I-123]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study

    NARCIS (Netherlands)

    J. Booij; K. de Bruin; W.B. Gunning

    2006-01-01

    In recent years, several PET and SPECT studies have shown loss of striatal dopamine transporter (DAT) binding in arnphetamine (AMPH) users. However, the use of DAT SPECT tracers to detect AMPH-induced changes in DAT binding has not been validated. We therefore examined if repeated administration of

  14. Parsing Heterogeneous Striatal Activity

    Directory of Open Access Journals (Sweden)

    Kae Nakamura

    2017-05-01

    Full Text Available The striatum is an input channel of the basal ganglia and is well known to be involved in reward-based decision making and learning. At the macroscopic level, the striatum has been postulated to contain parallel functional modules, each of which includes neurons that perform similar computations to support selection of appropriate actions for different task contexts. At the single-neuron level, however, recent studies in monkeys and rodents have revealed heterogeneity in neuronal activity even within restricted modules of the striatum. Looking for generality in the complex striatal activity patterns, here we briefly survey several types of striatal activity, focusing on their usefulness for mediating behaviors. In particular, we focus on two types of behavioral tasks: reward-based tasks that use salient sensory cues and manipulate outcomes associated with the cues; and perceptual decision tasks that manipulate the quality of noisy sensory cues and associate all correct decisions with the same outcome. Guided by previous insights on the modular organization and general selection-related functions of the basal ganglia, we relate striatal activity patterns on these tasks to two types of computations: implementation of selection and evaluation. We suggest that a parsing with the selection/evaluation categories encourages a focus on the functional commonalities revealed by studies with different animal models and behavioral tasks, instead of a focus on aspects of striatal activity that may be specific to a particular task setting. We then highlight several questions in the selection-evaluation framework for future explorations.

  15. Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system.

    Science.gov (United States)

    Gang, Lin; Yao, Yu-Chen; Liu, Ying-Fu; Li, Yi-Peng; Yang, Kai; Lu, Lei; Cheng, Yuan-Chi; Chen, Xu-Yi; Tu, Yue

    2015-10-01

    We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide (NEP1-40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1-40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.

  16. Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system

    Directory of Open Access Journals (Sweden)

    Lin Gang

    2015-01-01

    Full Text Available We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide (NEP1-40, which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1-40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.

  17. [Application of cell co-culture techniques in medical studies].

    Science.gov (United States)

    Luo, Yun; Sun, Gui-Bo; Qin, Meng; Yao, Fan; Sun, Xiao-Bo

    2012-11-01

    As the cell co-culture techniques can better imitate an in vivo environment, it is helpful in observing the interactions among cells and between cells and the culture environment, exploring the effect mechanisms of drugs and their possible targets and filling the gaps between the mono-layer cell culture and the whole animal experiments. In recently years, they has attracted much more attention from the medical sector, and thus becoming one of research hotspots in drug research and development and bio-pharmaceutical fields. The cell co-culture techniques, including direct and indirect methods, are mainly used for studying pathological basis, new-type treatment methods and drug activity screening. Existing cell co-culture techniques are used for more pharmacological studies on single drug and less studies on interaction of combined drugs, such as collaborative compatibility and attenuation and synergistic effect among traditional Chinese medicines (TCMs). In line with the action characteristics of multi-component and multi-target, the cell co-culture techniques provide certain reference value for future studies on the effect and mechanism of combined TCMs on organisms as well as new methods for studies on TCMs and their compounds. This essay summarizes cell co-culture methods and their application and look into the future of their application in studies on TCMs and compounds.

  18. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Science.gov (United States)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic

  19. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Directory of Open Access Journals (Sweden)

    Yu-Hao ePeng

    2014-12-01

    Full Text Available Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC on a flattened cortical map. A graphic user interface Cx-2D allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex–-changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and

  20. Microfluidics co-culture systems for studying tooth innervation

    Directory of Open Access Journals (Sweden)

    Pierfrancesco ePagella

    2014-08-01

    Full Text Available Innervation plays a key role in the development and homeostasis of organs and tissues of the orofacial complex. Among these structures, teeth are peculiar organs as they are not innervated until later stages of development. Furthermore, the implication of neurons in tooth initiation, morphogenesis and differentiation is still controversial. Co-cultures constitute a valuable method to investigate and manipulate the interactions of nerve fibres with their target organs in a controlled and isolated environment. Conventional co-cultures between neurons and their target tissues have already been performed, but these cultures do not offer optimal conditions that are closely mimicking the in vivo situation. Indeed, specific cell populations require different culture media in order to preserve their physiological properties. In this study we evaluate the usefulness of a microfluidics system for co-culturing mouse trigeminal ganglia and developing teeth. This device allows the application of specific media for the appropriate development of both neuronal and dental tissues. The results show that mouse trigeminal ganglia and teeth survive for long culture periods in this microfluidics system, and that teeth maintain the attractive or repulsive effect on trigeminal neurites that has been observed in vivo. Neurites are repealed when co-cultured with embryonic tooth germs, while postnatal teeth exert an attractive effect to trigeminal ganglia-derived neurons.In conclusion, microfluidics system devices provide a valuable tool for studying the behaviour of neurons during the development of orofacial tissues and organs, faithfully imitating the in vivo situation.

  1. Prepuberal stimulation of 5-HT7-R by LP-211 in a rat model of hyper-activity and attention-deficit: permanent effects on attention, brain amino acids and synaptic markers in the fronto-striatal interface.

    Directory of Open Access Journals (Sweden)

    Lucia A Ruocco

    Full Text Available The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211 on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD. Naples High Excitability rats (NHE and their Random Bred controls (NRB were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA, selective spatial attention (SSA and emotionality. The quantity of L-Glutamate (L-Glu, L-Aspartate (L-Asp and L-Leucine (L-Leu, dopamine transporter (DAT, NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC, dorsal (DS and ventral striatum (VS, for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose reduced horizontal activity and (at higher dose increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose, whereas (at 0.125 mg/kg dose it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC, and increased with the 0.250 mg/kg dose (in the VS, significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates.

  2. [A protocol for primary dissociated astrocyte and neuron co-culture].

    Science.gov (United States)

    Shi, Ying; Zhou, Mi; Jiang, Min

    2013-02-25

    Cultured primary hippocampal neurons are ideal tool for investigating the subcellular localization and trafficking of neuronal proteins. The aim of the present study was to establish a method to co-culture hippocampal neurons and cortical astrocytes, which would guarantee well conditions of neurons. Newborn Sprague-Dawley (SD) rats were sacrificed by decapitation. The cortex of cerebrum was cut into pieces, and the cortical tissue was digested with trypsin. The liquid suspension of single cells was planted onto a 25 cm² culture flask. On the fourth day of culture, the tissue cells except astrocytes were removed by intensive agitation of culture flask. Purified astrocytes were allowed to grow continuously until they reached most area of flask. At this time point, we replaced the culture media with neuronal cell media containing cytarabine, and planted the primary culture of rat hippocampal neurons onto the feed layer of cortical astrocytes. The microscopic observation results showed that, the astrocytes evenly grew without obvious boundaries between each other, and exhibited good purity. The co-cultured hippocampal neurons were in good condition, developed intertwined network of axons and dendrites, lived for a long time, and could tolerate gene transfection. Above all, this method is relatively simple from a technical point of view, yet provides healthy and reliable neuronal culture.

  3. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    Science.gov (United States)

    Razgado-Hernandez, Luis F; Espadas-Alvarez, Armando J; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  4. Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats

    Directory of Open Access Journals (Sweden)

    Diaz Heijtz Rochellys

    2006-05-01

    Full Text Available Abstract Background Molecular genetic studies suggest the dopamine D1 receptor (D1R may be implicated in attention-deficit/hyperactivity disorder (ADHD. As little is known about the potential motor role of D1R in ADHD, animal models may provide important insights into this issue. Methods We investigated the effects of a full and selective D1R agonist, SKF-81297 (0.3, 3 and 10 mg/kg, on motor behaviour and expression of the plasticity-associated gene, c-fos, in habituated young adult male Spontaneously Hypertensive Rats (SHR, the most commonly used animal model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived. Results SHR rats were more behaviourally active than WKY rats after injection with vehicle. The 0.3 mg/kg dose of SKF-81297 increased motor behaviour (locomotion, sifting, rearing, and sniffing in both SHR and WKY rats. Total grooming was also stimulated, but only in WKY rats. The same dose increased c-fos mRNA expression in the piriform cortex of both strains. The 3 mg/kg dose increased sifting and sniffing in both strains. Locomotion was also stimulated towards the end of the testing period. The intermediate dose decreased total rearing in both strains, and produced a significant increase in c-fos mRNA in the striatum, nucleus accumbens, olfactory tuberculum, and in the cingulate, agranular insular and piriform cortices. The 10 mg/kg dose of SKF-81297 produced a biphasic effect on locomotion, which was characterized by an initial decrease followed by later stimulation. The latter stimulatory effect was more pronounced in SHR than in WKY rats when compared to their respective vehicle-injected groups. The 10 mg/kg dose also stimulated sifting and sniffing in both strains. Both the 3 and 10 mg/kg doses had no effect on total grooming. The 10 mg/kg dose induced significantly higher levels of c-fos mRNA expression in the nucleus accumbens and adjacent cortical regions (but not striatum of SHR when compared to WKY rats

  5. Striatal dopamine release in the rat during a cued lever-press task for food reward and the development of changes over time measured using high-speed voltammetry.

    Science.gov (United States)

    Nakazato, Taizo

    2005-09-01

    Substantia nigra dopamine neuronal activity in the primate is thought to be related to the error in predicting reward delivery. Dopamine release in rat nucleus accumbens has been shown to increase in relation to drug/food-seeking behaviour. It is not known how the release of dopamine in the striatum corresponds to the many distinct steps of a rewarded, cued task (e.g. recognizing the cue, executing the behaviour, anticipating the reward, receiving the reward) and how dopamine release then changes over time as task performance improves. To investigate dopamine release during a rewarded, cued task and the development of changes in dopamine release over time, changes in extracellular striatal dopamine concentration during a rewarded, cued lever-press task were measured a few days every week for 5 months using high-speed in vivo voltammetry. Rats were trained to press a lever after a tone to obtain a food reward. The reaction time for the lever press decreased gradually as training continued. Changes in dopamine concentration were measured in the anterior striatum (ventral portion) during the task performance after an initial 6-day familiarization period, in which the animals learned that a lever press yielded food, and a 5-week period for surgery, recovery, and electrode preparation. During the task performance, dopamine concentration started to increase just after the cue, peaked near the time of the lever press, and returned to basal levels 1-2 s after the lever press. This pattern of changes in dopamine concentration was observed over the 5 months of testing, the peak dopamine concentration increasing steadily until peaking at week 7, at which time the task performance had not yet improved significantly from week 2. By week 13, task performance had significantly improved and peak dopamine concentration had begun to subside. Thus, the increase in dopamine concentration after the cue was highest while the task was not yet perfected and subsided toward the end of the

  6. Inflammation without neuronal death triggers striatal neurogenesis comparable to stroke.

    Science.gov (United States)

    Chapman, Katie Z; Ge, Ruimin; Monni, Emanuela; Tatarishvili, Jemal; Ahlenius, Henrik; Arvidsson, Andreas; Ekdahl, Christine T; Lindvall, Olle; Kokaia, Zaal

    2015-11-01

    Ischemic stroke triggers neurogenesis from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) and migration of newly formed neuroblasts toward the damaged striatum where they differentiate to mature neurons. Whether it is the injury per se or the associated inflammation that gives rise to this endogenous neurogenic response is unknown. Here we showed that inflammation without corresponding neuronal loss caused by intrastriatal lipopolysaccharide (LPS) injection leads to striatal neurogenesis in rats comparable to that after a 30 min middle cerebral artery occlusion, as characterized by striatal DCX+ neuroblast recruitment and mature NeuN+/BrdU+ neuron formation. Using global gene expression analysis, changes in several factors that could potentially regulate striatal neurogenesis were identified in microglia sorted from SVZ and striatum of LPS-injected and stroke-subjected rats. Among the upregulated factors, one chemokine, CXCL13, was found to promote neuroblast migration from neonatal mouse SVZ explants in vitro. However, neuroblast migration to the striatum was not affected in constitutive CXCL13 receptor CXCR5(-/-) mice subjected to stroke. Infarct volume and pro-inflammatory M1 microglia/macrophage density were increased in CXCR5(-/-) mice, suggesting that microglia-derived CXCL13, acting through CXCR5, might be involved in neuroprotection following stroke. Our findings raise the possibility that the inflammation accompanying an ischemic insult is the major inducer of striatal neurogenesis after stroke.

  7. Establishment of an in vitro blood-brain barrier model by co-culturing rat brain microvascular endothelial cells,pericytes and astrocytes%大鼠脑微血管内皮细胞与周细胞、星形胶质细胞共培养建立体外血脑屏障模型

    Institute of Scientific and Technical Information of China (English)

    查雨锋; 傅晓钟; 张顺; 罗敏; 欧瑜; 董永喜; 王爱民; 王永林

    2015-01-01

    目的:应用原代培养的大鼠脑微血管内皮细胞(brain-microvessel endothelial cells,BMECs )与脑微血管周细胞(brain-microvessel pericytes,BMPC )、星形胶质细胞(astro-cytes,AS)共培养建立可模拟在体状态的体外血脑屏障(blood-brain barrier,BBB)模型。方法原代分离、纯化和培养大鼠BMECs、BMPC和AS,通过细胞形态学和免疫细胞化学染色方法鉴定原代培养的细胞,应用Millicell细胞培养插(孔径0.4μm)建立5种不同类型的体外BBB模型,经跨内皮电阻值(transendothelial electrical resistance,TEER)、荧光素钠通透性(sodium fluorescent,Na-FLU )、碱性磷酸酶(AKP)和γ-谷氨酰转肽酶(γ-GT1)的表达测定以及阳性药在体内和体外BBB通透量的相似性,比较评价其屏障功能。结果原代培养的BMECs呈典型的铺路卵石样结构,BMPC胞体较大且呈分枝状,AS 有细长突触,胞质较浅;免疫细胞化学染色证实原代细胞为目标细胞;BMECs与BMPC、AS共培养后TEER值可达(478±25)Ω·cm2,Na-FLU 的表观渗透系数为[(8.23±0.78)×10-6]cm·s-1,AKP和γ-GT1表达分别为(6.90±0.27)金氏单位· g-1 Pro,(4.39±0.32)μg·g-1 Pro;阳性药在体外BBB的表观渗透系数(apparent permeability coefficient,Papp )与在体数据具有较好的相关性(R2=0.92)。结论原代培养的大鼠BMECs与BMPC、AS共培养建立的体外BBB模型在形态、结构及屏障功能方面具备BBB的基本特征,为研究BBB的生理学、病理学以及筛选化合物提供了一种有用工具。%Aim To establish in vitro blood-brain barrier (BBB) model with characteristics of simulation of in vivo BBB by primi-tive co-culture of brain-microvessel endothelial cells (BMECs) with brain-microvessel pericytes (BMPC)and astrocytes (AS). Methods BMECs,BMPC and AS from SD rats were primitively isolated,purified and cultured,and then

  8. Impairment of striatal mitochondrial function by acute paraquat poisoning.

    Science.gov (United States)

    Czerniczyniec, Analía; Lanza, E M; Karadayian, A G; Bustamante, J; Lores-Arnaiz, S

    2015-10-01

    Mitochondria are essential for survival. Their primary function is to support aerobic respiration and to provide energy for intracellular metabolic pathways. Paraquat is a redox cycling agent capable of generating reactive oxygen species. The aim of the present study was to evaluate changes in cortical and striatal mitochondrial function in an experimental model of acute paraquat toxicity and to compare if the brain areas and the molecular mechanisms involved were similar to those observed after chronic exposure. Sprague-Dawley rats received paraquat (25 mg/Kg i.p.) or saline and were sacrificed after 24 h. Paraquat treatment decreased complex I and IV activity by 37 and 21 % respectively in striatal mitochondria. Paraquat inhibited striatal state 4 and state 3 KCN-sensitive respiration by 80 % and 62 % respectively, indicating a direct effect on respiratory chain. An increase of 2.2 fold in state 4 and 2.3 fold in state 3 in KCN-insensitive respiration was observed in striatal mitochondria from paraquat animals, suggesting that paraquat redox cycling also consumed oxygen. Paraquat treatment increased hydrogen peroxide production (150 %), TBARS production (42 %) and cardiolipin oxidation/depletion (12 %) in striatal mitochondria. Also, changes in mitochondrial polarization was induced after paraquat treatment. However, no changes were observed in any of these parameters in cortical mitochondria from paraquat treated-animals. These results suggest that paraquat treatment induced a clear striatal mitochondrial dysfunction due to both paraquat redox cycling reactions and impairment of the mitochondrial electron transport, causing oxidative damage. As a consequence, mitochondrial dysfunction could probably lead to alterations in cellular bioenergetics.

  9. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Luis F Razgado-Hernandez

    Full Text Available The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old, immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy

  10. The Transfection of BDNF to Dopamine Neurons Potentiates the Effect of Dopamine D3 Receptor Agonist Recovering the Striatal Innervation, Dendritic Spines and Motor Behavior in an Aged Rat Model of Parkinson’s Disease

    Science.gov (United States)

    Razgado-Hernandez, Luis F.; Espadas-Alvarez, Armando J.; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J.; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  11. Huntington's Disease and Striatal Signaling

    Directory of Open Access Journals (Sweden)

    Emmanuel eRoze

    2011-08-01

    Full Text Available Huntington’s Disease (HD is the most frequent neurodegenerative disease caused by an expansion of polyglutamines (CAG. The main clinical manifestations of HD are chorea, cognitive impairment and psychiatric disorders. The transmission of HD is autosomal dominant with a complete penetrance. HD has a single genetic cause, a well-defined neuropathology, and informative pre-manifest genetic testing of the disease is available. Striatal atrophy begins as early as 15 years before disease onset and continues throughout the period of manifest illness. Therefore, patients could theoretically benefit from therapy at early stages of the disease. One important characteristic of HD is the striatal vulnerability to neurodegeneration, despite similar expression of the protein in other brain areas. Aggregation of the mutated Huntingtin (HTT, impaired axonal transport, excitotoxicity, transcriptional dysregulation as well as mitochondrial dysfunction and energy deficits, are all part of the cellular events that underlie neuronal dysfunction and striatal death. Among these non-exclusive mechanisms, an alteration of striatal signaling is thought to orchestrate the downstream events involved in the cascade of striatal dysfunction.

  12. Huntington's Disease and Striatal Signaling.

    Science.gov (United States)

    Roze, Emmanuel; Cahill, Emma; Martin, Elodie; Bonnet, Cecilia; Vanhoutte, Peter; Betuing, Sandrine; Caboche, Jocelyne

    2011-01-01

    Huntington's Disease (HD) is the most frequent neurodegenerative disease caused by an expansion of polyglutamines (CAG). The main clinical manifestations of HD are chorea, cognitive impairment, and psychiatric disorders. The transmission of HD is autosomal dominant with a complete penetrance. HD has a single genetic cause, a well-defined neuropathology, and informative pre-manifest genetic testing of the disease is available. Striatal atrophy begins as early as 15 years before disease onset and continues throughout the period of manifest illness. Therefore, patients could theoretically benefit from therapy at early stages of the disease. One important characteristic of HD is the striatal vulnerability to neurodegeneration, despite similar expression of the protein in other brain areas. Aggregation of the mutated Huntingtin (HTT), impaired axonal transport, excitotoxicity, transcriptional dysregulation as well as mitochondrial dysfunction, and energy deficits, are all part of the cellular events that underlie neuronal dysfunction and striatal death. Among these non-exclusive mechanisms, an alteration of striatal signaling is thought to orchestrate the downstream events involved in the cascade of striatal dysfunction.

  13. [The effect of sevoflurane and isoflurane on striatal dopamine of awake freely moving rats observed in an in vivo microdialysis study].

    Science.gov (United States)

    Adachi, Y; Taoda, M; Uchihashi, Y; Watanabe, K; Satoh, T

    1999-09-01

    We investigated the effect of sevoflurane and isoflurane on the level of interstitial dopamine of in vivo awake, free moving rats brain striatum using microdialysis techniques. Rats were implanted with a microdialysis probe to the right striatum of the brain and administered with 1.2 MAC of each volatile anesthetics for 1 hour, and dialysates from the probe were determined every 20 minutes. Both anesthetics reduced the amount of dopamine derived from dialysate, and increased the efflux of dopamine with pretreatment of nomifensine 10mg. kg-1 i.p. The change of metabolites of dopamine during anesthesia was increased. No significant difference was found between sevoflurane and isoflurane. We hypothesized that these anesthetics might have special actions on interactions between metabolism and re-uptake of dopamine in rats striatum during anesthesia.

  14. Gastric Bypass Surgery Recruits a Gut PPAR-α-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats

    DEFF Research Database (Denmark)

    Hankir, Mohammed K; Seyfried, Florian; Hintschich, Constantin A

    2017-01-01

    Bariatric surgery remains the single most effective long-term treatment modality for morbid obesity, achieved mainly by lowering caloric intake through as yet ill-defined mechanisms. Here we show in rats that Roux-en-Y gastric bypass (RYGB)-like rerouting of ingested fat mobilizes lower small...

  15. Striatal adenosine A{sub 2A} receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [{sup 18}F]-MRS5425

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Abesh Kumar; Lang Lixin; Jacobson, Orit [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Shinkre, Bidhan [Chemical Biology Unit, Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Ma Ying [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Niu Gang [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Department of Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Trenkle, William C. [Chemical Biology Unit, Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Jacobson, Kenneth A. [Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Chen Xiaoyuan [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Kiesewetter, Dale O., E-mail: dk7k@nih.gov [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States)

    2011-08-15

    Introduction: A{sub 2A} receptors are expressed in the basal ganglia, specifically in striatopallidal GABAergic neurons in the striatum (caudate-putamen). This brain region undergoes degeneration of presynaptic dopamine projections and depletion of dopamine in Parkinson's disease. We developed an {sup 18}F-labeled A{sub 2A} analog radiotracer ([{sup 18}F]-MRS5425) for A{sub 2A} receptor imaging using positron emission tomography (PET). We hypothesized that this tracer could image A{sub 2A} receptor changes in the rat model for Parkinson's disease, which is created following unilateral injection of the monoaminergic toxin 6-hydroxydopamine (6-OHDA) into the substantia nigra. Methods: [{sup 18}F]-MRS5425 was injected intravenously in anesthetized rats, and PET imaging data were collected. Image-derived percentage injected doses per gram (%ID/g) in regions of interest was measured in the striatum of normal rats and in rats unilaterally lesioned with 6-OHDA after intravenous administration of saline (baseline), D{sub 2} agonist quinpirole (1.0 mg/kg) or D{sub 2} antagonist raclopride (6.0 mg/kg). Results: Baseline %ID/g reached a maximum at 90 s and maintained plateau for 3.5 min, and then declined slowly thereafter. In 6-OHDA-lesioned rats, %ID/g was significantly higher in the lesioned side compared to the intact side, and the baseline total %ID/g (data from both hemispheres were combined) was significantly higher compared to quinpirole stimulation starting from 4.5 min until the end of acquisition at 30 min. Raclopride did not produce any change in uptake compared to baseline or between the hemispheres. Conclusion: Thus, increase of A{sub 2A} receptor-mediated uptake of radioactive MRS5425 could be a superior molecular target for Parkinson's imaging.

  16. Glia and epilepsy: experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation.

    Science.gov (United States)

    Dambach, Hannes; Hinkerohe, Daniel; Prochnow, Nora; Stienen, Martin N; Moinfar, Zahra; Haase, Claus G; Hufnagel, Andreas; Faustmann, Pedro M

    2014-01-01

    The contribution of glial cells, mainly astrocytes and microglia, to the pathophysiology of epilepsy is increasingly appreciated. Glia play a pivotal role in the initiation and maintenance of the central nervous system (CNS) immune response and neuronal metabolic and trophic supply. Recent clinical and experimental evidence suggests a direct relationship between epileptic activity and CNS inflammation, which is characterized by accumulation, activation, and proliferation of microglia and astrocytes. Concomitant glia-mediated mechanisms of action of several antiepileptic drugs (AEDs) have been proposed. However, their direct effects on glial cells have been rarely investigated. We aimed to investigate the effect of commonly used AEDs on glial viability, the gap junctional network, the microglial activation, and cytokine expression in an in vitro astroglia/microglia co-culture model. Primary astrocytic cultures were prepared from brains of postnatal (P0-P2) Wistar rats and co-cultured with a physiologic amount of 5%, as well as 30% microglia in order to mimic inflammatory conditions. Co-cultures were treated with valproic acid (VPA), carbamazepine (CBZ), phenytoin (PHE), and gabapentin (GBT). Viability and proliferation were measured using the tetrazolium (MTT) assay. The microglial activation state was determined by immunocytochemical labeling. The astroglial connexin 43 (Cx43) expression was measured by Western blot analysis. The transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) cytokine levels were measured by the quantitative sandwich enzyme immunosorbent assay (ELISA). Astrocytes, co-cultured with 5% microglia (M5 co-cultures), showed a dose-dependent, significant reduction in glial viability after incubation with PHE and CBZ. Furthermore, VPA led to highly significant microglial activation at all doses examined. The antiinflammatory cytokine TGF-β1 release was induced by high doses of GBT and PHE. Astrocytes co-cultured with 30

  17. Fluorescence-based co-culture of normal and cancerous cells as an indicator of therapeutic effects in cancer.

    Science.gov (United States)

    Tamura, Masato; Matsui, Hirofumi; Hyodo, Ichinosuke; Tanaka, Junko; Miwa, Yoshihiro

    2014-10-15

    Comprehensive evaluation of the effects of cancer therapies in vitro is difficult because of the need to distinguish the main effects from the side effects within the data. This problem cannot be overcome by methods involving monoculture, because the effects of anti-cancer drugs in a monoculture can only be measured on either normal or cancerous cells in isolation. In order to promote therapeutic development, therefore, we need a novel drug evaluation method which can simultaneously determine both therapeutic activity and toxicity under a co-culture of normal and cancerous cells. Co-culture creates a more biomimetic condition in comparison to monoculture. The novel method proposed in this study uses an easy experiment for estimating the effects of treatments with various kinds of drugs as a solution to the abovementioned problems. We have previously established two cell lines: a rat gastric mucosal cell line (RGM) and its corresponding cancerous mutant cell line (RGK). In this study, we have developed a new evaluation procedure using a co-culture of green fluorescent protein-expressing RGM cells (RGM-GFP) and kusabira orange-expressing RGK cells (RGK-KO). These cell lines emit green and red fluorescence, respectively. We demonstrated the capability of the method in evaluations of the cancer-selective effects of anti-cancer drugs and X-ray treatment. These results clearly distinguished the cancer-selective toxicity of the applied therapies.

  18. Puerarin exhibits greater distribution and longer retention time in neurons than astrocytes in a co-cultured system

    Directory of Open Access Journals (Sweden)

    Shu-Yong Wei

    2015-01-01

    Full Text Available The phytoestrogen puerarin has been shown to protect neurons and astrocytes in the brain, and is therefore an attractive drug in the treatment of Alzheimer′s disease, Parkinson′s disease and cerebral ischemia. Whether puerarin exhibits the same biological processes in neurons and astrocytes in vitro has rarely been reported. In this study, cortical neurons and astrocytes of newborn Sprague-Dawley rats were separated, identified and co-cultured in a system based on Transwell membranes. The retention time and distribution of puerarin in each cell type was detected by fluorescence spectrophotometry and fluorescence microscope. The concentration of puerarin in both co-cultured and separately cultured neurons was greater than that of astrocytes. Puerarin concentration reached a maximum 20 minutes after it was added. At 60 minutes after its addition, a scant amount of drug was detected in astrocytes; however in both separately cultured and co-cultured neurons, the concentration of puerarin achieved a stable level of about 12.8 ng/mL. The results indicate that puerarin had a higher concentration and longer retention time in neurons than that observed in astrocytes.

  19. Prefrontal cortical and striatal transcriptional responses to the reinforcing effect of repeated methylphenidate treatment in the spontaneously hypertensive rat, animal model of attention-deficit/hyperactivity disorder (ADHD)

    OpenAIRE

    dela Peña, Ike; Kim, Hee Jin; Sohn, Aeree; Kim, Bung-Nyun; Han, Doug Hyun; Ryu, Jong Hoon; Shin, Chan Young; Noh, Minsoo; Cheong, Jae Hoon

    2014-01-01

    Background Methylphenidate is the most commonly used stimulant drug for the treatment of attention-deficit/hyperactivity disorder (ADHD). Research has found that methylphenidate is a “reinforcer” and that individuals with ADHD also abuse this medication. Nevertheless, the molecular consequences of long-term recreational methylphenidate use or abuse in individuals with ADHD are not yet fully known. Methods Spontaneously hypertensive rats (SHR), the most validated and widely used ADHD animal mo...

  20. Prenatal exposure to integerrimine N-oxide enriched butanolic residue from Senecio brasiliensis affects behavior and striatal neurotransmitter levels of rats in adulthood.

    Science.gov (United States)

    Sandini, Thaísa M; Udo, Mariana S B; Reis-Silva, Thiago M; Sanches, Daniel; Bernardi, Maria Martha; Flório, Jorge Camilo; Spinosa, Helenice de S

    2015-12-01

    Pyrrolizidine alkaloids (PAs) are toxins that are exclusively biosynthesized by plants and are commonly present in foods and herbs. PAs are usually associated with poisoning events in livestock and human beings. The aim of the present study was to evaluate the behavioral and neurochemical effects of prenatal exposure to PA integerrimine N-oxide of rats in adulthood. Pregnant Wistar rats received integerrimine N-oxide from the butanolic residue of Senecio brasiliensis by gavage on gestational days 6-20 at doses of 3, 6 and 9 mg/kg. During adulthood of the offspring, the following behavioral tests were performed: open-field, plus-maze, forced swimming, catalepsy and stereotypy. Histological analyses and monoamine levels were measured. Male offspring from dams that were exposed to 9 mg/kg showed an increase in locomotion in the open-field test, an increased frequency of entries and time spent in open arms in elevated plus-maze test, as well as decreased swimming time. In the female offspring from dams that were exposed to 9 mg/kg, there was an increased time of climbing in forced swimming and intensity of stereotyped behavior. The histological study indicates an increase in the number of multinucleated cells in the liver (6 and 9 mg/kg). In neurotransmitter analysis, specifically in the striatum, we observed change in dopamine and serotonin levels in the middle dose. Thus, our results indicate that prenatal exposure to integerrimine N-oxide changed behavior in adulthood and neurotransmitter levels in the striatum. Our results agree with previous studies, which showed that integerrimine N-oxide impaired physical and neurobehavioral development in childhood that can persist until adulthood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Bcl-2 enhances the formation of newborn striatal long-projection neurons in adult rat brain after a transient ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Jian-Jun Guo; Fang Liu; Xiao Sun; Jun-Jie Huang; Ming Xu; Feng-Yan Sun

    2012-01-01

    Objective It has been reported that B-cell lymphoma 2 (Bcl-2) enhances neurogenesis as well as supporting axonal growth after injury.In the present study,we investigated whether Bcl-2 overexpression plays a role in the formation of newborn striatonigral projection neurons in the adult rat brain after transient middle cerebral artery occlusion (MCAO).Methods We infused human Bcl-2-expressing plasmid (pBcl-2) into the lateral ventricle immediately after 30 min of MCAO,injected 5'-bromodeoxyuridine (BrdU) intraperitoneally to label proliferative cells,and microinjected fluorogold (FG) into the substantia nigra at 11 weeks of reperfusion followed by multiple immunostaining of striatonigral projection neurons at 12 weeks.Results We found that pBcl-2 treatment significantly increased the number of newborn neurons (BrdU+-NeuN+) in the striatum ipsilateral to the MCAO.We further detected newborn striatonigral projection neurons (BrdU+-FG+-NeuN+) in the ipsilateral striatum at 12 weeks.More interestingly,the number of newborn striatonigral projection neurons (BrdU+-FG+) was significantly increased by pBcl-2 treatment compared to that by pEGFP,a control plasmid.Conclusion Taken together,we found that Bcl-2 overexpression in the brain enhanced the generation of newborn striatonigral projection neurons.This provides a potential strategy for promoting the reestablishment of neural networks and brain repair after ischemic injury.

  2. Striatal lesions produce distinctive impairments in reaction time performance in two different operant chambers.

    Science.gov (United States)

    Brasted, P J; Döbrössy, M D; Robbins, T W; Dunnett, S B

    1998-08-01

    The dorsal striatum plays a crucial role in mediating voluntary movement. Excitotoxic striatal lesions in rats have previously been shown to impair the initiation but not the execution of movement in a choice reaction time task in an automated lateralised nose-poke apparatus (the "nine-hole box"). Conversely, when a conceptually similar reaction time task has been applied in a conventional operant chamber (or "Skinner box"), striatal lesions have been seen to impair the execution rather than the initiation of the lateralised movement. The present study was undertaken to compare directly these two results by training the same group of rats to perform a choice reaction time task in the two chambers and then comparing the effects of a unilateral excitotoxic striatal lesion in both chambers in parallel. Particular attention was paid to adopting similar parameters and contingencies in the control of the task in the two test chambers. After striatal lesions, the rats showed predominantly contralateral impairments in both tasks. However, they showed a deficit in reaction time in the nine-hole box but an apparent deficit in response execution in the Skinner box. This finding confirms the previous studies and indicates that differences in outcome are not simply attributable to procedural differences in the lesions, training conditions or tasks parameters. Rather, the pattern of reaction time deficit after striatal lesions depends critically on the apparatus used and the precise response requirements for each task.

  3. Microalgae harvesting via co-culture with filamentous fungus

    Science.gov (United States)

    Gultom, Sarman Oktovianus

    Microalgae harvesting is a labor- and energy-intensive process. For instance, classical harvesting technologies such as chemical addition and mechanical separation are economically prohibiting for biofuel production. Newer approaches to harvest microalgae have been developed in order to decrease costs. Among these new methods, fungal co-pelletization seems to be a promising technology. By co-culturing filamentous fungi with microalgae, it is possible to form pellets, which can easily be separated. In this study, different parameters for the cultivation of filamentous fungus (Aspergillus niger) and microalgae (Chlorella vulgaris) to efficiently form cell pellets were evaluated under heterotrophic and phototrophic conditions, including organic carbon source (glucose, glycerol and sodium acetate) concentration, pH, initial concentration of fungal spores, initial concentration of microalgal cells, concentration of ionic strength (Calcium and Magnesium) and concentration of salinity (NaCl). In addition, zeta-potential measurements were carried out in order to get a better understanding of the mechanism of attraction. It was found that 2 g/L of glucose, a fungus to microalgae ratio of 1:300, and uncontrolled pH (around 7) are the best culturing conditions for co-pelletization. Under these conditions, it was possible to achieve a high harvesting performance (>90%). In addition, it was observed that most pellets formed in the co-culture were spherical with an average diameter of 3.5 mm and in concentrations of about 5 pellets per mL of culture media. Under phototrophic conditions, co-pelletization required the addition of glucose as organic carbon source to sustain the growth of fungi and to allow the harvesting of microalgae. Zeta-potential measurements indicated that (i) both microalgae and fungi have low zeta-potential values regardless of the pH on the bulk (i.e. <-10 mV) (ii) fungi can have a positive electric charge at low pH (ie. pH=3). These values suggest that it

  4. Prefrontal cortical and striatal transcriptional responses to the reinforcing effect of repeated methylphenidate treatment in the spontaneously hypertensive rat, animal model of attention-deficit/hyperactivity disorder (ADHD).

    Science.gov (United States)

    dela Peña, Ike; Kim, Hee Jin; Sohn, Aeree; Kim, Bung-Nyun; Han, Doug Hyun; Ryu, Jong Hoon; Shin, Chan Young; Noh, Minsoo; Cheong, Jae Hoon

    2014-05-06

    Methylphenidate is the most commonly used stimulant drug for the treatment of attention-deficit/hyperactivity disorder (ADHD). Research has found that methylphenidate is a "reinforcer" and that individuals with ADHD also abuse this medication. Nevertheless, the molecular consequences of long-term recreational methylphenidate use or abuse in individuals with ADHD are not yet fully known. Spontaneously hypertensive rats (SHR), the most validated and widely used ADHD animal model, were pretreated with methylphenidate (5 mg/kg, i.p.) during their adolescence (post-natal day [PND] 42-48) and tested for subsequent methylphenidate-induced conditioned place preference (CPP) and self-administration. Thereafter, the differentially expressed genes in the prefrontal cortex (PFC) and striatum of representative methylphenidate-treated SHRs, which showed CPP to and self-administration of methylphenidate, were analyzed. Genome-wide transcriptome profiling analyses revealed 30 differentially expressed genes in the PFC, which include transcripts involved in apoptosis (e.g. S100a9, Angptl4, Nfkbia), transcription (Cebpb, Per3), and neuronal plasticity (Homer1, Jam2, Asap1). In contrast, 306 genes were differentially expressed in the striatum and among them, 252 were downregulated. The main functional categories overrepresented among the downregulated genes include those involved in cell adhesion (e.g. Pcdh10, Ctbbd1, Itgb6), positive regulation of apoptosis (Perp, Taf1, Api5), (Notch3, Nsbp1, Sik1), mitochondrion organization (Prps18c, Letm1, Uqcrc2), and ubiquitin-mediated proteolysis (Nedd4, Usp27x, Ube2d2). Together, these changes indicate methylphenidate-induced neurotoxicity, altered synaptic and neuronal plasticity, energy metabolism and ubiquitin-dependent protein degradation in the brains of methylphenidate-treated SHRs, which showed methylphenidate CPP and self-administration. In addition, these findings may also reflect cognitive impairment associated with chronic

  5. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Science.gov (United States)

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  6. A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion.

    Science.gov (United States)

    Sabra, Georges; Vermette, Patrick

    2013-02-01

    The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered.

  7. Modular co-culture engineering, a new approach for metabolic engineering.

    Science.gov (United States)

    Zhang, Haoran; Wang, Xiaonan

    2016-09-01

    With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed.

  8. Triple co-culture cell model as an in vitro model for oral particulate vaccine systems

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; De Rossi, C.; Lehr, C-M.

    A triple co-culture cell model of Caco-2 cells, dendritic cells and macrophages (Figure 1) has previously been developed for studying intestinal permeability in a state of inflammation [1],[2]. The aim of this study was to investigate the applicability of this cell model for testing...... the model antigen ovalbumin was spray dried to obtain a particulate vaccine model system for testing in the cell model. The precursors were shown to form cubosomes when dispersed in aqueous medium, and was therefore used as the vaccine formulation for testing on the co-cultures. After 11 days, the TEER...... values of the co-cultures were found to be 860-1340 Ω∙cm2; the formulations were incubated with the co-cultures at this time point. From confocal microscopy images, it was observed that the THP-1 cells (macrophages) migrated into the overlying Caco-2 cell monolayer when the co-cultures were incubated...

  9. Prefrontal and Striatal Glutamate Differently Relate to Striatal Dopamine: Potential Regulatory Mechanisms of Striatal Presynaptic Dopamine Function?

    Science.gov (United States)

    Gleich, Tobias; Deserno, Lorenz; Lorenz, Robert Christian; Boehme, Rebecca; Pankow, Anne; Buchert, Ralph; Kühn, Simone; Heinz, Andreas; Schlagenhauf, Florian; Gallinat, Jürgen

    2015-07-01

    Theoretical and animal work has proposed that prefrontal cortex (PFC) glutamate inhibits dopaminergic inputs to the ventral striatum (VS) indirectly, whereas direct VS glutamatergic afferents have been suggested to enhance dopaminergic inputs to the VS. In the present study, we aimed to investigate relationships of glutamate and dopamine measures in prefrontostriatal circuitries of healthy humans. We hypothesized that PFC and VS glutamate, as well as their balance, are differently associated with VS dopamine. Glutamate concentrations in the left lateral PFC and left striatum were assessed using 3-Tesla proton magnetic resonance spectroscopy. Striatal presynaptic dopamine synthesis capacity was measured by fluorine-18-l-dihydroxyphenylalanine (F-18-FDOPA) positron emission tomography. First, a negative relationship was observed between glutamate concentrations in lateral PFC and VS dopamine synthesis capacity (n = 28). Second, a positive relationship was revealed between striatal glutamate and VS dopamine synthesis capacity (n = 26). Additionally, the intraindividual difference between PFC and striatal glutamate concentrations correlated negatively with VS dopamine synthesis capacity (n = 24). The present results indicate an involvement of a balance in PFC and striatal glutamate in the regulation of VS dopamine synthesis capacity. This notion points toward a potential mechanism how VS presynaptic dopamine levels are kept in a fine-tuned range. A disruption of this mechanism may account for alterations in striatal dopamine turnover as observed in mental diseases (e.g., in schizophrenia). The present work demonstrates complementary relationships between prefrontal and striatal glutamate and ventral striatal presynaptic dopamine using human imaging measures: a negative correlation between prefrontal glutamate and presynaptic dopamine and a positive relationship between striatal glutamate and presynaptic dopamine are revealed. The results may reflect a regulatory role

  10. Striatal Mechanisms Underlying Movement, Reinforcement, and Punishment

    OpenAIRE

    Kravitz, Alexxai V.; Kreitzer, Anatol C.

    2012-01-01

    Direct and indirect pathway striatal neurons are known to exert opposing control over motor output. In this review, we discuss a hypothetical extension of this framework, in which direct pathway striatal neurons also mediate reinforcement and reward, and indirect pathway neurons mediate punishment and aversion.

  11. Striatal mechanisms underlying movement, reinforcement, and punishment.

    Science.gov (United States)

    Kravitz, Alexxai V; Kreitzer, Anatol C

    2012-06-01

    Direct and indirect pathway striatal neurons are known to exert opposing control over motor output. In this review, we discuss a hypothetical extension of this framework, in which direct pathway striatal neurons also mediate reinforcement and reward, and indirect pathway neurons mediate punishment and aversion.

  12. BDNF signaling and survival of striatal neurons

    Directory of Open Access Journals (Sweden)

    Maryna eBaydyuk

    2014-08-01

    Full Text Available The striatum, a major component of the basal ganglia, performs multiple functions including control of movement, reward, and addiction. Dysfunction and death of striatal neurons are the main causes for the motor disorders associated with Huntington’s disease (HD. Brain-derived neurotrophic factor (BDNF, a member of the neurotrophin family, is among factors that promote survival and proper function of this neuronal population. Here, we review recent studies showing that BDNF determines the size of the striatum by supporting survival of the immature striatal neurons at their origin, promotes maturation of striatal neurons, and facilitates establishment of striatal connections during brain development. We also examine the role of BDNF in maintaining proper function of the striatum during adulthood, summarize the mechanisms that lead to a deficiency in BDNF signaling and subsequently striatal degeneration in HD, and highlight a potential role of BDNF as a therapeutic target for HD treatment.

  13. Hepatic stellate cells on poly(DL-lactic acid surfaces control the formation of 3D hepatocyte co-culture aggregates in vitro

    Directory of Open Access Journals (Sweden)

    R J Thomas

    2006-01-01

    Full Text Available Evidence for the functional superiority of cells cultured as 3D aggregates or on 3D scaffolds over conventional 2D monolayer cultures has created interest in material and cell based methods that influence the formation and structure of multicellular aggregates in vitro. We have created a co-culture of primary rat hepatocytes and hepatic stellate cells on a poly(DL-lactic acid surface, a poor substrate for rat hepatocyte adhesion, to study the dynamics of multicellular spheroid formation and the resultant cell arrangement. The poly(DL-lactic acid surface allows dynamic and rapid interaction of hepatocytes and stellate cells to form co-culture spheroids in a complex multistage process (shown by time lapse microscopy. This spheroid morphology supports enhanced cell viability relative to a mono-culture mono-layer system (measured by lactate dehydrogenase leakage. The distribution of the aggregating cell type in the final structure is related to the mechanics of formation i.e. mainly central and peripheral. This study provides a unique and generically applicable insight into the dynamics of multicellular spheroid formation where aggregation is induced by one cell type and imposed on another. This has implications for 3D cell culture models and a wide number of currently used stromal co-culture systems.

  14. Effect of Early Acupuncture at Huatuo Jiajipoints on Striatalβ-endorphin and Dynorphin Levels in MCAO Rats%早期针刺夹脊穴对 MCAO 大鼠脑纹状体β-内啡肽和强啡肽水平的影响

    Institute of Scientific and Technical Information of China (English)

    王春琛; 王麟鹏

    2016-01-01

    Objective To investigate the effect of early acupuncture at Huatuo jiaji points on striatalβ-endorphin and dynorphin levels in rats with post-stroke limb spasm.Methods Seventy SD rats were randomized into group A (normal) of 9 rats and group B (sham operation) of 10 rats. After a model of post-stroke limb spasm was made in the remaining rats, they were randomized into groups C (model), D (acupuncture at Huatuo jiaji points) and E (baclofen). Group D received acupuncture at Huatuo jiaji points and group E, an oral gavage of baclofen tablets. After seven days of treatment, striatalβ-endorphin and dynorphin levels were neasured by radioimmunoassay.Resultsβ-endorphin levels increased significantly in groups C, D and E compared with groups A and B (P0.05). Dynorphin levels increased significantly in groups C, D and E compared with groups A and B (P0.05).Conclusions Acupuncture at Huatuo jiaji points can increase striatalβ-endorphin levels but not change striatal dynorphin levels, which conforms to the relationship between enkephalin and spasm, and improve the animal’s spasticity.%目的:观察早期针刺夹脊穴对卒中后肢体痉挛大鼠脑纹状体β-内啡肽和强啡肽水平的影响。方法将70只SD大鼠随机分为A组(正常组)9只和B组(假手术组)10只,剩余大鼠制备卒中后肢体痉挛大鼠模型后随机分为C组(模型组)、D组(针刺夹脊穴组)和E组(巴氯芬组)。D组采用针刺夹脊穴治疗,E组采用巴氯芬片灌胃治疗。治疗7 d后,采用放射免疫方法检测各组动物脑纹状体β-内啡肽和强啡肽水平。结果与A组和B组比较,C组、D组和E组β-内啡肽水平均显著升高(P<0.01);与C组比较,D组和E组β-内啡肽水平均显著升高(P<0.01,P<0.05);D组β-内啡肽水平与E组比较,差异无统计学意义(P>0.05)。与A组和B组比较,C组、D组和E组内强啡肽水平均均显著升高(P<0.05,P<0.01);D组内强啡肽水平和E组比

  15. The effect of activated alveolar macrophages on experimental lung emphysema development. II. The study of fibroblast and alveolar macrophage co-culture.

    Science.gov (United States)

    Sulkowska, M; Wołczyński, S; Sulkowski, S; Sobaniec-Lotowska, M; Chyczewski, L; Sulik, M; Kulikowski, M; Dziecioł, J; Berger, W

    1995-01-01

    The cell-cell interaction between fibroblasts and alveolar macrophages was examined using a co-culture system. Alveolar macrophages (AM) were harvested from the bronchoalveolar lavages (BAL) of rats with papain induced lung emphysema. The BCG-vaccine was applied as a macrophage mobilizing and activating agent. The morphological examinations carried out in scanning electron microscope (SEM) as well as the evaluation of the uptake of 3H-thymidine did not show any significant differences between respective co-cultures of fibroblasts and AM isolated both from the lungs of control and experimental animals (treated with BCG or papain, and BCG+papain). However, significant growth were noted in 3H-thymidine uptake between fibroblast cultures done with or without cells isolated from the lungs. The results obtained suggest that AM can promote fibroblast proliferation during the progression of experimental lung emphysema.

  16. Significance of input correlations in striatal function.

    Directory of Open Access Journals (Sweden)

    Man Yi Yim

    2011-11-01

    Full Text Available The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia.

  17. Production of probiotic fresh white cheese using co-culture with Streptococcus thermophilus

    OpenAIRE

    Oktay Yerlikaya; Elif Ozer

    2014-01-01

    In this research, the probiotic Streptococcus thermophilus was inoculated into milk as co-culture to produce probiotic cheese. The effects of using Streptococcus thermophilus with other probiotic bacteria on cheese composition, and microbiological viability during 28 days of storage were investigated. Sensorial properties were determined only at 1st and 28th days of storage. The results showed that the use of Streptococcus thermophilus as co-culture in probiotic cheese production did not affe...

  18. Streamlining Gene Expression Analysis: Integration of Co-Culture and mRNA Purification

    OpenAIRE

    Berry, Scott M; Singh, Chandresh; Lang, Jessica D.; Strotman, Lindsay N.; Alarid, Elaine T.; Beebe, David J.

    2014-01-01

    Co-culture of multiple cell types within a single device enables the study of paracrine signaling events. However, extracting gene expression endpoints from co-culture experiments is laborious, due in part to pre-PCR processing of the sample (i.e., post-culture cell sorting, nucleic acid purification). Also, significant loss of nucleic acid may occur during these steps, especially with microfluidic cell culture where lysate volumes are small and difficult to access. Here, we describe an integ...

  19. Generation of a patterned co-culture system composed of adherent cells and immobilized nonadherent cells.

    Science.gov (United States)

    Yamazoe, Hironori; Ichikawa, Takashi; Hagihara, Yoshihisa; Iwasaki, Yasuhiko

    2016-02-01

    Patterned co-culture is a promising technique used for fundamental investigation of cell-cell communication and tissue engineering approaches. However, conventional methods are inapplicable to nonadherent cells. In this study, we aimed to establish a patterned co-culture system composed of adherent and nonadherent cells. Nonadherent cells were immobilized on a substrate using a cell membrane anchoring reagent conjugated to a protein, in order to incorporate them into the co-culture system. Cross-linked albumin film, which has unique surface properties capable of regulating protein adsorption, was used to control their spatial localization. The utility of our approach was demonstrated through the fabrication of a patterned co-culture consisting of micropatterned neuroblastoma cells surrounded by immobilized myeloid cells. Furthermore, we also created a co-culture system composed of cancer cells and immobilized monocytes. We observed that monocytes enhanced the drug sensitivity of cancer cells and its influence was limited to cancer cells located near the monocytes. Therefore, the incorporation of nonadherent cells into a patterned co-culture system is useful for creating culture systems containing immune cells, as well as investigating the influence of these immune cells on cancer drug sensitivity. Various methods have been proposed for creating patterned co-culture systems, in which multiple cell types are attached to a substrate with a desired pattern. However, conventional methods, including our previous report published in Acta Biomaterialia (2010, 6, 526-533), are unsuitable for nonadherent cells. Here, we developed a novel method that incorporates nonadherent cells into the co-culture system, which allows us to precisely manipulate and study microenvironments containing nonadherent and adherent cells. Using this technique, we demonstrated that monocytes (nonadherent cells) could enhance the drug sensitivity of cancer cells and that their influence had a

  20. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

    Science.gov (United States)

    Stouffer, Melissa A.; Woods, Catherine A.; Patel, Jyoti C.; Lee, Christian R.; Witkovsky, Paul; Bao, Li; Machold, Robert P.; Jones, Kymry T.; de Vaca, Soledad Cabeza; Reith, Maarten E. A.; Carr, Kenneth D.; Rice, Margaret E.

    2015-01-01

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices. PMID:26503322

  1. Decolorization of synthetic brilliant green carpet industry dye through fungal co-culture technology.

    Science.gov (United States)

    Kumari, Simpal; Naraian, Ram

    2016-09-15

    Aim of the present study was to evaluate the efficiency of fungal co-culture for the decolorization of synthetic brilliant green carpet industry dye. For this purpose two lignocellulolytic fungi Pleurotus florida (PF) and Rhizoctonia solani (RS) were employed. The study includes determination of enzyme profiles (laccase and peroxidase), dye decolorization efficiency of co-culture and crude enzyme extracts. Both fungi produced laccase and Mn peroxidase and successfully decolorized solutions of different concentrations (2.0, 4.0, 6.0, & 8.0(w/v) of dye. The co-culture resulted highest 98.54% dye decolorization at 2% (w/v) of dye as compared to monocultures (82.12% with PF and 68.89% with RS) during 12 days of submerged fermentation. The lower levels of dyes were rapidly decolorized, while higher levels in slow order as 87.67% decolorization of 8% dye. The promising achievement of the study was remarkable decolorizing efficiency of co-culture over monocultures. The direct treatment of the mono and co-culture enzyme extracts to dye also influenced remarkable. The highest enzymatic decolorization was through combined (PF and RS) extracts, while lesser by monoculture extracts. Based on the observations and potentiality of co-culture technology; further it can be exploited for the bioremediation of areas contaminated with hazardous environmental pollutants including textile and other industry effluents.

  2. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons.

    Science.gov (United States)

    Neely, M D; Schmidt, D E; Deutch, A Y

    2007-10-26

    The proximate cause of Parkinson's disease is striatal dopamine depletion. Although no overt toxicity to striatal neurons has been reported in Parkinson's disease, one of the consequences of striatal dopamine loss is a decrease in the number of dendritic spines on striatal medium spiny neurons (MSNs). Dendrites of these neurons receive cortical glutamatergic inputs onto the dendritic spine head and dopaminergic inputs from the substantia nigra onto the spine neck. This synaptic arrangement suggests that dopamine gates corticostriatal glutamatergic drive onto spines. Using triple organotypic slice cultures composed of ventral mesencephalon, striatum, and cortex of the neonatal rat, we examined the role of the cortex in dopamine depletion-induced dendritic spine loss in MSNs. The striatal dopamine innervation was lesioned by treatment of the cultures with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) or by removing the mesencephalon. Both MPP+ and mesencephalic ablation decreased MSN dendritic spine density. Analysis of spine morphology revealed that thin spines were preferentially lost after dopamine depletion. Removal of the cortex completely prevented dopamine depletion-induced spine loss. These data indicate that the dendritic remodeling of MSNs seen in parkinsonism occurs secondary to increases in corticostriatal glutamatergic drive, and suggest that modulation of cortical activity may be a useful therapeutic strategy in Parkinson's disease.

  4. Genetics of Infantile Bilateral Striatal Necrosis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-09-01

    Full Text Available The gene mutation causing autosomal recessive infantile bilateral striatal necrosis (IBSN was identified in eight consanguineous Israeli Bedouin families, in a study at Schneider Children’s Medical Center, Petah Tikva, Israel, and other centers.

  5. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury.

    Science.gov (United States)

    Song, Linyang; Song, Wei; Schipper, Hyman M

    2007-08-01

    The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage. (c) 2007 Wiley-Liss, Inc.

  6. Mesenchymal stem cells enhance GABAergic transmission in co-cultured hippocampal neurons.

    Science.gov (United States)

    Mauri, Mario; Lentini, Daniela; Gravati, Marta; Foudah, Dana; Biella, Gerardo; Costa, Barbara; Toselli, Mauro; Parenti, Marco; Coco, Silvia

    2012-04-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent stem cells endowed with neurotrophic potential combined with immunological properties, making them a promising therapeutic tool for neurodegenerative disorders. However, the mechanisms through which MSCs promote the neurological recovery following injury or inflammation are still largely unknown, although cell replacement and paracrine mechanisms have been hypothesized. In order to find out what are the mechanisms of the trophic action of MSCs, as compared to glial cells, on CNS neurons, we set up a co-culture system where rat MSCs (or cortical astrocytes) were used as a feeding layer for hippocampal neurons without any direct contact between the two cell types. The analysis of hippocampal synaptogenesis, synaptic vesicle recycling and electrical activity show that MSCs were capable to support morphological and functional neuronal differentiation. The proliferation of hippocampal glial cells induced by the release of bioactive substance(s) from MSCs was necessary for neuronal survival. Furthermore, MSCs selectively increased hippocampal GABAergic pre-synapses. This effect was paralleled with a higher expression of the potassium/chloride KCC2 co-transporter and increased frequency and amplitude of mIPSCs and sIPSCs. The enhancement of GABA synapses was impaired by the treatment with K252a, a Trk/neurotrophin receptor blocker, and by TrkB receptor bodies hence suggesting the involvement of BDNF as a mediator of such effects. The results obtained here indicate that MSC-secreted factors induce glial-dependent neuronal survival and trigger an augmented GABAergic transmission in hippocampal cultures, highlighting a new effect by which MSCs could promote CNS repair. Our results suggest that MSCs may be useful in those neurological disorders characterized by an impairment of excitation versus inhibition balance.

  7. Are striatal tyrosine hydroxylase interneurons dopaminergic?

    Science.gov (United States)

    Xenias, Harry S; Ibáñez-Sandoval, Osvaldo; Koós, Tibor; Tepper, James M

    2015-04-22

    Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH-Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)-TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP-TH interneurons. Optogenetic activation of striatal EGFP-TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons.

  8. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ping, E-mail: fanpinggoodluck@163.com [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China); He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China)

    2011-01-21

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli

  9. GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A2A Receptors

    Science.gov (United States)

    Gomes, Catarina A.R.V.; Simões, Patrícia F.; Canas, Paula M.; Quiroz, César; Sebastião, Ana M.; Ferré, Sergi; Cunha, Rodrigo A.; Ribeiro, Joaquim A.

    2009-01-01

    Glial cell line-derived neurotrophic factor (GDNF) affords neuroprotection in Parkinson’s disease in accordance with its ability to bolster nigrostriatal innervation. We previously found that GDNF facilitates dopamine release in a manner dependent on adenosine A2A receptor activation. Since motor dysfunction also involves modifications of striatal glutamatergic innervation, we now tested if GDNF and its receptor system, Ret (rearranged during transfection) and GFRα1 (GDNF family receptor alpha 1) controlled the cortico-striatal glutamatergic pathway in an A2A receptor-dependent manner. GDNF (10 ng/ml) enhanced (by ≈13%) glutamate release from rat striatal nerve endings, an effect potentiated (up to ≈ 30%) by the A2A receptor agonist CGS 21680 (10 nM) and prevented by the A2A receptor antagonist, SCH 58261 (50 nM). Triple immunocytochemical studies revealed that Ret and GFRα1 were located in 50% of rat striatal glutamatergic terminals (immunopositive for vesicular glutamate transporters-1/2), where they were found to be co-located with A2A receptors. Activation of the glutamatergic system upon in vivo electrical stimulation of the rat cortico-striatal input induced striatal Ret phosphoprylation that was prevented by pre-treatment with the A2A receptor antagonist, MSX-3 (3 mg/kg). The results provide the first functional and morphological evidence that GDNF controls cortico-striatal glutamatergic pathways in a manner largely dependent on the co-activation of adenosine A2A receptors. PMID:19141075

  10. Characterization of striatal neurons expressing high levels of glutamic acid decarboxylase messenger RNA.

    Science.gov (United States)

    Chesselet, M F; Robbins, E

    1989-07-17

    Two types of labelled cells are detected in sections of rat and mouse striata processed for in situ hybridization histochemistry with 35S-radiolabelled RNA probes complementary to the messenger RNA (mRNA) encoding glutamic acid decarboxylase (GAD), the synthesis enzyme for gamma-aminobutyric acid (GABA): numerous lightly, and fewer very densely labelled neurons. In order to determine whether the densely labelled cells correspond to the striatal somatostatinergic neurons with which they share morphological characteristics, the presence of GAD mRNA was examined in brain sections processed successively for dihydronicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry, a marker of striatal somatostatinergic neurons, and in situ hybridization histochemistry. In addition, the distribution of GABAergic interneurons was analyzed with regard to striatal compartments (striosomes) indicated by patches of dense opiate binding sites. The results show that NADPH diaphorase activity and GAD mRNA do not co-exist in striatal neurons. Furthermore, in contrast to the somatostatinergic neurons which are almost exclusively located in the extrastriosomal matrix, densely labelled GAD cells were present both in the striosomes and the matrix, further suggesting that GABAergic and somatostatinergic neurons form two distinct interneuronal systems in the striatum of rats and mice.

  11. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kostadinova, Radina; Boess, Franziska [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland); Applegate, Dawn [RegeneMed, 9855 Towne Centre Drive Suite 200, San Diego, CA 92121 (United States); Suter, Laura; Weiser, Thomas; Singer, Thomas [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland); Naughton, Brian [RegeneMed, 9855 Towne Centre Drive Suite 200, San Diego, CA 92121 (United States); Roth, Adrian, E-mail: adrian_b.roth@roche.com [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland)

    2013-04-01

    Drug-induced liver injury (DILI) is the major cause for liver failure and post-marketing drug withdrawals. Due to species-specific differences in hepatocellular function, animal experiments to assess potential liabilities of drug candidates can predict hepatotoxicity in humans only to a certain extent. In addition to animal experimentation, primary hepatocytes from rat or human are widely used for pre-clinical safety assessment. However, as many toxic responses in vivo are mediated by a complex interplay among different cell types and often require chronic drug exposures, the predictive performance of hepatocytes is very limited. Here, we established and characterized human and rat in vitro three-dimensional (3D) liver co-culture systems containing primary parenchymal and non-parenchymal hepatic cells. Our data demonstrate that cells cultured on a 3D scaffold have a preserved composition of hepatocytes, stellate, Kupffer and endothelial cells and maintain liver function for up to 3 months, as measured by the production of albumin, fibrinogen, transferrin and urea. Additionally, 3D liver co-cultures maintain cytochrome P450 inducibility, form bile canaliculi-like structures and respond to inflammatory stimuli. Upon incubation with selected hepatotoxicants including drugs which have been shown to induce idiosyncratic toxicity, we demonstrated that this model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures. In conclusion, our results underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treatments for detection of in vivo-relevant adverse drug effects. - Highlights: ► 3D liver co-cultures maintain liver specific functions for up to three months. ► Activities of Cytochrome P450s remain drug- inducible accross three months. ► 3D liver co-cultures recapitulate drug-induced liver toxicity

  12. Investigation of Interspecies Interactions within Marine Micromonosporaceae Using an Improved Co-Culture Approach

    Directory of Open Access Journals (Sweden)

    Navid Adnani

    2015-09-01

    Full Text Available With respect to bacterial natural products, a significant outcome of the genomic era was that the biosynthetic potential in many microorganisms surpassed the number of compounds isolated under standard laboratory growth conditions, particularly among certain members in the phylum Actinobacteria. Our group, as well as others, investigated interspecies interactions, via co-culture, as a technique to coax bacteria to produce novel natural products. While co-culture provides new opportunities, challenges exist and questions surrounding these methods remain unanswered. In marine bacteria, for example, how prevalent are interspecies interactions and how commonly do interactions result in novel natural products? In an attempt to begin to answer basic questions surrounding co-culture of marine microorganisms, we have tested both antibiotic activity-based and LC/MS-based methods to evaluate Micromonosporaceae secondary metabolite production in co-culture. Overall, our investigation of 65 Micromonosporaceae led to the identification of 12 Micromonosporaceae across three genera that produced unique metabolites in co-culture. Our results suggest that interspecies interactions were prevalent between marine Micromonosporaceae and marine mycolic acid-containing bacteria. Furthermore, our approach highlights a sensitive and rapid method for investigating interspecies interactions in search of novel antibiotics, secondary metabolites, and genes.

  13. Co-culture systems and technologies: taking synthetic biology to the next level.

    Science.gov (United States)

    Goers, Lisa; Freemont, Paul; Polizzi, Karen M

    2014-07-06

    Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell-cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions.

  14. "Co-culture Engineering" for Enhanced Phytoremediation of Metal Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    NI Cai-Ying; SHI Ji-Yan; LUO Yong-Ming; CHEN Ying-Xu

    2004-01-01

    A co-culture of two plant materials, Astragalus sinicus L., a leguminous plant with concomitant nodules, and Elsholtzia splendens Naki-a Cu accumulator, along with treatments of a chelating agent (EDTA), root excretions (citric acid), and a control with E. splendens only were used to compare the mobility of heavy metals in chelating agents with a co-culture and to determine the potential for co-culture phytoremediation in heavy metal contaminated soils. The root uptake for Cu, Zn, and Pb in all treatments was significantly greater (P < 0.05) than that of the control treatment. However with translocation in the shoots, only Cu, Zn, and Pb in plants grown with the EDTA treatment and Zn in plants cocropped with the A. sinicus treatment increased significantly (P < 0.05). In addition, when a co-culture in soils with heavy and moderate contamination was compared, for roots in moderately contaminated soils only Zn concentration was significantly less (P < 0.05) than that of heavily contaminated soils, however, Cu, Zn, and Pb concentrations of shoots were all significantly lower (P < 0.05). Overall, this "co-culture engineering" could be as effective as or even more effective than chelating agents, thereby preventing plant metal toxicity and metal leaching in soils as was usually observed in chelate-enhanced phytoremediation.

  15. Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil.

    Science.gov (United States)

    Yanto, Dede Heri Yuli; Tachibana, Sanro

    2014-08-15

    The potential of fungal co-culture of the filamentous Pestalotiopsis sp. NG007 with four different basidiomycetes--Trametes versicolor U97, Pleurotus ostreatus PL1, Cerena sp. F0607, and Polyporus sp. S133--for accelerating biodegradation of petroleum hydrocarbons (PHCs) was studied using three different physicochemical characteristic PHCs in soil. All the combinations showed a mutual intermingling mycelial interaction on the agar plates. However, only NG007/S133 (50/50) exhibited an optimum growth rate and enzymatic activities that supported the degradation of asphalt in soil. The co-culture also degraded all fractions at even higher concentrations of the different PHCs. In addition, asphaltene, which is a difficult fraction for a single microorganism to degrade, was markedly degraded by the co-culture, which indicated that the simultaneous biodegradation of aliphatic, aromatic, resin, and asphaltene fractions had occurred in the co-culture. An examination of in-vitro degradation by the crude enzymes and the retrieval fungal culture from the soil after the experiment confirmed the accelerated biodegradation due to enhanced enzyme activities in the co-culture. The addition of piperonyl butoxide or AgNO3 inhibited biodegradation by 81-99%, which demonstrated the important role of P450 monooxygenases and/or dioxygenases in the initial degradation of the aliphatic and aromatic fractions in PHCs.

  16. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system.

    Science.gov (United States)

    Ding, Haiyan; Cheng, Zhihui; Liu, Menglong; Hayat, Sikandar; Feng, Han

    2016-05-15

    A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production.

  17. Application of cell co-culture system to study fat and muscle cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  18. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system

    Directory of Open Access Journals (Sweden)

    Haiyan Ding

    2016-05-01

    Full Text Available A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12 were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD, catalase (CAT and phenylalanine ammonia-lyase (PAL activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production.

  19. Dopaminergic modulation of the striatal microcircuit: receptor-specific configuration of cell assemblies.

    Science.gov (United States)

    Carrillo-Reid, Luis; Hernández-López, Salvador; Tapia, Dagoberto; Galarraga, Elvira; Bargas, José

    2011-10-19

    Selection and inhibition of motor behaviors are related to the coordinated activity and compositional capabilities of striatal cell assemblies. Striatal network activity represents a main step in basal ganglia processing. The dopaminergic system differentially regulates distinct populations of striatal medium spiny neurons (MSNs) through the activation of D(1)- or D(2)-type receptors. Although postsynaptic and presynaptic actions of these receptors are clearly different in MSNs during cell-focused studies, their activation during network activity has shown inconsistent responses. Therefore, using electrophysiological techniques, functional multicell calcium imaging, and neuronal population analysis in rat corticostriatal slices, we describe the effect of selective dopaminergic receptor activation in the striatal network by observing cell assembly configurations. At the microcircuit level, during striatal network activity, the selective activation of either D(1)- or D(2)-type receptors is reflected as overall increases in neuronal synchronization. However, graph theory techniques applied to the transitions between network states revealed receptor-specific configurations of striatal cell assemblies: D(1) receptor activation generated closed trajectories with high recurrence and few alternate routes favoring the selection of specific sequences, whereas D(2) receptor activation created trajectories with low recurrence and more alternate pathways while promoting diverse transitions among neuronal pools. At the single-cell level, the activation of dopaminergic receptors enhanced the negative-slope conductance region (NSCR) in D(1)-type-responsive cells, whereas in neurons expressing D(2)-type receptors, the NSCR was decreased. Consequently, receptor-specific network dynamics most probably result from the interplay of postsynaptic and presynaptic dopaminergic actions.

  20. Fibroblasts Influence Survival and Therapeutic Response in a 3D Co-Culture Model.

    Science.gov (United States)

    Majety, Meher; Pradel, Leon P; Gies, Manuela; Ries, Carola H

    2015-01-01

    In recent years, evidence has indicated that the tumor microenvironment (TME) plays a significant role in tumor progression. Fibroblasts represent an abundant cell population in the TME and produce several growth factors and cytokines. Fibroblasts generate a suitable niche for tumor cell survival and metastasis under the influence of interactions between fibroblasts and tumor cells. Investigating these interactions requires suitable experimental systems to understand the cross-talk involved. Most in vitro experimental systems use 2D cell culture and trans-well assays to study these interactions even though these paradigms poorly represent the tumor, in which direct cell-cell contacts in 3D spaces naturally occur. Investigating these interactions in vivo is of limited value due to problems regarding the challenges caused by the species-specificity of many molecules. Thus, it is essential to use in vitro models in which human fibroblasts are co-cultured with tumor cells to understand their interactions. Here, we developed a 3D co-culture model that enables direct cell-cell contacts between pancreatic, breast and or lung tumor cells and human fibroblasts/ or tumor-associated fibroblasts (TAFs). We found that co-culturing with fibroblasts/TAFs increases the proliferation in of several types of cancer cells. We also observed that co-culture induces differential expression of soluble factors in a cancer type-specific manner. Treatment with blocking antibodies against selected factors or their receptors resulted in the inhibition of cancer cell proliferation in the co-cultures. Using our co-culture model, we further revealed that TAFs can influence the response to therapeutic agents in vitro. We suggest that this model can be reliably used as a tool to investigate the interactions between a tumor and the TME.

  1. Response of a co-culture model of epithelial cells and gingival fibroblasts to zoledronic acid

    Directory of Open Access Journals (Sweden)

    Fernanda Gonçalves BASSO

    Full Text Available Abstract Osteonecrosis of the jaw is an adverse effect of bisphosphonates. While the etiopathogenesis of this condition has been investigated, the interactions and effects of bisphosphonates on oral mucosa cells remain unclear. It is hypothesized that cell culture models, such as co-culture or three-dimensional cell culture models, can provide valuable insight. Therefore, the aim of this study was to evaluate the effects of zoledronic acid (ZA on epithelial cells and gingival fibroblasts in a co-culture model. Briefly, epithelial cells were seeded on transwell inserts and gingival fibroblasts were seeded in the lower well of 24-well plates. The latter were treated with ZA (5 μM for 24 or 48 h. Cell viability and synthesis of the inflammatory chemokine, CCL2, were subsequently assessed. Data were subjected to statistical analysis with a 5% significance level. In the presence of ZA, the epithelial cells exhibited significant toxicity in both cell culture models and at both time points. However, greater cytotoxicity was observed in the co-culture model. Greater viability for the gingival fibroblasts was also associated with the co-culture model, and ZA-mediated toxicity was observed for the 48 h time point. ZA promoted a significant increase in CCL2 synthesis in both sets of cells, with greater CCL2 synthesis detected in the gingival fibroblasts. However, this effect was diminished in the co-culture model. Taken together, these results confirm the specific response patterns of the cells seeded in the co-culture model and also demonstrate the protective mechanism that is mediated by epithelial/mesenchymal cell interactions upon exposure to ZA.

  2. Response of a co-culture model of epithelial cells and gingival fibroblasts to zoledronic acid.

    Science.gov (United States)

    Basso, Fernanda Gonçalves; Soares, Diana Gabriela; Pansani, Taisa Nogueira; Turrioni, Ana Paula Silveira; Scheffel, Débora Lopes; Hebling, Josimeri; Costa, Carlos Alberto de Souza

    2016-11-28

    Osteonecrosis of the jaw is an adverse effect of bisphosphonates. While the etiopathogenesis of this condition has been investigated, the interactions and effects of bisphosphonates on oral mucosa cells remain unclear. It is hypothesized that cell culture models, such as co-culture or three-dimensional cell culture models, can provide valuable insight. Therefore, the aim of this study was to evaluate the effects of zoledronic acid (ZA) on epithelial cells and gingival fibroblasts in a co-culture model. Briefly, epithelial cells were seeded on transwell inserts and gingival fibroblasts were seeded in the lower well of 24-well plates. The latter were treated with ZA (5 μM) for 24 or 48 h. Cell viability and synthesis of the inflammatory chemokine, CCL2, were subsequently assessed. Data were subjected to statistical analysis with a 5% significance level. In the presence of ZA, the epithelial cells exhibited significant toxicity in both cell culture models and at both time points. However, greater cytotoxicity was observed in the co-culture model. Greater viability for the gingival fibroblasts was also associated with the co-culture model, and ZA-mediated toxicity was observed for the 48 h time point. ZA promoted a significant increase in CCL2 synthesis in both sets of cells, with greater CCL2 synthesis detected in the gingival fibroblasts. However, this effect was diminished in the co-culture model. Taken together, these results confirm the specific response patterns of the cells seeded in the co-culture model and also demonstrate the protective mechanism that is mediated by epithelial/mesenchymal cell interactions upon exposure to ZA.

  3. Striatal microRNA controls cocaine intake through CREB signalling.

    Science.gov (United States)

    Hollander, Jonathan A; Im, Heh-In; Amelio, Antonio L; Kocerha, Jannet; Bali, Purva; Lu, Qun; Willoughby, David; Wahlestedt, Claes; Conkright, Michael D; Kenny, Paul J

    2010-07-01

    Cocaine addiction is characterized by a gradual loss of control over drug use, but the molecular mechanisms regulating vulnerability to this process remain unclear. Here we report that microRNA-212 (miR-212) is upregulated in the dorsal striatum of rats with a history of extended access to cocaine. Striatal miR-212 decreases responsiveness to the motivational properties of cocaine by markedly amplifying the stimulatory effects of the drug on cAMP response element binding protein (CREB) signalling. This action occurs through miR-212-enhanced Raf1 activity, resulting in adenylyl cyclase sensitization and increased expression of the essential CREB co-activator TORC (transducer of regulated CREB; also known as CRTC). Our findings indicate that striatal miR-212 signalling has a key role in determining vulnerability to cocaine addiction, reveal new molecular regulators that control the complex actions of cocaine in brain reward circuitries and provide an entirely new direction for the development of anti-addiction therapeutics based on the modulation of noncoding RNAs.

  4. Motor response complications and the function of striatal efferent systems.

    Science.gov (United States)

    Chase, T N; Mouradian, M M; Engber, T M

    1993-12-01

    Motor response complications eventually appear in most patients with advanced Parkinson's disease being treated with levodopa. The interval between onset of parkinsonism and emergence of these adverse events appears independent of the dose or the duration of therapy. Current evidence suggests that "wearing-off" fluctuations largely reflect the loss of normally functioning dopaminergic terminals, although postsynaptic alterations contribute somewhat to the underlying decline in the duration of levodopa's antiparkinsonian action. "On-off" fluctuations and peak-dose dyskinesias, on the other hand, appear to arise mainly as a consequence of postjunctional alterations that follow exposure to nonphysiologic intrasynaptic dopamine fluctuations in patients who have lost the buffering afforded by dopaminergic terminals. Studies in rats with 6-hydroxydopamine lesions indicate that striking functional alterations occur in striatal dopaminoceptive systems as a result of dopaminergic denervation and that levodopa replacement, particularly when given intermittently, fails to normalize these changes. To the extent that similar alterations contribute to the appearance of motor complications, the successful symptomatic therapy of Parkinson's disease may require continuous dopaminergic stimulation, as well as direct pharmacologic targeting of striatal dopaminoceptive systems.

  5. Striatal cholinergic interneuron regulation and circuit effects

    Directory of Open Access Journals (Sweden)

    Sean Austin Lim

    2014-10-01

    Full Text Available The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh. Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI, which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.

  6. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    Science.gov (United States)

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta

    2016-02-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.

  7. Co-culture of Gastric Organoids and Immortalized Stomach Mesenchymal Cells.

    Science.gov (United States)

    Bertaux-Skeirik, Nina; Centeno, Jomaris; Feng, Rui; Schumacher, Michael A; Shivdasani, Ramesh A; Zavros, Yana

    2016-01-01

    Three-dimensional primary epithelial-derived gastric organoids have recently been established as an important tool to study gastric development, physiology, and disease. Specifically, mouse-derived fundic gastric organoids (mFGOs) co-cultured with Immortalized Stomach Mesenchymal Cells (ISMCs) reflect expression patterns of mature fundic cell types seen in vivo, thus allowing for long-term in vitro studies of gastric epithelial cell physiology, regeneration, and bacterial-host interactions. Here, we describe the development and culture of mFGOs, co-cultured with ISMCs.

  8. Actions of dopamine antagonists on stimulated striatal and limbic dopamine release: an in vivo voltammetric study.

    OpenAIRE

    Stamford, J. A.; Kruk, Z L; Millar, J.

    1988-01-01

    1. Fast cyclic voltammetry at carbon fibre microelectrodes was used to study the effects of several dopamine antagonists upon stimulated dopamine release in the rat striatum and nucleus accumbens. 2. In both nuclei, stimulated dopamine release was increased by D2-receptor-selective and mixed D1/D2-receptor antagonists. The D1-selective antagonist SCH 23390 had no effect. 3. Striatal and limbic dopamine release were elevated by cis- but not trans-flupenthixol. 4. The 'atypical' neuroleptics (c...

  9. Dopamine D-like receptors play only a minor role in the increase of striatal dopamine induced by striatally applied SKF38393.

    NARCIS (Netherlands)

    Sekino, R.; Saigusa, T.; Aono, Y.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2010-01-01

    We studied the effects of the intra-striatal infusion of Ca(2+)-free medium on the intra-striatal injection of 0.5 mug SKF38393-induced striatal dopamine efflux. It is discussed that the amount of extracellular, striatal dopamine seen after striatally applied SKF38393, is the overall result of the (

  10. Spatial remapping of cortico-striatal connectivity in Parkinson's disease

    NARCIS (Netherlands)

    Helmich, R.C.G.; Derikx, L.C.; Bakker, M.; Scheeringa, R.; Bloem, B.R.; Toni, I.

    2010-01-01

    Parkinson's disease (PD) is characterized by striatal dopamine depletion, especially in the posterior putamen. The dense connectivity profile of the striatum suggests that these local impairments may propagate throughout the whole cortico-striatal network. Here we test the effect of striatal dopamin

  11. Spatial Remapping of Cortico-striatal Connectivity in Parkinson's Disease

    NARCIS (Netherlands)

    Helmich, R.C.G.; Derikx, L.C.E.M.; Bakker, M.; Scheeringa, R.; Bloem, B.R.; Toni, I.

    2010-01-01

    Parkinson's disease (PD) is characterized by striatal dopamine depletion, especially in the posterior putamen. The dense connectivity profile of the striatum suggests that these local impairments may propagate throughout the whole cortico-striatal network. Here we test the effect of striatal dopamin

  12. Spatial remapping of cortico-striatal connectivity in Parkinson's disease.

    NARCIS (Netherlands)

    Helmich, R.C.G.; Derikx, L.C.E.M.; Bakker, M.; Scheeringa, R.; Bloem, B.R.; Toni, I.

    2010-01-01

    Parkinson's disease (PD) is characterized by striatal dopamine depletion, especially in the posterior putamen. The dense connectivity profile of the striatum suggests that these local impairments may propagate throughout the whole cortico-striatal network. Here we test the effect of striatal dopamin

  13. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.

    Science.gov (United States)

    Zhang, Haoran; Stephanopoulos, Gregory

    2016-07-01

    3-amino-benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coli-E. coli co-culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co-culture system was found to improve 3AB production by 15 fold, compared to the mono-culture approach. Further engineering of the co-culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co-culture engineering can be a powerful new approach in the broad field of metabolic engineering.

  14. Study of chondrogenic potential of stem cells in co-culture with chondrons

    Directory of Open Access Journals (Sweden)

    Parisa Nikpou

    2016-06-01

    Full Text Available Objective(s: Three-dimensional biomimetic scaffolds have widespread applications in biomedical tissue engineering due to similarity of their nanofibrous architecture to native extracellular matrix. Co-culture system has stimulatory effect on chondrogenesis of adult mesenchymal stem cells. This work presents a co-culture strategy using human articular chondrons and adipose-derived stem cells (ASCs from infrapatellar fat pad (IPFP for cartilage tissue production. Materials and Methods: Isolated stem cells were characterized by flowcytometry. Electrospun and polycaprolactone (PCL scaffolds (900 nm fiber diameter was obtained from Bon Yakhteh (Tehran- Iran and human infrapatellar fat pad-derived stem cells (IPFP-ASCs were seeded on them. IPFP- ASCs on scaffolds were co-cultured with articular chondrons using transwell. After 21 day, chondrogenic differentiation of stem cell was evaluated by determining the genes expression of collagen2, aggrecan and Indian hedgehog using real- time RT-PCR. Results: Genes expression of collagen2, aggrecan by IPFP-ASCs did not alter significantly in comparison with control group. Howevers, expression of Indian hedgehog decreased significantly compared to control group (P˂ 0.05. Conclusion: These findings indicate that chondrons obtained from osteoarthritic articular cartilage did not stimulate chondrogenic differentiation of IPFP-ASCs in co-culture.

  15. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels.

    Directory of Open Access Journals (Sweden)

    Leonardo Ricotti

    Full Text Available In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves polyacrylamide substrate, showing a precisely tuned Young's modulus (∼ 14 kPa and a small thickness (∼ 12 µm. We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric nanostructures (i.e., boron nitride nanotubes activated by ultrasounds, thus exploiting the ability of boron nitride nanotubes to convert outer mechanical waves (such as ultrasounds in intracellular electrical stimuli, by exploiting the direct piezoelectric effect. We demonstrated that nanotubes were internalized by muscle cells and localized in both early and late endosomes, while they were not internalized by the underneath fibroblast layer. Muscle cell differentiation benefited from the synergic combination of topographical, mechanical, chemical and nanoparticle-based stimuli, showing good myotube development and alignment towards a preferential direction, as well as high expression of genes encoding key proteins for muscle contraction (i.e., actin and myosin. We also clarified the possible role of fibroblasts in this process, highlighting their response to the above mentioned physical stimuli in terms of gene expression and cytokine production. Finally, calcium imaging-based experiments demonstrated a higher functionality of the stimulated co-cultures.

  16. Co-culture systems-based strategies for articular cartilage tissue engineering.

    Science.gov (United States)

    Zhang, Yu; Liu, Shuyun; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Peng, Jiang; Lu, Shibi; Guo, Quanyi

    2017-05-26

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration.

    Science.gov (United States)

    Lee, Jong Min; Seo, Hye In; Bae, Jun Hyuk; Chung, Bong Geun

    2017-02-07

    We developed the photo-crosslinkable hydrogel microfluidic co-culture device to study photothermal therapy and cancer cell migration. To culture MCF7 human breast carcinoma cells and metastatic U87MG human glioblastoma in the microfluidic device, we used 10 w/v% gelatin methacrylate (GelMA) hydrogels as a semi-permeable physical barrier. We demonstrated the effect of gold nanorod on photothermal therapy of cancer cells in the microfluidic co-culture device. Interestingly, we observed that metastatic U87MG human glioblastoma largely migrated toward vascular endothelial growth factor (VEGF)-treated GelMA hydrogel-embedding microchannels. The main advantage of this hydrogel microfluidic co-culture device is to simultaneously analyze the physiological migration behaviors of two cancer cells with different physiochemical motilities and study gold nanorod-mediated photothermal therapy effect. Therefore, this hydrogel microfluidic co-culture device could be a potentially powerful tool for photothermal therapy and cancer cell migration applications. This article is protected by copyright. All rights reserved.

  18. Comparative proteomic analysis of experimental evolution of the Bacillus cereus-Ketogulonicigenium vulgare co-culture.

    Directory of Open Access Journals (Sweden)

    Qian Ma

    Full Text Available The microbial co-culture system composing of Ketogulonicigenium vulgare and Bacillus cereus was widely adopted in industry for the production of 2-keto-gulonic acid (2-KGA, the precursor of vitamin C. We found serial subcultivation of the co-culture could enhance the yield of 2-KGA by 16% in comparison to that of the ancestral co-culture. To elucidate the evolutionary dynamics and interaction mechanisms of the two microbes, we performed iTRAQ-based quantitative proteomic analyses of the pure cultures of K. vulgare, B. cereus and their co-culture during serial subcultivation. Hierarchy cluster analyses of the proteomic data showed that the expression level of a number of crucial proteins associated with sorbose conversion and oligopeptide transport was significantly enhanced by the experimental evolution. In particular, the expression level of sorbose/sorbosone dehydrogenase was enhanced in the evolved K. vulgare, while the expression level of InhA and the transport efficiency of oligopeptides were increased in the evolved B. cereus. The decreased sporulating protein expression and increased peptide transporter expression observed in evolved B. cereus, together with the increased amino acids synthesis in evolved K. vulgare suggested that serial subcultivation result in enhanced synergistic cooperation between K. vulgare and B. cereus, enabling an increased production of 2-KGA.

  19. Evaluation of Medicinal Plant Hepatotoxicity in Co-cultures of Hepatocytes and Monocytes

    Directory of Open Access Journals (Sweden)

    Bashar Saad

    2006-01-01

    Full Text Available Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2 and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1. Cells were treated with various concentrations (1–500 µg ml−1 of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver.

  20. Effects of Tibolone Metabolites on Human Endometrial Cell Lines in Co-Culture

    Science.gov (United States)

    Barbier, Claire; Kloosterboer, Helenius J.; Kaufman, David G.

    2010-01-01

    In human endometrium, cell proliferation is regulated by ovarian steroids through heterotypic interactions between stromal and epithelial cells populating this tissue. We tested the proliferative effects of tibolone and its metabolites using endometrial co-cultures that mimic the normal proliferative response to hormones. We found that both the Δ4-tibolone metabolite and the pure progestin ORG2058 counteract estradiol-driven epithelial cell proliferation. Surprisingly, the estrogen receptor binding 3-hydroxyl-metabolites of tibolone also counteracted estradiol-driven proliferation. Inhibition of proliferation by 3β-OH-tibolone was abrogated by low doses of the progesterone receptor antagonist mifepristone, This suggests that 3β-OH-tibolone is converted to a progestagenic metabolite. We found that the stromal cells used in the co-cultures express high levels of the ketosteroid dehydrogenase, AKR1C2, which is able to oxidize 3β-OH-tibolone back to tibolone. Thus the unexpected progestagenic effect of 3β-OH-tibolone in these co-cultures may be due to metabolic activity present in the stromal cells of the co-cultures. PMID:18212357

  1. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste.

    Science.gov (United States)

    Abreu, Angela A; Tavares, Fábio; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-11-01

    Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharolyticus and Thermotoga maritima showed higher hydrogen production yields from xylose (2.7±0.1molmol(-1) total sugar) and cellobiose (4.8±0.3molmol(-1) total sugar) compared to individual cultures. Co-culture of extreme thermophiles C. saccharolyticus and Caldicellulosiruptor bescii increased synergistically the hydrogen production yield from GW (98.3±6.9Lkg(-1) (VS)) compared to individual cultures and co-culture of T. maritima and C. saccharolyticus. The biochemical methane potential of the fermentation end-products was 322±10Lkg(-1) (CODt). Biohythane, a biogas enriched with 15% hydrogen could be obtained from GW, yielding a potential energy generation of 22.2MJkg(-1) (VS).

  2. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial–mesenchymal transition in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Ah, E-mail: j.sarah.k@gmail.com [Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Lee, Eun Kyung, E-mail: leeek@catholic.ac.kr [Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Kuh, Hyo-Jeong, E-mail: hkuh@catholic.ac.kr [Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of)

    2015-07-15

    Epithelial–mesenchymal transition (EMT) acts as a facilitator of metastatic dissemination in the invasive margin of malignant tumors where active tumor–stromal crosstalks take place. Co-cultures of cancer cells with cancer-associated fibroblasts (CAFs) are often used as in vitro models of EMT. We established a tumor–fibroblast proximity co-culture using HT-29 tumor spheroids (TSs) with CCD-18co fibroblasts. When co-cultured with TSs, CCD-18co appeared activated, and proliferative activity as well as cell migration increased. Expression of fibronectin increased whereas laminin and type I collagen decreased in TSs co-cultured with fibroblasts compared to TSs alone, closely resembling the margin of in vivo xenograft tissue. Active TGFβ1 in culture media significantly increased in TS co-cultures but not in 2D co-cultures of cancer cells–fibroblasts, indicating that 3D context-associated factors from TSs may be crucial to crosstalks between cancer cells and fibroblasts. We also observed in TSs co-cultured with fibroblasts increased expression of α-SMA, EGFR and CTGF; reduced expression of membranous β-catenin and E-cadherin, together suggesting an EMT-like changes similar to a marginal region of xenograft tissue in vivo. Overall, our in vitro TS–fibroblast proximity co-culture mimics the EMT-state of the invasive margin of in vivo tumors in early metastasis. - Highlights: • An adjacent co-culture of tumor spheroids and fibroblasts is presented as EMT model. • Activation of fibroblasts and increased cell migration were shown in co-culture. • Expression of EMT-related factors in co-culture was similar to that in tumor tissue. • Crosstalk between spheroids and fibroblasts was demonstrated by secretome analysis.

  3. Co-cultured production of lignin-modifying enzymes with white-rot fungi.

    Science.gov (United States)

    Qi-He, Chen; Krügener, Sven; Hirth, Thomas; Rupp, Steffen; Zibek, Susanne

    2011-09-01

    Co-cultivation was a potential strategy in lignocellulolytic biodegradation with producing high activity enzymes due to their synergistic action. The objective of this study was to investigate the rarely understood effects of co-culturing of two white-rot fungi on lignin-modifying enzymes (LMEs) production. Six species, Bjerkandera adusta, Phlebia radiata, Pleurotus ostreatus, Dichomitus squalens, Hypoxylon fragiforme and Pleurotus eryngii, were cultured in pairs to study the production of LMEs. The paired hyphal interaction observed showed that P. eryngii is not suitable for co-growth. The use of agar plates containing dye RBBR showed elevated decolourisation at the confrontation zone between mycelia. Laccase was significantly stimulated only in the co-culture of P. radiata with D. squalens under submerged cultivation; the highest value was measured after 4 days of incubation (120 U mg(-1)). The improved productions of MnP and LiP were simultaneously observed at the co-culture of P. ostreatus and P. radiata (MnP = 800 nkat L(-1) after 4 days of incubation; LiP = 60 nkat L(-1) after 7 days of incubation), though it was not a good producer of laccase. P. ostreatus appeared to possess specific potential to be used in co-cultured production of LMEs. The phenotype of LMEs production was not only dependent on the species used but also regulated by different nutritions available in the culture medium. The present data will provide evidence for illustrating the regulatory roles of C/N on LMEs production under the co-cultures' circumstances.

  4. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  5. Co-culture: A quick approach for isolation of street rabies virus in murine neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    A. Sasikalaveni

    2015-05-01

    Full Text Available Background: Laboratory detection of rabies in most cases is based on detection of the antigen by fluorescent antibody test, however, in weak positive cases confirmative laboratory diagnosis depends on widely accepted mouse inoculation test. Cell lines like neuroblastoma have been used to isolate the virus with greater success not only to target for diagnosis, but also for molecular studies that determine the epidemiology of the circulating street rabies strains and in studies that look at the efficiency of the developed monoclonal antibodies to neutralize the different rabies strains. Due to the recent issues in obtaining ethical permission for mouse experimentation, and also the passages required in the cell lines to isolate the virus, we report herewith a co-culture protocol using the murine neuroblastoma (MNA cells, which enable quicker isolation of street rabies virus with minimum passages. Objective: This study is not to have an alternative diagnostic assay, but an approach to produce sufficient amount of rabies virus in minimum passages by a co-culture approach in MNA cells. Materials and Methods: The MNA cells are co-cultured by topping the normal cells with infected cells every 48 h and the infectivity was followed up by performing direct fluorescent-antibody test. Results: The co-culture approach results in 100% infectivity and hence the use of live mouse for experimentation could be avoided. Conclusion: Co-culture method provides an alternative for the situations with limited sample volume and for the quicker isolation of virus which warrants the wild type strains without much modification.

  6. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels.

    Science.gov (United States)

    Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki; Zorlutuna, Pinar; Bae, Hojae; Khademhosseini, Ali

    2016-08-01

    In this paper we report on the development of dynamically controlled three-dimensional (3D) micropatterned cellular co-cultures within photocurable and chemically degradable hydrogels. Specifically, we generated dynamic co-cultures of micropatterned murine embryonic stem (mES) cells with human hepatocellular carcinoma (HepG2) cells within 3D hydrogels. HepG2 cells were used due to their ability to direct the differentiation of mES cells through secreted paracrine factors. To generate dynamic co-cultures, mES cells were first encapsulated within micropatterned photocurable poly(ethylene glycol) (PEG) hydrogels. These micropatterned cell-laden PEG hydrogels were subsequently surrounded by calcium alginate (Ca-Alg) hydrogels containing HepG2 cells. After 4 days, the co-culture step was halted by exposing the system to sodium citrate solution, which removed the alginate gels and the encapsulated HepG2 cells. The encapsulated mES cells were then maintained in the resulting cultures for 16 days and cardiac differentiation was analysed. We observed that the mES cells that were exposed to HepG2 cells in the co-cultures generated cells with higher expression of cardiac genes and proteins, as well as increased spontaneous beating. Due to its ability to control the 3D microenvironment of cells in a spatially and temporally regulated manner, the method presented in this study is useful for a range of cell-culture applications related to tissue engineering and regenerative medicine. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Stimulation of dopamine receptors inhibited Ca2+-calmodulin- dependent protein kinase Ⅱ activity in rat striatal slices%激动多巴胺受体抑制大鼠纹状体脑片Ca2+-钙调蛋白依赖性蛋白激酶Ⅱ活性

    Institute of Scientific and Technical Information of China (English)

    唐放鸣; 侯筱宇; 张光毅

    2001-01-01

    AIM: To investigate the mechanism underlying dopa minergic neurotoxicity in the striamm during anoxia. METHODS: Using rat striatal slices as an in vitro model, the activity of Ca2 + -calmodulin-dependent protein kinase Ⅱ (CCDPK Ⅱ ) was examined by the method of substrate phosphorylation 32 P-incorporation. RESULTS: Anoxia for 30 min greatly reduced CCDPK Ⅱ activity by about 75 %. Reserpinization by repeated reserpine administration ( 1 mg· kg- 1 · d- 1 for 7 d, sc ) preserved CCDPK Ⅱ activity against the anoxia-induced decrease (about 40 % of control). The activity of CCDPK Ⅱ was reduced significantly by exposure of rat striatal slices to micromolar concentrations of dopamine in the presence of extracellular Ca2+. Omission of Ca2+ in the incubation medium (with addition of 1 mmol/L egtazic acid) diminished the dopamine-induced decrease of the kinase activity. Application of apomorphine, a non selective dopamine receptor agonist, produced a similar concentration-related decrease of CCDPK Ⅱ activity. Exposure to SKF38393 (selective D1-like receptor agonist) or quinpirole (selective D2-like receptor agonist) also inhibited the kinase activity. The dopamine-induced decrease of CCDPK Ⅱ activity was attenuated by preincubation with Sch-23390 (selective D1-like receptor antagonist) or domperidone (selective D2-like receptor antagonist). CONCLUSION: Dopamine is involved in the anoxia-induced inhibition of CCDPK Ⅱ activity by activation of both D1-like and D2-like receptors and influx of Ca2+, which may contribute to dopamine-mediated striatal neuronal damage.%目的:研究缺氧时纹状体多巴胺能神经毒性的机制. 方法:采用大鼠纹状体脑片体外培养模型,以底物 磷酸化32P-掺入法测定Ca2+-钙调蛋白依赖性蛋白激 酶Ⅱ(CCDPKⅡ)的活性.结果:缺氧30 min,纹状 体脑片CCTPKⅡ活性降低75%,慢性利血平化使 得缺氧诱导的酶活性降低程度减轻,与对照组相比 大约降低40%.

  8. A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell.

    Science.gov (United States)

    Bourdakos, Nicholas; Marsili, Enrico; Mahadevan, Radhakrishnan

    2014-04-01

    Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity.

  9. Development of melanocye-keratinocyte co-culture model for controls and vitiligo to assess regulators of pigmentation and melanocytes

    Directory of Open Access Journals (Sweden)

    Ravinder Kumar

    2012-01-01

    Full Text Available Background: There is a need to develop an in vitro skin models which can be used as alternative system for research and testing pharmacological products in place of laboratory animals. Therefore to study the biology and pathophysiology of pigmentation and vitiligo, reliable in vitro skin pigmentation models are required. Aim: In this study, we used primary cultured melanocytes and keratinocytes to prepare the skin co-culture model in control and vitiligo patients. Methods: The skin grafts were taken from control and patients of vitiligo. In vitro co-culture was prepared after culturing primary melanocytes and keratinocytes. Co- cultures were treated with melanogenic stimulators and inhibitors and after that tyrosinase assay, MTT assay and melanin content assay were performed. Results: Melanocytes and keratinocytes were successfully cultured from control and vitiligo patients and after that co-culture models were prepared. After treatment of co-culture model with melanogenic stimulator we found that tyrosinase activity, cell proliferation and melanin content increased whereas after treatment with melanogenic inhibitor, tyrosinase activity, cell proliferation and melanin content decreased. We also found some differences in the control co-culture model and vitiligo co-culture model. Conclusion: We successfully constructed in vitro co-culture pigmentation model for control and vitiligo patients using primary cultured melanocytes and keratinocytes. The use of primary melanocytes and keratinocytes is more appropriate over the use of transformed cells. The only limitation of these models is that these can be used for screening small numbers of compounds.

  10. Striatal direct and indirect pathways control decision-making behavior

    Directory of Open Access Journals (Sweden)

    Tom eMacpherson

    2014-11-01

    Full Text Available Despite our ever-changing environment, animals are remarkable adept at selecting courses of action that are predictive of optimal outcomes. While requiring the contribution of a number of brain regions, a vast body of evidence implicates striatal mechanisms of associative learning and action selection to be critical to this ability. While numerous models of striatal-based decision-making have been developed, it is only recently that we have begun to understand the precise contributions of specific subpopulations of striatal neurons. Studies utilizing contemporary cell-type-specific technologies indicate that striatal output pathways play distinct roles in controlling goal-directed and social behaviors. Here we review current models of striatal-based decision-making, discuss recent developments in defining the functional roles of striatal output pathways, and assess how striatal dysfunction may contribute to the etiology of various neuropathologies.

  11. Effect of Exercise Training on Striatal Dopamine D2/D3 Receptors in Methamphetamine Users during Behavioral Treatment.

    Science.gov (United States)

    Robertson, Chelsea L; Ishibashi, Kenji; Chudzynski, Joy; Mooney, Larissa J; Rawson, Richard A; Dolezal, Brett A; Cooper, Christopher B; Brown, Amira K; Mandelkern, Mark A; London, Edythe D

    2016-05-01

    Methamphetamine use disorder is associated with striatal dopaminergic deficits that have been linked to poor treatment outcomes, identifying these deficits as an important therapeutic target. Exercise attenuates methamphetamine-induced neurochemical damage in the rat brain, and a preliminary observation suggests that exercise increases striatal D2/D3 receptor availability (measured as nondisplaceable binding potential (BPND)) in patients with Parkinson's disease. The goal of this study was to evaluate whether adding an exercise training program to an inpatient behavioral intervention for methamphetamine use disorder reverses deficits in striatal D2/D3 receptors. Participants were adult men and women who met DSM-IV criteria for methamphetamine dependence and were enrolled in a residential facility, where they maintained abstinence from illicit drugs of abuse and received behavioral therapy for their addiction. They were randomized to a group that received 1 h supervised exercise training (n=10) or one that received equal-time health education training (n=9), 3 days/week for 8 weeks. They came to an academic research center for positron emission tomography (PET) using [(18)F]fallypride to determine the effects of the 8-week interventions on striatal D2/D3 receptor BPND. At baseline, striatal D2/D3 BPND did not differ between groups. However, after 8 weeks, participants in the exercise group displayed a significant increase in striatal D2/D3 BPND, whereas those in the education group did not. There were no changes in D2/D3 BPND in extrastriatal regions in either group. These findings suggest that structured exercise training can ameliorate striatal D2/D3 receptor deficits in methamphetamine users, and warrants further evaluation as an adjunctive treatment for stimulant dependence.

  12. Investigation of rat submandibular gland cells and antheraea pernyi silk fibroin films co-culture in vitro%大鼠下颌下腺细胞与柞蚕丝素蛋白膜体外复合培养的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘焱; 谭学新; 李波; 易新; 刘丽萍

    2012-01-01

    ApSF films was higher than that on BmSF films (post-seeding 3,5,7 d, P<0.05) , ApSF group and BmSF group were higher than the negative control group (P<0.05). CONCLUSIONS: ApSF films can support RSMGs attachment, growth, secretion function maintenance and phenotypic maintenance; and has better Incompatibility for RSMGs in vitro culture. Supported by Universities Scientific Research Plan of the Education Department of Liaoning Province (2C08843) .%目的:通过大鼠下颌下腺细胞(rat submandibular gland cells,RSMGs)与柞蚕丝素蛋白(antheraea pernyi silk fibroin,ApSF)膜的体外共培养,探讨RSMGs在支架上的形态特征、黏附、增殖及分泌功能.方法:将柞蚕丝素蛋白膜、桑蚕丝素蛋白(bombyx mori silk fibroin,BmSF)膜分别接种SD大鼠的RSMGs进行共培养,并以24孔培养板单独培养的RSMGs作为阴性对照组.免疫细胞化学抗角蛋白抗体(cytokratin 8,CK8)、淀粉酶抗体(amylase)染色鉴定细胞来源:扫描电镜、荧光显微镜观察细胞支架复合生长情况;检测细胞在支架上的黏附率;MTT比色法检测材料上细胞的增殖能力;Amano法测定上清液中淀粉酶含量,检测细胞支架共培养后下颌下腺细胞的功能.采用SPSS13.0软件包对数据进行统计学分析.结果:免疫细胞化学染色观察共培养后的细胞,上皮细胞特异性抗体CK8染色阳性,腺泡上皮细胞特异性抗体Amylase染色阳性.扫描电镜可见,共培养后ApSF膜上细胞增殖活跃,表面呈现出微绒毛等超微结构,并向支架材料伸出伪足.荧光显微镜下可见,随着共培养时间的延长,支架上锚定的种子细胞数量增多,形态规则.2组支架接种细胞1h后,RSMGs开始附着于支架上且黏附率差异不显著(P>0.05);4~12 h2组黏附率逐渐增大,ApSF组较BmSF组更显著(P<0.05);24h时,95%细胞黏附于2种材料上,2组差异不显著(P>0.05).MTT提示,RSMGs与ApSF复合培养3、5 d后增殖迅速,第7天时达

  13. Suppression of serotonin hyperinnervation does not alter the dysregulatory influences of dopamine depletion on striatal neuropeptide gene expression in rodent neonates.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-10-15

    Sixty days following neonatal dopamine depletion (>98%) with 6-hydroxydopamine, preprotachykinin and preprodynorphin mRNA levels were significantly reduced (67 and 78% of vehicle controls, respectively) in the anterior striatum as determined by in situ hybridization while preproenkephalin mRNA expression was elevated (133% of vehicle controls). Suppression of the serotonin hyperinnervation phenomenon in the dopamine-depleted rat with 5,7-dihydroxytryptamine yielded no significant alterations in reduced striatal preprotachykinin (66%) or preprodynorphin (64%) mRNA levels, while preproenkephalin mRNA expression remained significantly elevated (140%). These data suggest that striatal serotonin hyperinnervation does not contribute to the development of dysregulated striatal neuropeptide transmission in either direct or indirect striatal output pathways following neonatal dopamine depletion.

  14. Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, C.; Blengio, M.; Ghi, P.; Racca, S.; Genazzani, E.; Portaleone, P.

    1988-01-01

    We investigated the ability of Tamoxifen (TAM), an antiestrogen drug, to counteract the modification induced by estrogens on dopamine (DA) receptors on striatum and on adenohypophysis of ovex female rats. Subacute treatment with 17..beta..-estradiol (E/sub 2/) at both low (0.1 ..mu..g/kg) and high (20 ..mu..g/kg) doses confirmed its ability to increase the number of striatal /sup 3/H-Spiperone (/sup 3/H-SPI) binding sites in a dose dependent manner. By contrast in the pituitary, only high doses of estrogen were effective in reducing the number of DA receptors. We treated ovex female rats for 15 days with TAM alone or associated with E/sub 2/, to see if these estrogenic effects could be suppressed by an antiestrogenic drug. TAM did not affect the number of striatal DA receptors, but significantly increased the adenohypophy-seal DA binding sites, without varying their affinity. No changes were observed in pituitary and striatal DA receptor density, even when TAM was injected in association with estradiol. In conclusions: TAM is able to counteract the effects estrogens have on DA receptors. However there is some evidence that it could influence the pituitary DA systems independently of it antiestrogenic activity.

  15. REM sleep deprivation promotes a dopaminergic influence in the striatal MT2 anxiolytic-like effects

    Science.gov (United States)

    Noseda, Ana Carolina D.; Targa, Adriano D.S.; Rodrigues, Lais S.; Aurich, Mariana F.; Lima, Marcelo M.S.

    2015-01-01

    The aim of this study was to investigate the possible anxiolytic-like effects of striatal MT2 activation, and its counteraction induced by the selective blockade of this receptor. Furthermore, we analyzed this condition under the paradigm of rapid eye movement (REM) sleep deprivation (REMSD) and the animal model of Parkinson’s disease (PD) induced by rotenone. Male Wistar rats were infused with intranigral rotenone (12 μg/μL), and 7 days later were subjected to 24 h of REMSD. Afterwards the rats underwent striatal micro-infusions of selective melatonin MT2 receptor agonist, 8-M-PDOT (10 μg/μL) or selective melatonin MT2 receptor antagonist, 4-P-PDOT (5 μg/μL) or vehicle. Subsequently, the animals were tested in the open-field (OP) and elevated plus maze (EPM) tests. Results indicated that the activation of MT2 receptors produced anxiolytic-like effects. In opposite, the MT2 blockade did not show an anxiogenic-like effect. Besides, REMSD induced anxiolytic-like effects similar to 8-M-PDOT. MT2 activation generated a prevalent locomotor increase compared to MT2 blockade in the context of REMSD. Together, these results suggest a striatal MT2 modulation associated to the REMSD-induced dopaminergic supersensitivity causing a possible dopaminergic influence in the MT2 anxiolytic-like effects in the intranigral rotenone model of PD. PMID:27226821

  16. Microglia in Glia-Neuron Co-cultures Exhibit Robust Phagocytic Activity Without Concomitant Inflammation or Cytotoxicity.

    Science.gov (United States)

    Adams, Alexandra C; Kyle, Michele; Beaman-Hall, Carol M; Monaco, Edward A; Cullen, Matthew; Vallano, Mary Lou

    2015-10-01

    A simple method to co-culture granule neurons and glia from a single brain region is described, and microglia activation profiles are assessed in response to naturally occurring neuronal apoptosis, excitotoxin-induced neuronal death, and lipopolysaccharide (LPS) addition. Using neonatal rat cerebellar cortex as a tissue source, glial proliferation is regulated by omission or addition of the mitotic inhibitor cytosine arabinoside (AraC). After 7-8 days in vitro, microglia in AraC(-) cultures are abundant and activated based on their amoeboid morphology, expressions of ED1 and Iba1, and ability to phagocytose polystyrene beads and the majority of neurons undergoing spontaneous apoptosis. Microglia and phagocytic activities are sparse in AraC(+) cultures. Following exposure to excitotoxic kainate concentrations, microglia in AraC(-) cultures phagocytose most dead neurons within 24 h without exacerbating neuronal loss or mounting a strong or sustained inflammatory response. LPS addition induces a robust inflammatory response, based on microglial expressions of TNF-α, COX-2 and iNOS proteins, and mRNAs, whereas these markers are essentially undetectable in control cultures. Thus, the functional effector state of microglia is primed for phagocytosis but not inflammation or cytotoxicity even after kainate exposure that triggers death in the majority of neurons. This model should prove useful in studying the progressive activation states of microglia and factors that promote their conversion to inflammatory and cytotoxic phenotypes.

  17. Seizure-like thalamocortical rhythms initiate in the deep layers of the cortex in a co-culture model.

    Science.gov (United States)

    Adams, Brendan E L; Kyi, Mervyn; Reid, Christopher A; Myers, Damian E; Xu, Shenghong; Williams, David A; O'Brien, Terence J

    2011-01-01

    The oscillatory rhythms underlying many physiological and pathological states, including absence seizures, require both the thalamus and cortices for full expression. A co-culture preparation combining cortical and thalamic explants provides a unique model for investigating how such oscillations initiate and spread. Here we investigated the dynamics of synchronized thalamocortical activity by simultaneous measurement of field-potential recordings and rapid imaging of Ca(2+) transients by fluorescence methods. Spontaneous sustained hypersynchronized "seizure-like" oscillations required reciprocal cortico-thalamocortical connections. Isolated cortical explants can independently develop brief discharges, while thalamic explants alone were unable to do so. Rapid imaging of Ca(2+) transients demonstrated deep-layer cortical initiation of oscillatory network activity in both connected and isolated explants. Further, cortical explants derived from a rat model of genetic absence epilepsy showed increased bursting duration consistent with an excitable cortex. We propose that thalamocortical oscillatory network activity initiates in deep layers of the cortex with reciprocal thalamic interconnections enabling sustained hyper-synchronization.

  18. A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse.

    Science.gov (United States)

    Cheng, Jingrong; Zhu, Mingjun

    2013-09-01

    A novel co-culture of Clostridium thermocellum and Thermoanaerobacterium aotearoense with pretreated sugarcane bagasse (SCB) under mild alkali conditions for bio-hydrogen production was established, exhibiting a cost-effective and synergetic advantage in bio-hydrogen production over monoculture of C. thermocellum or T. aotearoense with untreated SCB. The optimized pretreatment conditions were established to be 3% NaOH, and a liquid to solid ratio of 25:1 at 80°C for 3h. A final hydrogen production of 50.05±1.51 mmol/L was achieved with 40 g/L pretreated SCB at 55°C. The established co-culture system provides a novel consolidated bio-processing strategy for bioconversion of SCB to bio-hydrogen.

  19. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan

    2011-01-01

    than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1) were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2) was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total...... a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs......), particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance....

  20. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells.

    Science.gov (United States)

    Liu, Xunxian; Allen, Jeffrey D; Arnold, Julia T; Blackman, Marc R

    2008-04-01

    Prostate stromal and epithelial cell communication is important in prostate functioning and cancer development. Primary human stromal cells from normal prostate stromal cells (PRSC) maintain a smooth muscle phenotype, whereas those from prostate cancer (6S) display reactive and fibroblastic characteristics. Dihydrotestosterone (DHT) stimulates insulin-like growth factor-I (IGF-I) production by 6S but not PSRC cells. Effects of reactive versus normal stroma on normal human prostate epithelial (NPE or PREC) cells are poorly understood. We co-cultured NPE plus 6S or PRSC cells to compare influences of different stromal cells on normal epithelium. Because NPE and PREC cells lose androgen receptor (AR) expression in culture, DHT effects must be modulated by associated stromal cells. When treated with camptothecin (CM), NPE cells, alone and in stromal co-cultures, displayed a dose-dependent increase in DNA fragmentation. NPE/6S co-cultures exhibited reduced CM-induced cell death with exposure to DHT, whereas NPE/PRSC co-cultures exhibited CM-induced cell death regardless of DHT treatment. DHT blocked CM-induced, IGF-I-mediated, NPE death in co-cultured NPE/6S cells without, but not with, added anti-IGF-I and anti-IGF-R antibodies. Lycopene consumption is inversely related to human prostate cancer risk and inhibits IGF-I and androgen signaling in rat prostate cancer. In this study, lycopene, in dietary concentrations, reversed DHT effects of 6S cells on NPE cell death, decreased 6S cell IGF-I production by reducing AR and beta-catenin nuclear localization and inhibited IGF-I-stimulated NPE and PREC growth, perhaps by attenuating IGF-I's effects on serine phosphorylation of Akt and GSK3beta and tyrosine phosphorylation of GSK3. This study expands the understanding of the preventive mechanisms of lycopene in prostate cancer.

  1. Production of Angkak Through Co-Culture of Monascus Purpureus and MONASCUS RUBER

    OpenAIRE

    Bibhu Prasad Panda; Saleem Javed; Mohd Ali

    2010-01-01

    Angkak (red mold rice, red yeast rice, Chinese red rice) is a traditional Chinese medicine produced by solid-state fermentation of cooked non-glutinous rice with Monascus species. The secondary metabolite of Monascus species, monacolin K /lovastatin, has been proven to lower blood lipid levels. In this study, a co-culture of Monascus purpureus MTCC 369 and Monascus ruber MTCC 1880 was used for angkak production. Four medium parameters screened by Plackett-Burman design were optimized by respo...

  2. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding.

    Directory of Open Access Journals (Sweden)

    Nicole Speed

    Full Text Available BACKGROUND: The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address "food-abuse" disorders. We demonstrate a molecular link between impairment of a central kinase (Akt involved in insulin signaling induced by exposure to a high-fat (HF diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT. Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake. METHODOLOGY/PRINCIPAL FINDINGS: We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia. CONCLUSIONS/SIGNIFICANCE: Acquired disruption of brain insulin action may confer risk for and/or underlie "food-abuse" disorders and the recalcitrance of obesity. This molecular

  3. Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation.

    Science.gov (United States)

    Correia, Clara R; Pirraco, Rogério P; Cerqueira, Mariana T; Marques, Alexandra P; Reis, Rui L; Mano, João F

    2016-02-24

    A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the "stem cell niche", the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.

  4. Enhanced Hydrogen Production by Co-cultures of Hydrogenase and Nitrogenase in Escherichia coli.

    Science.gov (United States)

    Lee, Hyun Jeong; Sekhon, Simranjeet Singh; Kim, Young Su; Park, Ju-Yong; Kim, Yang-Hoon; Min, Jiho

    2016-03-01

    Rhodobacter sphaeroides is a bacterium that can produce hydrogen by interaction with hydrogenase and nitrogenase. We report a hydrogen production system using co-cultivation of hydrogenase in liquid medium and immobilized nitrogenase in Escherichia coli. The recombinant plasmid has been constructed to analyze the effect of hydrogen production on the expression of hupSL hydrogenase and nifHDK nitrogenase isolated from R. sphaeroides. All recombinant E. coli strains were cultured anaerobically, and cells for nitrogenase were immobilized in agar gel, whereas cells for hydrogenase were supplemented on the nitrogenase agar gel. The hupSL hydrogenase has been observed to enhance hydrogen production and hydrogenase activity under co-culture with nifHDK nitrogenase. The maximum hydrogen production has been obtained at an agar gel concentration and a cell concentration for co-culture of 2 % and 6.4 × 10(8) CFU. Thus, co-culture of hupSL hydrogenase and nifHDK nitrogenase provides a promising route for enhancing the hydrogen production and hydrogenase activity.

  5. Flow Cytometry Sorting to Separate Viable Giant Viruses from Amoeba Co-culture Supernatants

    Science.gov (United States)

    Khalil, Jacques Y. B.; Langlois, Thierry; Andreani, Julien; Sorraing, Jean-Marc; Raoult, Didier; Camoin, Laurence; La Scola, Bernard

    2017-01-01

    Flow cytometry has contributed to virology but has faced many drawbacks concerning detection limits, due to the small size of viral particles. Nonetheless, giant viruses changed many concepts in the world of viruses, as a result of their size and hence opened up the possibility of using flow cytometry to study them. Recently, we developed a high throughput isolation of viruses using flow cytometry and protozoa co-culture. Consequently, isolating a viral mixture in the same sample became more common. Nevertheless, when one virus multiplies faster than others in the mixture, it is impossible to obtain a pure culture of the minority population. Here, we describe a robust sorting system, which can separate viable giant virus mixtures from supernatants. We tested three flow cytometry sorters by sorting artificial mixtures. Purity control was assessed by electron microscopy and molecular biology. As proof of concept, we applied the sorting system to a co-culture supernatant taken from a sample containing a viral mixture that we couldn't separate using end point dilution. In addition to isolating the quick-growing Mimivirus, we sorted and re-cultured a new, slow-growing virus, which we named “Cedratvirus.” The sorting assay presented in this paper is a powerful and versatile tool for separating viral populations from amoeba co-cultures and adding value to the new field of flow virometry. PMID:28111619

  6. Co-culture with microglia promotes neural stem cells differentiation into astrocytes

    Institute of Scientific and Technical Information of China (English)

    GU Feng; WANG Juan; FU Li; MA Yong-jie

    2011-01-01

    Background Neural stem cells (NSCs) are a self-renewing and multipotent population of the central nervous system (CNS),which are active during development and maintain homeostasis and tissue integrity throughout life.Microglias are an immune cell population resident in the CNS,which have crucial physiological functions in the developing and adult CNS.This study aimed to investigate that whether microglia co-cultured with NSCs could promote astrogliogenesis from NSCs.Methods Microglia and NSCs were co-cultured in 24-well insert plates.NSCs were plated in the bottom of the well and microglia in the insert.Fluorescent staining,Western blotting and RT-PCR were used to determine the effect of microglia on NSCs differentiation.Results Co-culture of microglia and NSCs promoted astrogliogenesis from NSCs.Several key genes,such as Notch 1,Notch 2,Notch 3,Hes 5,and NRSFwera downregulated,while the critical genes Id1 and Id2 were upregulated.BMP2 and FGF2 were upregulated.Conclusion Microglias act as a regulator of NSCs astrogliogenesis.

  7. Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing.

    Science.gov (United States)

    Loo, Alvin Eng Kiat; Halliwell, Barry

    2012-06-29

    Recently, there has been renewed interest in the role of reactive oxygen species (ROS), especially H(2)O(2), in wound healing. We previously showed that H(2)O(2) stimulates healing in a keratinocyte scratch wound model. In this paper, we used a more complex and physiologically relevant model that involves co-culturing primary keratinocytes and fibroblasts. We found that the two main cell types within the skin have different sensitivities to H(2)O(2) and to the widely used "antioxidant"N-acetyl-l-cysteine (NAC). Keratinocytes were very resistant to the toxicity of H(2)O(2) (250 and 500 μM) or NAC (5 mM). However, the viability of fibroblasts was decreased by both compounds. Using the co-culture model, we also found that H(2)O(2) increases re-epithelialization while NAC retards it. Our data further illustrate the possible role of ROS in wound healing and the co-culture model should be useful for screening agents that may influence the wound healing process. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation

    Science.gov (United States)

    Correia, Clara R.; Pirraco, Rogério P.; Cerqueira, Mariana T.; Marques, Alexandra P.; Reis, Rui L.; Mano, João F.

    2016-02-01

    A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the “stem cell niche”, the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.

  9. (13)C-metabolic flux analysis of co-cultures: A novel approach.

    Science.gov (United States)

    Gebreselassie, Nikodimos A; Antoniewicz, Maciek R

    2015-09-01

    In this work, we present a novel approach for performing (13)C metabolic flux analysis ((13)C-MFA) of co-culture systems. We demonstrate for the first time that it is possible to determine metabolic flux distributions in multiple species simultaneously without the need for physical separation of cells or proteins, or overexpression of species-specific products. Instead, metabolic fluxes for each species in a co-culture are estimated directly from isotopic labeling of total biomass obtained using conventional mass spectrometry approaches such as GC-MS. In addition to determining metabolic fluxes, this approach estimates the relative population size of each species in a mixed culture and inter-species metabolite exchange. As such, it enables detailed studies of microbial communities including species dynamics and interactions between community members. The methodology is experimentally validated here using a co-culture of two E. coli knockout strains. Taken together, this work greatly extends the scope of (13)C-MFA to a large number of multi-cellular systems that are of significant importance in biotechnology and medicine.

  10. Streamlining gene expression analysis: integration of co-culture and mRNA purification.

    Science.gov (United States)

    Berry, Scott M; Singh, Chandresh; Lang, Jessica D; Strotman, Lindsay N; Alarid, Elaine T; Beebe, David J

    2014-02-01

    Co-culture of multiple cell types within a single device enables the study of paracrine signaling events. However, extracting gene expression endpoints from co-culture experiments is laborious, due in part to pre-PCR processing of the sample (i.e., post-culture cell sorting and nucleic acid purification). Also, a significant loss of nucleic acid may occur during these steps, especially with microfluidic cell culture where lysate volumes are small and difficult to access. Here, we describe an integrated platform for performing microfluidic cell culture and extraction of mRNA for gene expression analysis. This platform was able to recover 30-fold more mRNA than a similar, non-integrated system. Additionally, using a breast cancer/bone marrow stroma co-culture, we recapitulated stromal-dependent, estrogen-independent growth of the breast cancer cells, coincident with transcriptional changes. We anticipate that this platform will be used for streamlined analysis of paracrine signaling events as well as for screening potential drugs and/or patient samples.

  11. Co-culturing Effects of Coexisting Bacteria on Wood Degradation by Trametes versicolor.

    Science.gov (United States)

    Kamei, Ichiro

    2017-01-01

    White-rot fungi are the main decomposers of wood cell-wall polymer in forest ecosystems. Little is known, however, about the interactions between white-rot fungi and other coexisting microorganisms in decayed wood. A white-rot fungus, Trametes versicolor strain TN6F, was isolated from a fruit body, and 44 strains of coexisting cultivable bacteria were isolated from its substrate, natural white rot-decayed wood. The effects of these bacteria on fungal growth were examined by an in vitro confrontation growth assay. Among the isolates, nine bacterial strains inhibited the growth of strain TN6F, while 35 strains did not affect the growth of TN6F. However, when co-cultured with strain TN6F on wood powder, many bacterial strains promoted the weight loss of the substrate. A subsequent chemical composition analysis showed that co-culturing accelerated delignification. Higher laccase activity was detected when strain TN6F was co-cultured on wood powder medium with bacterial strains TN6W-26 or TN6W-27. These results indicate that some bacterial strains might promote wood degradation.

  12. Sparse and Specific Coding during Information Transmission between Co-cultured Dentate Gyrus and CA3 Hippocampal Networks.

    Science.gov (United States)

    Poli, Daniele; Thiagarajan, Srikanth; DeMarse, Thomas B; Wheeler, Bruce C; Brewer, Gregory J

    2017-01-01

    To better understand encoding and decoding of stimulus information in two specific hippocampal sub-regions, we isolated and co-cultured rat primary dentate gyrus (DG) and CA3 neurons within a two-chamber device with axonal connectivity via micro-tunnels. We tested the hypothesis that, in these engineered networks, decoding performance of stimulus site information would be more accurate when stimuli and information flow occur in anatomically correct feed-forward DG to CA3 vs. CA3 back to DG. In particular, we characterized the neural code of these sub-regions by measuring sparseness and uniqueness of the responses evoked by specific paired-pulse stimuli. We used the evoked responses in CA3 to decode the stimulation sites in DG (and vice-versa) by means of learning algorithms for classification (support vector machine, SVM). The device was placed over an 8 × 8 grid of extracellular electrodes (micro-electrode array, MEA) in order to provide a platform for monitoring development, self-organization, and improved access to stimulation and recording at multiple sites. The micro-tunnels were designed with dimensions 3 × 10 × 400 μm allowing axonal growth but not migration of cell bodies and long enough to exclude traversal by dendrites. Paired-pulse stimulation (inter-pulse interval 50 ms) was applied at 22 different sites and repeated 25 times in each chamber for each sub-region to evoke time-locked activity. DG-DG and CA3-CA3 networks were used as controls. Stimulation in DG drove signals through the axons in the tunnels to activate a relatively small set of specific electrodes in CA3 (sparse code). CA3-CA3 and DG-DG controls were less sparse in coding than CA3 in DG-CA3 networks. Using all target electrodes with the three highest spike rates (14%), the evoked responses in CA3 specified each stimulation site in DG with optimum uniqueness of 64%. Finally, by SVM learning, these evoked responses in CA3 correctly decoded the stimulation sites in DG for 43% of the

  13. Sparse and Specific Coding during Information Transmission between Co-cultured Dentate Gyrus and CA3 Hippocampal Networks

    Science.gov (United States)

    Poli, Daniele; Thiagarajan, Srikanth; DeMarse, Thomas B.; Wheeler, Bruce C.; Brewer, Gregory J.

    2017-01-01

    To better understand encoding and decoding of stimulus information in two specific hippocampal sub-regions, we isolated and co-cultured rat primary dentate gyrus (DG) and CA3 neurons within a two-chamber device with axonal connectivity via micro-tunnels. We tested the hypothesis that, in these engineered networks, decoding performance of stimulus site information would be more accurate when stimuli and information flow occur in anatomically correct feed-forward DG to CA3 vs. CA3 back to DG. In particular, we characterized the neural code of these sub-regions by measuring sparseness and uniqueness of the responses evoked by specific paired-pulse stimuli. We used the evoked responses in CA3 to decode the stimulation sites in DG (and vice-versa) by means of learning algorithms for classification (support vector machine, SVM). The device was placed over an 8 × 8 grid of extracellular electrodes (micro-electrode array, MEA) in order to provide a platform for monitoring development, self-organization, and improved access to stimulation and recording at multiple sites. The micro-tunnels were designed with dimensions 3 × 10 × 400 μm allowing axonal growth but not migration of cell bodies and long enough to exclude traversal by dendrites. Paired-pulse stimulation (inter-pulse interval 50 ms) was applied at 22 different sites and repeated 25 times in each chamber for each sub-region to evoke time-locked activity. DG-DG and CA3-CA3 networks were used as controls. Stimulation in DG drove signals through the axons in the tunnels to activate a relatively small set of specific electrodes in CA3 (sparse code). CA3-CA3 and DG-DG controls were less sparse in coding than CA3 in DG-CA3 networks. Using all target electrodes with the three highest spike rates (14%), the evoked responses in CA3 specified each stimulation site in DG with optimum uniqueness of 64%. Finally, by SVM learning, these evoked responses in CA3 correctly decoded the stimulation sites in DG for 43% of the

  14. Variable effects of chronic subcutaneous administration of rotenone on striatal histology.

    Science.gov (United States)

    Zhu, Chunni; Vourc'h, Patrick; Fernagut, Pierre-Olivier; Fleming, Sheila M; Lacan, Sanja; Dicarlo, Cheryl D; Seaman, Ronald L; Chesselet, Marie-Françoise

    2004-10-25

    When infused in rats, rotenone, a mitochondrial complex I inhibitor, induces alterations that resemble the histological changes of Parkinson's disease, particularly degeneration of the nigrostriatal dopaminergic system. However, the specificity of rotenone effects has been challenged recently. We have re-examined the alterations caused by rotenone in the substantia nigra and the striatum of rats after infusion of rotenone (2 mg/kg per day s.c.) for 21 days. Three patterns of striatal tyrosine-hydroxylase immunoreactivity (TH-IR) were observed: 46% of animals showed no reduction, and 46% of animals showed diffuse reduction in TH-IR, whereas one animal presented a focal loss of TH-IR in the striatum. Confocal microscopy analysis showed that the vesicular monoamine transporter (VMAT2) was decreased in parallel with TH-IR, strongly suggesting a loss of striatal DA nerve terminals in animals with diffuse or central TH-IR loss. However, no significant loss of TH-IR neurons was observed in the substantia nigra. Analysis of NeuN and DARPP-32 immunoreactivity, and Nissl staining, in the striatum showed no striatal neuronal loss in animals with either preserved TH-IR or diffuse TH-IR reduction. However, in the animal with focal TH-IR loss, severe neuronal loss was evident in the center and the periphery of the striatum, together with microglial activation detected by OX-6 and OX-42 staining. Thus, in most cases, chronic subcutaneous infusion of low doses of rotenone does not induce significant striatal neuronal loss, despite TH-IR and VMAT-IR reduction in a subset of animals, supporting the use of rotenone as a model of Parkinson's disease under carefully controlled experimental conditions.

  15. 电针对脑缺血再灌注大鼠纹状体D1R和DAT表达的影响%Effect of Electroacupuncture on Striatal D1R and DAT Expressions in Cerebral Ischemia-reperfusion Rats

    Institute of Scientific and Technical Information of China (English)

    徐鸣曙; 陈春艳; 李昌植; 葛林宝; 张淑静; 赵丹; 李明哲; 韩清; 张英杰

    2015-01-01

    ObjectiveTo investigate the effects of dopamine D1 receptor (D1R) tool drugs and combined acupuncture and medicine on striatal expressions of D1R and dopamine transporters (DAT) in middle cerebral artery occlusion (MCAO)-reperfusion rats.MethodForty-seven male SD rats were randomly grouped, used to make a model and given corresponding interventions. The materials were taken and fixed six hrs later. Striatal D1R and DAT expressions were detectedby an immunohistochemical method in different groups.ResultThe neurological deficit score was significantly higher in the model group than in the blank group. Electroacupuncture treatment decreased the score significantly (P0.05). DAT expression was significantly down-regulated in the other groups compared with the model group (P0.05).ConclusionCerebral ischemia-reperfusion can result in high D1R and DAT expressions in rat striatum on the ischemic side. Electroacupuncture, D1R antagonists and a combination of the two can significantly down-regulate D1R expression and have a protective effect on the brain. The effects of electroacupuncture and D1R antagonists can not be added to each other. D1R signaling pathway may be one of ways by which electroacupuncture produces a protective effecton the brain.%目的:探讨电针、多巴胺D1受体(D1R)工具药及针药结合对大脑中动脉缺血(MCAO)再灌注大鼠纹状体内D1R和多巴胺转运体(DAT)表达的影响。方法将47只SD雄性大鼠随机分组、造模、施予相应干预措施,6 h后取材固定,用免疫组化法检测不同组别纹状体内D1R、DAT的表达。结果模型组神经功能缺血评分明显高于空白组,电针治疗可使评分明显降低(P<0.05)。拮抗剂组、电针组、电针+拮抗剂组D1R表达与模型组比较显著下调(P<0.05);模型组D1R表达与激动剂组、电针+激动剂组比较无显著变化(P>0.05);各组 DAT 表达与模型组比较均显著下调(P<0.05),除模型组外各组间比较有

  16. Dorsal root ganglia neurons and differentiated adipose-derived stem cells: an in vitro co-culture model to study peripheral nerve regeneration.

    Science.gov (United States)

    de Luca, Alba C; Faroni, Alessandro; Reid, Adam J

    2015-02-26

    Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.

  17. Effect of oxygen and glucose deprivation on VEGF and its receptors in microvascular endothelial cells co-cultured with mast cells.

    Science.gov (United States)

    Wang, Zhihua; Tao, Jianping; Zhang, Qingyong; Wei, Meng

    2015-09-01

    The aim of this study was to determine the correlation between angiogenesis and the differential expression of vascular endothelial growth factor (VEGF) and its receptors in myocardial microvascular endothelial cells (MMVECs) co-cultured with mast cells (MCs) or mast cell granules (MCGs) under oxygen and glucose deprivation (OGD). MMVECs and MCs were isolated from Wistar rats. MCs spontaneously degranulated in OGD. The expression of VEGF peaked at 8 h and decreased from 16 h in OGD. However, the expression of its receptor, fms-like tyrosine kinase-1 (Flt-1), and fetal liver kinase-1 (Flk-1), decreased significantly, and angiogenic potential of MMVECs decreased in OGD. Expression of VEGF, Flt-1, and Flk-1 increased significantly when MMVECs were co-cultured with MCGs or active MCs, but MCs had only a limited ability to induce angiogenesis in OGD. The angiogenic potential of MMVECs cultured in OGD (even with MCGs) was inferior to that of MMVECs cultured under normoxic conditions. OGD have a profound effect on angiogenesis, which is more pronounced than the effect of MCs on angiogenesis.

  18. Ventral striatal plasticity and spatial memory

    OpenAIRE

    Ferretti, Valentina; Roullet, Pascal; Sargolini, Francesca; Rinaldi, Arianna; Perri, Valentina; Del Fabbro, Martina; Costantini, Vivian J. A.; ANNESE, VALENTINA; Scesa, Gianluigi; De Stefano, Maria Egle; Oliverio, Alberto; Mele, Andrea

    2010-01-01

    Spatial memory formation is a dynamic process requiring a series of cellular and molecular steps, such as gene expression and protein translation, leading to morphological changes that have been envisaged as the structural bases for the engram. Despite the role suggested for medial temporal lobe plasticity in spatial memory, recent behavioral observations implicate specific components of the striatal complex in spatial information processing. However, the potential occurrence of neural plasti...

  19. Huntington’s Disease and Striatal Signaling

    OpenAIRE

    Roze, Emmanuel; Cahill, Emma; Martin, Elodie; Bonnet, Cecilia; Vanhoutte, Peter; Betuing, Sandrine; Caboche, Jocelyne

    2011-01-01

    Huntington’s Disease (HD) is the most frequent neurodegenerative disease caused by an expansion of polyglutamines (CAG). The main clinical manifestations of HD are chorea, cognitive impairment, and psychiatric disorders. The transmission of HD is autosomal dominant with a complete penetrance. HD has a single genetic cause, a well-defined neuropathology, and informative pre-manifest genetic testing of the disease is available. Striatal atrophy begins as early as 15 years before disease onset a...

  20. Heterogeneity and Diversity of Striatal GABAergic Interneurons

    OpenAIRE

    Tepper, James M.; Fatuel eTecuapetla; Tibor eKoos; Osvaldo eIbanez-Sandoval

    2010-01-01

    The canonical view of striatal GABAergic interneurons has evolved over several decades of neuroanatomical/neurochemical and electrophysiological studies. From the anatomical studies, three distinct GABAergic interneuronal subtypes are generally recognized. The best-studied subtype expresses the calcium-binding protein, parvalbumin. The second best known interneuron type expresses a number of neuropeptides and enzymes, including neuropeptide Y, somatostatin, and nitric oxide synthase. The last...

  1. Are Striatal Tyrosine Hydroxylase Interneurons Dopaminergic?

    OpenAIRE

    Xenias, Harry S.; Ibáñez-Sandoval, Osvaldo; Koós, Tibor; Tepper, James M.

    2015-01-01

    Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH–Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow...

  2. Molecular Regulation of Striatal Development: A Review

    Directory of Open Access Journals (Sweden)

    A. E. Evans

    2012-01-01

    Full Text Available The central nervous system is composed of the brain and the spinal cord. The brain is a complex organ that processes and coordinates activities of the body in bilaterian, higher-order animals. The development of the brain mirrors its complex function as it requires intricate genetic signalling at specific times, and deviations from this can lead to brain malformations such as anencephaly. Research into how the CNS is specified and patterned has been studied extensively in chick, fish, frog, and mice, but findings from the latter will be emphasised here as higher-order mammals show most similarity to the human brain. Specifically, we will focus on the embryonic development of an important forebrain structure, the striatum (also known as the dorsal striatum or neostriatum. Over the past decade, research on striatal development in mice has led to an influx of new information about the genes involved, but the precise orchestration between the genes, signalling molecules, and transcription factors remains unanswered. We aim to summarise what is known to date about the tightly controlled network of interacting genes that control striatal development. This paper will discuss early telencephalon patterning and dorsal ventral patterning with specific reference to the genes involved in striatal development.

  3. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    Science.gov (United States)

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-01

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

  4. Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neurodegeneration

    DEFF Research Database (Denmark)

    Ziebell, Morten; Khalid, Usman; Klein, Anders B

    2012-01-01

    Compelling evidence has shown, that neurotrophins responsible for the regulation of neuronal growth, survival, and differentiation are involved in neurodegenerative diseases. Whereas lower serum levels of brain derived neurotrophic factor (BDNF) have been observed in patients with Parkinson......'s disease, no studies have directly related the degree of striatal neurodegeneration of dopaminergic neurons (DA) with serum BDNF levels. In this study we examined the relationship between striatal neurodegeneration as determined with (123)I-PE2I-single photon emission computer tomography (SPECT) and serum...

  5. Analgesic effect of sinomenine on SSNI model rats and monoamine neurotransmitters in striatal extracellular fluid%青藤碱对SSNI模型大鼠镇痛效应和纹状体细胞外液单胺类递质的影响

    Institute of Scientific and Technical Information of China (English)

    张美玉; 李鹏; 王丹巧; 牛晓红; 王晔; 王志国; 张莹; 徐奭; 徐晓军

    2013-01-01

    Objective:To observe the analgesic effect of sinomenine on the neuropathic pain rat model induced by SSNI,and discuss its impact on monoamine neurotransmitters in striatal extracellular fluid.Method:Male SD rats were randomly divided into the sham operation group,the SSNI model group,the gabapentin group (100 mg·kg-1),the sinomenine high dose group (40mg·kg-1) and the sinomenine low dose group (20mg·kg-1).Mechanical hyperalgesia and cold pain sensitivity were evaluated by Von Frey hairs and cold spray.Striatum was sampled by microdialysis.High performance liquid chromatography-electrochemical detector (HPLC-ECD) were used to detect the content of such neurotransmitters as monoamine neurotransmitters noradrenaline (NE),dopamine (DA),5-hydroxy tryptamine (5-HT) and their metabolites dihydroxyphenylacetic phenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA).Result:SSNI model rats showed significant improvement in mechanical withdrawal threshold and cold pain sensitivity,significant decrease in intracerebral NE and notable increase in DA,5-HT and their metabolites.Compared with the model group,the sinomenine high dose group showed significant increase in mechanical withdrawal threshold at 60,90,180 and 240 min after abdominal administration (P<0.01),significant decrease in cold pain sensitivity score during 30-240 min (P<0.05).Sinomenine can significantly up-regulated NE content in striatal extracellular fluid during 45-135 min (P<0.05),remarkably reduce DA content and DOPAC at 45,75 and 135 min (P<0.05),5-HT content during 45-135 min,DOPAC during 75-165 min (P<0.05),and 5-HIAA during 45-135 min (P<0.05).Conclusion:Sinomenine has the intervention effect on neuropathic pain in SSNI model rats.Its mechanism may be related to disorder of monoamine neurotransmitters in striatal extracellular fluid.%目的:观察青藤碱对部分坐骨神经损伤(SSNI)诱导的神经病理性疼痛大鼠模型镇痛效应,并探讨其对纹状体细胞外液

  6. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    Science.gov (United States)

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  7. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis.

    Science.gov (United States)

    Tao, Kaiyun; Liu, Xiaoyan; Chen, Xueping; Hu, Xiaoxin; Cao, Liya; Yuan, Xiaoyu

    2017-01-01

    The aim of this work was to study biodegradation of crude oil by defined co-cultures of indigenous bacterial consortium and exogenous Bacillus subtilis. Through residual oil analysis, it is apparent that the defined co-culture displayed a degradation ratio (85.01%) superior to indigenous bacterial consortium (71.32%) after 7days of incubation when ratio of inoculation size of indigenous bacterial consortium and Bacillus subtilis was 2:1. Long-chain n-alkanes could be degraded markedly by Bacillus subtilis. Result analysis of the bacterial community showed that a decrease in bacterial diversity in the defined co-culture and the enrichment of Burkholderiales order (98.1%) degrading hydrocarbons. The research results revealed that the promising potential of the defined co-culture for application to degradation of crude oil.

  8. Effect of Passive Smoking on the Rotational Behavior and Striatal Dopamine Content of 6-hydroxydopamine-induced Rat Model of Parkinson Disease%被动吸烟对帕金森病大鼠旋转行为和纹状体多巴胺含量的影响

    Institute of Scientific and Technical Information of China (English)

    董宁; 孙圣刚; 陈吉相; 王涛

    2001-01-01

    目的 观察被动吸烟对帕金森病(PD)大鼠的影响,以验证流行病学研究的结论,为PD研究提供一条新的线索。方法 用6-羟基多巴胺(6-OHDA)立体定向注入大鼠一侧黑质致密部和中脑被盖腹侧区建立偏侧PD模型,观察术前4周开始给予的被动吸烟(持续6周)和术后2周对成功模型给予的被动吸烟(持续2周)对阿朴吗啡诱发的旋转行为及纹状体DA含量的影响。结果 术前4周开始被动吸烟的大鼠旋转行为有减少趋势,受损侧纹状体DA含量较对照组升高。术后2周,成功模型给予的被动吸烟对PD大鼠的旋转行为及纹状体DA含量均无影响。结论 被动吸烟可减轻6-OHDA对黑质DA能神经元的损伤。%Objective To observe the effect of passive smoking on therotational behavior and striatal dopamine content of the rat Parkinson disease (PD) model. Methods Creating the PD rat model by unilaterally injecting 6-hydroxydopamine(6-OHDA) into the substantia nigra pars compacta(SNpc) and the ventral tegmental area(VTA), the effects of passive smoking on the apomorphine-induced rotation behavior and the dopamine content of striatum beginning four weeks before the operation(lasting six weeks) or two weeks after the operation(lasting two weeks) in the successful models were observed. Results Rats received passive smoking beginning four weeks before the operation had a tendency to decrease the apomorphine-induced rotation behavior. The dopamine content of the striatum was elevated as compared to the control group. Passive smoking beginning two weeks after the operation in the successful models did not alter either the rotation behavior or the DA content of striatum. Conclusions Passive smoking can partially protect DA neurons of substantia nigra from the damage of 6-OHDA.

  9. Hyaline cartilage tissue is formed through the co-culture of passaged human chondrocytes and primary bovine chondrocytes.

    Science.gov (United States)

    Taylor, Drew W; Ahmed, Nazish; Hayes, Anthony J; Ferguson, Peter; Gross, Allan E; Caterson, Bruce; Kandel, Rita A

    2012-08-01

    To circumvent the problem of a sufficient number of cells for cartilage engineering, the authors previously developed a two-stage culture system to redifferentiate monolayer culture-expanded dedifferentiated human articular chondrocytes by co-culture with primary bovine chondrocytes (bP0). The aim of this study was to analyze the composition of the cartilage tissue formed in stage 1 and compare it with bP0 grown alone to determine the optimal length of the co-culture stage of the system. Biochemical data show that extracellular matrix accumulation was evident after 2 weeks of co-culture, which was 1 week behind the bP0 control culture. By 3 to 4 weeks, the amounts of accumulated proteoglycans and collagens were comparable. Expression of chondrogenic genes, Sox 9, aggrecan, and collagen type II, was also at similar levels by week 3 of culture. Immunohistochemical staining of both co-culture and control tissues showed accumulation of type II collagen, aggrecan, biglycan, decorin, and chondroitin sulfate in appropriate zonal distributions. These data indicate that co-cultured cells form cartilaginous tissue that starts to resemble that formed by bP0 after 3 weeks, suggesting that the optimal time to terminate the co-culture stage, isolate the now redifferentiated cells, and start stage 2 is just after 3 weeks.

  10. Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum.

    Science.gov (United States)

    Xu, Ying; Yin, Huaqun; Jiang, Huidan; Liang, Yili; Guo, Xue; Ma, Liyuan; Xiao, Yunhua; Liu, Xueduan

    2013-09-01

    The effect of Ni²⁺ on the growth and functional gene expression of the pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum has been studied. Compared with the pure culture, the co-culture showed a stronger sulfur and ferrous ion oxidation activity. At 100 mM, A. thiooxidans in co-culture grew faster and had 48 h shorter lag phases. The cell number of A. thiooxidans in co-culture was about 5 times higher than that in pure culture. The existence of A. thiooxidans in co-culture activated the expression of some metal resistance genes in L. ferriphilum at least 16 h in advance. A. thiooxidans in co-culture tends to chose more efficient pathways to transport nickel ion, ensuring the export of heavy metal was faster and more effective than that in pure culture. All the data indicated that there were synergetic interactions between iron- and sulfur-oxidizing bacteria under the stress of Ni²⁺.

  11. Co-culture with periodontal ligament stem cells enhances osteogenic gene expression in de-differentiated fat cells.

    Science.gov (United States)

    Tansriratanawong, Kallapat; Tamaki, Yuichi; Ishikawa, Hiroshi; Sato, Soh

    2014-10-01

    In recent decades, de-differentiated fat cells (DFAT cells) have emerged in regenerative medicine because of their trans-differentiation capability and the fact that their characteristics are similar to bone marrow mesenchymal stem cells. Even so, there is no evidence to support the osteogenic induction using DFAT cells in periodontal regeneration and also the co-culture system. Consequently, this study sought to evaluate the DFAT cells co-culture with periodontal ligament stem cells (PDLSCs) in vitro in terms of gene expression by comparing runt-related transcription factor 2 (RUNX2) and Peroxisome proliferator-activated receptor gamma 2 (PPARγ2) genes. We isolated DFAT cells from mature adipocytes and compared proliferation with PDLSCs. After co-culture with PDLSCs, we analyzed transcriptional activity implying by DNA methylation in all adipogenic gene promoters using combined bisulfite restriction analysis. We compared gene expression in RUNX2 gene with the PPARγ2 gene using quantitative RT-PCR. After being sub-cultured, DFAT cells demonstrated morphology similar to fibroblast-like cells. At the same time, PDLSCs established all stem cell characteristics. Interestingly, the co-culture system attenuated proliferation while enhancing osteogenic gene expression in RUNX2 gene. Using the co-culture system, DFAT cells could trans-differentiate into osteogenic lineage enhancing, but conversely, their adipogenic characteristic diminished. Therefore, DFAT cells and the co-culture system might be a novel cell-based therapy for promoting osteogenic differentiation in periodontal regeneration.

  12. Effects of hydroxybenzyl alcohols on melanogenesis in melanocyte-keratinocyte co-culture and monolayer culture of melanocytes.

    Science.gov (United States)

    Liu, Szu-Hsiu; Chu, I-Ming; Pan, I-Horng

    2008-08-01

    In mammalian skin, melanocyte proliferation and melanogenesis can be stimulated by keratinocytes, fibroblasts and other regulatory factors. To determine whether hydroxybenzyl alcohols (HBAs) show more inhibitory in melanocytes cultured alone or in melanocytes co-cultured with keratinocytes, we developed a murine melanocyte-keratinocyte co-culture model to investigate the pigmentation regulators in company with other melanogenic inhibitors and stimulators. It was found that the effects of HBAs and melanogenic factors were more evident in melanocytes co-cultured with keratinocytes. Keratinocytes may play a synergistic role in melanocyte melanogenesis and influence the pigment production. The tests in the co-culture model also imply that the inhibitory effects of HBAs on melanogenesis are due to the direct inhibition of melanosomal tyrosinase activity. HBAs showed a low cytotoxicity. The eventual results proved that HBAs are promising and safe agents for skin whitening in melanocyte alone and in co-culture systems. The co-culture model provides a more physiologically realistic condition to study the interaction between melanocytes and keratinocytes, which enables a reliable screening system for depigmenting compounds.

  13. A three-dimensional co-culture model of the aortic valve using magnetic levitation.

    Science.gov (United States)

    Tseng, Hubert; Balaoing, Liezl R; Grigoryan, Bagrat; Raphael, Robert M; Killian, T C; Souza, Glauco R; Grande-Allen, K Jane

    2014-01-01

    The aortic valve consists of valvular interstitial cells (VICs) and endothelial cells (VECs). While these cells are understood to work synergistically to maintain leaflet structure and valvular function, few co-culture models of these cell types exist. In this study, aortic valve co-cultures (AVCCs) were assembled using magnetic levitation and cultured for 3 days. Immunohistochemistry and quantitative reverse-transcriptase polymerase chain reaction were used to assess the maintenance of cellular phenotype and function, and the formation of extracellular matrix. AVCCs stained positive for CD31 and α-smooth muscle actin (αSMA), demonstrating that the phenotype was maintained. Functional markers endothelial nitric oxide synthase (eNOS), von Willebrand factor (VWF) and prolyl-4-hydroxylase were present. Extracellular matrix components collagen type I, laminin and fibronectin also stained positive, with reduced gene expression of these proteins in three dimensions compared to two dimensions. Genes for collagen type I, lysyl oxidase and αSMA were expressed less in AVCCs than in 2-D cultures, indicating that VICs are quiescent. Co-localization of CD31 and αSMA in the AVCCs suggests that endothelial-mesenchymal transdifferentiation might be occurring. Differences in VWF and eNOS in VECs cultured in two and three dimensions also suggests that the AVCCs possibly have anti-thrombotic potential. Overall, a co-culture model of the aortic valve was designed, and serves as a basis for future experiments to understand heart valve biology. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Enhanced Keratinocyte Proliferation and Migration in Co-culture with Fibroblasts

    Science.gov (United States)

    Wang, Zhenxiang; Wang, Ying; Farhangfar, Farhang; Zimmer, Monica; Zhang, Yongxin

    2012-01-01

    Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11th to 15th day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage. PMID:22911722

  15. Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts.

    Directory of Open Access Journals (Sweden)

    Zhenxiang Wang

    Full Text Available Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11(th to 15(th day, keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF, IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage.

  16. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2015-12-01

    Full Text Available BACKGROUND Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. METHODS In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. RESULTS Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1- fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity CONCLUSIONS Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  17. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2014-08-01

    Full Text Available Background Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. Methods In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. Results Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1-fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity Conclusions Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  18. Generation of co-culture spheroids as vascularisation units for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    R Walser

    2013-11-01

    Full Text Available Cell spheroids represent attractive building units for bone tissue engineering, because they provide a three-dimensional environment with intensive direct cell-cell contacts. Moreover, they allow for co-culture of both osteoblasts and vessel-forming cells, which may markedly increase their survival and vascularisation after transplantation. To test this hypothesis, we generated co-culture spheroids by aggregating different combinations of primary human osteoblasts (HOB, human dermal microvascular endothelial cells (HDMEC and normal human dermal fibroblasts (NHDF using the liquid overlay technique. Mono-culture spheroids consisting either of HOB or HDMEC served as controls. After in vitro characterisation, the different spheroids were transplanted into dorsal skinfold chambers of CD1 nu/nu mice to study in vivo their viability and vascularisation over a 2-week observation period by means of repetitive intravital fluorescence microscopy and immunohistochemistry. In vitro, co-culture spheroids containing HDMEC rapidly formed dense tubular vessel-like networks within 72 h and exhibited a significantly decreased rate of apoptotic cell death when compared to mono-culture HDMEC spheroids. After transplantation, these networks interconnected to the host microvasculature by external inosculation. Of interest, this process was most pronounced in HOB-HDMEC spheroids and could not further be improved by the addition of NHDF. Accordingly, HOB-HDMEC spheroids were larger when compared to the other spheroid types. These findings indicate that HOB-HDMEC spheroids exhibit excellent properties to preserve viability and to promote proliferation and vascularisation. Therefore, they may be used as functional vascularisation units in bone tissue engineering for the seeding of scaffolds or for the vitalisation of non-healing large bone defects.

  19. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions.

    Science.gov (United States)

    Chan-Cupul, Wilberth; Heredia-Abarca, Gabriela; Rodríguez-Vázquez, Refugio

    2016-01-01

    This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g(-1)) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 2(4) factorial experimental design. The Trametes maxima-Paecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein(-1), H2O2 = 6.2 mg L(-1)) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein(-1), H2O2 = 4.0 mg L(-1)). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.

  20. Allelopathy in a leguminous mangrove plant, Derris indica: protoplast co-culture bioassay and rotenone effect.

    Science.gov (United States)

    Inoue, Aya; Mori, Daisuke; Minagawa, Reiko; Fujii, Yoshiharu; Sasamoto, Hamako

    2015-05-01

    To investigate allelopathic activity of a leguminous mangrove plant, Derris indica, the 'Protoplasts Co-culture Method' for bioassay of allelopathy was developed using suspension culture. A suspension culture was induced from immature seed and sub-cultured in Murashige and Skoog's (MS) basal medium containing 10 μM each of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BA). The protoplasts were isolated using the separate wells method with 2% each of Cellulase RS, Driselase 20 and Macerozyme R10 in 0.4 M mannitol solution. Protoplast cultures of D. indica revealed that high concentrations of cytokinins, BA and thidiazuron, were effective for cell divisions. The co-cultures of D. indica protoplasts with recipient lettuce protoplasts using 96 multi-well culture plates were performed in MS basal medium containing 0.4 M mannitol solution and 1 μM 2,4-D and 0.1 μM BA. The protoplast density of D. indica used in co-culturing varied from 6 x 10(3) - 10(5) / mL. Very strong inhibitory allelopathic effects of D. indica protoplasts on lettuce protoplast growth were found. A similar strong inhibitory allelopathic activity of dried young leaves on lettuce seedling growth was also observed by using the sandwich method. Rotenone, which is a component of Derris root, dissolved in DMSO, was highly inhibitory on the growth of lettuce protoplasts in culture and this could be one of the causes of the strong allelopathic activity of D. indica.

  1. A 3D co-culture microtissue model of the human placenta for nanotoxicity assessment

    DEFF Research Database (Denmark)

    Muoth, Carina; Wichser, Adrian; Monopoli, Marco;

    2016-01-01

    and functionality of the placental tissue. The effects of NPs on the human placenta are not well studied or understood, and predictive in vitro placenta models to achieve mechanistic insights on NP-placenta interactions are essentially lacking. Using the scaffold-free hanging drop technology, we developed a well-organized...... and highly reproducible 3D co-culture microtissue (MT) model consisting of a core of placental fibroblasts surrounded by a trophoblast cell layer, which resembles the structure of the in vivo placental tissue. We could show that secretion levels of human chorionic gonadotropin (hCG) were significantly higher...

  2. Trophic and tropic effects of striatal astrocytes on cografted mesencephalic dopamine neurons and their axons.

    Science.gov (United States)

    Pierret, P; Quenneville, N; Vandaele, S; Abbaszadeh, R; Lanctôt, C; Crine, P; Doucet, G

    1998-01-01

    Astrocytes from the ventral mesencephalon and from the striatum respectively promote the dendritic and axonal arborization of dopamine (DA) neurons in vitro. To test this response in vivo, astrocytes in primary cultures from the neonatal cerebral cortex, ventral mesencephalon, or striatum were coimplanted with fetal ventral mesencephalic tissue into the intact or DA-denervated striatum of adult rats and these cografts examined after 3-6 months by tyrosine hydroxylase (TH) immunohistochemistry (intact recipients) or after 5-6 months by in vitro [3H]DA-uptake autoradiography (DA-denervated recipients). In contrast with single ventral mesencephalic grafts, all types of cograft displayed a rather uniform distribution of TH-immunoreactive perikarya. The average size of TH-immunoreactive cell bodies was not significantly different in cografts containing cortical or mesencephalic astrocytes and in single ventral mesencephalic grafts, but it was significantly larger in cografts containing striatal astrocytes. Nevertheless, the number of [3H]DA-labeled terminals in the DA-lesioned host striatum was clearly smaller with cografts of striatal astrocytes than with single mesencephalic grafts or with cografts containing cortical astrocytes. On the other hand, cografts of striatal astrocytes contained much higher numbers of [3H]DA-labeled terminals than the other types of graft or cograft. Thus, while cografted astrocytes in general influence the distribution of DA neurons within the graft, astrocytes from the neonatal striatum have a trophic effect on DA perikarya and a tropic effect on DA axons, keeping the latter within the graft.

  3. Striatal dopamine release and biphasic pattern of locomotor and motor activity under gas narcosis.

    Science.gov (United States)

    Balon, Norbert; Risso, Jean-Jacques; Blanc, François; Rostain, Jean-Claude; Weiss, Michel

    2003-05-02

    Inert gas narcosis is a neurological syndrome appearing when humans or animals are exposed to hyperbaric inert gases (nitrogen, argon) composed by motor and cognitive impairments. Inert gas narcosis induces a decrease of the dopamine release at the striatum level, structure involved in the regulation of the extrapyramidal motricity. We have investigated, in freely moving rats exposed to different narcotic conditions, the relationship between the locomotor and motor activity and the striatal dopamine release, using respectively a computerized device that enables a quantitative analysis of this behavioural disturbance and voltammetry. The use of 3 MPa of nitrogen, 2 MPa of argon and 0.1 MPa of nitrous oxide, revealed after a transient phase of hyperactivity, a lower level of the locomotor and motor activity, in relation with the decrease of the striatal dopamine release. It is concluded that the striatal dopamine decrease could be related to the decrease of the locomotor and motor hyperactivity, but that other(s) neurotransmitter(s) could be primarily involved in the behavioural motor disturbances induced by narcotics. This biphasic effect could be of major importance for future pharmacological investigations, and motor categorization, on the basic mechanisms of inert gas at pressure.

  4. Striatal grafts provide sustained protection from kainic and quinolinic acid-induced damage.

    Science.gov (United States)

    Tulipan, N; Luo, S Q; Allen, G S; Whetsell, W O

    1988-12-01

    Grafts of neonatal striatal tissue were placed into the striata of adult rats. When challenged immediately with intrastriatal injections of either kainic or quinolinic acid, excitotoxic damage was prevented. Thirty days later these same graft recipients received another injection of excitotoxin. The intrastriatal grafts continued to mitigate toxin-induced damage. It is hypothesized that the grafted cells not only survive, but that they may continue to elaborate some substance or substances that prevent excitotoxin-induced injury for at least 30 days. Previous investigations indicated that grafts of neonatal striatal tissue can protect the recipient striatum from kainic acid toxicity. In the following study it is demonstrated that such grafts also protect the striatum from quinolinic acid, an endogenous excitotoxin which induces kainate-like neuronal degeneration and has been implicated in the pathogenesis of Huntington's disease. It is postulated that the salutary effect of striatal grafting may be sufficiently long lasting to mitigate a chronic toxic insult. Such grafting may therefore represent a therapy for Huntington's disease and other neurodegenerative disorders in which an endogenous or exogenous toxin has been implicated as the pathogenetic agent.

  5. The effect of striatal dopamine depletion on striatal and cortical glutamate: A mini-review.

    Science.gov (United States)

    Caravaggio, Fernando; Nakajima, Shinichiro; Plitman, Eric; Gerretsen, Philip; Chung, Jun Ku; Iwata, Yusuke; Graff-Guerrero, Ariel

    2016-02-04

    Understanding the interplay between the neurotransmitters dopamine and glutamate in the striatum has become the highlight of several theories of neuropsychiatric illnesses, such as schizophrenia. Using in vivo brain imaging in humans, alterations in dopamine and glutamate concentrations have been observed in several neuropsychiatric disorders. However, it is unclear a priori how alterations in striatal dopamine should modulate glutamate concentrations in the basal ganglia. In this selective mini-review, we examine the consequence of reducing striatal dopamine functioning on glutamate concentrations in the striatum and cortex; regions of interest heavily examined in the human brain imaging studies. We examine the predictions of the classical model of the basal ganglia, and contrast it with findings in humans and animals. The review concludes that chronic dopamine depletion (>4months) produces decreases in striatal glutamate levels which are consistent with the classical model of the basal ganglia. However, acute alterations in striatal dopamine functioning, specifically at the D2 receptors, may produce opposite affects. This has important implications for models of the basal ganglia and theorizing about neurochemical alterations in neuropsychiatric diseases. Moreover, these findings may help guide a priori hypotheses for (1)H-MRS studies measuring glutamate changes given alterations in dopaminergic functioning in humans.

  6. Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction.

    Science.gov (United States)

    Pierozan, Paula; Ferreira, Fernanda; de Lima, Bárbara Ortiz; Pessoa-Pureur, Regina

    2015-02-01

    Quinolinic acid (QUIN) is an endogenous metabolite of the kynurenine pathway involved in several neurological disorders. Among the several mechanisms involved in QUIN-mediated toxicity, disruption of the cytoskeleton has been demonstrated in striatally injected rats and in striatal slices. The present work searched for the actions of QUIN in primary striatal neurons. Neurons exposed to 10 µM QUIN presented hyperphosphorylated neurofilament (NF) subunits (NFL, NFM, and NFH). Hyperphosphorylation was abrogated in the presence of protein kinase A and protein kinase C inhibitors H89 (20 μM) and staurosporine (10 nM), respectively, as well as by specific antagonists to N-methyl-D-aspartate (50 µM DL-AP5) and metabotropic glutamate receptor 1 (100 µM MPEP). Also, intra- and extracellular Ca(2+) chelators (10 µM BAPTA-AM and 1 mM EGTA, respectively) and Ca(2+) influx through L-type voltage-dependent Ca(2+) channel (10 µM verapamil) are implicated in QUIN-mediated effects. Cells immunostained for the neuronal markers βIII-tubulin and microtubule-associated protein 2 showed altered neurite/neuron ratios and neurite outgrowth. NF hyperphosphorylation and morphological alterations were totally prevented by conditioned medium from QUIN-treated astrocytes. Cocultured astrocytes and neurons interacted with one another reciprocally, protecting them against QUIN injury. Cocultured cells preserved their cytoskeletal organization and cell morphology together with unaltered activity of the phosphorylating system associated with the cytoskeleton. This article describes cytoskeletal disruption as one of the most relevant actions of QUIN toxicity in striatal neurons in culture with soluble factors secreted by astrocytes, with neuron-astrocyte interaction playing a role in neuroprotection.

  7. Role of IFN-gamma and LPS on Neuron/Glial Co-Cultures Infected by Neospora caninum

    Directory of Open Access Journals (Sweden)

    Erica Etelvina Viana De Jesus

    2014-10-01

    Full Text Available Neospora caninum causes cattle abortion and neurological symptoms in dogs. Although infection is usually asymptomatic, classical neurological symptoms of neosporosis may be associated with encephalitis. This parasite can grow in brain endothelial cells without markedly damages, but it can modulate the cellular environment to promote its survival in the brain. In previous studies, we described that IFN-γ decreased the parasite proliferation and down regulated nitric oxide production in astrocyte/microglia cultures. However, it remains unclear how glial cells respond to N. caninum in the presence of neurons. Therefore, we evaluated the effect of 300 IU/mL IFN-γ or 1.0 μg/mL of LPS on infected rat neuron/glial co-cultures. After 72 hours of infection, LPS did not affect the mitochondrial dehydrogenase activity. However, IFN-γ decreased this parameter by 15.5 and 12.0% in uninfected and infected cells, respectively. The number of tachyzoites decreased 54.1 and 44.3% in cells stimulated with IFN-γ and LPS, respectively. Infection or LPS treatment did not change NO production. On the other hand, IFN-γ induced increased nitrite release in 55.7%, but the infection reverted this induction. IL-10 levels increased only in infected cultures (treated or not, meanwhile PGE2 release was improved in IFN-γ/infected or LPS/infected cells. Although IFN-γ significantly reduced the neurite length in uninfected cultures (42.64%; p < 0.001, this inflammatory cytokine reverted the impairment of neurite outgrowth induced by the infection (81.39%. The results suggest a neuroprotective potential response of glia to N. caninum infection under IFN-γ stimulus. This observation contributes to understand the immune mediated mechanisms of neosporosis in CNS

  8. Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds.

    Science.gov (United States)

    Morelli, Sabrina; Salerno, Simona; Holopainen, Jani; Ritala, Mikko; De Bartolo, Loredana

    2015-06-20

    The design of bone substitutes involves the creation of a microenvironment supporting molecular cross-talk between cells and scaffolds during tissue formation and remodelling. Bone remodelling process includes the cooperation of bone-building cells and bone-resorbing cells. In this paper we developed polylactic acid (PLA) and composite PLA-nanohydroxyapatite (nHA) scaffolds with 20 and 50wt.% of nHA by electrospinning technique to be used in bone tissue engineering. The developed scaffolds have different fiber diameter, porosity with interconnected pores and mechanical properties. Taking cues from the bone environment features we investigated the differentiation of human mesenchymal stem cells (hMSCs) from bone marrow in osteoblasts and the osteoclastogenesis in the developed scaffolds in homotypic and in co-culture up to 46 days. PLA and composite PLA-nHA scaffolds induced osteogenic and osteoclastogenic differentiation. Both osteoblasts and osteoclasts displayed high expression of specific markers (osteopontin, osteocalcin, RANK, RANKL) and functions such as secretion of ALP, cathepsin K and TRAP activity on composite scaffolds especially on PLA-nHA containing 20wt.% of nHA. The heterotypic interactions between osteoblasts and osteoclasts co-cultured in the developed scaffolds triggered their functional differentiation and activation.

  9. Preliminary analysis of cellular sociology of co-cultured glioma initiating cells and macrophages in vitro

    Institute of Scientific and Technical Information of China (English)

    Mingxia Zhang; Xingliang Dai; Xiaonan Li; Qiang Huang; Jun Dong; Junjie Chen; Lin Wang; Xiaoyan Ji; Lin Yang; Yujing Sheng; Hairui Liu; Haiyang Wang; Aidong Wang

    2016-01-01

    Objective:Real-time monitoring of cytokine secretion at the single immunocyte level, based on the concept of immune cells, sociology has been recently reported. However, the relationships between glioma-initiating cells (GICs) and host immune cells and their mutual interactions in the tumor microenvironment have not been directly observed and remain unclear. Methods:The dual fluorescence tracing technique was applied to label the co-cultured GICs and host macrophages (Mø), and the interactions between the two types of cells were observed using a live cell imaging system. Fusion cells in the co-culture system were monocloned and proliferated in vitro and their social interactions were observed and recorded. Results:Using real-time dynamic observation of target cells, 6 types of intercellular conjunction microtubes were found to function in the transfer of intercellular information between GICs and Mø;GICs and host Mø can fuse into hybrid cells after several rounds of mutual interactions, and then these fusion cells fused with each other;Fusion cells generated offspring cells through symmetrical and asymmetrical division or underwent apoptosis. A“cell in cell” phenomenon was observed in the fusion cells, which was often followed by cell release, namely entosis. Conclusions:Preliminary studies revealed the patterns of cell conjunction via microtubes between GICs and host Mø and the processes of cell fusion, division, and entosis. The results revealed malignant transformation of host Mø, induced by GICs, suggesting complex social relationships among tumor-immune cells in gliomas.

  10. Functional genomic study of the environmentally important Desulfovibrio /Methanococcus syntrophic co-culture.

    Science.gov (United States)

    Mukhopadhyay, A.

    2008-12-01

    The use of microbe-oriented bioremediation for ameliorating extensive environmental pollution has fostered fundamental and applied studies of environmentally relevant microorganisms such as Desulfovibrio vulgaris, Shewanella oneidensis and Geobacter metallireducens.. Concurrently, there has been an increasing appreciation that the physiology of these organisms in pure culture is not necessarily representative of its activities in the environment. To enable a better understanding of microbial physiology under more environmentally relevant conditions, the syntrophic growth between the sulfate reducing bacterium, D. vulgaris and the hydrogenotrophic methanogen, Methanococcus maripaludis serves as an ideal system for laboratory studies. Cell wide analyses using transcript, proteomics and metabolite analysis have been widely used to understand cellular activity at a molecular level. Using D. vulgaris and M. maripaludis arrays, and the iTRAQ proteomics method, we studied the physiology of the D. vulgaris / M. maripaludis syntrophic co- cultures. The results from this study allowed us to identify differences in cellular response in mono-culture vs. co-culture growth for both D. vulgaris and M. maripaludis.

  11. Biomimetic injectable HUVEC-adipocytes/collagen/alginate microsphere co-cultures for adipose tissue engineering.

    Science.gov (United States)

    Yao, Rui; Zhang, Renji; Lin, Feng; Luan, Jie

    2013-05-01

    Engineering adipose tissue that has the ability to engraft and establish a vascular supply is a laudable goal that has broad clinical relevance, particularly for tissue reconstruction. In this article, we developed novel microtissues from surface-coated adipocyte/collagen/alginate microspheres and human umbilical vein endothelial cells (HUVECs) co-cultures that resembled the components and structure of natural adipose tissue. Firstly, collagen/alginate hydrogel microspheres embedded with viable adipocytes were obtained to mimic fat lobules. Secondly, collagen fibrils were allowed to self-assemble on the surface of the microspheres to mimic collagen fibrils surrounding the fat lobules in the natural adipose tissue and facilitate HUVEC attachment and co-cultures formation. Thirdly, the channels formed by the gap among the microspheres served as the room for in vitro prevascularization and in vivo blood vessel development. The endothelial cell layer outside the microspheres was a starting point of rapid vascular ingrowth. Adipose tissue formation was analyzed for 12 weeks at 4-week intervals by subcutaneous injection into the head of node mice. The vasculature in the regenerated tissue showed functional anastomosis with host blood vessels. Long-term stability of volume and weight of the injection was observed, indicating that the vasculature formed within the constructs benefited the formation, maturity, and maintenance of adipose tissue. This study provides a microsurgical method for adipose regeneration and construction of biomimetic model for drug screening studies.

  12. Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars

    Energy Technology Data Exchange (ETDEWEB)

    Zeidan, Ahmad A.; Van Niel, Ed W.J. [Department of Applied Microbiology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)

    2009-05-15

    Previous studies on the extreme thermophile Caldicellulosiruptor saccharolyticus revealed that the organism produces high yields of hydrogen on glucose and xylose, the major components of lignocellulosic hydrolysates. Preliminary experiments on mixed sugar substrates, however, indicated that xylose was preferred over glucose. The sugar preference of some other extreme thermophiles, including Caldicellulosiruptor owensensis, Caldicellulosiruptor kristjanssonii and newly enriched, thermophilic compost sludge microflora, was investigated in an attempt to find complementary organisms to C. saccharolyticus for rapid and efficient utilization of lignocellulosic sugars. The behavior of C. owensensis and C. kristjanssonii appeared to be similar to that of C. saccharolyticus, either in pure cultures or in co-cultures with the latter. Co-culturing C. saccharolyticus with the enriched compost microflora resulted in fast, simultaneous consumption of both glucose and xylose in the medium with a relatively high specific hydrogen production rate, 40 mmol (gCDW){sup -1} h{sup -1}, and high volumetric productivity, 22.5 mmol l{sup -1} h{sup -1}. (author)

  13. Production of angkak through co-culture of Monascus purpureus and Monascus ruber

    Directory of Open Access Journals (Sweden)

    Bibhu Prasad Panda

    2010-10-01

    Full Text Available Angkak (red mold rice, red yeast rice, Chinese red rice is a traditional Chinese medicine produced by solid-state fermentation of cooked non-glutinous rice with Monascus species. The secondary metabolite of Monascus species, monacolin K /lovastatin, has been proven to lower blood lipid levels. In this study, a co-culture of Monascus purpureus MTCC 369 and Monascus ruber MTCC 1880 was used for angkak production. Four medium parameters screened by Plackett-Burman design were optimized by response surface methodology for highest lovastatin production in angkak during solid-state fermentation by the co-culture. Maximum lovastatin production of 2.84 mg g-1 was predicted in solid medium containing 20 g rice and 40 ml liquid nutrients medium (malt extract 9.68 g l-1, dextrose 38.90 g l-1, MnSO4.H2O 1.96 g l-1, and MgSO4.7H2O 0.730 g l-1 by point prediction tool of Design Expert 7.1 software (Statease Inc. USA.

  14. Increased binding of [3H]GABA to striatal membranes following ischemia.

    Science.gov (United States)

    Francis, A; Pulsinelli, W

    1983-05-01

    Sodium-independent binding of [3H]gamma-aminobutyric acid ([3H]GABA) to membranes prepared from ischemic-damaged rat striatum was studied by kinetic and time-course analysis. Three days after 40 min of ischemia, [3H]GABA binding increased fourfold over control values. Scatchard analysis of the binding showed that ischemia significantly increased the affinity (KD) and the total number of binding sites (Bmax) for the high-affinity GABA receptor. These results support the conclusion that transient forebrain ischemia damages striatal GABAergic neurons.

  15. Neonatal striatal grafts prevent lethal syndrome produced by bilateral intrastriatal injection of kainic acid.

    Science.gov (United States)

    Tulipan, N; Huang, S; Whetsell, W O; Allen, G S

    1986-07-02

    It is reported that unilateral grafts of neonatal striatal tissue protect the recipient from the lethal aphagia and adipsia produced by bilateral intrastriatal injection of 10 nmol of kainic acid in rats. It is shown that neither adult striatum nor neonatal tissue from other sites have the same lifesaving effect and that the salutary effect of the graft is dependent upon graft survival. Grafts from a histoincompatible donor are apparently rejected, leading to the death of the recipient. Cyclosporine inhibits rejection thereby enabling recipient survival. It is postulated that the graft exerts a neurohumoral influence that protects the striatum from the toxic effect of kainate.

  16. Comparative genomic study of gastric epithelial cells co-cultured with Helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Fen Wang; Li-Dan Luo; Jian-Hua Pan; Li-Hua Huang; Hong-Wei Lv; Qin Guo; Can-Xia Xu

    2012-01-01

    AIM:To identify genes potentially involved in Helicobacter pylori (H.pylori)-induced gastric carcinogenesis.METHODS:GES-1 cells were co-cultured with H.pylori strains isolated from patients with gastric carcinoma (GC,n =10) or chronic gastritis (CG,n =10) for in vitro proliferation and apoptosis assays to identify the most and least virulent strains.These two strains were cagA-genotyped and used for further in vivo carcinogenic virulence assays by infecting Mongolian gerbils for 52 wk,respectively; a broth free of H.pylori was lavaged as control.Genomic profiles of GES-1 cells cocultured with the most and least virulent strains were determined by microarray analysis.The most differentially expressed genes were further verified using quantitative real-time polymerase chain reaction in GES-1 cells infected with the most and least virulent strains,and by immunohistochemistry in H.pylori positive CG,precancerous diseases,and GC biopsy specimens in an independent experiment.RESULTS:GC-derived H.pylori strains induced a potent proliferative effect in GES-1 cells in co-culture,whereas CG-derived strains did not.The most (from a GC patient) and least (from a CG patient) virulent strains were cagA-positive and negative,respectively.At week 52,CG,atrophy,metaplasia,dysplasia,and GC were observed in 90.0%,80.0%,80.0%,90%,and 60.0%,respectively,of the animals lavaged with the most virulent strain.However,only mild CG was observed in 90% of the animals lavaged with the least virulent strain.On microarray analysis,800 differentially expressed genes (49 up-and 751 down-regulated),involving those associated with cell cycle regulation,cell apoptosis,cytoskeleton,immune response,and substance and energy metabolisms,were identified in cells co-cultured with the most virulent strain as compared with those co-cultured with the least virulent strain.The six most differentially expressed genes (with a betweenness centrality of 0.1-0.2) were identified among the significant

  17. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures ofClostridium spp.

    Directory of Open Access Journals (Sweden)

    Masset Julien

    2012-05-01

    Full Text Available Abstract Background Pure bacterial strains give better yields when producing H2 than mixed, natural communities. However the main drawback with the pure cultures is the need to perform the fermentations under sterile conditions. Therefore, H2 production using artificial co-cultures, composed of well characterized strains, is one of the directions currently undertaken in the field of biohydrogen research. Results Four pure Clostridium cultures, including C. butyricum CWBI1009, C. pasteurianum DSM525, C. beijerinckii DSM1820 and C. felsineum DSM749, and three different co-cultures composed of (1 C. pasteurianum and C. felsineum, (2 C. butyricum and C. felsineum, (3 C. butyricum and C. pasteurianum, were grown in 20 L batch bioreactors. In the first part of the study a strategy composed of three-culture sequences was developed to determine the optimal pH for H2 production (sequence 1; and the H2-producing potential of each pure strain and co-culture, during glucose (sequence 2 and starch (sequence 3 fermentations at the optimal pH. The best H2 yields were obtained for starch fermentations, and the highest yield of 2.91 mol H2/ mol hexose was reported for C. butyricum. By contrast, the biogas production rates were higher for glucose fermentations and the highest value of 1.5 L biogas/ h was observed for the co-culture (1. In general co-cultures produced H2 at higher rates than the pure Clostridium cultures, without negatively affecting the H2 yields. Interestingly, all the Clostridium strains and co-cultures were shown to utilize lactate (present in a starch-containing medium, and C. beijerinckii was able to re-consume formate producing additional H2. In the second part of the study the co-culture (3 was used to produce H2 during 13 days of glucose fermentation in a sequencing batch reactor (SBR. In addition, the species dynamics, as monitored by qPCR (quantitative real-time PCR, showed a stable coexistence of C. pasteurianum and C

  18. Discovery of novel xylosides in co-culture of basidiomycetes Trametes versicolor and Ganoderma applanatum by integrated metabolomics and bioinformatics

    Science.gov (United States)

    Yao, Lu; Zhu, Li-Ping; Xu, Xiao-Yan; Tan, Ling-Ling; Sadilek, Martin; Fan, Huan; Hu, Bo; Shen, Xiao-Ting; Yang, Jie; Qiao, Bin; Yang, Song

    2016-01-01

    Transcriptomic analysis of cultured fungi suggests that many genes for secondary metabolite synthesis are presumably silent under standard laboratory condition. In order to investigate the expression of silent genes in symbiotic systems, 136 fungi-fungi symbiotic systems were built up by co-culturing seventeen basidiomycetes, among which the co-culture of Trametes versicolor and Ganoderma applanatum demonstrated the strongest coloration of confrontation zones. Metabolomics study of this co-culture discovered that sixty-two features were either newly synthesized or highly produced in the co-culture compared with individual cultures. Molecular network analysis highlighted a subnetwork including two novel xylosides (compounds 2 and 3). Compound 2 was further identified as N-(4-methoxyphenyl)formamide 2-O-β-D-xyloside and was revealed to have the potential to enhance the cell viability of human immortalized bronchial epithelial cell line of Beas-2B. Moreover, bioinformatics and transcriptional analysis of T. versicolor revealed a potential candidate gene (GI: 636605689) encoding xylosyltransferases for xylosylation. Additionally, 3-phenyllactic acid and orsellinic acid were detected for the first time in G. applanatum, which may be ascribed to response against T.versicolor stress. In general, the described co-culture platform provides a powerful tool to discover novel metabolites and help gain insights into the mechanism of silent gene activation in fungal defense. PMID:27616058

  19. β-Carotene from Yeasts Enhances Laccase Production of Pleurotus eryngii var. ferulae in Co-culture

    Directory of Open Access Journals (Sweden)

    Chaolin Guo

    2017-06-01

    Full Text Available Laccase is widely used in several industrial applications and co-culture is a common method for enhancing laccase production in submerged fermentation. In this study, the co-culture of four yeasts with Pleurotus eryngii var. ferulae was found to enhance laccase production. An analysis of sterilization temperatures and extraction conditions revealed that the stimulatory compound in yeasts was temperature-sensitive, and that it was fat-soluble. An LC-MS analysis revealed that the possible stimulatory compound for laccase production in the four yeast extracts was β-carotene. Moreover, the addition of 4 mg β-carotene to 150 mL of P. eryngii var. ferulae culture broth improved laccase production by 2.2-fold compared with the control (i.e., a monoculture, and was similar to laccase production in co-culture. In addition, the enhanced laccase production was accompanied by an increase of lac gene transcription, which was 6.2-time higher than the control on the fifth day. Therefore, it was concluded that β-carotene from the co-cultured yeasts enhanced laccase production in P. eryngii var. ferulae, and strains that produce β-carotene could be selected to enhance fungal laccase production in a co-culture. Alternatively, β-carotene or crude extracts of β-carotene could be used to induce high laccase production in large scale.

  20. Expanding the Diet for DIET: Electron Donors Supporting Direct Interspecies Electron Transfer (DIET in Defined Co-Cultures

    Directory of Open Access Journals (Sweden)

    Li-YIng eWang

    2016-03-01

    Full Text Available Direct interspecies electron transfer (DIET has been recognized as an alternative to interspecies H2 transfer as a mechanism for syntrophic growth, but previous studies on DIET with defined co-cultures have only documented DIET with ethanol as the electron donor in the absence of conductive materials. Co-cultures of Geobacter metallireducens and Geobacter sulfurreducens metabolized propanol, butanol, propionate, and butyrate with the reduction of fumarate to succinate. G. metallireducens utilized each of these substrates whereas only electrons available from DIET supported G. sulfurreducens respiration. A co-culture of G. metallireducens and a strain of G. sulfurreducens that could not metabolize acetate oxidized acetate with fumarate as the electron acceptor, demonstrating that acetate can also be syntrophically metabolized via DIET. A co-culture of G. metallireducens and Methanosaeta harundinacea previously shown to syntrophically convert ethanol to methane via DIET metabolized propanol or butanol as the sole electron donor, but not propionate or butyrate. The stoichiometric accumulation of propionate or butyrate in the propanol- or butanol-fed cultures demonstrated that M. harundinaceae could conserve energy to support growth solely from electrons derived from DIET. Co-cultures of G. metallireducens and Methanosarcina barkeri could also incompletely metabolize propanol and butanol and did not metabolize propionate or butyrate as sole electron donors. These results expand the range of substrates that are known to be syntrophically metabolized through DIET, but suggest that claims of propionate and butyrate metabolism via DIET in mixed microbial communities warrant further validation.

  1. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids.

    Science.gov (United States)

    Jones, J Andrew; Vernacchio, Victoria R; Sinkoe, Andrew L; Collins, Shannon M; Ibrahim, Mohammad H A; Lachance, Daniel M; Hahn, Juergen; Koffas, Mattheos A G

    2016-05-01

    Metabolic engineering and synthetic biology have enabled the use of microbial production platforms for the renewable production of many high-value natural products. Titers and yields, however, are often too low to result in commercially viable processes. Microbial co-cultures have the ability to distribute metabolic burden and allow for modular specific optimization in a way that is not possible through traditional monoculture fermentation methods. Here, we present an Escherichia coli co-culture for the efficient production of flavonoids in vivo, resulting in a 970-fold improvement in titer of flavan-3-ols over previously published monoculture production. To accomplish this improvement in titer, factors such as strain compatibility, carbon source, temperature, induction point, and inoculation ratio were initially optimized. The development of an empirical scaled-Gaussian model based on the initial optimization data was then implemented to predict the optimum point for the system. Experimental verification of the model predictions resulted in a 65% improvement in titer, to 40.7±0.1mg/L flavan-3-ols, over the previous optimum. Overall, this study demonstrates the first application of the co-culture production of flavonoids, the most in-depth co-culture optimization to date, and the first application of empirical systems modeling for improvement of titers from a co-culture system.

  2. Discovery of novel xylosides in co-culture of basidiomycetes Trametes versicolor and Ganoderma applanatum by integrated metabolomics and bioinformatics

    Science.gov (United States)

    Yao, Lu; Zhu, Li-Ping; Xu, Xiao-Yan; Tan, Ling-Ling; Sadilek, Martin; Fan, Huan; Hu, Bo; Shen, Xiao-Ting; Yang, Jie; Qiao, Bin; Yang, Song

    2016-09-01

    Transcriptomic analysis of cultured fungi suggests that many genes for secondary metabolite synthesis are presumably silent under standard laboratory condition. In order to investigate the expression of silent genes in symbiotic systems, 136 fungi-fungi symbiotic systems were built up by co-culturing seventeen basidiomycetes, among which the co-culture of Trametes versicolor and Ganoderma applanatum demonstrated the strongest coloration of confrontation zones. Metabolomics study of this co-culture discovered that sixty-two features were either newly synthesized or highly produced in the co-culture compared with individual cultures. Molecular network analysis highlighted a subnetwork including two novel xylosides (compounds 2 and 3). Compound 2 was further identified as N-(4-methoxyphenyl)formamide 2-O-β-D-xyloside and was revealed to have the potential to enhance the cell viability of human immortalized bronchial epithelial cell line of Beas-2B. Moreover, bioinformatics and transcriptional analysis of T. versicolor revealed a potential candidate gene (GI: 636605689) encoding xylosyltransferases for xylosylation. Additionally, 3-phenyllactic acid and orsellinic acid were detected for the first time in G. applanatum, which may be ascribed to response against T.versicolor stress. In general, the described co-culture platform provides a powerful tool to discover novel metabolites and help gain insights into the mechanism of silent gene activation in fungal defense.

  3. Supportive angiogenic and osteogenic differentiation of mesenchymal stromal cells and endothelial cells in monolayer and co-cultures

    Institute of Scientific and Technical Information of China (English)

    Florian Böhrnsen; Henning Schliephake

    2016-01-01

    Sites of implantation with compromised biology may be unable to achieve the required level of angiogenic and osteogenic regeneration. The specific function and contribution of different cell types to the formation of prevascularized, osteogenic networks in co-culture remains unclear. To determine how bone marrow-derived mesenchymal stromal cells (BMSCs) and endothelial cells (ECs) contribute to cellular proangiogenic differentiation, we analysed the differentiation of BMSCs and ECs in standardized monolayer, Transwell and co-cultures. BMSCs were derived from the iliac bone marrow of five patients, characterized and differentiated in standardized monolayers, permeable Transwells and co-cultures with human umbilical vein ECs (HUVECs). The expression levels of CD31, von Willebrand factor, osteonectin (ON) and Runx2 were assessed by quantitative reverse transcriptase polymerase chain reaction. The protein expression of alkaline phosphatase, ON and CD31 was demonstrated via histochemical and immunofluorescence analysis. The results showed that BMSCs and HUVECs were able to retain their lineage-specific osteogenic and angiogenic differentiation in direct and indirect co-cultures. In addition, BMSCs demonstrated a supportive expression of angiogenic function in co-culture, while HUVEC was able to improve the expression of osteogenic marker molecules in BMSCs.

  4. Histological observation on acellular nerve grafts co-cultured with Schwann cells for repairing defects of the sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Sun; Jiangyi Tian; Xiaojie Tong; Xu Zhang; Zheng He

    2006-01-01

    BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve, allogeneic nerve and xenogeneic nerve are used to bridge nerve defects, it is one of the methods to promote the repair of nerve injury by culturing and growing Schwann cells, which can secrete various neurotrophic factor activities, in the grafts.OBJECTIVE: To observe the effect of acellular nerve grafts co-cultured with Schwann cells in repairing defects of sciatic nerve.DESIGN: An observational comparative study.SETTING: Tissue Engineering Laboratory of China Medical University.MATERIALS: The experiment was carried out in the Tissue Engineering Laboratory of China Medical University between April 2004 and April 2005. Forty neonatal Sprague-Dawley rats of 5-8 days (either males or females) and 24 male Wistar rats of 180-220 g were provided by the experimental animal center of China Medical University.METHODS: ① Culture of Schwann cells: The bilateral sciatic nerves and branchial plexus were isolated from the 40 neonatal SD rats. The sciatic nerves were enzymatically digested with collagenase and dispase, isolatd, purified and cultured with the method of speed-difference adhersion, and identified with the SABC immunohistochemical method. ② Model establishment: In vitro Schwann cells were microinjected into 10-mm long acellular nerve grafts repairing a surgically created gap in the rat sciatic nerve.According to the different grafted methods, the animals were randomly divided into three groups: autografts (n=8), acellular nerve grafts (n=8), or acellular nerve grafts with Schwann cells (n=8). ③ The regenerated nerve fiber number and average diameter of myeline sheath after culture were statistically anlayzed.MAIN OUTCOME MEASURES: ① The regenerated nerve ultrastructure, total number and density of myelinated nerve fibers, and the thickness of

  5. The role of NMDA and GABAA receptors in the inhibiting effect of 3 MPa nitrogen on striatal dopamine level.

    Science.gov (United States)

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2007-10-24

    Nitrogen pressure exposure, in rats, resulted in a decreased dopamine (DA) level by the striatal terminals of the substantia nigra pars compacta (SNc) dopaminergic neurons, due to the narcotic potency of nitrogen. In the SNc, the nigrostriatal pathway is under glutamatergic and GABAergic control mediated by ion-channel NMDA and GABA(A) receptors, main targets of volatile anesthetics. The aim of this study was to investigate the role of these receptors in the regulation of striatal dopamine level under nitrogen narcosis. Under general anesthesia, male Sprague-Dawley rats were bilaterally implanted in the striatum with dopamine-sensitive electrodes and, in the SNc, with guide cannulae for drug injections. After recovery from surgery, the striatal dopamine level was quantified using differential pulse voltammetric measurements in freely moving rats. Focal injections of agonists (NMDA/muscimol) and antagonists (AP7/gabazine) of NMDA/GABA(A) receptors were made within SNc. Both normobaric condition and 3 MPa nitrogen pressure were studied. Control experiments confirmed a direct glutamatergic control on the striatal DA level through NMDA receptors. Both direct and indirect GABAergic control through two different types of GABA(A) receptors located on GABAergic interneurons and on DA cells were indicated. Under nitrogen pressure, the decrease in dopamine level (20%) was suppressed by both NMDA and GABA(A) agonist infusion. There was an unexpected increasing DA level, induced by AP7 (about 10%) and gabazine (about 30%). These results indicate that NMDA receptors remain functional and suggest a decreased glutamate release. The findings also describe an increase of GABA(A) receptor-mediated inhibition on DA cells under nitrogen pressure exposure.

  6. Generalized Additive Mixed-Models for Pharmacology Using Integrated Discrete Multiple Organ Co-Culture

    Science.gov (United States)

    Ingersoll, Thomas; Cole, Stephanie; Madren-Whalley, Janna; Booker, Lamont; Dorsey, Russell; Li, Albert; Salem, Harry

    2016-01-01

    Integrated Discrete Multiple Organ Co-culture (IDMOC) is emerging as an in-vitro alternative to in-vivo animal models for pharmacology studies. IDMOC allows dose-response relationships to be investigated at the tissue and organoid levels, yet, these relationships often exhibit responses that are far more complex than the binary responses often measured in whole animals. To accommodate departure from binary endpoints, IDMOC requires an expansion of analytic techniques beyond simple linear probit and logistic models familiar in toxicology. IDMOC dose-responses may be measured at continuous scales, exhibit significant non-linearity such as local maxima or minima, and may include non-independent measures. Generalized additive mixed-modeling (GAMM) provides an alternative description of dose-response that relaxes assumptions of independence and linearity. We compared GAMMs to traditional linear models for describing dose-response in IDMOC pharmacology studies. PMID:27110941

  7. In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone

    Directory of Open Access Journals (Sweden)

    Chiara Arrigoni

    2016-08-01

    Full Text Available Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps.

  8. In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone

    Science.gov (United States)

    Arrigoni, Chiara; Bersini, Simone; Gilardi, Mara; Moretti, Matteo

    2016-01-01

    Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps. PMID:27571063

  9. Generalized Additive Mixed-Models for Pharmacology Using Integrated Discrete Multiple Organ Co-Culture.

    Directory of Open Access Journals (Sweden)

    Thomas Ingersoll

    Full Text Available Integrated Discrete Multiple Organ Co-culture (IDMOC is emerging as an in-vitro alternative to in-vivo animal models for pharmacology studies. IDMOC allows dose-response relationships to be investigated at the tissue and organoid levels, yet, these relationships often exhibit responses that are far more complex than the binary responses often measured in whole animals. To accommodate departure from binary endpoints, IDMOC requires an expansion of analytic techniques beyond simple linear probit and logistic models familiar in toxicology. IDMOC dose-responses may be measured at continuous scales, exhibit significant non-linearity such as local maxima or minima, and may include non-independent measures. Generalized additive mixed-modeling (GAMM provides an alternative description of dose-response that relaxes assumptions of independence and linearity. We compared GAMMs to traditional linear models for describing dose-response in IDMOC pharmacology studies.

  10. The regulation of bone turnover in ameloblastoma using an organotypic in vitro co-culture model

    Science.gov (United States)

    Eriksson, Tuula M; Day, Richard M; Fedele, Stefano; Salih, Vehid M

    2016-01-01

    Ameloblastoma is a rare, odontogenic neoplasm with benign histopathology, but extensive, local infiltrative capacity through the bone tissue it originates in. While the mechanisms of ameloblastoma invasion through the bone and bone absorption are largely unknown, recent investigations have indicated a role of the osteoprotegerin/receptor activator of nuclear factor kappa-B ligand regulatory mechanisms. Here, we present results obtained using a novel in vitro organotypic tumour model, which we have developed using tissue engineering techniques. Using this model, we analysed the expression of genes involved in bone turnover and detected a 700-fold increase in receptor activator of nuclear factor kappa-B ligand levels in the co-culture models with ameloblastoma cells cultured with bone cells. The model described here can be used for gene expression studies, as a basis for drug testing or for a more tailored platform for testing of the behaviour of different ameloblastoma tumours in vitro.

  11. Isolation of mammary epithelial cells from three-dimensional mixed-cell spheroid co-culture.

    Science.gov (United States)

    Xu, Kun; Buchsbaum, Rachel J

    2012-04-30

    -dimensional cultures of mixed cell populations (co-cultures)(16-22). With continued co-culture the cells form spheroids with the fibroblasts clustering in the interior and the epithelial cells largely on the exterior of the spheroids and forming multi-cellular projections into the matrix. Manipulation of the fibroblasts that leads to altered epithelial cell invasiveness can be readily quantified by changes in numbers and length of epithelial projections(23). Furthermore, we have devised a method for isolating epithelial cells out of three-dimensional co-culture that facilitates analysis of the effects of fibroblast exposure on epithelial behavior. We have found that the effects of co-culture persist for weeks after epithelial cell isolation, permitting ample time to perform multiple assays. This method is adaptable to cells of varying malignant potential and requires no specialized equipment. This technique allows for rapid evaluation of in vitro cell models under multiple conditions, and the corresponding results can be compared to in vivo animal tissue models as well as human tissue samples.

  12. Comparing three methods of co-culture of retinal pigment epithelium with progenitor cells derived human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Noushin Amirpour

    2013-01-01

    The adherent cells were morphologically examined using phase contrast microscopy and characterized by immunofluorescent staining and reverse transcription-polymerase chain reaction (RT-PCR Results: Evaluation of immunostaining showed that hESC, highly (>80% can be directed to the RPs fate. Upon co-culture of RPCs with RPE sheet using insert for 2 weeks or by the cell-to-cell contact, these cells differentiated to neural retina and expressed photoreceptor-specific markers. However, in direct co-culture, some mature photoreceptor markers like arrestin expressed in compare with indirect co-culture. Conclusions: The expression of late photoreceptor marker could be improved when RPE cells seeded on RPCs in compare with the use of insert.

  13. Liquid chromatography-mass spectrometry for metabolic footprinting of co-cultures of lactic and propionic acid bacteria

    DEFF Research Database (Denmark)

    Honore, Anders H.; Thorsen, Michael; Skov, Thomas

    2013-01-01

    Co-cultures of specific lactic and propionic acid bacteria have been shown to have an antagonistic effect against yeast and moulds in dairy systems. In studies of these co-cultures by bioassay-guided fractionation and analysis, numerous compounds have been reported to inhibit yeast and moulds...... could be a potent approach to elucidation of the mechanism. The purpose of this review is to discuss the two pre-requisites for such a study-the compound classes expected in the co-cultures, and on the basis of these, the most suitable analytical technique(s). Ultrahigh-performance liquid chromatography....... The strategy recommended in this study does not include all compound classes, and suggestions for supplementary methods are listed....

  14. Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum.

    Science.gov (United States)

    Kiyoshi, Keiji; Furukawa, Masataka; Seyama, Tomoko; Kadokura, Toshimori; Nakazato, Atsumi; Nakayama, Shunichi

    2015-06-01

    The co-culture of cellulolytic Clostridium thermocellum NBRC 103400 and butanol-producing Clostridium saccharoperbutylacetonicum strain N1-4 produced 5.5 g/L of butanol from 40 g/L of delignified rice straw pretreated with 1% (wt/vol) NaOH. The addition of cellulase (100 U/g biomass) in a co-culture system significantly increased butanol production to 6.9 g/L using 40 g/L of delignified rice straw. Compared to the control, this increase in butanol production was attributed to the enhancement of exoglucanase activity on lignocellulose degradation in experimental samples. The results showed that the co-culture system in conjunction with enhanced exoglucanase activity resulted in cost-effective butanol production from delignified rice straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Effects of Neuregulin on Synapse Formation in Primary Muscle/Nerve Co-Cultures

    Directory of Open Access Journals (Sweden)

    Jessica Walsh

    2007-06-01

    Full Text Available In development, motor neurons innervate maturing myotubes to form the neuromuscular junction (NMJ. During this process, the nerve terminal secretes a protein called neuregulin (NRG1. NRG1 acts as a signal which increases the number of acetylcholine receptors (AChRs on the postsynaptic membrane. NRG1 binds to receptors on the surface of the muscle, known as erbB receptors. The binding of NRG1 causes the erbB receptor to auto-phosphorylate (Fu, 1999. As a result, there is an increase in transcription of the gene for AchRs, integral membrane proteins that respond to the binding of the neurotransmitter acetylcholine. In order to study the effects of NRG1 on early stages of synapse formation, we prepared co-cultures of dissociated muscle cells from postnatal day 1 (P1 mice and neural tube explants from embryonic day 11 (E11 mice. Silicone chambers were created as a system for growing dissociated muscle cells and neuronal explants in co-culture (Loeb, 1999. ErbB inhibitor (PD 158780 was added to chambers prior to the formation of the NMJ. After one week the tissue was fixed and stained to visualize the synapses. Based on the results of two experiments, the chambers that were not treated with the inhibitor had an average of 10 times more AchR (+ contacts. Therefore, at the time point studied, it appears that NRG1 signaling through the erbB receptor tyrosine kinases is necessary for the formation of AchR (+ receptor contacts at the motor terminal in the post-synaptic membrane.

  16. Porphyromonas gingivalis displays a competitive advantage over Aggregatibacter actinomycetemcomitans in co-cultured biofilm.

    Science.gov (United States)

    Takasaki, K; Fujise, O; Miura, M; Hamachi, T; Maeda, K

    2013-06-01

    Biofilm formation occurs through the events of cooperative growth and competitive survival among multiple species. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are important periodontal pathogens. The aim of this study was to demonstrate competitive or cooperative interactions between these two species in co-cultured biofilm. P. gingivalis strains and gingipain mutants were cultured with or without A. actinomycetemcomitans. Biofilms formed on glass surfaces were analyzed by crystal violet staining and colony counting. Preformed A. actinomycetemcomitans biofilms were treated with P. gingivalis culture supernatants. Growth and proteolytic activities of gingipains were also determined. Monocultured P. gingivalis strains exhibited a range of biofilm-formation abilities and proteolytic activities. The ATCC33277 strain, noted for its high biofilm-formation ability and proteolytic activity, was found to be dominant in biofilm co-cultured with A. actinomycetemcomitans. In a time-resolved assay, A. actinomycetemcomitans was primarily the dominant colonizer on a glass surface and subsequently detached in the presence of increasing numbers of ATCC33277. Detachment of preformed A. actinomycetemcomitans biofilm was observed by incubation with culture supernatants from highly proteolytic strains. These results suggest that P. gingivalis possesses a competitive advantage over A. actinomycetemcomitans. As the required biofilm-formation abilities and proteolytic activities vary among P. gingivalis strains, the diversity of the competitive advantage is likely to affect disease recurrence during periodontal maintenance. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Using a co-culture microsystem for cell migration under fluid shear stress.

    Science.gov (United States)

    Yeh, Chia-Hsien; Tsai, Shen-Hsing; Wu, Li-Wha; Lin, Yu-Cheng

    2011-08-01

    We have successfully developed a microsystem to co-cultivate two types of cells with a minimum defined gap of 50 μm, and to quantitatively study the impact of fluid shear stress on the mutual influence of cell migration velocity and distance. We used the hydrostatic pressure to seed two different cells, endothelial cells (ECs) and smooth muscle cells (SMCs), on opposite sides of various gap sizes (500 μm, 200 μm, 100 μm, and 50 μm). After cultivating the cells for 12 h and peeling the co-culture microchip from the culture dish, we studied the impacts of gap size on the migration of either cell type in the absence or presence of fluid shear stress (7 dyne cm(-2) and 12 dyne cm(-2)) influence. We found that both gap size and shear stress have profound influence on cell migration. Smaller gap sizes (100 μm and 50 μm) significantly enhanced cell migration, suggesting a requirement of an effective concentration of released factor(s) by either cell type in the gap region. Flow-induced shear stress delayed the migration onset of either cell type in a dose-dependent manner regardless of the gap size. Moreover, shear stress-induced decrease of cell migration becomes evident when the gap size was 500 μm. We have developed a co-culture microsystem for two kinds of cells and overcome the conventional difficulties in observation and mixed culture, and it would have more application for bio-manipulation and tissue repair engineering.

  18. Electrolytic valving isolation of cell co-culture microenvironment with controlled cell pairing ratios.

    Science.gov (United States)

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2014-12-21

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial-temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we have presented a cell-cell interaction microfluidic platform that can accurately control the co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We have verified that the electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we have performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays were successfully performed which showed that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells.

  19. Inference of Interactions in Cyanobacterial-Heterotrophic Co-Cultures via Transcriptome Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Beliaev, Alex S.; Romine, Margaret F.; Serres, Margaret; Bernstein, Hans C.; Linggi, Bryan E.; Markillie, Lye Meng; Isern, Nancy G.; Chrisler, William B.; Kucek, Leo A.; Hill, Eric A.; Pinchuk, Grigoriy; Bryant, Donald A.; Wiley, H. S.; Fredrickson, Jim K.; Konopka, Allan

    2014-04-29

    We employed deep sequencing technology to identify transcriptional adaptation of the euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 and the marine facultative aerobe Shewanella putrefaciens W3-18-1 to growth in a co-culture and infer the effect of carbon flux distributions on photoautotroph-heterotroph interactions. The overall transcriptome response of both organisms to co-cultivation was shaped by their respective physiologies and growth constraints. Carbon limitation resulted in the expansion of metabolic capacities which was manifested through the transcriptional upregulation of transport and catabolic pathways. While growth coupling occurred via lactate oxidation or secretion of photosynthetically fixed carbon, there was evidence of specific metabolic interactions between the two organisms. On one hand, the production and excretion of specific amino acids (methionine and alanine) by the cyanobacterium correlated with the putative downregulation of the corresponding biosynthetic machinery of Shewanella W3-18-1. On the other hand, the broad and consistent decrease of mRNA levels for many Fe-regulated Synechococcus 7002 genes during co-cultivation suggested increased Fe availability as well as more facile and energy-efficient mechanisms for Fe acquisition by the cyanobacterium. Furthermore, evidence pointed at potentially novel interactions between oxygenic photoautotrophs and heterotrophs related to the oxidative stress response as transcriptional patterns suggested that Synechococcus 7002 rather than Shewanella W3-18-1 provided scavenging functions for reactive oxygen species under co-culture conditions. This study provides an initial insight into the complexity of photoautotrophic-heterotrophic interactions and brings new perspectives of their role in the robustness and stability of the association.

  20. Expression profile of germ stem cell-specific genes in human spermatogonial stem cells after co culture with sertoli cells

    Directory of Open Access Journals (Sweden)

    Maria Zahiri

    2014-05-01

    Full Text Available Background: Human spermatogonial stem cells (SSCs, are the foundation of spermatogenesis. Because of low number and lack of significant marker in human SSCs, studying their characteristics, could provide better understanding about the biology of male fertility. This study was designed to examine the effects of in vitro co-culture with sertoli cells on SSC colonization and germ cells specific gene expression of human spermatogonial stem cells. Material and Methods: Testicular cells were isolated from testis biopsies by using two step enzymatic digestion and differential plating. two culture system were designed: co-culture with patient Sertoli cells and culture of SSC without co-culture(as control group. The number and diameter of colonies were evaluated during 3 weeks of culture. The expression of alpha 6 integrin, beta1 integrin and PLZF, as germ stem cell specific markers, was assessed using quantitative RT-PCR. Statistical analysis was performed using one way ANOVA in SPSS vesion 16 software with 95% Confidence interval . Result: Our results were showed that the number and diameter of colonies increased significantly in co-culture with sertoli cells (P<0.05. The expression profile of genes in 2nd and 3rd weeks of culture revealed that there is significant higher expression of germ stem cell markers in our co-culture group versus control group. Conclusion: Based on the optimal effects of sertoli cells on spermatogonial stem cells, co culture of the human SSCs with the feeder layer sertoli may be used as a suitable method for the enrichment of human spermatogonial stem cells.

  1. Development of an Insert Co-culture System of Two Cellular Types in the Absence of Cell-Cell Contact.

    Science.gov (United States)

    Renaud, Justine; Martinoli, Maria-Grazia

    2016-07-17

    The role of secreted soluble factors in the modification of cellular responses is a recurrent theme in the study of all tissues and systems. In an attempt to make straightforward the very complex relationships between the several cellular subtypes that compose multicellular organisms, in vitro techniques have been developed to help researchers acquire a detailed understanding of single cell populations. One of these techniques uses inserts with a permeable membrane allowing secreted soluble factors to diffuse. Thus, a population of cells grown in inserts can be co-cultured in a well or dish containing a different cell type for evaluating cellular changes following paracrine signaling in the absence of cell-cell contact. Such insert co-culture systems offer various advantages over other co-culture techniques, namely bidirectional signaling, conserved cell polarity and population-specific detection of cellular changes. In addition to being utilized in the field of inflammation, cancer, angiogenesis and differentiation, these co-culture systems are of prime importance in the study of the intricate relationships that exist between the different cellular subtypes present in the central nervous system, particularly in the context of neuroinflammation. This article offers general methodological guidelines in order to set up an experiment in order to evaluating cellular changes mediated by secreted soluble factors using an insert co-culture system. Moreover, a specific protocol to measure the neuroinflammatory effects of cytokines secreted by lipopolysaccharide-activated N9 microglia on neuronal PC12 cells will be detailed, offering a concrete understanding of insert co-culture methodology.

  2. Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures.

    Science.gov (United States)

    Wang, Mingyu; Zhao, Qi; Li, Ling; Niu, Kangle; Li, Yi; Wang, Fangzhong; Jiang, Baojie; Liu, Kuimei; Jiang, Yi; Fang, Xu

    2016-10-01

    Lignocellulosic biohydrogen is a promising renewable energy source that could be a potential alternative to the unsustainable fossil fuel-based energy. Biohydrogen production could be performed by Clostridium thermocellum that is the fastest known cellulose-degrading bacterium. Previous investigations have shown that the co-culture of C. thermocellum JN4 and a non-cellulolytic bacterium Thermoanaerobacterium thermosaccharolyticum GD17 produces more hydrogen than the C. thermocellum JN4 mono-culture, but the mechanism of this improvement is unknown. In this work, we carried out genomic and evolutionary analysis of hydrogenase-coding genes in C. thermocellum and T. thermosaccharolyticum, identifying one Ech-type [NiFe] hydrogenase complex in each species, and, respectively, five and four monomeric or multimeric [FeFe] hydrogenases in the two species. Further transcriptional analysis showed hydrogenase-coding genes in C. thermocellum are regulated by carbon sources, while hydrogenase-coding genes in T. thermosaccharolyticum are not. However, comparison between transcriptional abundance of hydrogenase-coding genes in mono- and co-cultures showed the co-culturing condition leads to transcriptional changes of hydrogenase-coding genes in T. thermosaccharolyticum but not C. thermocellum. Further metabolic analysis showed T. thermosaccharolyticum produces H2 at a rate 4-12-fold higher than C. thermocellum. These findings lead to the suggestion that the improvement of H2 production in the co-culture over mono-culture should be attributed to changes in T. thermosaccharolyticum but not C. thermocellum. Further suggestions can be made that C. thermocellum and T. thermosaccharolyticum perform highly specialized tasks in the co-culture, and optimization of the co-culture for more lignocellulosic biohydrogen production should be focused on the improvement of the non-cellulolytic bacterium.

  3. Ventral striatal plasticity and spatial memory.

    Science.gov (United States)

    Ferretti, Valentina; Roullet, Pascal; Sargolini, Francesca; Rinaldi, Arianna; Perri, Valentina; Del Fabbro, Martina; Costantini, Vivian J A; Annese, Valentina; Scesa, Gianluigi; De Stefano, Maria Egle; Oliverio, Alberto; Mele, Andrea

    2010-04-27

    Spatial memory formation is a dynamic process requiring a series of cellular and molecular steps, such as gene expression and protein translation, leading to morphological changes that have been envisaged as the structural bases for the engram. Despite the role suggested for medial temporal lobe plasticity in spatial memory, recent behavioral observations implicate specific components of the striatal complex in spatial information processing. However, the potential occurrence of neural plasticity within this structure after spatial learning has never been investigated. In this study we demonstrate that blockade of cAMP response element binding protein-induced transcription or inhibition of protein synthesis or extracellular proteolytic activity in the ventral striatum impairs long-term spatial memory. These findings demonstrate that, in the ventral striatum, similarly to what happens in the hippocampus, several key molecular events crucial for the expression of neural plasticity are required in the early stages of spatial memory formation.

  4. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission.

    Science.gov (United States)

    Martire, Alberto; Tebano, Maria Teresa; Chiodi, Valentina; Ferreira, Samira G; Cunha, Rodrigo A; Köfalvi, Attila; Popoli, Patrizia

    2011-01-01

    An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.

  5. Alterations in nigral NMDA and GABAA receptor control of the striatal dopamine level after repetitive exposures to nitrogen narcosis.

    Science.gov (United States)

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2008-07-01

    Nitrogen pressure exposure in rats results in decreased dopamine (DA) release at the striatal terminals of the substantia nigra pars compacta (SNc) dopaminergic neurons, demonstrating the narcotic potency of nitrogen. This effect is attributed to decreased excitatory and increased inhibitory inputs to dopaminergic neurons, involving a change in NMDA and GABA(A) receptor function. We investigated whether repetitive exposures to nitrogen modify the excitatory and inhibitory control of the dopaminergic nigro-striatal pathway. We used voltammetry to measure dopamine levels in freely-moving rats, implanted with dopamine-sensitive electrodes in the striatum. NMDA/GABA(A) receptor agonists (NMDA/muscimol) and antagonists (AP7/gabazine) were administered through a guide-cannula into the SNc, and their effects on striatal dopamine levels were measured under normobaric conditions, before and after five repetitive exposures to 1 MPa nitrogen. NMDA-mediated dopamine release was greater following repetitive exposures, AP7-mediated inhibition of glutamatergic input was blocked, suggesting that NMDA receptor sensitivity was increased and glutamate release reduced. Muscimol did not modify dopamine levels following repetitive exposures, whereas the effect of gabazine was greater after exposures than before. This suggested that interneuronal GABA(A) receptors were desensitized, leading to an increased GABAergic input at dopaminergic cells. Thus, repetitive nitrogen exposure induced persistent changes in glutamatergic and GABAergic control of dopaminergic neurons, resulting in decreased activity of the nigrostriatal pathway.

  6. Phasic-like stimulation of the medial forebrain bundle augments striatal gene expression despite methamphetamine-induced partial dopamine denervation.

    Science.gov (United States)

    Howard, Christopher D; Pastuzyn, Elissa D; Barker-Haliski, Melissa L; Garris, Paul A; Keefe, Kristen A

    2013-05-01

    Methamphetamine-induced partial dopamine depletions are associated with impaired basal ganglia function, including decreased preprotachykinin mRNA expression and impaired transcriptional activation of activity-regulated, cytoskeleton-associated (Arc) gene in striatum. Recent work implicates deficits in phasic dopamine signaling as a potential mechanism linking methamphetamine-induced dopamine loss to impaired basal ganglia function. This study thus sought to establish a causal link between phasic dopamine transmission and altered basal ganglia function by determining whether the deficits in striatal neuron gene expression could be restored by increasing phasic dopamine release. Three weeks after pretreatment with saline or a neurotoxic regimen of methamphetamine, rats underwent phasic- or tonic-like stimulation of ascending dopamine neurons. Striatal gene expression was examined using in situ hybridization histochemistry. Phasic-like, but not tonic-like, stimulation induced immediate-early genes Arc and zif268 in both groups, despite the partial striatal dopamine denervation in methamphetamine-pretreated rats, with the Arc expression occurring in presumed striatonigral efferent neurons. Phasic-like stimulation also restored preprotachykinin mRNA expression. These results suggest that disruption of phasic dopamine signaling likely underlies methamphetamine-induced impairments in basal ganglia function, and that restoring phasic dopamine signaling may be a viable approach to manage long-term consequences of methamphetamine-induced dopamine loss on basal ganglia functions.

  7. Assessment of striatal & postural deformities in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Sanjay Pandey

    2016-01-01

    Interpretation & conclusions: Our results showed that striatal and postural deformities were common and present in about half of the patients with PD. These deformities we more common in patients with advanced stage of PD.

  8. Striatal dysfunction in attention deficit and hyperkinetic disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lou, H.C.; Henriksen, L.; Bruhn, P.; Borner, H.; Nielsen, J.B.

    1989-01-01

    We have previously reported that periventricular structures are hypoperfused in attention deficit and hyperactivity disorder (ADHD). This study has expanded the number of patients, who were divided into two groups: six patients with pure ADHD, and 13 patients with ADHD in combination with other neurologic symptoms. By using xenon 133 inhalation and emission tomography, the regional cerebral blood flow distribution was determined and compared with a control group. Striatal regions were found to be hypoperfused and, by inference, hypofunctional in both groups. This hypoperfusion was statistically significant in the right striatum in ADHD, and in both striatal regions in ADHD with other neuropsychologic and neurologic symptoms. The primary sensory and sensorimotor cortical regions were highly perfused. Methylphenidate increased flow to striatal and posterior periventricular regions, and tended to decrease flow to primary sensory regions. Low striatal activity, partially reversible with methylphenidate, appears to be a cardinal feature in ADHD.

  9. Plasmalogen Augmentation Reverses Striatal Dopamine Loss in MPTP Mice.

    Directory of Open Access Journals (Sweden)

    Edith Miville-Godbout

    Full Text Available Plasmalogens are a class of glycerophospholipids shown to play critical roles in membrane structure and function. Decreased plasmalogens are reported in the brain and blood of Parkinson's disease (PD patients. The present study investigated the hypothesis that augmenting plasmalogens could protect striatal dopamine neurons that degenerate in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP treatment in mice, a PD model. First, in a pre-treatment experiment male mice were treated for 10 days with the docosahexaenoic acid (DHA-plasmalogen precursor PPI-1011 (10, 50 and 200 mg/kg. On day 5 mice received MPTP and were killed on day 11. Next, in a post-treatment study, male mice were treated with MPTP and then received daily for 5 days PPI-1011 (5, 10 and 50 mg/kg. MPTP treatment reduced serum plasmalogen levels, striatal contents of dopamine (DA and its metabolites, serotonin, DA transporter (DAT and vesicular monoamine transporter 2 (VMAT2. Pre-treatment with PPI-1011 (10 and 50 mg/kg prevented all MPTP-induced effects. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding. Post-treatment with PPI-1011 prevented all MPTP-induced effects at 50 mg/kg but not at lower doses. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding in the post-treatment experiment. PPI-1011 treatment (10 days at 5, 10 and 50 mg/kg of intact mice left unchanged striatal biogenic amine contents. These data demonstrate that treatment with a plasmalogen precursor is capable of protecting striatal dopamine markers in an animal model of PD.

  10. Application of neural micro-transplantation technique on therapy of excitotoxic striatal lesion of rat model%神经微移植技术在兴奋毒性纹状体毁损大鼠模型移植治疗中的应用及价值

    Institute of Scientific and Technical Information of China (English)

    刘驰; 刘杰; 郑自龙; 蒋伟

    2012-01-01

    Objective To compare the number of DARPP-32 positive cells yield in the grafts based on the application of single cell suspension by neural micro-transplantation technique and by traditional cell delivery technique and to explore effects and mechanisms of different approaches.Methods Cells derived from the whole ganglionic eminence of E15 rat embryos,ubiquitously expressing Green Fluorescent Protein(GFP) were implanted into unilaterally QA-lesioned rat striatum in a single-tract with an ultra-thin glass capillary with an outer diameter of 50 μm or using traditional cannula tip with a diameter of 500 μm.Results Histological assessment at 4 months after transplantation showed that there was about two-fold DARRP-32 positive striatal-like neurons in the micro-transplantation group(TT group) than that in the traditional group(MT group).Total graft volume was similar in both groups[(2.8±0.2) mm3 vs(2.5±0.4)mm3,F =0.25,P > 0.05].And DARRP-32positive plaque volume[(0.6±0.1) mm3 vs(0.6±0.2) mm3,F =0.90,P > 0.05]and TH staining plaque volume[(1.0±0.1) mm3 vs(0.7±0.1)mm3,F =1.44,P > 0.05]also had the same performance in both groups.Number of DARRP-32 positive cells was calculated by Abercrombie correction formula,and the result showed that the number of DARRP-32 positive cells in MT group was two-fold of that in TT group[(20.1 ×103±1.2 × 103) vs(9.8 × 103±3.2 × 103),F =8.62,P < 0.05].Higher DARRP-32 positive cells in MT group indicated that grafts had a better condition of growth and development.Conclusion Micro-transplantation approach can increase the number of new born striatal-like neurons,potentially due to the enlargement of the graft-host border area intensifying the graft's exposure to host derived factors and the minimized mechanical injury.%目的 基于单细胞悬液的应用分别计数由神经微移植(MT)技术及传统移植(TT)技术注入模型纹状体后移植物中DARPP-32阳性细胞,探讨不同效果产生的技

  11. Permeability of PEGylated Immunoarsonoliposomes Through In Vitro Blood Brain Barrier-Medulloblastoma Co-culture Models for Brain Tumor Therapy

    NARCIS (Netherlands)

    Al-Shehri, A.; Favretto, M.E.; Ioannou, P.V.; Romero, I.A.; Couraud, P.O.; Weksler, B.B.; Parker, T.L.; Kallinteri, P.

    2015-01-01

    PURPOSE: Owing to restricted access of pharmacological agents into the brain due to blood brain barrier (BBB) there is a need: 1. to develop a more representative 3-D-co-culture model of tumor-BBB interaction to investigate drug and nanoparticle transport into the brain for diagnostic and therapeuti

  12. Interplay between human microglia and neural stem/progenitor cells in an allogeneic co-culture model.

    Science.gov (United States)

    Liu, Jia; Hjorth, Erik; Zhu, Mingqin; Calzarossa, Cinzia; Samuelsson, Eva-Britt; Schultzberg, Marianne; Åkesson, Elisabet

    2013-11-01

    Experimental neural cell therapies, including donor neural stem/progenitor cells (NPCs) have been reported to offer beneficial effects on the recovery after an injury and to counteract inflammatory and degenerative processes in the central nervous system (CNS). The interplay between donor neural cells and the host CNS still to a large degree remains unclear, in particular in human allogeneic conditions. Here, we focused our studies on the interaction of human NPCs and microglia utilizing a co-culture model. In co-cultures, both NPCs and microglia showed increased survival and proliferation compared with mono-cultures. In the presence of microglia, a larger subpopulation of NPCs expressed the progenitor cell marker nestin, whereas a smaller group of NPCs expressed the neural markers polysialylated neural cell adhesion molecule, A2B5 and glial fibrillary acidic protein compared with NPC mono-cultures. Microglia thus hindered differentiation of NPCs. The presence of human NPCs increased microglial phagocytosis of latex beads. Furthermore, we observed that the expression of CD200 molecules on NPCs and the CD200 receptor protein on microglia was enhanced in co-cultures, whereas the release of transforming growth factor-β was increased suggesting anti-inflammatory features of the co-cultures. To conclude, the interplay between human allogeneic NPCs and microglia, significantly affected their respective proliferation and phenotype. Neural cell therapy including human donor NPCs may in addition to offering cell replacement, modulate host microglial phenotypes and functions to benefit neuroprotection and repair.

  13. Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems.

    Science.gov (United States)

    Unger, Ronald E; Dohle, Eva; Kirkpatrick, C James

    2015-11-01

    One of the major problems with bone tissue engineering is the development of a rapid vascularization after implantation to supply the growing osteoblast cells with the nutrients to grow and survive as well as to remove waste products. It has been demonstrated that capillary-like structures produced in vitro will anastomose rapidly after implantation and become functioning blood vessels. For this reason, in recent years many studies have examined a variety of human osteoblast and endothelial cell co-culture systems in order to distribute osteoblasts on all parts of the bone scaffold and at the same time provide conditions for the endothelial cells to migrate to form a network of capillary-like structures throughout the osteoblast-colonized scaffold. The movement and proliferation of endothelial cells to form capillary-like structures is known as angiogenesis and is dependent on a variety of pro-angiogenic factors. This review summarizes human 2- and 3-D co-culture models to date, the types and origins of cells used in the co-cultures and the proangiogenic factors that have been identified in the co-culture models.

  14. Co-Culture of Early Embryo with Human Decidual Stromal Cells in vitro by Improvement of Early Embryo Development

    Institute of Scientific and Technical Information of China (English)

    YAN Jie; ZHU Guijin; LIU Jianxin; AI Jihui

    2000-01-01

    An early embryo co-culture system with human decidual stromal cells was established to study its effect on early embryonic cleavage and growth in vitro. Three hundred and eight 2-cell mouse embryos were co-cultured with human decidual stromal cell monolayer in MEM+0.4%bovine serum albumin (BSA) and 163 embryos cultured in MEM+15 % FCS alone as control. Among the mouse 2-cell embryos co-cultured with human decidual stromal cells, 72.73% developed to the morula stage and 67.21% cavitated to blastocysts with 59.74 % hatching, as compared with 61.34% to morula stage, 48.47% to blastocysts and none hatching in the controls,respectively. Co-cultured embryos cleaved slightly faster than controls and showed no or less fragmentation than those in the control. These results suggested that human decidual stromal cells can support early embryonic development and yield a reasonable number of embryos with good quality up to blastocyst stage.

  15. Multi-strain co-cultures surpass blends for broad spectrum biological control of maladies of potatoes in storage

    Science.gov (United States)

    Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 have been documented to suppress four important problems in potato storages — dry rot, late blight, pink rot, and sprouting. This research investigates the efficacy and consistency of strain mixtures produced by co-culturing strains t...

  16. Impact of Co-Culturing with Fractionated Carbon-Ion-Irradiated Cancer Cells on Bystander Normal Cells and Their Progeny.

    Science.gov (United States)

    Autsavapromporn, Narongchai; Liu, Cuihua; Konishi, Teruaki

    2017-09-01

    The purpose of this study was to compare the biological effects of fractionated doses versus a single dose of high-LET carbon ions in bystander normal cells, and determine the effect on their progeny using the layered tissue co-culture system. Briefly, confluent human glioblastoma (T98G) cells received a single dose of 6 Gy or three daily doses of 2 Gy carbon ions, which were then seeded on top of an insert with bystander normal skin fibroblasts (NB1RGB) growing underneath. Cells were co-cultured for 6 h or allowed to grow for 20 population doublings, then harvested and assayed for different end points. A single dose of carbon ions resulted in less damage in bystander normal NB1RGB cells than the fractionated doses. In contrast, the progeny of bystander NB1RGB cells co-cultured with T98G cells exposed to fractionated doses showed less damage than progeny from bystander cells co-cultured with single dose glioblastoma cells. Furthermore, inhibition of gap junction communication demonstrated its involvement in the stressful effects in bystander cells and their progeny. These results indicate that dose fractionation reduced the late effect of carbon-ion exposure in the progeny of bystander cells compared to the effect in the initial bystander cells.

  17. Co-culturing Chlorella minutissima with Escherichia coli can increase neutral lipid production and improve biodiesel quality.

    Science.gov (United States)

    Higgins, Brendan T; Labavitch, John M; VanderGheynst, Jean S

    2015-09-01

    Lipid productivity and fatty acid composition are important metrics for the production of high quality biodiesel from algae. Our previous results showed that co-culturing the green alga Chlorella minutissima with Escherichia coli under high-substrate mixotrophic conditions enhanced both culture growth and crude lipid content. To investigate further, we analyzed neutral lipid content and fatty acid content and composition of axenic cultures and co-cultures produced under autotrophic and mixotrophic conditions. We found that co-culturing C. minutissima with E. coli under high substrate conditions (10 g/L) increased neutral lipid content 1.9- to 3.1-fold and fatty acid content 1.5- to 2.6-fold compared to equivalent axenic C. minutissima cultures. These same co-cultures also exhibited a significant fatty acid shift away from trienoic and toward monoenoic fatty acids thereby improving the quality of the synthesized fatty acids for biodiesel production. Further investigation suggested that E. coli facilitates substrate uptake by the algae and that the resulting growth enhancement induces a nitrogen-limited condition. Enhanced carbon uptake coupled with nitrogen limitation is the likely cause of the observed neutral lipid accumulation and fatty acid profile changes.

  18. Effects of the probiotic Enterococcus faecium NCIMB 10415 on selected lactic acid bacteria and enterobacteria in co-culture.

    Science.gov (United States)

    Starke, I C; Zentek, J; Vahjen, W

    2015-01-01

    Enterococcus faecium NCIMB 10415 is used as a probiotic for piglets and has been shown to modify the porcine intestinal microbiota. However, the mode of action of this probiotic modification is still unclear. One possible explanation is the direct growth inhibiting or stimulating effect of the probiotic on other indigenous bacteria. Therefore, the aim of the present study was to examine the growth interactions of the probiotic with different indigenous porcine bacteria in vitro. Reference strains were cultivated with the probiotic E. faecium strain NCIMB10415 (SF68) in a checkerboard assay with 102 to 105 cells/ml inoculum per strain. Growth kinetics were recorded for 8 h and used to determine specific growth of the co-cultures. Additionally, total DNA was extracted from the co-cultures at the end of the incubation to verify which strain in the co-culture was affected. Co-cultivation with eight Enterococcus spp. tester strains showed strain-specific growth differences. Three of four E. faecium strains were not influenced by the probiotic strain. PCR results showed reduced growth of the probiotic strain in co-culture with E. faecium DSM 6177. Three of four Enterococcus faecalis strains showed reduced specific growth in co-culture with the probiotic strain. However, E. faecalis DSM 20478 impaired growth of the probiotic E. faecium strain. The growth of Lactobacillus johnsonii DSM 10533 and Lactobacillus reuteri DSM 20016 was enhanced in co-culture with the probiotic strain, but co-cultivations with Lactobacillus mucosae DSM13345 or Lactobacillus amylovorus DSM10533 showed no differences. Co-cultures with the probiotic E. faecium showed no impact on the growth rate of four different enterobacterial reference strains (2 strains of Salmonella enterica and 2 strains of Escherichia coli), but PCR results showed reduced cell numbers for a pathogenic E. coli isolate at higher concentration of the probiotic strain. As the in vitro effect of the probiotic E. faecium on

  19. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design.

    Science.gov (United States)

    Chen, Xiu-Min; Elisia, Ingrid; Kitts, David D

    2010-01-01

    The co-culture of Caco-2 and HT29 cells for testing intestinal drug and nutrient transport and metabolism provides the presence of both absorptive and goblet cells, both of which have different culture requirements for optimal growth and function. The research on the co-culture of Caco-2 and HT29 cells is very limited in respect to refining specific conditions that reduce intra- and inter-laboratory variations. In the present study we reported conditions that enable reproducible results to be obtained for drug permeability using in vitro co-culture of Caco-2 and HT29-MTX based on Taguchi experimental design. The selection of four factors that specified cell culture conditions, namely culture medium, seeding time, seeding density, and Caco-2:HT29-MTX ratio on TEER value and individual permeability coefficients of propranolol, ketoprofen and furosemide was established. Based on the selected conditions for co-culture, we also confirmed the functionality of the final chosen culture condition using nitric oxide as an indicator of intestinal inflammation. Choice of cell culture time and culture medium represented two of the most important factors that affected TEER values and the permeability coefficients of the model drugs. On the other hand, the seeding density and the Caco-2:HT29-MTX ratio exerted no significant influence on TEER values and the drug permeability coefficients. No absolute optimal cell culture condition could be obtained for all drugs; however subsequent confirmation experiments concluded that excellent precision for TEER values and drug permeability coefficients was obtained from the two operators using the following combination of conditions, namely an initial seeding density of 1 x 10(5) Caco-2 and HT29-MTX cells/cm(2) at a ratio of 9:1, followed by a 21day culture time in MEM medium. Finally, functionality of the co-culture model system using the above selected in vitro conditions resulted in comparable nitric oxide synthesis to that of a Caco-2

  20. A Neuronal and Astrocyte Co-Culture Assay for High Content Analysis of Neurotoxicity

    Science.gov (United States)

    Anderl, Janet L; Redpath, Stella; Ball, Andrew J

    2009-01-01

    High Content Analysis (HCA) assays combine cells and detection reagents with automated imaging and powerful image analysis algorithms, allowing measurement of multiple cellular phenotypes within a single assay. In this study, we utilized HCA to develop a novel assay for neurotoxicity. Neurotoxicity assessment represents an important part of drug safety evaluation, as well as being a significant focus of environmental protection efforts. Additionally, neurotoxicity is also a well-accepted in vitro marker of the development of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Recently, the application of HCA to neuronal screening has been reported. By labeling neuronal cells with βIII-tubulin, HCA assays can provide high-throughput, non-subjective, quantitative measurements of parameters such as neuronal number, neurite count and neurite length, all of which can indicate neurotoxic effects. However, the role of astrocytes remains unexplored in these models. Astrocytes have an integral role in the maintenance of central nervous system (CNS) homeostasis, and are associated with both neuroprotection and neurodegradation when they are activated in response to toxic substances or disease states. GFAP is an intermediate filament protein expressed predominantly in the astrocytes of the CNS. Astrocytic activation (gliosis) leads to the upregulation of GFAP, commonly accompanied by astrocyte proliferation and hypertrophy. This process of reactive gliosis has been proposed as an early marker of damage to the nervous system. The traditional method for GFAP quantitation is by immunoassay. This approach is limited by an inability to provide information on cellular localization, morphology and cell number. We determined that HCA could be used to overcome these limitations and to simultaneously measure multiple features associated with gliosis - changes in GFAP expression, astrocyte hypertrophy, and astrocyte proliferation - within a single assay. In co-culture

  1. A neuronal and astrocyte co-culture assay for high content analysis of neurotoxicity.

    Science.gov (United States)

    Anderl, Janet L; Redpath, Stella; Ball, Andrew J

    2009-05-05

    High Content Analysis (HCA) assays combine cells and detection reagents with automated imaging and powerful image analysis algorithms, allowing measurement of multiple cellular phenotypes within a single assay. In this study, we utilized HCA to develop a novel assay for neurotoxicity. Neurotoxicity assessment represents an important part of drug safety evaluation, as well as being a significant focus of environmental protection efforts. Additionally, neurotoxicity is also a well-accepted in vitro marker of the development of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Recently, the application of HCA to neuronal screening has been reported. By labeling neuronal cells with betaIII-tubulin, HCA assays can provide high-throughput, non-subjective, quantitative measurements of parameters such as neuronal number, neurite count and neurite length, all of which can indicate neurotoxic effects. However, the role of astrocytes remains unexplored in these models. Astrocytes have an integral role in the maintenance of central nervous system (CNS) homeostasis, and are associated with both neuroprotection and neurodegradation when they are activated in response to toxic substances or disease states. GFAP is an intermediate filament protein expressed predominantly in the astrocytes of the CNS. Astrocytic activation (gliosis) leads to the upregulation of GFAP, commonly accompanied by astrocyte proliferation and hypertrophy. This process of reactive gliosis has been proposed as an early marker of damage to the nervous system. The traditional method for GFAP quantitation is by immunoassay. This approach is limited by an inability to provide information on cellular localization, morphology and cell number. We determined that HCA could be used to overcome these limitations and to simultaneously measure multiple features associated with gliosis - changes in GFAP expression, astrocyte hypertrophy, and astrocyte proliferation - within a single assay. In co-culture

  2. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    Science.gov (United States)

    Nayak, Sunita; Dey, Sancharika; Kundu, Subhas C

    2013-01-01

    The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide) production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  3. Neural cell co-culture induced differentiation of bone marrow mesenchymal stem cells into neuronal-like cells

    Institute of Scientific and Technical Information of China (English)

    Nailong Yang; Lili Xu; Fen Yang

    2008-01-01

    BACKGROUND: It has been previously demonstrated that the neural cell microenvironment has the ability to induce differentiation of bone marrow mesenchymal stem cells (BMSCs) into the neural cells.OBJECTIVE: To establish a co-culture system of human BMSCs and neural cells, and to observe effects of this co-culture system on differentiation of human BMSCs into neural cells.DESIGN, TIME AND SETTING: A comparative observation experiment, performed at the Center Laboratory of the Affiliated Hospital of Medical College Qingdao University from October 2006 to December 2007.MATERIALS: Neural cells were obtained from human fetal brain tissue. BMSCs were harvested from female patients that underwent autonomous stem cell transplantation.METHODS: BMSCs in the co-culture group consisted of BMSCs and third passage neural cells. BMSCs in the control group were solely cultured in vitro.MAIN OUTCOME MEASURES: Morphological changes of BMSCs were observed, and expression of the neuronal specific marker, neuron-specific enolase (NSE), was analyzed by immunofluorescence staining after4-5-day co-culture.RESULTS: The number of neural cells in the co-culture group increased and the cells spread on the culture bottle surface. Radial dendrite formed and connected with each other. NSE-immunoreactive cells were also detected. The positive ratio of NSE-positive cells reached (32.7±11.5)%, with morphological characteristics similar to neuronal cells. Human BMSCs did not express NSE in the control group.CONCLUSION: The microenvironment provided by neurons induced differentiation of BMSCs into neuronal-like cells.

  4. In vitro co-cultures of Pinus pinaster with Bursaphelenchus xylophilus: a biotechnological approach to study pine wilt disease.

    Science.gov (United States)

    Faria, Jorge M S; Sena, Inês; Vieira da Silva, Inês; Ribeiro, Bruno; Barbosa, Pedro; Ascensão, Lia; Bennett, Richard N; Mota, Manuel; Figueiredo, A Cristina

    2015-06-01

    Co-cultures of Pinus pinaster with Bursaphelenchus xylophilus were established as a biotechnological tool to evaluate the effect of nematotoxics addition in a host/parasite culture system. The pinewood nematode (PWN), Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), was detected for the first time in Europe in 1999 spreading throughout the pine forests in Portugal and recently in Spain. Plant in vitro cultures may be a useful experimental system to investigate the plant/nematode relationships in loco, thus avoiding the difficulties of field assays. In this study, Pinus pinaster in vitro cultures were established and compared to in vivo 1 year-old plantlets by analyzing shoot structure and volatiles production. In vitro co-cultures were established with the PWN and the effect of the phytoparasite on in vitro shoot structure, water content and volatiles production was evaluated. In vitro shoots showed similar structure and volatiles production to in vivo maritime pine plantlets. The first macroscopic symptoms of PWD were observed about 4 weeks after in vitro co-culture establishment. Nematode population in the culture medium increased and PWNs were detected in gaps of the callus tissue and in cavities developed from the degradation of cambial cells. In terms of volatiles main components, plantlets, P. pinaster cultures, and P. pinaster with B. xylophilus co-cultures were all β- and α-pinene rich. Co-cultures may be an easy-to-handle biotechnological approach to study this pathology, envisioning the understanding of and finding ways to restrain this highly devastating nematode.

  5. Changes of Proliferation and Apoptosis of K562 Cells after Co-culture with Leukemia Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Katja Karjalainen; Carlos E Bueso-Ramos; Hagop M Kantarjian

    2014-01-01

    Objective:To compare the changes of proliferation and apoptosis of K562 cells after co-culture with human leukemia bone marrow mesenchymal stem cells (LMSC). Methods: The prepared cells were randomly divided into SCG group, SCG+0%FBS group, SCG+0%FBS group and CCG+0%FBS group. Cell counting kit-8 (CCK-8) analytic approach was adopted to detect the optical density (OD) of K562 cells in SCG and CCG groups, and the conditions of K562 cell proliferation under different cultured circumstances were compared. Flow cytometer (FCM) was used to detect the changes of K562 cell cycle after co-culture with LMSC, Annexin V/polyimide (PI) lfuorescence labeling method to detect the changes of K562 cell apoptosis after co-culture with LMSC and serum starvation. Results:After co-culture with LMSC, the proliferation of K562 cells was markedly inhibited, and OD in CCG group was conspicuously lower than that in SCG group. Flow cytometer (FCM) detection on cell cycles demonstrated that after co-culture with LMSC, the proportion of cells in gap phases 0~1 (G0~G1) went up notably, whereas that in phase S went down obviously. Besides, the proportion of cells in phases G2~M was on the rise. K562 cell apoptosis in CCG+0%FBS group was more than in SCG+10%FBS group, and less than in SCG+0%FBS group, indicating LMSC had the function of resisting leukemia cell apoptosis. Conclusion: LMSC exerts the effect of inhibiting the proliferation by blocking K562 cell cycles in phases G0~G1, and inhibiting K562 cell apoptosis induced by serum starvation.

  6. Changes of Proliferation and Apoptosis of K562 Cells after Co-culture with Leukemia Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Katja Karjalainen

    2014-06-01

    Full Text Available Objective: To compare the changes of proliferation and apoptosis of K562 cells after co-culture with human leukemia bone marrow mesenchymal stem cells (LMSC. Methods: The prepared cells were randomly divided into SCG group, SCG + 0%FBS group, SCG + 0%FBS group and CCG + 0%FBS group. Cell counting kit-8 (CCK-8 analytic approach was adopted to detect the optical density (OD of K562 cells in SCG and CCG groups, and the conditions of K562 cell proliferation under different cultured circumstances were compared. Flow cytometer (FCM was used to detect the changes of K562 cell cycle after co-culture with LMSC, Annexin V/polyimide (PI fluorescence labeling method to detect the changes of K562 cell apoptosis after co-culture with LMSC and serum starvation. Results: After co-culture with LMSC, the proliferation of K562 cells was markedly inhibited, and OD in CCG group was conspicuously lower than that in SCG group. Flow cytometer (FCM detection on cell cycles demonstrated that after co-culture with LMSC, the proportion of cells in gap phases 0 - 1 (G0 - G1 went up notably, whereas that in phase S went down obviously. Besides, the proportion of cells in phases G2 - M was on the rise. K562 cell apoptosis in CCG + 0%FBS group was more than in SCG + 10%FBS group, and less than in SCG + 0%FBS group, indicating LMSC had the function of resisting leukemia cell apoptosis. Conclusion: LMSC exerts the effect of inhibiting the proliferation by blocking K562 cell cycles in phases G0 - G1, and inhibiting K562 cell apoptosis induced by serum starvation.

  7. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures.

    Science.gov (United States)

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-06-13

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.

  8. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model.

    Science.gov (United States)

    Liu, Peng-fei; Cao, Yan-wei; Zhang, Shu-dong; Zhao, Yang; Liu, Xiao-guang; Shi, Hao-qing; Hu, Ke-yao; Zhu, Guan-qun; Ma, Bo; Niu, Hai-tao

    2015-11-10

    A tumor microenvironment may promote tumor metastasis and progression through the dynamic interplay between neoplastic cells and stromal cells. In this work, the most representative and significant stromal cells, fibroblasts, endothelial cells, and macrophages were used as vital component elements and combined with bladder cancer cells to construct a bladder cancer microenvironment simulation system. This is the first report to explore bladder cancer microenvironments based on 4 types of cells co-cultured simultaneously. This simulation system comprises perfusion equipment, matrigel channel units, a medium channel and four indirect contact culture chambers, allowing four types of cells to simultaneously interact through soluble biological factors and metabolites. With this system, bladder cancer cells (T24) with a tendency to form a 'reticular' structure under 3 dimensional culture conditions were observed in real time. The microenvironment characteristics of paracrine interactions and cell motility were successfully simulated in this system. The phenotype change process in stromal cells was successfully reproduced in this system by testing the macrophage effector molecule Arg-1. Arg-1 was highly expressed in the simulated tumor microenvironment group. To develop "precision medicine" in bladder cancer therapy, bladder cancer cells were treated with different clinical 'neo-adjuvant' chemotherapy schemes in this system, and their sensitivity differences were fully reflected. This work provides a preliminary foundation for neo-adjuvant chemotherapy in bladder cancer, a theoretical foundation for tumor microenvironment simulation and promotes individual therapy in bladder cancer patients.

  9. Microalgae Harvest through Fungal Pelletization—Co-Culture of Chlorella vulgaris and Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sarman Oktovianus Gultom

    2014-07-01

    Full Text Available Microalgae harvesting is a labor- and energy-intensive process and new approaches to harvesting microalgae need to be developed in order to decrease the costs. In this study; co-cultivatation of filamentous fungus (Aspergillus niger and microalgae (Chlorella vulgaris to form cell pellets was evaluated under different conditions, including organic carbon source (glucose; glycerol; and sodium acetate concentration; initial concentration of fungal spores and microalgal cells and light. Results showed that 2 g/L of glucose with a 1:300 ratio of fungi to microalgae provided the best culturing conditions for the process to reach >90% of cell harvest efficiency. The results also showed that an organic carbon source was required to sustain the growth of fungi and form the cell pellets. The microalgae/fungi co-cultures at mixotrophic conditions obtained much higher total biomass than pure cultures of each individual strains; indicating the symbiotic relationship between two strains. This can benefit the microbial biofuel production in terms of cell harvest and biomass production.

  10. Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system.

    Science.gov (United States)

    Kim, Jaeyun; Bencherif, Sidi A; Li, Weiwei Aileen; Mooney, David J

    2014-09-01

    Three-dimensional macroporous scaffolds have extensively been studied for cell-based tissue engineering but their use is mostly limited to mechanical support for cell adhesion and growth on the surface of macropores. Here, a templated fabrication method is described to prepare cell-friendly inverse opal-like hydrogels (IOHs) allowing both cell encapsulation within the hydrogel matrix and cell seeding on the surface of macropores. Ionically crosslinked alginate microbeads and photocrosslinkable biocompatible polymers are used as a sacrificial template and as a matrix, respectively. The alginate microbeads are easily removed by a chelating agent, with minimal toxicity for the encapsulated cells during template removal. The outer surface of macropores in IOHs can also provide a space for cell adherence. The cells encapsulated or attached in IOHs are able to remain viable and to proliferate over time. The elastic modulus and cell-adhesion properties of IOHs can be easily controlled and tuned. Finally, it is demonstrated that IOH can be used to co-culture two distinct cell populations in different spatial positions. This cell-friendly IOH system provides a 3D scaffold for organizing different cell types in a controllable microenvironment to investigate biological processes such as stem cell niches or tumor microenvironments.

  11. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation.

    Science.gov (United States)

    Jaganathan, Hamsa; Gage, Jacob; Leonard, Fransisca; Srinivasan, Srimeenakshi; Souza, Glauco R; Dave, Bhuvanesh; Godin, Biana

    2014-10-01

    In this study, we investigate a novel in vitro model to mimic heterogeneous breast tumors without the use of a scaffold while allowing for cell-cell and tumor-fibroblast interactions. Previous studies have shown that magnetic levitation system under conventional culturing conditions results in the formation of three-dimensional (3D) structures, closely resembling in vivo tissues (fat tissue, vasculature, etc.). Three-dimensional heterogeneous tumor models for breast cancer were designed to effectively model the influences of the tumor microenvironment on drug efficiency. Various breast cancer cells were co-cultured with fibroblasts and then magnetically levitated. Size and cell density of the resulting tumors were measured. The model was phenotypically compared to in vivo tumors and examined for the presence of ECM proteins. Lastly, the effects of tumor stroma in the 3D in vitro model on drug transport and efficiency were assessed. Our data suggest that the proposed 3D in vitro breast tumor is advantageous due to the ability to: (1) form large-sized (millimeter in diameter) breast tumor models within 24 h; (2) control tumor cell composition and density; (3) accurately mimic the in vivo tumor microenvironment; and (4) test drug efficiency in an in vitro model that is comparable to in vivo tumors.

  12. Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Chin-Lang; Wu, Jou-Hsien; Lin, Chiu-Yue [BioHydrogen Lab, Graduate Institute of Civil and Hydraulic Engineering, Feng Chia University, Taichung (China); Chang, Jui-Jen [Genomics Research Center, Academia Sinica, Taipei (China); Department of Life Sciences, National Chung Hsing University, Taichung (China); Chin, Wei-Chih; Wen, Fu-Shyan; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University, Taichung (China); Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology, Changhwa (China)

    2009-09-15

    An anaerobic continuous-flow hydrogen fermentor was operated at a hydraulic retention time of 8 h using condensed molasses fermentation solubles (CMS) substrate of 40 g-COD/L. Serum bottles were used for seed micro-flora cultivation and batch hydrogen fermentation tests (CMS substrate concentrations of 10-160 g-COD/L). Three hydrogen-producing bacterial strains Clostridium sporosphaeroides F52, Clostridium tyrobutyricum F4 and Clostridium pasteurianum F40 were isolated from the seed fermentor and used as the seeding microbes in single and mixed-culture cultivations for determining their hydrogen productivity. These strains possessed specific hydrogenase genes that could be detected from CMS-fed hydrogen fermentors and were major hydrogen producers. C. pasteurianum F40 was the dominant strain with a high hydrogen production rate while C. sporosphaeroides F52 may play a main role in degrading carbohydrate and glutamate. These strains could be co-cultivated as a symbiotic mixed-culture process to enhance hydrogen productivity. C. pasteurianum F40 or C. tyrobutyricum F4 co-culture with the glutamate-utilizing strain C. sporosphaeroides F52 efficiently enhanced hydrogen production by 12-220% depending on the substrate CMS concentrations. (author)

  13. Immunochemistry of a keratinocyte-fibroblast co-culture model for reconstruction of human skin.

    Science.gov (United States)

    Fleischmajer, R; MacDonald, E D; Contard, P; Perlish, J S

    1993-09-01

    Our purpose was to determine differentiation markers of an in vitro co-culture model in which fibroblasts grown in a three-dimensional nylon mesh were recombined with human keratinocytes. The cultures were kept for 5 weeks and then processed for electron microscopy and immunochemistry. The specimens revealed an epidermis, a basal lamina, an anchoring zone, and a dermis. Epidermal differentiation was confirmed by the presence of K10-keratin, trichohyalin, and filaggrin. The basal lamina contained Type IV collagen, laminin, nidogen, and heparan sulfate. Type IV collagen, laminin, and nidogen were also noted in the extracellular matrix. Type VI collagen was present in the anchoring zone and also gave a reticulated pattern in the rest of the dermis. There was a heavy signal for tenascin and fibronectin throughout the dermis. Osteonectin was restricted to the epidermis and dermal fibroblasts. Fibrillin stained at the anchoring zone and dermis but elastin and vitronectin were negative, suggesting early formation of elastic fibrils. Collagen fibrils stained for Types I, III, and V, as well as the amino propeptide of Types I and III procollagen, suggesting newly synthesized collagen. Decorin was present throughout the dermis. The model described appears suitable for in vitro reconstruction of the skin and may be useful to study the development of various supramolecular skin structures.

  14. Scanning electron microscopical observation of an osteoblast/osteoclast co-culture on micropatterned orthopaedic ceramics

    Directory of Open Access Journals (Sweden)

    Mansur Halai

    2014-09-01

    Full Text Available In biomaterial engineering, the surface of an implant can influence cell differentiation, adhesion and affinity towards the implant. On contact with an implant, bone marrow–derived mesenchymal stromal cells demonstrate differentiation towards bone forming osteoblasts, which can improve osteointegration. The process of micropatterning has been shown to improve osteointegration in polymers, but there are few reports surrounding ceramics. The purpose of this study was to establish a co-culture of bone marrow–derived mesenchymal stromal cells with osteoclast progenitor cells and to observe the response to micropatterned zirconia toughened alumina ceramics with 30 µm diameter pits. The aim was to establish whether the pits were specifically bioactive towards osteogenesis or were generally bioactive and would also stimulate osteoclastogenesis that could potentially lead to osteolysis. We demonstrate specific bioactivity of micropatterns towards osteogenesis, with more nodule formation and less osteoclastogenesis compared to planar controls. In addition, we found that that macrophage and osteoclast-like cells did not interact with the pits and formed fewer full-size osteoclast-like cells on the pitted surfaces. This may have a role when designing ceramic orthopaedic implants.

  15. Indole production provides limited benefit to Escherichia coli during co-culture with Enterococcus faecalis.

    Science.gov (United States)

    Pringle, Shelly L; Palmer, Kelli L; McLean, Robert J C

    2017-01-01

    Escherichia coli lives in the gastrointestinal tract and elsewhere, where it coexists within a mixed population. Indole production enables E. coli to grow with other gram-negative bacteria as indole inhibits N-acyl-homoserine lactone (AHL) quorum regulation. We investigated whether E. coli indole production enhanced competition with gram-positive Enterococcus faecalis, wherein quorum signaling is mediated by small peptides. During planktonic co-culture with E. faecalis, the fitness and population density of E. coli tnaA mutants (unable to produce indole) equaled or surpassed that of E. coli wt. During biofilm growth, the fitness of both populations of E. coli stabilized around 100 %, whereas the fitness of E. faecalis declined over time to 85-90 %, suggesting that biofilm and planktonic populations have different competition strategies. Media supplementation with indole removed the competitive advantage of E. coli tnaA in planktonic populations but enhanced it in biofilm populations. E. coli wt and tnaA showed similar growth in Luria-Bertani (LB) broth. However, E. coli growth was inhibited in the presence of filter-sterilized spent LB from E. faecalis, with inhibition being enhanced by indole. Similarly, there was also an inhibition of E. faecalis growth by proteinaceous components (likely bacteriocins) from spent culture media from both E. coli strains. We conclude that E. coli indole production is not a universal competition strategy, but rather works against gram-negative, AHL-producing bacteria.

  16. A rapid co-culture stamping device for studying intercellular communication

    Science.gov (United States)

    Hassanzadeh-Barforoushi, Amin; Shemesh, Jonathan; Farbehi, Nona; Asadnia, Mohsen; Yeoh, Guan Heng; Harvey, Richard P.; Nordon, Robert E.; Warkiani, Majid Ebrahimi

    2016-10-01

    Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.

  17. Effect of co-culture and nutrients supplementation on bioremediation of crude petroleum sludge

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Mamilla Prathima; Reddy, Motakatla Venkateswar; Sarma, Ponnapalli Nageswara; Mohan, Srinivasula Reddy Venkata [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad (India); Juwarkar, Asha [Environmental Biotechnology Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur (India)

    2011-10-15

    Ex-situ bioremediation of real-field crude petroleum sludge was evaluated to elucidate the role of co-culture (bioaugmentation) and external nutrients supplementation (biostimulation) under anaerobic microenvironment. Maximum removal of total petroleum hydrocarbons (TPH) was observed by integrating biostimulation with bioaugmentation (R5, 44.01%) followed by bioaugmentation alone (R4, 34.47%), co-substrate supplemented operations [R6, 23.36%; R3, 16.5%; R2, 9.88%] and control (R1, 4.36%). Aromatics fraction showed higher degradation in all the conditions studied. Fate of six selected polycyclic aromatic hydrocarbons (PAHs) was evaluated during bioremediation. Among these, four ring PAHs compounds showed good degradation by integration of biostimulation with bioaugmentation (R5) while bioaugmentation alone (R4) documented good degradation of three ring PAHs. Lower ring PAHs compounds showed good degradation with the application of biostimulation (R6). Fluorescent in situ hybridization (FISH) detected the presence of known PAHs degrading microorganisms viz., Bacillus, Pseudomonas, Acido bacteria, Sulphur reducing bacteria Firmicutes, etc. Application of biostimulation and bioaugmentation strategies alone or in combinations documented noticeable influence on the degradation of petroleum sludge. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs.

    Science.gov (United States)

    Zhang, Lu; He, Aijuan; Yin, Zongqi; Yu, Zheyuan; Luo, Xusong; Liu, Wei; Zhang, Wenjie; Cao, Yilin; Liu, Yu; Zhou, Guangdong

    2014-06-01

    Previously, we had addressed the issues of shape control/maintenance of in vitro engineered human-ear-shaped cartilage. Thus, lack of applicable cell source had become a major concern that blocks clinical translation of this technology. Autologous microtia chondrocytes (MCs) and bone marrow stromal cells (BMSCs) were both promising chondrogenic cells that did not involve obvious donor site morbidity. However, limited cell availability of MCs and ectopic ossification of chondrogenically induced BMSCs in subcutaneous environment greatly restricted their applications in external ear reconstruction. The current study demonstrated that MCs possessed strong proliferation ability but accompanied with rapid loss of chondrogenic ability during passage, indicating a poor feasibility to engineer the entire ear using expanded MCs. Fortunately, the co-transplantation results of MCs and BMSCs (25% MCs and 75% BMSCs) demonstrated a strong chondroinductive ability of MCs to promote stable ectopic chondrogenesis of BMSCs in subcutaneous environment. Moreover, cell labeling demonstrated that BMSCs could transform into chondrocyte-like cells under the chondrogenic niche provided by co-cultured MCs. Most importantly, a human-ear-shaped cartilaginous tissue with delicate structure and proper elasticity was successfully constructed by seeding the mixed cells (MCs and BMSCs) into the pre-shaped biodegradable ear-scaffold followed by 12 weeks of subcutaneous implantation in nude mouse. These results may provide a promising strategy to construct stable ectopic cartilage with MCs and stem cells (BMSCs) for autologous external ear reconstruction.

  19. Striatal dopamine terminals release serotonin after 5-HTP pretreatment: in vivo voltammetric data.

    Science.gov (United States)

    Stamford, J A; Kruk, Z L; Millar, J

    1990-05-07

    Peripheral administration of 5-hydroxytryptophan (5-HTP) to rats causes 'wet dog' shakes and a parallel elevation of brain serotonin (5-HT) levels. The increase in 5-HT concentration does not, however, correlate with the endogenous 5-HT innervation raising the possibility that some 5-HTP is decarboxylated in non-serotonergic cells. In the present study we used in vivo voltammetry to establish whether 5-HTP treatment led to formation of 5-HT as a 'false transmitter' in striatal dopamine (DA) neurons. Fast cyclic voltammetry at carbon fibre microelectrodes (CFMs) was used to monitor striatal monoamine release following electrical stimulation of the median forebrain bundle (MFB). In the absence of any pretreatment DA was the sole compound released by stimulation. However, when DA release was abolished with alpha-methyl-p-tyrosine (AMPT), 5-HTP administration (after peripheral decarboxylase inhibition) caused a dose-dependent release of 5-HT, confirmed by the voltammetric characteristics. Central decarboxylase inhibition prevented release indicating that 5-HTP itself was not released. By monitoring reduction peaks it was possible to record DA and 5-HT release simultaneously at a single CFM. While DA and 5-HT oxidised at the same potential their reduction peaks were separated by approximately 450 mV. It was shown, using this means, that 5-HT was still detectable even when DA release was not abolished by AMPT. DA and 5-HT release showed a significant positive correlation suggesting that they were released from the same nerves. We conclude that, after 5-HTP treatment, 5-HT can be released as a false transmitter from striatal DA neurones.

  20. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation.

    Science.gov (United States)

    Webber, Emily S; Mankin, David E; Cromwell, Howard C

    2016-01-01

    The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats (Rattus norvegicus) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.

  1. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  2. Fibroblasts weaken the anti-tumor effect of gefitinib on co-cultured non-small cell lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yong Xiao; Wang Peiqin; Jiang Tao; Yu Wenchen; Shang Yan; Han Yiping; Zhang Pingping

    2014-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common lung malignancy worldwide.The metastatic potential of NSCLC cells has been shown to be associated with the tumor microenvironment,which consists of tumor cells,stroma,blood vessels,immune infiltrates and the extracellular matrix.Fibroblasts can produce numerous extraceilular matrix molecules and growth factors.Gefitinib has been evaluated as a first-line treatment in selected patients,and it has shown favorable efficacy especially in NSCLC,but it is not effective for everyone.Methods In this study,we examined the antitumor activity of gefitinib on lung fibroblasts co-cultured of lung cancer cells.A series of co-culture experiments that employed cell counting kit-8 (CCK8),transwells,real-time polymerase chain reaction (RT-PCR) and Western blotting with HFL-1 fibroblasts and A549 human lung carcinoma cells were performed to learn more about tumor cell proliferation,migration and invasion; and to determine any change of epithelial mesenchymal transition (EMT)-associated tumor markers vimentin,matrix metallopro-teinase 2 (MMP2) and chemotaxis cytokines receptor 4 (CXCR4) mRNA levels.Results A549 cell proliferation in the presence of HFL-1 cells was not significantly increased compared with A549 cells alone,but A549 cell spheroid body formation was increased after co-culture,and treatment with gefitinib increased further.Our study also revealed that fibroblasts attenuated the lung cancer cell inhibition ratio of migration and invasion after gefitinib treatment in vitro.To further study this mechanism,RT-PCR analysis showed that vimentin,MMP2 and CXCR4 mRNA levels were more highly expressed in the lung cancer cells after co-culture,but did not obviously decrease compared with the control cells following gefitinib treatment.This suggests the mechanism by which fibroblasts attenuate gefitinib-induced expression of EMT-associated tumor markers.Finally,our results demonstrated that co-culture with A549 lung

  3. Cortical-striatal gene expression in neonatal hippocampal lesion (NVHL)-amplified cocaine sensitization.

    Science.gov (United States)

    Chambers, R A; McClintick, J N; Sentir, A M; Berg, S A; Runyan, M; Choi, K H; Edenberg, H J

    2013-07-01

    Cortical-striatal circuit dysfunction in mental illness may enhance addiction vulnerability. Neonatal ventral hippocampal lesions (NVHL) model this dual diagnosis causality by producing a schizophrenia syndrome with enhanced responsiveness to addictive drugs. Rat genome-wide microarrays containing >24 000 probesets were used to examine separate and co-occurring effects of NVHLs and cocaine sensitization (15 mg/kg/day × 5 days) on gene expression within medial prefrontal cortex (MPFC), nucleus accumbens (NAC), and caudate-putamen (CAPU). Two weeks after NVHLs robustly amplified cocaine behavioral sensitization, brains were harvested for genes of interest defined as those altered at P CAPU expression. From 75 named genes altered by NVHL or cocaine, 27 had expression levels that correlated significantly with degree of behavioral sensitization, including 11 downregulated by NVHL in MPFC/NAC, and 10 upregulated by NVHL or cocaine in CAPU. These findings suggest that structural and functional impoverishment of prefrontal-cortical-accumbens circuits in mental illness is associated with abnormal striatal plasticity compounding with that in addictive disease. Polygenetic interactions impacting neuronal signaling and morphology within these networks likely contribute to addiction vulnerability in mental illness.

  4. Cortical–striatal gene expression in neonatal hippocampal lesion (NVHL)-amplified cocaine sensitization

    Science.gov (United States)

    Chambers, R. A.; McClintick, J. N.; Sentir, A. M.; Berg, S. A.; Runyan, M.; Choi, K. H.; Edenberg, H. J.

    2014-01-01

    Cortical–striatal circuit dysfunction in mental illness may enhance addiction vulnerability. Neonatal ventral hippocampal lesions (NVHL) model this dual diagnosis causality by producing a schizophrenia syndrome with enhanced responsiveness to addictive drugs. Rat genome-wide microarrays containing >24 000 probesets were used to examine separate and co-occurring effects of NVHLs and cocaine sensitization (15 mg/kg/day × 5 days) on gene expression within medial prefrontal cortex (MPFC), nucleus accumbens (NAC), and caudate-putamen (CAPU). Two weeks after NVHLs robustly amplified cocaine behavioral sensitization, brains were harvested for genes of interest defined as those altered at P CAPU expression. From 75 named genes altered by NVHL or cocaine, 27 had expression levels that correlated significantly with degree of behavioral sensitization, including 11 downregulated by NVHL in MPFC/NAC, and 10 upregulated by NVHL or cocaine in CAPU. These findings suggest that structural and functional impoverishment of prefrontal-cortical-accumbens circuits in mental illness is associated with abnormal striatal plasticity compounding with that in addictive disease. Polygenetic interactions impacting neuronal signaling and morphology within these networks likely contribute to addiction vulnerability in mental illness. PMID:23682998

  5. Both A1 and A2a purine receptors regulate striatal acetylcholine release.

    Science.gov (United States)

    Brown, S J; James, S; Reddington, M; Richardson, P J

    1990-07-01

    The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.

  6. Striatal indirect pathway contributes to selection accuracy of learned motor actions.

    Science.gov (United States)

    Nishizawa, Kayo; Fukabori, Ryoji; Okada, Kana; Kai, Nobuyuki; Uchigashima, Motokazu; Watanabe, Masahiko; Shiota, Akira; Ueda, Masatsugu; Tsutsui, Yuji; Kobayashi, Kazuto

    2012-09-26

    The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function.

  7. Does human presynaptic striatal dopamine function predict social conformity?

    Science.gov (United States)

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  8. Spatial remapping of cortico-striatal connectivity in Parkinson's disease.

    Science.gov (United States)

    Helmich, Rick C; Derikx, Loes C; Bakker, Maaike; Scheeringa, René; Bloem, Bastiaan R; Toni, Ivan

    2010-05-01

    Parkinson's disease (PD) is characterized by striatal dopamine depletion, especially in the posterior putamen. The dense connectivity profile of the striatum suggests that these local impairments may propagate throughout the whole cortico-striatal network. Here we test the effect of striatal dopamine depletion on cortico-striatal network properties by comparing the functional connectivity profile of the posterior putamen, the anterior putamen, and the caudate nucleus between 41 PD patients and 36 matched controls. We used multiple regression analyses of resting-state functional magnetic resonance imaging data to quantify functional connectivity across different networks. Each region had a distinct connectivity profile that was similarly expressed in patients and controls: the posterior putamen was uniquely coupled to cortical motor areas, the anterior putamen to the pre-supplementary motor area and anterior cingulate cortex, and the caudate nucleus to the dorsal prefrontal cortex. Differences between groups were specific to the putamen: although PD patients showed decreased coupling between the posterior putamen and the inferior parietal cortex, this region showed increased functional connectivity with the anterior putamen. We conclude that dopamine depletion in PD leads to a remapping of cerebral connectivity that reduces the spatial segregation between different cortico-striatal loops. These alterations of network properties may underlie abnormal sensorimotor integration in PD.

  9. Irradiation Can Selectively Kill Tumor Cells while Preserving Erythrocyte Viability in a Co-Culture System.

    Directory of Open Access Journals (Sweden)

    Ming Gong

    Full Text Available An understanding of how to safely apply intraoperative blood salvage (IBS in cancer surgery has not yet been obtained. Here, we investigated the optimal dose of 137Cs gamma-ray irradiation for killing human hepatocarcinoma (HepG2, gastrocarcinoma (SGC7901, and colonic carcinoma (SW620 tumor cells while preserving co-cultured erythrocytes obtained from 14 healthy adult volunteers. HepG2, SGC7901, or SW620 cells were mixed into the aliquots of erythrocytes. After the mixed cells were treated with 137Cs gamma-ray irradiation (30, 50, and 100 Gy, tumor cells and erythrocytes were separated by density gradient centrifugation in Percoll with a density of 1.063 g/ml. The viability, clonogenicity, DNA synthesis, tumorigenicity, and apoptosis of the tumor cells were determined by MTT assay, plate colony formation, 5-ethynyl-2'-deoxyuridine (EdU incorporation, subcutaneous xenograft implantation into immunocompromised mice, and annexin V/7-AAD staining, respectively. The ATP concentration, 2,3-DPG level, free Hb concentration, osmotic fragility, membrane phosphatidylserine externalization, blood gas variables, reactive oxygen species levels, and superoxide dismutase levels in erythrocytes were analyzed. We found that 137Cs gamma-ray irradiation at 50 Gy effectively inhibited the viability, proliferation, and tumorigenicity of HepG2, SGC7901, and SW620 cells without markedly damaging the oxygen-carrying ability or membrane integrity or increasing the oxidative stress of erythrocytes in vitro. These results demonstrated that 50 Gy irradiation in a standard 137Cs blood irradiator might be a safe and effective method of inactivating HepG2, SGC7901, and SW620 cells mixed with erythrocytes, which might help to safely allow IBS in cancer surgery.

  10. Neural circuit mechanism for learning dependent on dopamine transmission: roles of striatal direct and indirect pathways in sensory discrimination.

    Science.gov (United States)

    Kobayashi, Kazuto; Fukabori, Ryoji; Nishizawa, Kayo

    2013-01-01

    The dorsal striatum in basal ganglia circuit mediates learning processes contributing to instrumental motor actions. The striatum receives excitatory inputs from many cortical areas and the thalamic nuclei and dopaminergic inputs from the ventral midbrain and projects to the output nuclei through direct and indirect pathways. The neural mechanism remains unclear as to how these striatofugal pathways control the learning processes of instrumental actions. Here, we addressed the behavioral roles of the two striatofugal pathways in the performance of sensory discrimination by using immunotoxin (IT)-mediated cell targeting. IT targeting of the striatal direct pathway in mutant mice lengthened the response time but did not affect the accuracy of the response selection in visual discrimination. Subregion-specific pathway targeting revealed a delay in motor responses generated by elimination of the direct pathway arising from the dorsomedial striatum (DMS) but not from the dorsolateral striatum (DLS). These findings indicate that the direct pathway, in particular that from the DMS, contributes to the regulation of the response time in visual discrimination. In addition, IT targeting of the striatal indirect pathway originating from the DLS in transgenic rats impaired the accuracy of response selection in auditory discrimination, whereas the response time remained normal. These data demonstrate that the DLS-derived indirect pathway plays an essential role in the control of the selection accuracy of learned motor responses. Our results suggest that striatal direct and indirect pathways act cooperatively to regulate the selection accuracy and response time of learned motor actions in the performance of discriminative learning.

  11. Striatal Signal Transduction and Drug Addiction

    Science.gov (United States)

    Philibin, Scott D.; Hernandez, Adan; Self, David W.; Bibb, James A.

    2011-01-01

    Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over motivated behavior. The need for effective treatments mandates a greater understanding of the causes and identification of new therapeutic targets for drug development. Drugs of abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking. Contributions of brain reward circuitry are being mapped with increasing precision. The role of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the formation of the addicted state are being delineated. Thus we may now consider the role of striatal signal transduction in addiction from a more integrative neurobiological perspective. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium spiny neurons of the striatum. Dopamine receptors important for reward serve as principle targets of drugs abuse, which interact with glutamate receptor signaling critical for reward learning. Complex networks of intracellular signal transduction mechanisms underlying these receptors are strongly stimulated by addictive drugs. Through these mechanisms, repeated drug exposure alters functional and structural neuroplasticity, resulting in transition to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and cAMP represent key second messengers that initiate signaling cascades, which regulate synaptic strength and neuronal excitability. Protein phosphorylation and dephosphorylation are fundamental mechanisms underlying synaptic plasticity that are dysregulated by drugs of abuse. Increased understanding of the regulatory mechanisms by which protein kinases and phosphatases exert their effects during normal reward learning and the addiction process may lead to novel targets and pharmacotherapeutics with increased efficacy in promoting abstinence and decreased side effects, such as interference with natural reward, for drug addiction. PMID

  12. Striatal signal transduction and drug addiction

    Directory of Open Access Journals (Sweden)

    Scott D. Philibin

    2011-09-01

    Full Text Available Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over motivated behavior. The need for effective treatments mandates a greater understanding of the causes and identification of new therapeutic targets for drug development. Drugs of abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking. Contributions of brain reward circuitry are being mapped with increasing precision. The role of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the formation of the addicted state are being delineated. Thus we may now consider the role of striatal signal transduction in addiction from a more integrative neurobiological perspective. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium spiny neurons of the striatum. Dopamine receptors important for reward serve as principle targets of drugs abuse, which interact with glutamate receptor signaling critical for reward learning. Complex networks of intracellular signal transduction mechanisms underlying these receptors are strongly stimulated by addictive drugs. Through these mechanisms, repeated drug exposure alters functional and structural neuroplasticity, resulting in transition to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and cAMP represent key second messengers that initiate signaling cascades, which regulate synaptic strength and neuronal excitability. Protein phosphorylation and dephosphorylation are fundamental mechanisms underlying synaptic plasticity that are dysregulated by drugs of abuse. Increased understanding of the regulatory mechanisms by which protein kinases and phosphatases exert their effects during normal reward learning and the addiction process may lead to novel targets and pharmacotherapeutics with increased efficacy in promoting abstinence and decreased side effects, such as interference with natural reward, for drug

  13. Anti-apoptotic effects of Sonic hedgehog signalling through oxidative stress reduction in astrocytes co-cultured with excretory-secretory products of larval Angiostrongylus cantonensis

    Science.gov (United States)

    Chen, Kuang-Yao; Chiu, Cheng-Hsun; Wang, Lian-Chen

    2017-01-01

    Angiostrongylus cantonensis, the rat lungworm, is an important aetiologic agent of eosinophilic meningitis and meningoencephalitis in humans. Co-culturing astrocytes with soluble antigens of A. cantonensis activated the Sonic hedgehog (Shh) signalling pathway and inhibited the apoptosis of astrocytes via the activation of Bcl-2. This study was conducted to determine the roles of the Shh signalling pathway, apoptosis, and oxidative stress in astrocytes after treatment with excretory-secretory products (ESP) from A. cantonensis fifth-stage larvae. Although astrocyte viability was significantly decreased after ESP treatment, the expression of Shh signalling pathway related proteins (Shh, Ptch-1 and Gli-1) was significantly increased. However, apoptosis in astrocytes was significantly decreased after activation of the Shh signalling pathway. Moreover, superoxide and hydrogen superoxide levels in astrocytes were significantly reduced after the activation of Shh pathway signalling due to increasing levels of the antioxidants catalase and superoxide dismutase. These findings indicate that the anti-apoptotic effects of the Shh signalling pathway in the astrocytes of mice infected with A. cantonensis are due to reduced levels of oxidative stress caused by the activation of antioxidants. PMID:28169282

  14. Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells.

    Directory of Open Access Journals (Sweden)

    Haruka Minami

    Full Text Available The blood brain barrier (BBB is formed by brain microvascular endothelial cells (BMECs and tightly regulates the transport of molecules from blood to neural tissues. In vitro BBB models from human pluripotent stem cell (PSCs-derived BMECs would be useful not only for the research on the BBB development and function but also for drug-screening for neurological diseases. However, little is known about the differentiation of human PSCs to BMECs. In the present study, human induced PSCs (iPSCs were differentiated into endothelial cells (ECs, and further maturated to BMECs. Interestingly, C6 rat glioma cell-conditioned medium (C6CM, in addition to C6 co-culture, induced the differentiation of human iPSC-derived ECs (iPS-ECs to BMEC-like cells, increase in the trans-endothelial electrical resistance, decreased in the dextran transport and up-regulation of gene expression of tight junction molecules in human iPS-ECs. Moreover, Wnt inhibitors attenuated the effects of C6CM. In summary, we have established a simple protocol of the generation of BMEC-like cells from human iPSCs, and have demonstrated that differentiation of iPS-ECs to BMEC-like cells is induced by C6CM-derived signals, including canonical Wnt signals.

  15. Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells.

    Science.gov (United States)

    Minami, Haruka; Tashiro, Katsuhisa; Okada, Atsumasa; Hirata, Nobue; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki; Kawabata, Kenji

    2015-01-01

    The blood brain barrier (BBB) is formed by brain microvascular endothelial cells (BMECs) and tightly regulates the transport of molecules from blood to neural tissues. In vitro BBB models from human pluripotent stem cell (PSCs)-derived BMECs would be useful not only for the research on the BBB development and function but also for drug-screening for neurological diseases. However, little is known about the differentiation of human PSCs to BMECs. In the present study, human induced PSCs (iPSCs) were differentiated into endothelial cells (ECs), and further maturated to BMECs. Interestingly, C6 rat glioma cell-conditioned medium (C6CM), in addition to C6 co-culture, induced the differentiation of human iPSC-derived ECs (iPS-ECs) to BMEC-like cells, increase in the trans-endothelial electrical resistance, decreased in the dextran transport and up-regulation of gene expression of tight junction molecules in human iPS-ECs. Moreover, Wnt inhibitors attenuated the effects of C6CM. In summary, we have established a simple protocol of the generation of BMEC-like cells from human iPSCs, and have demonstrated that differentiation of iPS-ECs to BMEC-like cells is induced by C6CM-derived signals, including canonical Wnt signals.

  16. A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration.

    Directory of Open Access Journals (Sweden)

    Yunqiang Xu

    Full Text Available As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the body's natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs and adipose-derived stem cells (ADSCs as seed cells and introduced them into a silk fibroin (SF/collagen scaffold to construct a tissue-engineered nerve conduit (TENC. Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair.

  17. A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration.

    Science.gov (United States)

    Xu, Yunqiang; Zhang, Zhenhui; Chen, Xuyi; Li, Ruixin; Li, Dong; Feng, Shiqing

    2016-01-01

    As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the body's natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs) and adipose-derived stem cells (ADSCs) as seed cells and introduced them into a silk fibroin (SF)/collagen scaffold to construct a tissue-engineered nerve conduit (TENC). Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft) were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair.

  18. Construction of an in vitro primary lung co-culture platform derived from New Zealand white rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Joshua D.; Hess, Becky M.; Hutchison, Janine R.; Straub, Tim M.

    2015-05-01

    We report the construction of an in vitro three dimensional (3D) co-culture platform consisting of differentiated lung epithelial cells and monocytes from New Zealand white rabbits. Rabbit lung epithelial cells were successfully grown at air-liquid interface, produced mucus, and expressed both sialic acid alpha-2,3 and alpha-2,6. Blood-derived CD14+ monocytes were deposited above the epithelial layer resulting in the differentiation of a subset of monocytes into CD11c+ cells within the co-culture. These proof-of-concept findings provide a convenient means to comparatively study in vitro versus in vivo rabbit lung responses as they relate to inhalation or lung-challenge studies.

  19. Oxidative damage to DNA by diesel exhaust particle exposure in co-cultures of human lung epithelial cells and macrophages

    DEFF Research Database (Denmark)

    Jantzen, Kim; Roursgaard, Martin; Madsen, Claus Desler

    2012-01-01

    -DNA glycosylase or oxoguanine DNA glycosylase (hOGG1) sensitive sites, in mono-cultures of A549 or THP-1a and co-cultures of A549 and THP-1a cells. The strongest genotoxic effects were observed in A549 mono-cultures and SRM2975 was more potent than SRM1650b. The ROS production only increased in cells exposed...

  20. Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface

    Science.gov (United States)

    Li, Jingan; Li, Guicai; Zhang, Kun; Liao, Yuzhen; Yang, Ping; Maitz, Manfred F.; Huang, Nan

    2013-05-01

    Micro-patterning as an effective bio-modification technique is increasingly used in the development of biomaterials with superior mechanical and biological properties. However, as of now, little is known about the simultaneous regulation of endothelial cells (EC) and smooth muscle cells (SMC) by cardiovascular implants. In this study, a co-culture system of EC and SMC was built on titanium surface by the high molecular weight hyaluronic acid (HMW-HA) micro-pattern. Firstly, the micro-pattern sample with a geometry of 25 μm wide HMW-HA ridges, and 25 μm alkali-activated Ti grooves was prepared by microtransfer molding (μTM) for regulating SMC morphology. Secondly, hyaluronidase was used to decompose high molecular weight hyaluronic acid into low molecular weight hyaluronic acid which could promote EC adhesion. Finally, the morphology of the adherent EC was elongated by the SMC micro-pattern. The surface morphology of the patterned Ti was imaged by SEM. The existence of high molecular weight hyaluronic acid on the modified Ti surface was demonstrated by FTIR. The SMC micro-pattern and EC/SMC co-culture system were characterized by immunofluorescence microscopy. The nitric oxide release test and cell retention calculation were used to evaluate EC function on inhibiting hyperplasia and cell shedding, respectively. The results indicate that EC in EC/SMC co-culture system displayed a higher NO release and cell retention compared with EC cultured alone. It can be suggested that the EC/SMC co-culture system possessed superiority to EC cultured alone in inhibiting hyperplasia and cell shedding at least in a short time of 24 h.

  1. Development of melanocye-keratinocyte co-culture model for controls and vitiligo to assess regulators of pigmentation and melanocytes

    OpenAIRE

    2012-01-01

    Background: There is a need to develop an in vitro skin models which can be used as alternative system for research and testing pharmacological products in place of laboratory animals. Therefore to study the biology and pathophysiology of pigmentation and vitiligo, reliable in vitro skin pigmentation models are required. Aim: In this study, we used primary cultured melanocytes and keratinocytes to prepare the skin co-culture model in control and vitiligo patients. Methods: The skin grafts wer...

  2. Selective sensitiveness of mesenchymal stem cells to shock waves leads to anticancer effect in human cancer cell co-cultures.

    Science.gov (United States)

    Foglietta, Federica; Duchi, Serena; Canaparo, Roberto; Varchi, Greta; Lucarelli, Enrico; Dozza, Barbara; Serpe, Loredana

    2017-03-15

    Mesenchymal stem cells (MSC) possess the distinctive feature of homing in on and engrafting into the tumor stroma making their therapeutic applications in cancer treatment very promising. Research into new effectors and external stimuli, which can selectively trigger the release of cytotoxic species from MSC toward the cancer cells, significantly raises their potential. Shock waves (SW) have recently gained recognition for their ability to induce specific biological effects, such as the local generation of cytotoxic reactive oxygen species (ROS) in a non-invasive and tunable manner. We thus investigate whether MSC are able to generate ROS and, in turn, affect cancer cell growth when in co-culture with human glioblastoma (U87) or osteosarcoma (U2OS) cells and exposed to SW. MSC were found to be the cell line that was most sensitive to SW treatment as shown by SW-induced ROS production and cytotoxicity. Notably, U87 and U2OS cancer cell growth was unaffected by SW exposure. However, significant decreases in cancer cell growth, 1.8 fold for U87 and 2.3 fold for U2OS, were observed 24h after the SW treatment of MSC co-cultures with cancer cells. The ROS production induced in MSC by SW exposure was then responsible for lipid peroxidation and cell death in U87 and U2OS cells co-cultured with MSC. This experiment highlights the unique ability of MSC to generate ROS upon SW treatment and induce the cell death of co-cultured cancer cells. SW might therefore be proposed as an innovative tool for MSC-mediated cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content.

    Science.gov (United States)

    Wang, Y; Yang, Y; Ma, F; Xuan, L; Xu, Y; Huo, H; Zhou, D; Dong, S

    2015-05-01

    Microalgae are a sustainable bioresource, and the biofuel they produce is widely considered to be an alternative to limited natural fuel resources. However, microalgae harvesting is a bottleneck in the development of technology. Axenic Chlorella vulgaris microalgae exhibit poor harvesting, as expressed by a flocculation efficiency of 0·2%. This work optimized the co-culture conditions of C. vulgaris and bioflocculant-producing bacteria in synthetic wastewater using response surface methodology (RSM), thus aiming to enhance C. vulgaris harvesting and lipid content. Three significant process variables- inoculation ratio of bacteria and microalgae, initial glucose concentration, and co-culture time- were proposed in the RSM model. F-values (3·98/8·46) and R(2) values (0·7817/0·8711) both indicated a reasonable prediction by the RSM model. The results showed that C. vulgaris harvesting efficiency reached 45·0-50·0%, and the lipid content was over 21·0% when co-cultured with bioflocculant-producing bacteria under the optimized culture conditions of inoculation ratio of bacteria and microalgae of 0·20-0·25, initial glucose concentration of microalgae harvesting and cost-effective microalgal bioproducts, and confirmed the promising prospect of introducing bioflocculant-producing bacteria into microalgae bioenergy production. This work optimized the co-culture conditions of microalgae (C. vulgaris) and bioflocculant-producing bacteria (F2, Rhizobium radiobacter) in synthetic wastewater using response surface methodology, aiming to enhance C. vulgaris harvesting and lipid produced content. Bioflocculant-producing microbes are environmentally friendly functional materials. They avoid the negative effects of traditional chemical flocculants. This work provided new insights into microalgae harvesting and cost-effective production of microalgal bioproducts, and confirmed the promising prospect of introducing bioflocculant-producing bacteria into microalgae

  4. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19) by ...... of inflammatory ocular diseases such as uveitis and age-related macular degeneration. --------------------------------------------------------------------------------...

  5. Stem and Progenitor Cell Expansion in Co-culture of Mobilized CD34 + Cells and Osteopetrotic Mouse Stroma

    Institute of Scientific and Technical Information of China (English)

    Na LI; Shahin Rafii; JF Stoltz; Malcolm A.S. Moore; Pierre Feugier; Deog-Yeon JO; Jae Hung Shieh; Karen L. MacKenzie; JF Lesesve; V Latger-Cannard; D Bensoussan; Ronald G Crystal

    2005-01-01

    @@ 1 Introduction Culture systems capable of expanding and/or maintaining hematopoietic stem cells will not only facilitate our understanding of stem cell biology, but also broaden clinical applications. Among various in vitro hematopoietic culture systems, co-cultures of marrow or CD34+ cells with an adherent stromal layer that can produce cytokines and extracellular matrix components most effectively supports long-term hematopoiesis ( LTC ), mimicking the bone marrow micro-environment.

  6. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear......]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  7. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  8. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  9. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    Science.gov (United States)

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  10. [Effects of Ulva pertusa and Gracilaria lemaneiformis on growth of Heterosigma akashiwo (Raphidophyceae) in co-culture].

    Science.gov (United States)

    Wang, You; Yu, Zhi-ming; Song, Xiu-xian; Zhang, Shan-dong

    2006-02-01

    We studied the effects of fresh tissue and culture medium filtrate of two species of macroalgae, Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of Heterosigma akashiwo (Raphidophyceae) in co-culture. Both U. pertusa and G. lemaneiformis, and especially their fresh tissues, significantly impede the growth of H. akashiwo. Carbonate limitations and the presence of environment bacteria are not necessary for the negative effects of macroalgal on H. akashiwo. The simultaneous nutrient assays show that nitrate and phosphate are almost exhausted in the G. lemaneiformis co-culture system, but remain at acceptable levels in the U. pertusa system, when all cells of H. akashiwo are completely dead. When f/2 medium is supplied daily to G. lemaneiformis culture, the growth of H. akashiwo is greatly inhibited but not completely terminated. Furthermore, different amounts of fresh seaweed tissue, and culture medium filtrate prepared from different macroalgal concentrations are analyzed to determine their effects on the growth of H. akashiwo. The results show a positive correlation between the initial macroalgal concentration and the negative effects they exert on the co-cultured microalgae. Results suggest that the allelopathic effects of U. pertusa may be essential for negative effects on H. akashiwo; however, the combined roles of allelopathy and nutrient competition may be responsible for the negative effect of G. lemaneiformis the release of allelochemicals by U. pertusa.

  11. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions

    Science.gov (United States)

    Noel, Gaelle; Baetz, Nicholas W.; Staab, Janet F.; Donowitz, Mark; Kovbasnjuk, Olga; Pasetti, Marcela F.; Zachos, Nicholas C.

    2017-01-01

    Integration of the intestinal epithelium and the mucosal immune system is critical for gut homeostasis. The intestinal epithelium is a functional barrier that secludes luminal content, senses changes in the gut microenvironment, and releases immune regulators that signal underlying immune cells. However, interactions between epithelial and innate immune cells to maintain barrier integrity and prevent infection are complex and poorly understood. We developed and characterized a primary human macrophage-enteroid co-culture model for in-depth studies of epithelial and macrophage interactions. Human intestinal stem cell-derived enteroid monolayers co-cultured with human monocyte-derived macrophages were used to evaluate barrier function, cytokine secretion, and protein expression under basal conditions and following bacterial infection. Macrophages enhanced barrier function and maturity of enteroid monolayers as indicated by increased transepithelial electrical resistance and cell height. Communication between the epithelium and macrophages was demonstrated through morphological changes and cytokine production. Intraepithelial macrophage projections, efficient phagocytosis, and stabilized enteroid barrier function revealed a coordinated response to enterotoxigenic and enteropathogenic E. coli infections. In summary, we have established the first primary human macrophage-enteroid co-culture system, defined conditions that allow for a practical and reproducible culture model, and demonstrated its suitability to study gut physiology and host responses to enteric pathogens. PMID:28345602

  12. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions

    Science.gov (United States)

    Rao, Nikhil; Grover, Gregory N.; Vincent, Ludovic G.; Evans, Samantha C.; Choi, Yu Suk; Vincent, Ludovic G.; Spencer, Katrina H.; Hui, Elliot E.; Engler, Adam J.; Christman, Karen L.

    2013-01-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions. PMID:24061208

  13. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies.

    Science.gov (United States)

    Araújo, Francisca; Sarmento, Bruno

    2013-12-15

    Caco-2 based cell models have been the gold standard in vitro method to study intestinal drug permeability, despite the absence of many important features with major influence in the drug absorption mechanism. In the present work, a triple co-culture comprising Caco-2, HT29-MTX and Raji B cells was established to mimic in a closely way the human intestinal epithelium, presenting the main components in the process of drug absorption, namely the absorptive cells that resemble enterocytes, mucus producers cells and cells able to induce M-cell phenotype on Caco-2 cells. All the three cell lines maintained their function when cultured together with each other being, thus, an asset to new orally administrated drugs development. The seeding ratio of 90:10 between Caco-2 and HT29-MTX showed to be the best to achieve physiological proportions after cells maturation and differentiation in culture. The formation of M-cells phenotype from enterocytes was identified for the first time in a co-culture system comprising Caco-2 and HT29-MTX cells through immunocytochemical techniques. Thus, the triple co-culture model presented in the herein work is a good and reliable alternative to the in vitro methods already existents for the study of drugs permeability. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Development and characterization of a three-dimensional co-culture model of tumor T cell infiltration.

    Science.gov (United States)

    Alonso-Nocelo, M; Abuín, C; López-López, R; de la Fuente, M

    2016-04-14

    Tumor growth and metastasis entangle the alteration and recruitment of non-malignant cells to the primary tumor, among them immune cells, constituting the tumor microenvironment (TME). Communication between tumor cells and their stroma has been shown as a fundamental driving force of the tumoral process. A great deal of effort has been focused on depicting their specific interactions and crosstalk. However, most research has been carried out in 2D conventional cultures that alter cell morphology and intracellular signaling processes. Considering these premises, we have developed a 3D cell co-culture model to mimic T cell infiltration into the tumor mass and explore tumor-immune cells interactions in the TME. Expression of specific cell markers and assessment of cell proliferation were carried out to characterize the proposed 3D co-culture model. Additionally, the study and profiling of the secretome revealed a subset of particular cancer-related inflammation proteins prompted upon 3D cultivation of tumor cells in presence of lymphocytes, pointing out an intercellular communication. Altogether, these results suggest that our 3D cell co-culture model can be a useful tool to identify and study critical factors mediating the crosstalk between tumor and immune cells in the TME. Finally, the potential of this model as a drug-screening platform has been explored using docetaxel as a model antitumoral compound.

  15. Human ovarian neoplasm cell CD147 stimulates production and activation of matrix metalloproteinases in co-cultures with mouse fibroblasts

    Institute of Scientific and Technical Information of China (English)

    YANG Hong; ZOU Wei; XIN Xiao-yan

    2005-01-01

    Objective: To investigate the expression of CD147 on human ovarian neoplasm cell lines and its influence on production and activation of matrix metallproteinases(MMPs). Methods: The expression of CD147 on different human ovarian neoplasm cell lines was studied by western blotting. Co-culture was carried out to investigate the stimulative effect of the positive expression CD147 cell HO-8910 on the production of MMPs of fibroblast cell in vitro. Zymography and immune blotting were used to study the production and activity of positive MMPs, at the time, to explore the relation between CD147 and MMPs. Results: CD147 was positively presented in 2 ovarian neoplasm cell lines(HO-8910,3-AO), but in SKOV3, TC-1,NIN3T3 cell was negative. MMP-2 and MMP-9 were detected by HO-8910 cell line, mouse fibroblast cell and co-culture cells; but the expression in co-culture cell is obviously higher than individual cultures of each type alone.CD147 stimulated MMPs in dose-dependent manner. Conclusion: CD147 causes increased production and activation of MMP-2, MMP-9.CD147 is probably a indirect marker of some ovarian cancer cells with invasion and metastasis.

  16. Production of Fusaric Acid by Fusarium spp. in Pure Culture and in Solid Medium Co-Cultures

    Directory of Open Access Journals (Sweden)

    Nadine Bohni

    2016-03-01

    Full Text Available The ability of fungi isolated from nails of patients suffering from onychomycosis to induce de novo production of bioactive compounds in co-culture was examined. Comparison between the metabolite profiles produced by Sarocladium strictum, by Fusarium oxysporum, and by these two species in co-culture revealed de novo induction of fusaric acid based on HRMS. Structure confirmation of this toxin, using sensitive microflow NMR, required only three 9-cm Petri dishes of fungal culture. A targeted metabolomics study based on UHPLC-HRMS confirmed that the production of fusaric acid was strain-dependent. Furthermore, the detected toxin levels suggested that onychomycosis-associated fungal strains of the F. oxysporum and F. fujikuroi species complexes are much more frequently producing fusaric acid, and in higher amount, than strains of the F. solani species complex. Fusarium strains producing no significant amounts of this compound in pure culture, were shown to de novo produce that compound when grown in co-culture. The role of fusaric acid in fungal virulence and defense is discussed.

  17. Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture model

    Energy Technology Data Exchange (ETDEWEB)

    Horie, Masafumi [Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo (Japan); Saito, Akira, E-mail: asaitou-tky@umin.ac.jp [Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo (Japan); Mikami, Yu [Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo (Japan); Ohshima, Mitsuhiro [Department of Biochemistry, Ohu University School of Pharmaceutical Sciences (Japan); Morishita, Yasuyuki [Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo (Japan); Nakajima, Jun [Department of Thoracic Surgery, Graduate School of Medicine, University of Tokyo (Japan); Kohyama, Tadashi; Nagase, Takahide [Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We established three patient-paired sets of CAFs and NFs. Black-Right-Pointing-Pointer CAFs and NFs were analyzed using three-dimensional co-culture experiments. Black-Right-Pointing-Pointer CAFs clearly enhanced collagen gel contraction. Black-Right-Pointing-Pointer CAFs showed higher {alpha}-SMA expression than NFs. Black-Right-Pointing-Pointer CAFs were implicated in invasion and differentiation of lung cancer cells. -- Abstract: Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain to be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher {alpha}-smooth muscle actin ({alpha}-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs.

  18. Comparative evaluation of the hydrogen production by mixed consortium, synthetic co-culture and pure culture using distillery effluent.

    Science.gov (United States)

    Mishra, Preeti; Roy, Shantonu; Das, Debabrata

    2015-12-01

    Wastewater comprises of various carbon sources. So, the use of microbial consortium may improve the hydrogen production and organic reduction. The present study deals with biohydrogen production by acidogenic mixed consortia (AMC), synthetic co-culture (Klebsiella pneumoniae IIT-BT 08 and Citrobacter freundii IIT-BT L139) and pure culture using distillery effluent (DE). Higher hydrogen yield was observed in case of AMC (9.17 mol/kg CODreduced) as compared to the synthetic co-culture and pure culture. PCR-DGGE analysis indicated that the consortium was predominated by species closely affiliated to Clostridium sp. The average hydrogen production rate was 267 mL/Lh. The maximum hydrogen production rate (Rm), hydrogen production potential (P) and lag time (λ) by AMC using DE were 507.2 mL/Lh, 3729 m/L and 2.04 h, respectively. Maximum gaseous energy recovery by AMC was found to be higher by 21.9% and 45.4% than that of using co-culture and pure culture respectively.

  19. Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation.

    Science.gov (United States)

    Leroy, F; Foulquié Moreno, M R; De Vuyst, L

    2003-12-01

    Enterocins, bacteriocins produced by enterococci, are gaining interest because of their industrial potential. Due to its bacteriocin production, Enterococcus faecium RZS C5, a natural cheese isolate, has a strong activity towards Listeria monocytogenes. For this reason, the strain may be applicable as a bacteriocin-producing co-culture in food fermentation in order to reduce the risk on Listeria outgrowth. The strain displays remarkable bacteriocin production kinetics. Whereas most lactic acid bacteria produce bacteriocin in a growth-associated way until the beginning of the stationary phase, bacteriocin production by E. faecium RZS C5 in MRS broth at controlled pH values below 7.5 is characterised by a boost of bacteriocin activity levels in the very early growth phase. In addition, bacteriocin production kinetics are closely linked to the environmental and cultural conditions. However, no straightforward statement about the effect of environmental stress on bacteriocin production can be made since the effect is dependent on the type of stress applied. Kinetic experiments in milk and on pilot scale, applying Cheddar cheese-making conditions, have indicated that the strain may be effective as a bacteriocin-producing co-culture. Further research is needed to evaluate the use of E. faecium RZS C5 as a co-culture for the production of fermented sausage.

  20. Effects of intermittent hydrostatic pressure magnitude on the chondrogenesis of MSCs without biochemical agents under 3D co-culture.

    Science.gov (United States)

    Jeong, Jae Young; Park, So Hee; Shin, Ji Won; Kang, Yun Gyeong; Han, Ki-Ho; Shin, Jung-Woog

    2012-11-01

    Without using biochemical agents, in this study, we sought to investigate the potential of controlling the differentiation of mesenchymal stem cells (MSCs) into a specific cell type through the use of 3D co-culturing and mechanical stimuli. MSCs and primary cultured chondrocytes were separately encapsulated into alginate beads, and the two types of beads were separated by a membrane. For the investigation a computer-controllable bioreactor was designed and used to engage intermittent hydrostatic pressure (IHP). Five different magnitudes (0.20, 0.10, 0.05, 0.02 MPa and no stimulation) of IHP were applied. The stimulation pattern was the same for all groups: 2 h/day for 7 days starting at 24 h after seeding; 2 and 15 min cycles of stimulating and resting, respectively. Biochemical (DNA and GAG contents), histological (Alcian blue), and RT-PCR (Col II, SOX9, AGC) analyses were performed on days 1, 5, 10, and 20. The results from these analyses showed that stimulation with higher magnitudes of IHP (≥0.10 MPa) were more effective on the proliferation and differentiation of co-cultured MSCs. Together, these data demonstrate the potential of using mechanical stimulation and co-culturing for the proliferation and differentiation of MSCs, even without biochemical agents.

  1. Simultaneous and quantitative monitoring of co-cultured Pseudomonas aeruginosa and Staphylococcus aureus with antibiotics on a diffusometric platform

    Science.gov (United States)

    Chung, Chih-Yao; Wang, Jhih-Cheng; Chuang, Han-Sheng

    2017-04-01

    Successful treatments against bacterial infections depend on antimicrobial susceptibility testing (AST). However, conventional AST requires more than 24 h to obtain an outcome, thereby contributing to high patient mortality. An antibiotic therapy based on experiences is therefore necessary for saving lives and escalating the emergence of multidrug-resistant pathogens. Accordingly, a fast and effective drug screen is necessary for the appropriate administration of antibiotics. The mixed pathogenic nature of infectious diseases emphasizes the need to develop an assay system for polymicrobial infections. On this basis, we present a novel technique for simultaneous and quantitative monitoring of co-cultured microorganisms by coupling optical diffusometry with bead-based immunoassays. This simple integration simultaneously achieves a rapid AST analysis for two pathogens. Triple color particles were simultaneously recorded and subsequently analyzed by functionalizing different fluorescent color particles with dissimilar pathogen-specific antibodies. Results suggested that the effect of the antibiotic, gentamicin, on co-cultured Pseudomonas aeruginosa and Staphylococcus aureus was effectively distinguished by the proposed technique. This study revealed a multiplexed and time-saving (within 2 h) platform with a small sample volume (~0.5 μL) and a low initial bacterial count (50 CFU per droplet, ~105 CFU/mL) for continuously monitoring the growth of co-cultured microorganisms. This technique provides insights into timely therapies against polymicrobial diseases in the near future.

  2. Production of Fusaric Acid by Fusarium spp. in Pure Culture and in Solid Medium Co-Cultures.

    Science.gov (United States)

    Bohni, Nadine; Hofstetter, Valérie; Gindro, Katia; Buyck, Bart; Schumpp, Olivier; Bertrand, Samuel; Monod, Michel; Wolfender, Jean-Luc

    2016-03-18

    The ability of fungi isolated from nails of patients suffering from onychomycosis to induce de novo production of bioactive compounds in co-culture was examined. Comparison between the metabolite profiles produced by Sarocladium strictum, by Fusarium oxysporum, and by these two species in co-culture revealed de novo induction of fusaric acid based on HRMS. Structure confirmation of this toxin, using sensitive microflow NMR, required only three 9-cm Petri dishes of fungal culture. A targeted metabolomics study based on UHPLC-HRMS confirmed that the production of fusaric acid was strain-dependent. Furthermore, the detected toxin levels suggested that onychomycosis-associated fungal strains of the F. oxysporum and F. fujikuroi species complexes are much more frequently producing fusaric acid, and in higher amount, than strains of the F. solani species complex. Fusarium strains producing no significant amounts of this compound in pure culture, were shown to de novo produce that compound when grown in co-culture. The role of fusaric acid in fungal virulence and defense is discussed.

  3. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation.

    Science.gov (United States)

    Ko, Chao-Yin; Ku, Kuan-Lin; Yang, Shu-Rui; Lin, Tsai-Yu; Peng, Sydney; Peng, Yu-Shiang; Cheng, Ming-Huei; Chu, I-Ming

    2016-10-01

    Chondrocytes (CH) and bone marrow stem cells (BMSCs) are sources that can be used in cartilage tissue engineering. Co-culture of CHs and BMSCs is a promising strategy for promoting chondrogenic differentiation. In this study, articular CHs and BMSCs were encapsulated in PCL-PEG-PCL photocrosslinked hydrogels for 4 weeks. Various ratios of CH:BMSC co-cultures were investigated to identify the optimal ratio for cartilage formation. The results thus obtained revealed that co-culturing CHs and BMSCs in hydrogels provides an appropriate in vitro microenvironment for chondrogenic differentiation and cartilage matrix production. Co-culture with a 1:4 CH:BMSC ratio significantly increased the synthesis of GAGs and collagen. In vivo cartilage regeneration was evaluated using a co-culture system in rabbit models. The co-culture system exhibited a hyaline chondrocyte phenotype with excellent regeneration, resembling the morphology of native cartilage. This finding suggests that the co-culture of these two cell types promotes cartilage regeneration and that the system, including the hydrogel scaffold, has potential in cartilage tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Clarification of interactions among microorganisms and development of co-culture system; Biseibutsukan sokosayo no kaiseki to kongo baiyo shisutemu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masayuki [Niigata University, Niigata (Japan). Dept. of Materials Science and Technology

    1999-03-10

    Co-culture systems containing two microorganisms for production of useful substances are described. The co-culture of Bifidobacterium longum and Propionibacterium freudenreichii, where lactic acid produced once from lactose by B. longum is converted to acetic and propionic acids by P. freudenreichii, was carried out. Thought the sequential conversion of lactose using the two microorganisms, the culture supernatant containing a mixture of acetic and propionic acids without lactic acid is produced. The antimicrobial activity of the mixture is higher than that obtained in the cultivation of B. longum alone. We developed a novel co-culture system composed of two fermentors and two micro filtration modules for efficient ethanol production from a mixture of glucose and xylose by co-culture of Pichia stipitis and Saccharomyces cerevisiae. The proposed co-culture system allowed regulation of the dissolved oxygen concentration at a level suitable for an individual yeast in each fermentor, as well as the successful exchange of culture medium between two fermentors. When P. stipitis and S. cerevisiae are cultivated individually under different oxygen supply conditions in the new co-culture system, the yield and productivity of ethanol from a glucose and xylose mixture are higher than in single culture of P. stipitis alone. By clarifying the interactions among microorganisms, new bioprocesses in which similar performance to co-culture systems is expressed even using a single microorganism, are expected to be developed for improvement of biochemical reaction systems. (author)

  5. No association between striatal dopamine transporter binding and body mass index

    DEFF Research Database (Denmark)

    van de Giessen, Elsmarieke; Hesse, Swen; Caan, Matthan W A

    2013-01-01

    Dopamine is one among several neurotransmitters that regulate food intake and overeating. Thus, it has been linked to the pathophysiology of obesity and high body mass index (BMI). Striatal dopamine D(2) receptor availability is lower in obesity and there are indications that striatal dopamine...... transporter (DAT) availability is also decreased. In this study, we tested whether BMI and striatal DAT availability are associated....

  6. [Influence of predominant aerobic bacteria isolated from different healthy animals on daidzein biotransforming capacity by co-culture with different daidzein biotransforming bacteria].

    Science.gov (United States)

    Luo, Jinglong; Wang, Xiuling; Fan, Jinru; Wang, Shiying; Li, Jia

    2011-08-01

    To investigate the influence of isolated predominant aerobic bacteria on daidzein biotransformation capacity by co-culture with daidzein biotransforming bacteria. Predominant aerobic bacteria were isolated from diluted feces solutions of different healthy animals, including ICR mice, Luhua chicken, Landrace pigs and Rex rabbits. Daidzein biotransforming bacteria were anaerobically co-cultured with the isolated predominant aerobic bacteria and the cultural broth was extracted and detected by high performance liquid chromatography (HPLC). Twenty two predominant aerobic bacteria were isolated from the four different healthy animals mentioned above. Based on the analyses of 16S rRNA gene sequences, morphology study and relative biophysico-biochemical characteristics, all 22 isolates belong to the 5 genera, i. e. Escherichia (10) , Proteus (5) , Enterococcus (4), Bacillus (2) and Pseudomonas (1). Co-culture between predominant aerobic bacteria and daidzein biotransforming bacteria was carried out under anaerobic conditions. The results showed that the biotransformation capacity was totally lost when different daidzein biotransforming bacterium was co-cultured with either Bacillus cereus ( R1 ) or Pseudomonas aerginosa (R5) and continuously inoculated for 2 or 3 passages. However, no obvious influence was observed when daidzein biotransforming bacteria were co-cultured with all the other isolated predominant aerobic bacteria except R1 and R5. In addition, when strain R1 and R5 was co-cultured with the intestinal microflora of the ICR mice anaerobically and continuously inoculated for 5 passages, about 90% of the co-cultures totally lost the activity to convert daidzein to equol effectively. Different predominant aerobic bacteria showed different influence on daidzein biotransformation capacity after being co-cultured with different daidzein biotransforming bacteria. Among all the isolated predominant aerobic bacteria used for co-culture, both Bacillus cereus ( R1) and

  7. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    Directory of Open Access Journals (Sweden)

    Akiko Edagawa

    2015-10-01

    Full Text Available We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR, and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%. Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%. In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8% compared with real-time qPCR alone (46/68, 67.6%. Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1% compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%. Legionella was not detected in the remaining six samples (6/68, 8.8%, irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  8. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    Science.gov (United States)

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  9. Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control

    Science.gov (United States)

    Dallérac, Glenn; Graupner, Michael; Knippenberg, Jeroen; Martinez, Raquel Chacon Ruiz; Tavares, Tatiane Ferreira; Tallot, Lucille; El Massioui, Nicole; Verschueren, Anna; Höhn, Sophie; Bertolus, Julie Boulanger; Reyes, Alex; LeDoux, Joseph E.; Schafe, Glenn E.; Diaz-Mataix, Lorenzo; Doyère, Valérie

    2017-01-01

    Pavlovian aversive conditioning requires learning of the association between a conditioned stimulus (CS) and an unconditioned, aversive stimulus (US) but also involves encoding the time interval between the two stimuli. The neurobiological bases of this time interval learning are unknown. Here, we show that in rats, the dorsal striatum and basal amygdala belong to a common functional network underlying temporal expectancy and learning of a CS–US interval. Importantly, changes in coherence between striatum and amygdala local field potentials (LFPs) were found to couple these structures during interval estimation within the lower range of the theta rhythm (3–6 Hz). Strikingly, we also show that a change to the CS–US time interval results in long-term changes in cortico-striatal synaptic efficacy under the control of the amygdala. Collectively, this study reveals physiological correlates of plasticity mechanisms of interval timing that take place in the striatum and are regulated by the amygdala. PMID:28067224

  10. Serum and CNTF stimulate oligodendroglia and reduce fiber outgrowth from striatal cultures.

    Science.gov (United States)

    Dahl-Jørgensen, A; Ostergaard, K; Pedersen, E B; Zimmer, J

    1999-05-01

    Organotypic slice cultures of newborn rat striatal tissue displayed an exceptionally dense and fasciculated outgrowth of GABAergic fibers when grown in a chemically defined medium, compared to serum-containing medium. The enhanced fiber growth was not the result of an increased density of GABAergic neurons in the cultures, but coincided with a marked reduction of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)-immunoreactive cells within and around the cultures. An inverse, causal relationship between the number of CNPase-positive cells, presumably of oligodendroglial lineage, and GABAergic fiber outgrowth was further evidenced by the observation that addition of ciliary neurotrophic factor (CNTF) to the chemically defined medium resulted in both an increase in CNPase-positive cells and a decrease in GABAergic fiber outgrowth. The observations suggest that CNTF and serum indirectly inhibit axonal growth by stimulating oligodendroglial cells.

  11. Stable coexistence of two Caldicellulosiruptor species in a de novo constructed hydrogen-producing co-culture

    Directory of Open Access Journals (Sweden)

    Rådström Peter

    2010-12-01

    Full Text Available Abstract Background Mixed culture enrichments have been used frequently for biohydrogen production from different feedstock. In spite of the several advantages offered by those cultures, they suffer poor H2 yield. Constructing defined co-cultures of known H2 producers may offer a better performance than mixed-population enrichments, while overcoming some of the limitations of pure cultures based on synergies among the microorganisms involved. Results The extreme thermophiles Caldicellulosiruptor saccharolyticus DSM 8903 and C. kristjanssonii DSM 12137 were combined in a co-culture for H2 production from glucose and xylose in a continuous-flow stirred tank reactor. The co-culture exhibited a remarkable stability over a period of 70 days under carbon-sufficient conditions, with both strains coexisting in the system at steady states of different dilution rates, as revealed by species-specific quantitative PCR assays. The two strains retained their ability to stably coexist in the reactor even when glucose was used as the sole growth-limiting substrate. Furthermore, H2 yields on glucose exceeded those of either organism alone under the same conditions, alluding to a synergistic effect of the two strains on H2 production. A maximum H2 yield of 3.7 mol (mol glucose-1 was obtained by the co-culture at a dilution rate of 0.06 h-1; a higher yield than that reported for any mixed culture to date. A reproducible pattern of population dynamics was observed in the co-culture under both carbon and non-carbon limited conditions, with C. kristjanssonii outgrowing C. saccharolyticus during the batch start-up phase and prevailing at higher dilution rates. A basic continuous culture model assuming the ability of C. saccharolyticus to enhance the growth of C. kristjanssonii could mimic the pattern of population dynamics observed experimentally and provide clues to the nature of interaction between the two strains. As a proof, the cell-free growth supernatant of C

  12. Co-culture of C2C12 and 3T3-L1 preadipocyte cells alters the gene expression of calpains, caspases and heat shock proteins.

    Science.gov (United States)

    Pandurangan, Muthuraman; Jeong, Dawoon; Amna, Touseef; Van Ba, Hoa; Hwang, Inho

    2012-10-01

    The present study was carried out to understand the co-culture effect of C2C12 and 3T3-L1 preadipocyte cells on calpain, caspase, and heat shock protein (Hsp) systems. Calpains, caspases, and heat shock proteins play critical roles in the growth and development of mammalian cells. Cells were co-cultured using transwell inserts with a 0.4-μm porous membrane to separate C2C12 and 3T3-L1 preadipocyte cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates and inserts containing C2C12 transferred to 3T3-L1 plates. Following co-culture for 24 and 48 h, the cells in the lower well were harvested for analysis. Calpains include μ-calpain, m-calpain, and their specific inhibitor calpastatin. The expression pattern of μ-calpain did not change in the co-cultured C2C12 and 3T3-L1 cells, whereas m-capain mRNA expression significantly reduced in the 48-h co-cultured 3T3-L1 cells. Calpastatin mRNA expression significantly increased in the 48-h co-cultured C2C12 cells. Caspase-7 mRNA expression did not change in the 24- and 48-h co-cultured C2C12 and 3T3-L1 cells. Caspase-3 mRNA expression significantly reduced in the 24- and 48-h co-cultured 3T3-L1 cells; caspase-9 mRNA had a significant reduction only at 48 h, whereas caspase-9 mRNA expression significantly increased in the 48-h co-cultured C2C12 cells. Hsp27 and Hsp90 mRNA expressions are significantly reduced in the 24- and 48-h co-cultured C2C12 and 3T3-L1 cells, whereas Hsp70 mRNA expression significantly increased in the 48-h co-cultured 3T3-L1 cells. The co-culture reflects three-dimensional views of C2C12 and 3T3-L1 cell types as in vivo, which is quite distinct from the one-dimensional monocultured C2C12 and 3T3-L1 cells.

  13. Effects of Substrate and Co-Culture on Neural Progenitor Cell Differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Erin Boote [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In recent years the study of stem and progenitor cells has moved to the forefront of research. Since the isolation of human hematopoietic stem cells in 1988 and the subsequent discovery of a self renewing population of multipotent cells in many tissues, many researchers have envisioned a better understanding of development and potential clinical usage in intractable diseases. Both these goals, however, depend on a solid understanding of the intracellular and extracellular forces that cause stem cells to differentiate to a specific cell fate. Many diseases of large scale cell loss have been suggested as candidates for stem cell based treatments. It is proposed that replacing the function of the damaged or defective cells by specific differentiation of stem or progenitor cells could treat the disease. Before cells can be directed to specific lineages, the mechanisms of differentiation must be better understood. Differentiation in vivo is an intensively complex system that is difficult to study. The goal of this research is to develop further understanding of the effects of soluble and extracellular matrix (ECM) cues on the differentiation of neural progenitor cells with the use of a simplified in vitro culture system. Specific research objectives are to study the differentiation of neural progenitor cells in response to astrocyte conditioned medium and protein substrate composition and concentration. In an effort to reveal the mechanism of the conditioned medium interaction, a test for the presence of a feedback loop between progenitor cells and astrocytes is presented along with an examination of conditioned medium storage temperature, which can reveal enzymatic dependencies. An examination of protein substrate composition and concentration will help to reveal the role of any ECM interactions on differentiation. This thesis is organized into a literature review covering recent advances in use of external modulators of differentiation such as surface coatings, co-culture

  14. Probiotic modulation of dendritic cells co-cultured with intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ji Yeun Kim; Myeong Soo Park; Geun Eog Ji

    2012-01-01

    AIM:TO investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS:Mouse DC were cultured alone or together with mouse epithelial cell monolayers in normal or inverted systems and were stimulated with heat-killed probiotic bacteria,Bifidobacteriumlactis AD011 (BL),Bifidobacterium bifidum BGN4 (BB),Lactobacillus casei IBS041 (LC),and Lactobacillus acidophilus AD031 (LA),for 12 h.Cytokine levels in the culture supernatants were determined by enzyme-linked immunosorbent assay and phenotypic analysis of DC was investigated by flow cytometry.RESULTS:BB and LC in single-cultured DC increased the expression of I-Ad,CD86 and CD40 (I-Ad,18.51 vs 30.88,46.11; CD86,62.74 vs 92.7,104.12; CD40,0.67vs 6.39,3.37,P < 0.05).All of the experimental probiotics increased the production of inflammatory cytokines,interleukin (IL)-6 and tumor necrosis factor (TNF)-α.However,in the normal co-culture systems,LC and LA decreased the expression of I-Ad (39.46 vs 30.32,33.26,P < 0.05),and none of the experimental probiotics increased the levels of IL-6 or TNF-α.In the inverted coculture systems,LC decreased the expression of CD40 (1.36 vs-2.27,P < 0.05),and all of the experimental probiotics decreased the levels of IL-6.In addition,BL increased the production of IL-10 (103.8 vs 166.0,P< 0.05) and LC and LA increased transforming growth factor-3 secretion (235.9 vs 618.9,607.6,P < 0.05).CONCLUSION:These results suggest that specific probiotic strains exert differential immune modulation mediated by the interaction of dendritic cells and epithelial cells in the homeostasis of gastrointestinal tract.

  15. Dysfunctional Striatal Systems in Treatment-Resistant Schizophrenia.

    Science.gov (United States)

    White, Thomas P; Wigton, Rebekah; Joyce, Dan W; Collier, Tracy; Fornito, Alex; Shergill, Sukhwinder S

    2016-04-01

    The prevalence of treatment-resistant schizophrenia points to a discrete illness subtype, but to date its pathophysiologic characteristics are undetermined. Information transfer from ventral to dorsal striatum depends on both striato-cortico-striatal and striato-nigro-striatal subcircuits, yet although the functional integrity of the former appears to track improvement of positive symptoms of schizophrenia, the latter have received little experimental attention in relation to the illness. Here, in a sample of individuals with schizophrenia stratified by treatment resistance and matched controls, functional pathways involving four foci along the striatal axis were assessed to test the hypothesis that treatment-resistant and non-refractory patients would exhibit contrasting patterns of resting striatal connectivity. Compared with non-refractory patients, treatment-resistant individuals exhibited reduced connectivity between ventral striatum and substantia nigra. Furthermore, disturbance to corticostriatal connectivity was more pervasive in treatment-resistant individuals. The occurrence of a more distributed pattern of abnormality may contribute to the failure of medication to treat symptoms in these individuals. This work strongly supports the notion of pathophysiologic divergence between individuals with schizophrenia classified by treatment-resistance criteria.

  16. Dorsal striatal dopamine, food preference and health perception in humans

    NARCIS (Netherlands)

    Wallace, D.L.; Aarts, E.; Dang, L.C.; Greer, S.M.; Jagust, W.J.; D'Esposito, M.

    2014-01-01

    To date, few studies have explored the neurochemical mechanisms supporting individual differences in food preference in humans. Here we investigate how dorsal striatal dopamine, as measured by the positron emission tomography (PET) tracer [(18)F]fluorometatyrosine (FMT), correlates with food-related

  17. Subjective illusion of control modulates striatal reward anticipation in adolescence.

    Science.gov (United States)

    Lorenz, Robert C; Gleich, Tobias; Kühn, Simone; Pöhland, Lydia; Pelz, Patricia; Wüstenberg, Torsten; Raufelder, Diana; Heinz, Andreas; Beck, Anne

    2015-08-15

    The perception of control over the environment constitutes a fundamental biological adaptive mechanism, especially during development. Previous studies comparing an active choice condition with a passive no-choice condition showed that the neural basis of this mechanism is associated with increased activity within the striatum and the prefrontal cortex. In the current study, we aimed to investigate whether subjective belief of control in an uncertain gambling situation induces elevated activation in a cortico-striatal network. We investigated 79 adolescents (age range: 13-16years) during reward anticipation with a slot machine task using functional magnetic resonance imaging. We assessed post-experimentally whether the participants experienced a subjective illusion of control on winning or losing in this task that was objectively not given. Nineteen adolescents experienced an illusion of control during slot machine gambling. This illusion of control group showed an increased neural activity during reward anticipation within a cortico-striatal network including ventral striatum (VS) as well as right inferior frontal gyrus (rIFG) relative to the group reporting no illusion of control. The rIFG activity was inversely associated with impulsivity in the no illusion of control group. The subjective belief about control led to an elevated ventral striatal activity, which is known to be involved in the processing of reward. This finding strengthens the notion that subjectively perceived control, not necessarily the objective presence of control, affects striatal reward-related processing.

  18. Prefrontal cortex and striatal activation by feedback in Parkinson's disease

    NARCIS (Netherlands)

    Keitz, Martijn; Koerts, Janneke; Kortekaas, Rudie; Renken, Remco; de Jong, Bauke M.; Leenders, Klaus L.

    2008-01-01

    Positive feedbacks reinforce goal-directed behavior and evoke pleasure. in Parkinson's disease (PD) the striatal dysfunction impairs motor performance, but also may lead to decreased positive feedback (reward) processing. This study investigates two types of positive feedback processing (monetary fe

  19. Response surface optimisation for acetone-butanol-ethanol production from cassava starch by co-culture of Clostridium butylicum and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2011-11-01

    Full Text Available Acetone-butanol-ethanol (ABE production from cassava starch was enhanced by a syntrophic co-culture of Clostridium butylicum TISTR 1032 and high amylase producing Bacillus subtilis WD 161 without anaerobic pretreatment. The production of amylase and ABE using this co-culture were respectively 16 and 6 times higher than those using the pure culture of C. butylicum TISTR 1032. The effect of the medium components on the performance of the co-culture was investigated using response surface methodology (RSM. Among the investigated components, cassava starch and ammonium nitrate contributed a significant effect on the production of amylase and ABE, while yeast extract had less effect. Based on the optimum strategy using RSM, the ABE production by the co-culture was improved 2.2-fold compared with that obtained from the initial condition and with a minimum requirement of nitrogen source.

  20. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition

    National Research Council Canada - National Science Library

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted...

  1. Serotonin 2A receptor regulation of striatal neuropeptide gene expression is selective for tachykinin, but not enkephalin neurons following dopamine depletion.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2001-08-15

    Serotonin (5-HT) 2A receptor-mediated regulation of striatal preprotachykinin (PPT) and preproenkephalin (PPE) mRNAs was studied in adult rodents that had been subjected to near-total dopamine (DA) depletion as neonates. Two months following bilateral 6-hydroxydopamine (6-OHDA) lesion, PPT mRNA levels decreased 59-73% across dorsal subregions of the rostral and caudal striatum while PPE transcripts increased 61-94%. Four hours after a single injection of the serotonin 2A/2C receptor agonist, (+/-)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 1 mg/kg), PPT mRNA expression was significantly increased in DA-depleted rats across all dorsal subregions of the rostral and caudal striatum as compared to 6-OHDA-treated animals alone. In the intact rat, DOI did not influence PPT mRNA levels in the rostral striatum, but did raise expression in the caudal striatum where 5-HT2A receptors are prominent. DOI did not regulate PPE mRNA levels in any striatal sub-region of the intact or DA-depleted rat. Prior administration of the 5-HT2A/2C receptor antagonist, ritanserin (1 mg/kg) or the 5-HT2A receptor antagonist, ketanserin (1 mg/kg) completely blocked the DOI-induced increases in striatal PPT mRNA in both lesioned and intact animals. The ability of ketanserin to produce identical results as ritanserin suggests that 5-HT2A receptor-mediated regulation is selectively strengthened within tachykinin neurons of the rostral striatum which are suppressed by DA depletion. The selectivity suggests that 5-HT2A receptor upregulation following DA depletion is capable of regulating tachykinin biosynthesis without influencing enkephalin expression in striatal output neurons.

  2. Dopaminergic Enhancement of Striatal Response to Reward in Major Depression.

    Science.gov (United States)

    Admon, Roee; Kaiser, Roselinde H; Dillon, Daniel G; Beltzer, Miranda; Goer, Franziska; Olson, David P; Vitaliano, Gordana; Pizzagalli, Diego A

    2017-04-01

    Major depressive disorder is characterized by reduced reward-related striatal activation and dysfunctional reward learning, putatively reflecting decreased dopaminergic signaling. The goal of this study was to test whether a pharmacological challenge designed to facilitate dopaminergic transmission can enhance striatal responses to reward and improve reward learning in depressed individuals. In a double-blind placebo-controlled design, 46 unmedicated depressed participants and 43 healthy control participants were randomly assigned to receive either placebo or a single low dose (50 mg) of the D2/D3 receptor antagonist amisulpride, which is believed to increase dopamine signaling through presynaptic autoreceptor blockade. To investigate the effects of increased dopaminergic transmission on reward-related striatal function and behavior, a monetary incentive delay task (in conjunction with functional MRI) and a probabilistic reward learning task were administered at absorption peaks of amisulpride. Depressed participants selected previously rewarded stimuli less frequently than did control participants, indicating reduced reward learning, but this effect was not modulated by amisulpride. Relative to depressed participants receiving placebo (and control participants receiving amisulpride), depressed participants receiving amisulpride exhibited increased striatal activation and potentiated corticostriatal functional connectivity between the nucleus accumbens and the midcingulate cortex in response to monetary rewards. Stronger corticostriatal connectivity in response to rewards predicted better reward learning among depressed individuals receiving amisulpride as well as among control participants receiving placebo. Acute enhancement of dopaminergic transmission potentiated reward-related striatal activation and corticostriatal functional connectivity in depressed individuals but had no behavioral effects. Taken together, the results suggest that targeted pharmacological

  3. The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Directory of Open Access Journals (Sweden)

    Tan Jenny

    2005-03-01

    Full Text Available Abstract Background Butein (3,4,2',4'-tetrahydroxychalone, a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. Methods We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL. In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL. Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL. Results Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also

  4. Impact of the co-culture of Saccharomyces cerevisiae-Oenococcus oeni on malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction.

    Science.gov (United States)

    Nehme, Nancy; Mathieu, Florence; Taillandier, Patricia

    2010-02-01

    The present study was aimed to evaluate the impact of the co-culture on the output of malolactic fermentation and to further investigate the reasons of the antagonism exerted by yeasts towards bacteria during sequential cultures. The Saccharomyces cerevisiae D strain/Oenococcus oeni X strain combination was tested by applying both sequential culture and co-culture strategies. This pair was chosen amongst others because the malolactic fermentation was particularly difficult to realize during the sequential culture. During this traditional procedure, malolactic fermentation started when alcoholic fermentation was achieved. For the co-culture, both fermentations were conducted together by inoculating yeasts and bacteria into a membrane bioreactor at the same time. Results obtained during the sequential culture and compared to a bacterial control medium, showed that the inhibition exerted by S. cerevisiae D strain in term of decrease of the malic acid consumption rate was mainly due to ethanol (75%) and to a peptidic fraction (25%) having an MW between 5 and 10 kDa. 0.4 g l(-1) of L-malic acid was consumed in this case while 3.7 g l(-1) was consumed when the co-culture was applied. In addition, there was no risk of increased volatile acidity during the co-culture. Therefore, the co-culture strategy was considered effective for malolactic fermentation with the yeast/bacteria pair studied.

  5. Characterization of chemical-induced sterile inflammation in vitro: application of the model compound ketoconazole in a human hepatic co-culture system.

    Science.gov (United States)

    Wewering, Franziska; Jouy, Florent; Wissenbach, Dirk K; Gebauer, Scarlett; Blüher, Matthias; Gebhardt, Rolf; Pirow, Ralph; von Bergen, Martin; Kalkhof, Stefan; Luch, Andreas; Zellmer, Sebastian

    2017-02-01

    Liver injury as a result of a sterile inflammation is closely linked to the activation of immune cells, including macrophages, by damaged hepatocytes. This interaction between immune cells and hepatocytes is as yet not considered in any of the in vitro test systems applied during the generation of new drugs. Here, we established and characterized a novel in vitro co-culture model with two human cell lines, HepG2 and differentiated THP-1. Ketoconazole, an antifungal drug known for its hepatotoxicity, was used as a model compound in the testing of the co-culture. Single cultures of HepG2 and THP-1 cells were studied as controls. Different metabolism patterns of ketoconazole were observed for the single and co-culture incubations as well as for the different cell types. The main metabolite N-deacetyl ketoconazole was found in cell pellets, but not in supernatants of cell cultures. Global proteome analysis showed that the NRF2-mediated stress response and the CXCL8 (IL-8) pathway were induced by ketoconazole treatment under co-culture conditions. The upregulation and ketoconazole-induced secretion of several pro-inflammatory cytokines, including CXCL8, TNF-α and CCL3, was observed in the co-culture system only, but not in single cell cultures. Taking together, we provide evidence that the co-culture model applied might be suitable to serve as tool for the prediction of chemical-induced sterile inflammation in liver tissue in vivo.

  6. A Preliminary Observation on the Development of Mouse Embryos Co-cultured with Human Oviductal Tissue or Conditioned Medium in Vitro

    Institute of Scientific and Technical Information of China (English)

    钟瑜; 张春雪; 潘善培

    1994-01-01

    The Present investigation has been carried out to examine the effect of human oviductal tissue co-culture system on the development of mouse embryos in vitro.Two-cell embryos collected from superovulated mouse were co-cultured with human oviductal tissue suspended in Ham'd F10+10%Fetal Calf Serum(F10 FCS),or in oviductal tissue conditioned medium and F10FCS as control.The results showed that the proportion developed into blastocyst,proportion of hatched and the velocity of cmbryo development were higher in both tissue co-culture and conditioned medium as compared with F10 FCS control.Furthermore,the velocity and percentage of embryomic devetopmem were higher in co-culture with ampullary tissue or its conditioned medium than that of isthmus,the effects of co-culture and conditioned medium on embryo development had no significant difference.All the embryos obtained from two co-culture systems could cleave normally,This experimental observation indicated that human oviductal epithelium might secrete some factors to promote the embryonic development in vitro.

  7. PINCH expression in relation to radiation response in co-cultured colon cancer cells and in rectal cancer patients.

    Science.gov (United States)

    Holmqvist, Annica; Holmlund, Birgitta; Ardsby, Malin; Pathak, Surajit; Sun, Xiao-Feng

    2013-11-01

    Particularly interesting new cysteine-histidine rich protein (PINCH), involved in cell spreading, motility and proliferation, has been shown to enhance radioresistance in colon cancer cell lines. The expression of PINCH in relation to radiation was studied in co-cultured colon cancer cells. Furthermore, the clinical significance between PINCH and radiotherapy (RT) was analyzed in rectal cancer patients with or without RT. The relative PINCH expression in colon cancer (KM12C) cells cultured separately and in co-culture was examined by western blotting and real-time PCR, and was analyzed over a period of 8 and 24 h after radiation. PINCH expression was immunohistochemically examined in 137 primary rectal tumors for which 65 cases did not receive RT and 72 cases received RT. PINCH expression tended to decrease from that in the separately cultured KM12C cells without radiation to that in cells with radiation at 8 h (P=0.060); while in the co-cultured cells, no significant difference was found (P=0.446). In patients with RT, strong PINCH expression was related to worse survival, when compared to patients with weak expression, independent of TNM stage, degree of differentiation, age and p53 status (P=0.029, RR 4.03, 95% CI 1.34‑12.1). No survival relationship for the patients without RT was observed (P=0.287). A statistical interaction analysis between PINCH, RT and survival showed a trend towards significance (P=0.057). In conclusion, PINCH predicts survival in rectal cancer patients with RT, but not in patients without RT. The expression of PINCH may be regulated by radiation and by environmental factors surrounding the cells.

  8. Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates

    Directory of Open Access Journals (Sweden)

    Lorena Valdés Varela

    2016-05-01

    Full Text Available The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI which manifestation ranges from mild diarrhoea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12 in the presence of various prebiotic substrates (Inulin, Synergy and Actilight or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.

  9. Development of a bovine luteal cell in vitro culture system suitable for co-culture with early embryos.

    Science.gov (United States)

    Batista, M; Torres, A; Diniz, P; Mateus, L; Lopes-da-Costa, L

    2012-10-01

    The cross talk between the corpus luteum (CL) and the early embryo, potentially relevant to pregnancy establishment, is difficult to evaluate in the in vivo bovine model. In vitro co-culture of bovine luteal cells and early embryos (days 2-8 post in vitro fertilization) may allow the deciphering of this poorly understood cross talk. However, early embryos and somatic cells require different in vitro culture conditions. The objective of this study was to develop a bovine luteal cell in vitro culture system suitable for co-culture with early embryos in order to evaluate their putative steroidogenic and prostanoid interactions. The corpora lutea of the different stages of the estrous cycle (early, mid, and late) were recovered postmortem and enriched luteal cell populations were obtained. In experiments 1 and 2, the effects of CL stage, culture medium (TCM, DMEM-F12, or SOF), serum concentration (5 or 10%), atmosphere oxygen tension (5 or 20%), and refreshment of the medium on the ability of luteal cells to produce progesterone (P(4)) were evaluated. The production of P(4) was significantly increased in early CL cultures, and luteal cells adapted well to simple media (SOF), low serum concentrations (5%), and oxygen tensions (5%). In experiment 3, previous luteal cell cryopreservation did not affect the production of P(4), PGF(2α), and PGE(2) compared to fresh cell cultures. This enables the use of pools of frozen-thawed cells to decrease the variation in cell function associated with primary cell cultures. In experiment 4, mineral oil overlaying culture wells resulted in a 50-fold decrease of the P(4) quantified in the medium, but had no effect on PGF(2α) and PGE(2) quantification. In conclusion, a luteal cell in vitro culture system suitable for the 5-d-long co-culture with early embryos was developed.

  10. Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system.

    Science.gov (United States)

    Fisher, Bridget S; Estraño, Carlos E; Cole, Judith A

    2013-01-01

    Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions.

  11. Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system.

    Directory of Open Access Journals (Sweden)

    Bridget S Fisher

    Full Text Available Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions.

  12. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells.

    Science.gov (United States)

    Stecklum, Maria; Wulf-Goldenberg, Annika; Purfürst, Bettina; Siegert, Antje; Keil, Marlen; Eckert, Klaus; Fichtner, Iduna

    2015-02-01

    In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction.

  13. Coupling of D2R Short but not D2R Long receptor isoform to the Rho/ROCK signaling pathway renders striatal neurons vulnerable to mutant huntingtin.

    Science.gov (United States)

    Galan-Rodriguez, Beatriz; Martin, Elodie; Brouillet, Emmanuel; Déglon, Nicole; Betuing, Sandrine; Caboche, Jocelyne

    2017-01-01

    Huntington's disease, an inherited neurodegenerative disorder, results from abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted in synergy with expanded huntingtin to increase aggregates formation and striatal death through activation of the Rho/ROCK signaling pathway. In vivo, in a lentiviral-mediated model of expanded huntingtin expression in the rat striatum, we found that the D2 antagonist haloperidol protects striatal neurons against expanded huntingtin-mediated toxicity. Two variant transcripts are generated by alternative splicing of the of D2 receptor gene, the D2R-Long and the D2R-Short, which are thought to play different functional roles. We show herein that overexpression of D2R-Short, but not D2R-Long in cell lines is associated with activation of the RhoA/ROCK signaling pathway. In striatal neurons in culture, the selective D2 agonist Quinpirole triggers phosphorylation of cofilin, a downstream effector of ROCK, which is abrogated by siRNAs that knockdown both D2R-Long and D2R-Short, but not by siRNAs targeting D2R-Long alone. Aggregate formation and neuronal death induced by expanded huntingtin, were potentiated by Quinpirole. This D2 agonist-mediated effect was selectively inhibited by the siRNA targeting both D2R-Long and D2R-Short but not D2R-Long alone. Our data provide evidence for a specific coupling of D2R-Short to the RhoA/ROCK/cofilin pathway, and its involvement in striatal vulnerability to expanded huntingtin. A new route for targeting Rho-ROCK signaling in Huntington's disease is unraveled with our findings.

  14. A new cyclopeptide with antifungal activity from the co-culture broth of two marine mangrove fungi.

    Science.gov (United States)

    Li, Chunyuan; Wang, Jinhua; Luo, Cuiping; Ding, Weijia; Cox, Daniel G

    2014-01-01

    A new cyclic tetrapeptide, cyclo-(L-leucyl-trans-4-hydroxy-L-prolyl-D-leucyl-trans-4-hydroxy-L-proline) (1), was isolated from the co-culture broth of two mangrove fungi Phomopsis sp. K38 and Alternaria sp. E33. The structure of 1 was determined by analysis of spectroscopic data and Marfey's analytic method. Primary bioassay demonstrated that compound 1 exhibited moderate to high inhibitory activity against four crop-threatening fungi including Gaeumannomyces graminis, Rhizoctonia cerealis, Helminthosporium sativum and Fusarium graminearum as compared with triadimefon.

  15. Co-culture fermentation of peanut-soy milk for the development of a novel functional beverage.

    Science.gov (United States)

    Santos, Claudia Cristina Auler do Amaral; Libeck, Bárbara da Silva; Schwan, Rosane Freitas

    2014-09-01

    Most of the commercial probiotic products are dairy-based, and the development of non-dairy probiotic products could be an alternative for new functional products. The peanut-soy milk (PSM(1)) was inoculated with six different lactic acid bacteria (LAB), including probiotic strains and yeasts and fermentation was accomplished for 24h at 37 °C and afterwards, another 24h at ±4 °C. The Pediococcus acidilactici (UFLA BFFCX 27.1), Lactococcus lactis (CCT 0360), Lactobacillus rhamnosus (LR 32) probiotic LAB, and the Lactobacillus delbrueckii subsp. bulgaricus (LB 340) yogurt starter culture reached cell concentrations of about 8.3log CFU/mL during fermentation. However, these strains were not able to acidify the substrate when inoculated as pure culture. The Lactobacillus acidophilus (LACA 4) probiotic produced significant amounts of lactic acid (3.35 g/L) and rapidly lowered the pH (4.6). Saccharomyces cerevisiae (UFLA YFFBM 18.03) did not completely consume the available sugars in PSM and consequently produced low amounts of ethanol (0.24 g/L). In pure culture, S. cerevisiae (UFLA YFFBM 18.03), L. rhamnosus (LR 32), L. acidophilus (LACA 4), and P. acidilactici (UFLA BFFCX 27.1) promoted the increase of total amino acids (48.02%, 47.32%, 46.21% and, 44.07%, respectively). However, when in co-cultured, the strains consumed the free amino acids favoring their growth, and reaching the population of 8log CFU/mL in PSM. Lactic acid production increased, and 12 h was required to reach a pH value of 4.3. In general, the strains were more efficient in the use of available carbohydrates and release of metabolites in co-cultured than in single culture fermentations. An average of 58% and 78% of available carbohydrates was consumed when single and co-cultures were evaluated, respectively. Higher lactic acid contents were found in a binary culture of P. acidilactici (UFLA BFFCX 27.1) and L. acidophilus (LACA 4), and by co-culture of P. acidilactici (UFLA BFFCX 27.1), L

  16. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    Science.gov (United States)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  17. Co-culture of dedifferentiated and primary human chondrocytes obtained from cadaveric donor enhance the histological quality of repair tissue: an in-vivo animal study.

    Science.gov (United States)

    Olivos-Meza, Anell; Velasquillo Martínez, Cristina; Olivos Díaz, Brenda; Landa-Solís, Carlos; Brittberg, Mats; Pichardo Bahena, Raul; Ortega Sanchez, Carmina; Martínez, Valentin; Alvarez Lara, Enrique; Ibarra-Ponce de León, José Clemente

    2017-06-05

    To compare the quality of the repair tissue in three-dimensional co-culture of human chondrocytes implanted in an in vivo model. Six cadaveric and five live human donors were included. Osteochondral biopsies from the donor knees were harvested for chondrocyte isolation. Fifty percent of cadaveric chondrocytes were expanded until passage-2 (P2) while the remaining cells were cryopreserved in passage-0 (P0). Fresh primary chondrocytes (P0f) obtained from live human donors were co-cultured. Three-dimensional constructs were prepared with a monolayer of passage-2 chondrocytes, collagen membrane (Geistlich Bio-Gide(®)), and pellet of non-co-cultured (P2) or co-cultured chondrocytes (P2 + P0c, P2 + P0f). Constructs were implanted in the subcutaneous tissue of athymic mice and left for 3 months growth. Safranin-O and Alcian blue staining were used to glycosaminoglycan content assessment. Aggrecan and type-II collagen were evaluated by immunohistochemistry. New-formed tissue quality was evaluated with an adaptation of the modified O'Driscoll score. Histological quality of non-co-cultured group was 4.37 (SD ±4.71), while co-cultured groups had a mean score of 8.71 (SD ±3.98) for the fresh primary chondrocytes and 9.57 (SD ±1.27) in the cryopreserved chondrocytes. In immunohistochemistry, Co-culture groups were strongly stained for type-II and aggrecan not seen in the non-co-cultured group. It is possible to isolate viable chondrocytes from cadaveric human donors in samples processed in the first 48-h of dead. There is non-significant difference between the numbers of chondrocytes isolated from live or cadaveric donors. Cryopreservation of cadaveric primary chondrocytes does not alter the capability to form cartilage like tissue. Co-culture of primary and passaged chondrocytes enhances the histological quality of new-formed tissue compared to non-co-cultured cells.

  18. Fiber degradation potential of natural co-cultures of Neocallimastix frontalis and Methanobrevibacter ruminantium isolated from yaks (Bos grunniens) grazing on the Qinghai Tibetan Plateau.

    Science.gov (United States)

    Wei, Ya-Qin; Long, Rui-Jun; Yang, Hui; Yang, Hong-Jian; Shen, Xi-Hui; Shi, Rui-Fang; Wang, Zhi-Ye; Du, Jun-Guo; Qi, Xiao-Jin; Ye, Qian-Hong

    2016-06-01

    Several natural anaerobic fungus-methanogen co-cultures have been isolated from rumen and feces source of herbivores with strong fiber degrading ability. In this study, we isolated 7 Neocallimastix with methanogen co-cultures from the rumen of yaks grazing on the Qinghai Tibetan Plateau. Based on morphological characteristics and internal transcribed spacer 1 sequences (ITS1), all the fungi were identified as Neocallimastix frontalis. The co-cultures were confirmed as the one fungus - one methanogen pattern by the PCR-denatured gradient gel electrophoresis (DGGE) assay. All the methanogens were identified as Methanobrevibacter ruminantium by 16s rRNA gene sequencing. We investigated the biodegrading capacity of the co-culture (N. frontalis + M. ruminantium) Yaktz1 on wheat straw, corn stalk and rice straw in a 7 days-incubation. The in vitro dry matter digestibility (IVDMD), acid detergent fiber digestibility (ADFD) and neural detergent fiber digestibility (NDFD) values of the substrates in the co-culture were significantly higher than those in the mono-culture N. frontalis Yaktz1. The co-culture exhibited high polysaccharide hydrolase (xylanase and FPase) and esterase activities. The xylanase in the co-culture reached the highest activity of 12500 mU/ml on wheat straw at the day 3 of the incubation. At the end of the incubation, 3.00 mmol-3.29 mmol/g dry matter of methane were produced by the co-culture. The co-culture also produced high level of acetate (40.00 mM-45.98 mM) as the end-product during the biodegradation. Interestingly, the N. frontalis Yaktz1 mono-culture produced large amount of lactate (8.27 mM-11.60 mM) and ethanol (163.11 mM-242.14 mM), many times more than those recorded in the previously reported anaerobic fungi. Our data suggests that the (N. frontalis + M. ruminantium) Yaktz1 co-culture and the N. frontalis Yaktz1 mono-culture both have great potentials for different industrial use.

  19. Fronto-striatal atrophy in behavioural variant frontotemporal dementia & Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Maxime eBertoux

    2015-07-01

    Full Text Available Behavioural variant frontotemporal dementia (bvFTD has only recently been associated with significant striatal atrophy, whereas the striatum appears to be relatively preserved in Alzheimer’s disease (AD. Considering the critical role the striatum has in cognition and behaviour, striatal degeneration, together with frontal atrophy, could be responsible of some characteristic symptoms in bvFTD and emerges therefore as promising novel diagnostic biomarker to distinguish bvFTD and AD. Previous studies have, however, only taken either cortical or striatal atrophy into account when comparing the two diseases. In this study, we establish for the first time a profile of fronto-striatal atrophy in 23 bvFTD and 29 AD patients at presentation, based on the structural connectivity of striatal and cortical regions. Patients are compared to 50 healthy controls by using a novel probabilistic connectivity atlas, which defines striatal regions by their cortical white matter connectivity, allowing us to explore the degeneration of the frontal and striatal regions that are functionally linked. Comparisons with controls revealed that bvFTD showed substantial fronto-striatal atrophy affecting the ventral as well as anterior and posterior dorso-lateral prefrontal cortices and the related striatal subregions. By contrast, AD showed few fronto-striatal atrophy, despite having significant posterior dorso-lateral prefrontal degeneration. Direct comparison between bvFTD and AD revealed significantly more atrophy in the ventral striatal-ventromedial prefrontal cortex regions in bvFTD. Consequently, deficits in ventral fronto-striatal regions emerge as promising novel and efficient diagnosis biomarker for bvFTD. Future investigations into the contributions of these fronto-striatal loops on bvFTD symptomology are needed to develop simple diagnostic and disease tracking algorithms.

  20. Visualizing sensory transmission between dorsal root ganglion and dorsal horn neurons in co-culture with calcium imaging.

    Science.gov (United States)

    Ohshiro, Hiroyuki; Ogawa, Shinji; Shinjo, Katsuhiro

    2007-09-15

    Sensory information is conveyed to the central nervous system by primary afferent neurons within dorsal root ganglia (DRG), which synapse onto neurons of the dorsal horn of the spinal cord. This synaptic connection is central to the processing of both sensory and pain stimuli. Here, we describe a model system to monitor synaptic transmission between DRG neurons and dorsal horn neurons that is compatible with high-throughput screening. This co-culture preparation comprises DRG and dorsal horn neurons and utilizes Ca(2+) imaging with the indicator dye Fura-2 to visualize synaptic transmission. Addition of capsaicin to co-cultures stimulated DRG neurons and led to activation of dorsal horn neurons as well as increased intracellular Ca(2+) concentrations. This effect was dose-dependent and absent when DRG neurons were omitted from the culture. NMDA receptors are a critical component of synapses between DRG and dorsal horn neurons as MK-801, a use-dependent non-competitive antagonist, prevented activation of dorsal horn neurons following capsaicin treatment. This model system allows for rapid and efficient analysis of noxious stimulus-evoked Ca(2+) signal transmission and provides a new approach both for investigating synaptic transmission in the spinal cord and for screening potential analgesic compounds.

  1. Symbiotic Behavior during Co-culturing of Clostridium thermocellum NKP-2 and Thermoanaerobacterium thermosaccharolyticum NOI-1 on Corn Hull

    Directory of Open Access Journals (Sweden)

    Suphavadee Chimtong

    2014-03-01

    Full Text Available The symbiosis of co-culturing between Clostridium thermocellum NKP-2 and Thermoanaerobacterium thermosaccharolyticum NOI-1 is described. An efficient biomass-degrading enriched culture was isolated from soil that contained two different bacterial strains showing homology to C. thermocellum and T. thermosaccharolyticum. The enzymatic system produced from the isolated strains when cultivated individually on corn hulls demonstrated different cellulolytic and xylanolytic enzyme activities. Strain NKP-2 produced cellulose- and xylan-main chain cleaving enzymes such as carboxymethylcellulase (CMCase, avicelase, and xylanase as major enzymes, whereas strain NOI-1 produced primarily short- and side-chain cleaving enzymes such as cellobiohydrolase, β-glucosidase, β-xylosidase, acetyl esterase, and especially α-L-arabinofuranosidase. Enhancement of corn hull utilization, cell growth, and fermentation products (ethanol, butanol, acetic acid, butyric acid, H2, and CO2 was greatly increased during co-culturing compared with individual cultivation of both strains. The symbiotic behavior between both strains was one of mutualism, in which the synergistic degradation of corn hulls by co-action of cellulolytic and xylanolytic enzymes promoted hydrolysis of biomass for growth and fermented products.

  2. Landfill leachate treatment using bacto-algal co-culture: An integrated approach using chemical analyses and toxicological assessment.

    Science.gov (United States)

    Kumari, Moni; Ghosh, Pooja; Thakur, Indu Shekhar

    2016-06-01

    The present study aims to evaluate the feasibility of leachate treatment using a synergistic approach by microalgae and bacteria. Leachate from one of the landfill of Northern India showed the presence of various toxic organic contaminants like naphthalene, benzene, phenol and their derivatives, napthols, pesticides, epoxides, phthalates and halogenated organic compounds. ICP-AES analysis revealed high concentrations of Zn, Cr, Fe, Ni, and Pb beyond the maximum permissible limit of discharge. Bacto-algal co-culture was found to be the most efficient in removal of toxic organic contaminants and heavy metals. Further, detoxification efficiency of bacto-algal treatment was evaluated by Methyl tetrazolium (MTT) assay for cytotoxicity and alkaline comet assay for genotoxicity using hepatoma HepG2 cells. Reduction in toxicity was confirmed by an increase in LC50 by 1.9 fold and reduction in Olive Tail Moment by 40.6 fold after 10 days of treatment. Results of the study indicate bioremediation and detoxification potency of bacto-algal co-culture for leachate treatment.

  3. Survival of Campylobacter jejuni in co-culture with Acanthamoeba castellanii: role of amoeba-mediated depletion of dissolved oxygen.

    Science.gov (United States)

    Bui, Xuan Thanh; Winding, Anne; Qvortrup, Klaus; Wolff, Anders; Bang, Dang Duong; Creuzenet, Carole

    2012-08-01

    Campylobacter jejuni is a major cause of infectious diarrhoea worldwide but relatively little is known about its ecology. In this study, we examined its interactions with Acanthamoeba castellanii, a protozoan suspected to serve as a reservoir for bacterial pathogens. We observed rapid degradation of intracellular C.jejuni in A.castellanii 5 h post gentamicin treatment at 25°C. Conversely, we found that A.castellanii promoted the extracellular growth of C.jejuni in co-cultures at 37°C in aerobic conditions. This growth-promoting effect did not require amoebae - bacteria contact. The growth rates observed with or without contact with amoeba were similar to those observed when C.jejuni was grown in microaerophilic conditions. Preconditioned media prepared with live or dead amoebae cultivated with or without C.jejuni did not promote the growth of C.jejuni in aerobic conditions. Interestingly, the dissolved oxygen levels of co-cultures with or without amoebae - bacteria contact were much lower than those observed with culture media or with C.jejuni alone incubated in aerobic conditions, and were comparable with levels obtained after 24 h of growth of C.jejuni under microaerophilic conditions. Our studies identified the depletion of dissolved oxygen by A.castellanii as the major contributor for the observed amoeba-mediated growth enhancement.

  4. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Jen; Ho, Cheng-Yu.; Chen, Wei-En; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University, Taichung (China); Chou, Chia-Hung; Lay, Jiunn-Jyi [Department of Science and Technology, National Kaohsiung First University, Kaohsiung (China)

    2008-10-15

    By using brewery yeast waste and microflora from rice straw compost, an anaerobic semi-solid bio-hydrogen-producing system has been established. For the purpose of industrialization, the major players of both aerobic and anaerobic bacterial strains in the system were isolated and their combination for an effective production of bio-hydrogen and other bio-fuels was examined in this study. The phylogenetic analysis found that four anaerobic isolates (Clostridium beijerinckii L9, Clostridium diolis Z2, Clostridium roseum Z5-1, and C. roseum W8) were highly related with each other and belongs to the cluster I clostridia family, the family that many of solvent-producing strains included. On the other hand, one of the aerobic isolates, the Bacillus thermoamylovorans strain I, shown multiple extracellular enzyme activities including lipase, protease, {alpha}-amylase, pectinase and cellulase, was suggested as a good partner for creating an anaerobic environment and pre-saccharification of substrate for those co-cultured solventogenic clostridial strain. Among these clostridial strains, though C. beijerinckii L9 do not show as many extracellular enzyme activities as Bacillus, but it performs the highest hydrogen-producing ability. The original microflora can be updated to a syntrophic bacterial co-culture system contended only with B. thermoamylovorans I and C. beijerinckii L9. The combination of aerobic Bacillus and anaerobic Clostridium may play the key role for developing the industrialized bio-fuels and bio-hydrogen-producing system from biomass. (author)

  5. A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture

    Energy Technology Data Exchange (ETDEWEB)

    Vatsala, T.M.; Raj, S. Mohan; Manimaran, A. (Shri AMM Murugappa Chettiar Research Centre, Photosynthesis and Energy Division, Tharamani, Chennai, India, 600)

    2008-10-15

    We evaluated the feasibility of improving the scale of hydrogen (H{sub 2}) production from sugar cane distillery effluent using co-cultures of Citrobacter freundii 01, Enterobacter aerogenes E10 and Rhodopseudomonas palustris P2 at 100 m{sup 3} scale. The culture conditions at 100 ml and 2 L scales were optimized in minimal medium and we observed that the co-culture of the above three strains enhanced H{sub 2} productivity significantly. Results at the 100 m{sup 3} scale revealed a maximum of 21.38 kg of H{sub 2}, corresponding to 10692.6 mol, which was obtained through batch method at 40 h from reducing sugar (3862.3 mol) as glucose. The average yield of H{sub 2} was 2.76 mol mol{sup -1} glucose, and the rate of H{sub 2} production was estimated as 0.53 kg/100 m{sup 3}/h. Our results demonstrate the utility of distillery effluent as a source of clean alternative energy and provide insights into treatment for industrial exploitation. (author)

  6. Performance of non-conventional yeasts in co-culture with brewers' yeast for steering ethanol and aroma production.

    Science.gov (United States)

    van Rijswijck, Irma M H; Wolkers-Rooijackers, Judith C M; Abee, Tjakko; Smid, Eddy J

    2017-08-18

    Increasing interest in new beer types has stimulated the search for approaches to extend the metabolic variation of brewers' yeast. Therefore, we tested two approaches using non-conventional yeast to create a beer with lower ethanol content and a complex aroma bouquet. First, the mono-culture performance was monitored of 49 wild yeast isolates of Saccharomyces cerevisiae (16 strains), Cyberlindnera fabianii (9 strains) and Pichia kudriavzevii (24 strains). Interestingly, both C. fabianii and P. kudriavzevii isolates produced relatively more esters compared with S. cerevisiae isolates, despite their limited fermentation capacity. Next, one representative strain of each species (Sc131, Cf65 and Pk129) was applied as co-culture with brewers' yeast (ratio 1:1). Co-cultures with Cf65 and Pk129 resulted in a beer with lower alcohol content (3.5, 3.8 compared with 4.2% v/v) and relatively more esters. At higher inoculum ratios of Cf65 over brewers' yeast, growth inhibition of brewers' yeast was observed, most likely caused by competition for oxygen between brewers' yeast and Cf65 resulting in a reduced level of ethanol and altered aroma profiles. With this study, we demonstrate the feasibility of using non-conventional yeast species in co-cultivation with traditional brewers' yeast to tailor aroma profiles as well as the final ethanol content of beer. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Biological activity of a red-tide alga--A. tamarense under co-cultured condition with bacteria

    Institute of Scientific and Technical Information of China (English)

    SU Jian-qiang; YU Zhi-ming; TIAN Yun; SONG Xiu-xian; HONG Hua-sheng; ZHENG Tian-ling

    2005-01-01

    The relationship between Alexandrium tamarense(Lebour) Balech, one of red-tide alga, and two strains of marine bacteria,Bacillius megaterium(S7 ) and B. halmapulus(S10) isolated from Xiamen Western Sea, was investigated by evaluating the growth state of A. tamarense and the variation of β-glucosidase activity in co-culture system. The results showed the growth and multiplication of the alga were related with the concentration, genus speciality of the bacteria, and growth stage of the alga itself. The growth of A. tamarense was obviously inhibited by S7 and S10 at high concentration. Either inhibition or promotion contributed much more clearly in earlier than in later stage of the growth of the alga. Furthermore, there was a roughly similar variation trend of the activity of extra-cellular enzyme, β-glucosidase, in the water of the separately co-cultured bacteria S7 and S10 with the alga. The β-glucosidase activity(β-GlcA) rapidly increased during the later algal growth accompanying the increase of the lysis of the alga cells. The obvious inhibition of A. tamarense by marine bacteria at high concentration and evident increase of β-GlcA in co-colture system would help us in better understanding the relationship between red-tide alga and bacteria, and also enlightened us the possible use of bacteria in the bio-control of red-tide.

  8. Fabrication of uniform multi-compartment particles using microfludic electrospray technology for cell co-culture studies.

    Science.gov (United States)

    Liu, Zhou; Shum, Ho Cheung

    2013-01-01

    In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors.

  9. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment.

    Science.gov (United States)

    Røder, Henriette L; Raghupathi, Prem K; Herschend, Jakob; Brejnrod, Asker; Knøchel, Susanne; Sørensen, Søren J; Burmølle, Mette

    2015-10-01

    Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven different locations in a meat processing environment and evaluated their biofilm formation capability. A diverse group of bacteria was isolated and most were classified as poor biofilm producers in a Calgary biofilm device assay. Isolates from two sampling sites, the wall and the meat chopper, were further examined for multispecies biofilm formation. Eight strains from each sampling site were chosen and all possible combinations of four member co-cultures were tested for enhanced biofilm formation at 15 °C and 24 °C. In approximately 20% of the multispecies consortia grown at 15 °C, the biofilm formation was enhanced when comparing to monospecies biofilms. Two specific isolates (one from each location) were found to be present in synergistic combinations with higher frequencies than the remaining isolates tested. This data provides insights into the ability of co-localized isolates to influence co-culture biofilm production with high relevance for food safety and food production facilities.

  10. Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS.

    Science.gov (United States)

    Kunze, Anja; Lengacher, Sylvain; Dirren, Elisabeth; Aebischer, Patrick; Magistretti, Pierre J; Renaud, Philippe

    2013-07-24

    Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. ALS is believed to be a non-cell autonomous condition, as other cell types, including astrocytes, have been implicated in disease pathogenesis. Hence, to facilitate the development of therapeutics against ALS, it is crucial to better understand the interactions between astrocytes and neural cells. Furthermore, cell culture assays are needed that mimic the complexity of cell to cell communication at the same time as they provide control over the different microenvironmental parameters. Here, we aim to validate a previously developed microfluidic system for an astrocyte-neuron cell culture platform, in which astrocytes have been genetically modified to overexpress either a human wild-type (WT) or a mutated form of the super oxide dismutase enzyme 1 (SOD1). Cortical neural cells were co-cultured with infected astrocytes and studied for up to two weeks. Using our microfluidic device that prevents direct cell to cell contact, we could evaluate neural cell response in the vicinity of astrocytes. We showed that neuronal cell density was reduced by about 45% when neurons were co-cultured with SOD-mutant astrocytes. Moreover, we demonstrated that SOD-WT overexpressing astrocytes reduced oxidative stress on cortical neurons that were in close metabolic contact. In contrast, cortical neurons in metabolic contact with SOD-mutant astrocytes lost their synapsin protein expression after severe glutamate treatment, an indication of the toxicity potentiating effect of the SOD-mutant enzyme.

  11. Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk.

    Science.gov (United States)

    Laiño, Jonathan Emiliano; Juarez del Valle, Marianela; Savoy de Giori, Graciela; LeBlanc, Jean Guy Joseph

    2014-11-17

    The ability of 55 strains from different Lactobacillus species to produce folate was investigated. In order to evaluate folic acid productivity, lactobacilli were cultivated in the folate-free culture medium (FACM). Most of the tested strains needed folate for growth. The production and the extent of vitamin accumulation were distinctive features of individual strains. Lactobacillus amylovorus CRL887 was selected for further studies because of its ability to produce significantly higher concentrations of vitamin (81.2 ± 5.4 μg/L). The safety of this newly identified folate producing strain was evaluated through healthy experimental mice. No bacterial translocation was detected in liver and spleen after consumption of CRL887 during 7 days and no undesirable side effects were observed in the animals that received this strain. This strain in co-culture with previously selected folate producing starter cultures (Lactobacillus bulgaricus CRL871, and Streptococcus thermophilus CRL803 and CRL415) yielded a yogurt containing high folate concentrations (263.1 ± 2.4 μg/L); a single portion of which would provide 15% of the recommended dietary allowance. This is the first report where a Lactobacillus amylovorus strain was successfully used as co-culture for natural folate bio-enrichment of fermented milk.

  12. Striatal astrocytes transdifferentiate into functional mature neurons following ischemic brain injury.

    Science.gov (United States)

    Duan, Chun-Ling; Liu, Chong-Wei; Shen, Shu-Wen; Yu, Zhang; Mo, Jia-Lin; Chen, Xian-Hua; Sun, Feng-Yan

    2015-09-01

    To determine whether reactive astrocytes stimulated by brain injury can transdifferentiate into functional new neurons, we labeled these cells by injecting a glial fibrillary acidic protein (GFAP) targeted enhanced green fluorescence protein plasmid (pGfa2-eGFP plasmid) into the striatum of adult rats immediately following a transient middle cerebral artery occlusion (MCAO) and performed immunolabeling with specific neuronal markers to trace the neural fates of eGFP-expressing (GFP(+)) reactive astrocytes. The results showed that a portion of striatal GFP(+) astrocytes could transdifferentiate into immature neurons at 1 week after MCAO and mature neurons at 2 weeks as determined by double staining GFP-expressing cells with βIII-tubulin (GFP(+)-Tuj-1(+)) and microtubule associated protein-2 (GFP(+)-MAP-2(+)), respectively. GFP(+) neurons further expressed choline acetyltransferase, glutamic acid decarboxylase, dopamine receptor D2-like family proteins, and the N-methyl-D-aspartate receptor subunit R2, indicating that astrocyte-derived neurons could develop into cholinergic or GABAergic neurons and express dopamine and glutamate receptors on their membranes. Electron microscopy analysis indicated that GFP(+) neurons could form synapses with other neurons at 13 weeks after MCAO. Electrophysiological recordings revealed that action potentials and active postsynaptic currents could be recorded in the neuron-like GFP(+) cells but not in the astrocyte-like GFP(+) cells, demonstrating that new GFP(+) neurons possessed the capacity to fire action potentials and receive synaptic inputs. These results demonstrated that striatal astrocyte-derived new neurons participate in the rebuilding of functional neural networks, a fundamental basis for brain repair after injury. These results may lead to new therapeutic strategies for enhancing brain repair after ischemic stroke.

  13. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, A.; Planell, J.A. [Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona (Spain); Dept. of Material Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); CIBER-BBN, Maria de Luna 11, Ed. CEEI, 50118 Zaragoza (Spain); Engel, E., E-mail: elisabeth.engel@upc.edu [Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona (Spain); Dept. of Material Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); CIBER-BBN, Maria de Luna 11, Ed. CEEI, 50118 Zaragoza (Spain)

    2010-09-17

    Research highlights: {yields} BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. {yields} Co-culture decreases proliferation by cellular self-regulatory mechanisms. {yields} Co-cultured cells present an activated proangiogenic phenotype. {yields} qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  14. Promoted differentiation of cynomolgus monkey ES cells into hepatocyte-like cells by co-culture with mouse fetal liver-derived cells

    Institute of Scientific and Technical Information of China (English)

    Ko Saito; Masahide Yoshikawa; Yukiteru Ouji; Kei Moriya; Mariko Nishiofuku; Shigehiko Ueda; Noriko Hayashi; Shigeaki Ishizaka; Hiroshi Fukui

    2006-01-01

    AIM:To explore whether a co-culture of cynomolgus monkey embryonic stem (cES) cells with embryonic liver cells could promote their differentiation into hepatocytes.METHODS:Mouse fetal liver-derived cells (MFLCs) were prepared as adherent cells from mouse embryos on embryonic d (ED) 14, after which undifferentiated cES cells were co-cultured with MFLCs. The induction of cES cells along a hepatic lineage was examined in MFLCassisted differentiation, spontaneous differentiation,and growth factors (GF) and chemicals-induced differentiations (GF-induced differentiation) using retinoic acid, leukemia inhibitory factor (LIF), FGF2, FGF4,hepatocyte growth factor (HGF), oncostatin M (OSM),and dexamethasone.RESULTS:The mRNA expression of α-fetoprotein,albumin (ALB), α-1-antitrypsin, and hepatocyte nuclear factor 4α was observed earlier in the differentiating cES cells co-cultured with MFLCs, as compared to cES cells undergoing spontaneous differentiation and those subjected to GF-induced differentiation. The expression of cytochrome P450 7a1, a possible marker for embryonic endoderm-derived mature hepatocytes,was only observed in cES cells that had differentiated in a co-culture with MFLCs. Further, the disappearance of Oct3/4, a representative marker of an undifferentiated state, was noted in cells co-cultured with MFLCs, but not in those undergoing spontaneous or GF-induced differentiation. Tmmunocytochemical analysis revealed an increased ratio of ALS-immunopositive cells among cES cells co-cultured with MFLCs, while glycogen storage and urea synthesis were also demonstrated.CONCLUSION:MFLCs showed an ability to induce cES cells to differentiate toward hepatocytes. The co-culture system with MFLCs is a useful method for induction of hepatocyte-like cells from undifferentiated cES cells.

  15. The Manipulation effectivity of cell co-cultures in 5% CO2 incubation system to increase in vitro cattle embryo production

    Directory of Open Access Journals (Sweden)

    Ferry Lismanto Syaiful

    2010-03-01

    Full Text Available The purpose of this research is to determine the effectivity of various cell co-cultures of cattle embryo production by in vitro CO2 5% incubation system and get the best cell co-culture. Cell co-culture which are used in the synthesis is the oviduct cells, isthmus cells, ampulla cells, follicle cells and without cells. Data were analyzed based on completely randomized desiggn. The average growth rate/ cleavage in various cell culture was: the oviduct cell 59.24%, ampulla cell 58.69%, isthmus cell 58.25%, follicle cell 52.24% and without cells 47.76%. The average growth of 8-16 cells embryos to various cell co-culture was: the oviduct cell 46.02%, ampulla cell 45.45%, isthmus cell 45.15%, follicle cell 43.07%, and without cell 38.50%. The mean percentage of morula in various cell co-culture treatment was: the oviduct cell 20.59%, ampulla cell 20.48%, isthmus cell 20.30%, follicle cell 16.96% and without cell 12.58%. The average percentage of embryonic growth (cleavage, 8-16 cells and morula was not significantly different (P > 0.05. The treatment of a variety of cell co-culture increased significantly (P>0.05, blastocysts production, namely: the oviduct cell 3.28%, ampulla cell 3.22%, isthmus cell 3.08%, follicle cell 2.45% and without cell 1.97%. In conclusion, the treatment of various cell co-culture in 5%CO2 incubation system can increace the growth of cattle embryos in vitro.

  16. Direct binding of boar ejaculate and epididymal spermatozoa to porcine epididymal epithelial cells is also needed to maintain sperm survival in in vitro co-culture.

    Science.gov (United States)

    Yeste, Marc; Castillo-Martín, Míriam; Bonet, Sergi; Briz, Maria Dolors

    2012-04-01

    The aim of the present study was to compare the influence of cultured epididymal epithelial cells (EEC) from corpus, caput or cauda, oviductal epithelial cells (OEC) and non-reproductive epithelial cells (LLC-PK1) on function and survival of epididymal and ejaculated spermatozoa, in the latter case to determine whether such influence differed between morphologically normal and abnormal spermatozoa. For this purpose, either spermatozoa were directly co-cultured with EEC from caput, corpus, or cauda, OEC and LLC-PK1 cells (experiment 1) or a membrane-diffusible insert was included in these co-cultures (experiment 2). EEC cultured from the three epididymal regions did not differently affect the sperm parameters. Morphologically normal spermatozoa presented a higher ability to bind EEC, OEC, and LLC-PK1 than abnormal spermatozoa with cytoplasmic droplets or with tail/head malformations. Epididymal spermatozoa were more able to bind EEC during the first 24 h of co-culture, while ejaculated spermatozoa presented a higher capacity to bind OEC between 30 min and 3 h of co-incubation. In all cases, the ability to bind to epithelial cells was higher when they were co-cultured with EEC and OEC than with LLC-PK1. After 2 h of co-culture, the viability of epididymal spermatozoa was better maintained when they bound EEC than when they bound OEC. Conversely, the viability of ejaculated spermatozoa was better maintained when bound OEC than when bound EEC after 24 and 48 h of co-culture. Our work, apart from corroborating the involvement of morphologically normal spermatozoa in the formation of sperm reservoir, highlights the importance of direct contact spermatozoa-EEC in maintaining the sperm survival in in vitro co-culture, and also suggests that a specific binding between EEC and epididymal spermatozoa exists.

  17. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho, E-mail: sangho@snu.ac.kr

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  18. Dorsal striatal dopamine, food preference and health perception in humans.

    Science.gov (United States)

    Wallace, Deanna L; Aarts, Esther; Dang, Linh C; Greer, Stephanie M; Jagust, William J; D'Esposito, Mark

    2014-01-01

    To date, few studies have explored the neurochemical mechanisms supporting individual differences in food preference in humans. Here we investigate how dorsal striatal dopamine, as measured by the positron emission tomography (PET) tracer [(18)F]fluorometatyrosine (FMT), correlates with food-related decision-making, as well as body mass index (BMI) in 16 healthy-weight to moderately obese individuals. We find that lower PET FMT dopamine synthesis binding potential correlates with higher BMI, greater preference for perceived "healthy" foods, but also greater healthiness ratings for food items. These findings further substantiate the role of dorsal striatal dopamine in food-related behaviors and shed light on the complexity of individual differences in food preference.

  19. Striatal dopamine, reward, and decision making in schizophrenia.

    Science.gov (United States)

    Deserno, Lorenz; Schlagenhauf, Florian; Heinz, Andreas

    2016-03-01

    Elevated striatal dopamine function is one of the best-established findings in schizophrenia. In this review, we discuss causes and consequences of this striata! dopamine alteration. We first summarize earlier findings regarding striatal reward processing and anticipation using functional neuroimaging. Secondly, we present a series of recent studies that are exemplary for a particular research approach: a combination of theory-driven reinforcement learning and decision-making tasks in combination with computational modeling and functional neuroimaging. We discuss why this approach represents a promising tool to understand underlying mechanisms of symptom dimensions by dissecting the contribution of multiple behavioral control systems working in parallel. We also discuss how it can advance our understanding of the neurobiological implementation of such functions. Thirdly, we review evidence regarding the topography of dopamine dysfunction within the striatum. Finally, we present conclusions and outline important aspects to be considered in future studies.

  20. Striatal Vulnerability in Huntington’s Disease: Neuroprotection Versus Neurotoxicity

    Science.gov (United States)

    Morigaki, Ryoma; Goto, Satoshi

    2017-01-01

    Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat encoding an abnormally long polyglutamine tract (PolyQ) in the huntingtin (Htt) protein. In HD, striking neuropathological changes occur in the striatum, including loss of medium spiny neurons and parvalbumin-expressing interneurons accompanied by neurodegeneration of the striosome and matrix compartments, leading to progressive impairment of reasoning, walking and speaking abilities. The precise cause of striatal pathology in HD is still unknown; however, accumulating clinical and experimental evidence suggests multiple plausible pathophysiological mechanisms underlying striatal neurodegeneration in HD. Here, we review and discuss the characteristic neurodegenerative patterns observed in the striatum of HD patients and consider the role of various huntingtin-related and striatum-enriched proteins in neurotoxicity and neuroprotection. PMID:28590448

  1. Striatal Vulnerability in Huntington's Disease: Neuroprotection Versus Neurotoxicity.

    Science.gov (United States)

    Morigaki, Ryoma; Goto, Satoshi

    2017-06-07

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat encoding an abnormally long polyglutamine tract (PolyQ) in the huntingtin (Htt) protein. In HD, striking neuropathological changes occur in the striatum, including loss of medium spiny neurons and parvalbumin-expressing interneurons accompanied by neurodegeneration of the striosome and matrix compartments, leading to progressive impairment of reasoning, walking and speaking abilities. The precise cause of striatal pathology in HD is still unknown; however, accumulating clinical and experimental evidence suggests multiple plausible pathophysiological mechanisms underlying striatal neurodegeneration in HD. Here, we review and discuss the characteristic neurodegenerative patterns observed in the striatum of HD patients and consider the role of various huntingtin-related and striatum-enriched proteins in neurotoxicity and neuroprotection.

  2. Enhanced striatal sensitivity to aversive reinforcement in adolescents versus adults.

    Science.gov (United States)

    Galván, Adriana; McGlennen, Kristine M

    2013-02-01

    Neurodevelopmental changes in mesolimbic regions are associated with adolescent risk-taking behavior. Numerous studies have shown exaggerated activation in the striatum in adolescents compared with children and adults during reward processing. However, striatal sensitivity to aversion remains elusive. Given the important role of the striatum in tracking both appetitive and aversive events, addressing this question is critical to understanding adolescent decision-making, as both positive and negative factors contribute to this behavior. In this study, human adult and adolescent participants performed a task in which they received squirts of appetitive or aversive liquid while undergoing fMRI, a novel approach in human adolescents. Compared with adults, adolescents showed greater behavioral and striatal sensitivity to both appetitive and aversive stimuli, an effect that was exaggerated in response to delivery of the aversive stimulus. Collectively, these findings contribute to understanding how neural responses to positive and negative outcomes differ between adolescents and adults and how they may influence adolescent behavior.

  3. Endocannabinoid-dopamine interactions in striatal synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Brian Neil Mathur

    2012-04-01

    Full Text Available The nigrostriatal dopaminergic system is implicated in action control and learning. A large body of work has focused on the contribution of this system to modulation of the corticostriatal synapse, the predominant synapse type in the striatum. Signaling through the D2 dopamine receptor is necessary for endocannabinoid-mediated depression of corticostriatal glutamate release. Here we review the known details of this mechanism and discuss newly discovered signaling pathways interacting with this system that ultimately exert dynamic control of cortical input to the striatum and striatal output. This topic is timely with respect to Parkinson’s disease given recent data indicating changes in the striatal endocannabinoid system in patients with this disorder.

  4. Dopaminergic and Cholinergic Modulation of Striatal Tyrosine Hydroxylase Interneurons

    OpenAIRE

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S.; Tepper, James M.; Koós, Tibor

    2015-01-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2013). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulatio...

  5. Transient and steady-state selection in the striatal microcircuit.

    Science.gov (United States)

    Tomkins, Adam; Vasilaki, Eleni; Beste, Christian; Gurney, Kevin; Humphries, Mark D

    2013-01-01

    Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  6. Transient and steady-state selection in the striatal microcircuit

    Directory of Open Access Journals (Sweden)

    Adam eTomkins

    2014-01-01

    Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  7. Dysregulation of Striatal Dopamine Receptor Binding in Suicide.

    Science.gov (United States)

    Fitzgerald, Megan L; Kassir, Suham A; Underwood, Mark D; Bakalian, Mihran J; Mann, J John; Arango, Victoria

    2017-03-01

    Inconsistent evidence implicates disruptions of striatal dopaminergic indices in suicide and major depression. To determine whether there are alterations in the striatal dopamine system in suicide, we conducted a quantitative autoradiographic survey of dopamine transporter (DAT; [(3)H]mazindol), D1 receptor ([(3)H]SCH23390), and D2 receptor ([(3)H]sulpiride) binding in the dorsal striatum postmortem from matched suicides and controls. Axis I and axis II psychiatric diagnosis, recent treatment history, and early life adversity (ELA) were determined by psychological autopsy. Mean DAT, D2, and D1 receptor binding did not differ in suicide. However, there was a positive correlation between D1 and D2 receptor binding in the dorsal striatum of control subjects (R(2)=0.31, pELA, there was no correlation between striatal DAT and D1 receptor binding (R(2)=0.07, p=0.33), although DAT and D1 receptor binding was positively correlated in subjects with no report of ELA (R(2)=0.32, pELA-related mean differences. Binding of D1 receptors and DAT throughout the striatum correlated negatively with age (D1 receptor: R(2)=0.12, pELA or age.

  8. The role of striatal NMDA receptors in drug addiction.

    Science.gov (United States)

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective b