WorldWideScience

Sample records for cns myelin inhibition

  1. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  2. Kif13b Regulates PNS and CNS Myelination through the Dlg1 Scaffold.

    Directory of Open Access Journals (Sweden)

    Roberta Noseda

    2016-04-01

    Full Text Available Microtubule-based kinesin motors have many cellular functions, including the transport of a variety of cargos. However, unconventional roles have recently emerged, and kinesins have also been reported to act as scaffolding proteins and signaling molecules. In this work, we further extend the notion of unconventional functions for kinesin motor proteins, and we propose that Kif13b kinesin acts as a signaling molecule regulating peripheral nervous system (PNS and central nervous system (CNS myelination. In this process, positive and negative signals must be tightly coordinated in time and space to orchestrate myelin biogenesis. Here, we report that in Schwann cells Kif13b positively regulates myelination by promoting p38γ mitogen-activated protein kinase (MAPK-mediated phosphorylation and ubiquitination of Discs large 1 (Dlg1, a known brake on myelination, which downregulates the phosphatidylinositol 3-kinase (PI3K/v-AKT murine thymoma viral oncogene homolog (AKT pathway. Interestingly, Kif13b also negatively regulates Dlg1 stability in oligodendrocytes, in which Dlg1, in contrast to Schwann cells, enhances AKT activation and promotes myelination. Thus, our data indicate that Kif13b is a negative regulator of CNS myelination. In summary, we propose a novel function for the Kif13b kinesin in glial cells as a key component of the PI3K/AKT signaling pathway, which controls myelination in both PNS and CNS.

  3. A Novel Approach for Studying the Physiology and Pathophysiology of Myelinated and Non-Myelinated Axons in the CNS White Matter.

    Directory of Open Access Journals (Sweden)

    Lijun Li

    Full Text Available Advances in brain connectomics set the need for detailed knowledge of functional properties of myelinated and non-myelinated (if present axons in specific white matter pathways. The corpus callosum (CC, a major white matter structure interconnecting brain hemispheres, is extensively used for studying CNS axonal function. Unlike another widely used CNS white matter preparation, the optic nerve where all axons are myelinated, the CC contains also a large population of non-myelinated axons, making it particularly useful for studying both types of axons. Electrophysiological studies of optic nerve use suction electrodes on nerve ends to stimulate and record compound action potentials (CAPs that adequately represent its axonal population, whereas CC studies use microelectrodes (MEs, recording from a limited area within the CC. Here we introduce a novel robust isolated "whole" CC preparation comparable to optic nerve. Unlike ME recordings where the CC CAP peaks representing myelinated and non-myelinated axons vary broadly in size, "whole" CC CAPs show stable reproducible ratios of these two main peaks, and also reveal a third peak, suggesting a distinct group of smaller caliber non-myelinated axons. We provide detailed characterization of "whole" CC CAPs and conduction velocities of myelinated and non-myelinated axons along the rostro-caudal axis of CC body and show advantages of this preparation for comparing axonal function in wild type and dysmyelinated shiverer mice, studying the effects of temperature dependence, bath-applied drugs and ischemia modeled by oxygen-glucose deprivation. Due to the isolation from gray matter, our approach allows for studying CC axonal function without possible "contamination" by reverberating signals from gray matter. Our analysis of "whole" CC CAPs revealed higher complexity of myelinated and non-myelinated axonal populations, not noticed earlier. This preparation may have a broad range of applications as a robust

  4. Bony fish myelin: evidence for common major structural glycoproteins in central and peripheral myelin of trout.

    Science.gov (United States)

    Jeserich, G; Waehneldt, T V

    1986-02-01

    Peripheral nervous system (PNS) myelin from the rainbow trout (Salmo gairdneri) banded at a density of 0.38 M sucrose. The main myelin proteins consisted of (1) two basic proteins, BPa and BPb (11,500 and 13,000 MW, similar to those of trout central nervous system (CNS) myelin proteins BP1 and BP2), and (2) two glycosylated components, IPb (24,400 MW) and IPc (26,200 MW). IPc comigrated with trout CNS myelin protein IP2 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas trout CNS myelin protein IP1 had a lower molecular weight (23,000). Following two-dimensional separation, however, both IPb and IPc from PNS showed two components; the more acidic component of IPc comigrated with IP2 from CNS. PNS tissue autolysis led to the formation of IPa (20,000 MW), consisting of two components in isoelectric focusing of which again the more acidic one comigrated with the CNS autolysis product IP0. Limited enzymatic digestion of isolated IP proteins from PNS and CNS led to closely similar degradation patterns, being most pronounced in the case of IP2 and IPc. Immunoblotting revealed that all IP components from trout PNS and CNS myelins reacted with antibodies to trout IP1 (CNS) and bovine P0 protein (PNS) whereas antibodies to rat PLP (CNS) were entirely unreactive. All BP components from trout PNS and CNS myelins bound to antibodies against human myelin basic protein. On the basis of these studies trout PNS and CNS myelins contain at least one common IP glycoprotein, whereas other members of the IP myelin protein family appear closely related. In the CNS myelin of trout the IP components appear to replace PLP.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Axo-Glia Interaction Preceding CNS Myelination Is Regulated by Bidirectional Eph-Ephrin Signaling

    Directory of Open Access Journals (Sweden)

    Cecilie Linneberg

    2015-09-01

    Full Text Available In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6β1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active β1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated.

  6. Cholesterol: a novel regulatory role in myelin formation.

    Science.gov (United States)

    Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin

    2011-02-01

    Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.

  7. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination.

    Science.gov (United States)

    Dutta, Dipankar J; Zameer, Andleeb; Mariani, John N; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P; Brown, Chester W; John, Gareth R

    2014-06-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb(-/-) embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3(-/-) mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. © 2014. Published by The Company of Biologists Ltd.

  8. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination

    Science.gov (United States)

    Dutta, Dipankar J.; Zameer, Andleeb; Mariani, John N.; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M.; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V.; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P.; Brown, Chester W.; John, Gareth R.

    2014-01-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb−/− embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3−/− mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. PMID:24917498

  9. What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach.

    Directory of Open Access Journals (Sweden)

    Taylor Chomiak

    2009-11-01

    Full Text Available The biological process underlying axonal myelination is complex and often prone to injury and disease. The ratio of the inner axonal diameter to the total outer diameter or g-ratio is widely utilized as a functional and structural index of optimal axonal myelination. Based on the speed of fiber conduction, Rushton was the first to derive a theoretical estimate of the optimal g-ratio of 0.6 [1]. This theoretical limit nicely explains the experimental data for myelinated axons obtained for some peripheral fibers but appears significantly lower than that found for CNS fibers. This is, however, hardly surprising given that in the CNS, axonal myelination must achieve multiple goals including reducing conduction delays, promoting conduction fidelity, lowering energy costs, and saving space.In this study we explore the notion that a balanced set-point can be achieved at a functional level as the micro-structure of individual axons becomes optimized, particularly for the central system where axons tend to be smaller and their myelin sheath thinner. We used an intuitive yet novel theoretical approach based on the fundamental biophysical properties describing axonal structure and function to show that an optimal g-ratio can be defined for the central nervous system (approximately 0.77. Furthermore, by reducing the influence of volume constraints on structural design by about 40%, this approach can also predict the g-ratio observed in some peripheral fibers (approximately 0.6.These results support the notion of optimization theory in nervous system design and construction and may also help explain why the central and peripheral systems have evolved different g-ratios as a result of volume constraints.

  10. What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach.

    Science.gov (United States)

    Chomiak, Taylor; Hu, Bin

    2009-11-13

    The biological process underlying axonal myelination is complex and often prone to injury and disease. The ratio of the inner axonal diameter to the total outer diameter or g-ratio is widely utilized as a functional and structural index of optimal axonal myelination. Based on the speed of fiber conduction, Rushton was the first to derive a theoretical estimate of the optimal g-ratio of 0.6 [1]. This theoretical limit nicely explains the experimental data for myelinated axons obtained for some peripheral fibers but appears significantly lower than that found for CNS fibers. This is, however, hardly surprising given that in the CNS, axonal myelination must achieve multiple goals including reducing conduction delays, promoting conduction fidelity, lowering energy costs, and saving space. In this study we explore the notion that a balanced set-point can be achieved at a functional level as the micro-structure of individual axons becomes optimized, particularly for the central system where axons tend to be smaller and their myelin sheath thinner. We used an intuitive yet novel theoretical approach based on the fundamental biophysical properties describing axonal structure and function to show that an optimal g-ratio can be defined for the central nervous system (approximately 0.77). Furthermore, by reducing the influence of volume constraints on structural design by about 40%, this approach can also predict the g-ratio observed in some peripheral fibers (approximately 0.6). These results support the notion of optimization theory in nervous system design and construction and may also help explain why the central and peripheral systems have evolved different g-ratios as a result of volume constraints.

  11. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    Science.gov (United States)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  12. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Andrew R. [Boston College, Chestnut Hill, MA 02467 (United States); Demé, Bruno; Cristiglio, Viviana [Institut Laue–Langevin (ILL), CS 20156, F-38042 Grenoble CEDEX 9 (France); LeDuc, Géraldine [European Synchrotron Radiation Facility (ESRF), CS 40220, F-38043 Grenoble CEDEX 9 (France); Feller, W. Bruce [NOVA Scientific Inc., Sturbridge, MA 01566 (United States); Kirschner, Daniel A., E-mail: kirschnd@bc.edu [Boston College, Chestnut Hill, MA 02467 (United States)

    2014-12-01

    The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt–Lanterman incisures and the axo–glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.

  13. Axonal plasticity elicits long-term changes in oligodendroglia and myelinated fibers

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Nielsen, Helle Hvilsted; Gardi, Jonathan E

    2010-01-01

    Axons are linked to induction of myelination during development and to the maintenance of myelin and myelinated tracts in the adult CNS. Currently, it is unknown whether and how axonal plasticity in adult CNS impacts the myelinating cells and their precursors. In this article, we report that newly...... formed axonal sprouts are able to induce a protracted myelination response in adult CNS. We show that newly formed axonal sprouts, induced by lesion of the entorhino-hippocampal perforant pathway, have the ability to induce a myelination response in stratum radiatum and lucidum CA3. The lesion resulted...... in significant recruitment of newly formed myelinating cells, documented by incorporation of the proliferation marker bromodeoxyuridine into chondroitin sulphate NG2 expressing cells in stratum radiatum and lucidum CA3 early after lesion, and the occurrence of a 28% increase in the number of oligodendrocytes...

  14. High cholesterol level is essential for myelin membrane growth.

    Science.gov (United States)

    Saher, Gesine; Brügger, Britta; Lappe-Siefke, Corinna; Möbius, Wiebke; Tozawa, Ryu-ichi; Wehr, Michael C; Wieland, Felix; Ishibashi, Shun; Nave, Klaus-Armin

    2005-04-01

    Cholesterol in the mammalian brain is a risk factor for certain neurodegenerative diseases, raising the question of its normal function. In the mature brain, the highest cholesterol content is found in myelin. We therefore created mice that lack the ability to synthesize cholesterol in myelin-forming oligodendrocytes. Mutant oligodendrocytes survived, but CNS myelination was severely perturbed, and mutant mice showed ataxia and tremor. CNS myelination continued at a reduced rate for many months, and during this period, the cholesterol-deficient oligodendrocytes actively enriched cholesterol and assembled myelin with >70% of the cholesterol content of wild-type myelin. This shows that cholesterol is an indispensable component of myelin membranes and that cholesterol availability in oligodendrocytes is a rate-limiting factor for brain maturation.

  15. Myelin-induced inhibition in a spiral ganglion organ culture - Approaching a natural environment in vitro.

    Science.gov (United States)

    Kramer, Benedikt; Tropitzsch, Anke; Müller, Marcus; Löwenheim, Hubert

    2017-08-15

    The performance of a cochlear implant depends on the defined interaction between afferent neurons of the spiral ganglion and the inserted electrode. Neurite outgrowth can be induced by neurotrophins such as brain-derived neurotrophic factor (BDNF) via tropomyosin kinase receptor B (TrkB). However, neurotrophin signaling through the p75 neurotrophin receptor (p75) inhibits neurite outgrowth in the presence of myelin. Organotypic cultures derived from postnatal (P3-5) mice were used to study myelin-induced inhibition in the cochlear spiral ganglion. Neurite outgrowth was analyzed and quantified utilizing an adapted Sholl analysis. Stimulation of neurite outgrowth was quantified after application of BDNF, the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) and a selective inhibitor of the Rho-associated kinase (Y27632), which inhibits the p75 pathway. Myelin-induced inhibition was assessed by application of myelin-associated glycoprotein (MAG-Fc) to stimulate the inhibitory p75 pathway. Inhibition of neurite outgrowth was achieved by the selective TrkB inhibitor K252a. Stimulation of neurite outgrowth was observed after treatment with BDNF, 7,8 DHF and a combination of BDNF and Y27632. The 7,8-DHF-induced growth effects could be inhibited by K252a. Furthermore, inhibition of neurite outgrowth was observed after supplementation with MAG-Fc. Myelin-induced inhibition could be overcome by 7,8-DHF and the combination of BDNF and Y27632. In this study, myelin-induced inhibition of neurite outgrowth was established in a spiral ganglion model. We reveal that 7,8-DHF is a viable novel compound for the stimulation of neurite outgrowth in a myelin-induced inhibitory environment. The combination of TrkB stimulation and ROCK inhibition can be used to overcome myelin inhibition. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Nonenzymatic glycosylation of bovine myelin basic protein

    International Nuclear Information System (INIS)

    Hitz, J.B.

    1987-01-01

    In the CNS myelin sheath the nonenzymatic glycosylation reaction (at the early stage of the Amadori product) occurs only with the myelin basic protein and not with the other myelin proteins. This was observed in isolated bovine myelin by in vitro incubation with [ 14 C]-galactose and [ 14 C]-glucose. The respective in-vitro incorporation rates for purified bovine myelin basic protein with D-galactose, D-glucose and D-mannose were 7.2, 2.4 and 2.4 mmoles/mole myelin basic protein per day at 37 0 C. A more rapid, HPLC method was devised and characterized to specifically analyze for the Amadori product. The HPLC method was correlated to the [ 14 C]-sugar incorporation method for myelin basic protein under a set of standard reaction conditions using [ 14 C]-glucose and [ 14 C]-mannose with HPLC values at 1/6 and 1/5 of the [ 14 C]-sugar incorporation method. A novel myelin basic protein purification step has been developed that yields a relativity proteolytic free preparation that is easy to work with, being totally soluble at a neutral pH. Nine new spots appear for a trypsinized glycosylated MBP in the paper peptide map of which eight correspond to positions of the [ 3 H]-labeled Amadori product in affinity isolated peptides. These studies provide a general characterization of and a structural basis for investigations on nonenzymatically glycosylated MBP as well as identifying MBP as the only nonenzymatically glycosylated protein in the CNS myelin sheath which may accumulate during aging, diabetes, and demyelinating diseases in general

  17. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    Science.gov (United States)

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Molecular mechanisms of acrolein-mediated myelin destruction in CNS trauma and disease

    Science.gov (United States)

    Shi, Riyi; Page, Jessica; Tully, Melissa

    2016-01-01

    Myelin is a critical component of the nervous system facilitating efficient propagation of electrical signals and thus communication between the central and peripheral nervous systems and organ systems they innervate throughout the body. In instances of neurotrauma and neurodegenerative disease, injury to myelin is a prominent pathological feature responsible for conduction deficits and leaves axons vulnerable to damage from noxious compounds. Although the pathological mechanisms underlying myelin loss have yet to be fully characterized, oxidative stress appears to play a prominent role. Specifically, acrolein, a neurotoxic aldehyde that is both a product and instigator of oxidative stress, has been observed in studies to elicit demyelination through calcium-independent and -dependent mechanisms and also by affecting glutamate uptake and promoting excitotoxicity. Furthermore, pharmacological scavenging of acrolein has demonstrated a neuroprotective effect in animal disease models by conserving myelin structural integrity and alleviating functional deficits. This evidence is indicative that acrolein may be a key culprit of myelin damage while acrolein scavenging could potentially be a promising therapeutic approach for patients suffering from nervous system trauma and disease. PMID:25879847

  19. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  20. Live-imaging in the CNS: New insights on oligodendrocytes, myelination, and their responses to inflammation.

    Science.gov (United States)

    Rassul, Sayed Muhammed; Neely, Robert K; Fulton, Daniel

    2016-11-01

    The formation and repair of myelin involves alterations in the molecular and physical properties of oligodendrocytes, and highly coordinated interactions with their target axons. Characterising the nature and timing of these events at the molecular and cellular levels illuminates the fundamental events underlying myelin formation, and provides opportunities for the development of therapies to replace myelin lost through traumatic injury and inflammation. The dynamic nature of these events requires that live-imaging methods be used to capture this information accurately and completely. Developments in imaging technologies, and model systems suitable for their application to myelination, have advanced the study of myelin formation, injury and repair. Similarly, new techniques for single molecule imaging, and novel imaging probes, are providing opportunities to resolve the dynamics of myelin proteins during myelination. Here, we explore these developments in the context of myelin formation and injury, identify unmet needs within the field where progress can be advanced through live-imaging approaches, identify technical challenges that are limiting this progress, and highlight practical applications for these approaches that could lead to therapies for the protection of oligodendrocytes and myelin from injury, and restore myelin lost through injury and disease. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix

    Science.gov (United States)

    Paveliev, Mikhail; Fenrich, Keith K.; Kislin, Mikhail; Kuja-Panula, Juha; Kulesskiy, Evgeny; Varjosalo, Markku; Kajander, Tommi; Mugantseva, Ekaterina; Ahonen-Bishopp, Anni; Khiroug, Leonard; Kulesskaya, Natalia; Rougon, Geneviève; Rauvala, Heikki

    2016-01-01

    Chondroitin sulfate (CS) glycosaminoglycans inhibit regeneration in the adult central nervous system (CNS). We report here that HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin), a CS-binding protein expressed at high levels in the developing CNS, reverses the role of the CS chains in neurite growth of CNS neurons in vitro from inhibition to activation. The CS-bound HB-GAM promotes neurite growth through binding to the cell surface proteoglycan glypican-2; furthermore, HB-GAM abrogates the CS ligand binding to the inhibitory receptor PTPσ (protein tyrosine phosphatase sigma). Our in vivo studies using two-photon imaging of CNS injuries support the in vitro studies and show that HB-GAM increases dendrite regeneration in the adult cerebral cortex and axonal regeneration in the adult spinal cord. Our findings may enable the development of novel therapies for CNS injuries. PMID:27671118

  2. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS).

    Science.gov (United States)

    KhorshidAhmad, Tina; Acosta, Crystal; Cortes, Claudia; Lakowski, Ted M; Gangadaran, Surendiran; Namaka, Michael

    2016-03-01

    Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS.

  3. Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP.

    Science.gov (United States)

    Deng, Yaqi; Kim, BongWoo; He, Xuelian; Kim, Sunja; Lu, Changqing; Wang, Haibo; Cho, Ssang-Goo; Hou, Yiping; Li, Jianrong; Zhao, Xianghui; Lu, Q Richard

    2014-04-01

    Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane-anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt-Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin-induced demyelination animal model. Taken together, the membrane-anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries.

  4. Vesicular glutamate release from central axons contributes to myelin damage.

    Science.gov (United States)

    Doyle, Sean; Hansen, Daniel Bloch; Vella, Jasmine; Bond, Peter; Harper, Glenn; Zammit, Christian; Valentino, Mario; Fern, Robert

    2018-03-12

    The axon myelin sheath is prone to injury associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury.

  5. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Directory of Open Access Journals (Sweden)

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  6. Promoting peripheral myelin repair

    OpenAIRE

    Zhou, Ye; Notterpek, Lucia

    2016-01-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the ...

  7. Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system.

    Science.gov (United States)

    Potzner, Michaela R; Griffel, Carola; Lütjen-Drecoll, Elke; Bösl, Michael R; Wegner, Michael; Sock, Elisabeth

    2007-08-01

    The highly related transcription factors Sox4 and Sox11 are both expressed in oligodendrocyte precursors. Yet whether they have a function in oligodendrocyte development is unknown. By overexpressing Sox4 under the control of 3.1 kb of 5' flanking sequences of the myelin basic protein gene in transgenic mice, we extended Sox4 expression in the oligodendrocyte lineage from oligodendrocyte precursors to cells undergoing terminal differentiation. As a consequence of transgene expression, mice develop the full spectrum of phenotypic traits associated with a severe hypomyelination during the first postnatal weeks. Myelin gene expression was severely reduced, and myelin dramatically thinned in several central nervous system (CNS) regions. Despite these disturbances in CNS myelination, the number of oligodendrocytic cells remained unaltered. Considering that apoptosis rates were normal and proliferation only slightly increased, oligodendrocytes likely persist in a premyelinating to early myelinating state. This shows that prolonged Sox4 expression in cells of the oligodendrocyte lineage is incompatible with the acquisition of a fully mature phenotype and argues that the presence of Sox4, and possibly Sox11, in oligodendrocyte precursors may normally prevent premature differentiation.

  8. Dynamics of myelin content decrease in the rat stroke model

    Science.gov (United States)

    Kisel, A.; Khodanovich, M.; Atochin, D.; Mustafina, L.; Yarnykh, V.

    2017-08-01

    The majority of studies were usually focused on neuronal death after brain ischemia; however, stroke affects all cell types including oligodendrocytes that form myelin sheath in the CNS. Our study is focused on the changes of myelin content in the ischemic core and neighbor structures in early terms (1, 3 and 10 days) after stroke. Stroke was modeled with middle cerebral artery occlusion (MCAo) in 15 male rats that were divided into three groups by time points after operation. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. The significant demyelination was found in the ischemic core, corpus callosum, anterior commissure, whereas myelin content was increased in caudoputamen, internal capsule and piriform cortex compared with the contralateral hemisphere. The motor cortex showed a significant increase of myelin content on the 1st day and a significant decrease on the 3rd and 10th days after MCAo. These results suggest that stroke influences myelination not only in the ischemic core but also in distant structures.

  9. Prolonged Sox4 Expression in Oligodendrocytes Interferes with Normal Myelination in the Central Nervous System▿ †

    Science.gov (United States)

    Potzner, Michaela R.; Griffel, Carola; Lütjen-Drecoll, Elke; Bösl, Michael R.; Wegner, Michael; Sock, Elisabeth

    2007-01-01

    The highly related transcription factors Sox4 and Sox11 are both expressed in oligodendrocyte precursors. Yet whether they have a function in oligodendrocyte development is unknown. By overexpressing Sox4 under the control of 3.1 kb of 5′ flanking sequences of the myelin basic protein gene in transgenic mice, we extended Sox4 expression in the oligodendrocyte lineage from oligodendrocyte precursors to cells undergoing terminal differentiation. As a consequence of transgene expression, mice develop the full spectrum of phenotypic traits associated with a severe hypomyelination during the first postnatal weeks. Myelin gene expression was severely reduced, and myelin dramatically thinned in several central nervous system (CNS) regions. Despite these disturbances in CNS myelination, the number of oligodendrocytic cells remained unaltered. Considering that apoptosis rates were normal and proliferation only slightly increased, oligodendrocytes likely persist in a premyelinating to early myelinating state. This shows that prolonged Sox4 expression in cells of the oligodendrocyte lineage is incompatible with the acquisition of a fully mature phenotype and argues that the presence of Sox4, and possibly Sox11, in oligodendrocyte precursors may normally prevent premature differentiation. PMID:17515609

  10. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    Science.gov (United States)

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  11. Promoting peripheral myelin repair.

    Science.gov (United States)

    Zhou, Ye; Notterpek, Lucia

    2016-09-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Nagendra Kumar; Ashok, Anushruti [Academy of Scientific and Innovative Research (India); Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR) (India); Rai, Asit; Tripathi, Sachin [Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR) (India); Nagar, Geet Kumar [Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI) (India); Mitra, Kalyan [Electron Microscopy Unit, CSIR-CDRI, Lucknow 226001 (India); Bandyopadhyay, Sanghamitra, E-mail: sanghmitra@iitr.res.in [Academy of Scientific and Innovative Research (India); Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR) (India)

    2013-12-01

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2′-, 3′-cyclic-nucleotide-3′-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developing rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology. - Highlights: • As, Cd and Pb-mixture, at human relevant dose, demyelinate developing rat CNS. • The attenuation in myelin and axon is synergistic. • The optic nerve and brain demonstrate reduced glutamine synthetase.

  13. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina

    International Nuclear Information System (INIS)

    Rai, Nagendra Kumar; Ashok, Anushruti; Rai, Asit; Tripathi, Sachin; Nagar, Geet Kumar; Mitra, Kalyan; Bandyopadhyay, Sanghamitra

    2013-01-01

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2′-, 3′-cyclic-nucleotide-3′-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developing rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology. - Highlights: • As, Cd and Pb-mixture, at human relevant dose, demyelinate developing rat CNS. • The attenuation in myelin and axon is synergistic. • The optic nerve and brain demonstrate reduced glutamine synthetase.

  14. Gemfibrozil, a lipid-lowering drug, increases myelin genes in human oligodendrocytes via peroxisome proliferator-activated receptor-β.

    Science.gov (United States)

    Jana, Malabendu; Mondal, Susanta; Gonzalez, Frank J; Pahan, Kalipada

    2012-10-05

    An increase in CNS remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis. Earlier studies have shown that gemfibrozil, a lipid-lowering drug, has anti-inflammatory properties. The current study identified another novel property of gemfibrozil in stimulating the expression of myelin-specific genes (myelin basic protein, myelin oligodendrocyte glycoprotein, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, and proteolipid protein (PLP)) in primary human oligodendrocytes, mixed glial cells, and spinal cord organotypic cultures. Although gemfibrozil is a known activator of peroxisome proliferator-activated receptor-α (PPAR-α), we were unable to detect PPAR-α in either gemfibrozil-treated or untreated human oligodendrocytes, and gemfibrozil increased the expression of myelin genes in oligodendrocytes isolated from both wild type and PPAR-α(-/-) mice. On the other hand, gemfibrozil markedly increased the expression of PPAR-β but not PPAR-γ. Consistently, antisense knockdown of PPAR-β, but not PPAR-γ, abrogated the stimulatory effect of gemfibrozil on myelin genes in human oligodendrocytes. Gemfibrozil also did not up-regulate myelin genes in oligodendroglia isolated from PPAR-β(-/-) mice. Chromatin immunoprecipitation analysis showed that gemfibrozil induced the recruitment of PPAR-β to the promoter of PLP and myelin oligodendrocyte glycoprotein genes in human oligodendrocytes. Furthermore, gemfibrozil treatment also led to the recruitment of PPAR-β to the PLP promoter in vivo in the spinal cord of experimental autoimmune encephalomyelitis mice and suppression of experimental autoimmune encephalomyelitis symptoms in PLP-T cell receptor transgenic mice. These results suggest that gemfibrozil stimulates the expression of myelin genes via PPAR-β and that gemfibrozil, a prescribed drug for humans, may find further therapeutic use in demyelinating diseases.

  15. Autophagy is involved in the reduction of myelinating Schwann cell cytoplasm during myelin maturation of the peripheral nerve.

    Directory of Open Access Journals (Sweden)

    So Young Jang

    Full Text Available Peripheral nerve myelination involves dynamic changes in Schwann cell morphology and membrane structure. Recent studies have demonstrated that autophagy regulates organelle biogenesis and plasma membrane dynamics. In the present study, we investigated the role of autophagy in the development and differentiation of myelinating Schwann cells during sciatic nerve myelination. Electron microscopy and biochemical assays have shown that Schwann cells remove excess cytoplasmic organelles during myelination through macroautophagy. Inhibition of autophagy via Schwann cell-specific removal of ATG7, an essential molecule for macroautophagy, using a conditional knockout strategy, resulted in abnormally enlarged abaxonal cytoplasm in myelinating Schwann cells that contained a large number of ribosomes and an atypically expanded endoplasmic reticulum. Small fiber hypermyelination and minor anomalous peripheral nerve functions are observed in this mutant. Rapamycin-induced suppression of mTOR activity during the early postnatal period enhanced not only autophagy but also developmental reduction of myelinating Schwann cells cytoplasm in vivo. Together, our findings suggest that autophagy is a regulatory mechanism of Schwann cells structural plasticity during myelination.

  16. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system

    Directory of Open Access Journals (Sweden)

    Han Ruolan

    2008-04-01

    Full Text Available Abstract Background Cancer treatment with a variety of chemotherapeutic agents often is associated with delayed adverse neurological consequences. Despite their clinical importance, almost nothing is known about the basis for such effects. It is not even known whether the occurrence of delayed adverse effects requires exposure to multiple chemotherapeutic agents, the presence of both chemotherapeutic agents and the body's own response to cancer, prolonged damage to the blood-brain barrier, inflammation or other such changes. Nor are there any animal models that could enable the study of this important problem. Results We found that clinically relevant concentrations of 5-fluorouracil (5-FU; a widely used chemotherapeutic agent were toxic for both central nervous system (CNS progenitor cells and non-dividing oligodendrocytes in vitro and in vivo. Short-term systemic administration of 5-FU caused both acute CNS damage and a syndrome of progressively worsening delayed damage to myelinated tracts of the CNS associated with altered transcriptional regulation in oligodendrocytes and extensive myelin pathology. Functional analysis also provided the first demonstration of delayed effects of chemotherapy on the latency of impulse conduction in the auditory system, offering the possibility of non-invasive analysis of myelin damage associated with cancer treatment. Conclusions Our studies demonstrate that systemic treatment with a single chemotherapeutic agent, 5-FU, is sufficient to cause a syndrome of delayed CNS damage and provide the first animal model of delayed damage to white-matter tracts of individuals treated with systemic chemotherapy. Unlike that caused by local irradiation, the degeneration caused by 5-FU treatment did not correlate with either chronic inflammation or extensive vascular damage and appears to represent a new class of delayed degenerative damage in the CNS.

  17. Gemfibrozil, a Lipid-lowering Drug, Increases Myelin Genes in Human Oligodendrocytes via Peroxisome Proliferator-activated Receptor-β*

    Science.gov (United States)

    Jana, Malabendu; Mondal, Susanta; Gonzalez, Frank J.; Pahan, Kalipada

    2012-01-01

    An increase in CNS remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis. Earlier studies have shown that gemfibrozil, a lipid-lowering drug, has anti-inflammatory properties. The current study identified another novel property of gemfibrozil in stimulating the expression of myelin-specific genes (myelin basic protein, myelin oligodendrocyte glycoprotein, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase, and proteolipid protein (PLP)) in primary human oligodendrocytes, mixed glial cells, and spinal cord organotypic cultures. Although gemfibrozil is a known activator of peroxisome proliferator-activated receptor-α (PPAR-α), we were unable to detect PPAR-α in either gemfibrozil-treated or untreated human oligodendrocytes, and gemfibrozil increased the expression of myelin genes in oligodendrocytes isolated from both wild type and PPAR-α(−/−) mice. On the other hand, gemfibrozil markedly increased the expression of PPAR-β but not PPAR-γ. Consistently, antisense knockdown of PPAR-β, but not PPAR-γ, abrogated the stimulatory effect of gemfibrozil on myelin genes in human oligodendrocytes. Gemfibrozil also did not up-regulate myelin genes in oligodendroglia isolated from PPAR-β(−/−) mice. Chromatin immunoprecipitation analysis showed that gemfibrozil induced the recruitment of PPAR-β to the promoter of PLP and myelin oligodendrocyte glycoprotein genes in human oligodendrocytes. Furthermore, gemfibrozil treatment also led to the recruitment of PPAR-β to the PLP promoter in vivo in the spinal cord of experimental autoimmune encephalomyelitis mice and suppression of experimental autoimmune encephalomyelitis symptoms in PLP-T cell receptor transgenic mice. These results suggest that gemfibrozil stimulates the expression of myelin genes via PPAR-β and that gemfibrozil, a prescribed drug for humans, may find further therapeutic use in demyelinating diseases. PMID:22879602

  18. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  19. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulate Myelination in Zebrafish

    Directory of Open Access Journals (Sweden)

    Yuhei Nishimura

    2016-07-01

    Full Text Available Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS, and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs. Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation

  20. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury

    Science.gov (United States)

    Forbes, Lindsey H.

    2018-01-01

    The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554

  1. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  2. Myelin repair by Schwann cells in the regenerating goldfish visual pathway: regional patterns revealed by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nona, S.N.; Stafford, C.A.; Cronly-Dillon, J.R. (Manchester Univ. (United Kingdom). Inst. of Science and Technology); Duncan, A. (Guy' s Hospital, London (United Kingdom). Dept. of Anatomy); Scholes, J. (University Coll., London (United Kingdom))

    1994-07-01

    In the regenerating goldfish optic nerves, Schwann cells of unknown origin reliably infiltrate the lesion site forming a band of peripheral-type myelinating tissue by 1-2 months, sharply demarcated form the adjacent new CNS myelin. To investigate this effect, we have interfered with cell proliferation by locally X-irradiating the fish visual pathway 24 h after the lesion. As assayed by immunohistochemistry and EM, irradiation retards until 6 months formation of new myelin by Schwann cells at the lesion site, and virtually abolishes oligodendrocyte myelination distally, but has little or no effect on nerve fibre regrowth. Optic nerve astrocyte processes normally fail to re-infiltrate the lesion, but re-occupy it after irradiation, suggesting that they are normally excluded by early cell proliferation at this site. Moreover, scattered myelinating Schwann cells also appear in the oligodendrocyte-depleted distal optic nerve after irradiation, although only as far as the optic tract. (Author).

  3. N,N-diethyldithiocarbamate promotes oxidative stress prior to myelin structural changes and increases myelin copper content

    International Nuclear Information System (INIS)

    Viquez, Olga M.; Lai, Barry; Ahn, Jae Hee; Does, Mark D.; Valentine, Holly L.; Valentine, William M.

    2009-01-01

    -mediated inhibition of proteasome function and inhibition of cuproenzyme activity to neurotoxicity, and also to assess the potential of dithiocarbamates to promote oxidative stress and injury within the central nervous system. These evaluations were performed using an established model for dithiocarbamate-mediated demyelination in the rat utilizing sciatic nerve, spinal cord and brain samples obtained from rats exposed to N,N-diethyldithiocarbamate (DEDC) by intra-abdominal pumps for periods of 2, 4, and 8 weeks and from non exposed controls. The data supported the ability of DEDC to increase copper within myelin and to enhance oxidative stress prior to structural changes detectable by MET 2 . Evidence was also obtained that the excess copper produced by DEDC in the central nervous system is redox active and promotes oxidative injury.

  4. Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system.

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2010-02-01

    Full Text Available Inflammatory response following central nervous system (CNS injury contributes to progressive neuropathology and reduction in functional recovery. Axons are sensitive to mechanical injury and toxic inflammatory mediators, which may lead to demyelination. Although it is well documented that degenerated myelin triggers undesirable inflammatory responses in autoimmune diseases such as multiple sclerosis (MS and its animal model, experimental autoimmune encephalomyelitis (EAE, there has been very little study of the direct inflammatory consequences of damaged myelin in spinal cord injury (SCI, i.e., there is no direct evidence to show that myelin debris from injured spinal cord can trigger undesirable inflammation in vitro and in vivo. Our data showed that myelin can initiate inflammatory responses in vivo, which is complement receptor 3 (CR3-dependent via stimulating macrophages to express pro-inflammatory molecules and down-regulates expression of anti-inflammatory cytokines. Mechanism study revealed that myelin-increased cytokine expression is through activation of FAK/PI3K/Akt/NF-kappaB signaling pathways and CR3 contributes to myelin-induced PI3K/Akt/NF-kappaB activation and cytokine production. The myelin induced inflammatory response is myelin specific as sphingomyelin (the major lipid of myelin and myelin basic protein (MBP, one of the major proteins of myelin are not able to activate NF-kappaB signaling pathway. In conclusion, our results demonstrate a crucial role of myelin as an endogenous inflammatory stimulus that induces pro-inflammatory responses and suggest that blocking myelin-CR3 interaction and enhancing myelin debris clearance may be effective interventions for treating SCI.

  5. Myelination in the absence of UDP-galactose:ceramide galactosyl-transferase and fatty acid 2 -hydroxylase

    Directory of Open Access Journals (Sweden)

    Gieselmann Volkmar

    2011-03-01

    Full Text Available Abstract Background The sphingolipids galactosylceramide (GalCer and sulfatide are major myelin components and are thought to play important roles in myelin function. The importance of GalCer and sulfatide has been validated using UDP-galactose:ceramide galactosyltransferase-deficient (Cgt-/- mice, which are impaired in myelin maintenance. These mice, however, are still able to form compact myelin. Loss of GalCer and sulfatide in these mice is accompanied by up-regulation of 2-hydroxylated fatty acid containing (HFA-glucosylceramide in myelin. This was interpreted as a partial compensation of the loss of HFA-GalCer, which may prevent a more severe myelin phenotype. In order to test this hypothesis, we have generated Cgt-/- mice with an additional deletion of the fatty acid 2-hydroxylase (Fa2h gene. Results Fa2h-/-/Cgt-/- double-deficient mice lack sulfatide, GalCer, and in addition HFA-GlcCer and sphingomyelin. Interestingly, compared to Cgt-/- mice the amount of GlcCer in CNS myelin was strongly reduced in Fa2h-/-/Cgt-/- mice by more than 80%. This was accompanied by a significant increase in sphingomyelin, which was the predominant sphingolipid in Fa2h-/-/Cgt-/- mice. Despite these significant changes in myelin sphingolipids, compact myelin was formed in Fa2h-/-/Cgt-/- mice, and g-ratios of myelinated axons in the spinal cord of 4-week-old Fa2h-/-/Cgt-/- mice did not differ significantly from that of Cgt-/- mice, and there was no obvious phenotypic difference between Fa2h-/-/Cgt-/- and Cgt-/- mice Conclusions These data show that compact myelin can be formed with non-hydroxylated sphingomyelin as the predominant sphingolipid and suggest that the presence of HFA-GlcCer and HFA-sphingomyelin in Cgt-/- mice does not functionally compensate the loss of HFA-GalCer.

  6. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Directory of Open Access Journals (Sweden)

    Yakov Lomakin

    2017-07-01

    Full Text Available Multiple sclerosis (MS is an autoimmune chronic inflammatory disease of the central nervous system (CNS. Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV latent membrane protein 1 (LMP1. In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  7. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading. PMID:28729867

  8. Exposure to the Epstein-Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo.

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo . We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20-50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  9. NOGO-A induction and localization during chick brain development indicate a role disparate from neurite outgrowth inhibition

    Directory of Open Access Journals (Sweden)

    Liwnicz Boleslaw H

    2007-04-01

    Full Text Available Abstract Background Nogo-A, a myelin-associated protein, inhibits neurite outgrowth and abates regeneration in the adult vertebrate central nervous system (CNS and may play a role in maintaining neural pathways once established. However, the presence of Nogo-A during early CNS development is counterintuitive and hints at an additional role for Nogo-A beyond neurite inhibition. Results We isolated chicken NOGO-A and determined its sequence. A multiple alignment of the amino acid sequence across divergent species, identified five previously undescribed, Nogo-A specific conserved regions that may be relevant for development. NOGO gene transcripts (NOGO-A, NOGO-B and NOGO-C were differentially expressed in the CNS during development and a second NOGO-A splice variant was identified. We further localized NOGO-A expression during key phases of CNS development by in situ hybridization. CNS-associated NOGO-A was induced coincident with neural plate formation and up-regulated by FGF in the transformation of non-neural ectoderm into neural precursors. NOGO-A expression was diffuse in the neuroectoderm during the early proliferative phase of development, and migration, but localized to large projection neurons of the optic tectum and tectal-associated nuclei during architectural differentiation, lamination and network establishment. Conclusion These data suggest Nogo-A plays a functional role in the determination of neural identity and/or differentiation and also appears to play a later role in the networking of large projection neurons during neurite formation and synaptogenesis. These data indicate that Nogo-A is a multifunctional protein with additional roles during CNS development that are disparate from its later role of neurite outgrowth inhibition in the adult CNS.

  10. Myelination and myelin disorders

    International Nuclear Information System (INIS)

    Knaap, M.S. van der.

    1991-01-01

    The first part of this thesis contains the results of a study into the capabilities of MR in the assessment of normal cerebral development. The process of normal myelination under the age of 1 year is divided into stages with specific MRI characteristics. An indication of normal age limits for each stage is given. The relationships between changes in signal intensities and biochemical background, and between progress of myelination and psychomotor development are discussed. The latter in the light of a study performed in hydrocephalic children, prior to and repeatedly after shunt implantation. Normal changes in 1 H and 31 P spectra of the brain in infants and children are described. The relationship between observed spectral changes and cerebral maturational processes is discussed. The second part deals with assessment of myelin disorders with MRI. Basic information about demyelinating disorders and biochemical background are reviewed. A new classification of myelin disorders, underlying the development of an MRI pattern recognition scheme, is proposed based on the most recent scientific developments. Common histological characteristics are described for all main categories of myelin disorders. Extensive information is presented about MRI patterns of abnormalities in patients in whom the disease is predominantly or exclusively located in the white matter. On the basis of the data of these patients a global MRI pattern recognition scheme has been developed covering all white matter disorders that were encountered. Also an example of an in-depth pattern recognition in a circumscribed category of disorders is presented. Finally a study of MRS in demyelinating disorders as opposed to neuronal disorders is described. While MRI provides information about the extent of the process of demyelination and about the disease category, MRS turns out to provide information about the severity of the demyelination and of the concomitant neuronal damage. (H.W.). 725 refs.; 53 figs

  11. Networks of myelin covariance.

    Science.gov (United States)

    Melie-Garcia, Lester; Slater, David; Ruef, Anne; Sanabria-Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine

    2018-04-01

    Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  12. Proliferation of Schwann cells induced by axolemmal and myelin membranes

    International Nuclear Information System (INIS)

    Dinneen, M.

    1985-01-01

    Purified Schwann Cells were cultured from neonatal rat sciatic nerve using a modification of the method of Brockes. Schwann cells and contaminating fibroblasts were unambiguously identified using fluorescent antibodies of 2'3' cyclic nucleotide 3'-phosphodiesterase and the thy 1.1 antigen respectively. The Schwann cells were quiescent unless challenged with mitogens. They proliferated rapidly in response to the soluble mitogen, cholera toxin, or to membrane fractions from rat CNS or PNS, prepared by the method of DeVries. Mitogenic activity was present in both axolemmal and myelin enriched fractions and promoted a 10-15 fold increase in the rate of 3 H-thymidine uptake. The axolemmal mitogen was sensitive to heat (80 0 C for 10 minutes), trypsin digestion (0.05% x 30 mins) or to treatment with endoglycosidase D, suggesting that it could be a glycoprotein. Fifty percent of the axolemmal mitogenic activity was solubilized in 1% octyl-glucoside. The solubilized material, however, was very unstable and further purification was not possible. The myelin associated mitogenic activity was markedly different. It was resistant to freeze thaw cycles, trypsin digestion of endoglycosidase treatment and the activity was actually enhanced by heating at 100 0 C for two hours. It is proposed that the axolemmal activity is responsible for Schwann cell proliferation during development and that the myelin associated activity promotes Schwann cell proliferation during Wallerian degeneration

  13. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α on phagocytes

    Directory of Open Access Journals (Sweden)

    Reichert Fanny

    2011-03-01

    Full Text Available Abstract Background Traumatic injury to axons produces breakdown of axons and myelin at the site of the lesion and then further distal to this where Wallerian degeneration develops. The rapid removal of degenerated myelin by phagocytosis is advantageous for repair since molecules in myelin impede regeneration of severed axons. Thus, revealing mechanisms that regulate myelin phagocytosis by macrophages and microglia is important. We hypothesize that myelin regulates its own phagocytosis by simultaneous activation and down-regulation of microglial and macrophage responses. Activation follows myelin binding to receptors that mediate its phagocytosis (e.g. complement receptor-3, which has been previously studied. Down-regulation, which we test here, follows binding of myelin CD47 to the immune inhibitory receptor SIRPα (signal regulatory protein-α on macrophages and microglia. Methods CD47 and SIRPα expression was studied by confocal immunofluorescence microscopy, and myelin phagocytosis by ELISA. Results We first document that myelin, oligodendrocytes and Schwann cells express CD47 without SIRPα and further confirm that microglia and macrophages express both CD47 and SIRPα. Thus, CD47 on myelin can bind to and subsequently activate SIRPα on phagocytes, a prerequisite for CD47/SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis by itself. We then demonstrate that phagocytosis of CD47+/+ myelin is augmented when binding between myelin CD47 and SIRPα on phagocytes is blocked by mAbs against CD47 and SIRPα, indicating that down-regulation of phagocytosis indeed depends on CD47-SIRPα binding. Further, phagocytosis in serum-free medium of CD47+/+ myelin is augmented after knocking down SIRPα levels (SIRPα-KD in phagocytes by lentiviral infection with SIRPα-shRNA, whereas phagocytosis of myelin that lacks CD47 (CD47-/- is not. Thus, myelin CD47 produces SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis in phagocytes

  14. Observations at the CNS-PNS border of ventral roots connected to a neuroma

    Directory of Open Access Journals (Sweden)

    Sten Remahl

    2010-10-01

    Full Text Available Previous studies have shown that numerous sprouts originating from a neuroma, after nerve injury in neonatal animals, can invade spinal nerve roots. In this study the border between the central and peripheral nervous system (CNS-PNS border of ventral roots in kittens was examined with both light and electron microscopy after early postnatal sciatic nerve resection. A transient ingrowth of substance P positive axons was observed into the CNS, but no spouts remained 6 weeks after the injury. Using serial sections and electron microscopy it was possible to identify small bundles of unmyelinated axons that penetrated from the root fascicles for a short distance into the CNS. These axons ended blindly, sometimes with a growth cone-like terminal swelling filled with vesicles. The axon bundles were accompanied by p75 positive cells in both the root fascicles and the pia mater, but not in the CNS. It may thus be suggested that neurotrophin presenting p75 positive cells could facilitate axonal growth into the pia mater and that the lack of such cells in the CNS compartment might contribute to the failure of growth into the CNS. A maldevelopment of myelin sheaths at the CNS-PNS border of motor axons was observed and it seems possible that this could have consequences for the propagation of action potential across this region after neonatal nerve injury.

  15. Developmental impairment of compound action potential in the optic nerve of myelin mutant taiep rats.

    Science.gov (United States)

    Roncagliolo, Manuel; Schlageter, Carol; León, Claudia; Couve, Eduardo; Bonansco, Christian; Eguibar, José R

    2006-01-05

    The taiep rat is a myelin mutant with an initial hypomyelination, followed by a progressive demyelination of the CNS. The neurological correlates start with tremor, followed by ataxia, immobility episodes, epilepsy and paralysis. The optic nerve, an easily-isolable central tract fully myelinated by oligodendrocytes, is a suitable preparation to evaluate the developmental impairment of central myelin. We examined the ontogenic development of optic nerve compound action potentials (CAP) throughout the first 6 months of life of control and taiep rats. Control optic nerves (ON) develop CAPs characterized by three waves. Along the first month, the CAPs of taiep rats showed a delayed maturation, with lower amplitudes and longer latencies than controls; at P30, the conduction velocity has only a third of the normal value. Later, as demyelination proceeds, the conduction velocity of taiep ONs begins to decrease and CAPs undergo a gradual temporal dispersion. CAPs of control and taiep showed differences in their pharmacological sensitivity to TEA and 4-AP, two voltage dependent K+ channel-blockers. As compared with TEA, 4-AP induced a significant increase of the amplitudes and a remarkable broadening of CAPs. After P20, unlike controls, the greater sensitivity to 4-AP exhibited by taiep ONs correlates with the detachment and retraction of paranodal loops suggesting that potassium conductances could regulate the excitability as demyelination of CNS axons progresses. It is concluded that the taiep rat, a long-lived mutant, provides a useful model to study the consequences of partial demyelination and the mechanisms by which glial cells regulate the molecular organization and excitability of axonal membranes during development and disease.

  16. Flavonoids inhibit myelin phagocytosis by macrophages; a structure-activity relationship study

    NARCIS (Netherlands)

    Hendriks, Jerome J. A.; de Vries, Helga E.; van der Pol, Susanne M. A.; van den Berg, Timo K.; van Tol, Eric A. F.; Dijkstra, Christine D.

    2003-01-01

    Demyelination is a characteristic hallmark of the neuro-inflammatory disease multiple sclerosis. During demyelination, macrophages phagocytose myelin and secrete inflammatory mediators that worsen the disease. Here, we investigated whether flavonoids, naturally occurring immunomodulating compounds,

  17. Cholesterol and myelin biogenesis.

    Science.gov (United States)

    Saher, Gesine; Simons, Mikael

    2010-01-01

    Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.

  18. Myelin Formation during Development of the CNS Is Delayed in Matrix Metalloproteinase-9 and -12 Null Mice

    DEFF Research Database (Denmark)

    Larsen, Peter Hjørringgaard; DaSilva, Angelika G.; Conant, Kathrine

    2006-01-01

    was correlated with fewer mature oligodendrocytes, but similar precursor cell numbers, in MMP null animals compared with wild type. Because an important growth factor for oligodendrocyte maturation is insulin-like growth factor-1 (IGF-1), we addressed whether this was involved in the deficient myelination in MMP...

  19. Phosphorylation of myelin basic proteins and its relevance to myelin biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, J.B.

    1985-01-01

    Age-related differences in the in vivo incorporation of (32-P) into mouse myelin basic proteins (MBPs) of the central nervous system were observed. The resulting specific radioactivity (S.A.) of the MBPs appeared to be related to the S.A. of the acid-soluble pool of phosphates of myelin. In development, MBPs were phosphorylated in vivo prior to the onset of myelination in the brain, indicating that MBPs are phosphorylated prior to their deposition in the myelin sheath. The incorporation of (32-P) into MBPs and the turnover rates of MBP phosphates were studied in vivo in developmentally-related myelin compartments. The results suggest that there are two separate events in MBP phosphorylation and that the turnover rates of the MBP phosphates derived from these two events are different. A model for MBP phosphorylation, that could explain in these observations, is postulated and discussed in the light of existing information.

  20. A role of peripheral myelin protein 2 in lipid homeostasis of myelinating Schwann cells

    NARCIS (Netherlands)

    Zenker, J.; Stettner, M.; Ruskamo, S.; Domenech-Estevez, E.; Baloui, H.; Medard, J.J.; Verheijen, M.H.G.; Brouwers, J.F.; Kursula, P.; Kieseier, B.C.; Chrast, R.

    2014-01-01

    Peripheral myelin protein 2 (Pmp2, P2 or Fabp8), a member of the fatty acid binding protein family, was originally described together with myelin basic protein (Mbp or P1) and myelin protein zero (Mpz or P0) as one of the most abundant myelin proteins in the peripheral nervous system (PNS). Although

  1. A role of peripheral myelin protein 2 in lipid homeostasis of myelinating Schwann cells.

    NARCIS (Netherlands)

    Zenker, Jennifer; ruskamo, salla; domenech-estevez, Enric; medard, jean-jacques; Verheijen, M.H.; Brouwers, Jos|info:eu-repo/dai/nl/173812694; Kursula, Petri; kieseier, bernd; Chrast, Roman

    Peripheral myelin protein 2 (Pmp2, P2 or Fabp8), a member of the fatty acid binding protein family, was originally described together with myelin basic protein (Mbp or P1) and myelin protein zero (Mpz or P0) as one of the most abundant myelin proteins in the peripheral nervous system (PNS). Although

  2. Inflammation in the CNS and Th17 Responses Are Inhibited by IFN-{gamma}-Induced IL-18 Binding Protein

    DEFF Research Database (Denmark)

    Millward, Jason M; Pedersen, Morten Løbner; Wheeler, Rachel D

    2010-01-01

    Inflammatory responses are essential for immune protection but may also cause pathology and must be regulated. Both Th1 and Th17 cells are implicated in the pathogenesis of autoimmune inflammatory diseases, such as multiple sclerosis. We show in this study that IL-18-binding protein (IL-18bp......), the endogenous inhibitor of the Th1-promoting cytokine IL-18, is upregulated by IFN-gamma in resident microglial cells in the CNS during multiple sclerosis-like disease in mice. Test of function by overexpression of IL-18bp in the CNS using a viral vector led to marked reduction in Th17 responses and robust...... inhibition of incidence, severity, and histopathology of disease, independently of IFN-gamma. The disease-limiting action of IL-18bp included suppression of APC-derived Th17-polarizing cytokines. IL-18bp thus acts as a sensor for IFN-gamma and can regulate both Th1 and Th17 responses in the CNS....

  3. Enhanced uptake of multiple sclerosis-derived myelin by THP-1 macrophages and primary human microglia.

    Science.gov (United States)

    Hendrickx, Debbie A E; Schuurman, Karianne G; van Draanen, Michael; Hamann, Jörg; Huitinga, Inge

    2014-03-31

    prevent or inhibit formation or expansion of MS lesions. Moreover, during aging, microglia enhance their phagocytic capacity for myelin phagocytosis, but myelin reduces its susceptibility for uptake.

  4. Evaluation of myelination and myelination disorders with turbo inversion recovery magnetic resonance imaging

    International Nuclear Information System (INIS)

    Daldrup, H.E.; Schuierer, G.; Link, T.M.; Moeller, H.; Bick, U.; Peters, P.E.; Kurlemann, G.

    1997-01-01

    The aim of our work was to determine the efficacy of turbo inversion recovery spin echo (TIRSE) pulse sequences in differentiating patients with normal and abnormal myelination. Twenty neurological normal children (aged 5 months to 12 years) as well as 65 children presenting clinically with neurologic developmental deficits (aged 2 months to 10 years) were examined using TIRSE, T1-weighted SE, and T2-weighted turbo SE pulse sequences. Contrast-to-noise-ratio (CNR) between myelinated white and gray matter was compared for the different pulse sequences. In addition, two readers analyzed all images qualitatively by consensus. The CNR values were significantly higher on TIRSE images as compared with conventional images (p < 0.05). Forty-two neurologically abnormal patients displayed a normal myelination on all sequences, whereas 23 showed an abnormal myelination. The TIRSE sequence provided a sensitive and specific depiction of an abnormal myelination in all of these patients. The TIRSE sequence provided additional information to conventional pulse sequences in determining myelination disorders in children, especially in children older than 2 years. (orig.)

  5. The Effect of the Uncariae Ramulus et Uncus on the Regeneration Following CNS Injury

    Directory of Open Access Journals (Sweden)

    Lee Jin-Goo

    2009-03-01

    Full Text Available Objective : Following central nervous system(CNS injury, inhibitory influences at the site of axonal damage occur. Glial cells become reactive and form a glial scar, gliosis. Also myelin debris such as MAG inhibits axonal regeneration. Astrocyte-rich gliosis relates with up-regulation of GFAP and CD81, and eventually becomes physical and mechanical barrier to axonal regeneration. MAG is one of several endogenous axon regeneration inhibitors that limit recovery from CNS injury and disease. It was reported that molecules that block such inhibitors enhanced axon regeneration and functional recovery. Recently it was reported that treatment with anti-CD81 antibodies enhanced functional recovery in the rat with spinal cord injury. So in this current study, the author investigated the effect of the water extract of Uncariae Ramulus et Uncus on the regulation of CD81, GFAP and MAG that increase when gliosis occurs. Methods : MTT assay was performed to examine cell viability, and cell-based ELISA, western blot and PCR were used to detect the expression of CD81, GFAP and MAG. Then also immunohistochemistry was performed to confirm in vivo. Results : Water extract of Uncariae Ramulus et Uncus showed relatively high cell viability at the concentration of 0.05%, 0.1% and 0.5%. The expression of CD81, GFAP and MAG in astrocytes was decreased after the administration of Uncariae Ramulus et Uncus water extract. These results was confirmed in the brain sections following cortical stab injury by immunohistochemistry. Conclusion : The authors observed that Uncariae Ramulus et Uncus significantly down-regulates the expression of CD81, GFAP and MAG. These results suggest that Uncariae Ramulus et Uncus can be a candidate to regenerate CNS injury.

  6. Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS

    DEFF Research Database (Denmark)

    Thurnherr, Tina; Benninger, Yves; Wu, Xunwei

    2006-01-01

    . This was characterized by the extraordinary enlargement of the inner tongue of the oligodendrocyte process and concomitant formation of a myelin outfolding as a result of abnormal accumulation of cytoplasm in this region. Ablation of Rac1 also resulted in the abnormal accumulation of cytoplasm in the inner tongue...... of the oligodendrocyte process, and we provide genetic evidence that rac1 synergizes with cdc42 in a gene dosage-dependent way to regulate myelination....

  7. Schwann cell myelination requires Dynein function

    Directory of Open Access Journals (Sweden)

    Langworthy Melissa M

    2012-11-01

    Full Text Available Abstract Background Interaction of Schwann cells with axons triggers signal transduction that drives expression of Pou3f1 and Egr2 transcription factors, which in turn promote myelination. Signal transduction appears to be mediated, at least in part, by cyclic adenosine monophosphate (cAMP because elevation of cAMP levels can stimulate myelination in the absence of axon contact. The mechanisms by which the myelinating signal is conveyed remain unclear. Results By analyzing mutations that disrupt myelination in zebrafish, we learned that Dynein cytoplasmic 1 heavy chain 1 (Dync1h1, which functions as a motor for intracellular molecular trafficking, is required for peripheral myelination. In dync1h1 mutants, Schwann cell progenitors migrated to peripheral nerves but then failed to express Pou3f1 and Egr2 or make myelin membrane. Genetic mosaic experiments revealed that robust Myelin Basic Protein expression required Dync1h1 function within both Schwann cells and axons. Finally, treatment of dync1h1 mutants with a drug to elevate cAMP levels stimulated myelin gene expression. Conclusion Dync1h1 is required for retrograde transport in axons and mutations of Dync1h1 have been implicated in axon disease. Our data now provide evidence that Dync1h1 is also required for efficient myelination of peripheral axons by Schwann cells, perhaps by facilitating signal transduction necessary for myelination.

  8. Networks of myelin covariance

    Science.gov (United States)

    Slater, David; Ruef, Anne; Sanabria‐Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine

    2017-01-01

    Abstract Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, 2013). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these “networks of myelin covariance” (Myelin‐Nets). The Myelin‐Nets were built from quantitative Magnetization Transfer data—an in‐vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin‐Nets. We therefore selected two age groups: Young‐Age (20–31 years old) and Old‐Age (60–71 years old) and a pool of participants from 48 to 87 years old for a Myelin‐Nets aging trajectory study. We found that the topological organization of the Myelin‐Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin‐Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. PMID:29271053

  9. Adaptive myelination from fish to man.

    Science.gov (United States)

    Baraban, Marion; Mensch, Sigrid; Lyons, David A

    2016-06-15

    Myelinated axons with nodes of Ranvier are an evolutionary elaboration common to essentially all jawed vertebrates. Myelin made by Schwann cells in our peripheral nervous system and oligodendrocytes in our central nervous system has been long known to facilitate rapid energy efficient nerve impulse propagation. However, it is now also clear, particularly in the central nervous system, that myelin is not a simple static insulator but that it is dynamically regulated throughout development and life. New myelin sheaths can be made by newly differentiating oligodendrocytes, and mature myelin sheaths can be stimulated to grow again in the adult. Furthermore, numerous studies in models from fish to man indicate that neuronal activity can affect distinct stages of oligodendrocyte development and the process of myelination itself. This begs questions as to how these effects of activity are mediated at a cellular and molecular level and whether activity-driven adaptive myelination is a feature common to all myelinated axons, or indeed all oligodendrocytes, or is specific to cells or circuits with particular functions. Here we review the recent literature on this topic, elaborate on the key outstanding questions in the field, and look forward to future studies that incorporate investigations in systems from fish to man that will provide further insight into this fundamental aspect of nervous system plasticity. This article is part of a Special Issue entitled SI: Myelin Evolution. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Magnetic resonance imaging and myelin

    International Nuclear Information System (INIS)

    Adamsbaum, C.; Andre, C.; Rolland, Y.

    1995-01-01

    Postnatal development of the brain is characterized by growth and by myelination. Myelination of the brain normally extends from birth until about two years of age. MRI changes corresponding to the various myelination stages are due mainly to changes in the water content of the cerebral parenchyma. Myelination kinetics follow a fairly precise timetable, with variations across areas of the brain. Abnormalities of white matter are responsible for relatively stereotyped, nonspecific manifestations, which are mainly due to an increase in the amount of water contained in diseased white matter, whatever the cause of the disorder. Interpretation is based on the location, distribution, and progression of lesions. (authors). 7 refs., 5 figs

  11. [Regularities of fixation of brain serum antibodies from patients with lateral amyotrophic sclerosis in rabbit CNS].

    Science.gov (United States)

    Musaeva, L S; Gannyshkina, I V; Zavalishin, I A; Markova, E D; Ivanova-Smolenskaia, I A

    2002-01-01

    Kuhns' indirect immunofluorescent test was used to study fixation of serum brain antibodies (Ab) of patients with bulbar, cervicothoracic, lumbosacral lateral amyotropic sclerosis (LAS) on brain sections of rabbits. The disease is characterized by formation of brain Ab complementary to various structures of nervous and glial cells, myelin of fibers from different conducting systems, vessels which exhibit both common and individual antigenic properties. It was found that fixation of antineuronal, antimyelin brain Ab of patients with bulbar, cervicothoracic and lumbosacral LAS in different CNS structures varies.

  12. Astrocytes promote myelination in response to electrical impulses.

    Science.gov (United States)

    Ishibashi, Tomoko; Dakin, Kelly A; Stevens, Beth; Lee, Philip R; Kozlov, Serguei V; Stewart, Colin L; Fields, R Douglas

    2006-03-16

    Myelin, the insulating layers of membrane wrapped around axons by oligodendrocytes, is essential for normal impulse conduction. It forms during late stages of fetal development but continues into early adult life. Myelination correlates with cognitive development and can be regulated by impulse activity through unknown molecular mechanisms. Astrocytes do not form myelin, but these nonneuronal cells can promote myelination in ways that are not understood. Here, we identify a link between myelination, astrocytes, and electrical impulse activity in axons that is mediated by the cytokine leukemia inhibitory factor (LIF). These findings show that LIF is released by astrocytes in response to ATP liberated from axons firing action potentials, and LIF promotes myelination by mature oligodendrocytes. This activity-dependent mechanism promoting myelination could regulate myelination according to functional activity or environmental experience and may offer new approaches to treating demyelinating diseases.

  13. Sustained neonatal hyperthyroidism in the rat affects myelination in the central nervous system.

    Science.gov (United States)

    Marta, C B; Adamo, A M; Soto, E F; Pasquini, J M

    1998-07-15

    We have carried out a study of the effects of sustained neonatal hyperthyroidism on myelin and on the oligodendroglial cells, in an effort to obtain further insight into the molecular mechanisms underlying the action of thyroid hormones on the central nervous system (CNS). Expression of the mRNAs of myelin basic protein (MBP) myelin proteolipid protein (PLP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), transferrin, and c-Jun was investigated in 10- and 17-day-old normal and hyperthyroid rats, using Northern blot analysis. At 10 days of age, the levels of all the explored mRNAs were markedly higher in the experimental animals. The mRNA of transferrin showed a ninefold increase over control values, suggesting the possibility that this putative trophic factor might act as one of the mediators in the action of thyroid hormones. At 17 days of age on the other hand, the levels of all the mRNAs decreased markedly, reaching values below control, except for c-Jun, which remained higher than in normals. At 70 days of age, hyperthyroid rats showed clear evidence of myelin deficit, in agreement with previous results of our laboratories (Pasquini et al.: J Neurochem 57: Suppl S124, 1991). Immunocytochemistry of 70-day-old rat brain tissue sections showed a substantial reduction in the amount of MBP-reacting structures and a marked decrease in the number of oligodendroglial cells. Although the above-mentioned results could be the consequence, as proposed by Barres et al. (Development 120:1097-1108, 1994) and Baas et al. (Glia 19:324-332, 1997) of a premature arrest in oligodendroglial cell proliferation followed by early differentiation, the persistent high levels of expression of c-Jun, together with the dramatic decrease in the number of oligodendrocytes, suggested the possibility that prolonged hyperthyroidism could activate apoptotic mechanisms in the myelin forming cells. Using propidium iodide-labeled isolated oligodendroglial cells, we found, by flow cytometry

  14. Axonal sprouting regulates myelin basic protein gene expression in denervated mouse hippocampus

    DEFF Research Database (Denmark)

    Jensen, M B; Poulsen, F R; Finsen, B

    2000-01-01

    to 35 days after transection of the entorhino-hippocampal perforant path axonal projection. In situ hybridization analysis showed that anterograde axonal and terminal degeneration lead to upregulated oligodendrocyte MBP mRNA expression starting between day 2 and day 4, in (1) the deep part of stratum...... axonal and terminal degeneration, myelin degenerative changes, microglial activation and axotomi-induced axonal sprouting. Oligodendrocyte MBP mRNA expression reached maximum in both these areas at day 7. MBP gene transcription remained constant in stratum radiatum, stratum pyramidale and stratum oriens...... of CA1, areas that were unaffected by perforant path transection. These results provide strong evidence that oligodendrocyte MBP gene expression can be regulated by axonal sprouting independently of microglial activation in the injured adult CNS....

  15. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells.

    Science.gov (United States)

    Jin, Song-Hyo; An, Sung-Kwan; Lee, Seong-Beom

    2017-06-01

    Leprosy is a chronic infectious disease that is caused by the obligate intracellular pathogen Mycobacterium leprae (M.leprae), which is the leading cause of all non-traumatic peripheral neuropathies worldwide. Although both myelinating and non-myelinating Schwann cells are infected by M.leprae in patients with lepromatous leprosy, M.leprae preferentially invades the non-myelinating Schwann cells. However, the effect of M.leprae infection on non-myelinating Schwann cells has not been elucidated. Lipid droplets (LDs) are found in M.leprae-infected Schwann cells in the nerve biopsies of lepromatous leprosy patients. M.leprae-induced LD formation favors intracellular M.leprae survival in primary Schwann cells and in a myelinating Schwann cell line referred to as ST88-14. In the current study, we initially characterized SW-10 cells and investigated the effects of LDs on M.leprae-infected SW-10 cells, which are non-myelinating Schwann cells. SW-10 cells express S100, a marker for cells from the neural crest, and NGFR p75, a marker for immature or non-myelinating Schwann cells. SW-10 cells, however, do not express myelin basic protein (MBP), a marker for myelinating Schwann cells, and myelin protein zero (MPZ), a marker for precursor, immature, or myelinating Schwann cells, all of which suggests that SW-10 cells are non-myelinating Schwann cells. In addition, SW-10 cells have phagocytic activity and can be infected with M. leprae. Infection with M. leprae induces the formation of LDs. Furthermore, inhibiting the formation of M. leprae-induced LD enhances the maturation of phagosomes containing live M.leprae and decreases the ATP content in the M. leprae found in SW-10 cells. These facts suggest that LD formation by M. leprae favors intracellular M. leprae survival in SW-10 cells, which leads to the logical conclusion that M.leprae-infected SW-10 cells can be a new model for investigating the interaction of M.leprae with non-myelinating Schwann cells.

  16. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    International Nuclear Information System (INIS)

    Zhang Lei; Hao Changchun; Feng Ying; Gao Feng; Lu Xiaolong; Li Junhua; Sun Runguang

    2016-01-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure–area ( π – A ) and pressure–time ( π – T ) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. (special topic)

  17. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom.

    Science.gov (United States)

    Berger, Philipp; Sirkowski, Erich E; Scherer, Steven S; Suter, Ueli

    2004-11-01

    Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.

  18. MRI assessment of myelination: an age standardization

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, M. (Kinderklinik Dritter Orden, Passau (Germany)); Schropp, C. (Kinderklinik Dritter Orden, Passau (Germany)); Staudt, F. (Kinderklinik Dritter Orden, Passau (Germany)); Obletter, N. (Radiologische Praxis, Klinikum Ingolstadt (Germany)); Bise, K. (Neuropathologisches Inst., Muenchen Univ. (Germany)); Breit, A. (MR Tomographie, Klinikum Passau (Germany)); Weinmann, H.M. (Kinderklinik Schwabing, Muenchen (Germany))

    1994-04-01

    777 cerebral MRI examinations of children aged 3 days to 14 years were staged for myelination to establish an age standardization. Staging was performed using a system proposed in a previous paper, separately ranking 10 different regions of the brain. Interpretation of the results led to the identification of foue clinical diagnoses that are frequently associated with delays in myelination: West syndrome, cerebral palsy, developmental retardation, and congenital anomalies. In addition, it was found that assessment of myelination in children with head injuries was not practical as alterations in MRI signal can simulate earlier stages of myelination. Age limits were therefore calculated from the case material after excluding all children with these conditions. When simplifications of the definition of the stages are applied, these age limits for the various stages of myelination of each of the 10 regions of the brain make the staging system applicable for routine assessment of myelination. (orig.)

  19. Peripheral myelin protein 22 alters membrane architecture

    Science.gov (United States)

    Mittendorf, Kathleen F.; Marinko, Justin T.; Hampton, Cheri M.; Ke, Zunlong; Hadziselimovic, Arina; Schlebach, Jonathan P.; Law, Cheryl L.; Li, Jun; Wright, Elizabeth R.; Sanders, Charles R.; Ohi, Melanie D.

    2017-01-01

    Peripheral myelin protein 22 (PMP22) is highly expressed in myelinating Schwann cells of the peripheral nervous system. PMP22 genetic alterations cause the most common forms of Charcot-Marie-Tooth disease (CMTD), which is characterized by severe dysmyelination in the peripheral nerves. However, the functions of PMP22 in Schwann cell membranes remain unclear. We demonstrate that reconstitution of purified PMP22 into lipid vesicles results in the formation of compressed and cylindrically wrapped protein-lipid vesicles that share common organizational traits with compact myelin of peripheral nerves in vivo. The formation of these myelin-like assemblies depends on the lipid-to-PMP22 ratio, as well as on the PMP22 extracellular loops. Formation of the myelin-like assemblies is disrupted by a CMTD-causing mutation. This study provides both a biochemical assay for PMP22 function and evidence that PMP22 directly contributes to membrane organization in compact myelin. PMID:28695207

  20. Salvianolic acid B protects the myelin sheath around injured spinal cord axons

    Directory of Open Access Journals (Sweden)

    Zhe Zhu

    2016-01-01

    Full Text Available Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells.

  1. Are PrP(C)s involved in some human myelin diseases? Relating experimental studies to human pathology.

    Science.gov (United States)

    Veber, Daniela; Scalabrino, Giuseppe

    2015-12-15

    We have experimentally demonstrated that cobalamin (Cbl) deficiency increases normal cellular prion (PrP(C)) levels in rat spinal cord (SC) and cerebrospinal fluid (CSF), and decreases PrP(C)-mRNA levels in rat SC. Repeated intracerebroventricular administrations of anti-octapeptide repeat-PrP(C)-region antibodies to Cbl-deficient (Cbl-D) rats prevent SC myelin lesions, and the administrations of PrP(C)s to otherwise normal rats cause SC white matter lesions similar to those induced by Cbl deficiency. Cbl positively regulates SC PrP(C) synthesis in rat by stimulating the local synthesis of epidermal growth factor (EGF), which also induces the local synthesis of PrP(C)-mRNAs, and downregulating the local synthesis of tumor necrosis factor(TNF)-α, thus preventing local PrP(C) overproduction. We have clinically demonstrated that PrP(C) levels are increased in the CSF of patients with subacute combined degeneration (SCD), unchanged in the CSF of patients with Alzheimer's disease and amyotrophic lateral sclerosis, and decreased in the CSF and SC of patients with multiple sclerosis (MS), regardless of its clinical course. We conclude that SCD (human and experimental) is a neurological disease due to excess PrP(C) without conformational change and aggregation, that the increase in PrP(C) levels in SCD and Cbl-D polyneuropathy and their decrease in MS CNS make them antipodian myelin diseases in terms of quantitative PrP(C) abnormalities, and that these abnormalities are related to myelin damage in the former, and impede myelin repair in the latter. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The whole spectrum of alcohol-related changes in the CNS. Practical MR and CT imaging guidelines for daily clinical use

    International Nuclear Information System (INIS)

    Keil, V.C.; Greschus, S.; Hadizadeh, D.R.; Schild, H.H.; Schneider, C.

    2015-01-01

    Alcohol addiction is the most common drug addiction. Alcohol passes both the placenta as well as the blood-brain barrier and is in multiple ways neurotoxic. Liver diseases and other systemic alcohol-related diseases cause secondary damage to the CNS. Especially in adolescents, even a single episode of severe alcohol intoxication (''binge drinking'') may result in life-threatening neurological consequences. Alcohol-related brain and spinal cord diseases derive from multiple causes including impairment of the cellular metabolism, often aggravated by hypovitaminosis, altered neurotransmission, myelination and synaptogenesis as well as alterations in gene expression. Modern radiological diagnostics, MRI in particular, can detect the resulting alterations in the CNS with a high sensitivity. Morphological aspects often strongly correlate with clinical symptoms of the patient. It is less commonly known that many diseases considered as ''typically alcohol-related'', such as Wernicke's encephalopathy, are to a large extent not alcohol-induced. Visible CNS alterations are thus non-pathognomonic and demand careful evaluation of differential diagnoses. This review article elucidates the pathogenesis, clinical aspects and radiological image features of the most common alcohol-related CNS diseases and their differential diagnoses.

  3. Localisation of N-acetylaspartate in oligodendrocytes/myelin.

    Science.gov (United States)

    Nordengen, Kaja; Heuser, Christoph; Rinholm, Johanne Egge; Matalon, Reuben; Gundersen, Vidar

    2015-03-01

    The role of N-acetylaspartate in the brain is unclear. Here we used specific antibodies against N-acetylaspartate and immunocytochemistry of carbodiimide-fixed adult rodent brain to show that, besides staining of neuronal cell bodies in the grey matter, N-acetylaspartate labelling was present in oligodendrocytes/myelin in white matter tracts. Immunoelectron microscopy of the rat hippocampus showed that N-acetylaspartate was concentrated in the myelin. Also neuronal cell bodies and axons contained significant amounts of N-acetylaspartate, while synaptic elements and astrocytes were low in N-acetylaspartate. Mitochondria in axons and neuronal cell bodies contained higher levels of N-acetylaspartate compared to the cytosol, compatible with synthesis of N-acetylaspartate in mitochondria. In aspartoacylase knockout mice, in which catabolism of N-acetylaspartate is blocked, the levels of N-acetylaspartate were largely increased in oligodendrocytes/myelin. In these mice, the highest myelin concentration of N-acetylaspartate was found in the cerebellum, a region showing overt dysmyelination. In organotypic cortical slice cultures there was no evidence for N-acetylaspartate-induced myelin toxicity, supporting the notion that myelin damage is induced by the lack of N-acetylaspartate for lipid production. Our findings also implicate that N-acetylaspartate signals on magnetic resonance spectroscopy reflect not only vital neurons but also vital oligodendrocytes/myelin.

  4. Myelin-associated proteins labelled by slow axonal transport

    International Nuclear Information System (INIS)

    Giorgi, P.P.; DuBois, H.

    1981-01-01

    This paper deals with the problem of protein metabolism and provides evidence that the neuronal contribution to myelin metabolism may be restricted to lipids only. On the other hand this line of research led to the partial characterization of a group of neuronal proteins probably involved in axo-glial interactions subserving the onset of myelination and the structural maintenance of the mature myelin sheath. Intraocular injection of radioactive amino acids allows the study of the anterograde transport of labelled proteins along retinofugal fibres which are well myelinated. Myelin extracted from the optic nerve and tract under these conditions also contains labelled proteins. Three hypotheses are available to explain this phenomenon. To offer an explanation for this phenomenon the work was planned as follows. a) Characterization of the spatio-temporal pattern of labelling of myelin, in order to define the experimental conditions (survival time and region of the optic pathway to be studied) necessary to obtain maximal labelling. b) Characterization (by gel electrophoresis) of the myelin-associated proteins which become labelled by axonal transport, in order to work on a consistent pattern of labelling. c) Investigation of the possible mechanism responsible for the labelling of myelin-associated proteins. (Auth.)

  5. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Kristel Kegler

    Full Text Available Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas

  6. Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease.

    Science.gov (United States)

    Lepoutre, Veronique; Jain, Pooja; Quann, Kevin; Wigdahl, Brian; Khan, Zafar K

    2009-01-01

    Human T cell leukemia virus type 1 (HTLV-1), the first human retrovirus discovered, is the etiologic agent for a number of disorders; the two most common pathologies include adult T cell leukemia (ATL) and a progressive demyelinating neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The neurologic dysfunction associated with HAM/TSP is a result of viral intrusion into the central nervous system (CNS) and the generation of a hyperstimulated host response within the peripheral and central nervous system that includes expanded populations of CD4+ and CD8+ T cells and proinflammatory cytokines/chemokines in the cerebrospinal fluid (CSF). This robust, yet detrimental immune response likely contributes to the death of myelin producing oligodendrocytes and degeneration of neuronal axons. The mechanisms of neurological degeneration in HAM/TSP have yet to be fully delineated in vivo and may involve the immunogenic properties of the HTLV-1 transactivator protein Tax. This comprehensive review characterizes the available knowledge to date concerning the effects of HTLV-1 on CNS resident cell populations with emphasis on both viral and host factors contributing to the genesis of HAM/TSP.

  7. Ephaptic coupling of myelinated nerve fibers

    DEFF Research Database (Denmark)

    Binczak, S.; Eilbeck, J. C.; Scott, Alwyn C.

    2001-01-01

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used...

  8. Cross-population myelination covariance of human cerebral cortex.

    Science.gov (United States)

    Ma, Zhiwei; Zhang, Nanyin

    2017-09-01

    Cross-population covariance of brain morphometric quantities provides a measure of interareal connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain regions. Although useful, structural covariance analysis predominantly employed bulky morphological measures with mixed compartments, whereas studies of the structural covariance of any specific subdivisions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture between brain regions. Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical myelination covariance was highly reproducible, and exhibited a brain organization similar to that previously revealed by other connectivity measures. Additionally, the myelination covariance network shared common topological features of human brain networks such as small-worldness. Furthermore, we found that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly, this myelination covariance-RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and polymodal association networks, possibly due to their different circuitry structures. This study has established a new brain connectivity measure specifically related to axons, and this measure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp 38:4730-4743, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  10. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    Science.gov (United States)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang

    2016-09-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central

  11. Abundant extracellular myelin in the meninges of patients with multiple sclerosis.

    Science.gov (United States)

    Kooi, E-J; van Horssen, J; Witte, M E; Amor, S; Bø, L; Dijkstra, C D; van der Valk, P; Geurts, J J G

    2009-06-01

    In multiple sclerosis (MS) myelin debris has been observed within MS lesions, in cerebrospinal fluid and cervical lymph nodes, but the route of myelin transport out of the brain is unknown. Drainage of interstitial fluid from the brain parenchyma involves the perivascular spaces and leptomeninges, but the presence of myelin debris in these compartments has not been described. To determine whether myelin products are present in the meninges and perivascular spaces of MS patients. Formalin-fixed brain tissue containing meninges from 29 MS patients, 9 non-neurological controls, 6 Alzheimer's disease, 5 stroke, 5 meningitis and 7 leucodystrophy patients was investigated, and immunohistochemically stained for several myelin proteins [proteolipid protein (PLP), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)]. On brain material from MS patients and (non)neurological controls, PLP immunostaining was used to systematically investigate the presence of myelin debris in the meninges, using a semiquantitative scale. Extensive extracellular presence of myelin particles, positive for PLP, MBP, MOG and CNPase in the leptomeninges of MS patients, was observed. Myelin particles were also observed in perivascular spaces of MS patients. Immunohistochemical double-labelling for macrophage and dendritic cell markers and PLP confirmed that the vast majority of myelin particles were located extracellularly. Extracellular myelin particles were virtually absent in meningeal tissue of non-neurological controls, Alzheimer's disease, stroke, meningitis and leucodystrophy cases. In MS leptomeninges and perivascular spaces, abundant extracellular myelin can be found, whereas this is not the case for controls and other neurological disease. This may be relevant for understanding sustained immunogenicity or, alternatively, tolerogenicity in MS.

  12. Confocal mapping of myelin figures with micro-Raman spectroscopy

    Science.gov (United States)

    Huang, Jung-Ren; Cheng, Yu-Che; Huang, Hung Ji; Chiang, Hai-Pang

    2018-01-01

    We employ confocal micro-Raman spectroscopy (CMRS) with submicron spatial resolution to study the myelin structures (cylindrical lamellae) composed of nested surfactant C12E3 or lipid DMPC bilayers. The CMRS mapping indicates that for a straight C12E3 myelin, the surfactant concentration increases with the myelin width and is higher in the center region than in the peripheral region. For a curved C12E3 myelin, the convex side has a higher surfactant concentration than the corresponding concave side. The spectrum of DMPC myelins undergoes a qualitative change as the temperature increases above 60 °C, suggesting that the surfactant molecules may be damaged. Our work demonstrates the utility of CMRS in bio-soft material research.

  13. Subtle changes in myelination due to childhood experiences: label-free microscopy to infer nerve fibers morphology and myelination in brain (Conference Presentation)

    Science.gov (United States)

    Gasecka, Alicja; Tanti, Arnaud; Lutz, Pierre-Eric; Mechawar, Naguib; Cote, Daniel C.

    2017-02-01

    Adverse childhood experiences have lasting detrimental effects on mental health and are strongly associated with impaired cognition and increased risk of developing psychopathologies. Preclinical and neuroimaging studies have suggested that traumatic events during brain development can affect cerebral myelination particularly in areas and tracts implicated in mood and emotion. Although current neuroimaging techniques are quite powerful, they lack the resolution to infer myelin integrity at the cellular level. Recently demonstrated coherent Raman microscopy has accomplished cellular level imaging of myelin sheaths in the nervous system. However, a quantitative morphometric analysis of nerve fibers still remains a challenge. In particular, in brain, where fibres exhibit small diameters and varying local orientation. In this work, we developed an automated myelin identification and analysis method that is capable of providing a complete picture of axonal myelination and morphology in brain samples. This method performs three main procedures 1) detects molecular anisotropy of membrane phospholipids based on polarization resolved coherent Raman microscopy, 2) identifies regions of different molecular organization, 3) calculates morphometric features of myelinated axons (e.g. myelin thickness, g-ratio). We applied this method to monitor white matter areas from suicides adults that suffered from early live adversity and depression compared to depressed suicides adults and psychiatrically healthy controls. We demonstrate that our method allows for the rapid acquisition and automated analysis of neuronal networks morphology and myelination. This is especially useful for clinical and comparative studies, and may greatly enhance the understanding of processes underlying the neurobiological and psychopathological consequences of child abuse.

  14. Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia

    DEFF Research Database (Denmark)

    Maiorino, C; Khorooshi, R; Ruffini, F

    2013-01-01

    Interleukin-25 (IL-25) is the only anti-inflammatory cytokine of the IL-17 family, and it has been shown to be efficacious in inhibiting neuroinflammation. Known for its effects on cells of the adaptive immune system, it has been more recently described to be effective also on cells of the innate...... was partly inhibited and the CNS protected from immune-mediated damage. To our knowledge, this is the first example of M2 shift (alternative activation) induced in vivo on CNS-resident myeloid cells by gene therapy, and may constitute a promising strategy to investigate the potential role of protective...

  15. Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination

    NARCIS (Netherlands)

    M.E. Sheean (Maria); E. McShane (Erik); C. Cheret (Cyril); J. Walcher (Jan); T. Müller (Thomas); A. Wulf-Goldenberg (Annika); S. Hoelper (Soraya); A.N. Garratt (Alistair); M. Krüger (Markus); K. Rajewsky (Klaus); D.N. Meijer (Dies); W. Birchmeier (Walter); G.R. Lewin (Gary); M. Selbach (Matthias); C. Birchmeier (Carmen)

    2014-01-01

    textabstractMyelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin

  16. Genetic pharmacotherapy as an early CNS drug development strategy: testing glutaminase inhibition for schizophrenia treatment in adult mice

    Directory of Open Access Journals (Sweden)

    Susana eMingote

    2016-01-01

    Full Text Available Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to test the therapeutic potential of glutaminase inhibition. We specifically asked whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG ERT2 cre/+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction — mimicking pharmacological inhibition — strongly

  17. Remarkable Stability of Myelinating Oligodendrocytes in Mice

    Directory of Open Access Journals (Sweden)

    Richa B. Tripathi

    2017-10-01

    Full Text Available New myelin-forming oligodendrocytes (OLs are generated in the mouse central nervous system during adulthood. These adult-born OLs might augment the existing population, contributing to neural plasticity, or else replace OLs that die in use (turnover. To distinguish between these alternatives, we induced genetic labeling of mature myelinating OLs in young adult mice and tracked their subsequent survival. OL survival rates were region dependent, being higher in corpus callosum (∼90% survival over 20 months and motor cortex (∼70% survival than in corticospinal tract or optic nerve (50%–60% survival. Survival rates over the first 8 months were 90%–100% in all regions except the optic nerve. In the corpus callosum, new OLs accumulate during young adulthood and are therefore likely to participate in adaptive myelination. We also found that the number of myelin internodes maintained by individual cortical OLs is stable for at least 8 months but declines ∼12% in the following year.

  18. Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: Marked differences between various antipsychotic drugs

    Directory of Open Access Journals (Sweden)

    Vik-Mo Audun O

    2006-10-01

    Full Text Available Abstract Background The etiology of schizophrenia is unknown, but neurodevelopmental disturbances, myelin- and oligodendrocyte abnormalities and synaptic dysfunction have been suggested as pathophysiological factors in this severe psychiatric disorder. Cholesterol is an essential component of myelin and has proved important for synapse formation. Recently, we demonstrated that the antipsychotic drugs clozapine and haloperidol stimulate lipogenic gene expression in cultured glioma cells through activation of the sterol regulatory element-binding protein (SREBP transcription factors. We here compare the action of chlorpromazine, haloperidol, clozapine, olanzapine, risperidone and ziprasidone on SREBP activation and SREBP-controlled gene expression (ACAT2, HMGCR, HMGCS1, FDPS, SC5DL, DHCR7, LDLR, FASN and SCD1 in four CNS-relevant human cell lines. Results There were marked differences in the ability of the antipsychotic drugs to activate the expression of SREBP target genes, with clozapine and chlorpromazine as the most potent stimulators in a context of therapeutically relevant concentrations. Glial-like cells (GaMg glioma and CCF-STTG1 astrocytoma cell lines displayed more pronounced drug-induced SREBP activation compared to the response in HCN2 human cortical neurons and SH-SY5Y neuroblastoma cells, indicating that antipsychotic-induced activation of lipogenesis is most prominent in glial cells. Conclusion Our present data show a marked variation in the ability of different antipsychotics to induce SREBP-controlled transcriptional activation of lipogenesis in cultured human CNS-relevant cells. We propose that this effect could be relevant for the therapeutic efficacy of some antipsychotic drugs.

  19. Depth-sensing nano-indentation on a myelinated axon at various stages

    International Nuclear Information System (INIS)

    Huang, Wei-Chin; Liao, Jiunn-Der; Lin, Chou-Ching K; Ju, Ming-Shaung

    2011-01-01

    A nano-mechanical characterization of a multi-layered myelin sheath structure, which enfolds an axon and plays a critical role in the transmission of nerve impulses, is conducted. Schwann cells co-cultured in vitro with PC12 cells for various co-culture times are differentiated to form a myelinated axon, which is then observed using a transmission electron microscope. Three major myelination stages, with distinct structural characteristics and thicknesses around the axon, can be produced by varying the co-culture time. A dynamic contact module and continuous depth-sensing nano-indentation are used on the myelinated structure to obtain the load-on-sample versus measured displacement curve of a multi-layered myelin sheath, which is used to determine the work required for the nano-indentation tip to penetrate the myelin sheath. By analyzing the harmonic contact stiffness versus the measured displacement profile, the results can be used to estimate the three stages of the multi-layered structure on a myelinated axon. The method can also be used to evaluate the development stages of myelination or demyelination during nerve regeneration.

  20. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    Science.gov (United States)

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Dysregulated RNA-Induced Silencing Complex (RISC) Assembly within CNS Corresponds with Abnormal miRNA Expression during Autoimmune Demyelination.

    Science.gov (United States)

    Lewkowicz, Przemysław; Cwiklińska, Hanna; Mycko, Marcin P; Cichalewska, Maria; Domowicz, Małgorzata; Lewkowicz, Natalia; Jurewicz, Anna; Selmaj, Krzysztof W

    2015-05-13

    MicroRNAs (miRNAs) associate with Argonaute (Ago), GW182, and FXR1 proteins to form RNA-induced silencing complexes (RISCs). RISCs represent a critical checkpoint in the regulation and bioavailability of miRNAs. Recent studies have revealed dysregulation of miRNAs in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE); however, the function of RISCs in EAE and MS is largely unknown. Here, we examined the expression of Ago, GW182, and FXR1 in CNS tissue, oligodendrocytes (OLs), brain-infiltrating T lymphocytes, and CD3(+)splenocytes (SCs) of EAE mic, and found that global RISC protein levels were significantly dysregulated. Specifically, Ago2 and FXR1 levels were decreased in OLs and brain-infiltrating T cells in EAE mice. Accordingly, assembly of Ago2/GW182/FXR1 complexes in EAE brain tissues was disrupted, as confirmed by immunoprecipitation experiments. In parallel with alterations in RISC complex content in OLs, we found downregulation of miRNAs essential for differentiation and survival of OLs and myelin synthesis. In brain-infiltrating T lymphocytes, aberrant RISC formation contributed to miRNA-dependent proinflammatory helper T-cell polarization. In CD3(+) SCs, we found increased expression of both Ago2 and FXR1 in EAE compared with nonimmunized mice. Therefore, our results demonstrate a gradient in expression of miRNA between primary activated T cells in the periphery and polarized CNS-infiltrating T cells. These results suggest that, in polarized autoreactive effector T cells, miRNA synthesis is inhibited in response to dysregulated RISC assembly, allowing these cells to maintain a highly specific proinflammatory program. Therefore, our findings may provide a mechanism that leads to miRNA dysregulation in EAE/MS. Copyright © 2015 the authors 0270-6474/15/357521-17$15.00/0.

  2. Myelin injury in the central nervous system and Alzheimer's diseases.

    Science.gov (United States)

    Wang, Sha-Sha; Zhang, Zhao; Zhu, Tian-Bi; Chu, Shi-Feng; He, Wen-Bin; Chen, Nai-Hong

    2018-05-03

    Myelin is a membrane wrapped around the axon of the nerve cell, which is composed of the mature oligodendrocytes. The role of myelin is to insulate and prevent the nerve electrical impulses from the axon of the neurons to the axons of the other neurons, which is essential for the proper functioning of the nervous system. Minor changes in myelin thickness could lead to substantial changes in conduction speed and may thus alter neural circuit function. Demyelination is the myelin damage, which characterized by the loss of nerve sheath and the relative fatigue of the neuronal sheath and axon. Studies have shown that myelin injury may be closely related to neurodegenerative diseases and may be an early diagnostic criteria and therapeutic target. Thus this review summarizes the recent result of pathologic effect and signal pathways of myelin injury in neurodegenerative diseases, especially the Alzheimer's disease to provide new and effective therapeutic targets. Copyright © 2018. Published by Elsevier Inc.

  3. Glibenclamide for the Treatment of Acute CNS Injury

    Directory of Open Access Journals (Sweden)

    J. Marc Simard

    2013-10-01

    Full Text Available First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective effects in acute CNS injury. Acting via inhibition of the recently characterized Sur1-Trpm4 channel (formerly, the Sur1-regulated NCCa-ATP channel and, in some cases, via brain KATP channels, glibenclamide has been shown to be beneficial in several clinically relevant rodent models of ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, neonatal encephalopathy of prematurity, and metastatic brain tumor. Glibenclamide acts on microvessels to reduce edema formation and secondary hemorrhage, it inhibits necrotic cell death, it exerts potent anti-inflammatory effects and it promotes neurogenesis—all via inhibition of Sur1. Two clinical trials, one in TBI and one in stroke, currently are underway. These recent findings, which implicate Sur1 in a number of acute pathological conditions involving the CNS, present new opportunities to use glibenclamide, a well-known, safe pharmaceutical agent, for medical conditions that heretofore had few or no treatment options.

  4. Neuronal Regulation of Schwann Cell Mitochondrial Ca(2+) Signaling during Myelination.

    Science.gov (United States)

    Ino, Daisuke; Sagara, Hiroshi; Suzuki, Junji; Kanemaru, Kazunori; Okubo, Yohei; Iino, Masamitsu

    2015-09-29

    Schwann cells (SCs) myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulation of rat sciatic nerve increases extracellular ATP levels enough to activate purinergic receptors. Indeed, electrical stimulation of sciatic nerves induces Ca(2+) increases in the cytosol and the mitochondrial matrix of surrounding SCs via purinergic receptor activation. Chronic suppression of this pathway during active myelination suppressed the longitudinal and radial development of myelinating SCs and caused hypomyelination. These results demonstrate a neuron-to-SC mitochondria signaling, which is likely to have an important role in proper myelination. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Neuronal Regulation of Schwann Cell Mitochondrial Ca2+ Signaling during Myelination

    Directory of Open Access Journals (Sweden)

    Daisuke Ino

    2015-09-01

    Full Text Available Schwann cells (SCs myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulation of rat sciatic nerve increases extracellular ATP levels enough to activate purinergic receptors. Indeed, electrical stimulation of sciatic nerves induces Ca2+ increases in the cytosol and the mitochondrial matrix of surrounding SCs via purinergic receptor activation. Chronic suppression of this pathway during active myelination suppressed the longitudinal and radial development of myelinating SCs and caused hypomyelination. These results demonstrate a neuron-to-SC mitochondria signaling, which is likely to have an important role in proper myelination.

  6. The structural and functional role of myelin fast-migrating cerebrosides

    DEFF Research Database (Denmark)

    Podbielska, Maria; Levery, Steven B; Hogan, Edward L

    2011-01-01

    A family of neutral glycosphingolipids containing a 3-O-acetyl-sphingosine galactosylceramide (3-SAG) has been characterized. Seven new derivatives of galactosylceramide (GalCer), designated as fast-migrating cerebrosides (FMCs) by TLC retention factor, have been identified. The simplest compounds...... myelin lipid biomarkers coappear with GalCer during myelinogenesis and disappear along with GalCer in de- or dys-myelinating disorders. Myelin lipid antigens, including FMCs, are keys to myelin biology, opening the possibility of new and novel immune modulatory tools for treatment of autoimmune diseases...

  7. Evaluation of dermal myelinated nerve fibers in diabetes mellitus

    Science.gov (United States)

    Peltier, Amanda C.; Myers, M. Iliza; Artibee, Kay J.; Hamilton, Audra D.; Yan, Qing; Guo, Jiasong; Shi, Yaping; Wang, Lily; Li, Jun

    2013-01-01

    Skin biopsies have primarily been used to study the non-myelinated nerve fibers of the epidermis in a variety of neuropathies. In the present study, we have expanded the skin biopsy technique to glabrous, non-hairy skin to evaluate myelinated nerve fibers in the most highly prevalent peripheral nerve disease, diabetic polyneuropathy (DPN). Twenty patients with DPN (Type I, n=9; Type II, n=11) and sixteen age-matched healthy controls (ages 29–73) underwent skin biopsy of the index finger, nerve conduction studies, and composite neuropathy scoring. In patients with DPN, we found a statistically significant reduction of both mechanoreceptive Meissner corpuscles (MC) and their afferent myelinated nerve fibers (p=0.01). This myelinated nerve fiber loss was correlated with the decreased amplitudes of sensory/motor responses in nerve conduction studies. This study supports the utilization of skin biopsy to quantitatively evaluate axonal loss of myelinated nerve fibers in patients with DPN. PMID:23781963

  8. Staining Methods for Normal and Regenerative Myelin in the Nervous System.

    Science.gov (United States)

    Carriel, Víctor; Campos, Antonio; Alaminos, Miguel; Raimondo, Stefania; Geuna, Stefano

    2017-01-01

    Histochemical techniques enable the specific identification of myelin by light microscopy. Here we describe three histochemical methods for the staining of myelin suitable for formalin-fixed and paraffin-embedded materials. The first method is conventional luxol fast blue (LFB) method which stains myelin in blue and Nissl bodies and mast cells in purple. The second method is a LBF-based method called MCOLL, which specifically stains the myelin as well the collagen fibers and cells, giving an integrated overview of the histology and myelin content of the tissue. Finally, we describe the osmium tetroxide method, which consist in the osmication of previously fixed tissues. Osmication is performed prior the embedding of tissues in paraffin giving a permanent positive reaction for myelin as well as other lipids present in the tissue.

  9. New Insights in the Pathogenesis of Multiple Sclerosis—Role of Acrolein in Neuronal and Myelin Damage

    Directory of Open Access Journals (Sweden)

    Riyi Shi

    2013-10-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease of the central nervous system (CNS characterized by an inappropriate inflammatory reaction resulting in widespread myelin injury along white matter tracts. Neurological impairment as a result of the disease can be attributed to immune-mediated injury to myelin, axons and mitochondria, but the molecular mechanisms underlying the neuropathy remain incompletely understood. Incomplete mechanistic knowledge hinders the development of therapies capable of alleviating symptoms and slowing disease progression in the long-term. Recently, oxidative stress has been implicated as a key component of neural tissue damage prompting investigation of reactive oxygen species (ROS scavengers as a potential therapeutic option. Despite the establishment of oxidative stress as a crucial process in MS development and progression, ROS scavengers have had limited success in animal studies which has prompted pursuit of an alternative target capable of curtailing oxidative stress. Acrolein, a toxic β-unsaturated aldehyde capable of initiating and perpetuating oxidative stress, has been suggested as a viable point of intervention to guide the development of new treatments. Sequestering acrolein using an FDA-approved compound, hydralazine, offers neuroprotection resulting in dampened symptom severity and slowed disease progression in experimental autoimmune encephalomyelitis (EAE mice. These results provide promise for therapeutic development, indicating the possible utility of neutralizing acrolein to preserve and improve neurological function in MS patients.

  10. Endogenous phosphorylation of basic protein in myelin of varying degrees of compaction

    International Nuclear Information System (INIS)

    Schulz, P.; Moscarello, M.A.; Cruz, T.F.

    1988-01-01

    Fractions containing myelin of varying degrees of compaction were prepared from human white matter. Protein kinase activity in these fractions was measured by using both endogenous and exogenous myelin basic protein (MBP) as substrates. In both cases, less compact myelin fractions possessed higher levels of protein kinase activity than the compact myelin fraction. In addition, the specific activity of phosphorylated basic protein was greater in the loosely compacted fractions than in compact multilamellar myelin. When basic protein in compact myelin or the myelin fractions was phosphorylated by the endogenous kinase, approximately 70% of the [ 32 P]phosphate was incorporated at a single site, identified as Ser-102. The remaining 30% was found in three other minor sites. Electron microscopy of less compact myelin showed it was composed of fewer lamellae which correlated with a relative decrease in the proportion of cationic charge isomers (microheteromers) when MBP was subjected to gel electrophoresis at alkaline pH. The shift in charge microheterogeneity of basic protein to the less cationic isomers in the less compact myelin fractions correlated with an increase in protein kinase activity and a greater specific activity of phosphorylated basic protein

  11. Combining Quantitative Susceptibility Mapping with Automatic Zero Reference (QSM0) and Myelin Water Fraction Imaging to Quantify Iron-Related Myelin Damage in Chronic Active MS Lesions.

    Science.gov (United States)

    Yao, Y; Nguyen, T D; Pandya, S; Zhang, Y; Hurtado Rúa, S; Kovanlikaya, I; Kuceyeski, A; Liu, Z; Wang, Y; Gauthier, S A

    2018-02-01

    A hyperintense rim on susceptibility in chronic MS lesions is consistent with iron deposition, and the purpose of this study was to quantify iron-related myelin damage within these lesions as compared with those without rim. Forty-six patients had 2 longitudinal quantitative susceptibility mapping with automatic zero reference scans with a mean interval of 28.9 ± 11.4 months. Myelin water fraction mapping by using fast acquisition with spiral trajectory and T2 prep was obtained at the second time point to measure myelin damage. Mixed-effects models were used to assess lesion quantitative susceptibility mapping and myelin water fraction values. Quantitative susceptibility mapping scans were on average 6.8 parts per billion higher in 116 rim-positive lesions compared with 441 rim-negative lesions ( P quantitative susceptibility mapping values of both the rim and core regions ( P Quantitative susceptibility mapping scans and myelin water fraction in rim-positive lesions decreased from rim to core, which is consistent with rim iron deposition. Whole lesion myelin water fractions for rim-positive and rim-negative lesions were 0.055 ± 0.07 and 0.066 ± 0.04, respectively. In the mixed-effects model, rim-positive lesions had on average 0.01 lower myelin water fraction compared with rim-negative lesions ( P quantitative susceptibility mapping scan was negatively associated with follow-up myelin water fraction ( P Quantitative susceptibility mapping rim-positive lesions maintained a hyperintense rim, increased in susceptibility, and had more myelin damage compared with rim-negative lesions. Our results are consistent with the identification of chronic active MS lesions and may provide a target for therapeutic interventions to reduce myelin damage. © 2018 by American Journal of Neuroradiology.

  12. Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure.

    Science.gov (United States)

    Campi, Gaetano; Di Gioacchino, Michael; Poccia, Nicola; Ricci, Alessandro; Burghammer, Manfred; Ciasca, Gabriele; Bianconi, Antonio

    2018-01-23

    Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.

  13. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    David L García-Ramírez

    Full Text Available Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD. PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT, dopamine (DA and noradrenaline (NA on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs or intracellular excitatory postsynaptic currents (EPSCs. The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75% but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic

  14. Neuronal Regulation of Schwann Cell Mitochondrial Ca2+ Signaling during Myelination

    OpenAIRE

    Daisuke Ino; Hiroshi Sagara; Junji Suzuki; Kazunori Kanemaru; Yohei Okubo; Masamitsu Iino

    2015-01-01

    Schwann cells (SCs) myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulati...

  15. Experimental Autoimmune Encephalomyelitis (EAE-Induced Elevated Expression of the E1 Isoform of Methyl CpG Binding Protein 2 (MeCP2E1: Implications in Multiple Sclerosis (MS-Induced Neurological Disability and Associated Myelin Damage

    Directory of Open Access Journals (Sweden)

    Tina Khorshid Ahmad

    2017-06-01

    Full Text Available Multiple sclerosis (MS is a chronic neurological disease characterized by the destruction of central nervous system (CNS myelin. At present, there is no cure for MS due to the inability to repair damaged myelin. Although the neurotrophin brain derived neurotrophic factor (BDNF has a beneficial role in myelin repair, these effects may be hampered by the over-expression of a transcriptional repressor isoform of methyl CpG binding protein 2 (MeCP2 called MeCP2E1. We hypothesize that following experimental autoimmune encephalomyelitis (EAE-induced myelin damage, the immune system induction of the pathogenic MeCP2E1 isoform hampers the myelin repair process by repressing BDNF expression. Using an EAE model of MS, we identify the temporal gene and protein expression changes of MeCP2E1, MeCP2E2 and BDNF. The expression changes of these key biological targets were then correlated with the temporal changes in neurological disability scores (NDS over the entire disease course. Our results indicate that MeCP2E1 mRNA levels are elevated in EAE animals relative to naïve control (NC and active control (AC animals during all time points of disease progression. Our results suggest that the EAE-induced elevations in MeCP2E1 expression contribute to the repressed BDNF production in the spinal cord (SC. The sub-optimal levels of BDNF result in sustained NDS and associated myelin damage throughout the entire disease course. Conversely, we observed no significant differences in the expression patterns displayed for the MeCP2E2 isoform amongst our experimental groups. However, our results demonstrate that baseline protein expression ratios between the MeCP2E1 versus MeCP2E2 isoforms in the SC are higher than those identified within the dorsal root ganglia (DRG. Thus, the DRG represents a more conducive environment than that of the SC for BDNF production and transport to the CNS to assist in myelin repair. Henceforth, the sub-optimal BDNF levels we report in the SC

  16. Experimental Autoimmune Encephalomyelitis (EAE)-Induced Elevated Expression of the E1 Isoform of Methyl CpG Binding Protein 2 (MeCP2E1): Implications in Multiple Sclerosis (MS)-Induced Neurological Disability and Associated Myelin Damage.

    Science.gov (United States)

    Khorshid Ahmad, Tina; Zhou, Ting; AlTaweel, Khaled; Cortes, Claudia; Lillico, Ryan; Lakowski, Ted Martin; Gozda, Kiana; Namaka, Michael Peter

    2017-06-12

    Multiple sclerosis (MS) is a chronic neurological disease characterized by the destruction of central nervous system (CNS) myelin. At present, there is no cure for MS due to the inability to repair damaged myelin. Although the neurotrophin brain derived neurotrophic factor (BDNF) has a beneficial role in myelin repair, these effects may be hampered by the over-expression of a transcriptional repressor isoform of methyl CpG binding protein 2 (MeCP2) called MeCP2E1. We hypothesize that following experimental autoimmune encephalomyelitis (EAE)-induced myelin damage, the immune system induction of the pathogenic MeCP2E1 isoform hampers the myelin repair process by repressing BDNF expression. Using an EAE model of MS, we identify the temporal gene and protein expression changes of MeCP2E1, MeCP2E2 and BDNF. The expression changes of these key biological targets were then correlated with the temporal changes in neurological disability scores (NDS) over the entire disease course. Our results indicate that MeCP2E1 mRNA levels are elevated in EAE animals relative to naïve control (NC) and active control (AC) animals during all time points of disease progression. Our results suggest that the EAE-induced elevations in MeCP2E1 expression contribute to the repressed BDNF production in the spinal cord (SC). The sub-optimal levels of BDNF result in sustained NDS and associated myelin damage throughout the entire disease course. Conversely, we observed no significant differences in the expression patterns displayed for the MeCP2E2 isoform amongst our experimental groups. However, our results demonstrate that baseline protein expression ratios between the MeCP2E1 versus MeCP2E2 isoforms in the SC are higher than those identified within the dorsal root ganglia (DRG). Thus, the DRG represents a more conducive environment than that of the SC for BDNF production and transport to the CNS to assist in myelin repair. Henceforth, the sub-optimal BDNF levels we report in the SC may arise

  17. CNS role evolution.

    Science.gov (United States)

    Payne, J L; Baumgartner, R G

    1996-01-01

    THE CNS ROLE has been actualized in a variety of ways. Flexibility-inherent in the role-and the revolution in health care consciousness tend to place the CNS at risk for criticism regarding value to the organization. At Vanderbilt University Medical Center, a CNS task force evaluated the current reality of CNS practice and recommended role changes to include the financial analysis of patient care. After incorporating a financial perspective into our present practice, we have embarked on an interesting journey of post-Master's degree study, that of the tertiary care nurse practitioner. This practice option could elevated the clinical and financial aspects of providing cost-effective health care to a more autonomous role form; however, the transition has been challenging. Since 1990, the American Nurses Association has recommended that nursing school curricula change to meet the needs of the health care environment and provide increased career flexibility through creating one advanced degree incorporating both CNS and NP functions. Swiftly moving past differences and toward similarities will bridge the gap for advanced practice nurses in the future.

  18. Regulation of Central Nervous System Myelination in Higher Brain Functions

    Directory of Open Access Journals (Sweden)

    Mara Nickel

    2018-01-01

    Full Text Available The hippocampus and the prefrontal cortex are interconnected brain regions, playing central roles in higher brain functions, including learning and memory, planning complex cognitive behavior, and moderating social behavior. The axons in these regions continue to be myelinated into adulthood in humans, which coincides with maturation of personality and decision-making. Myelin consists of dense layers of lipid membranes wrapping around the axons to provide electrical insulation and trophic support and can profoundly affect neural circuit computation. Recent studies have revealed that long-lasting changes of myelination can be induced in these brain regions by experience, such as social isolation, stress, and alcohol abuse, as well as by neurological and psychiatric abnormalities. However, the mechanism and function of these changes remain poorly understood. Myelin regulation represents a new form of neural plasticity. Some progress has been made to provide new mechanistic insights into activity-independent and activity-dependent regulations of myelination in different experimental systems. More extensive investigations are needed in this important but underexplored research field, in order to shed light on how higher brain functions and myelination interplay in the hippocampus and prefrontal cortex.

  19. Rapid myelin water content mapping on clinical MR systems

    International Nuclear Information System (INIS)

    Tonkova, Vyara; Arhelger, Volker; Schenk, Jochen; Neeb, Heiko; Koblenz Univ.

    2012-01-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T 1 , T * 2 and total water content. Employing the multiexponential T * 2 decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T * 2 curve was compromised to 10 echo times with a T Emax of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T 1 , T * 2 , total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  20. Rac1 controls Schwann cell myelination through cAMP and NF2/merlin

    Science.gov (United States)

    Guo, Li; Moon, Chandra; Niehaus, Karen; Zheng, Yi; Ratner, Nancy

    2013-01-01

    During peripheral nervous system development, Schwann cells (SCs) surrounding single large axons differentiate into myelinating SCs. Previous studies implicate RhoGTPases in SC myelination, but the mechanisms involved in RhoGTPase regulation of SC myelination are unknown. Here, we show that SC myelination is arrested in Rac1 conditional knockout (Rac1-CKO) mice. Rac1 knockout abrogated phosphorylation of the effector p21-activated kinase (PAK) and decreased NF2/merlin phosphorylation. Mutation of NF2/merlin rescued the myelin deficit in Rac1-CKO mice in vivo, and the shortened processes in cultured Rac1-CKO SCs in vitro. Mechanistically, cyclic adenosine monophosphate (cAMP) levels and E-cadherin expression were decreased in the absence of Rac1, and both were restored by mutation of NF2/merlin. Reduced cAMP is a cause of the myelin deficiency in Rac1-CKO mice, as elevation of cAMP by rolipram in Rac1-CKO mice in vivo allowed myelin formation. Thus NF2/merlin and cAMP function downstream of Rac1 signaling in SC myelination, and cAMP levels control Rac1-regulated SC myelination. PMID:23197717

  1. Early myelin breakdown following sural nerve crush: a freeze-fracture study

    Directory of Open Access Journals (Sweden)

    Martinez A.M.B.

    2000-01-01

    Full Text Available In this study we describe the early changes of the myelin sheath following surgical nerve crush. We used the freeze-fracture technique to better evaluate myelin alterations during an early stage of Wallerian degeneration. Rat sural nerves were experimentally crushed and animals were sacrificed by transcardiac perfusion 30 h after surgery. Segments of the nerves were processed for routine transmission electron microscopy and freeze-fracture techniques. Our results show that 30 h after the lesion there was asynchrony in the pattern of Wallerian degeneration, with different nerve fibers exhibiting variable degrees of axon disruption. This was observed by both techniques. Careful examination of several replicas revealed early changes in myelin membranes represented by vacuolization and splitting of consecutive lamellae, rearrangement of intramembranous particles and disappearance of paranodal transverse bands associated or not with retraction of paranodal myelin terminal loops from the axolemma. These alterations are compatible with a direct injury to the myelin sheath following nerve crush. The results are discussed in terms of a similar mechanism underlying both axon and myelin breakdown.

  2. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  3. Rapid myelin water content mapping on clinical MR systems

    Energy Technology Data Exchange (ETDEWEB)

    Tonkova, Vyara; Arhelger, Volker [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Schenk, Jochen [Radiologisches Institut, Koblenz (Germany); Neeb, Heiko [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Koblenz Univ. (Germany). Inst. for Medical Engineering and Information Processing - MTI Mittelrhein

    2012-07-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T{sub 1}, T{sup *}{sub 2} and total water content. Employing the multiexponential T{sup *}{sub 2} decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T{sup *}{sub 2} curve was compromised to 10 echo times with a T {sub Emax} of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T{sub 1}, T{sup *}{sub 2}, total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  4. Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models.

    Science.gov (United States)

    Chrast, Roman; Saher, Gesine; Nave, Klaus-Armin; Verheijen, Mark H G

    2011-03-01

    The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders.

  5. Paranodal reorganization results in the depletion of transverse bands in the aged central nervous system

    Science.gov (United States)

    Shepherd, Mark N.; Pomicter, Anthony D.; Velazco, Cristine S.; Henderson, Scott C.; Dupree, Jeffrey L.

    2012-01-01

    Paranodal axo-glial junctional complexes anchor the myelin sheath to the axon and breakdown of these complexes presumably facilitates demyelination. Myelin deterioration is also prominent in the aging central nervous system (CNS); however, the stability of the paranodal complexes in the aged CNS has not been examined. Here, we show that transverse bands, prominent components of paranodal junctions, are significantly reduced in the aged CNS; however, the number of paired clusters of both myelin and axonal paranodal proteins is not altered. Ultrastructural analyses also reveal that thicker myelin sheaths display a “piling” of paranodal loops, the cytoplasm-containing sacs that demarcate the paranode. Loops involved in piling are observed throughout the paranode and are not limited to loops positioned in either the nodal- or juxtanodal-most regions. Here, we propose that as myelination continues, previously anchored loops lose their transverse bands and recede away from the axolemma. Newly juxtaposed loops then lose their transverse bands, move laterally to fill in the gap left by the receded loops and finally reform their transverse bands. This paranodal reorganization results in conservation of paranodal length, which may be important in maintaining ion channel spacing and axonal function. Furthermore, we propose that transverse band reformation is less efficient in the aged CNS, resulting in the significant reduction of these junctional components. Although demyelination was not observed, we propose that loss of transverse bands facilitates myelin degeneration and may predispose the aged CNS to a poorer prognosis following a secondary insult. PMID:20888080

  6. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    Directory of Open Access Journals (Sweden)

    Philip R Lee

    2009-06-01

    Full Text Available Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.

  7. Isolated vasculitis of the CNS

    International Nuclear Information System (INIS)

    Block, F.; Reith, W.

    2000-01-01

    Vasculitis is a rare cause for disease of the CNS. The isolated vasculitis of the CNS is restricted to the CNS whereas other forms of vasculitis affect various organs including the CNS. Headache, encephalopathy, focal deficits and epileptic seizures are the major symptoms suggestive for vasculitis. One major criterion of the isolated vasculitis of the CNS is the lack of evidence for other vasculitis forms or for pathology of other organs. Angiography displays multifocal segmental stenosis of intracranial vessels. MRI demonstrates multiple lesions which in part show enhancement after gadolinium. A definite diagnosis can only be made on the grounds of biopsy from leptomeninges and parenchyma. Therapy consists of corticosteroids and cyclophosphamid. (orig.) [de

  8. Cthrc1 is a negative regulator of myelination in Schwann cells.

    Science.gov (United States)

    Apra, Caroline; Richard, Laurence; Coulpier, Fanny; Blugeon, Corinne; Gilardi-Hebenstreit, Pascale; Vallat, Jean-michel; Lindner, Volkhard; Charnay, Patrick; Decker, Laurence

    2012-03-01

    The analysis of the molecular mechanisms involved in the initial interaction between neurons and Schwann cells is a key issue in understanding the myelination process. We recently identified Cthrc1 (Collagen triple helix repeat containing 1) as a gene upregulated in Schwann cells upon interaction with the axon. Cthrc1 encodes a secreted protein previously shown to be involved in migration and proliferation in different cell types. We performed a functional analysis of Cthrc1 in Schwann cells by loss-of- and gain-of-function approaches using RNA interference knockdown in cell culture and a transgenic mouse line that overexpresses the gene. This work establishes that Cthrc1 enhances Schwann cell proliferation but prevents myelination. In particular, time-course analysis of myelin formation intransgenic animals reveals that overexpression of Cthrc1 in Schwann cells leads to a delay in myelin formation with cells maintaining a proliferative state. Our data, therefore, demonstrate that Cthrc1 plays a negative regulatory role, fine-tuning the onset of peripheral myelination.

  9. A quantitative measure of myelination development in infants, using MR images

    International Nuclear Information System (INIS)

    Carmody, Dennis P.; Dunn, Stanley M.; Boddie-Willis, Akiza S.; DeMarco, J. Kevin; Lewis, Michael

    2004-01-01

    The objective of this study was to measure myelination of frontal lobe changes in infants and young children. Twenty-four cases of infants and children (age range 12-121 months) were evaluated by a quantitative assessment of T2-weighted MR image features. Reliable quantitative changes between white and gray matter correlated with developmental age in a group of children with no neurological findings. Myelination appears to be an increasing exponential function with the greatest rate of change occurring over the first 3 years of life. The quantitative changes observed were in accordance with previous qualitative judgments of myelination development. Children with periventricular leukomalacia (PVL) showed delays in achieving levels of myelination when compared to normal children and adjusted for chronological age. The quantitative measure of myelination development may prove to be useful in assessing the stages of development and helpful in the quantitative descriptions of white matter disorders such as PVL. (orig.)

  10. A quantitative measure of myelination development in infants, using MR images

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, Dennis P. [Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Dunn, Stanley M.; Boddie-Willis, Akiza S. [The State University of New Jersey, Rutgers, New Brunswick, NJ (United States); DeMarco, J. Kevin [Laurie Imaging Center, New Brunswick, NJ (United States); Lewis, Michael [Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Institute for the Study of Child Development, New Brunswick (United States)

    2004-09-01

    The objective of this study was to measure myelination of frontal lobe changes in infants and young children. Twenty-four cases of infants and children (age range 12-121 months) were evaluated by a quantitative assessment of T2-weighted MR image features. Reliable quantitative changes between white and gray matter correlated with developmental age in a group of children with no neurological findings. Myelination appears to be an increasing exponential function with the greatest rate of change occurring over the first 3 years of life. The quantitative changes observed were in accordance with previous qualitative judgments of myelination development. Children with periventricular leukomalacia (PVL) showed delays in achieving levels of myelination when compared to normal children and adjusted for chronological age. The quantitative measure of myelination development may prove to be useful in assessing the stages of development and helpful in the quantitative descriptions of white matter disorders such as PVL. (orig.)

  11. Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells.

    Science.gov (United States)

    Stevens, Beth; Ishibashi, Tomoko; Chen, Jiang-Fan; Fields, R Douglas

    2004-02-01

    Nonsynaptic release of ATP from electrically stimulated dorsal root gangion (DRG) axons inhibits Schwann cell (SC) proliferation and arrests SC development at the premyelinating stage, but the specific types of purinergic receptor(s) and intracellular signaling pathways involved in this form of neuron-glia communication are not known. Recent research shows that adenosine is a neuron-glial transmitter between axons and myelinating glia of the CNS. The present study investigates the possibility that adenosine might have a similar function in communicating between axons and premyelinating SCs. Using a combination of pharmacological and molecular approaches, we found that mouse SCs in culture express functional adenosine receptors and ATP receptors, a far more complex array of purinergic receptors than thought previously. Adenosine, but not ATP, activates ERK/MAPK through stimulation of cAMP-linked A2(A) adenosine receptors. Both ATP and adenosine inhibit proliferation of SCs induced by platelet-derived growth factor (PDGF), via mechanisms that are partly independent. In contrast to ATP, adenosine failed to inhibit the differentiation of SCs to the O4+ stage. This indicates that, in addition to ATP, adenosine is an activity-dependent signaling molecule between axons and premyelinating Schwann cells, but that electrical activity, acting through adenosine, has opposite effects on the differentiation of myelinating glia in the PNS and CNS.

  12. Glial membranes at the node of Ranvier prevent neurite outgrowth

    DEFF Research Database (Denmark)

    Huang, Jeffrey K; Phillips, Greg R; Roth, Alejandro D

    2005-01-01

    of neurite outgrowth, including the oligodendrocyte myelin glycoprotein (OMgp). In rat spinal cord, OMgp was not localized to compact myelin, as previously thought, but to oligodendroglia-like cells, whose processes converge to form a ring that completely encircles the nodes. In OMgp-null mice, CNS nodes......Nodes of Ranvier are regularly placed, nonmyelinated axon segments along myelinated nerves. Here we show that nodal membranes isolated from the central nervous system (CNS) of mammals restricted neurite outgrowth of cultured neurons. Proteomic analysis of these membranes revealed several inhibitors...

  13. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves

    NARCIS (Netherlands)

    Gomez-Sanchez, Jose A.; Carty, Lucy; Iruarrizaga-Lejarreta, Marta; Palomo-Irigoyen, Marta; Varela-Rey, Marta; Griffith, Megan; Hantke, Janina; Macias-Camara, Nuria; Azkargorta, Mikel; Aurrekoetxea, Igor; de Juan, Virginia Gutiérrez; Jefferies, Harold B. J.; Aspichueta, Patricia; Elortza, Félix; Aransay, Ana M.; Martínez-Chantar, María L.; Baas, Frank; Mato, José M.; Mirsky, Rhona; Woodhoo, Ashwin; Jessen, Kristján R.

    2015-01-01

    Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell-mediated myelin digestion possible have not been established. We report that

  14. Engineering Biomaterials to Influence Oligodendroglial Growth, Maturation, and Myelin Production.

    Science.gov (United States)

    Russell, Lauren N; Lampe, Kyle J

    2016-01-01

    Millions of people suffer from damage or disease to the nervous system that results in a loss of myelin, such as through a spinal cord injury or multiple sclerosis. Diminished myelin levels lead to further cell death in which unmyelinated neurons die. In the central nervous system, a loss of myelin is especially detrimental because of its poor ability to regenerate. Cell therapies such as stem or precursor cell injection have been investigated as stem cells are able to grow and differentiate into the damaged cells; however, stem cell injection alone has been unsuccessful in many areas of neural regeneration. Therefore, researchers have begun exploring combined therapies with biomaterials that promote cell growth and differentiation while localizing cells in the injured area. The regrowth of myelinating oligodendrocytes from neural stem cells through a biomaterials approach may prove to be a beneficial strategy following the onset of demyelination. This article reviews recent advancements in biomaterial strategies for the differentiation of neural stem cells into oligodendrocytes, and presents new data indicating appropriate properties for oligodendrocyte precursor cell growth. In some cases, an increase in oligodendrocyte differentiation alongside neurons is further highlighted for functional improvements where the biomaterial was then tested for increased myelination both in vitro and in vivo. © 2016 S. Karger AG, Basel.

  15. CNS-targets in control of energy and glucose homeostasis.

    Science.gov (United States)

    Kleinridders, André; Könner, A Christine; Brüning, Jens C

    2009-12-01

    The exceeding efforts in understanding the signals initiated by nutrients and hormones in the central nervous system (CNS) to regulate glucose and energy homeostasis have largely revolutionized our understanding of the neurocircuitry in control of peripheral metabolism. The ability of neurons to sense nutrients and hormones and to adopt a coordinated response to these signals is of crucial importance in controlling food intake, energy expenditure, glucose and lipid metabolism. Anatomical lesion experiments, pharmacological inhibition of signaling pathways, and, more recently, the analysis of conditional mouse mutants with modifications of hormone and nutrient signaling in defined neuronal populations have broadened our understanding of these complex neurocircuits. This review summarizes recent findings regarding the role of the CNS in sensing and transmitting nutritional and hormonal signals to control energy and glucose homeostasis and aims to define them as potential novel drug targets for the treatment of obesity and type 2 diabetes mellitus.

  16. Adiponectin Suppresses T Helper 17 Cell Differentiation and Limits Autoimmune CNS Inflammation via the SIRT1/PPARγ/RORγt Pathway.

    Science.gov (United States)

    Zhang, Kai; Guo, Yawei; Ge, Zhenzhen; Zhang, Zhihui; Da, Yurong; Li, Wen; Zhang, Zimu; Xue, Zhenyi; Li, Yan; Ren, Yinghui; Jia, Long; Chan, Koon-Ho; Yang, Fengrui; Yan, Jun; Yao, Zhi; Xu, Aimin; Zhang, Rongxin

    2017-09-01

    T helper 17 (Th17) cells are vital components of the adaptive immune system involved in the pathogenesis of most autoimmune and inflammatory syndromes, and adiponectin(ADN) is correlated with inflammatory diseases such as multiple sclerosis (MS) and type II diabetes. However, the regulatory effects of adiponectin on pathogenic Th17 cell and Th17-mediated autoimmune central nervous system (CNS) inflammation are not fully understood. In this study, we demonstrated that ADN could inhibit Th1 and Th17 but not Th2 cells differentiation in vitro. In the in vivo study, we demonstrated that ADN deficiency promoted CNS inflammation and demyelination and exacerbated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. Furthermore, ADN deficiency increased the Th1 and Th17 cell cytokines of both the peripheral immune system and CNS in mice suffering from EAE. It is worth mentioning that ADN deficiency predominantly promoted the antigen-specific Th17 cells response in autoimmune encephalomyelitis. In addition, in vitro and in vivo, ADN upregulated sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ (PPARγ) and inhibited retinoid-related orphan receptor-γt (RORγt); the key transcription factor during Th17 cell differentiation. These results systematically uncovered the role and mechanism of adiponectin on pathogenic Th17 cells and suggested that adiponectin could inhibit Th17 cell-mediated autoimmune CNS inflammation.

  17. Delayed-type hypersensitivity lesions in the central nervous system are prevented by inhibitors of matrix metalloproteinases.

    Science.gov (United States)

    Matyszak, M K; Perry, V H

    1996-09-01

    We have studied the effect of an inhibitor of matrix metalloproleinases, BB-1101, on a delayed-type hypersensitivity (DTH) response in the CNS. We used a recently described model in which heat-killed bacillus Calmette-Guérin (BCG) sequestered behind the blood-brain barrier (BBB) is targeted by a T-cell mediated response after subcutaneous injection of BCG (Matyszak and Perry, 1995). The DTH lesions are characterised by breakdown of the BBB, macrophage and lymphocyte infiltration and tissue damage including myelin loss. Treatment with BB-1101, which is not only a potent inhibitor of matrix metalloproteinases but also strongly inhibits TNF-alpha release, dramatically attenuated the CNS lesions. Breakdown of the BBB and the recruitment of T-cells into the site of the lesion were significantly reduced. There were many fewer inflammatory macrophages in DTH lesions than in comparable lesions from untreated animals. There was also significantly less myelin damage (assessed by staining with anti-MBP antibody). The DTH response in animals treated with dexamethasone was also reduced, but to a lesser degree. No significant effect was seen after administration of pentoxifylline, a phosphodiesterase inhibitor with effects including the inhibition of TNF-alpha production. Our results suggest that inhibitors of matrix metalloproteinases may be of considerable therapeutic benefit in neuroinflammatory diseases.

  18. The whole spectrum of alcohol-related changes in the CNS. Practical MR and CT imaging guidelines for daily clinical use; Alkoholinduzierte ZNS-Veraenderungen in der bildgebenden Diagnostik. Ein CT- und MRT-Leitfaden fuer die klinische Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Keil, V.C.; Greschus, S.; Hadizadeh, D.R.; Schild, H.H. [University Hospital Bonn (Germany). Dept. of Radiology; Schneider, C. [University Hospital Bonn (Germany). Dept. of Neurology

    2015-12-15

    Alcohol addiction is the most common drug addiction. Alcohol passes both the placenta as well as the blood-brain barrier and is in multiple ways neurotoxic. Liver diseases and other systemic alcohol-related diseases cause secondary damage to the CNS. Especially in adolescents, even a single episode of severe alcohol intoxication (''binge drinking'') may result in life-threatening neurological consequences. Alcohol-related brain and spinal cord diseases derive from multiple causes including impairment of the cellular metabolism, often aggravated by hypovitaminosis, altered neurotransmission, myelination and synaptogenesis as well as alterations in gene expression. Modern radiological diagnostics, MRI in particular, can detect the resulting alterations in the CNS with a high sensitivity. Morphological aspects often strongly correlate with clinical symptoms of the patient. It is less commonly known that many diseases considered as ''typically alcohol-related'', such as Wernicke's encephalopathy, are to a large extent not alcohol-induced. Visible CNS alterations are thus non-pathognomonic and demand careful evaluation of differential diagnoses. This review article elucidates the pathogenesis, clinical aspects and radiological image features of the most common alcohol-related CNS diseases and their differential diagnoses.

  19. Nanomedicines for the Treatment of CNS Diseases.

    Science.gov (United States)

    Reynolds, Jessica L; Mahato, Ram I

    2017-03-01

    Targeting and delivering macromolecular therapeutics to the central nervous system (CNS) has been a major challenge. The blood-brain barrier (BBB) is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Therefore, much effort has been channelled into improving transport of therapeutics across the BBB and into the CNS including the use of nanoparticles. In this thematic issue, several reviews and original research are presented that address "Nanomedicines for CNS Diseases." The articles in this issue are concentrated on either CNS-HIV disease or CNS tumors. In regards to CNS-HIV disease, there are two reviews that discuss the role of nanoparticles for improving the delivery of HIV therapeutics to the CNS. In addition, there are two original articles focusing on therapies for CNS-HIV, one of them uses nanoparticles for delivery of siRNA specific to a key protein in autophagy to microglia, and another discusses nanoparticle delivery of a soluble mediator to suppress neuroinflammation. Furthermore, a comprehensive review about gene therapy for CNS neurological diseases is also included. Finally, this issue also includes review articles on enhanced drug targeting to CNS tumors. These articles include a review on the use of nanoparticles for CNS tumors, a review on functionalization (ligands) of nanoparticles for drug targeting to the brain tumor by overcoming BBB, and the final review discusses the use of macrophages as a delivery vehicle to CNS tumors. This thematic issue provides a wealth of knowledge on using nanomedicines for CNS diseases.

  20. Crystal structure of the extracellular domain of human myelin protein zero

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang; Wang, Yong; Yedidi, Ravikiran S.; Brunzelle, Joseph S.; Kovari, Iulia A.; Sohi, Jasloveleen; Kamholz, John; Kovari, Ladislau C. (WSU-MED); (NWU)

    2012-03-27

    Charcot-Marie-Tooth disease (CMT), a hereditary motor and sensory neuropathy, is the most common genetic neuropathy with an incidence of 1 in 2600. Several forms of CMT have been identified arising from different genomic abnormalities such as CMT1 including CMT1A, CMT1B, and CMTX. CMT1 with associated peripheral nervous system (PNS) demyelination, the most frequent diagnosis, demonstrates slowed nerve conduction velocities and segmental demyelination upon nerve biopsy. One of its subtypes, CMT1A, presents a 1.5-Mb duplication in the p11-p12 region of the human chromosome 17 which encodes peripheral myelin protein 22 (PMP22). CMT1B, a less common form, arises from the mutations in the myelin protein zero (MPZ) gene on chromosome 1, region q22-q23, which encodes the major structural component of the peripheral myelin. A rare type of CMT1 has been found recently and is caused by point mutations in early growth response gene 2 (EGR2), encoding a zinc finger transcription factor in Schwann cells. In addition, CMTX, an X-linked form of CMT, arises from a mutation in the connexin-32 gene. Myelin protein zero, associated with CMT1B, is a transmembrane protein of 219 amino acid residues. Human MPZ consists of three domains: 125 residues constitute the glycosylated immunoglobulin-like extracellular domain; 27 residues span the membrane; and 67 residues comprise the highly basic intracellular domain. MPZ makes up approximately 50% of the protein content of myelin, and is expressed predominantly in Schwann cells, the myelinating cell of the PNS. Myelin protein zero, a homophilic adhesion molecule, is a member of the immunoglobulin super-family and is essential for normal myelin structure and function. In addition, MPZ knockout mice displayed abnormal myelin that severely affects the myelination pathway, and overexpression of MPZ causes congenital hypomyelination of peripheral nerves. Myelin protein zero mutations account for {approx}5% of patients with CMT. To date, over 125

  1. Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells

    OpenAIRE

    Stevens, Beth; Ishibashi, Tomoko; Chen, Jiang-Fan; Fields, R. Douglas

    2004-01-01

    Nonsynaptic release of ATP from electrically stimulated dorsal root gangion (DRG) axons inhibits Schwann cell (SC) proliferation and arrests SC development at the premyelinating stage, but the specific types of purinergic receptor(s) and intracellular signaling pathways involved in this form of neuron–glia communication are not known. Recent research shows that adenosine is a neuron–glial transmitter between axons and myelinating glia of the CNS. The present study investigates the possibility...

  2. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain

    Directory of Open Access Journals (Sweden)

    Liu Huaqing

    2012-06-01

    Full Text Available Abstract Background The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia. The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI, are not well understood. Methods and results Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. Conclusions These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1

  3. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain.

    Science.gov (United States)

    Liu, Huaqing; Shiryaev, Sergey A; Chernov, Andrei V; Kim, Youngsoon; Shubayev, Igor; Remacle, Albert G; Baranovskaya, Svetlana; Golubkov, Vladislav S; Strongin, Alex Y; Shubayev, Veronica I

    2012-06-07

    The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI), are not well understood. Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1 day post-injury is critical to the generation of tactile allodynia

  4. Variation in myelin lipid composition induced by change in environmental temperature of goldfish (Carassius auratus L. )

    Energy Technology Data Exchange (ETDEWEB)

    Selivonchick, D.P.; Roots, B.I.

    1976-04-01

    Goldfish (Carassius auratus L.) were acclimated to 5, 15, and 30/sup 0/C, and the lipid and protein composition of brain and spinal cord myelin was determined. Goldfish myelin contains less galactolipid, but more protein and phospholipid than mammalian and bird myelin. Phosphatidyl choline was the predominant phospholipid in both brain and spinal cord myelin. Fish myelin also showed a greater plasmalogen content with an average ethanolamine plasmalogen/total phosphatidyl ethanolamine ratio of 0.84. Total brain and myelin lipids, with the exception of plasmalogens, showed a resistance to change with thermal acclimation. Differences between brain and spinal cord myelin protein and phospholipids were not observed. It is suggested that temperature acclimation in poikilotherms may be used as a tool in the study of membrane adaptability.

  5. Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Maksimov, G. V.; Mosekilde, Erik

    2011-01-01

    . Uptake of potassium leads to Schwann cell swelling and myelin restructuring that impacts the electrical properties of the myelin. In order to further understand the dynamic interaction that takes place between the myelin and the axon, we have modelled submyelin potassium accumulation and related changes...... in myelin resistance during prolonged high-frequency stimulation. We predict that potassium-mediated decrease in myelin resistance leads to a functional excitation block with various patterns of altered spike trains. The patterns are found to depend on stimulation frequency and amplitude and to range from...

  6. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Tansey Malú G

    2008-10-01

    Full Text Available Abstract The role of tumor necrosis factor (TNF as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1 is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF or transmembrane TNF (tmTNF, with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD, Parkinson's (PD, amyotrophic lateral sclerosis (ALS, and multiple sclerosis (MS. The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.

  7. Is There Evidence for Myelin Modeling by Astrocytes in the Normal Adult Brain?

    Directory of Open Access Journals (Sweden)

    Alfredo Varela-Echevarría

    2017-09-01

    Full Text Available A set of astrocytic process associated with altered myelinated axons is described in the forebrain of normal adult rodents with confocal, electron microscopy, and 3D reconstructions. Each process consists of a protuberance that contains secretory organelles including numerous lysosomes which polarize and open next to disrupted myelinated axons. Because of the distinctive asymmetric organelle distribution and ubiquity throughout the forebrain neuropil, this enlargement is named paraxial process (PAP. The myelin envelope contiguous to the PAP displays focal disruption or disintegration. In routine electron microscopy clusters of large, confluent, lysosomes proved to be an effective landmark for PAP identification. In 3D assemblies lysosomes organize a series of interconnected saccules that open up to the plasmalemma next to the disrupted myelin envelope(s. Activity for acid hydrolases was visualized in lysosomes, and extracellularly at the PAP-myelin interface and/or between the glial and neuronal outer aspects. Organelles in astrocytic processes involved in digesting pyknotic cells and debris resemble those encountered in PAPs supporting a likewise lytic function of the later. Conversely, processes entangling tripartite synapses and glomeruli were devoid of lysosomes. Both oligodendrocytic and microglial processes were not associated with altered myelin envelopes. The possible roles of the PAP in myelin remodeling in the context of the oligodendrocyte-astrocyte interactions and in the astrocyte's secretory pathways are discussed.

  8. Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance.

    Science.gov (United States)

    Brazhe, A R; Maksimov, G V; Mosekilde, E; Sosnovtseva, O V

    2011-02-06

    The myelinated nerve fibre is formed by an axon and Schwann cells or oligodendrocytes that sheath the axon by winding around it in tight myelin layers. Repetitive stimulation of a fibre is known to result in accumulation of extracellular potassium ions, especially between the axon and the myelin. Uptake of potassium leads to Schwann cell swelling and myelin restructuring that impacts the electrical properties of the myelin. In order to further understand the dynamic interaction that takes place between the myelin and the axon, we have modelled submyelin potassium accumulation and related changes in myelin resistance during prolonged high-frequency stimulation. We predict that potassium-mediated decrease in myelin resistance leads to a functional excitation block with various patterns of altered spike trains. The patterns are found to depend on stimulation frequency and amplitude and to range from no block (less than 100 Hz) to a complete block (greater than 500 Hz). The transitional patterns include intermittent periodic block with interleaved spiking and non-spiking intervals of different relative duration as well as an unstable regime with chaotic switching between the spiking and non-spiking states. Intermittent conduction blocks are accompanied by oscillations of extracellular potassium. The mechanism of conductance block based on myelin restructuring complements the already known and modelled block via hyperpolarization mediated by the axonal sodium pump and potassium depolarization.

  9. Neuroimaging evidence of deficient axon myelination in Wolfram syndrome.

    Science.gov (United States)

    Lugar, Heather M; Koller, Jonathan M; Rutlin, Jerrel; Marshall, Bess A; Kanekura, Kohsuke; Urano, Fumihiko; Bischoff, Allison N; Shimony, Joshua S; Hershey, Tamara

    2016-02-18

    Wolfram syndrome is a rare autosomal recessive genetic disease characterized by insulin dependent diabetes and vision, hearing and brain abnormalities which generally emerge in childhood. Mutations in the WFS1 gene predispose cells to endoplasmic reticulum stress-mediated apoptosis and may induce myelin degradation in neuronal cell models. However, in vivo evidence of this phenomenon in humans is lacking. White matter microstructure and regional volumes were measured using magnetic resonance imaging in children and young adults with Wolfram syndrome (n = 21) and healthy and diabetic controls (n = 50). Wolfram patients had lower fractional anisotropy and higher radial diffusivity in major white matter tracts and lower volume in the basilar (ventral) pons, cerebellar white matter and visual cortex. Correlations were found between key brain findings and overall neurological symptoms. This pattern of findings suggests that reduction in myelin is a primary neuropathological feature of Wolfram syndrome. Endoplasmic reticulum stress-related dysfunction in Wolfram syndrome may interact with the development of myelin or promote degeneration of myelin during the progression of the disease. These measures may provide objective indices of Wolfram syndrome pathophysiology that will be useful in unraveling the underlying mechanisms and in testing the impact of treatments on the brain.

  10. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    Science.gov (United States)

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T 1 , and transverse, T 2 , relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T 1 and T 2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T 1 and T 2 , with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T 2 fraction, T 2,l , and the longitudinal relaxation time of the short T 1 fraction, T 1,s , clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis

  11. Guanine nucleotides stimulate hydrolysis of phosphatidyl inositol bis phosphate in human myelin membranes

    International Nuclear Information System (INIS)

    Boulias, C.; Moscarello, M.A.

    1989-01-01

    Phosphodiesterase activity was stimulated in myelin membranes in the presence of guanine nucleotide analogues. This activity was reduced in myelin membranes which had been adenosine diphosphate ribosylated in the presence of cholera toxin which ADP-ribosylated three proteins of Mr 46,000, 43,000 and 18,500. Aluminum fluoride treatment of myelin had the same stimulatory effects on phosphodiesterase activity as did the guanine nucleotides

  12. Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans

    NARCIS (Netherlands)

    Stedehouder, J. (J.); J.J. Couey (Jonathan J); Brizee, D. (D.); B. Hosseini; J.A. Slotman (Johan A.); C.M.F. Dirven (Clemens); G. Shpak (Guy); A.B. Houtsmuller (Adriaan); S.A. Kushner (Steven)

    2017-01-01

    textabstractMyelination, the insulating ensheathment of axons by oligodendrocytes, is thought to both optimize signal propagation and provide metabolic support. Despite the well-established physiological importance of myelination to neuronal function, relatively little is known about the myelination

  13. Myelination Is Associated with Processing Speed in Early Childhood: Preliminary Insights.

    Directory of Open Access Journals (Sweden)

    Nicolas Chevalier

    Full Text Available Processing speed is an important contributor to working memory performance and fluid intelligence in young children. Myelinated white matter plays a central role in brain messaging, and likely mediates processing speed, but little is known about the relationship between myelination and processing speed in young children. In the present study, processing speed was measured through inspection times, and myelin volume fraction (VFM was quantified using a multicomponent magnetic resonance imaging (MRI approach in 2- to 5-years of age. Both inspection times and VFM were found to increase with age. Greater VFM in the right and left occipital lobes, the body of the corpus callosum, and the right cerebellum was significantly associated with shorter inspection times, after controlling for age. A hierarchical regression showed that VFM in the left occipital lobe predicted inspection times over and beyond the effects of age and the VFM in the other brain regions. These findings are consistent with the hypothesis that myelin supports processing speed in early childhood.

  14. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy

    Science.gov (United States)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  15. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    Science.gov (United States)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  16. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity.

    Science.gov (United States)

    Ifergan, Igal; Davidson, Todd S; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M; Hunter, Zoe N; Pittet, Camille L; Beddow, Sara; Jones, Clare A; Prat, Alexandre; Sleeman, Matthew A; Miller, Stephen D

    2017-11-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα + myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Laminin-2, Dystroglycan, Utrophin Axis is Required for Compartmentalization and Elongation of Myelin Segments

    OpenAIRE

    Court, Felipe A.; Hewitt, Jane E.; Davies, Kay; Patton, Bruce L.; Uncini, Antonino; Wrabetz, Lawrence; Feltri, M. Laura

    2009-01-01

    Animal and plant cells compartmentalize to perform morphogenetic functions. Compartmentalization of myelin-forming Schwann cells may favor elongation of myelin segments to the size required for efficient conduction of nerve impulses. Compartments in myelinated fibers were described by Ramon-y-Cajal and depend on periaxin, mutated in the hereditary neuropathy Charcot-Marie-Tooth 4F. Lack of periaxin in mice causes loss of compartments, formation of short myelin segments (internodes) and reduce...

  18. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination.

    Directory of Open Access Journals (Sweden)

    Ketty Bacallao

    Full Text Available Isolated Schwann cells (SCs respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1. To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC agonists and antagonists revealed that selective transmembrane AC (tmAC activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC, a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the

  19. Exploitation of detergent thermodynamics in the direct solubilization of myelin membrane proteins for two-dimensional gel electrophoresis for proteomic analysis.

    Science.gov (United States)

    Nair, Sreepriya; Xavier, Tessy; Kumar, Madathiparambil Kumaran Satheesh; Saha, Sharmistha; Menon, Krishnakumar N

    2011-12-01

    Performing 2-DE of lipid-rich multilamellar membranes like myelin is a cumbersome task. However, for understanding its molecular organization and changes during diseases, identification of proteins of myelin is essential. Although the 2-D-proteomic approach of myelin has been employed to understand the myelin proteome, representation of myelin proteins in its entirety is still a challenge. 2-DE profiling of myelin proteins is very important for the detection of immuno-reactivity to myelin proteins from various biological fluids following Western blotting in diseases like multiple sclerosis. Here we developed a novel approach by exploiting the thermodynamic principles behind detergent-mediated solubilization of myelin membranes without any conventional processing of myelin involving precipitation of myelin proteins. We show that the addition of myelin to ASB-14-4 resulted in significant increase in protein representation of myelin in 2-DE compared with the addition of ASB-14-4 to myelin. Moreover, the number and resolution of spots are significantly higher in myelin to ASB-14-4 strategy than other strategies of myelin sample processing such as ASB-14-4 to myelin or ethanol or acetone or methanol-ammonium acetate precipitation of myelin proteins. In addition, the step involves no precipitation that selective removal of any proteins as a result of precipitation is nil and a qualitative representation of myelin proteins in a 2-D gel is achieved. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity.

    Science.gov (United States)

    Kassmann, Celia M; Quintes, Susanne; Rietdorf, Jens; Möbius, Wiebke; Sereda, Michael Werner; Nientiedt, Tobias; Saher, Gesine; Baes, Myriam; Nave, Klaus-Armin

    2011-07-21

    Demyelinating diseases of the nervous system cause axon loss but the underlying mechanisms are not well understood. Here we show by confocal and electron microscopy that in myelin-forming glia peroxisomes are associated with myelin membranes. When peroxisome biogenesis is experimentally perturbed in Pex5 conditional mouse mutants, myelination by Schwann cells appears initially normal. However, in nerves of older mice paranodal loops become physically unstable and develop swellings filled with vesicles and electron-dense material. This novel model of a demyelinating neuropathy demonstrates that peroxisomes serve an important function in the peripheral myelin compartment, required for long-term axonal integrity. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Myelination and isochronicity in neural networks

    Directory of Open Access Journals (Sweden)

    Fumitaka Kimura

    2009-07-01

    Full Text Available Our brain contains a multiplicity of neuronal networks. In many of these, information sent from presynaptic neurons travels through a variety of pathways of different distances, yet arrives at the postsynaptic cells at the same time. Such isochronicity is achieved either by changes in the conduction velocity of axons or by lengthening the axonal path to compensate for fast conduction. To regulate the conduction velocity, a change in the extent of myelination has recently been proposed in thalamocortical and other pathways. This is in addition to a change in the axonal diameter, a previously identified, more accepted mechanism. Thus, myelination is not a simple means of insulation or acceleration of impulse conduction, but it is rather an exquisite way of actively regulating the timing of communication among various neuronal connections with different length.

  2. Application of empowerment theory for CNS practice.

    Science.gov (United States)

    Carlson-Catalano, J M

    1993-11-01

    Power is necessary for the clinical nurse specialist (CNS) to successfully conduct objectives of practice in bureaucratic hospital settings. To obtain power, the CNS could use strategies of an empowerment theory to fully operationalize roles in hospitals. This article will discuss how the CNS may be empowered utilizing strategies in four empowering categories. In addition, the many benefits of empowering the CNS are reviewed.

  3. Impairment of heme synthesis in myelin as potential trigger of multiple sclerosis.

    Science.gov (United States)

    Morelli, Alessandro; Ravera, Silvia; Calzia, Daniela; Panfoli, Isabella

    2012-06-01

    The pathogenesis of multiple sclerosis (MS), a disease characterized by demyelination and subsequent axonal degeneration, is as yet unknown. Also, the nature of the disease is as yet not established, since doubts have been cast on its autoimmune origin. Genetic and environmental factors have been implied in MS, leading to the idea of an overall multifactorial origin. An unexpected role in energizing the axon has been reported for myelin, supposed to be the site of consumption of most of oxygen in brain. Myelin would be able to perform oxidative phosphorylation to supply the axons with ATP, thanks to the expression therein of mitochondrial F(o)F(1)-ATP synthase, and respiratory chains. Interestingly, myelin expresses the pathway of heme synthesis, hence of cytochromes, that rely on heme group, in turn depending on Fe availability. Poisoning by these pollutants shares the common characteristic to bring about demyelination both in animal models and in man. Carbon monoxide (CO) and lead poisoning which cause functional imbalance of the heme group, as well as of heme synthesis, cause myelin damage. On the other hand, a lack of essential metals such as iron and copper, produces dramatic myelin decrease. Myelin is a primary target, of iron shortage, indicating that in myelin Fe-dependent processes are more active than in other tissues. The predominant spread of MS in industrialized countries where pollution by heavy metals, and CO poisoning is widespread, suggests a relationship among toxic action of metal pollutants and MS. According to the present hypothesis, MS can be primarily triggered by environmental factors acting on a genetic susceptibility, while the immune response may be a consequence of a primary oxidative damage due to reactive oxygen species produced consequently to an imbalance of cytochromes and respiratory chains in the sheath. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Myelin Basic Protein synthesis is regulated by small non-coding RNA 715

    NARCIS (Netherlands)

    Bauer, N.M.; Moos, C.; van Horssen, J.; Witte, M.E.; van der Valk, P.; Altenhein, B.; Luhmann, H.J.; White, R.

    2012-01-01

    Oligodendroglial Myelin Basic Protein (MBP) synthesis is essential for myelin formation in the central nervous system. During oligodendrocyte differentiation, MBP mRNA is kept in a translationally silenced state while intracellularly transported, until neuron-derived signals initiate localized MBP

  5. Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development.

    Science.gov (United States)

    Ibarrola, N; Rodríguez-Peña, A

    1997-03-28

    To assess the role of thyroid hormone on myelin gene expression, we have studied the effect of hypothyroidism on the mRNA steady state levels for the major myelin protein genes: myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG) and 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNP) in different rat brain regions, during the first postnatal month. We found that hypothyroidism reduces the levels of every myelin protein transcript, with striking differences between the different brain regions. Thus, in the more caudal regions, the effect of hypothyroidism was extremely modest, being only evident at the earlier stages of myelination. In contrast, in the striatum and the cerebral cortex the important decrease in the myelin protein transcripts is maintained beyond the first postnatal month. Therefore, thyroid hormone modulates in a synchronous fashion the expression of the myelin genes and the length of its effect depends on the brain region. On the other hand, hyperthyroidism leads to an increase of the major myelin protein transcripts above control values. Finally, lack of thyroid hormone does not change the expression of the oligodendrocyte progenitor-specific gene, the platelet derived growth factor receptor alpha.

  6. Central Nervous System (CNS Disease Triggering Takotsubo Syndrome

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2016-01-01

    Full Text Available Takotsubo syndrome (TTS is usually triggered by psychological or physical stress. One of the many physical sources of stress are central nervous system (CNS disorders. CNS disorders most frequently triggering TTS include subarachnoid bleeding, epilepsy, ischemic stroke, migraine, and intracerebral bleeding. More rare CNS-triggers of TTS include posterior reversible encephalopathy syndrome (PRES, amyotrophic lateral sclerosis, encephalitis, or traumatic brain or spinal cord injury. TTS triggered by any of the CNS disorders needs to be recognized since adequate treatment of TTS may improve the general outcome from the CNS disorder as well. Neurologists need to be aware of TTS as a complication of specific CNS disorders but TTS may be triggered also by CNS disorders so far not recognised as causes of TTS.

  7. Regulation of Central Nervous System Myelination in Higher Brain Functions

    OpenAIRE

    Nickel, Mara; Gu, Chen

    2018-01-01

    The hippocampus and the prefrontal cortex are interconnected brain regions, playing central roles in higher brain functions, including learning and memory, planning complex cognitive behavior, and moderating social behavior. The axons in these regions continue to be myelinated into adulthood in humans, which coincides with maturation of personality and decision-making. Myelin consists of dense layers of lipid membranes wrapping around the axons to provide electrical insulation and trophic sup...

  8. Quantification of myelin in children using multiparametric quantitative MRI: a pilot study

    International Nuclear Information System (INIS)

    Kim, Hyun Gi; Choi, Jin Wook; Moon, Won-Jin; Han, JinJoo

    2017-01-01

    The purpose of this study was to evaluate the usefulness of multiparametric quantitative MRI for myelination quantification in children. We examined 22 children (age 0-14 years) with multiparametric quantitative MRI. The total volume of myelin partial volume (Msum), the percentage of Msum within the whole brain parenchyma (Mbpv), and the percentage of Msum within the intracranial volume (Micv) were obtained. Four developmental models of myelin maturation (the logarithmic, logistic, Gompertz, and modified Gompertz models) were examined to find the most representative model of the three parameters. We acquired myelin partial volume values in different brain regions and assessed the goodness of fit for the models. The ranges of Msum, Mbpv, and Micv were 0.8-160.9 ml, 0.2-13%, and 0.0-11.6%, respectively. The Gompertz model was the best fit for the three parameters. For developmental model analysis of myelin partial volume in each brain region, the Gompertz model was the best-fit model for pons (R"2 = 74.6%), middle cerebeller peduncle (R"2 = 76.4%), putamen (R"2 = 95.8%), and centrum semiovale (R"2 = 77.7%). The logistic model was the best-fit model for the genu and splenium of the corpus callosum (R"2 = 79.7-93.6%), thalamus (R"2 = 81.7%), and frontal, parietal, temporal, and occipital white matter (R"2 = 92.5-96.5%). Multiparametric quantitative MRI depicts the normal developmental pattern of myelination in children. It is a potential tool for research studies on pediatric brain development evaluation. (orig.)

  9. Quantification of myelin in children using multiparametric quantitative MRI: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Gi; Choi, Jin Wook [Ajou University School of Medicine, Ajou University Medical Center, Department of Radiology, Suwon (Korea, Republic of); Moon, Won-Jin [Konkuk University Hospital, Konkuk University School of Medicine, Department of Radiology, Seoul (Korea, Republic of); Han, JinJoo [Ajou University School of Medicine, Office of Biostatistics, Department of Humanities and Social Medicine, Suwon (Korea, Republic of)

    2017-10-15

    The purpose of this study was to evaluate the usefulness of multiparametric quantitative MRI for myelination quantification in children. We examined 22 children (age 0-14 years) with multiparametric quantitative MRI. The total volume of myelin partial volume (Msum), the percentage of Msum within the whole brain parenchyma (Mbpv), and the percentage of Msum within the intracranial volume (Micv) were obtained. Four developmental models of myelin maturation (the logarithmic, logistic, Gompertz, and modified Gompertz models) were examined to find the most representative model of the three parameters. We acquired myelin partial volume values in different brain regions and assessed the goodness of fit for the models. The ranges of Msum, Mbpv, and Micv were 0.8-160.9 ml, 0.2-13%, and 0.0-11.6%, respectively. The Gompertz model was the best fit for the three parameters. For developmental model analysis of myelin partial volume in each brain region, the Gompertz model was the best-fit model for pons (R{sup 2} = 74.6%), middle cerebeller peduncle (R{sup 2} = 76.4%), putamen (R{sup 2} = 95.8%), and centrum semiovale (R{sup 2} = 77.7%). The logistic model was the best-fit model for the genu and splenium of the corpus callosum (R{sup 2} = 79.7-93.6%), thalamus (R{sup 2} = 81.7%), and frontal, parietal, temporal, and occipital white matter (R{sup 2} = 92.5-96.5%). Multiparametric quantitative MRI depicts the normal developmental pattern of myelination in children. It is a potential tool for research studies on pediatric brain development evaluation. (orig.)

  10. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction.

    Science.gov (United States)

    Saher, Gesine; Quintes, Susanne; Möbius, Wiebke; Wehr, Michael C; Krämer-Albers, Eva-Maria; Brügger, Britta; Nave, Klaus-Armin

    2009-05-13

    Rapid impulse conduction requires electrical insulation of axons by myelin, a cholesterol-rich extension of the glial cell membrane with a characteristic composition of proteins and lipids. Mutations in several myelin protein genes cause endoplasmic reticulum (ER) retention and disease, presumably attributable to failure of misfolded proteins to pass the ER quality control. Because many myelin proteins partition into cholesterol-rich membrane rafts, their interaction with cholesterol could potentially be part of the ER quality control system. Here, we provide in vitro and in vivo evidence that the major peripheral myelin protein P0 requires cholesterol for exiting the ER and reaching the myelin compartment. Cholesterol dependency of P0 trafficking in heterologous cells is mediated by a cholesterol recognition/interaction amino acid consensus (CRAC) motif. Mutant mice lacking cholesterol biosynthesis in Schwann cells suffer from severe hypomyelination with numerous uncompacted myelin stretches. This demonstrates that high-level cholesterol coordinates P0 export with myelin membrane synthesis, which is required for the correct stoichiometry of myelin components and for myelin compaction.

  11. Molecular architecture of myelinated nerve fibers: leaky paranodal junctions and paranodal dysmyelination.

    Science.gov (United States)

    Rosenbluth, Jack; Mierzwa, Amanda; Shroff, Seema

    2013-12-01

    Myelinated nerve fibers have evolved to optimize signal propagation. Each myelin segment is attached to the axon by the unique paranodal axoglial junction (PNJ), a highly complex structure that serves to define axonal ion channel domains and to direct nodal action currents through adjacent nodes. Surprisingly, this junction does not entirely seal the paranodal myelin sheath to the axon and thus does not entirely isolate the perinodal space from the internodal periaxonal space. Rather the paranode is penetrated by extracellular pathways between the myelin sheath and the axolemma for movement of molecules and the flow of current to and from the internodal axon. This review summarizes past and current studies demonstrating these pathways and considers what functional roles they subserve. In addition, modern genetic engineering methods permit modification of individual PNJ constituents, which provides an opportunity to define their specific functions. One component in particular, the transverse bands, plays a key role in maintaining the structure and function of the PNJ. Loss of transverse bands results not in frank demyelination but rather in subtle dysmyelination, which causes significant functional impairment. The consequences of such subtle defects in the PNJ are considered along with the relevance of these studies to human diseases of myelin.

  12. The MR evaluation of normal children and disorders of neuronal migration and myelination

    International Nuclear Information System (INIS)

    Miyamachi, Keikichi; Miyasaka, Kazuo; Abe, Hiroshi

    1990-01-01

    Magnetic resonance imaging (MRI) scans were available for review in 10 healthy children (aged one month-4 years) and 5 pediatric patients with disorders of neuronal migration and myelination during the developing process (aged 2-10 years). Such disorders in the 5 patients were megalencephaly, pachygyria, heterotopia, delayed myelination, and dysmyelinating disease. In the heathy group, myelination was matured during the first two years on MRI. This was depicted earlier on T1-weighted images than T2-weighted images (7 months vs one year and 9 months after birth). Abnormality in myelination was clearly visualized on T2-weighted images. Furthermore, MRI had the ability to detect morphologically the associated brain malformations. Thus, MRI may be a promising diagnostic procedure of choice in pediatric brain abnormality. (N.K.)

  13. MR imaging of the various stages of normal myelination during the first year of life

    International Nuclear Information System (INIS)

    Knaap, M.S. van der; Valk, J.

    1990-01-01

    The normal process of myelination of the brain mainly occurs during the first year of life. This process as known from histology can be visualized by MRI. Because of the very long T1 and T2 of immature brain tissue it is necessary to use adjusted pulse sequences with a long TR in order to obtain sufficient tissue contrast. With long TR SE images five stages can be recognized in the process of normal myelination and brain maturation. During the first month of life long TR short TE SE images show what are believed to be myelinated structures by correlation with published histological studies with a high signal intensity, unmyelinated white matter with a low signal intensity and gray matter with an intermediate signal intensity. The signal intensity of unmyelinated and myelinated white matter is reversed on long TR long TE SE images. In the course of a few weeks the signal intensity of unmyelinated white matter becomes high and the signal intensity of myelinated white matter becomes low also on long TR short TE SE images. These changes are believed to be caused by a loss of water and a change in chemical composition of brain tissue just prior to the onset of a wave of myelination. With progression of myelination the signal intensity of white matter changes from high to intermediate to low. These changes result in stages of isointensity, first in the central parts of the brain, later in the lobar parts. At the end of the first year the adult contrast pattern is reached in all parts of the brain. IR images are also able to depict the progress of myelination, but appear to be less sensitive to subtle changes in the degree of myelination. The precise normal values for the five stages depend on the magnetic field strength and the pulse sequences used. (orig.)

  14. Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone.

    Science.gov (United States)

    Gould, Elizabeth A; Busquet, Nicolas; Shepherd, Douglas; Dietz, Robert M; Herson, Paco S; Simoes de Souza, Fabio M; Li, Anan; George, Nicholas M; Restrepo, Diego; Macklin, Wendy B

    2018-02-13

    Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted. Axon disruption occurs in Plp1 -null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1 -null mice. Young adult Plp1- null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption. © 2018, Gould et al.

  15. X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease.

    Science.gov (United States)

    Chia, L S; Thompson, J E; Moscarello, M A

    1984-09-05

    Wide-angle X-ray diffraction studies revealed that the lipid phase transition temperature of myelin from brain tissue of humans with Alzheimer's disease was about 12 degrees C lower than that of normal age-matched controls, indicating differences in the physical organization of the myelin lipid bilayer. Elevated levels of malondialdehyde and conjugated diene were found in brain tissue from humans with Alzheimer's disease, indicating an increased amount of lipid peroxidation over the controls. An increase in myelin disorder and in lipid peroxidation can both be correlated with aging in human brain, but the changes in myelin from humans with Alzheimer's disease are more pronounced than in normal aging. These changes might represent severe or accelerated aging.

  16. microRNAs in CNS disorders

    DEFF Research Database (Denmark)

    Kocerha, Jannet; Kauppinen, Sakari; Wahlestedt, Claes

    2009-01-01

    RNAs (miRNAs) have been identified in the mammalian central nervous system (CNS) and are reported to mediate pivotal roles in many aspects of neuronal functions. Disruption of miRNA-based post-transcriptional regulation has been implicated in a range of CNS disorders as one miRNA is predicted to impact...

  17. Evaluation of CNS activities of aerial parts of Cynodon dactylon Pers. in mice.

    Science.gov (United States)

    Pal, Dilipkumar

    2008-01-01

    The dried extracts of aerial parts of Cynodon dactylon Pers. (Graminae) were evaluated for CNS activities in mice. The ethanol extract of aerial parts of C. dactylon (EECD) was found to cause significant depression in general behavioral profiles in mice. EECD significantly potentiated the sleeping time in mice induced by standard hypnotics viz. pentobarbitone sodium, diazepam, and meprobamate in a dose dependant manner. EECD showed significant analgesic properties as evidenced by the significant reduction in the number of writhes and stretches induced in mice by 1.2% acetic acid solution. It also potentiated analgesia induced by morphine and pethidine in mice. EECD inhibited the onset and the incidence of convulsion in a dose dependent manner against pentylenetetrazole (PTZ)-induced convulsion. The present study indicates that EECD has significant CNS depressant activities.

  18. Supratentorial CNS malformations

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2012-01-01

    Full text: Clinical suspicion of a developmental anomaly of the central nervous system (CNS) is a frequent indication for performing and magnetic resonance imaging (MRI) examination of the brain. Classification systems for malformation of the CNS are constantly revised according to newer scientific research. Developmental abnormalities can be classified in two main types. The first category consists of disorders of organogenesis in which genetic defects or any ischemic, metabolic, toxic or infectious insult to the developing brain can cause malformation. These malformations result from abnormal neuronal and glial proliferation and from anomalies of neuronal migration and or cortical organization. They are divided into supra- and infratentorial and may involve grey or white matter or both. The second category of congenital brain abnormalities is disorders of histogenesis which result from abnormal cell differentiation with a relatively normal brain appearance. Supratentorial CNS malformations could be divided into anomalies in telencephalic commissure, holoprosencephalies and malformations in cortical development. There are three main telencephalic commissures: the anterior commissure, the hippocampal commissure and the corpus callosum. Their morphology (hypoplasia, hyperplasia, agenesis, dysgenesis, even atrophy) reflects the development of the brain. Their agenesis, complete or partial, is one of the most commonly observed features in the malformations of the brain and is a part of many syndromes. Malformations of cortical development (MCD) are heterogeneous group of disease which result from disruption of 3 main stages of cortical development. The common clinical presentation is refractory epilepsy and or developmental delay. The most common MCD are heterotopias, focal cortical dysplasia, polymicrogyria, schizencephaly, pachygyria and lizencephaly. The exact knowledge of the brain anatomy and embryology is mandatory to provide a better apprehension of the

  19. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells

    OpenAIRE

    Jin, Song-Hyo; An, Sung-Kwan; Lee, Seong-Beom

    2017-01-01

    Leprosy is a chronic infectious disease that is caused by the obligate intracellular pathogen Mycobacterium leprae (M.leprae), which is the leading cause of all non-traumatic peripheral neuropathies worldwide. Although both myelinating and non-myelinating Schwann cells are infected by M.leprae in patients with lepromatous leprosy, M.leprae preferentially invades the non-myelinating Schwann cells. However, the effect of M.leprae infection on non-myelinating Schwann cells has not been elucidate...

  20. On the biogenesis of the myelin sheath : Cognate polarized trafficking pathways in oligodendrocytes

    NARCIS (Netherlands)

    de Vries, H; Hoekstra, D

    2000-01-01

    Oligodendrocytes, the myelinating cells of the central nervous system, are capable of transporting vast quantities of proteins and of lipids, In particular galactosphingolipids, to the myelin sheath. The sheath is continuous with the plasma membrane of the oligodendrocyte, but the composition of

  1. A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system.

    Science.gov (United States)

    Werner, Hauke B; Krämer-Albers, Eva-Maria; Strenzke, Nicola; Saher, Gesine; Tenzer, Stefan; Ohno-Iwashita, Yoshiko; De Monasterio-Schrader, Patricia; Möbius, Wiebke; Moser, Tobias; Griffiths, Ian R; Nave, Klaus-Armin

    2013-04-01

    The formation of central nervous system myelin by oligodendrocytes requires sterol synthesis and is associated with a significant enrichment of cholesterol in the myelin membrane. However, it is unknown how oligodendrocytes concentrate cholesterol above the level found in nonmyelin membranes. Here, we demonstrate a critical role for proteolipids in cholesterol accumulation. Mice lacking the most abundant myelin protein, proteolipid protein (PLP), are fully myelinated, but PLP-deficient myelin exhibits a reduced cholesterol content. We therefore hypothesized that "high cholesterol" is not essential in the myelin sheath itself but is required for an earlier step of myelin biogenesis that is fully compensated for in the absence of PLP. We also found that a PLP-homolog, glycoprotein M6B, is a myelin component of low abundance. By targeting the Gpm6b-gene and crossbreeding, we found that single-mutant mice lacking either PLP or M6B are fully myelinated, while double mutants remain severely hypomyelinated, with enhanced neurodegeneration and premature death. As both PLP and M6B bind membrane cholesterol and associate with the same cholesterol-rich oligodendroglial membrane microdomains, we suggest a model in which proteolipids facilitate myelination by sequestering cholesterol. While either proteolipid can maintain a threshold level of cholesterol in the secretory pathway that allows myelin biogenesis, lack of both proteolipids results in a severe molecular imbalance of prospective myelin membrane. However, M6B is not efficiently sorted into mature myelin, in which it is 200-fold less abundant than PLP. Thus, only PLP contributes to the high cholesterol content of myelin by association and co-transport. Copyright © 2013 Wiley Periodicals, Inc.

  2. How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses.

    Science.gov (United States)

    Tomassy, Giulio Srubek; Fossati, Valentina

    2014-01-01

    Since monumental studies from scientists like His, Ramón y Cajal, Lorente de Nó and many others have put down roots for modern neuroscience, the scientific community has spent a considerable amount of time, and money, investigating any possible aspect of the evolution, development and function of neurons. Today, the complexity and diversity of myriads of neuronal populations, and their progenitors, is still focus of extensive studies in hundreds of laboratories around the world. However, our prevalent neuron-centric perspective has dampened the efforts in understanding glial cells, even though their active participation in the brain physiology and pathophysiology has been increasingly recognized over the years. Among all glial cells of the central nervous system (CNS), oligodendrocytes (OLs) are a particularly specialized type of cells that provide fundamental support to neuronal activity by producing the myelin sheath. Despite their functional relevance, the developmental mechanisms regulating the generation of OLs are still poorly understood. In particular, it is still not known whether these cells share the same degree of heterogeneity of their neuronal companions and whether multiple subtypes exist within the lineage. Here, we will review and discuss current knowledge about OL development and function in the brain and spinal cord. We will try to address some specific questions: do multiple OL subtypes exist in the CNS? What is the evidence for their existence and those against them? What are the functional features that define an oligodendrocyte? We will end our journey by reviewing recent advances in human pluripotent stem cell differentiation towards OLs. This exciting field is still at its earliest days, but it is quickly evolving with improved protocols to generate functional OLs from different spatial origins. As stem cells constitute now an unprecedented source of human OLs, we believe that they will become an increasingly valuable tool for deciphering

  3. How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses.

    Directory of Open Access Journals (Sweden)

    Giulio eSrubek Tomassy

    2014-07-01

    Full Text Available Since monumental studies from scientists like His, Ramón y Cajal, Lorente de Nó and many others have put down roots for modern neuroscience, the scientific community has spent a considerable amount of time, and money, investigating any aspect of the evolution, development and function of neurons. Today, the complexity and diversity of myriads of neuronal populations is still focus of extensive studies in hundreds of laboratories around the world. However, our prevalent neuron-centric perspective has dampened the efforts in understanding glial cells, even though their active participation in the brain physiology and pathophysiology has been increasingly recognized over the years. Among all glial cells of the central nervous system (CNS, oligodendrocytes (OLs are a particularly specialized type of cells that provide fundamental support to neuronal activity by producing the myelin sheath. Despite their functional relevance, the developmental mechanisms regulating the generation of OLs are still poorly understood. In particular, it is still not known whether these cells share the same degree of heterogeneity of their neuronal companions and whether multiple subtypes exist within the lineage. Here, we will review and discuss current knowledge about OL development and function in the brain and spinal cord. We will try to address some specific questions: do multiple OL subtypes exist in the CNS? What is the evidence for their existence and those against them? What are the functional features that define an oligodendrocyte? We will end our journey by reviewing recent advances in human pluripotent stem cell differentiation towards OLs. This exciting field is still at its earliest days, but it is quickly evolving with improved protocols to generate functional OLs from different spatial origins. As stem cells constitute now an unprecedented source of human OLs, we believe that they will become an increasingly valuable tool for deciphering the complexity

  4. Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons.

    Directory of Open Access Journals (Sweden)

    Charles F Babbs

    Full Text Available This study explores in detail the functional consequences of subtle retraction and detachment of myelin around the nodes of Ranvier following mild-to-moderate crush or stretch mediated injury. An equivalent electrical circuit model for a series of equally spaced nodes of Ranvier was created incorporating extracellular and axonal resistances, paranodal resistances, nodal capacitances, time varying sodium and potassium currents, and realistic resting and threshold membrane potentials in a myelinated axon segment of 21 successive nodes. Differential equations describing membrane potentials at each nodal region were solved numerically. Subtle injury was simulated by increasing the width of exposed nodal membrane in nodes 8 through 20 of the model. Such injury diminishes action potential amplitude and slows conduction velocity from 19.1 m/sec in the normal region to 7.8 m/sec in the crushed region. Detachment of paranodal myelin, exposing juxtaparanodal potassium channels, decreases conduction velocity further to 6.6 m/sec, an effect that is partially reversible with potassium ion channel blockade. Conduction velocity decreases as node width increases or as paranodal resistance falls. The calculated changes in conduction velocity with subtle paranodal injury agree with experimental observations. Nodes of Ranvier are highly effective but somewhat fragile devices for increasing nerve conduction velocity and decreasing reaction time in vertebrate animals. Their fundamental design limitation is that even small mechanical retractions of myelin from very narrow nodes or slight loosening of paranodal myelin, which are difficult to notice at the light microscopic level of observation, can cause large changes in myelinated nerve conduction velocity.

  5. Evaluation of neonatal brain myelination using the T1- and T2-weighted MRI ratio.

    Science.gov (United States)

    Soun, Jennifer E; Liu, Michael Z; Cauley, Keith A; Grinband, Jack

    2017-09-01

    To validate the T1- and T2-weighted (T1w/T2w) MRI ratio technique in evaluating myelin in the neonatal brain. T1w and T2w MR images of 10 term neonates with normal-appearing brain parenchyma were obtained from a single 1.5 Tesla MRI and retrospectively analyzed. T1w/T2w ratio images were created with a postprocessing pipeline and qualitatively compared with standard clinical sequences (T1w, T2w, and apparent diffusion coefficient [ADC]). Quantitative assessment was also performed to assess the ratio technique in detecting areas of known myelination (e.g., posterior limb of the internal capsule) and very low myelination (e.g., optic radiations) using linear regression analysis and the Michelson Contrast equation, a measure of luminance contrast intensity. The ratio image provided qualitative improvements in the ability to visualize regional variation in myelin content of neonates. Linear regression analysis demonstrated a significant inverse relationship between the ratio intensity values and ADC values in the posterior limb of the internal capsule and the optic radiations (R 2  = 0.96 and P ratio images were 1.6 times higher than T1w, 2.6 times higher than T2w, and 1.8 times higher than ADC (all P ratio improved visualization of the corticospinal tract, one of the earliest myelinated pathways. The T1w/T2w ratio accentuates contrast between myelinated and less myelinated structures and may enhance our diagnostic ability to detect myelination patterns in the neonatal brain. 2 Technical Efficacy: Stage2 J. MAGN. RESON. IMAGING 2017;46:690-696. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Ribosomal trafficking is reduced in Schwann cells following induction of myelination

    Directory of Open Access Journals (Sweden)

    James M. Love

    2015-08-01

    Full Text Available Local synthesis of proteins within the Schwann cell periphery is extremely important for efficient process extension and myelination, when cells undergo dramatic changes in polarity and geometry. Still, it is unclear how ribosomal distributions are developed and maintained within Schwann cell projections to sustain local translation. In this multi-disciplinary study, we expressed a plasmid encoding a fluorescently labeled ribosomal subunit (L4-GFP in cultured primary rat Schwann cells. This enabled the generation of high-resolution, quantitative data on ribosomal distributions and trafficking dynamics within Schwann cells during early stages of myelination, induced by ascorbic acid treatment. Ribosomes were distributed throughout Schwann cell projections, with ~2-3 bright clusters along each projection. Clusters emerged within 1 day of culture and were maintained throughout early stages of myelination. Three days after induction of myelination, net ribosomal movement remained anterograde (directed away from the Schwann cell body, but ribosomal velocity decreased to about half the levels of the untreated group. Statistical and modeling analysis provided additional insight into key factors underlying ribosomal trafficking. Multiple regression analysis indicated that net transport at early time points was dependent on anterograde velocity, but shifted to dependence on anterograde duration at later time points. A simple, data-driven rate kinetics model suggested that the observed decrease in net ribosomal movement was primarily dictated by an increased conversion of anterograde particles to stationary particles, rather than changes in other directional parameters. These results reveal the strength of a combined experimental and theoretical approach in examining protein localization and transport, and provide evidence of an early establishment of ribosomal populations within Schwann cell projections with a reduction in trafficking following

  7. Myelination progression in language-correlated regions in brain of normal children determined by quantitative MRI assessment.

    Science.gov (United States)

    Su, Peijen; Kuan, Chen-Chieh; Kaga, Kimitaka; Sano, Masaki; Mima, Kazuo

    2008-12-01

    To investigate the myelination progression course in language-correlated regions of children with normal brain development by quantitative magnetic resonance imaging (MRI) analysis compared with histological studies. The subjects were 241 neurologically intact neonates, infants and young children (128 boys and 113 girls) who underwent MRI between 2001 and 2007 at the University of Tokyo Hospital, ranging in age from 0 to 429 weeks corrected by postnatal age. To compare their data with adult values, 25 adolescents and adults (14 men and 11 women, aged from 14 to 83 years) were examined as controls. Axial T2-weighted images were obtained using spin-echo sequences at 1.5 T. Subjects with a history of prematurity, birth asphyxia, low Apgar score, seizures, active systemic disease, congenital anomaly, delayed development, infarcts, hemorrhages, brain lesions, or central nervous system malformation were excluded from the analysis. Seven regions of interest in language-correlated areas, namely Broca's area, Wernicke's area, the arcuate fasciculus, and the angular gyrus, as well as their right hemisphere homologous regions, and the auditory cortex, the motor cortex, and the visual cortex were examined. Signal intensity obtained by a region-of-interest methodology progresses from hyper- to hypointensity during myelination. We chose the inferior cerebellar peduncle as the internal standard of maturation. Myelination in all these seven language-correlated regions examined in this study shared the same curve pattern: no myelination was observed at birth, it reached maturation at about 1.5 years of age, and it continued to progress slowly thereafter into adult life. On the basis of scatter plot results, we put these areas into three groups: Group A, which included the motor cortex, the auditory cortex, and the visual cortex, myelinated faster than Group B, which included Broca's area, Wernicke's area, and the angular gyrus before 1.5 years old; Group C, consisting of the

  8. Splanchnic preganglionic neurons in man. III. Morphometry of myelinated fibers of rami communicantes.

    Science.gov (United States)

    Low, P A; Dyck, P J

    1978-01-01

    The myelinated fiber (MF) composition of T6-T8 Rami Communicantes were obtained in 9 healthy persons of various ages. The textbook picture that distal rami (DR) contain all of the myelinated fibers and therefore are white, while proximal rami (PR) contain none of them and therefore are grey must be modified. We found that DR usually contained abundant MFs and that PR concordance was found between segmental numbers of intermediolateral nuclei cytons, ventral root small myelinated fibers (SMFs), and rami total small MFs to suggest that both rami probably contain the distal myelinated axons of preganglionic autonomic fibers. Finally, there was an attrition of total MFs of rami with age, similar to what we had previously found for ILC cytons and for root SMFs. The decrease in number of pre-ganglionic autonomic neurons with age is thought to be of sufficient magnitude to account for the dysautonomia of the elderly.

  9. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    Science.gov (United States)

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Johann eSteiner

    2014-11-01

    Full Text Available Clozapine has stronger systemic metabolic side effects than haloperidol and it was hypothesized that therapeutic antipsychotic and adverse metabolic effects might be related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production.Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT and monocarboxylate (MCT transporters was determined after 6h and 24h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed.Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside.Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.

  11. Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex.

    Science.gov (United States)

    Siu, Caitlin R; Balsor, Justin L; Jones, David G; Murphy, Kathryn M

    2015-01-01

    Traditionally, myelin is viewed as insulation around axons, however, more recent studies have shown it also plays an important role in plasticity, axonal metabolism, and neuroimmune signaling. Myelin is a complex multi-protein structure composed of hundreds of proteins, with Myelin Basic Protein (MBP) being the most studied. MBP has two families: Classic-MBP that is necessary for activity driven compaction of myelin around axons, and Golli-MBP that is found in neurons, oligodendrocytes, and T-cells. Furthermore, Golli-MBP has been called a "molecular link" between the nervous and immune systems. In visual cortex specifically, myelin proteins interact with immune processes to affect experience-dependent plasticity. We studied myelin in human visual cortex using Western blotting to quantify Classic- and Golli-MBP expression in post-mortem tissue samples ranging in age from 20 days to 80 years. We found that Classic- and Golli-MBP have different patterns of change across the lifespan. Classic-MBP gradually increases to 42 years and then declines into aging. Golli-MBP has early developmental changes that are coincident with milestones in visual system sensitive period, and gradually increases into aging. There are three stages in the balance between Classic- and Golli-MBP expression, with Golli-MBP dominating early, then shifting to Classic-MBP, and back to Golli-MBP in aging. Also Golli-MBP has a wave of high inter-individual variability during childhood. These results about cortical MBP expression are timely because they compliment recent advances in MRI techniques that produce high resolution maps of cortical myelin in normal and diseased brain. In addition, the unique pattern of Golli-MBP expression across the lifespan suggests that it supports high levels of neuroimmune interaction in cortical development and in aging.

  12. SINS/CNS Nonlinear Integrated Navigation Algorithm for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Yong-jun Yu

    2015-01-01

    Full Text Available Celestial Navigation System (CNS has characteristics of accurate orientation and strong autonomy and has been widely used in Hypersonic Vehicle. Since the CNS location and orientation mainly depend upon the inertial reference that contains errors caused by gyro drifts and other error factors, traditional Strap-down Inertial Navigation System (SINS/CNS positioning algorithm setting the position error between SINS and CNS as measurement is not effective. The model of altitude azimuth, platform error angles, and horizontal position is designed, and the SINS/CNS tightly integrated algorithm is designed, in which CNS altitude azimuth is set as measurement information. GPF (Gaussian particle filter is introduced to solve the problem of nonlinear filtering. The results of simulation show that the precision of SINS/CNS algorithm which reaches 130 m using three stars is improved effectively.

  13. Analysis of perfusion weighted image of CNS lymphoma

    International Nuclear Information System (INIS)

    Lee, In Ho; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik

    2010-01-01

    Purpose: It is difficult to differentiate CNS lymphoma from other tumors such as malignant gliomas, metastases, or meningiomas with conventional MR imaging, because the imaging findings are overlapped between these tumors. The purpose of this study is to investigate the perfusion weighted MR imaging findings of CNS lymphomas and to compare the relative cerebral blood volume ratios between CNS lymphomas and other tumors such as high grade gliomas, metastases, or meningiomas. Materials and methods: We retrospectively reviewed MRI findings and clinical records in 13 patients with pathologically proven CNS lymphoma between January 2006 and November 2008. We evaluated the relative cerebral blood volume ratios of tumor, which were obtained by dividing the values obtained from the normal white matter on MRI. Results: Total 13 patients (M:F = 8:5; age range 46-67 years, mean age 52.3 years) were included. The CNS lymphomas showed relatively low values of maximum relative CBV ratio in most patients regardless of primary or secondary CNS lymphoma. Conclusion: Perfusion weighted image may be helpful in the diagnosis of CNS lymphoma in spite of primary or secondary or B cell or T cell.

  14. Myelination competent conditionally immortalized mouse Schwann cells

    NARCIS (Netherlands)

    Saavedra, José T.; Wolterman, Ruud A.; Baas, Frank; ten Asbroek, Anneloor L. M. A.

    2008-01-01

    Numerous mouse myelin mutants are available to analyze the biology of the peripheral nervous system related to health and disease in vivo. However, robust in vitro biochemical characterizations of players in peripheral nerve processes are still not possible due to the limited growth capacities of

  15. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Prieto Anne L

    2011-05-01

    Full Text Available Abstract Background Axl, together with Tyro3 and Mer, constitute the TAM family of receptor tyrosine kinases. In the nervous system, Axl and its ligand Growth-arrest-specific protein 6 (Gas6 are expressed on multiple cell types. Axl functions in dampening the immune response, regulating cytokine secretion, clearing apoptotic cells and debris, and maintaining cell survival. Axl is upregulated in various disease states, such as in the cuprizone toxicity-induced model of demyelination and in multiple sclerosis (MS lesions, suggesting that it plays a role in disease pathogenesis. To test for this, we studied the susceptibility of Axl-/- mice to experimental autoimmune encephalomyelitis (EAE, an animal model for multiple sclerosis. Methods WT and Axl-/- mice were immunized with myelin oligodendrocyte glycoprotein (MOG35-55 peptide emulsified in complete Freund's adjuvant and injected with pertussis toxin on day 0 and day 2. Mice were monitored daily for clinical signs of disease and analyzed for pathology during the acute phase of disease. Immunological responses were monitored by flow cytometry, cytokine analysis and proliferation assays. Results Axl-/- mice had a significantly more severe acute phase of EAE than WT mice. Axl-/- mice had more spinal cord lesions with larger inflammatory cuffs, more demyelination, and more axonal damage than WT mice during EAE. Strikingly, lesions in Axl-/- mice had more intense Oil-Red-O staining indicative of inefficient clearance of myelin debris. Fewer activated microglia/macrophages (Iba1+ were found in and/or surrounding lesions in Axl-/- mice relative to WT mice. In contrast, no significant differences were noted in immune cell responses between naïve and sensitized animals. Conclusions These data show that Axl alleviates EAE disease progression and suggests that in EAE Axl functions in the recruitment of microglia/macrophages and in the clearance of debris following demyelination. In addition, these data

  16. MAL Is a Regulator of the Recruitment of Myelin Protein PLP to Membrane Microdomains

    NARCIS (Netherlands)

    Bijlard, Marjolein; de Jonge, Jenny C.; Klunder, Bert; Nomden, Anita; Hoekstra, Dick; Baron, Wia

    2016-01-01

    In oligodendrocytes (OLGs), an indirect, transcytotic pathway is mediating transport of de novo synthesized PLP, a major myelin specific protein, from the apical-like plasma membrane to the specialized basolateral-like myelin membrane to prevent its premature compaction. MAL is a well-known

  17. Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment?

    Science.gov (United States)

    Sayed, Blayne A; Christy, Alison L; Walker, Margaret E; Brown, Melissa A

    2010-06-15

    Mast cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis, a rodent model of the human demyelinating disease multiple sclerosis. Yet their site and mode of action is unknown. In both diseases, myelin-specific T cells are initially activated in peripheral lymphoid organs. However, for disease to occur, these cells must enter the immunologically privileged CNS through a breach in the relatively impermeable blood-brain barrier. In this study, we demonstrate that a dense population of resident mast cells in the meninges, structures surrounding the brain and spinal cord, regulate basal CNS barrier function, facilitating initial T cell CNS entry. Through the expression of TNF, mast cells recruit an early wave of neutrophils to the CNS. We propose that neutrophils in turn promote the blood-brain barrier breach and together with T cells lead to further inflammatory cell influx and myelin damage. These findings provide specific targets for intervention in multiple sclerosis as well as other immune-mediated CNS diseases.

  18. An invertebrate model for CNS drug discovery

    DEFF Research Database (Denmark)

    Al-Qadi, Sonia; Schiøtt, Morten; Hansen, Steen Honoré

    2015-01-01

    BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple,...... barriers. CONCLUSION: Findings suggest a conserved mechanism of brain efflux activity between insects and vertebrates, confirming that this model holds promise for inexpensive and high-throughput screening relative to in vivo models, for CNS drug discovery....

  19. Structural characterization of the human cerebral myelin sheath by small angle x-ray scattering

    International Nuclear Information System (INIS)

    De Felici, M; Felici, R; Ferrero, C; Tartari, A; Gambaccini, M; Finet, S

    2008-01-01

    Myelin is a multi-lamellar membrane surrounding neuronal axons and increasing their conduction velocity. When investigated by small-angle x-ray scattering (SAXS), the lamellar quasi-periodical arrangement of the myelin sheath gives rise to distinct peaks, which allow the determination of its molecular organization and the dimensions of its substructures. In this study we report on the myelin sheath structural determination carried out on a set of human brain tissue samples coming from surgical biopsies of two patients: a man around 60 and a woman nearly 90 years old. The samples were extracted either from white or grey cerebral matter and did not undergo any manipulation or chemical-physical treatment, which could possibly have altered their structure, except dipping them into a formalin solution for their conservation. Analysis of the scattered intensity from white matter of intact human cerebral tissue allowed the evaluation not only of the myelin sheath periodicity but also of its electronic charge density profile. In particular, the thicknesses of the cytoplasm and extracellular regions were established, as well as those of the hydrophilic polar heads and hydrophobic tails of the lipid bilayer. SAXS patterns were measured at several locations on each sample in order to establish the statistical variations of the structural parameters within a single sample and among different samples. This work demonstrates that a detailed structural analysis of the myelin sheath can also be carried out in randomly oriented samples of intact human white matter, which is of importance for studying the aetiology and evolution of the central nervous system pathologies inducing myelin degeneration.

  20. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin

    Directory of Open Access Journals (Sweden)

    Hadas Smadar

    2012-07-01

    Full Text Available Abstract Background Intact myelin, which normally surrounds axons, breaks down in Wallerian degeneration following axonal injury and during neurodegenerative diseases such as multiple sclerosis. Clearance of degenerated myelin by phagocytosis is essential since myelin impedes repair and exacerbates damage. CR3 (complement receptor-3 is a principal phagocytic receptor in myelin phagocytosis. We studied how tyrosine kinase Syk (spleen tyrosine kinase and cofilin control phagocytosis of degenerated myelin by CR3 in microglia and macrophages. Syk is a non-receptor tyrosine kinase that CR3 recruits to convey cellular functions. Cofilin is an actin-depolymerizing protein that controls F-actin (filamentous actin remodeling (i.e., disassembly and reassembly by shifting between active unphosphorylated and inactive phosphorylated states. Results Syk was continuously activated during prolonged phagocytosis. Phagocytosis increased when Syk activity and expression were reduced, suggesting that normally Syk down regulates CR3-mediated myelin phagocytosis. Levels of inactive p-cofilin (phosphorylated cofilin decreased transiently during prolonged phagocytosis. In contrast, p-cofilin levels decreased continuously when Syk activity and expression were continuously reduced, suggesting that normally Syk advances the inactive state of cofilin. Observations also revealed inverse relationships between levels of phagocytosis and levels of inactive p-cofilin, suggesting that active unphosphorylated cofilin advances phagocytosis. Active cofilin could advance phagocytosis by promoting F-actin remodeling, which supports the production of membrane protrusions (e.g., filopodia, which, as we also revealed, are instrumental in myelin phagocytosis. Conclusions CR3 both activates and downregulates myelin phagocytosis at the same time. Activation was previously documented. We presently demonstrate that downregulation is mediated through Syk, which advances the inactive

  1. Liposomes to target peripheral neurons and Schwann cells.

    Directory of Open Access Journals (Sweden)

    Sooyeon Lee

    Full Text Available While a wealth of literature for tissue-specific liposomes is emerging, optimal formulations to target the cells of the peripheral nervous system (PNS are lacking. In this study, we asked whether a novel formulation of phospholipid-based liposomes could be optimized for preferential uptake by microvascular endothelia, peripheral neurons and Schwann cells. Here, we report a unique formulation consisting of a phospholipid, a polymer surfactant and cholesterol that result in enhanced uptake by targeted cells. Using fluorescently labeled liposomes, we followed particle internalization and trafficking through a distinct route from dextran and escape from degradative compartments, such as lysosomes. In cultures of non-myelinating Schwann cells, liposomes associate with the lipid raft marker Cholera toxin, and their internalization is inhibited by disruption of lipid rafts or actin polymerization. In contrast, pharmacological inhibition of clathrin-mediated endocytosis does not significantly impact liposome entry. To evaluate the efficacy of liposome targeting in tissues, we utilized myelinating explant cultures of dorsal root ganglia and isolated diaphragm preparations, both of which contain peripheral neurons and myelinating Schwann cells. In these models, we detected preferential liposome uptake into neurons and glial cells in comparison to surrounding muscle tissue. Furthermore, in vivo liposome administration by intramuscular or intravenous injection confirmed that the particles were delivered to myelinated peripheral nerves. Within the CNS, we detected the liposomes in choroid epithelium, but not in myelinated white matter regions or in brain parenchyma. The described nanoparticles represent a novel neurophilic delivery vehicle for targeting small therapeutic compounds, biological molecules, or imaging reagents into peripheral neurons and Schwann cells, and provide a major advancement toward developing effective therapies for peripheral

  2. Increasing N-acetylaspartate in the Brain during Postnatal Myelination Does Not Cause the CNS Pathologies of Canavan Disease

    Directory of Open Access Journals (Sweden)

    Abhilash P. Appu

    2017-06-01

    Full Text Available Canavan disease is caused by mutations in the gene encoding aspartoacylase (ASPA, a deacetylase that catabolizes N-acetylaspartate (NAA. The precise involvement of elevated NAA in the pathogenesis of Canavan disease is an ongoing debate. In the present study, we tested the effects of elevated NAA in the brain during postnatal development. Mice were administered high doses of the hydrophobic methyl ester of NAA (M-NAA twice daily starting on day 7 after birth. This treatment increased NAA levels in the brain to those observed in the brains of Nur7 mice, an established model of Canavan disease. We evaluated various serological parameters, oxidative stress, inflammatory and neurodegeneration markers and the results showed that there were no pathological alterations in any measure with increased brain NAA levels. We examined oxidative stress markers, malondialdehyde content (indicator of lipid peroxidation, expression of NADPH oxidase and nuclear translocation of the stress-responsive transcription factor nuclear factor (erythroid-derived 2-like 2 (NRF-2 in brain. We also examined additional pathological markers by immunohistochemistry and the expression of activated caspase-3 and interleukin-6 by Western blot. None of the markers were increased in the brains of M-NAA treated mice, and no vacuoles were observed in any brain region. These results show that ASPA expression prevents the pathologies associated with excessive NAA concentrations in the brain during postnatal myelination. We hypothesize that the pathogenesis of Canavan disease involves not only disrupted NAA metabolism, but also excessive NAA related signaling processes in oligodendrocytes that have not been fully determined and we discuss some of the potential mechanisms.

  3. Structural insight into the function of myelin basic protein as a ligand for integrin αMβ2

    DEFF Research Database (Denmark)

    Stapulionis, Romualdas; Oliveira, Cristiano; Gjelstrup, Mikkel Carstensen

    2008-01-01

    protein (MBP), a major autoantigen in MS, is a potent and specific ligand for the integrin αMβ2 (Mac-1, CD11b/CD18) expressed mainly on phagocytic cells. MBP undergoes a dramatic conformational change when liberated from the lipid-rich environment of the myelin sheath. The MS drug glatiramer acetate......Multiple sclerosis (MS) is an inflammatory disease where phagocytic cells infiltrate the nerve tissue and act as terminal agents in destruction of the myelin sheath. However, the mechanism that triggers the ability of these cells to recognize myelin remains obscure. We show that myelin basic...

  4. Type a niemann-pick disease. Description of three cases with delayed myelination.

    Science.gov (United States)

    D'Amico, A; Sibilio, M; Caranci, F; Bartiromo, F; Taurisano, R; Balivo, F; Melis, D; Parenti, G; Cirillo, S; Elefante, R; Brunetti, A

    2008-06-03

    We describe three patients with type A Niemann-Pick disease (NPD-A). NPD-A is an autosomal recessive neuronal storage disease classified among the sphingolipidoses, characterized by accumulation of sphingomyelin in various tissues and in the brain. Magnetic Resonance imaging (MRI) of our three patients showed a marked delay of myelination with frontal atrophy. Few descriptions of this MRI pattern of delayed myelination have been published to date.

  5. Extrinsic and intrinsic regulation of axon regeneration at a crossroads.

    Science.gov (United States)

    Kaplan, Andrew; Ong Tone, Stephan; Fournier, Alyson E

    2015-01-01

    Repair of the injured spinal cord is a major challenge in medicine. The limited intrinsic regenerative response mounted by adult central nervous system (CNS) neurons is further hampered by astrogliosis, myelin debris and scar tissue that characterize the damaged CNS. Improved axon regeneration and recovery can be elicited by targeting extrinsic factors as well as by boosting neuron-intrinsic growth regulators. Our knowledge of the molecular basis of intrinsic and extrinsic regulators of regeneration has expanded rapidly, resulting in promising new targets to promote repair. Intriguingly certain neuron-intrinsic growth regulators are emerging as promising targets to both stimulate growth and relieve extrinsic inhibition of regeneration. This crossroads between the intrinsic and extrinsic aspects of spinal cord injury is a promising target for effective therapies for this unmet need.

  6. Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models

    NARCIS (Netherlands)

    Chrast, R.; Saher, G.; Nave, K.A.; Verheijen, M.H.G.

    2011-01-01

    The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid

  7. Ultrastructural study of myelinating cells and sub-pial astrocytes in developing rat spinal cord.

    Science.gov (United States)

    Nagashima, K

    1979-12-01

    The anterior funiculus of the spinal cervical cord of post-natal rats was examined ultrastructurally. The myelinating cells found one day after brith contained a large amount of evenly distributed ribosomes up to the outer tongue of mesaxons, representing the cytoplasmic density. These cells were separated by astrocytic processes from the pial basement membrane, even when they were located on the pial surface. Astrocytes contained glial fibrils from one day onwards and often attached their processes to the pial basement membrane. Although the cytoplasmic processes of astrocytes occasionally wrapped axons, they were never shown to form the initial layer of myelin sheaths. However, the tenuous processes of the sub-pial astrocytes were occasionally rolled in myelin lamellae, as if a part of the myelin sheaths was constructed by astrocytic processes. The interpretation for this finding is discussed in relation to function and potency of the astrocytes, and variations and anomalies of nervous ontogeny.

  8. Could myelin damage from radiofrequency electromagnetic field exposure help explain the functional impairment electrohypersensitivity? A review of the evidence.

    Science.gov (United States)

    Redmayne, Mary; Johansson, Olle

    2014-01-01

    Myelin provides the electrical insulation for the central and peripheral nervous system and develops rapidly in the first years of life, but continues into mid-life or later. Myelin integrity is vital to healthy nervous system development and functioning. This review outlines the development of myelin through life, and then considers the evidence for an association between myelin integrity and exposure to low-intensity radiofrequency electromagnetic fields (RF-EMFs) typical in the modern world. In RF-EMF peer-reviewed literature examining relevant impacts such as myelin sheath, multiple sclerosis, and other myelin-related diseases, cellular examination was included. There are surprisingly little data available in each area, but considered together a picture begins to emerge in RF-EMF-exposed cases: (1) significant morphological lesions in the myelin sheath of rats; (2) a greater risk of multiple sclerosis in a study subgroup; (3) effects in proteins related to myelin production; and (4) physical symptoms in individuals with functional impairment electrohypersensitivity, many of which are the same as if myelin were affected by RF-EMF exposure, giving rise to symptoms of demyelination. In the latter, there are exceptions; headache is common only in electrohypersensitivity, while ataxia is typical of demyelination but infrequently found in the former group. Overall, evidence from in vivo and in vitro and epidemiological studies suggests an association between RF-EMF exposure and either myelin deterioration or a direct impact on neuronal conduction, which may account for many electrohypersensitivity symptoms. The most vulnerable are likely to be those in utero through to at least mid-teen years, as well as ill and elderly individuals.

  9. Neurotoxocarosis alters myelin protein gene transcription and expression.

    Science.gov (United States)

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas.

  10. Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Mario A. Moscarello

    2013-03-01

    Multiple sclerosis (MS is the most common CNS-demyelinating disease of humans, showing clinical and pathological heterogeneity and a general resistance to therapy. We first discovered that abnormal myelin hypercitrullination, even in normal-appearing white matter, by peptidylarginine deiminases (PADs correlates strongly with disease severity and might have an important role in MS progression. Hypercitrullination is known to promote focal demyelination through reduced myelin compaction. Here we report that 2-chloroacetamidine (2CA, a small-molecule, PAD active-site inhibitor, dramatically attenuates disease at any stage in independent neurodegenerative as well as autoimmune MS mouse models. 2CA reduced PAD activity and protein citrullination to pre-disease status. In the autoimmune models, disease induction uniformly induced spontaneous hypercitrullination with citrulline+ epitopes targeted frequently. 2CA rapidly suppressed T cell autoreactivity, clearing brain and spinal cord infiltrates, through selective removal of newly activated T cells. 2CA essentially prevented disease when administered before disease onset or before autoimmune induction, making hypercitrullination, and specifically PAD enzymes, a therapeutic target in MS models and thus possibly in MS.

  11. Disruption of myelination by diagnostic US

    International Nuclear Information System (INIS)

    Ellisman, M.H.; Palmer, D.E.; Andre, M.P.

    1986-01-01

    In order to test for possible effects of US on myelination, the authors exposed 20 unanesthetized rat pups to US intensities consistent with those used for imaging a human fetus in utero. The rats were 3-5 days old and at a stage of myelination similar to that of a human fetus of about 4-5 months. Then animals were exposed for 30 minutes to the beam from a 3.5-MHz transducer (ADR 2130 real-time linear array, SPTA intensity of 0.4 mW/cm/sup 2/ and SATA intensity of 0.05 mW/cm/sup 2/). Control animals were bound and placed in the tank but not exposed for 30 minutes, and taken straight from the cage. Some animals were killed and tissues were processed for electron microscopy immediately after exposure, others were killed after recovery periods of up to 24 hours. Enlargements of the periaxonal space was visible with separation of adjacent paranodal loops and disruption of Schwann cell-axonal junctions in all exposed animals. Paranodal demyelination was also noted in several nodes. Nodes exhibiting this microedematous morphology were apparent even after a 24-hour recovery period but were not found in control preparations

  12. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    DEFF Research Database (Denmark)

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H

    2016-01-01

    with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration...

  13. CNS infections in immunocompetent patients

    International Nuclear Information System (INIS)

    Hartmann, K.M.; Zimmer, A.; Reith, W.

    2008-01-01

    This article gives a review of the most frequent infective agents reasonable for CNS infections in immunocompetent patients as well as their localisation and imaging specifications. MRI scanning is the gold standard to detect inflammatory conditions in the CNS. Imaging can be normal or nonspecifically altered although the infection is culturally or bioptically proven. There are no pathognomonic, pathogen-specific imaging criteria. The localization and dimension of the inflammation depends on the infection pathway. (orig.) [de

  14. Increase in chemokine CXCL1 by ERβ ligand treatment is a key mediator in promoting axon myelination.

    Science.gov (United States)

    Karim, Hawra; Kim, Sung Hoon; Lapato, Andrew S; Yasui, Norio; Katzenellenbogen, John A; Tiwari-Woodruff, Seema K

    2018-06-12

    Estrogen receptor β (ERβ) ligands promote remyelination in mouse models of multiple sclerosis. Recent work using experimental autoimmune encephalomyelitis (EAE) has shown that ERβ ligands induce axon remyelination, but impact peripheral inflammation to varying degrees. To identify if ERβ ligands initiate a common immune mechanism in remyelination, central and peripheral immunity and pathology in mice given ERβ ligands at peak EAE were assessed. All ERβ ligands induced differential expression of cytokines and chemokines, but increased levels of CXCL1 in the periphery and in astrocytes. Oligodendrocyte CXCR2 binds CXCL1 and has been implicated in normal myelination. In addition, despite extensive immune cell accumulation in the CNS, all ERβ ligands promoted extensive remyelination in mice at peak EAE. This finding highlights a component of the mechanism by which ERβ ligands mediate remyelination. Hence, interplay between the immune system and central nervous system may be responsible for the remyelinating effects of ERβ ligands. Our findings of potential neuroprotective benefits arising from the presence of CXCL1 could have implications for improved therapies for multiple sclerosis. Copyright © 2018 the Author(s). Published by PNAS.

  15. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Directory of Open Access Journals (Sweden)

    Laulumaa Saara

    2015-01-01

    Full Text Available Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  16. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Science.gov (United States)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  17. SPARC and GluA1-Containing AMPA Receptors Promote Neuronal Health Following CNS Injury

    Directory of Open Access Journals (Sweden)

    Emma V. Jones

    2018-02-01

    Full Text Available The proper formation and maintenance of functional synapses in the central nervous system (CNS requires communication between neurons and astrocytes and the ability of astrocytes to release neuromodulatory molecules. Previously, we described a novel role for the astrocyte-secreted matricellular protein SPARC (Secreted Protein, Acidic and Rich in Cysteine in regulating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs and plasticity at developing synapses. SPARC is highly expressed by astrocytes and microglia during CNS development but its level is reduced in adulthood. Interestingly, SPARC has been shown to be upregulated in CNS injury and disease. However, the role of SPARC upregulation in these contexts is not fully understood. In this study, we investigated the effect of chronic SPARC administration on glutamate receptors on mature hippocampal neuron cultures and following CNS injury. We found that SPARC treatment increased the number of GluA1-containing AMPARs at synapses and enhanced synaptic function. Furthermore, we determined that the increase in synaptic strength induced by SPARC could be inhibited by Philanthotoxin-433, a blocker of homomeric GluA1-containing AMPARs. We then investigated the effect of SPARC treatment on neuronal health in an injury context where SPARC expression is upregulated. We found that SPARC levels are increased in astrocytes and microglia following middle cerebral artery occlusion (MCAO in vivo and oxygen-glucose deprivation (OGD in vitro. Remarkably, chronic pre-treatment with SPARC prevented OGD-induced loss of synaptic GluA1. Furthermore, SPARC treatment reduced neuronal death through Philanthotoxin-433 sensitive GluA1 receptors. Taken together, this study suggests a novel role for SPARC and GluA1 in promoting neuronal health and recovery following CNS damage.

  18. Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation.

    Directory of Open Access Journals (Sweden)

    Terry B Huff

    2011-03-01

    Full Text Available High-frequency electrical stimulation is becoming a promising therapy for neurological disorders, however the response of the central nervous system to stimulation remains poorly understood. The current work investigates the response of myelin to electrical stimulation by laser-scanning coherent anti-Stokes Raman scattering (CARS imaging of myelin in live spinal tissues in real time. Paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation. Retraction was seen to begin minutes after the onset of stimulation and continue for up to 10 min after stimulation was ceased, but was found to reverse after a 2 h recovery period. The myelin retraction resulted in exposure of Kv 1.2 potassium channels visualized by immunofluorescence. Accordingly, treating the stimulated tissue with a potassium channel blocker, 4-aminopyridine, led to the appearance of a shoulder peak in the compound action potential curve. Label-free CARS imaging of myelin coupled with multiphoton fluorescence imaging of immuno-labeled proteins at the nodes of Ranvier revealed that high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down.

  19. Bovine-associated CNS species resist phagocytosis differently

    Science.gov (United States)

    2013-01-01

    Background Coagulase-negative staphylococci (CNS) cause usually subclinical or mild clinical bovine mastitis, which often remains persistent. Symptoms are usually mild, mostly only comprising slight changes in the appearance of milk and possibly slight swelling. However, clinical mastitis with severe signs has also been reported. The reasons for the differences in clinical expression are largely unknown. Macrophages play an important role in the innate immunity of the udder. This study examined phagocytosis and killing by mouse macrophage cells of three CNS species: Staphylococcus chromogenes (15 isolates), Staphylococcus agnetis (6 isolates) and Staphylococcus simulans (15 isolates). Staphylococcus aureus (7 isolates) was also included as a control. Results All the studied CNS species were phagocytosed by macrophages, but S. simulans resisted phagocytosis more effectively than the other CNS species. Only S. chromogenes was substantially killed by macrophages. Significant variations between isolates were seen in both phagocytosis and killing by macrophages and were more common in the killing assays. Significant differences between single CNS species and S. aureus were observed in both assays. Conclusion This study demonstrated that differences in the phagocytosis and killing of mastitis-causing staphylococci by macrophages exist at both the species and isolate level. PMID:24207012

  20. IFNγ inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis.

    Science.gov (United States)

    Ramakrishna, Chandran; Cantin, Edouard M

    2018-01-01

    Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection.

  1. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, W. [University Joseph Fourier, UFR PhiTEM, Grenoble (France); Institut Laue–Langevin, Grenoble (France); Peters, J. [University Joseph Fourier, UFR PhiTEM, Grenoble (France); Institut Laue–Langevin, Grenoble (France); Institut de Biologie Structurale, Grenoble (France); Kursula, P. [University of Oulu, Oulu (Finland); CSSB–HZI, DESY, Hamburg (Germany); Gerelli, Y. [Institut Laue–Langevin, Grenoble (France); Natali, F., E-mail: natali@ill.fr [Institut Laue–Langevin, Grenoble (France); CNR–IOM–OGG, c/o Institut Laue–Langevin, Grenoble (France)

    2014-11-28

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  2. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2011-01-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and prog......Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  3. Metallothionein expression in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Ortega-Aznar, A

    2003-01-01

    Multiple sclerosis (MS) is a major chronic demyelinating and inflammatory disease of the central nervous system (CNS) in which oxidative stress likely plays a pathogenic role in the development of myelin and neuronal damage. Metallothioneins (MTs) are antioxidant proteins induced in the CNS...

  4. Myelin Breakdown Mediates Age-Related Slowing in Cognitive Processing Speed in Healthy Elderly Men

    Science.gov (United States)

    Lu, Po H.; Lee, Grace J.; Tishler, Todd A.; Meghpara, Michael; Thompson, Paul M.; Bartzokis, George

    2013-01-01

    Background: To assess the hypothesis that in a sample of very healthy elderly men selected to minimize risk for Alzheimer's disease (AD) and cerebrovascular disease, myelin breakdown in late-myelinating regions mediates age-related slowing in cognitive processing speed (CPS). Materials and methods: The prefrontal lobe white matter and the genu of…

  5. CNS embryonal tumours: WHO 2016 and beyond.

    Science.gov (United States)

    Pickles, J C; Hawkins, C; Pietsch, T; Jacques, T S

    2018-02-01

    Embryonal tumours of the central nervous system (CNS) present a significant clinical challenge. Many of these neoplasms affect young children, have a very high mortality and therapeutic strategies are often aggressive with poor long-term outcomes. There is a great need to accurately diagnose embryonal tumours, predict their outcome and adapt therapy to the individual patient's risk. For the first time in 2016, the WHO classification took into account molecular characteristics for the diagnosis of CNS tumours. This integration of histological features with genetic information has significantly changed the diagnostic work-up and reporting of tumours of the CNS. However, this remains challenging in embryonal tumours due to their previously unaccounted tumour heterogeneity. We describe the recent revisions made to the 4th edition of the WHO classification of CNS tumours and review the main changes, while highlighting some of the more common diagnostic testing strategies. © 2017 British Neuropathological Society.

  6. Locomotion, physical development, and brain myelination in rats treated with ionizing radiation in utero

    International Nuclear Information System (INIS)

    Zaman, M.S.

    1989-01-01

    Effects of ionizing radiation on the emergence of locomotion skill and some physical development parameters were studied in laboratory rats (Fisher F-344 inbred strain). Rats were treated with 3 different doses of radiation (150 R, 15 R, and 6.8 R) delivered on the 20th day of the prenatal life. Results indicated that relatively moderate (15 R) to high (150 R) doses of radiation have effects on certain locomotion and physical development parameters. Exposure to 150 R affected pivoting, cliff-avoidance, upper jaw tooth eruption, body weight, and organs, such as brain, cerebral cortex, ovary, kidney, heart and spleen weights. Other parameters, such as negative geotaxis, eye opening, and lower jaw tooth eruption appeared to be affected in the 150 R treated animals. Exposure to 15 R affected pivoting and cliff-avoidance parameters. The cerebral cortex weight of the 15 R treated animals was found to be reduced at the age of day 30. Exposure to 6.8 R had no adverse effects on these parameters. Prenatal exposure to 150 R of radiation reduced the cerebral cortex weight by 22.07% at 30 days of age, and 20.15% at 52 days of age which caused a reduction in cerebral cortex myelin content by 20.16, and 22.89% at the ages of day 30 and day 52 respectively. Exposure to 150 R did not affect the myelin content of the cerebellum or the brain stem; or the myelin concentration (mg myelin/g brain tissue weight) of the cerebral cortex, cerebellum, and the brain stem. Exposure to 15 R, and 6.8 R did not affect either the myelin content or the myelin concentration of these brain areas

  7. Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content.

    Science.gov (United States)

    Bouhrara, Mustapha; Reiter, David A; Bergeron, Christopher M; Zukley, Linda M; Ferrucci, Luigi; Resnick, Susan M; Spencer, Richard G

    2018-04-18

    We investigated brain demyelination in aging, mild cognitive impairment (MCI), and dementia using magnetic resonance imaging of myelin. Brains of young and old controls and old subjects with MCI, Alzheimer's disease, or vascular dementia were scanned using our recently developed myelin water fraction (MWF) mapping technique, which provides greatly improved accuracy over previous comparable methods. Maps of MWF, a direct and specific myelin measure, and relaxation times and magnetization transfer ratio, indirect and nonspecific measures, were constructed. MCI subjects showed decreased MWF compared with old controls. Demyelination was greater in Alzheimer's disease or vascular dementia. As expected, decreased MWF was accompanied by decreased magnetization transfer ratio and increased relaxation times. The young subjects showed greater myelin content than the old subjects. We believe this to be the first demonstration of myelin loss in MCI, Alzheimer's disease, and vascular dementia using a method that provides a quantitative magnetic resonance imaging-based measure of myelin. Our findings add to the emerging evidence that myelination may represent an important biomarker for the pathology of MCI and dementia. This study supports the investigation of the role of myelination in MCI and dementia through use of this quantitative magnetic resonance imaging approach in clinical studies of disease progression, relationship of functional status to myelination status, and therapeutics. Furthermore, mapping MWF may permit myelin to serve as a therapeutic target in clinical trials. Copyright © 2018. Published by Elsevier Inc.

  8. The deterioration seen in myelin related morphophysiology in ...

    African Journals Online (AJOL)

    Oligodendrocyte development and myelination occurs vigorously during the early post natal period which coincides with the period of peak mobilization of iron. Oligodendrocyte progenitor cells (OPCs) are easily disturbed by any agent that affects iron homeostasis and its assimilation into these cells. Environmental ...

  9. Innate Interferons Regulate CNS Inflammation

    DEFF Research Database (Denmark)

    Dieu, Ruthe; Khorooshi, Reza M. H.; Mariboe, Anne

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) whose pathology is characterised by demyelination and axonal damage. This results from interplay between CNS-resident glia, infiltrating leukocytes and a plethora of cytokines and chemokines. Currently...... potential IFN-inducing receptor that signals through NF-kB. Receptor activator of NF-kB (RANK) belongs to the TNF-receptor superfamily and has been shown to induce IFN-beta in medullary thymic epithelial cells affecting autoimmune regulatory processes and osteoclast precursor cells in association to bone...

  10. Air pollution: mechanisms of neuroinflammation and CNS disease.

    Science.gov (United States)

    Block, Michelle L; Calderón-Garcidueñas, Lilian

    2009-09-01

    Air pollution has been implicated as a chronic source of neuroinflammation and reactive oxygen species (ROS) that produce neuropathology and central nervous system (CNS) disease. Stroke incidence and Alzheimer's and Parkinson's disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain; systemic effects that impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that microglial activation and changes in the blood-brain barrier are key components. Here we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS, culminating in CNS disease.

  11. Postnatal development of EEG patterns, catecholamine contents and myelination, and effect of hyperthyroidism in Suncus brain.

    Science.gov (United States)

    Takeuchi, T; Sitizyo, K; Harada, E

    1998-03-01

    The postnatal development of the central nervous system (CNS) in house musk shrew in the early stage of maturation was studied. The electroencephalogram (EEG) and visual evoked potential (VEP) in association with catecholamine contents and myelin basic protein (MBP) immunoreactivity were carried out from the 1st to the 20th day of postnatal age. Different EEG patterns which were specific to behavioral states (awake and drowsy) were first recorded on the 5th day, and the total power which was obtained by power spectrum analysis increased after this stage. The latencies of all peaks in VEP markedly shortened between the 5th and the 7th day. Noradrenalin (NA) content of the brain showed a slight increase after the 3rd day, and reached maximum levels on the 7th day, which was delayed a few days compared to dopamine (DA). In hyperthyroidism, the peak latency of VEP was shortened and biosynthesis of NA in cerebral cortex and DA in hippocampus was accelerated. The most obvious change in MBP-immunoreactivity of the telencephalon occurred from the 7th to the 10th day. These morphological changes in the brain advanced at the identical time-course to those in the electrophysiological development and increment of DA and NA contents.

  12. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Ekaterina E Verdiyan

    Full Text Available In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC acetylcholine receptors (AChRs and the axon excitation (different intervals between action potentials (APs. Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the "axon-SC" interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+-influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization.

  13. The murine gammaherpesvirus-68 chemokine-binding protein M3 inhibits experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Millward, Jason M; Holst, Peter J; Høgh-Petersen, Mette

    2010-01-01

    M3 (AdM3) directly to the CNS to evaluate the capacity of this protein to inhibit neuroinflammation using the experimental autoimmune encephalomyelitis (EAE) model. Treatment with the AdM3 vector significantly reduced the clinical severity of EAE, attenuated CNS histopathology, and reduced numbers......Chemokines are critical mediators of immune cell entry into the central nervous system (CNS), as occurs in neuroinflammatory disease such as multiple sclerosis. Chemokines are also implicated in the immune response to viral infections. Many viruses encode proteins that mimic or block chemokine...... of immune cells infiltrating the CNS. These results suggest that M3 may represent a novel therapeutic approach to neuroinflammatory disease....

  14. Stimulation of adult oligodendrogenesis by myelin-specific T cells

    DEFF Research Database (Denmark)

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke

    2011-01-01

    of calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system....

  15. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  16. Rapid myelin water imaging in human cervical spinal cord.

    Science.gov (United States)

    Ljungberg, Emil; Vavasour, Irene; Tam, Roger; Yoo, Youngjin; Rauscher, Alexander; Li, David K B; Traboulsee, Anthony; MacKay, Alex; Kolind, Shannon

    2017-10-01

    Myelin water imaging (MWI) using multi-echo T 2 relaxation is a quantitative MRI technique that can be used as an in vivo biomarker for myelin in the central nervous system. MWI using a multi-echo spin echo sequence currently takes more than 20 min to acquire eight axial slices (5 mm thickness) in the cervical spinal cord, making spinal cord MWI impractical for implementation in clinical studies. In this study, an accelerated gradient and spin echo sequence (GRASE), previously validated for brain MWI, was adapted for spinal cord MWI. Ten healthy volunteers were scanned with the GRASE sequence (acquisition time 8.5 min) and compared with the multi-echo spin echo sequence (acquisition time 23.5 min). Using region of interest analysis, myelin estimates obtained from the two sequences were found to be in good agreement (mean difference = -0.0092, 95% confidence interval =  - 0.0092 ± 0.061; regression slope = 1.01, ρ = 0.9). MWI using GRASE was shown to be highly reproducible with an average coefficient of variation of 6.1%. The results from this study show that MWI can be performed in the cervical spinal cord in less than 10 min, allowing for practical implementation in multimodal clinical studies. Magn Reson Med 78:1482-1487, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. CNS adverse events associated with antimalarial agents. Fact or fiction?

    NARCIS (Netherlands)

    Phillips-Howard, P. A.; ter Kuile, F. O.

    1995-01-01

    CNS adverse drug events are dramatic, and case reports have influenced clinical opinion on the use of antimalarials. Malaria also causes CNS symptoms, thus establishing causality is difficult. CNS events are associated with the quinoline and artemisinin derivatives. Chloroquine, once considered too

  18. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain.

    Science.gov (United States)

    Nemetchek, Michelle D; Stierle, Andrea A; Stierle, Donald B; Lurie, Diana I

    2017-02-02

    Bacopa monnieri (L) Wettst (common name, bacopa) is a medicinal plant used in Ayurveda, the traditional system of medicine of India, as a nootropic. It is considered to be a "medhya rasayana", an herb that sharpens the mind and the intellect. Bacopa is an important ingredient in many Ayurvedic herbal formulations designed to treat conditions such as memory loss, anxiety, poor cognition and loss of concentration. It has also been used in Ayurveda to treat inflammatory conditions such as arthritis. In modern biomedical studies, bacopa has been shown in animal models to inhibit the release of the pro-inflammatory cytokines TNF-α and IL-6. However, less is known regarding the anti-inflammatory activity of Bacopa in the brain. The current study examines the ability of Bacopa to inhibit the release of pro-inflammatory cytokines from microglial cells, the immune cells of the brain that participate in inflammation in the CNS. The effect of Bacopa on signaling enzymes associated with CNS inflammatory pathways was also studied. Various extracts of Bacopa were prepared and examined in the N9 microglial cell line in order to determine if they inhibited the release of the proinflammatory cytokines TNF-α and IL-6. Extracts were also tested in cell free assays as inhibitors of caspase-1 and matrix metalloproteinase-3 (enzymes associated with inflammation) and caspase-3, which has been shown to cleave protein Tau, an early event in the development of Alzheimer's disease. The tea, infusion, and alkaloid extracts of bacopa, as well as Bacoside A significantly inhibited the release of TNF-α and IL-6 from activated N9 microglial cells in vitro. In addition, the tea, infusion, and alkaloid extracts of Bacopa effectively inhibited caspase 1 and 3, and matrix metalloproteinase-3 in the cell free assay. Bacopa inhibits the release of inflammatory cytokines from microglial cells and inhibits enzymes associated with inflammation in the brain. Thus, Bacopa can limit inflammation in the

  19. The Ayurvedic plant Bacopa Monnieri inhibits inflammatory pathways in the brain

    Science.gov (United States)

    Nemetchek, Michelle D.; Stierle, Andrea A.; Stierle, Donald B.; Lurie, Diana I.

    2016-01-01

    Ethnopharmacological Relevance Bacopa monnieri (L) Wettst (common name, bacopa) is a medicinal plant used in Ayurveda, the traditional system of medicine of India, as a nootropic. It is considered to be a “medhya rasayana”, an herb that sharpens the mind and the intellect. Bacopa is an important ingredient in many Ayurvedic herbal formulations designed to treat conditions such as memory loss, anxiety, poor cognition and loss of concentration. It has also been used in Ayurveda to treat inflammatory conditions such as arthritis. In modern biomedical studies, bacopa has been shown in animal models to inhibit the release of the pro-inflammatory cytokines TNF-α and IL-6. However, less is known regarding the anti-inflammatory activity of Bacopa in the brain. Aim Of The Study The current study examines the ability of Bacopa to inhibit the release of pro-inflammatory cytokines from microglial cells, the immune cells of the brain that participate in inflammation in the CNS. The effect of Bacopa on signaling enzymes associated with CNS inflammatory pathways was also studied. Materials And Methods Various extracts of Bacopa were prepared and examined in the N9 microglial cell line in order to determine if they inhibited the release of the proinflammatory cytokines TNF-α and IL-6. Extracts were also tested in cell free assays as inhibitors of caspase-1 and matrix metalloproteinase-3 (enzymes associated with inflammation) and caspase-3, which has been shown to cleave protein Tau, an early event in the development of Alzheimer's disease. Results The tea, infusion, and alkaloid extracts of bacopa, as well as Bacoside A significantly inhibited the release of TNF-α and IL-6 from activated N9 microglial cells in vitro. In addition, the tea, infusion, and alkaloid extracts of Bacopa effectively inhibited caspase 1 and 3, and matrix metalloproteinase-3 in the cell free assay. Conclusions Bacopa inhibits the release of inflammatory cytokines from microglial cells and inhibits

  20. 3rd ENRI International Workshop on ATM/CNS

    CERN Document Server

    2014-01-01

    The Electronic Navigation Research Institute (ENRI) held its third International Workshop on ATM / CNS in 2013 with the theme of "Drafting the future sky". There is worldwide activity taking place in the research and development of modern air traffic management (ATM) and its enabling technologies in Communication, Navigation and Surveillance (CNS). Pioneering work is necessary to contribute to the global harmonization of air traffic management and control. At this workshop, leading experts in  research, industry and academia from around the world met to share their ideas and approaches on ATM/CNS related topics.

  1. CNS penetration of ART in HIV-infected children

    NARCIS (Netherlands)

    van den Hof, Malon; Blokhuis, Charlotte; Cohen, Sophie; Scherpbier, Henriette J.; Wit, Ferdinand W. N. M.; Pistorius, M. C. M.; Kootstra, Neeltje A.; Teunissen, Charlotte E.; Mathot, Ron A. A.; Pajkrt, Dasja

    2018-01-01

    Background: Paediatric data on CNS penetration of antiretroviral drugs are scarce. Objectives: To evaluate CNS penetration of antiretroviral drugs in HIV-infected children and explore associations with neurocognitive function. Patients and methods: Antiretroviral drug levels were measured in paired

  2. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure

    Directory of Open Access Journals (Sweden)

    Hayashi Nobuhiro

    2008-02-01

    Full Text Available Abstract Background The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. Results The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC in different temperatures, and Kd was observed to be in the low μM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Conclusion Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure

  3. A novel approach to 32-channel peripheral nervous system myelin imaging in vivo, with single axon resolution.

    Science.gov (United States)

    Grochmal, Joey; Teo, Wulin; Gambhir, Hardeep; Kumar, Ranjan; Stratton, Jo Anne; Dhaliwal, Raveena; Brideau, Craig; Biernaskie, Jeff; Stys, Peter K; Midha, Rajiv

    2018-01-19

    OBJECTIVE Intravital spectral imaging of the large, deeply situated nerves in the rat peripheral nervous system (PNS) has not been well described. Here, the authors have developed a highly stable platform for performing imaging of the tibial nerve in live rodents, thus allowing the capture of high-resolution, high-magnification spectral images requiring long acquisition times. By further exploiting the qualities of the topically applied myelin dye Nile red, this technique is capable of visualizing the detailed microenvironment of peripheral nerve demyelination injury and recovery, while allowing us to obtain images of exogenous Schwann cell myelination in a living animal. METHODS The authors caused doxorubicin-induced focal demyelination in the tibial nerves of 25 Thy-1 GFP rats, of which 2 subsets (n = 10 each) received either BFP-labeled SKP-SCs or SCs to the zone of injury. Prior to acquiring images of myelin recovery in these nerves, a tibial nerve window was constructed using a silicone hemitube, a fast drying silicone polymer, and a small coverslip. This construct was then affixed to a 3D-printed nerve stage, which in turn was affixed to an external fixation/microscope stage device. Myelin visualization was facilitated by the topical application of Nile red. RESULTS The authors reliably demonstrated intravital peripheral nerve myelin imaging with micron-level resolution and magnification, and minimal movement artifact. The detailed microenvironment of nerve remyelination can be vividly observed, while exogenously applied Schwann cells and skin-derived precursor Schwann cells can be seen myelinating axons. CONCLUSIONS Topically applied Nile red enables intravital study of myelin in the living rat PNS. Furthermore, the use of a tibial nerve window facilitates stable intravital peripheral nerve imaging, making possible high-definition spectral imaging with long acquisition times.

  4. Myelin basic protein in brains of rats with low dose lead encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Sundstroem, R; Karlsson, B

    1987-02-01

    In the present study control rats and lead exposed rats which did not have any retardation of growth were examined by radioimmunological assay of myelin basic protein (MBP) of homogenates of cerebrum and cerebellum at 30, 60 and 120 days of age. Lead was administered on postnatal days 1-15 by daily intraperitoneal injections of 10 mg lead nitrate/kg body weight. This lead dose results in light microscopically discernible hemorrhagic encephalopathy in the cerebellum of 15-day old rats, but does not induce growth retardation. The controls were injected with vehicle only. The amount of lead in the blood and brain homogenates of lead-exposed and control rats 15-200 days old was estimated by atomic absorption spectrophotometry. Significant differences between the lead-exposed and control rats were not found in the cerebral or cerebellar content of MBP. Considering the results of previous investigations, the findings do not exclude a hypo-myelinating effect of lead, but they suggest that exposure to lead without concomitant malnutrition does not cause hypo-myelination in the cerebrum and cerebellum of the developing rat.

  5. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Deficiency of a membrane skeletal protein, 4.1G, results in myelin abnormalities in the peripheral nervous system.

    Science.gov (United States)

    Saitoh, Yurika; Ohno, Nobuhiko; Yamauchi, Junji; Sakamoto, Takeharu; Terada, Nobuo

    2017-12-01

    We previously demonstrated that a membrane skeletal molecular complex, 4.1G-membrane palmitoylated protein 6 (MPP6)-cell adhesion molecule 4, is incorporated in Schwann cells in the peripheral nervous system (PNS). In this study, we evaluated motor activity and myelin ultrastructures in 4.1G-deficient (-/-) mice. When suspended by the tail, aged 4.1G -/- mice displayed spastic leg extension, especially after overwork. Motor-conduction velocity in 4.1G -/- mice was slower than that in wild-type mice. Using electron microscopy, 4.1G -/- mice exhibited myelin abnormalities: myelin was thicker in internodes, and attachment of myelin tips was distorted in some paranodes. In addition, we found a novel function of 4.1G for sorting a scaffold protein, Lin7, due to disappearance of the immunolocalization and reduction of the production of Lin7c and Lin7a in 4.1G -/- sciatic nerves, as well as the interaction of MPP6 and Lin7 with immunoprecipitation. Thus, we herein propose 4.1G functions as a signal for proper formation of myelin in PNS.

  7. Importance of apolipoprotein A-I in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Lidia A Gardner

    2015-11-01

    Full Text Available Jean-Martin Charcot has first described multiple sclerosis (MS as a disease of the central nervous system (CNS over a century ago. MS remains incurable today, and treatment options are limited to disease modifying drugs. Over the years, significant advances in understanding disease pathology have been made in autoimmune and neurodegenerative components. Despite the fact that brain is the most lipid rich organ in human body, the importance of lipid metabolism has not been extensively studied in this disorder. In MS, the CNS is under attack by a person’s own immune system. Autoantigens and autoantibodies are known to cause devastation of myelin through up regulation of T-cells and cytokines, which penetrate through the blood brain barrier to cause inflammation and myelin destruction.The anti-inflammatory role of high-density lipoproteins (HDLs has been implicated in a plethora of biological processes: vasodilation, immunity to infection, oxidation, inflammation, and apoptosis. However it is not known what role HDL plays in neurological function and myelin repair in MS. Understanding of lipid metabolism in the CNS and in the periphery might unveil new therapeutic targets and explain the partial success of some existing MS therapies.

  8. Cholecalciferol (vitamin D₃ improves myelination and recovery after nerve injury.

    Directory of Open Access Journals (Sweden)

    Jean-Francois Chabas

    Full Text Available Previously, we demonstrated i that ergocalciferol (vitamin D2 increases axon diameter and potentiates nerve regeneration in a rat model of transected peripheral nerve and ii that cholecalciferol (vitamin D3 improves breathing and hyper-reflexia in a rat model of paraplegia. However, before bringing this molecule to the clinic, it was of prime importance i to assess which form - ergocalciferol versus cholecalciferol - and which dose were the most efficient and ii to identify the molecular pathways activated by this pleiotropic molecule. The rat left peroneal nerve was cut out on a length of 10 mm and autografted in an inverted position. Animals were treated with either cholecalciferol or ergocalciferol, at the dose of 100 or 500 IU/kg/day, or excipient (Vehicle, and compared to unlesioned rats (Control. Functional recovery of hindlimb was measured weekly, during 12 weeks, using the peroneal functional index. Ventilatory, motor and sensitive responses of the regenerated axons were recorded and histological analysis was performed. In parallel, to identify the genes regulated by vitamin D in dorsal root ganglia and/or Schwann cells, we performed an in vitro transcriptome study. We observed that cholecalciferol is more efficient than ergocalciferol and, when delivered at a high dose (500 IU/kg/day, cholecalciferol induces a significant locomotor and electrophysiological recovery. We also demonstrated that cholecalciferol increases i the number of preserved or newly formed axons in the proximal end, ii the mean axon diameter in the distal end, and iii neurite myelination in both distal and proximal ends. Finally, we found a modified expression of several genes involved in axogenesis and myelination, after 24 hours of vitamin supplementation. Our study is the first to demonstrate that vitamin D acts on myelination via the activation of several myelin-associated genes. It paves the way for future randomised controlled clinical trials for peripheral

  9. Quantitative analysis of the myelin g-ratio from electron microscopy images of the macaque corpus callosum

    Directory of Open Access Journals (Sweden)

    Nikola Stikov

    2015-09-01

    Full Text Available We provide a detailed morphometric analysis of eight transmission electron micrographs (TEMs obtained from the corpus callosum of one cynomolgus macaque. The raw TEM images are included in the article, along with the distributions of the axon caliber and the myelin g-ratio in each image. The distributions are analyzed to determine the relationship between axon caliber and g-ratio, and compared against the aggregate metrics (myelin volume fraction, fiber volume fraction, and the aggregate g-ratio, as defined in the accompanying research article entitled ‘In vivo histology of the myelin g-ratio with magnetic resonance imaging’ (Stikov et al., NeuroImage, 2015.

  10. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    cells that had been labelled, i.e., that had regenerated axons towards or beyond the injection site, were counted in serial sections. Large and small neurons with presumably myelinated and unmyelinated axons, respectively, were classified by immunostaining for neurofilaments. The axonal growth rate......Regeneration of myelinated and unmyelinated sensory nerve fibres after a crush lesion of the rat sciatic nerve was investigated by means of retrograde labelling. The advantage of this method is that the degree of regeneration is estimated on the basis of sensory somata rather than the number...... of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion...

  11. Multiple sclerosis : Mechanisms of myelin phagocytosis and lesion expansion

    NARCIS (Netherlands)

    Hendrickx, D.A.E.

    2018-01-01

    Multiple sclerosis (MS) is characterized by immune activation and focal demyelination in the central nervous system. The aim of this thesis was to gain more insight into the mechanisms of myelin phagocytosis by resident microglia and infiltrating macrophages. We first evaluated the expression of the

  12. COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain.

    Directory of Open Access Journals (Sweden)

    Rawan Abdulhameed Edan

    Full Text Available Microglia activation results in release of proinflammatory molecules including cytokines, which contribute to neuronal damage in the central nervous system (CNS if not controlled. Tetracycline antibiotics such as minocycline inhibit microglial activation and cytokine expression during CNS inflammation. In the present study we found that administration of chemically modified tetracycline-3 (COL-3, inhibits lipopolysaccharide (LPS-induced microglial and p38 MAPK activation, as well as the increase in TNF-α, but not IL-1β expression, in the brains of BALB/c mice. COL-3 has been described to have no antibacterial activity. We observed that COL-3 had no activity against a Gram-negative bacteria, Escherichia coli; however surprisingly, COL-3 had antibacterial activity against a Gram-positive bacteria Staphylococcus aureus, with a minimum inhibitory concentration of 1 mg/ml. Our data show that COL-3 has some antibacterial activity against S. aureus, inhibits LPS-induced neuroinflammation, and displays potential as a therapeutic agent for treatment of conditions involving CNS inflammation.

  13. Development of allosteric modulators of GPCRs for treatment of CNS disorders.

    Science.gov (United States)

    Nickols, Hilary Highfield; Conn, P Jeffrey

    2014-01-01

    The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. © 2013.

  14. Local delivery of thyroid hormone enhances oligodendrogenesis and myelination after spinal cord injury

    Science.gov (United States)

    Shultz, Robert B.; Wang, Zhicheng; Nong, Jia; Zhang, Zhiling; Zhong, Yinghui

    2017-06-01

    Objective. Traumatic spinal cord injury (SCI) causes apoptosis of myelin-forming oligodendrocytes (OLs) and demyelination of surviving axons, resulting in conduction failure. Remyelination of surviving denuded axons provides a promising therapeutic target for spinal cord repair. While cell transplantation has demonstrated efficacy in promoting remyelination and functional recovery, the lack of ideal cell sources presents a major obstacle to clinical application. The adult spinal cord contains oligodendrocyte precursor cells and multipotent neural stem/progenitor cells that have the capacity to differentiate into mature, myelinating OLs. However, endogenous oligodendrogenesis and remyelination processes are limited by the upregulation of remyelination-inhibitory molecules in the post-injury microenvironment. Multiple growth factors/molecules have been shown to promote OL differentiation and myelination. Approach. In this study we screened these therapeutics and found that 3, 3‧, 5-triiodothyronine (T3) is the most effective in promoting oligodendrogenesis and OL maturation in vitro. However, systemic administration of T3 to achieve therapeutic doses in the injured spinal cord is likely to induce hyperthyroidism, resulting in serious side effects. Main results. In this study we developed a novel hydrogel-based drug delivery system for local delivery of T3 to the injury site without eliciting systemic toxicity. Significance. Using a clinically relevant cervical contusion injury model, we demonstrate that local delivery of T3 at doses comparable to safe human doses promoted new mature OL formation and myelination after SCI.

  15. Long-term consequences of chronic fluoxetine exposure on the expression of myelination-related genes in the rat hippocampus

    Science.gov (United States)

    Kroeze, Y; Peeters, D; Boulle, F; van den Hove, D L A; van Bokhoven, H; Zhou, H; Homberg, J R

    2015-01-01

    The selective serotonin reuptake inhibitor (SSRI) fluoxetine is widely prescribed for the treatment of symptoms related to a variety of psychiatric disorders. After chronic SSRI treatment, some symptoms remediate on the long term, but the underlying mechanisms are not yet well understood. Here we studied the long-term consequences (40 days after treatment) of chronic fluoxetine exposure on genome-wide gene expression. During the treatment period, we measured body weight; and 1 week after treatment, cessation behavior in an SSRI-sensitive anxiety test was assessed. Gene expression was assessed in hippocampal tissue of adult rats using transcriptome analysis and several differentially expressed genes were validated in independent samples. Gene ontology analysis showed that upregulated genes induced by chronic fluoxetine exposure were significantly enriched for genes involved in myelination. We also investigated the expression of myelination-related genes in adult rats exposed to fluoxetine at early life and found two myelination-related genes (Transferrin (Tf) and Ciliary neurotrophic factor (Cntf)) that were downregulated by chronic fluoxetine exposure. Cntf, a neurotrophic factor involved in myelination, showed regulation in opposite direction in the adult versus neonatally fluoxetine-exposed groups. Expression of myelination-related genes correlated negatively with anxiety-like behavior in both adult and neonatally fluoxetine-exposed rats. In conclusion, our data reveal that chronic fluoxetine exposure causes on the long-term changes in expression of genes involved in myelination, a process that shapes brain connectivity and contributes to symptoms of psychiatric disorders. PMID:26393488

  16. Prophylactic CNS therapy in childhood leukemia

    International Nuclear Information System (INIS)

    Yokoyama, Takashi; Hiyoshi, Yasuhiko; Fujimoto, Takeo

    1982-01-01

    This study was designed to evaluate the efficacy of CNS-prophylaxis with high-dose methotrexate (MTX). Seventy children with previously untreated acute lymphoblastic leukemia (ALL) entered to this study between July 1978 and December 1980. According to initial white blood count (WBC), they were stratified to induce remission with; vincristine and prednine in low initial WBC ( lt 25,000/mm 3 ) group and these two agents plus adriamycin in high initial WBC ( gt 25,000/mm 3 ) group. After inducing remission, 62 children who achieved CR, received different CNS-prophlaxis; using a regimen of three doses of weekly high-dose MTX (1,000 mg/m 2 ) 6-hour infusion, which was repeated every 12 weeks-Group A (n = 14); high-dose MTX followed by 2400 rad cranial irradiation plus three doses of i.t. MT X-Group B (n = 15), 2400 rad cranial irradiation plus three doses of i.t. MTX-Group C (n = 16), and in 17 patients with high initial WBC, same as in Group A-Group D (n = 17). During an intravenous 6-h infusion of MTX at a dose of 1,000 mg/m 2 , the CSF concentration of MTX rose to 2.3 +- 2.4 x 10 -6 M after initiation of infusion and remained in 10 -7 M level for 48 hours. CNS-leukemia terminated complete remission in one of 14 children in Group A, two of 15 in Group B, two of 16 in Group C and two of 17 in Group D. The cumulative incidence of CNS-leukemia at 20 months calculated by the technique of Kaplan and Meier was 0% i n Group A, 18.1% in Group B, 7.1% in Group C and 50.8% in Group D. There was no statistical difference among Groups A, B and C. These data suggested that CNS-prophylaxis with high-dose intravenous MTX was effective as well as 2400 rad cranial irradiation plus three doses of i.t. MTX in childhood ALL with low initial WBC. (author)

  17. Promoting Myelination in an In Vitro Mouse Model of the Peripheral Nerve System: The Effect of Wine Ingredients

    Science.gov (United States)

    Stettner, Mark; Wolffram, Kathleen; Mausberg, Anne K.; Albrecht, Philipp; Derksen, Angelika; Methner, Axel; Dehmel, Thomas; Hartung, Hans-Peter; Dietrich, Helmut; Kieseier, Bernd C.

    2013-01-01

    Protective properties of moderate wine consumption against cancers, cardiovascular, metabolic and degenerative diseases have been reported in various clinical studies. Here, we analysed the effect of red wine (RW) and white wine (WW) on myelination using an in vitro embryonic co-culture mouse model. The total amount of myelin was found to be significantly increased after RW and WW treatment, while only RW significantly increased the number of internodes. Both types of wine increased rat Schwann cell- (rSC) expression of the NAD+-dependent deacetylase sirtuin-two-homolog 2 (Sirt2), a protein known to be involved in myelination. Detailed chemical analysis of RW revealed a broad spectrum of anthocyanins, piceids, and phenolics, including resveratrol (RSV). In our assay system RSV in low concentrations induced myelination. Furthermore RSV raised intracellular glutathione concentrations in rSCs and in co-cultures and therefore augmented antioxidant capacity. We conclude that wine promotes myelination in a rodent in vitro model by controlling intracellular metabolism and SC plasticity. During this process, RSV exhibits protective properties; however, the fostering effect on myelinaton during exposure to wine appears to be a complex interaction of various compounds. PMID:23762469

  18. Transverse Magnetic Waves in Myelinated Nerves

    Science.gov (United States)

    2001-10-25

    IN MYELINATED NERVES M. Mª Villapecellín-Cid1, L. Mª Roa2, and J. Reina-Tosina1 1Área de Teoría de la Señal y Comunicaciones , E.S. de Ingeniería...Element Number Author(s) Project Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Área de Teoría de la Señal...y Comunicaciones , E.S. de Ingeniería, University of Seville, Seville, Spain Performing Organization Report Number Sponsoring/Monitoring Agency Name(s

  19. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Jens O Watzlawik

    Full Text Available Neonatal white matter injury (nWMI is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2-3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life

  20. Autoimmune process in CNS under Cs-137 inner irradiation

    International Nuclear Information System (INIS)

    Lisyany, N.I.; Liubich, L.D.

    1996-01-01

    Autoimmune hypothesis as to the development of radiation-induced brain injuries stands high among the concepts of the CNS post-radiation damage pathogenesis. To study the changes occurring in a living organism affected by a small-dose radiation due to incorporated radionuclides as well as to create adequate models are of critical importance in the post-Chernobyl period. The effects of chronic small-dose inner radiation on the development of autoimmune responses were evaluated by determining the level of the CNS proteins and protein-induced antibodies to the CNS components. (author)

  1. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice.

    Science.gov (United States)

    D'Antonio, Maurizio; Musner, Nicolò; Scapin, Cristina; Ungaro, Daniela; Del Carro, Ubaldo; Ron, David; Feltri, M Laura; Wrabetz, Lawrence

    2013-04-08

    P0 glycoprotein is an abundant product of terminal differentiation in myelinating Schwann cells. The mutant P0S63del causes Charcot-Marie-Tooth 1B neuropathy in humans, and a very similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum of Schwann cells, where it promotes unfolded protein stress and elicits an unfolded protein response (UPR) associated with translational attenuation. Ablation of Chop, a UPR mediator, from S63del mice completely rescues their motor deficit and reduces active demyelination by half. Here, we show that Gadd34 is a detrimental effector of CHOP that reactivates translation too aggressively in myelinating Schwann cells. Genetic or pharmacological limitation of Gadd34 function moderates translational reactivation, improves myelination in S63del nerves, and reduces accumulation of P0S63del in the ER. Resetting translational homeostasis may provide a therapeutic strategy in tissues impaired by misfolded proteins that are synthesized during terminal differentiation.

  2. Demyelinating polyneuropathy with focally folded myelin sheaths in a family of Miniature Schnauzer dogs.

    Science.gov (United States)

    Vanhaesebrouck, An E; Couturier, Jérôme; Cauzinille, Laurent; Mizisin, Andrew P; Shelton, G Diane; Granger, Nicolas

    2008-12-15

    A spontaneous demyelinating polyneuropathy in two young Miniature Schnauzer dogs was characterized clinically, electrophysiologically and histopathologically. Both dogs were related and a third dog, belonging to the same family, had similar clinical signs. On presentation, clinical signs were restricted to respiratory dysfunction. Electrophysiological tests showed a dramatic decrease in both motor and sensory nerve conduction velocities. Microscopic examination of peripheral nerve biopsies (light and electron microscopy, teased nerve fibers), showed that this neuropathy was characterized by segmental demyelination and focally folded myelin sheaths. Various clinical syndromes associated with tomacula or focal thickening of the myelin sheath of the peripheral nerves have been described in humans and shown to be caused by gene mutations affecting the myelin proteins, such as the hereditary neuropathy with liability to pressure palsies or the demyelinating forms of Charcot-Marie-Tooth disease. In animals, a tomaculous neuropathy has been reported in cattle and chickens but not in carnivores. Here we report a demyelinating peripheral neuropathy with tomacula in two Miniature Schnauzer dogs.

  3. Brain iron accumulation affects myelin-related molecular systems implicated in a rare neurogenetic disease family with neuropsychiatric features.

    Science.gov (United States)

    Heidari, M; Johnstone, D M; Bassett, B; Graham, R M; Chua, A C G; House, M J; Collingwood, J F; Bettencourt, C; Houlden, H; Ryten, M; Olynyk, J K; Trinder, D; Milward, E A

    2016-11-01

    The 'neurodegeneration with brain iron accumulation' (NBIA) disease family entails movement or cognitive impairment, often with psychiatric features. To understand how iron loading affects the brain, we studied mice with disruption of two iron regulatory genes, hemochromatosis (Hfe) and transferrin receptor 2 (Tfr2). Inductively coupled plasma atomic emission spectroscopy demonstrated increased iron in the Hfe -/- × Tfr2 mut brain (P=0.002, n ≥5/group), primarily localized by Perls' staining to myelinated structures. Western immunoblotting showed increases of the iron storage protein ferritin light polypeptide and microarray and real-time reverse transcription-PCR revealed decreased transcript levels (Pgross myelin structure and integrity appear unaffected (P>0.05). Overlap (P0.05). These results implicate myelin-related systems involved in NBIA neuropathogenesis in early responses to iron loading. This may contribute to behavioral symptoms in NBIA and hemochromatosis and is relevant to patients with abnormal iron status and psychiatric disorders involving myelin abnormalities or resistant to conventional treatments.

  4. Fluoxetine Prevents Oligodendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury

    Science.gov (United States)

    Lee, Jee Y.; Kang, So R.

    2015-01-01

    Abstract Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans. PMID:25366938

  5. Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor

    Science.gov (United States)

    Abi Ghanem, Charly; Degerny, Cindy; Hussain, Rashad; Liere, Philippe; Pianos, Antoine; Tourpin, Sophie; Habert, René; Schumacher, Michael

    2017-01-01

    The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis. PMID:29107990

  6. Electron microscopic study of the myelinated nerve fibres and the perineurial cell basement membrane in the diabetic human peripheral nerves

    International Nuclear Information System (INIS)

    ElBarrany, Wagih G.; Hamdy, Raid M.; AlHayani, Abdulmonem A.; Jalalah, Sawsan M.

    2009-01-01

    To study the quantitative and ultrastructural changes in myelinated nerve fibers and the basement membranes of the perineurial cells in diabetic nerves. The study was performed at the Department of Anatomy, Faculty of Medicine, King Abdul-Aziz University, Jeddah, Saudi Arabia from 2003 to 2005. Human sural nerves were obtained from 15 lower limbs and 5 diabetic nerve biopsies. The total mean and density of myelinated nerve fibers per fascicle were calculated, with density of microtubules and mitochondria in the axoplasm. The number of the perineurial cell basement membrane layers was counted, and thickness of the basement membrane was measured. Among the 15 diabetic and 5 normal human sural nerves, the average diameters, number and surface area of myelinated nerve fibers and axonal microtubules density were found to be less in diabetic nerves. Mitochondrial density was higher in diabetic axons. Thickness of the perineurial cell basement membrane had a greater mean, but the number of perineurial cell layers was less than that of the diabetic group. The inner cellular layer of the perineurium of the diabetic nerves contained large vacuoles containing electron-dense degenerated myelin. A few specimens showed degenerated myelinated nerve fibers, while others showed recovering ones. Retracted axoplasms were encountered with albumin extravasation. Diabetes caused an increase in perineurial permeability. The diabetic sural nerve showed marked decrease in the myelinated nerve fibres, increase degenerated mitochondria, and decreased microtubules. (author)

  7. Schwann cell-derived Apolipoprotein D controls the dynamics of post-injury myelin recognition and degradation

    Directory of Open Access Journals (Sweden)

    Nadia eGarcía-Mateo

    2014-11-01

    Full Text Available Management of lipids, particularly signaling lipids that control neuroinflammation, is crucial for the regeneration capability of a damaged nervous system. Knowledge of pro- and anti-inflammatory signals after nervous system injury is extensive, most of them being proteins acting through well-known receptors and intracellular cascades. However, the role of lipid binding extracellular proteins able to modify the fate of lipids released after injury is not well understood.Apolipoprotein D (ApoD is an extracellular lipid binding protein of the Lipocalin family induced upon nervous system injury. Our previous study shows that axon regeneration is delayed without ApoD, and suggests its participation in early events during Wallerian degeneration. Here we demonstrate that ApoD is expressed by myelinating and non-myelinating Schwann cells and is induced early upon nerve injury. We show that ApoD, known to bind arachidonic acid (AA, also interacts with lysophosphatidylcholine (LPC in vitro. We use an in vivo model of nerve crush injury, a nerve explant injury model, and cultured macrophages exposed to purified myelin, to uncover that: (i ApoD regulates denervated Schwann cell-macrophage signaling, dampening MCP1- and Tnf-dependent macrophage recruitment and activation upon injury; (ii ApoD controls the over-expression of the phagocytosis activator Galectin-3 by infiltrated macrophages; (iii ApoD controls the basal and injury-triggered levels of LPC and AA; (iv ApoD modifies the dynamics of myelin-macrophage interaction, favoring the initiation of phagocytosis and promoting myelin degradation.Regulation of macrophage behaviour by Schwann-derived ApoD is therefore a key mechanism conditioning nerve injury resolution. These results place ApoD as a lipid binding protein controlling the signals exchanged between glia, neurons and blood-borne cells during nerve recovery after injury, and open the possibility for a therapeutic use of ApoD as a regeneration

  8. Engineering progress of CNS concept in Hanaro

    International Nuclear Information System (INIS)

    Choi, C.O.; Park, K.N.; Park, S.H.

    1997-01-01

    The Korea Atomic Energy research Institute (KAERI) strives to provide utilizing facilities on and around the Hanaro reactor in order to activate advanced researches by neutron application. As one of the facilities to be installed, the conceptual design work of CNS was started in 1996 with a project schedule of 5 years so that its installation work can be finished by the year 2000. And the major engineering targets of this CNS facility are established for a minimum physical interference with the present facilities of the Hanaro, a reach-out of very-high-gain factors in the cold neutron flux, a simplicity of the maintenance of the facility, and a safety in the operation of the facility as well as the reactor. For the conceptual design of Hanaro CNS, the experience of utilization and production of cold neutron at WWR-M reactor Gatchina, Russia has been used with that of elaborations for PIK reactor in design for neutron guide systems and instruments. (author)

  9. Sleep disorders in children after treatment for a CNS tumour.

    Science.gov (United States)

    Verberne, Lisa M; Maurice-Stam, Heleen; Grootenhuis, Martha A; Van Santen, Hanneke M; Schouten-Van Meeteren, Antoinette Y N

    2012-08-01

    The long-term survival of children with a central nervous system (CNS) tumour is improving. However, they experience late effects, including altered habits and patterns of sleep. We evaluated the presence and type of sleep disorders and daytime sleepiness in these children, and its associations with clinical characteristics and daily performance (fatigue and psychosocial functioning). In a cross-sectional study at the outpatient clinic of the Emma Children's Hospital AMC (February-June 2010), sleep, fatigue and psychosocial functioning were analysed in 31 CNS tumour patients (mean age: 11.8years; 20 boys) and compared with 78 patients treated for a non-CNS malignancy (mean age: 9.7years; 41 boys) and norm data. Questionnaires applied were the Sleep Disorder Scale for Children, the Epworth Sleepiness Scale, the Pediatric Quality of Life Inventory, and the Strengths and Difficulties Questionnaire. Sleeping habits and endocrine deficiencies were assessed with a self-developed questionnaire. Increased somnolence was found in CNS tumour patients compared with those with a non-CNS malignancy (8.8±2.8 versus 7.5±2.7; Psleep. No specific risk factors were identified for a sleep disorder in CNS tumour patients, but their excessive somnolence was correlated with lower fatigue related quality of life (QoL) (r=-0.78, Psleep quality and diminish fatigue. © 2011 European Sleep Research Society.

  10. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Yamamoto, Yumi; Valitalo, Pyry A.; Wong, Yin Cheong; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; Kokki, Hannu; Kokki, Merja; Danhof, Meindert; van Hasselt, Johan G. C.; de Lange, Elizabeth C. M.

    2018-01-01

    Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human,

  11. Applications of Genomic Sequencing in Pediatric CNS Tumors.

    Science.gov (United States)

    Bavle, Abhishek A; Lin, Frank Y; Parsons, D Williams

    2016-05-01

    Recent advances in genome-scale sequencing methods have resulted in a significant increase in our understanding of the biology of human cancers. When applied to pediatric central nervous system (CNS) tumors, these remarkable technological breakthroughs have facilitated the molecular characterization of multiple tumor types, provided new insights into the genetic basis of these cancers, and prompted innovative strategies that are changing the management paradigm in pediatric neuro-oncology. Genomic tests have begun to affect medical decision making in a number of ways, from delineating histopathologically similar tumor types into distinct molecular subgroups that correlate with clinical characteristics, to guiding the addition of novel therapeutic agents for patients with high-risk or poor-prognosis tumors, or alternatively, reducing treatment intensity for those with a favorable prognosis. Genomic sequencing has also had a significant impact on translational research strategies in pediatric CNS tumors, resulting in wide-ranging applications that have the potential to direct the rational preclinical screening of novel therapeutic agents, shed light on tumor heterogeneity and evolution, and highlight differences (or similarities) between pediatric and adult CNS tumors. Finally, in addition to allowing the identification of somatic (tumor-specific) mutations, the analysis of patient-matched constitutional (germline) DNA has facilitated the detection of pathogenic germline alterations in cancer genes in patients with CNS tumors, with critical implications for genetic counseling and tumor surveillance strategies for children with familial predisposition syndromes. As our understanding of the molecular landscape of pediatric CNS tumors continues to advance, innovative applications of genomic sequencing hold significant promise for further improving the care of children with these cancers.

  12. Therapy of CNS leukemia with intraventricular chemotherapy and low-dose neuraxis radiotherapy

    International Nuclear Information System (INIS)

    Steinherz, P.; Jereb, B.; Galicich, J.

    1985-01-01

    Successful treatment of CNS leukemic relapse has been frustrated by frequent local recurrence and eventual marrow relapse. The authors describe the treatment of meningeal leukemia in 39 children with intrathecal remission induction followed by the placement of an Ommaya reservoir to facilitate the administration and distribution of chemotherapeutic agents into the CSF. Six hundred or 900 rad of craniospinal radiation and maintenance intraventricular and intrathecal chemotherapy was then administered. Systemic reinduction therapy was added in the later cases. Sixteen children (41%) experienced no further events, with 17+ months to 13+ years (median, 25 months) follow-up . Eleven patients (28%) had CNS recurrence, nine (23%) bone marrow (BM) relapse, and two (5%) testicular relapse as the next adverse event. The course of patients with first isolated CNS relapse differed from that of the others. Eleven (69%) of 16 patients treated for first isolated CNS relapse are alive and 9 are event free, while only 35% of patients whose CNS relapse occurred simultaneously or after recurrent disease at other sites are alive (P = .04). Seven of 23 in the later group are event free. The difference is due to the increased incidence of BM relapse in the later group (30% v 6%; P = .04). For patients with first isolated CNS relapse, the life-table median CNS remission duration is 42 months. The projected CNS relapse-free survival and event-free survival 8 to 10 years after CNS relapse are 40% and 32%, respectively. Headache, nausea, and emesis of short duration were frequent during therapy. In three patients, the reservoir had to be removed for infection. No patient suffered neurologic deficit related to the reservoir. The therapy described can reduce the CNS relapse rate with manageable toxicity

  13. Infectious Mononucleosis Triggers Generation of IgG Auto-Antibodies against Native Myelin Oligodendrocyte Glycoprotein.

    Science.gov (United States)

    Kakalacheva, Kristina; Regenass, Stephan; Wiesmayr, Silke; Azzi, Tarik; Berger, Christoph; Dale, Russell C; Brilot, Fabienne; Münz, Christian; Rostasy, Kevin; Nadal, David; Lünemann, Jan D

    2016-02-12

    A history of infectious mononucleosis (IM), symptomatic primary infection with the Epstein Barr virus, is associated with the development of autoimmune diseases and increases the risk to develop multiple sclerosis. Here, we hypothesized that immune activation during IM triggers autoreactive immune responses. Antibody responses towards cellular antigens using a HEp-2 based indirect immunofluorescence assay and native myelin oligodendrocyte glycoprotein (MOG) using a flow cytometry-based assay were determined in 35 patients with IM and in 23 control subjects. We detected frequent immunoglobulin M (IgM) reactivity to vimentin, a major constituent of the intermediate filament family of proteins, in IM patients (27/35; 77%) but rarely in control subjects (2/23; 9%). IgG autoantibodies binding to HEp-2 cells were absent in both groups. In contrast, IgG responses to native MOG, present in up to 40% of children with inflammatory demyelinating diseases of the central nervous system (CNS), were detectable in 7/35 (20%) patients with IM but not in control subjects. Normalization of anti-vimentin IgM levels to increased total IgM concentrations during IM resulted in loss of significant differences for anti-vimentin IgM titers. Anti-MOG specific IgG responses were still detectable in a subset of three out of 35 patients with IM (9%), even after normalization to increased total IgG levels. Vimentin-specific IgM and MOG-specific IgG responses decreased following clinical resolution of acute IM symptoms. We conclude from our data that MOG-specific memory B cells are activated in subset of patients with IM.

  14. Commensal coagulase-negative Staphylococcus from the udder of healthy cows inhibits biofilm formation of mastitis-related pathogens.

    Science.gov (United States)

    Isaac, Paula; Bohl, Luciana Paola; Breser, María Laura; Orellano, María Soledad; Conesa, Agustín; Ferrero, Marcela Alejandra; Porporatto, Carina

    2017-08-01

    Bovine mastitis, considered the most important cause of economic losses in the dairy industry, is a major concern in veterinary medicine. Staphylococcus aureus and coagulase-negative staphylococci (CNS) are the main pathogens associated with intramammary infections, and bacterial biofilms are suspected to be responsible for the persistence of this disease. CNS from the udder are not necessarily associated with intramammary infections. In fact, some commensal CNS have been shown to have biological activities. This issue led us to screen exoproducts from commensal Staphylococcus chromogenes for anti-biofilm activity against different mastitis pathogens. The cell-free supernatant from S. chromogenes LN1 (LN1-CFS) was confirmed to display a non-biocidal inhibition of pathogenic biofilms. The supernatant was subjected to various treatments to estimate the nature of the biofilm-inhibiting compounds. The results showed that the bioactive compound >5KDa in mass is sensitive to thermal treatment and proteinase K digestion, suggesting its protein properties. LN1-CFS was able to significantly inhibit S. aureus and CNS biofilm formation in a dose-independent manner and without affecting the viability of bovine cells. These findings reveal a new activity of the udder microflora of healthy animals. Studies are underway to purify and identify the anti-biofilm biocompound and to evaluate its biological activity in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Magnetic resonance imaging and peripheral blood abnormalities in experimental allergic encephalomyelitis

    International Nuclear Information System (INIS)

    Rose, L.M.; Alvord, E.C. Jr.; Richards, T.L.

    1989-01-01

    Experimental allergic encephalomyelitis (EAE) was induced in twelve cynomologous macaques (Macaca fascicularis) by sensitization to autologous myelin basic protein (BP) in complete Freund's adjuvant (CFA). The white blood cell (WBC) count, absolute number of lymphocytes and absolute numbers of CD4 + and CD8 + T-cell subsets were measured weekly. Using magnetic resonance imaging (MRI), the animals were monitored twice weekly for the development of central nervous system (CNS) lesions. Conventional spin-warp imaging was performed using a General Electric CSI-II NMR imager/spectrometer (2 Tesla magnet). CNS lesions were detected by MRI in all of the animals sensitized to myelin BP. Longitudinal analysis of their peripheral blood leukocytes revealed a progressive leukocytosis and lymphopenia, which always preceded the onset of clinical signs and almost always also preceded the formation of detectable CNS lesions. These results suggest that frequent analysis of T-cell subsets may provide a more accurate means of predicting episodes of disease activity than clinical or MRI evaluation

  16. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    Directory of Open Access Journals (Sweden)

    Jacinta Nwamaka Nwogu

    2016-01-01

    Full Text Available Neurological complications associated with the human immunodeficiency virus (HIV are a matter of great concern. While antiretroviral (ARV drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity.

  17. The effect of DDT and dieldrin on myelinated nerve fibres

    NARCIS (Netherlands)

    Bercken, J. van den

    1972-01-01

    The effects of the chlorinated hydrocarbon insecticides, DDT and dieldrin, on myelinated nerve fibres of the clawed toad, Xenopus laevis, were studied by recording compound action nerve fibres, and membrane potentials of single nodes of Ranvier. The effect of DDT (5 × 10−4 M) was found to be

  18. Histological methods for assessing myelin sheaths and axons in human nerve trunks.

    Science.gov (United States)

    Miko, T L; Gschmeissner, S E

    1994-03-01

    Although there are many histological techniques for assessing myelin sheaths and axons in paraffin embedded or frozen sections of the peripheral nervous system, modern approaches usually use plastic embedded material. Although plastic embedding is superior for small cutaneous branches, this method has limited value for histological assessment of nerve trunks. We report three methods which together yield a comprehensive approach for thorough and detailed investigation of human nerve trunks. The rapid osmication method permitted assessment of myelinated nerve fibers from frozen sections at operation, thus providing the surgeon with guidance on the extent of nerve resection. The modification presented here resulted in permanent slides, allowing comparison of results with those of the other two procedures. The new osmium-hematoxylin technique could be performed on paraffin embedded nerves. Paraffin, unlike plastic, permitted the study of the whole cross sectional area of the nerve in single sections. Moreover, the sharp image of the myelin permitted computerized morphometry. The significantly modified axonal silver impregnation technique was performed on frozen sections mounted on glass slides, as opposed to the time-consuming impregnation of free-floating sections. The latter technique had a high success rate and permitted semiquantitative assessment of axons in nerve trunks. These methods can be performed in any routine histology laboratory and resulted in greater accuracy compared to conventional methods.

  19. CNS-directed gene therapy for lysosomal storage diseases

    OpenAIRE

    Sands, Mark S; Haskins, Mark E

    2008-01-01

    Lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders usually caused by deficient activity of a single lysosomal enzyme. As most lysosomal enzymes are ubiquitously expressed, a deficiency in a single enzyme can affect multiple organ systems, including the central nervous system (CNS). At least 75% of all LSDs have a significant CNS component. Approaches such as bone marrow transplantation (BMT) or enzyme replacement therapy (ERT) can effectively treat the systemic dis...

  20. Modelling the presence of myelin and oedema in the brain based on multi-parametric quantitative MRI

    Directory of Open Access Journals (Sweden)

    Marcel eWarntjes

    2016-02-01

    Full Text Available The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and oedema in the brain. The model relates simultaneous measurement of R1 and R2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume and excess parenchymal water partial volume. The model parameters were obtained using spatially normalised brain images of a group of 20 healthy controls. The pathological brain was modelled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of oedema. The method was tested on spatially normalised brain images of a group of 20 age-matched multiple sclerosis (MS patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL, a 38 mL smaller myelin volume (119 vs. 157 mL and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL. Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6±1.5% lower for grey matter (GM structures and 2.8±1.0% lower for white matter (WM structures. The excess parenchymal water partial volume was 9±10% larger for GM and 5±2% larger for WM. Manually placed ROIs indicated that the results using the template ROIs may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects, a 45-year-old healthy subject, a 72-year-old healthy subject and a 45-year-old MS patient. The observed results agreed with the expected behaviour considering both age and disease. In conclusion, the proposed model may provide clinically important parameters such as the total brain volume, degree of myelination and degree of oedema, based on

  1. Genetic models for CNS inflammation

    DEFF Research Database (Denmark)

    Owens, T; Wekerle, H; Antel, J

    2001-01-01

    The use of transgenic technology to over-express or prevent expression of genes encoding molecules related to inflammation has allowed direct examination of their role in experimental disease. This article reviews transgenic and knockout models of CNS demyelinating disease, focusing primarily on ...

  2. Introducing axonal myelination in connectomics: A preliminary analysis of g-ratio distribution in healthy subjects.

    Science.gov (United States)

    Mancini, Matteo; Giulietti, Giovanni; Dowell, Nicholas; Spanò, Barbara; Harrison, Neil; Bozzali, Marco; Cercignani, Mara

    2017-09-14

    Microstructural imaging and connectomics are two research areas that hold great potential for investigating brain structure and function. Combining these two approaches can lead to a better and more complete characterization of the brain as a network. The aim of this work is characterizing the connectome from a novel perspective using the myelination measure given by the g-ratio. The g-ratio is the ratio of the inner to the outer diameters of a myelinated axon, whose aggregated value can now be estimated in vivo using MRI. In two different datasets of healthy subjects, we reconstructed the structural connectome and then used the g-ratio estimated from diffusion and magnetization transfer data to characterize the network structure. Significant characteristics of g-ratio weighted graphs emerged. First, the g-ratio distribution across the edges of the graph did not show the power-law distribution observed using the number of streamlines as a weight. Second, connections involving regions related to motor and sensory functions were the highest in myelin content. We also observed significant differences in terms of the hub structure and the rich-club organization suggesting that connections involving hub regions present higher myelination than peripheral connections. Taken together, these findings offer a characterization of g-ratio distribution across the connectome in healthy subjects and lay the foundations for further investigating plasticity and pathology using a similar approach. Copyright © 2017. Published by Elsevier Inc.

  3. Erythropoietin promotes oligodendrogenesis and myelin repair following lysolecithin-induced injury in spinal cord slice culture

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yun Kyung; Kim, Gunha; Park, Serah; Sim, Ju Hee; Won, You Jin [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Hwang, Chang Ho [Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Jeonha-dong, Dong-gu, Ulsan 682-714 (Korea, Republic of); Yoo, Jong Yoon, E-mail: jyyoo@amc.seoul.kr [Department of Rehabilitation Medicine, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Hong, Hea Nam, E-mail: hnhong@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Lysolecithin-induced demyelination elevated EpoR expression in OPCs. Black-Right-Pointing-Pointer In association with elevated EpoR, EPO increased OPCs proliferation. Black-Right-Pointing-Pointer EPO enhanced the oligodendrogenesis via activation of JAK2 pathway. Black-Right-Pointing-Pointer EPO promoted myelin repair following lysolecithin-induced demyelination. -- Abstract: Here, we sought to delineate the effect of EPO on the remyelination processes using an in vitro model of demyelination. We report that lysolecithin-induced demyelination elevated EPO receptor (EpoR) expression in oligodendrocyte progenitor cells (OPCs), facilitating the beneficial effect of EPO on the formation of oligodendrocytes (oligodendrogenesis). In the absence of EPO, the resultant remyelination was insufficient, possibly due to a limiting number of oligodendrocytes rather than their progenitors, which proliferate in response to lysolecithin-induced injury. By EPO treatment, lysolecithin-induced proliferation of OPCs was accelerated and the number of myelinating oligodendrocytes and myelin recovery was increased. EPO also enhanced the differentiation of neural progenitor cells expressing EpoR at high level toward the oligodendrocyte-lineage cells through activation of cyclin E and Janus kinase 2 pathways. Induction of myelin-forming oligodendrocytes by high dose of EPO implies that EPO might be the key factor influencing the final differentiation of OPCs. Taken together, our data suggest that EPO treatment could be an effective way to enhance remyelination by promoting oligodendrogenesis in association with elevated EpoR expression in spinal cord slice culture after lysolecithin-induced demyelination.

  4. Sox10 Expression in Goldfish Retina and Optic Nerve Head in Controls and after the Application of Two Different Lesion Paradigms.

    Directory of Open Access Journals (Sweden)

    Marta Parrilla

    Full Text Available The mammalian central nervous system (CNS is unable to regenerate. In contrast, the CNS of fish, including the visual system, is able to regenerate after damage. Moreover, the fish visual system grows continuously throughout the life of the animal, and it is therefore an excellent model to analyze processes of myelination and re-myelination after an injury. Here we analyze Sox10+ oligodendrocytes in the goldfish retina and optic nerve in controls and after two kinds of injuries: cryolesion of the peripheral growing zone and crushing of the optic nerve. We also analyze changes in a major component of myelin, myelin basic protein (MBP, as a marker for myelinated axons. Our results show that Sox10+ oligodendrocytes are located in the retinal nerve fiber layer and along the whole length of the optic nerve. MBP was found to occupy a similar location, although its loose appearance in the retina differed from the highly organized MBP+ axon bundles in the optic nerve. After optic nerve crushing, the number of Sox10+ cells decreased in the crushed area and in the optic nerve head. Consistent with this, myelination was highly reduced in both areas. In contrast, after cryolesion we did not find changes in the Sox10+ population, although we did detect some MBP- degenerating areas. We show that these modifications in Sox10+ oligodendrocytes are consistent with their role in oligodendrocyte identity, maintenance and survival, and we propose the optic nerve head as an excellent area for research aimed at better understanding of de- and remyelination processes.

  5. Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-coding RNA

    Directory of Open Access Journals (Sweden)

    Margot Martinez-Moreno

    2017-08-01

    Full Text Available Precise regulation of Egr2 transcription is fundamentally important to the control of peripheral myelination. Here, we describe a long non-coding RNA antisense to the promoter of Egr2 (Egr2-AS-RNA. During peripheral nerve injury, the expression of Egr2-AS-RNA is increased and correlates with decreased Egr2 transcript and protein levels. Ectopic expression of Egr2-AS-RNA in dorsal root ganglion (DRG cultures inhibits the expression of Egr2 mRNA and induces demyelination. In vivo inhibition of Egr2-AS-RNA using oligonucleotide GapMers released from a biodegradable hydrogel following sciatic nerve injury reverts the EGR2-mediated gene expression profile and significantly delays demyelination. Egr2-AS-RNA gradually recruits H3K27ME3, AGO1, AGO2, and EZH2 on the Egr2 promoter following sciatic nerve injury. Furthermore, expression of Egr2-AS-RNA is regulated through ERK1/2 signaling to YY1, while loss of Ser184 of YY1 regulates binding to Egr2-AS-RNA. In conclusion, we describe functional exploration of an antisense long non-coding RNA in peripheral nervous system (PNS biology.

  6. Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence.

    Science.gov (United States)

    Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo

    2016-07-02

    Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration.

  7. Automated brain tissue and myelin volumetry based on quantitative MR imaging with various in-plane resolutions.

    Science.gov (United States)

    Andica, C; Hagiwara, A; Hori, M; Nakazawa, M; Goto, M; Koshino, S; Kamagata, K; Kumamaru, K K; Aoki, S

    2018-05-01

    Segmented brain tissue and myelin volumes can now be automatically calculated using dedicated software (SyMRI), which is based on quantification of R 1 and R 2 relaxation rates and proton density. The aim of this study was to determine the validity of SyMRI brain tissue and myelin volumetry using various in-plane resolutions. We scanned 10 healthy subjects on a 1.5T MR scanner with in-plane resolutions of 0.8, 2.0 and 3.0mm. Two scans were performed for each resolution. The acquisition time was 7-min and 24-sec for 0.8mm, 3-min and 9-sec for 2.0mm and 1-min and 56-sec for 3.0mm resolutions. The volumes of white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), non-WM/GM/CSF (NoN), brain parenchymal volume (BPV), intracranial volume (ICV) and myelin were compared between in-plane resolutions. Repeatability for each resolution was then analyzed. No significant differences in volumes measured were found between the different in-plane resolutions, except for NoN between 0.8mm and 2.0mm and between 2.0mm and 3.0mm. The repeatability error value for the WM, GM, CSF, NoN, BPV and myelin volumes relative to ICV was 0.97%, 1.01%, 0.65%, 0.86%, 1.06% and 0.25% in 0.8mm; 1.22%, 1.36%, 0.73%, 0.37%, 1.18% and 0.35% in 2.0mm and 1.18%, 1.02%, 0.96%, 0.45%, 1.36%, and 0.28% in 3.0mm resolutions. SyMRI brain tissue and myelin volumetry with low in-plane resolution and short acquisition times is robust and has a good repeatability so could be useful for follow-up studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Actuarial risk of isolated CNS involvement in Ewing's sarcoma following prophylactic cranial irradiation and intrathecal methotrexate

    International Nuclear Information System (INIS)

    Trigg, M.E.; Makuch, R.; Glaubiger, D.

    1985-01-01

    Records of 154 patients with Ewing's sarcoma treated at the National Cancer Institute were reviewed to assess the incidence and risk of developing isolated central nervous system (CNS) Ewing's sarcoma. Sixty-two of the 154 patients had received CNS irradiation and intrathecal (i.t.) methotrexate as part of their initial therapy to prevent the occurrence of isolated CNS Ewing's sarcoma. The risk of developing isolate CNS Ewing's sarcoma was greatest within the first two years after diagnosis and was approximately 10%. The overall risk of CNS recurrence in the group of patients receiving DNS treatment was similar to the group receiving no therapy directed to the CNS. The occurrence of isolated CNS involvement was not prevented by the use of CNS irradiation and i.t. methotrexate. Because of a lack of efficacy to the CNS irradiation regimen, current treatment regimens do not include therapy directed to CNS

  9. Quantifying visual pathway axonal and myelin loss in multiple sclerosis and neuromyelitis optica.

    Science.gov (United States)

    Manogaran, Praveena; Vavasour, Irene M; Lange, Alex P; Zhao, Yinshan; McMullen, Katrina; Rauscher, Alexander; Carruthers, Robert; Li, David K B; Traboulsee, Anthony L; Kolind, Shannon H

    2016-01-01

    The optic nerve is frequently injured in multiple sclerosis and neuromyelitis optica, resulting in visual dysfunction, which may be reflected by measures distant from the site of injury. To determine how retinal nerve fiber layer as a measure of axonal health, and macular volume as a measure of neuronal health are related to changes in myelin water fraction in the optic radiations of multiple sclerosis and neuromyelitis optica participants with and without optic neuritis and compared to healthy controls. 12 healthy controls, 42 multiple sclerosis (16 with optic neuritis), and 10 neuromyelitis optica participants (8 with optic neuritis) were included in this study. Optical coherence tomography assessment involved measurements of the segmented macular layers (total macular, ganglion cell layer, inner plexiform layer, and inner nuclear layer volume) and paripapillary retinal nerve fiber layer thickness. The MRI protocol included a 32-echo T2-relaxation GRASE sequence. Average myelin water fraction values were calculated within the optic radiations as a measure of myelin density. Multiple sclerosis and neuromyelitis optica eyes with optic neuritis history had lower retinal nerve fiber layer thickness, total macular, ganglion cell and inner plexiform layer volumes compared to eyes without optic neuritis history and controls. Inner nuclear layer volume increased in multiple sclerosis with optic neuritis history (mean = 0.99 mm(3), SD = 0.06) compared to those without (mean = 0.97 mm(3), SD = 0.06; p = 0.003). Mean myelin water fraction in the optic radiations was significantly lower in demyelinating diseases (neuromyelitis optica: mean = 0.098, SD = 0.01, multiple sclerosis with optic neuritis history: mean = 0.096, SD = 0.01, multiple sclerosis without optic neuritis history: mean = 0.098, SD = 0.02; F3,55 = 3.35, p = 0.03) compared to controls. Positive correlations between MRI and optical coherence tomography measures were also apparent

  10. TSC Regulates Oligodendroglial Differentiation and Myelination in the CNS

    Science.gov (United States)

    2011-09-01

    Glutamate-Mediated Apoptosis and Trophic Factor Protection of Immature Oligodendrocytes” Weiss Center for Research, “Death and Survival in the...System, Cold Spring Harbor Laboratories 1994 - 1995 Medical Embryology , PSU/College of Medicine (4 lectures) 1994 – 2000 Molecular...Instructor, Medical Embryology , PSU/College of Medicine (8 lectures) 1997 Biology of Neoplasia (1 lecture) 1999 - 2004 Medical Histology, PSU/College

  11. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-11-04

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.

  12. Netrin-1 Confines Rhombic Lip-Derived Neurons to the CNS

    Directory of Open Access Journals (Sweden)

    Andrea R. Yung

    2018-02-01

    Full Text Available During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR, and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.

  13. CNS complications of rotavirus gastroenteritis

    International Nuclear Information System (INIS)

    Volosinova, D.

    2010-01-01

    Rotavirus infection may be accompanied by serious complications, e.g. disabilities central nervous system (CNS). Theory rotavirus penetration across the blood-brain barrier and subsequent rota-associated convulsions by the 2-year case-history of the patient. Rotavirosis minor gastrointestinal symptoms may lead to erroneous diagnosis. (author)

  14. Bone Morphogenetic Protein Signaling and Olig1/2 Interact to Regulate the Differentiation and Maturation of Adult Oligodendrocyte Precursor Cells

    OpenAIRE

    Cheng, Xiaoxin; Wang, Yaping; He, Qian; Qiu, Mengsheng; Whittemore, Scott R.; Cao, Qilin

    2007-01-01

    Promotion of remyelination is an important therapeutic strategy for the treatment of the demyelinating neurological disorders. Adult oligodendrocyte precursor cells (OPCs), which normally reside quiescently in the adult central nervous system (CNS), become activated and proliferative after demyelinating lesions. However, the extent of endogenous remyelination is limited because of the failure of adult OPCs to mature into myelinating oligodendrocytes (OLs) in the demyelinated CNS. Understandin...

  15. CNS Involvement in AML Patient Treated with 5-Azacytidine

    Directory of Open Access Journals (Sweden)

    Diamantina Vasilatou

    2014-01-01

    Full Text Available Central nervous system (CNS involvement in acute myeloid leukemia (AML is a rare complication of the disease and is associated with poor prognosis. Sometimes the clinical presentation can be unspecific and the diagnosis can be very challenging. Here we report a case of CNS infiltration in a patient suffering from AML who presented with normal complete blood count and altered mental status.

  16. Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects.

    Science.gov (United States)

    Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E

    2017-09-01

    Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.

  17. Adverse CNS-effects of beta-adrenoceptor blockers.

    Science.gov (United States)

    Gleiter, C H; Deckert, J

    1996-11-01

    In 1962 propranolol, the first beta adrenoceptor antagonist (beta blocker), was brought on to the market. There is now a host of different beta blockers available, and these compounds are among the most commonly prescribed groups of drugs. The efficacy of beta blockers has been proven predominantly for the treatment of cardiovascular diseases. Beta blockers are also used for certain types of CNS disorders, such as anxiety disorders, essential tremor and migraine. While low toxicity means that they have a favorable risk-benefit ratio, given the high intensity of use, it is essential to have a comprehensive knowledge of adverse events. Adverse events of beta blockers that can be related to the CNS are quite often neglected, even in textbooks of clinical pharmacology or review articles, and thus often misdiagnosed. The following article, therefore, after summarizing the use of beta blockers for CNS indications, critically reviews the literature on centrally mediated adverse events. General pharmacological features of beta blockers and their molecular basis of action will briefly be addressed to the extent that they are or may become relevant for central nervous pharmacotherapy and side-effects.

  18. Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C; Carrasco, J; Hidalgo, J

    2001-01-01

    Multiple sclerosis is an inflammatory, demyelinating disease of the CNS. Metallothioneins-I+II are antioxidant proteins induced in the CNS by immobilisation stress, trauma or degenerative diseases which have been postulated to play a neuroprotective role, while the CNS isoform metallothionein......-III has been related to Alzheimer's disease. We have analysed metallothioneins-I-III expression in the CNS of mice with experimental autoimmune encephalomyelitis. Moreover, we have examined the putative role of interferon-gamma, a pro-inflammatory cytokine, in the control of metallothioneins expression...

  19. A mutation in the gene encoding mitochondrial Mg²+ channel MRS2 results in demyelination in the rat.

    Directory of Open Access Journals (Sweden)

    Takashi Kuramoto

    2011-01-01

    Full Text Available The rat demyelination (dmy mutation serves as a unique model system to investigate the maintenance of myelin, because it provokes severe myelin breakdown in the central nervous system (CNS after normal postnatal completion of myelination. Here, we report the molecular characterization of this mutation and discuss the possible pathomechanisms underlying demyelination. By positional cloning, we found that a G-to-A transition, 177 bp downstream of exon 3 of the Mrs2 (MRS2 magnesium homeostasis factor (Saccharomyces cerevisiae gene, generated a novel splice acceptor site which resulted in functional inactivation of the mutant allele. Transgenic rescue with wild-type Mrs2-cDNA validated our findings. Mrs2 encodes an essential component of the major Mg²+ influx system in mitochondria of yeast as well as human cells. We showed that the dmy/dmy rats have major mitochondrial deficits with a markedly elevated lactic acid concentration in the cerebrospinal fluid, a 60% reduction in ATP, and increased numbers of mitochondria in the swollen cytoplasm of oligodendrocytes. MRS2-GFP recombinant BAC transgenic rats showed that MRS2 was dominantly expressed in neurons rather than oligodendrocytes and was ultrastructurally observed in the inner membrane of mitochondria. Our observations led to the conclusion that dmy/dmy rats suffer from a mitochondrial disease and that the maintenance of myelin has a different mechanism from its initial production. They also established that Mg²+ homeostasis in CNS mitochondria is essential for the maintenance of myelin.

  20. The meninges: new therapeutic targets for multiple sclerosis.

    Science.gov (United States)

    Russi, Abigail E; Brown, Melissa A

    2015-02-01

    The central nervous system (CNS) largely comprises nonregenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell-mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an "immune-specialized" status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data have established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood-brain barrier (BBB) integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the BBB. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease?

    Science.gov (United States)

    Rezai-Zadeh, Kavon; Gate, David; Town, Terrence

    2009-12-01

    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as "immune privilege," it is now clear that immune responses do occur in the CNS-giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripheral monocytes/macrophages limits progression of Alzheimer's disease pathology and militates against West Nile virus encephalitis. In addition, infiltrating T lymphocytes may help spare neuronal loss in models of amyotrophic lateral sclerosis. On the other hand, CNS leukocyte penetration drives experimental autoimmune encephalomyelitis (a mouse model for the human demyelinating disease multiple sclerosis) and may also be pathological in both Parkinson's disease and human immunodeficiency virus encephalitis. A critical understanding of the cellular and molecular mechanisms responsible for trafficking of immune cells from the periphery into the diseased CNS will be key to target these cells for therapeutic intervention in neurodegenerative diseases, thereby allowing neuroregenerative processes to ensue.

  2. Assessing white matter ischemic damage in dementia patients by measurement of myelin proteins

    Science.gov (United States)

    Barker, Rachel; Wellington, Dannielle; Esiri, Margaret M; Love, Seth

    2013-01-01

    White matter ischemia is difficult to quantify histologically. Myelin-associated glycoprotein (MAG) is highly susceptible to ischemia, being expressed only adaxonally, far from the oligodendrocyte cell body. Myelin-basic protein (MBP) and proteolipid protein (PLP) are expressed throughout the myelin sheath. We compared MAG, MBP, and PLP levels in parietal white matter homogenates from 17 vascular dementia (VaD), 49 Alzheimer's disease (AD), and 33 control brains, after assessing the post-mortem stability of these proteins. Small vessel disease (SVD) and cerebral amyloid angiopathy (CAA) severity had been assessed in paraffin sections. The concentration of MAG remained stable post-mortem, declined with increasing SVD, and was significantly lower in VaD than controls. The concentration of MBP fell progressively post-mortem, limiting its diagnostic utility in this context. Proteolipid protein was stable post-mortem and increased significantly with SVD severity. The MAG/PLP ratio declined significantly with SVD and CAA severity. The MAG and PLP levels and MAG/PLP did not differ significantly between AD and control brains. We validated the utility of MAG and MAG/PLP measurements on analysis of 74 frontal white matter samples from an Oxford cohort in which SVD had previously been scored. MAG concentration and the MAG/PLP ratio are useful post-mortem measures of ante-mortem white matter ischemia. PMID:23532085

  3. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    Science.gov (United States)

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  4. Causes of CNS inflammation and potential targets for anticonvulsants.

    Science.gov (United States)

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  5. Neuroinflammation, myelin and behavior: Temporal patterns following mild traumatic brain injury in mice.

    Directory of Open Access Journals (Sweden)

    Toufik Taib

    Full Text Available Traumatic brain injury (TBI results in white matter injury (WMI that is associated with neurological deficits. Neuroinflammation originating from microglial activation may participate in WMI and associated disorders. To date, there is little information on the time courses of these events after mild TBI. Therefore we investigated (i neuroinflammation, (ii WMI and (iii behavioral disorders between 6 hours and 3 months after mild TBI. For that purpose, we used experimental mild TBI in mice induced by a controlled cortical impact. (i For neuroinflammation, IL-1b protein as well as microglial phenotypes, by gene expression for 12 microglial activation markers on isolated CD11b+ cells from brains, were studied after TBI. IL-1b protein was increased at 6 hours and 1 day. TBI induced a mixed population of microglial phenotypes with both pro-inflammatory, anti-inflammatory and immunomodulatory markers from 6 hours to 3 days post-injury. At 7 days, microglial activation was completely resolved. (ii Three myelin proteins were assessed after TBI on ipsi- and contralateral corpus callosum, as this structure is enriched in white matter. TBI led to an increase in 2',3'-cyclic-nucleotide 3'-phosphodiesterase, a marker of immature and mature oligodendrocyte, at 2 days post-injury; a bilateral demyelination, evaluated by myelin basic protein, from 7 days to 3 months post-injury; and an increase in myelin oligodendrocyte glycoprotein at 6 hours and 3 days post-injury. Transmission electron microscopy study revealed various myelin sheath abnormalities within the corpus callosum at 3 months post-TBI. (iii TBI led to sensorimotor deficits at 3 days post-TBI, and late cognitive flexibility disorder evidenced by the reversal learning task of the Barnes maze 3 months after injury. These data give an overall invaluable overview of time course of neuroinflammation that could be involved in demyelination and late cognitive disorder over a time-scale of 3 months in a model

  6. Cerebral blood flow variations in CNS lupus

    International Nuclear Information System (INIS)

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M.

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery

  7. Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot-Marie-Tooth 1B Mouse Model.

    Science.gov (United States)

    Florio, Francesca; Ferri, Cinzia; Scapin, Cristina; Feltri, M Laura; Wrabetz, Lawrence; D'Antonio, Maurizio

    2018-05-02

    Schwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury. Reactivation of negative regulators of myelination is essential to generate repair Schwann cells. Negative regulators have also been implicated in demyelinating neuropathies, although their role in disease remains elusive. Here, we used a mouse model of Charcot-Marie-Tooth neuropathy type 1B (CMT1B), the P0S63del mouse characterized by ER stress and the activation of the unfolded protein response, to show that adult Schwann cells are in a partial differentiation state because they overexpress transcription factors that are normally expressed only before myelination. We provide evidence that two of these factors, Sox2 and Id2, act as negative regulators of myelination in vivo However, their sustained expression in neuropathy is protective because ablation of Sox2 or/and Id2 from S63del mice of both sexes results in worsening of the dysmyelinating phenotype. This is accompanied by increased levels of mutant P0 expression and exacerbation of ER stress, suggesting that limited differentiation may represent a novel adaptive mechanism through which Schwann cells counter the toxic effect of a mutant terminal differentiation protein. SIGNIFICANCE STATEMENT In many neuropathies, Schwann cells express high levels of early differentiation genes, but the significance of these altered expression remained unclear. Because many of these factors may act as negative regulators of myelination, it was suggested that their misexpression could contribute to dysmyelination. Here, we show that the transcription factors Sox2 and Id2 act as negative regulators of myelination in vivo , but that their sustained

  8. Basic Concepts of CNS Development.

    Science.gov (United States)

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  9. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Zahir Kizilay

    2016-01-01

    Full Text Available The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7: control (C, boric acid (BA, sciatic nerve injury (I , and sciatic nerve injury + boric acid treatment (BAI. Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.

  10. Malnutrition and myelin structure: an X-ray scattering study of rat sciatic and optic nerves

    International Nuclear Information System (INIS)

    Vargas, V.; Vargas, R.; Marquez, G.; Vonasek, E.; Mateu, L.; Luzzati, V.; Borges, J.

    2000-01-01

    Taking advantage of the fast and accurate X-ray scattering techniques recently developed in our laboratory, we tackled the study of the structural alterations induced in myelin by malnutrition. Our work was performed on sciatic and optic nerves dissected from rats fed with either a normal or a low-protein caloric diet, as a function of age (from birth to 60 days). By way of electrophysiological controls we also measured (on the sciatic nerves) the height and velocity of the compound action potential. Malnutrition was found to decrease the amount of myelin and to impair the packing order of the membranes in the sheaths. (orig.)

  11. Disruption in the Blood-Brain Barrier: The Missing Link between Brain and Body Inflammation in Bipolar Disorder?

    Directory of Open Access Journals (Sweden)

    Jay P. Patel

    2015-01-01

    Full Text Available The blood-brain barrier (BBB regulates the transport of micro- and macromolecules between the peripheral blood and the central nervous system (CNS in order to maintain optimal levels of essential nutrients and neurotransmitters in the brain. In addition, the BBB plays a critical role protecting the CNS against neurotoxins. There has been growing evidence that BBB disruption is associated with brain inflammatory conditions such as Alzheimer’s disease and multiple sclerosis. Considering the increasing role of inflammation and oxidative stress in the pathophysiology of bipolar disorder (BD, here we propose a novel model wherein transient or persistent disruption of BBB integrity is associated with decreased CNS protection and increased permeability of proinflammatory (e.g., cytokines, reactive oxygen species substances from the peripheral blood into the brain. These events would trigger the activation of microglial cells and promote localized damage to oligodendrocytes and the myelin sheath, ultimately compromising myelination and the integrity of neural circuits. The potential implications for research in this area and directions for future studies are discussed.

  12. The retina as a window to the brain-from eye research to CNS disorders.

    Science.gov (United States)

    London, Anat; Benhar, Inbal; Schwartz, Michal

    2013-01-01

    Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.

  13. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery?

    Science.gov (United States)

    Abdullahi, Wazir; Davis, Thomas P; Ronaldson, Patrick T

    2017-07-01

    Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.

  14. Inhibition of Myeloperoxidase at the Peak of Experimental Autoimmune Encephalomyelitis Restores Blood-Brain-Barrier Integrity and Ameliorates Disease Severity.

    Science.gov (United States)

    Zhang, Hao; Ray, Avijit; Miller, Nichole M; Hartwig, Danielle; Pritchard, Kirkwood A; Dittel, Bonnie N

    2015-11-12

    Oxidative stress is thought to contribute to disease pathogenesis in the central nervous system (CNS) disease multiple sclerosis (MS). Myeloperoxidase (MPO), a potent peroxidase that generates toxic radicals and oxidants, is increased in the CNS during MS. However, the exact mechanism whereby MPO drives MS pathology is not known. We addressed this question by inhibiting MPO in mice with experimental autoimmune encephalomyelitis (EAE) using our non-toxic MPO inhibitor KYC. We found that therapeutic administration of KYC for five days starting at the peak of disease significantly attenuated EAE disease severity, reduced myeloid cell numbers and permeability of the blood-brain-barrier (BBB). These data indicate that inhibition of MPO by KYC restores BBB integrity thereby limiting migration of myeloid cells into the CNS that drive EAE pathogenesis. In addition, these observations indicate that KYC may be an effective therapeutic agent for the treatment of MS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination.

    Science.gov (United States)

    Gomez-Sanchez, Jose A; Pilch, Kjara S; van der Lans, Milou; Fazal, Shaline V; Benito, Cristina; Wagstaff, Laura J; Mirsky, Rhona; Jessen, Kristjan R

    2017-09-13

    There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the

  16. Problems of prophylactic CNS radiotherapy in acute children's leukemia

    International Nuclear Information System (INIS)

    Bek, V.; Pribylova, O.; Abrahamova, J.; Hynieova, H.; Hrodek, O.

    1980-01-01

    The prophylactic treatment of the CNS was conducted by cobalt teletherapy of the cranium and by intrathecal application of MTX after the induction of primary remission in 70 children with acute leukemia throughout 5 years up to the end of 1978. The method of the combined radio- and chemoprophylaxis of the CNS was being changed during the years, especially as far as the radiation dose for the cranium was concerned. A detailed analysis made in a group of 59 children with the minimum interval of 18 months from the beginning of the treatment showed the best results after the application of a dose of 24 Gy/3 weeks. Following this procedure the relapse of leukemia in the CNS occurred in 9% only, whereas on the application of doses of 20 Gy and lower it occurred in 35 to 40%. On the whole 24 out of 59 children, i.e. 41%, are surviving, 35 children, i.e. 59%, died. Mostly complete, but only temporary, epilation was an invariable consequence of the irradiation of the cranium. The somnolence syndrome was only sporadically observed. It cannot be excluded, however, that some of its forms in patients discharged from hospital escaped attention. No case was recorded of serious impairment of the CNS of the leukoencephalopathic type. Up to now the psychomotor, intellectual and emotional development of the surviving children has been normal. (author)

  17. VIIP: Central Nervous System (CNS) Modeling

    Science.gov (United States)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  18. CNS metastasis from malignant uveal melanoma: a clinical and histopathological characterisation

    DEFF Research Database (Denmark)

    Holfort, S K; Lindegaard, J; Isager, P

    2008-01-01

    was observed in two cases (14%). The amount of tumour infiltrating lymphocytes was pronounced in three cases (23%). CONCLUSION: The proportion of uveal melanoma patients having CNS metastasis was 0.7%. Eleven patients had multiple organ metastases, and the average time from the initial CNS symptoms to death...

  19. Vitamin D and remyelination in multiple sclerosis.

    Science.gov (United States)

    Matías-Guíu, J; Oreja-Guevara, C; Matias-Guiu, J A; Gomez-Pinedo, U

    2018-04-01

    Several studies have found an association between multiple sclerosis and vitamin D (VD) deficiency, which suggests that VD may play a role in the immune response. However, few studies have addressed its role in remyelination. The VD receptor and the enzymes transforming VD into metabolites which activate the VD receptor are expressed in central nervous system (CNS) cells, which suggests a potential effect of VD on the CNS. Both in vitro and animal model studies have shown that VD may play a role in myelination by acting on factors that influence the microenvironment which promotes both proliferation and differentiation of neural stem cells into oligodendrocyte progenitor cells and oligodendrocytes. It remains unknown whether the mechanisms of internalisation of VD in the CNS are synergistic with or antagonistic to the mechanisms that facilitate the entry of VD metabolites into immune cells. VD seems to play a role in the CNS and our hypothesis is that VD is involved in remyelination. Understanding the basic mechanisms of VD in myelination is necessary to manage multiple sclerosis patients with VD deficiency. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Interneuron progenitor transplantation to treat CNS dysfunction

    Directory of Open Access Journals (Sweden)

    Muhammad O Chohan

    2016-08-01

    Full Text Available Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.

  1. Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Frank Rattay

    Full Text Available Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction.Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA synaptic stimuli.Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea.

  2. Impact of Morphometry, Myelinization and Synaptic Current Strength on Spike Conduction in Human and Cat Spiral Ganglion Neurons

    Science.gov (United States)

    Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese

    2013-01-01

    Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat

  3. Neuroprotective effects of estrogen in CNS injuries: insights from animal models

    Directory of Open Access Journals (Sweden)

    Raghava N

    2017-07-01

    Full Text Available Narayan Raghava,1 Bhaskar C Das,2 Swapan K Ray1 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA; 2Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA Abstract: Among the estrogens that are biosynthesized in the human body, 17β-estradiol (estradiol or E2 is the most common and the best estrogen for neuroprotection in animal models of the central nervous system (CNS injuries such as spinal cord injury (SCI, traumatic brain injury (TBI, and ischemic brain injury (IBI. These CNS injuries are not only serious health problems, but also enormous economic burden on the patients, their families, and the society at large. Studies from animal models of these CNS injuries provide insights into the multiple neuroprotective mechanisms of E2 and also suggest the possibility of translating the therapeutic efficacy of E2 in the treatment SCI, TBI, and IBI in humans in the near future. The pathophysiology of these injuries includes loss of motor function in the limbs, arms and their extremities, cognitive deficit, and many other serious consequences including life-threatening paralysis, infection, and even death. The potential application of E2 therapy to treat the CNS injuries may become a trend as the results are showing significant therapeutic benefits of E2 for neuroprotection when administered into the animal models of SCI, TBI, and IBI. This article describes the plausible mechanisms how E2 works with or without the involvement of estrogen receptors and provides an overview of the known neuroprotective effects of E2 in these three CNS injuries in different animal models. Because activation of estrogen receptors has profound implications in maintaining and also affecting normal physiology, there are notable impediments in translating E2 therapy to the clinics for neuroprotection in CNS injuries in humans. While E2 may not yet be the sole molecule for

  4. Foxp3+ regulatory T cells control persistence of viral CNS infection.

    Directory of Open Access Journals (Sweden)

    Dajana Reuter

    Full Text Available We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified mice and recombinant measles virus (MV. Using this model infection we investigated the role of regulatory T cells (Tregs as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4(+ CD25(+ Foxp3(+ Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8(+ T cells predominantly recognising the H-2D(b-presented viral hemagglutinin epitope MV-H(22-30 (RIVINREHL were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p. application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT in DEREG (depletion of regulatory T cells-mice induced an increase of virus-specific CD8(+ effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS.

  5. Morphometric analysis of the diameter and g-ratio of the myelinated nerve fibers of the human sciatic nerve during the aging process.

    Science.gov (United States)

    Ugrenović, Sladjana; Jovanović, Ivan; Vasović, Ljiljana; Kundalić, Braca; Čukuranović, Rade; Stefanović, Vladisav

    2016-06-01

    Myelinated nerve fibers suffer from different degrees of atrophy with age. The success of subsequent regeneration varies. The aim of this research was to analyze myelinated fibers of the human sciatic nerve during the aging process. Morphometric analysis was performed on 17 cases with an age range from 9 to 93 years. The outer and inner diameter of 100 randomly selected nerve fibers was measured in each of the cases evaluated, and the g-ratio (axonal diameter/outer diameter of the whole nerve fiber) of each was calculated. Scatter plots of the diameters and g-ratios of the analyzed fibers were then analyzed. Nerve fibers of each case were classified into three groups according to the g-ratio values: group I (g-ratio lower than 0.6), group II (g-ratio from 0.6 to 0.7) and group III (g-ratio higher than 0.7). Afterwards, nerve fibers of group II were further classified into small and large subgroups. The percentages of each group of nerve fibers were computed for each case and these values were used for correlational and bivariate linear regression analysis. The percentage of myelinated nerve fibers with large diameter and optimal g-ratio of the sciatic nerve declines significantly with age. This is accompanied by a simultaneous significant increase in the percentage of small myelinated fibers with g-ratio values close to 1 that occupy the upper left quadrant of the scatter plot. It can be concluded that aging of the sciatic nerve is associated with significant atrophy of large myelinated fibers. Additionally, a significant increase in regenerated nerve fibers with thinner myelin sheath is observed with age, which, together with the large myelinated fiber atrophy, might be the cause of the age-related decline in conduction velocity. A better understanding of the changes in aging peripheral nerves might improve interpretation of their pathological changes, as well as comprehension of their regeneration in individuals of different age.

  6. Management of CNS tumors

    International Nuclear Information System (INIS)

    Griem, M.L.

    1987-01-01

    The treatment of tumors of the CNS has undergone a number of changes based on the impact of CT. The use of intraoperative US for the establishment of tumor location and tumor histology is demonstrated. MR imaging also is beginning to make an impact on the diagnosis and treatment of tumors of the CNS. Examples of MR images are shown. The authors then discuss the important aspects of tumor histology as it affects management and newer concepts in surgery, radiation, and chemotherapy on tumor treatment. The role of intraoperative placement of radioactive sources, the utilization of heavy particle radiation therapy, and the potential role of other experimental radiation therapy techniques are discussed. The role of hyperfractionated radiation and of neutrons and x-ray in a mixed-beam treatment are discussed in perspective with standard radiation therapy. Current chemotherapy techniques, including intraarterial chemotherapy, are discussed. The complications of radiation therapy alone and in combination with chemotherapy in the management of primary brain tumors, brain metastases, and leukemia are reviewed. A summary of the current management of pituitary tumors, including secreting pituitary adenomas and chromophobe adenomas, are discussed. The treatment with heavy particle radiation, transsphenoidal microsurgical removal, and combined radiotherapeutic and surgical management are considered. Tumor metastasis management of lesions of the brain and spinal cord are considered

  7. 'Leukodystrophy-like' phenotype in children with myelin oligodendrocyte glycoprotein antibody-associated disease.

    Science.gov (United States)

    Hacohen, Yael; Rossor, Thomas; Mankad, Kshitij; Chong, Wk 'Kling'; Lux, Andrew; Wassmer, Evangeline; Lim, Ming; Barkhof, Frederik; Ciccarelli, Olga; Hemingway, Cheryl

    2018-04-01

    To review the demographics and clinical and paraclinical parameters of children with myelin oligodendrocyte glycoprotein (MOG) antibody-associated relapsing disease. In this UK-based, multicentre study, 31 children with MOG antibody-associated relapsing disease were studied retrospectively. Of the 31 children studied, 14 presented with acute disseminated encephalomyelitis (ADEM); they were younger (mean 4.1y) than the remainder (mean 8.5y) who presented with optic neuritis and/or transverse myelitis (p<0.001). Similarly, children who had an abnormal brain magnetic resonance imaging (MRI) at onset (n=20) were younger than patients with normal MRI at onset (p=0.001) or at follow-up (p<0.001). 'Leukodystrophy-like' MRI patterns of confluent largely symmetrical lesions was seen during the course of the disease in 7 out of 14 children with a diagnosis of ADEM, and was only seen in children younger than 7 years of age. Their disability after a 3-year follow-up was mild to moderate, and most patients continued to relapse, despite disease-modifying treatments. MOG antibody should be tested in children presenting with relapsing neurological disorders associated with confluent, bilateral white matter changes, and distinct enhancement pattern. Children with MOG antibody-associated disease present with age-related differences in phenotypes, with a severe leukoencephalopathy phenotype in the very young and normal intracranial MRI in the older children. This finding suggests a susceptibility of the very young and myelinating brain to MOG antibody-mediated mechanisms of damage. Myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination manifest with an age-related phenotype. Children with MOG antibody and 'leukodystrophy-like' imaging patterns tend to have poor response to second-line immunotherapy. © 2017 Mac Keith Press.

  8. Paired Immunoglobulin-like Receptor B Knockout Does Not Enhance Axonal Regeneration or Locomotor Recovery after Spinal Cord Injury*

    OpenAIRE

    Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide

    2010-01-01

    Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tr...

  9. Novel agents in CNS myeloma treatment.

    Science.gov (United States)

    Gozzetti, Alessandro; Cerase, Alfonso

    2014-01-01

    Central nervous system localization of multiple myeloma (CNS-MM) accounts for about 1% of all MM.Treatment is still unsatisfactory. Many treatments have been described in the literature: chemotherapy (CHT), intrathecal therapy (IT), and radiotherapy (RT), with survivals reported between one month and six months. Recent drugs such as the immunomodulatory drugs (IMiDs) and proteasome inhibitors (bortezomib) have changed the treatment of patients with MM, both younger and older, with a significant improvement in response and survival. The activity of new drugs in CNSMM has been reported but is still not well known. Bortezomib does not cross the blood brain barrier (BBB), and IMID’s seem to have only a minimal crossover. The role of novel agents in CNS MM management will be discussed as well as the potential role of other new immunomodulatory drugs (pomalidomide) and proteasome inhibitors that seem to cross the BBB and hold promise into the treatment of this rare and still incurable localization of the disease.

  10. Enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Fenger, Christina

    2009-01-01

    Acute multiple sclerosis lesions are characterized by accumulation of T cells and macrophages, destruction of myelin and oligodendrocytes, and axonal damage. There is, however, limited information on neuroimmune interactions distal to sites of axonal damage in the T cell-infiltrated central nervo...

  11. Behaviour of oligodendrocytes and Schwann cells in an experimental model of toxic demyelination of the central nervous system Comportamento de oligodendrócitos e células de Schwann em modelo experimental de desmielinização tóxica do sistema nervoso central

    Directory of Open Access Journals (Sweden)

    Dominguita Lühers Graça

    2001-06-01

    Full Text Available Oligodendrocytes and Schwann cells are engaged in myelin production, maintenance and repairing respectively in the central nervous system (CNS and the peripheral nervous system (PNS. Whereas oligodendrocytes act only within the CNS, Schwann cells are able to invade the CNS in order to make new myelin sheaths around demyelinated axons. Both cells have some limitations in their activities, i.e. oligodendrocytes are post-mitotic cells and Schwann cells only get into the CNS in the absence of astrocytes. Ethidium bromide (EB is a gliotoxic chemical that when injected locally within the CNS, induce demyelination. In the EB model of demyelination, glial cells are destroyed early after intoxication and Schwann cells are free to approach the naked central axons. In normal Wistar rats, regeneration of lost myelin sheaths can be achieved as early as thirteen days after intoxication; in Wistar rats immunosuppressed with cyclophosphamide the process is delayed and in rats administered cyclosporine it may be accelerated. Aiming the enlightening of those complex processes, all events concerning the myelinating cells in an experimental model are herein presented and discussed.Oligodendrócitos e células de Schwann realizam a produção e manutenção das bainhas de mielina, respectivamente no sistema nervoso central (SNC e periférico (SNP. As células de Schwann, à diferença dos oligodendrócitos, são capazes de invadir o SNC para remielinizar axônios desmielinizados, sempre que os astrócitos tenham sido destruídos. O brometo de etídio é uma droga gliotóxica usada para induzir desmielinização com o desaparecimento precoce de astrócitos, de modo que as células de Schwann têm liberdade para invadir o SNC. Em ratos Wistar normais, a remielinização é detectada treze dias após desmielinização; em ratos Wistar imunossuprimidos com ciclofosfamida a reparação do tecido é tardia, enquanto que em animais tratados com ciclosporina ela

  12. Response inhibition of face stimuli linked to inferior frontal gyrus microstructure in adolescents

    DEFF Research Database (Denmark)

    Holm-Skjold, Jonathan; Baaré, William Frans Christiaan; Jernigan, Terry Lynne

    matter underlying these regions continues to develop throughout childhood and adolescence, as indicated by in an increase in fractional anisotropy (FA), possibly reflecting ongoing myelination, and/or increase in axon diameter and density7,8. Here we used an emotional Go/Nogo task to test the hypothesis......The ability to inhibit inappropriate behavior is an essential cognitive and social skill. Response inhibition of pre-potent motor responses as measured with a stop-signal or a Go/Nogo task improves throughout adolescence1,2. Performance on these tasks can be modulated by the valence of task stimuli....... Inhibition of negative faces has been shown to be more difficult than that of positive faces1,3. The brain network underlying response inhibition includes the right inferior frontal gyrus (IFG), right presupplementary motor area (preSMA), and superior longitudinal fasciculus (SLF) bilaterally 4–6. The white...

  13. Statin therapy inhibits remyelination in the central nervous system

    DEFF Research Database (Denmark)

    Miron, Veronique E; Zehntner, Simone P; Kuhlmann, Tanja

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood...... that OPCs were maintained in an immature state (Olig2(strong)/Nkx2.2(weak)). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating...... the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes....

  14. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    Science.gov (United States)

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  15. Microtubule-Targeting Agents Enter the Central Nervous System (CNS: Double-edged Swords for Treating CNS Injury and Disease

    Directory of Open Access Journals (Sweden)

    Eun-Mi Hur

    2014-12-01

    Full Text Available Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  16. EMMPRIN, an upstream regulator of MMPs, in CNS biology.

    Science.gov (United States)

    Kaushik, Deepak Kumar; Hahn, Jennifer Nancy; Yong, V Wee

    2015-01-01

    Matrix metalloproteinases (MMPs) are engaged in pathologies associated with infections, tumors, autoimmune disorders and neurological dysfunctions. With the identification of an upstream regulator of MMPs, EMMPRIN (Extracellular matrix metalloproteinase inducer, CD147), it is relevant to address if EMMPRIN plays a role in the pathology of central nervous system (CNS) diseases. This would enable the possibility of a more upstream and effective therapeutic target. Indeed, conditions including gliomas, Alzheimer's disease (AD), multiple sclerosis (MS), and other insults such as hypoxia/ischemia show elevated levels of EMMPRIN which correlate with MMP production. In contrast, given EMMPRIN's role in CNS homeostasis with respect to regulation of monocarboxylate transporters (MCTs) and interactions with adhesion molecules including integrins, we need to consider that EMMPRIN may also serve important regulatory or protective functions. This review summarizes the current understanding of EMMPRIN's involvement in CNS homeostasis, its possible roles in escalating or reducing neural injury, and the mechanisms of EMMPRIN including and apart from MMP induction. Copyright © 2015 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  17. CNS effects following the treatment of malignancy

    International Nuclear Information System (INIS)

    Rane, N.; Quaghebeur, G.

    2012-01-01

    Corporeal and central nervous system (CNS) axis chemotherapy and radiotherapy have long been used for the effective treatment and prophylaxis of CNS, body malignancies, and leukaemias. However, they are not without their problems. Following the proliferation of magnetic resonance neuroimaging in recent years it has become clear that the spectrum of toxicity that these therapies produce ranges from subclinical white matter changes to overt brain necrosis. The effects are both direct and indirect and via different pathological mechanisms. Chronic and progressive changes can be detected many years after the initial intervention. In addition to leucoencephalopathic changes, grey matter changes are now well described. Changes may be difficult to distinguish from tumour recurrence, though may be reversible and remediable, and are thus very important to differentiate. In this review toxic effects are classified and their imaging appearances discussed, with reference to specific syndromes.

  18. Therapeutic potential of agmatine for CNS disorders.

    Science.gov (United States)

    Neis, Vivian B; Rosa, Priscila B; Olescowicz, Gislaine; Rodrigues, Ana Lúcia S

    2017-09-01

    Agmatine is a neuromodulator that regulates multiple neurotransmitters and signaling pathways. Several studies have focused on elucidating the mechanisms underlying the neuroprotective effects of this molecule, which seems to be mediated by a reduction in oxidative damage, neuroinflammation, and proapoptotic signaling. Since these events are implicated in acute and chronic excitotoxicity-related disorders (ischemia, epilepsy, traumatic brain injury, spinal cord injury, neurodegenerative, and psychiatric disorders) as well as in nociception, agmatine has been proposed as a therapeutic strategy for the treatment of central nervous system (CNS) disorders. Agmatine also stimulates the expression of trophic factors and adult neurogenesis, contributing to its ability to induce endogenous repair mechanisms. Therefore, considering its wide range of biological effects, this review summarizes the current knowledge about its protective and regenerative properties in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mechanisms of CNS invasion and damage by parasites.

    Science.gov (United States)

    Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina

    2013-01-01

    Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effectiveness of Prescription-Based CNS Stimulants on Hospitalization in Patients With Schizophrenia

    DEFF Research Database (Denmark)

    Rohde, Christopher; Polcwiartek, Christoffer; Asztalos, Marton

    2018-01-01

    were used to investigate the effectiveness of CNS stimulants in patients with schizophrenia between 1995 and 2014; a mirror-image model with 605 individuals, using paired t tests and Wilcoxon signed rank tests, and a follow-up study with 789 individuals, using a conditional risk-set model. RESULTS: CNS...

  1. Functional organization of an Mbp enhancer exposes striking transcriptional regulatory diversity within myelinating glia

    DEFF Research Database (Denmark)

    Dionne, Nancy; Dib, Samar; Finsen, Bente

    2016-01-01

    regulatory element combinations were found to drive expression in oligodendrocytes and Schwann cells with a minimal 129 bp sequence conferring expression in oligodendrocytes throughout myelin elaboration, maintenance and repair. Unexpectedly, M3 derivatives conferred markedly different spatial and temporal...

  2. Current approaches to enhance CNS delivery of drugs across the brain barriers

    Directory of Open Access Journals (Sweden)

    Lu CT

    2014-05-01

    Full Text Available Cui-Tao Lu,1 Ying-Zheng Zhao,2,3 Ho Lun Wong,4 Jun Cai,5 Lei Peng,2 Xin-Qiao Tian1 1The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China; 2Hainan Medical College, Haikou City, Hainan Province, People’s Republic of China; 3College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, People’s Republic of China; 4School of Pharmacy, Temple University, Philadelphia, PA, USA; 5Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA Abstract: Although many agents have therapeutic potentials for central nervous system (CNS diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. Keywords: drug delivery system, blood–brain barrier (BBB, central nervous system, brain-targeted therapy, cerebrospinal fluid (CSF

  3. Role of T cell – glial cell interactions in creating and amplifying Central Nervous System inflammation and Multiple Sclerosis disease symptoms

    Directory of Open Access Journals (Sweden)

    Eric S. Huseby

    2015-08-01

    Full Text Available Multiple Sclerosis (MS is an inflammatory disease of the Central Nervous System (CNS that causes the demyelination of nerve cells and destroys oligodendrocytes, neurons and axons. Historically, MS has been thought of as a T cell-mediated autoimmune disease of CNS white matter. However, recent studies have identified gray matter lesions in MS patients, suggesting that CNS antigens other than myelin proteins may be involved during the MS disease process. We have recently found that T cells targeting astrocyte-specific antigens can drive unique aspects of inflammatory CNS autoimmunity, including the targeting of gray matter and white matter of the brain and inducing heterogeneous clinical disease courses. In addition to being a target of T cells, astrocytes play a critical role in propagating the inflammatory response within the CNS through cytokine induced NF-ΚB signaling. Here, we will discuss the pathophysiology of CNS inflammation mediated by T cell – glial cell interactions and its contributions to CNS autoimmunity.

  4. When the Tail Can't Wag the Dog: The Implications of CNS-Intrinsic Initiation of Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Deirdre S Davis

    2009-04-01

    Full Text Available The CNS (central nervous system is unquestionably the central organ that regulates directly or indirectly all physiological systems in the mammalian body. Yet, when considering the defence of the CNS from pathogens, the CNS has often been considered passive and subservient to the pro-inflammatory responses of the immune system. In this view, neuroinflammatory disorders are examples of when the tail (the immune system wags the dog (the CNS to the detriment of an individual's function and survival.

  5. Decreased NAA in gray matter is correlated with decreased availability of acetate in white matter in postmortem multiple sclerosis cortex.

    Science.gov (United States)

    Li, S; Clements, R; Sulak, M; Gregory, R; Freeman, E; McDonough, J

    2013-11-01

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system (CNS) which leads to progressive neurological disability. Our previous studies have demonstrated mitochondrial involvement in MS cortical pathology and others have documented decreased levels of the neuronal mitochondrial metabolite N-acetyl aspartate (NAA) in the MS brain. While NAA is synthesized in neurons, it is broken down in oligodendrocytes into aspartate and acetate. The resulting acetate is incorporated into myelin lipids, linking neuronal mitochondrial function to oligodendrocyte-mediated elaboration of myelin lipids in the CNS. In the present study we show that treating human SH-SY5Y neuroblastoma cells with the electron transport chain inhibitor antimycin A decreased levels of NAA as measured by HPLC. To better understand the significance of the relationship between mitochondrial function and levels of NAA and its breakdown product acetate on MS pathology we then quantitated the levels of NAA and acetate in MS and control postmortem tissue blocks. Regardless of lesion status, we observed that levels of NAA were decreased 25 and 32 % in gray matter from parietal and motor cortex in MS, respectively, compared to controls. Acetate levels in adjacent white matter mirrored these decreases as evidenced by the 36 and 45 % reduction in acetate obtained from parietal and motor cortices. These data suggest a novel mechanism whereby mitochondrial dysfunction and reduced NAA levels in neurons may result in compromised myelination by oligodendrocytes due to decreased availability of acetate necessary for the synthesis of myelin lipids.

  6. Circulating antibody to myelin basic protein in relapsing-remitting multiple sclerosis

    International Nuclear Information System (INIS)

    Biggins, J.A.; Taylor, A.; Caspary, E.A.

    1978-01-01

    Sera from multiple sclerosis patients with relapsing-remitting disease and normal subjects were tested for antibody to myelin basic protein by a sensitive radioimmunoassay. The results showed a marginally decreased titre in multiple sclerosis superimposed on a seasonal variation. There was no correlation with the clinical state of the patients. Results are discussed briefly in relation to humoral antibody function in multiple sclerosis and experimental autoimmune encephalitis. (author)

  7. An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration.

    Science.gov (United States)

    Huang, Claire Yu-Mei; Zhang, Chuansheng; Zollinger, Daniel R; Leterrier, Christophe; Rasband, Matthew N

    2017-11-22

    Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with βIV and βII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1 f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K + channels. We show that the density of nodal βIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1 f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier. SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in

  8. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi.

    Science.gov (United States)

    Malik, Jai; Karan, Maninder; Vasisht, Karan

    2011-12-01

    Shankhpushpi, a well-known drug in Ayurveda, is extensively used for different central nervous system (CNS) effects especially memory enhancement. Different plants are used under the name shankhpushpi in different regions of India, leading to an uncertainty regarding its true source. Plants commonly used under the name shankhpushpi are: Convolvulus pluricaulis Chois., Evolvulus alsinoides Linn., both from Convolvulaceae, and Clitoria ternatea Linn. (Leguminosae). To find out the true source of shankhpushpi by evaluating and comparing memory-enhancing activity of the three above mentioned plants. Anxiolytic, antidepressant and CNS-depressant activities of these three plants were also compared and evaluated. The nootropic activity of the aqueous methanol extract of each plant was tested using elevated plus-maze (EPM) and step-down models. Anxiolytic, antidepressant and CNS-depressant studies were evaluated using EPM, Porsolt?s swim despair and actophotometer models, respectively. C. pluricaulis extract (CPE) at a dose of 100 mg/kg, p.o. showed maximum nootropic and anxiolytic activity (p nootropic, anxiolytic and CNS-depressant activity. The results of memory-enhancing activity suggest C. pluricaulis to be used as true source of shankhpushpi.

  9. Characterization of fatty acid binding by the P2 myelin protein

    International Nuclear Information System (INIS)

    Gudaitis, P.G.; Weise, M.J.

    1987-01-01

    In recent years, significant sequence homology has been found between the P2 protein of peripheral myelin and intracellular retinoid- and fatty acid-binding proteins. They have found that salt extracts of bovine intradural nerve roots contain the P2 basic protein in association with free fatty acid. Preliminary results from quantitative analyses showed a ratio of 0.4-1.1 fatty acid (mainly oleate and palmitate) per P2 molecule. P2/ligand interactions were partially characterized using ( 3 H)-oleate in gel permeation assays and binding studies using lipidex to separated bound and free fatty acid. Methyloleate was found to displace ( 3 H)-oleate from P2, indicating that ligand binding interactions are predominantly hydrophobic in nature. On the other hand, myristic acid and retinol did not inhibit the binding of oleate to the protein, results consistent with a decided affinity for long chain fatty acids but not for the retinoids. The binding between P2 and oleic acid showed an apparent Kd in the micromolar range, a value comparable to those found for other fatty acid-binding proteins. From these results they conclude that P2 shares not only structural homology with certain fatty acid binding proteins but also an ability to bind long chain fatty acids. Although the significance of these similarities is not yet clear, they may, by analogy, expect P2 to have a role in PNS lipid metabolism

  10. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  11. The shifting landscape of metastatic breast cancer to the CNS.

    Science.gov (United States)

    Quigley, Matthew R; Fukui, Olivia; Chew, Brandon; Bhatia, Sanjay; Karlovits, Steven

    2013-07-01

    The improved survival following the diagnosis of breast cancer has potentially altered the characteristics and course of patients presenting with CNS involvement. We therefore sought to define our current cohort of breast cancer patients with metastatic disease to the CNS in regard to modern biomarkers and clinical outcome. Review of clinical and radiographic records of women presenting to a tertiary medical center with the new diagnosis of CNS metastatic disease from breast cancer. This was a retrospective review from patients identities obtained from two prospective databases. There were 88 women analyzed who were treated over the period of January 2003 to February 2010, average age 56.9 years. At the time of initial presentation of CNS disease, 68 % of patients had multiple brain metastases, 17 % had a solitary metastasis, and 15 % had only leptomeningeal disease (LMD). The median survival for all patients from the time of diagnosis of breast disease was 50.0 months, and 9.7 months from diagnosis of CNS involvement. The only factor related to overall survival was estrogen receptor-positive pathology (57.6 v. 38.2 months, p = .02 log-rank); those related to survival post CNS diagnosis were presentation with LMD (p = .004, HR = 3.1, Cox regression) and triple-negative hormonal/HER2 status (p = .02, HR = 2.3, Cox regression). Patients with either had a median survival of 3.1 months (no patients in common). Of the 75 patients who initially presented with metastatic brain lesions, 20 (26 %) subsequently developed LMD in the course of their disease (median 10.4 months), following which survival was grim (1.8 months median). Symptoms of LMD were most commonly lower extremity weakness (14/33), followed by cranial nerve deficits (11/33). The recently described Graded Prognostic Assessment (GPA) tumor index stratified median survival at 2.5, 5.9, 13.1, and 21.7 months, respectively, for indices of 1-4 (p = .004, log-rank), which

  12. In Acute Experimental Autoimmune Encephalomyelitis, Infiltrating Macrophages Are Immune Activated, Whereas Microglia Remain Immune Suppressed

    NARCIS (Netherlands)

    Vainchtein, I. D.; Vinet, J.; Brouwer, N.; Brendecke, S.; Biagini, G.; Biber, K.; Boddeke, H. W. G. M.; Eggen, B. J. L.

    2014-01-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of

  13. Pioneers in CNS inhibition: 1. Ivan M. Sechenov, the first to clearly demonstrate inhibition arising in the brain.

    Science.gov (United States)

    Stuart, Douglas G; Schaefer, Andreas T; Massion, Jean; Graham, Brett A; Callister, Robert J

    2014-02-22

    This article reviews the contributions of Ivan Michailovich Sechenov [1829-1905] to the neurophysiological concept of central inhibition. He first studied this concept in the frog and on himself. Later his trainees extended the study of central inhibition to other mammalian species. Outside his own country, Sechenov is better known for his prescient contributions to physiological psychology. In Russia, however, he is also revered as "the father of Russian physiology," because of his contributions to neurophysiology and other aspects of physiology including blood gases and respiration, the physiology and biomechanics of movement, and general physiology concepts that appeared in his textbooks and later works he helped translate from largely German sources. After graduation from Moscow University Medical School in 1856 he spent 3½ years in Germany and Austria where he attended lectures and conducted research under the direction of several prominent physiologists and biochemists. In his subsequent academic career he held positions at universities in St. Petersburg (1860-1870; 1876-1888), Odessa (1871-1876) and Moscow (1890-1905). From 1860 onwards he was acclaimed as a physiologist in academic circles. He was also well known in Russian society for his public lectures on physiology and his views on physiological psychology. The latter resulted in him being branded "politically unreliable" by the tsarist bureaucracy from 1863 onwards. Sechenov's first (1862) study on central inhibition remains his most memorable. He delayed the withdrawal of a frog's foot from a weak acid solution by chemical or electrical stimulation of selected parts of the central nervous system. He also noted similar effects on his own hand during co-activation of other sensory inputs by tickling or teeth gnashing. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Ketamine displaces the novel NMDA receptor SPET probe [123I]CNS-1261 in humans in vivo

    International Nuclear Information System (INIS)

    Stone, James M.; Erlandsson, Kjell; Arstad, Erik; Bressan, Rodrigo A.; Squassante, Lisa; Teneggi, Vincenza; Ell, Peter J.; Pilowsky, Lyn S.

    2006-01-01

    [ 123 I]CNS-1261 [N-(1-naphthyl)-N'-(3-iodophenyl)-N-methylguanidine] is a high-affinity SPET ligand with selectivity for the intrachannel PCP/ketamine/MK-801 site of the N-methyl-D-aspartate (NMDA) receptor. This study evaluated the effects of ketamine (a specific competitor for the intrachannel PCP/ketamine/MK-801 site) on [ 123 I]CNS-1261 binding to NMDA receptors in vivo. Ten healthy volunteers underwent 2 bolus-plus-infusion [ 123 I]CNS-1261 scans, one during placebo and the other during a ketamine challenge. Ketamine administration led to a significant decrease in [ 123 I]CNS-1261 V T in most of the brain regions examined (P 123 I]CNS-1261 appears to be a specific ligand in vivo for the intrachannel PCP/ketamine/MK-801 NMDA binding site

  15. [11C]NS8880, a promising PET radiotracer targeting the norepinephrine transporter

    DEFF Research Database (Denmark)

    Vase, Karina Højrup; Peters, Dan; Nielsen, Elsebeth Ø

    2014-01-01

    -azabicyclo[3.2.1]octane (NS8880), targeting NET. NS8880 has an in vitro binding profile comparable to desipramine and is structurally not related to reboxetine. METHODS: Labeling of NS8880 with [11C] was achieved by a non-conventional technique: substitution of pyridinyl fluorine with [11C]methanolate...... yields with high purity. The PET in vivo evaluation in pig and rat revealed a rapid brain uptake of [11C]NS8880 and fast obtaining of equilibrium. Highest binding was observed in thalamic and hypothalamic regions. Pretreatment with desipramine efficiently reduced binding of [11C]NS8880. CONCLUSION: Based...... on the pre-clinical results obtained so far [11C]NS8880 displays promising properties for PET imaging of NET....

  16. Morphological evaluation of fetus CNS and its related anomalies

    International Nuclear Information System (INIS)

    Oi, Shizuo; Tamaki, Norihiko; Matsumoto, Satoshi; Katayama, Kazuaki; Mochizuki, Matsuto

    1989-01-01

    The fetus central nervous system was evaluated morphologically by ultrasonography (US), magnetic resonance imaging (MRI), and CT scan to analyze the prenatal diagnostic value for CNS anomalies. A total of 31 patients with 42 lesions had been diagnosed during the preceding 7 years. The patients included 24 with hydrocephalus, three with anencephaly, three with myeloschisis, three with holoprosencephaly, three with an encephalocele, two with a Dandy-Walker cyst, one with hydroencephalodysplasia, one with an intracranial neoplasm, one with sacrococcygeal teratoma, and one with sacral agenesis. Compared with US and MRI, CT proved to be more accurate in the detection of spine and cranium-bone morphology. This finding seems to be valuable in the diagnosis of spina bifida, cranium bifidum and some cases of hypertensive hydrocephalus, especially in the axial view. MRI was definitely superior in the anatomico-pathological diagnosis of cerebral dysgenesis, ventriculomegaly, intracranial tumors, and other brain parenchymal changes in view of multi-dimensional analysis. The most considerable disadvantage of MRI in the diagnosis of a fetus CNS anomaly is the poor information about spine and cranium morphology. A super-conducting MRI system is still insufficient to demonstrate the spinal cord of a fetus. US was routinely used, and the multidimensional slices were useful for screening the CNS abnormalies. Some of the fetus brain lesions, such as intracranial hematomas, had a specific echogenecity on US. However, US sometimes failed to demarcate the cerebral parenchymal or subdural morphological changes because its artifacts had hyperchoic shadows. While US, MRI, and CT were valuable diagnostic tools in the morphological evaluation of fetus CNS and its related anomalies, each modality has different diagnostic advantages and disadvantages. Improvement can be expected when these diagnostic imaging modalities are complementary, depending upon the nature of the anatomy. (J.P.N.)

  17. Analysis of neurocognitive function and CNS endpoints in the PROTEA trial

    DEFF Research Database (Denmark)

    Clarke, Amanda; Johanssen, Veronika; Gerstoft, Jan

    2014-01-01

    INTRODUCTION: During treatment with protease inhibitor monotherapy, the number of antiretrovirals with therapeutic concentrations in the cerebrospinal fluid (CSF) is lower, compared to standard triple therapy. However, the clinical consequences are unclear. METHODS: A total of 273 patients with HIV...... and the Grooved Pegboard Test at screening, baseline and at Week 48. A global neurocognitive score (NPZ-5) was derived by averaging the standardized results of the five domains. In a central nervous system (CNS) sub-study (n=70), HIV RNA levels in the CNS were evaluated at baseline and Week 48. Clinical adverse...... events related to the CNS were collected at each visit. RESULTS: Patients were 83% male and 88% White, with median age 43 years. There were more patients with nadir CD4 count below 200 cells/µL in the DRV/r monotherapy arm (41/137, 30%) than the triple therapy arm (30/136, 22%). At Week 48...

  18. Deviant white matter structure in adults with attention-deficit/hyperactivity disorder points to aberrant myelination and affects neuropsychological performance.

    Science.gov (United States)

    Onnink, A Marten H; Zwiers, Marcel P; Hoogman, Martine; Mostert, Jeanette C; Dammers, Janneke; Kan, Cornelis C; Vasquez, Alejandro Arias; Schene, Aart H; Buitelaar, Jan; Franke, Barbara

    2015-12-03

    Attention-deficit/hyperactivity disorder (ADHD) in childhood is characterized by gray and white matter abnormalities in several brain areas. Considerably less is known about white matter microstructure in adults with ADHD and its relation with clinical symptoms and cognitive performance. In 107 adult ADHD patients and 109 gender-, age- and IQ-matched controls, we used diffusion tensor imaging (DTI) with tract-based spatial statistics (TBSS) to investigate whole-skeleton changes of fractional anisotropy (FA) and mean, axial, and radial diffusivity (MD, AD, RD). Additionally, we studied the relation of FA and MD values with symptom severity and cognitive performance on tasks measuring working memory, attention, inhibition, and delay discounting. In comparison to controls, participants with ADHD showed reduced FA in corpus callosum, bilateral corona radiata, and thalamic radiation. Higher MD and RD were found in overlapping and even more widespread areas in both hemispheres, also encompassing internal and external capsule, sagittal stratum, fornix, and superior lateral fasciculus. Values of FA and MD were not associated with symptom severity. However, within some white matter clusters that distinguished patients from controls, worse inhibition performance was associated with reduced FA and more impulsive decision making was associated with increased MD. This study shows widespread differences in white matter integrity between adults with persistent ADHD and healthy individuals. Changes in RD suggest aberrant myelination as a pathophysiological factor in persistent ADHD. The microstructural differences in adult ADHD may contribute to poor inhibition and greater impulsivity but appear to be independent of disease severity. Copyright © 2015. Published by Elsevier Inc.

  19. Maturation of cognitive control: delineating response inhibition and interference suppression.

    Directory of Open Access Journals (Sweden)

    Christopher R Brydges

    Full Text Available Cognitive control is integral to the ability to attend to a relevant task whilst suppressing distracting information or inhibiting prepotent responses. The current study examined the development of these two subprocesses by examining electrophysiological indices elicited during each process. Thirteen 18 year-old adults and thirteen children aged 8-11 years (mean=9.77 years completed a hybrid Go/Nogo flanker task while continuous EEG data were recorded. The N2 topography for both response inhibition and interference suppression changed with increasing age. The neural activation associated with response inhibition became increasingly frontally distributed with age, and showed decreases of both amplitude and peak latency from childhood to adulthood, possibly due to reduced cognitive demands and myelination respectively occurring during this period. Interestingly, a significant N2 effect was apparent in adults, but not observed in children during trials requiring interference suppression. This could be due to more diffuse activation in children, which would require smaller levels of activation over a larger region of the brain than is reported in adults. Overall, these results provide evidence of distinct maturational processes occurring throughout late childhood and adolescence, highlighting the separability of response inhibition and interference suppression.

  20. Association of a History of Child Abuse With Impaired Myelination in the Anterior Cingulate Cortex: Convergent Epigenetic, Transcriptional, and Morphological Evidence.

    Science.gov (United States)

    Lutz, Pierre-Eric; Tanti, Arnaud; Gasecka, Alicja; Barnett-Burns, Sarah; Kim, John J; Zhou, Yi; Chen, Gang G; Wakid, Marina; Shaw, Meghan; Almeida, Daniel; Chay, Marc-Aurele; Yang, Jennie; Larivière, Vanessa; M'Boutchou, Marie-Noël; van Kempen, Léon C; Yerko, Volodymyr; Prud'homme, Josée; Davoli, Maria Antonietta; Vaillancourt, Kathryn; Théroux, Jean-François; Bramoullé, Alexandre; Zhang, Tie-Yuan; Meaney, Michael J; Ernst, Carl; Côté, Daniel; Mechawar, Naguib; Turecki, Gustavo

    2017-12-01

    Child abuse has devastating and long-lasting consequences, considerably increasing the lifetime risk of negative mental health outcomes such as depression and suicide. Yet the neurobiological processes underlying this heightened vulnerability remain poorly understood. The authors investigated the hypothesis that epigenetic, transcriptomic, and cellular adaptations may occur in the anterior cingulate cortex as a function of child abuse. Postmortem brain samples from human subjects (N=78) and from a rodent model of the impact of early-life environment (N=24) were analyzed. The human samples were from depressed individuals who died by suicide, with (N=27) or without (N=25) a history of severe child abuse, as well as from psychiatrically healthy control subjects (N=26). Genome-wide DNA methylation and gene expression were investigated using reduced representation bisulfite sequencing and RNA sequencing, respectively. Cell type-specific validation of differentially methylated loci was performed after fluorescence-activated cell sorting of oligodendrocyte and neuronal nuclei. Differential gene expression was validated using NanoString technology. Finally, oligodendrocytes and myelinated axons were analyzed using stereology and coherent anti-Stokes Raman scattering microscopy. A history of child abuse was associated with cell type-specific changes in DNA methylation of oligodendrocyte genes and a global impairment of the myelin-related transcriptional program. These effects were absent in the depressed suicide completers with no history of child abuse, and they were strongly correlated with myelin gene expression changes observed in the animal model. Furthermore, a selective and significant reduction in the thickness of myelin sheaths around small-diameter axons was observed in individuals with history of child abuse. The results suggest that child abuse, in part through epigenetic reprogramming of oligodendrocytes, may lastingly disrupt cortical myelination, a

  1. Myelin structure is a key difference in the x-ray scattering signature between meningioma, schwannoma and glioblastoma multiforme

    International Nuclear Information System (INIS)

    Falzon, G; Pearson, S; Murison, R; Hall, C; Siu, K; Round, A; Schueltke, E; Kaye, A H; Lewis, R

    2007-01-01

    Small angle x-ray scattering (SAXS) patterns of benign and malignant brain tumour tissue were examined. Independent component analysis was used to find a feature set representing the images collected. A set of coefficients was then used to describe each image, which allowed the use of the statistical technique of flexible discriminant analysis to discover a hidden order in the data set. The key difference was found to be in the intensity and spectral content of the second and fourth order myelin scattering peaks. This has clearly demonstrated that significant differences in the structure of myelin exist in the highly malignant glioblastoma multiforme as opposed to the benign: meningioma and schwannoma

  2. Nuclear innovation through collaboration. 35th Annual CNS conference and 39th CNS/CNA student conference

    International Nuclear Information System (INIS)

    2015-01-01

    The Canadian Nuclear Society (CNS) held its 35th Annual Conference in Saint John, New Brunswick, Canada on May 31 to June 3, 2015, combined with the 39th Annual CNS/CNA Student Conference. With the theme of the conference, 'Nuclear Innovation through Collaboration', more than 425 delegates, exhibitors and students were in attendance. The conference commenced with two strong plenary sessions on Utility Collaborations to Improve Lifetime Performance; and, Performance Improvement Programs: Goals and Experience. The second day consisted of the panel discussions on International Developments in Used Nuclear Fuel Repository Programs, and two plenary sessions on: Enterprise Risk Management; and, Vendor Role in a Continuously Improving Industry. The third day contained a number of interesting features, including plenary sessions on Waste Management and Decommissioning; Developing Technologies and Resources, and a panel discussion on the Transportation of Used Nuclear Fuel. All three days of the conference also contained parallel sessions with over 100 technical papers presented at the main and student sessions. The technical session titles were: Refurbishment and Life Extension; Thermalhydraulics; Nuclear Materials; WMD - Radiation Monitoring; Safety and Licensing; Communication; Safety and Licensing; Instrumentation and Control; Advanced Reactor Designs; WMD - Deep Geological Repository Packaging; Reactor Physics; Chemistry and Materials; Advanced Fuel Cycles; Waste Management and Decommissioning; and, Medical Physics and Radiation Biology.

  3. Metallothionein expression and roles in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2002-01-01

      Metallothioneins (MTs) are low-molecular-weight (6-7 kDa) nonenzymatic proteins (60-68 amino acid residues, 25-30% being cysteine) expressed ubiquitous in the animal kingdom. In the central nervous system (CNS), three MT isoforms are known, namely MT-I to MT-III. MT-I and MT-II (MT...

  4. CNS Involvement in Hemophagocytic Lymphohistiocytosis: CT and MR Findings

    International Nuclear Information System (INIS)

    Chung, Tae Woong

    2007-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a rare disorder that is characterized by proliferation of benign histiocytes, and this commonly involves the liver, spleen, lymph nodes, bone marrow and central nervous system (CNS). We report here on the CT and MR imaging findings in a case of CNS HLH that showed multiple ring enhancing masses mimicking abscess or another mass on the CT and MR imaging. emophagocytic lymphohistiocytosis (HLH) is a rare disorder that is characterized by nonmalignant diffuse infiltration of multiple organs, including the central nervous system (CNS), by lymphocytes and histiocytes (1). Many radiologic reports describing diffuse white matter infiltrations, parenchymal atrophy and calcification have been published, but the characteristics of these findings remain non-specific, especially in immunocompromised patients. We present here a case of HLH in a 3-year-old boy who presented with multiple ring enhancing lesions involving the brain. In conclusion, although the CT and MRI findings of HLH with ring enhancing parenchymal lesions are nonspecific and mimic abscess, and especially in the immunosuppressed patients, increased diffusion at the center on DWI may be a finding of HLH to differentiate it from abscess, which has restricted diffusion at the center. However, the pathologic correlation with DWI according to the lesion stage certainly needs further study with a larger number of patients

  5. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion...

  6. Is risk of central nervous system (CNS) relapse related to adjuvant taxane treatment in node-positive breast cancer? Results of the CNS substudy in the intergroup Phase III BIG 02-98 Trial

    DEFF Research Database (Denmark)

    Pestalozzi, B.C.; Francis, P.; Quinaux, E.

    2008-01-01

    BACKGROUND: Breast cancer central nervous system (CNS) metastases are an increasingly important problem because of high CNS relapse rates in patients treated with trastuzumab and/or taxanes. PATIENTS AND METHODS: We evaluated data from 2887 node-positive breast cancer patients randomised in the BIG...

  7. Differential distribution of voltage-gated channels in myelinated and unmyelinated baroreceptor afferents.

    Science.gov (United States)

    Schild, John H; Kunze, Diana L

    2012-12-24

    Voltage gated ion channels (VGC) make possible the frequency coding of arterial pressure and the neurotransmission of this information along myelinated and unmyelinated fiber pathways. Although many of the same VGC isoforms are expressed in both fiber types, it is the relative expression of each that defines the unique discharge properties of myelinated A-type and unmyelinated C-type baroreceptors. For example, the fast inward Na⁺ current is a major determinant of the action potential threshold and the regenerative transmembrane current needed to sustain repetitive discharge. In A-type baroreceptors the TTX-sensitive Na(v)1.7 VGC contributes to the whole cell Na⁺ current. Na(v)1.7 is expressed at a lower density in C-type neurons and in conjunction with TTX-insensitive Na(v)1.8 and Na(v)1.9 VGC. As a result, action potentials of A-type neurons have firing thresholds that are 15-20 mV more negative and upstroke velocities that are 5-10 times faster than unmyelinated C-type neurons. A more depolarized threshold in conjunction with a broader complement of non-inactivating K(V) VGC subtypes produces C-type action potentials that are 3-4 times longer in duration than A-type neurons and at markedly lower levels of cell excitability. Unmyelinated baroreceptors also express KCa1.1 which provides approximately 25% of the total outward K⁺ current. KCa1.1 plays a critically important role in shaping the action potential profile of C-type neurons and strongly impacts neuronal excitability. A-type neurons do not functionally express the KCa1.1 channel despite having a whole cell Ca(V) current quite similar to that of C-type neurons. As a result, A-type neurons do not have the frequency-dependent braking forces of KCa1.1. Lack of a KCa current and only a limited complement of non-inactivating K(V) VGC in addition to a hyperpolarization activated HCN1 current that is nearly 10 times larger than in C-type neurons leads to elevated levels of discharge in A-type neurons, a

  8. p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy

    DEFF Research Database (Denmark)

    Song, Yun Ju C; Lundvig, Ditte M S; Huang, Yue

    2007-01-01

    cytoplasmic inclusions. Overall, the data indicate that changes in the cellular interactions between MBP and p25alpha occur early in MSA and contribute to abnormalities in myelin and subsequent alpha-synuclein aggregation and the ensuing neuronal degeneration that characterizes this disease....

  9. Epitope diversity of N-glycans from bovine peripheral myelin glycoprotein P0 revealed by mass spectrometry and nano probe magic angle spinning 1H NMR spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Gutiérrez Gallego, R.; Jiménez Blanco, J.L.; Thijssen-van Zuylen, C.W.E.M.; Gotfredsen, C.H.; Voshol, H.; Duus, J.Ø.; Schachner, M.

    2001-01-01

    The carbohydrate structures present on the glycoproteins in the central and peripheral nerve systems are essential in many cell adhesion processes. The P0 glycoprotein, expressed by myelinating Schwann cells, plays an important role during the formation and maintenance of myelin, and it is the most

  10. Intraoperative squash smear cytology in CNS lesions: A study of 150 pediatric cases

    Directory of Open Access Journals (Sweden)

    Arpita Jindal

    2017-01-01

    Full Text Available Background: Tumors of the central nervous system in the pediatric age group occur relatively frequently during the early years of life. Brain tumors are the most common solid malignancies of childhood and only second to acute childhood leukemia. Squash cytology is an indispensable diagnostic aid to central nervous system (CNS lesions. The definitive diagnosis of brain lesions is confirmed by histological examination. Aim: To study the cytology of CNS lesions in pediatric population and correlate it with histopathology. Materials and Methods: One hundred and fifty cases of CNS lesions in pediatric patients were studied over a period of 2 years. Intraoperative squash smears were prepared, stained with hematoxylin and eosin, and examined. Remaining sample was subjected to histopathological examination. Results: Medulloblastoma (24.0% was the most frequently encountered tumor followed by pilocyctic astrocytoma (21.33% and ependymoma (13.33%. Diagnostic accuracy of squash smear technique was 94.67% when compared with histological diagnosis. Conclusion: Smear cytology is a fairly accurate tool for intraoperative CNS consultations.

  11. Cytokine production by cells in cerebrospinal fluid during experimental allergic encephalomyelitis in SJL/J mice

    DEFF Research Database (Denmark)

    Renno, T; Lin, J Y; Piccirillo, C

    1994-01-01

    Cytokine production by T cells in the cerebrospinal fluid (CSF) and central nervous system (CNS) of SJL/J mice during myelin basic protein (MBP)-induced experimental allergic encephalomyelitis (EAE) was examined. Reverse transcriptase/polymerase chain reaction (RT/PCR) was used to measure...... interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) mRNA levels from perfused CNS tissue (brain and spinal cord) and from cells isolated from CSF. Animals were grouped according to EAE severity, ranging from asymptomatic (adjuvant only) to severe disease (paralysis or severe paresis). Cytokine signals......, normalized to actin, were almost undetectable in control tissues, and only slightly elevated in whole CNS tissue from animals with mild EAE. Both cytokine messages were strongly upregulated in CNS tissues derived from severely affected animals, consistent with previous observations correlating disease...

  12. Intellectual abilities among survivors of childhood leukaemia as a function of CNS irradiation

    International Nuclear Information System (INIS)

    Eiser, C.

    1978-01-01

    Twenty-eight children in remission at least 2 years after completing chemotherapy for acute lymphoblastic leukaemia were assessed on standardised psychological tests. It was found that 7 who never had central nervous system (CNS) irradiation and 9 having prophylactic CNS irradiation at least 6 months after diagnosis tended to perform at average or above levels, while those 10 each having prophylactic CNS irradiation (within 2 months of diagnosis) were generally at lower ability. Within the latter group 3 children showed serious intellectual impairments, while the group as a whole functioned especially poorly on quantitative tasks and those involving speeded performance with abstract material. General language ability was not affected. Practical and theoretical implications are discussed. (author)

  13. Radiosensitivity of glial progenitor cells of the perinatal and adult rat optic nerve studied by an in vitro clonogenic assay

    International Nuclear Information System (INIS)

    Maazen, R.W.M. van der; Verhagen, I.; Kleiboer, B.J.; Kogel, A.J. van der

    1991-01-01

    The cellular basis of radiation-induced demyelination and white matter necrosis of the central nervous system (CNS), is poorly understood. Glial cells responsible for myelination in the CNS might be the target cells of this type of damage. Glial cells with stem cell properties derived from the perinatal and adult rat CNS can be cultured in vitro. These cells are able to differentiate into oligodendrocytes or type-2 astrocytes (O-2A) depending on the culture conditions. Growth factors produced by monolayers of type-1 astrocytes inhibit premature differentiation of O-2A progenitor cells and allow colony formation. A method which employs these monolayers of type-1 astrocytes to culture O-2A progenitor cells has been adapted to allow the analysis of colonies of surviving cells after X-irradiation. In vitro survival curves were obtained for glial progenitor cells derived from perinatal and adult optic nerves. The intrinsic radiosensitivity of perinatal and adult O-2A progenitor cells showed a large difference. Perinatal O-2A progenitor cells are quite radiosensitive, in contrast to adult O-2A progenitor cells. For both cell types an inverse relationship was found between the dose and the size of colonies derived from surviving cells. Surviving O-2A progenitor cells maintain their ability to differentiate into oligo-dendrocytes or type-2 astrocytes. This system to assess radiation-induced damage to glial progenitor cells in vitro systems to have a great potential in unraveling the cellular basis of radiation-induced demyelinating syndromes of the CNS. (author). 28 refs.; 4 figs.; 1 tab

  14. Investigation of sequential growth factor delivery during cuprizone challenge in mice aimed to enhance oligodendrogliogenesis and myelin repair.

    Directory of Open Access Journals (Sweden)

    Jennifer K Sabo

    Full Text Available Repair in multiple sclerosis involves remyelination, a process in which axons are provided with a new myelin sheath by new oligodendrocytes. Bone morphogenic proteins (BMPs are a family of growth factors that have been shown to influence the response of oligodendrocyte progenitor cells (OPCs in vivo during demyelination and remyelination in the adult brain. We have previously shown that BMP4 infusion increases numbers of OPCs during cuprizone-induced demyelination, while infusion of Noggin, an endogenous antagonist of BMP4 increases numbers of mature oligodendrocytes and remyelinated axons following recovery. Additional studies have shown that insulin-like growth factor-1 (IGF-1 promotes the survival of OPCs during cuprizone-induced demyelination. Based on these data, we investigated whether myelin repair could be further enhanced by sequential infusion of these agents firstly, BMP4 to increase OPC numbers, followed by either Noggin or IGF-1 to increase the differentiation and survival of the newly generated OPCs. We identified that sequential delivery of BMP4 and IGF-1 during cuprizone challenge increased the number of mature oligodendrocytes and decreased astrocyte numbers following recovery compared with vehicle infused mice, but did not alter remyelination. However, sequential delivery of BMP4 and Noggin during cuprizone challenge did not alter numbers of oligodendrocytes or astrocytes in the corpus callosum compared with vehicle infused mice. Furthermore, electron microscopy analysis revealed no change in average myelin thickness in the corpus callosum between vehicle infused and BMP4-Noggin infused mice. Our results suggest that while single delivery of Noggin or IGF-1 increased the production of mature oligodendrocytes in vivo in the context of demyelination, only Noggin infusion promoted remyelination. Thus, sequential delivery of BMP4 and Noggin or IGF-1 does not further enhance myelin repair above what occurs with delivery of Noggin

  15. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery.

    Science.gov (United States)

    Davis, Thomas P; Sanchez-Covarubias, Lucy; Tome, Margaret E

    2014-01-01

    The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. © 2014 Elsevier Inc. All rights reserved.

  16. Changes in the anisotropy of oriented membrane dynamics induced by myelin basic protein

    Energy Technology Data Exchange (ETDEWEB)

    Natali, F. [OGG-INFM, Grenoble (France); Gliozzi, A.; Rolandi, R.; Relini, A. [Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Universita di Genova (Italy); Cavatorta, P.; Deriu, A. [Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Universita di Parma (Italy); Fasano, A. [Dipartimento di Biochimica e Biologia Molecolare, Universita di Bari (Italy); Riccio, P. [Dipartimento di Biologia D.B.A.F., Universita della Basilicata, Potenza (Italy)

    2002-07-01

    We report recent results showing the evidence of the effect induced by physiological amounts of myelin basic protein (MBP) on the dynamics of dimyristoyl L-a-phosphatidic acid (DMPA) membranes. Incoherent elastic neutron scattering scans, performed over a wide temperature range, have shown that the anisotropy of motions in oriented membranes is significantly enhanced by the presence of MBP. (orig.)

  17. Glypicans and FGFs in CNS Development and Function

    NARCIS (Netherlands)

    Galli, Antonella

    2003-01-01

    One of the most important events during central nervous system (CNS) development is the communication between cells. Cell-to-cell signaling implicates the interaction between a signaling molecules (or ligands) and their receptors. Ligand-receptor interaction is a tightly regulated process and is

  18. The effect of beta-interferon therapy on myelin basic protein-elicited CD4+ T cell proliferation and cytokine production in multiple sclerosis

    DEFF Research Database (Denmark)

    Hedegaard, Chris J; Krakauer, Martin; Bendtzen, Klaus

    2008-01-01

    Interferon (IFN)-beta therapy has well-established clinical benefits in multiple sclerosis (MS), but the underlying modulation of cytokine responses to myelin self-antigens remains poorly understood. We analysed the CD4+ T cell proliferation and cytokine responses elicited by myelin basic protein...... (MBP) and a foreign recall antigen, tetanus toxoid (TT), in mononuclear cell cultures from fourteen MS patients undergoing IFN-beta therapy. The MBP-elicited IFN-gamma-, TNF-alpha- and IL-10 production decreased during therapy (p...

  19. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vuillemenot, Brian R., E-mail: bvuillemenot@bmrn.com [BioMarin Pharmaceutical Inc., Novato, CA (United States); Kennedy, Derek [BioMarin Pharmaceutical Inc., Novato, CA (United States); Reed, Randall P.; Boyd, Robert B. [Northern Biomedical Research, Inc., Muskegon, MI (United States); Butt, Mark T. [Tox Path Specialists, LLC, Hagerstown, MD (United States); Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O' Neill, Charles A. [BioMarin Pharmaceutical Inc., Novato, CA (United States)

    2014-05-15

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  20. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    International Nuclear Information System (INIS)

    Vuillemenot, Brian R.; Kennedy, Derek; Reed, Randall P.; Boyd, Robert B.; Butt, Mark T.; Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O'Neill, Charles A.

    2014-01-01

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  1. Elevated Expression of Fractalkine (CX3CL1 and Fractalkine Receptor (CX3CR1 in the Dorsal Root Ganglia and Spinal Cord in Experimental Autoimmune Encephalomyelitis: Implications in Multiple Sclerosis-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Wenjun Zhu

    2013-01-01

    Full Text Available Multiple sclerosis (MS is a central nervous system (CNS disease resulting from a targeted autoimmune-mediated attack on myelin proteins in the CNS. The release of Th1 inflammatory mediators in the CNS activates macrophages, antibodies, and microglia resulting in myelin damage and the induction of neuropathic pain (NPP. Molecular signaling through fractalkine (CX3CL1, a nociceptive chemokine, via its receptor (CX3CR1 is thought to be associated with MS-induced NPP. An experimental autoimmune encephalomyelitis (EAE model of MS was utilized to assess time dependent gene and protein expression changes of CX3CL1 and CX3CR1. Results revealed significant increases in mRNA and the protein expression of CX3CL1 and CX3CR1 in the dorsal root ganglia (DRG and spinal cord (SC 12 days after EAE induction compared to controls. This increased expression correlated with behavioural thermal sensory abnormalities consistent with NPP. Furthermore, this increased expression correlated with the peak neurological disability caused by EAE induction. This is the first study to identify CX3CL1 signaling through CX3CR1 via the DRG /SC anatomical connection that represents a critical pathway involved in NPP induction in an EAE model of MS.

  2. Effects of the mode of re-socialization after juvenile social isolation on medial prefrontal cortex myelination and function.

    Science.gov (United States)

    Makinodan, Manabu; Ikawa, Daisuke; Yamamuro, Kazuhiko; Yamashita, Yasunori; Toritsuka, Michihiro; Kimoto, Sohei; Yamauchi, Takahira; Okumura, Kazuki; Komori, Takashi; Fukami, Shin-Ichi; Yoshino, Hiroki; Kanba, Shigenobu; Wanaka, Akio; Kishimoto, Toshifumi

    2017-07-14

    Social isolation is an important factor in the development of psychiatric disorders. It is necessary to develop an effective psychological treatment, such as cognitive rehabilitation, for children who have already suffered from social isolation, such as neglect and social rejection. We used socially isolated mice to validate whether elaborate re-socialization after juvenile social isolation can restore hypomyelination in the medial prefrontal cortex (mPFC) and the attendant functions manifested in socially isolated mice. While mice who underwent re-socialization with socially isolated mice after juvenile social isolation (Re-IS mice) demonstrated less mPFC activity during exposure to a strange mouse, as well as thinner myelin in the mPFC than controls, mice who underwent re-socialization with socially housed mice after juvenile social isolation (Re-SH mice) caught up with the controls in terms of most mPFC functions, as well as myelination. Moreover, social interaction of Re-IS mice was reduced as compared to controls, but Re-SH mice showed an amount of social interaction comparable to that of controls. These results suggest that the mode of re-socialization after juvenile social isolation has significant effects on myelination in the mPFC and the attendant functions in mice, indicating the importance of appropriate psychosocial intervention after social isolation.

  3. Tailored central nervous system-directed treatment strategy for isolated CNS recurrence of adult acute myeloid leukemia.

    Science.gov (United States)

    Zheng, Changcheng; Liu, Xin; Zhu, Weibo; Cai, Xiaoyan; Wu, Jingsheng; Sun, Zimin

    2014-06-01

    The aim of this report was to investigate the tailored treatment strategies for isolated central nervous system (CNS) recurrence in adult patients with acute myeloid leukemia (AML). Isolated CNS recurrence was documented in 34 patients: there were 18, 6, and 10 patients with meningeal involvement type (type A), cranial nerve palsy type (type B), and myeloid sarcoma type (type C), respectively. For patients with type A, intrathecal chemotherapy was the predominant strategy. For type B, systemic HD-Ara-C with four cycles was the main treatment. For type C, cranial irradiation or craniospinal irradiation was adopted and two cycles of HD-Ara-C were given after the irradiation. The 5-year cumulative incidence of CNS recurrence was 12.8%. There was a significantly higher WBC count (32.6∼60.8 × 10(9)/l) in patients at first diagnosis who developed CNS recurrence (all of the three types) compared with patients with no CNS recurrence (10.1 × 10(9)/l) (P = 0.005). We found that a significantly more patients with AML-M5 and 11q23 abnormalities developed CNS recurrence in type A (P adult AML, but further studies are needed to improve the long-term survival.

  4. Treatment options for Primary CNS Lymphoma.

    Science.gov (United States)

    Laghari, Altaf Ali; Ahmed, Syed Ijlal; Jabbar, Adnan; Shamim, Muhammad Shahzad

    2018-03-01

    Primary CNS lymphoma (PCNSL) is a rare and aggressive brain tumour that is uniformly fatal. The rarity of the disease and the poor response to treatment makes it difficult to reach a consensus with regards to treatment options. In this review, the authors have discussed different treatment modalities used in the management of PCNSL including chemotherapy, surgery and radiation, as well as the results of recent clinical trials on treatment options for PCNSL.

  5. Ketamine displaces the novel NMDA receptor SPET probe [{sup 123}I]CNS-1261 in humans in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Stone, James M. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom)]. E-mail: j.stone@iop.kcl.ac.uk; Erlandsson, Kjell [Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom); Arstad, Erik [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Bressan, Rodrigo A. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Squassante, Lisa [GlaxoSmithKline (GSK), Verona 37135 (Italy); Teneggi, Vincenza [GlaxoSmithKline (GSK), Verona 37135 (Italy); Ell, Peter J. [Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom); Pilowsky, Lyn S. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom)

    2006-02-15

    [{sup 123}I]CNS-1261 [N-(1-naphthyl)-N'-(3-iodophenyl)-N-methylguanidine] is a high-affinity SPET ligand with selectivity for the intrachannel PCP/ketamine/MK-801 site of the N-methyl-D-aspartate (NMDA) receptor. This study evaluated the effects of ketamine (a specific competitor for the intrachannel PCP/ketamine/MK-801 site) on [{sup 123}I]CNS-1261 binding to NMDA receptors in vivo. Ten healthy volunteers underwent 2 bolus-plus-infusion [{sup 123}I]CNS-1261 scans, one during placebo and the other during a ketamine challenge. Ketamine administration led to a significant decrease in [{sup 123}I]CNS-1261 V {sub T} in most of the brain regions examined (P<.05). [{sup 123}I]CNS-1261 appears to be a specific ligand in vivo for the intrachannel PCP/ketamine/MK-801 NMDA binding site.

  6. Nuclear innovation through collaboration. 35th Annual CNS conference and 39th CNS/CNA student conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The Canadian Nuclear Society (CNS) held its 35th Annual Conference in Saint John, New Brunswick, Canada on May 31 to June 3, 2015, combined with the 39th Annual CNS/CNA Student Conference. With the theme of the conference, 'Nuclear Innovation through Collaboration', more than 425 delegates, exhibitors and students were in attendance. The conference commenced with two strong plenary sessions on Utility Collaborations to Improve Lifetime Performance; and, Performance Improvement Programs: Goals and Experience. The second day consisted of the panel discussions on International Developments in Used Nuclear Fuel Repository Programs, and two plenary sessions on: Enterprise Risk Management; and, Vendor Role in a Continuously Improving Industry. The third day contained a number of interesting features, including plenary sessions on Waste Management and Decommissioning; Developing Technologies and Resources, and a panel discussion on the Transportation of Used Nuclear Fuel. All three days of the conference also contained parallel sessions with over 100 technical papers presented at the main and student sessions. The technical session titles were: Refurbishment and Life Extension; Thermalhydraulics; Nuclear Materials; WMD - Radiation Monitoring; Safety and Licensing; Communication; Safety and Licensing; Instrumentation and Control; Advanced Reactor Designs; WMD - Deep Geological Repository Packaging; Reactor Physics; Chemistry and Materials; Advanced Fuel Cycles; Waste Management and Decommissioning; and, Medical Physics and Radiation Biology.

  7. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Renno, T; Krakowski, M; Piccirillo, C

    1995-01-01

    in the pathology of multiple sclerosis and its animal model experimental allergic encephalomyelitis (EAE). We used reverse transcriptase (RT)-PCR to study the kinetics, cellular source, and regulation of cytokine gene expression in the central nervous system (CNS) of SJL/J mice with myelin basic protein......, the majority of which were identified as microglia and macrophages by their Mac-1 phenotype. Microglia could be discriminated by their low expression of CD45. Incubation of freshly derived, adult microglia from normal, uninfiltrated, CNS with activated Th1 supernatant induced the production of TNF-alpha m...

  8. Interferon-gamma in progression to chronic demyelination and neurological deficit following acute EAE

    DEFF Research Database (Denmark)

    Renno, T; Taupin, V; Bourbonnière, L

    1998-01-01

    The cytokine interferon-gamma (IFNgamma) is implicated in the induction of acute CNS inflammation, but it is less clear what role if any IFNgamma plays in progression to chronic demyelination and neurological deficit. To address this issue, we have expressed IFNgamma in myelinating oligodendrocytes....... In contrast to control mice, which remit from EAE with resolution of glial reactivity and leukocytic infiltration, transgenics showed chronic neurological deficits. While activated microglia/macrophages persisted in demyelinating lesions for over 100 days, CD4(+) T lymphocytes were no longer present in CNS...

  9. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  10. Neonatal CNS infection and inflammation caused by Ureaplasma species: rare or relevant?

    Science.gov (United States)

    Glaser, Kirsten; Speer, Christian P

    2015-02-01

    Colonization with Ureaplasma species has been associated with adverse pregnancy outcome, and perinatal transmission has been implicated in the development of bronchopulmonary dysplasia in preterm neonates. Little is known about Ureaplasma-mediated infection and inflammation of the CNS in neonates. Controversy remains concerning its incidence and implication in the pathogenesis of neonatal brain injury. In vivo and in vitro data are limited. Despite improving care options for extremely immature preterm infants, relevant complications remain. Systematic knowledge of ureaplasmal infection may be of great benefit. This review aims to summarize pathogenic mechanisms, clinical data and diagnostic pitfalls. Studies in preterm and term neonates are critically discussed with regard to their limitations. Clinical questions concerning therapy or prophylaxis are posed. We conclude that ureaplasmas may be true pathogens, especially in preterm neonates, and may cause CNS inflammation in a complex interplay of host susceptibility, serovar pathogenicity and gestational age-dependent CNS vulnerability.

  11. Alcohol intake alters immune responses and promotes CNS viral persistence in mice.

    Science.gov (United States)

    Loftis, Jennifer M; Taylor, Jonathan; Raué, Hans-Peter; Slifka, Mark K; Huang, Elaine

    2016-10-01

    Chronic hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic effects, including central nervous system (CNS) damage and neuropsychiatric impairments. Alcohol abuse can exacerbate these adverse effects on brain and behavior, but the molecular mechanisms are not well understood. This study investigated the role of alcohol in regulating viral persistence and CNS immunopathology in mice infected with lymphocytic choriomeningitis virus (LCMV), a model for HCV infections in humans. Female and male BALB/c mice (n=94) were exposed to alcohol (ethanol; EtOH) and water (or water only) using a two-bottle choice paradigm, followed one week later by infection with either LCMV clone 13 (causes chronic infection similar to chronic HCV), LCMV Armstrong (causes acute infection), or vehicle. Mice were monitored for 60days post-infection and continued to receive 24-h access to EtOH and water. Animals infected with LCMV clone 13 drank more EtOH, as compared to those with an acute or no viral infection. Six weeks after infection with LCMV clone 13, mice with EtOH exposure evidenced higher serum viral titers, as compared to mice without EtOH exposure. EtOH intake was also associated with reductions in virus-specific CD8(+) T cell frequencies (particularly CD11a(hi) subsets) and evidence of persistent CNS viremia in chronically infected mice. These findings support the hypothesis that EtOH use and chronic viral infection can result in combined toxic effects accelerating CNS damage and neuropsychiatric dysfunction and suggest that examining the role of EtOH in regulating viral persistence and CNS immunopathology in mice infected with LCMV can lead to a more comprehensive understanding of comorbid alcohol use disorder and chronic viral infection. Published by Elsevier B.V.

  12. Synthesis and evaluation of racemic [11C]NS2456 and its enantiomers as selective serotonin reuptake radiotracers for PET

    International Nuclear Information System (INIS)

    Smith, D.F.; Bender, D.; Marthi, K.; Cumming, P.; Hansen, S.B.; Peters, D.; Oestergaard Nielsen, E.; Scheel-Krueger, J.; Gjedde, A.

    2001-01-01

    Positron emission tomography (PET) radiotracers are needed for quantifying serotonin uptake sites in the living brain. Therefore, we evaluated a new selective serotonin reuptake inhibitor, NS2456, to determine whether it is suited for use in PET. Racemic NS2456 [(1RS,5SR)-8-methyl-3-[4-trifluoromethoxyphenyl]-8-azabicyclo [3.2.1]oct-2-ene] and its N-demethylated analog, racemic NS2463, selectively inhibited serotonin uptake in rat brain synaptosomes; their IC 50 values were 3000-fold lower for [ 3 H]serotonin than for either [ 3 H]dopamine or [ 3 H]noradrenaline. The enantiomers of NS2463 were also potent inhibitors of serotonin uptake in vitro, but they failed to show stereoselectivity. Racemic NS2463 as well as its enantiomers were radiolabelled by N-methylation with C-11, yielding [ 11 C]NS2456 for use in PET of the living porcine brain. The compounds crossed the blood-brain barrier rapidly and accumulated preferentially in regions rich in serotonin uptake sites (e.g., brainstem, subthalamus and thalamus). However, their binding potentials were relatively low and no stereoselectivity was found. Thus, neither racemic [ 11 C]NS2456 nor its [ 11 C]-labelled enantiomers are ideal for PET neuroimaging of neuronal serotonin uptake sites

  13. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers

    Directory of Open Access Journals (Sweden)

    Jessica L Williams

    2014-05-01

    Full Text Available In the adult central nervous system (CNS, chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease.

  14. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice

    Science.gov (United States)

    Koval, Erica D.; Shaner, Carey; Zhang, Peter; du Maine, Xavier; Fischer, Kimberlee; Tay, Jia; Chau, B. Nelson; Wu, Gregory F.; Miller, Timothy M.

    2013-01-01

    microRNAs (miRNAs) are dysregulated in a variety of disease states, suggesting that this newly discovered class of gene expression repressors may be viable therapeutic targets. A microarray of miRNA changes in ALS-model superoxide dismutase 1 (SOD1)G93A rodents identified 12 miRNAs as significantly changed. Six miRNAs tested in human ALS tissues were confirmed increased. Specifically, miR-155 was increased 5-fold in mice and 2-fold in human spinal cords. To test miRNA inhibition in the central nervous system (CNS) as a potential novel therapeutic, we developed oligonucleotide-based miRNA inhibitors (anti-miRs) that could inhibit miRNAs throughout the CNS and in the periphery. Anti-miR-155 caused global derepression of targets in peritoneal macrophages and, following intraventricular delivery, demonstrated widespread functional distribution in the brain and spinal cord. After treating SOD1G93A mice with anti-miR-155, we significantly extended survival by 10 days and disease duration by 15 days (38%) while a scrambled control anti-miR did not significantly improve survival or disease duration. Therefore, antisense oligonucleotides may be used to successfully inhibit miRNAs throughout the brain and spinal cord, and miR-155 is a promising new therapeutic target for human ALS. PMID:23740943

  15. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study.

    Science.gov (United States)

    de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J

    2017-06-01

    Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.

  16. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  17. Clearance of an immunosuppressive virus from the CNS coincides with immune reanimation and diversification

    Directory of Open Access Journals (Sweden)

    McGavern Dorian B

    2007-06-01

    Full Text Available Abstract Once a virus infection establishes persistence in the central nervous system (CNS, it is especially difficult to eliminate from this specialized compartment. Therefore, it is of the utmost importance to fully understand scenarios during which a persisting virus is ultimately purged from the CNS by the adaptive immune system. Such a scenario can be found following infection of adult mice with an immunosuppressive variant of lymphocytic choriomeningitis virus (LCMV referred to as clone 13. In this study we demonstrate that following intravenous inoculation, clone 13 rapidly infected peripheral tissues within one week, but more slowly inundated the entire brain parenchyma over the course of a month. During the establishment of persistence, we observed that genetically tagged LCMV-specific cytotoxic T lymphocytes (CTL progressively lost function; however, the severity of this loss in the CNS was never as substantial as that observed in the periphery. One of the most impressive features of this model system is that the peripheral T cell response eventually regains functionality at ~60–80 days post-infection, and this was associated with a rapid decline in virus from the periphery. Coincident with this "reanimation phase" was a massive influx of CD4 T and B cells into the CNS and a dramatic reduction in viral distribution. In fact, olfactory bulb neurons served as the last refuge for the persisting virus, which was ultimately purged from the CNS within 200 days post-infection. These data indicate that a functionally revived immune response can prevail over a virus that establishes widespread presence both in the periphery and brain parenchyma, and that therapeutic enhancement of an existing response could serve as an effective means to thwart long term CNS persistence.

  18. Imaging aspects of neurologic emergencies in children treated for non-CNS malignancies

    International Nuclear Information System (INIS)

    Kaste, S.C.; Langston, J.; Rodriguez-Galindo, C.; Furman, W.L.; Thompson, S.J.

    2000-01-01

    There is a paucity of radiologic literature addressing neurologic emergencies in children receiving therapy for non-CNS primary malignancies. In the acute setting, many of these children present to local community hospitals. This pictorial is from a single institutional experience describing the spectrum of neurologic emergencies seen in children with non-CNS cancers. We hope to familiarize pediatric radiologists with these entities in order to expedite diagnosis, facilitate treatment, and minimize morbity and mortality that may be associated with these complications. (orig.)

  19. Differentially Severe Cognitive Effects of Compromised Cerebral Blood Flow in Aged Mice: Association with Myelin Degradation and Microglia Activation

    Directory of Open Access Journals (Sweden)

    Gilly Wolf

    2017-06-01

    Full Text Available Bilateral common carotid artery stenosis (BCAS models the effects of compromised cerebral blood flow on brain structure and function in mice. We compared the effects of BCAS in aged (21 month and young adult (3 month female mice, anticipating a differentially more severe effect in the older mice. Four weeks after surgery there was a significant age by time by treatment interaction on the radial-arm water maze (RAWM; p = 0.014: on the first day of the test, latencies of old mice were longer compared to the latencies of young adult mice, independent of BCAS. However, on the second day of the test, latencies of old BCAS mice were significantly longer than old control mice (p = 0.049, while latencies of old controls were similar to those of the young adult mice, indicating more severe impairment of hippocampal dependent learning and working memory by BCAS in the older mice. Fluorescence staining of myelin basic protein (MBP showed that old age and BCAS both induced a significant decrease in fluorescence intensity. Evaluation of the number oligodendrocyte precursor cells demonstrated augmented myelin replacement in old BCAS mice (p < 0.05 compared with young adult BCAS and old control mice. While microglia morphology was assessed as normal in young adult control and young adult BCAS mice, microglia of old BCAS mice exhibited striking activation in the area of degraded myelin compared to young adult BCAS (p < 0.01 and old control mice (p < 0.05. These findings show a differentially more severe effect of cerebral hypoperfusion on cognitive function, myelin integrity and inflammatory processes in aged mice. Hypoperfusion may exacerbate degradation initiated by aging, which may induce more severe neuronal and cognitive phenotypes.

  20. Metallothionein-1+2 protect the CNS after a focal brain injury

    DEFF Research Database (Denmark)

    Giralt, Mercedes; Penkowa, Milena; Lago, Natalia

    2002-01-01

    We have evaluated the physiological relevance of metallothionein-1+2 (MT-1+2) in the CNS following damage caused by a focal cryolesion onto the cortex. In comparison to normal mice, transgenic mice overexpressing the MT-1 isoform (TgMTI* mice) showed a significant decrease of the number...... dramatically reduced the cryolesion-induced oxidative stress and neuronal apoptosis. Remarkably, these effects were also obtained by the intraperitoneal administration of MT-2 to both normal and MT-1+2 knock-out mice. These results fully support the notion that MT-1+2 are essential in the CNS for coping...

  1. The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects

    OpenAIRE

    de Lange, Elizabeth CM

    2013-01-01

    Despite enormous advances in CNS research, CNS disorders remain the world?s leading cause of disability. This accounts for more hospitalizations and prolonged care than almost all other diseases combined, and indicates a high unmet need for good CNS drugs and drug therapies. Following dosing, not only the chemical properties of the drug and blood?brain barrier (BBB) transport, but also many other processes will ultimately determine brain target site kinetics and consequently the CNS effects. ...

  2. CNS recruitment of CD8+ T lymphocytes specific for a peripheral virus infection triggers neuropathogenesis during polymicrobial challenge.

    Directory of Open Access Journals (Sweden)

    Christine M Matullo

    2011-12-01

    Full Text Available Although viruses have been implicated in central nervous system (CNS diseases of unknown etiology, including multiple sclerosis and amyotrophic lateral sclerosis, the reproducible identification of viral triggers in such diseases has been largely unsuccessful. Here, we explore the hypothesis that viruses need not replicate in the tissue in which they cause disease; specifically, that a peripheral infection might trigger CNS pathology. To test this idea, we utilized a transgenic mouse model in which we found that immune cells responding to a peripheral infection are recruited to the CNS, where they trigger neurological damage. In this model, mice are infected with both CNS-restricted measles virus (MV and peripherally restricted lymphocytic choriomeningitis virus (LCMV. While infection with either virus alone resulted in no illness, infection with both viruses caused disease in all mice, with ∼50% dying following seizures. Co-infection resulted in a 12-fold increase in the number of CD8+ T cells in the brain as compared to MV infection alone. Tetramer analysis revealed that a substantial proportion (>35% of these infiltrating CD8+ lymphocytes were LCMV-specific, despite no detectable LCMV in CNS tissues. Mechanistically, CNS disease was due to edema, induced in a CD8-dependent but perforin-independent manner, and brain herniation, similar to that observed in mice challenged intracerebrally with LCMV. These results indicate that T cell trafficking can be influenced by other ongoing immune challenges, and that CD8+ T cell recruitment to the brain can trigger CNS disease in the apparent absence of cognate antigen. By extrapolation, human CNS diseases of unknown etiology need not be associated with infection with any particular agent; rather, a condition that compromises and activates the blood-brain barrier and adjacent brain parenchyma can render the CNS susceptible to pathogen-independent immune attack.

  3. Analysis of Caribbean ciguatoxin-1 effects on frog myelinated axons and the neuromuscular junction.

    Science.gov (United States)

    Mattei, César; Marquais, Michel; Schlumberger, Sébastien; Molgó, Jordi; Vernoux, Jean-Paul; Lewis, Richard J; Benoit, Evelyne

    2010-10-01

    Caribbean ciguatoxin-1 (C-CTX-1) induced, after about 1h exposure, muscle membrane depolarisation and repetitive post-synaptic action potentials (APs) in frog neuromuscular preparations. This depolarising effect was also observed in a Ca(2+)-free medium with a strong enhancement of spontaneous quantal transmitter release, compared with control conditions. The ciguatoxin-induced increase in release could be accelerated when Ca(2+) was present in the extracellular medium. C-CTX-1 also enhanced nerve-evoked quantal acetylcholine (ACh) release. At normal neuromuscular junctions loaded with the fluorescent dye FM1-43, C-CTX-1 induced swelling of nerve terminals, an effect that was reversed by hyperosmotic d-mannitol. In myelinated axons, C-CTX-1 increased nodal membrane excitability, inducing spontaneous and repetitive APs. Also, the toxin enlarged the repolarising phase of APs in control and tetraethylammonium-treated axons. Overall, our data suggest that C-CTX-1 affects nerve excitability and neurotransmitter release at nerve terminals. We conclude that C-CTX-1-induced up-regulation of Na(+) channels and the inhibition of K(+) channels, at low nanomolar concentrations, produce a variety of functional dysfunctions that are in part responsible for the human muscle skeletal symptoms observed in ciguatera. All these dysfunctions seem to result from the subtle balance between ionic currents, intracellular Na(+) and Ca(2+) concentrations, and engaged second messengers. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Cancers of the Brain and CNS: Global Patterns and Trends in Incidence.

    Science.gov (United States)

    Mortazavi, S M J; Mortazavi, S A R; Paknahad, M

    2018-03-01

    Miranda-Filho et al. in their recently published paper entitled "Cancers of the brain and CNS: global patterns and trends in incidence" provided a global status report of the geographic and temporal variations in the incidence of brain and CNS cancers in different countries across continents worldwide. While the authors confirm the role of genetic risk factors and ionizing radiation exposures, they claimed that no firm conclusion could be drawn about the role of exposure to non-ionizing radiation. The paper authored by Miranda-Filho et al. not only addresses a challenging issue, it can be considered as a good contribution in the field of brain and CNS cancers. However, our correspondence addresses a basic shortcoming of this paper about the role of electromagnetic fields and cancers and provides evidence showing that exposure to radiofrequency electromagnetic fields (RF-EMFs), at least at high levels and long durations, can increases the risk of cancer.

  5. Analysis of White Matter Damage in Patients with Multiple Sclerosis via a Novel In Vivo MR Method for Measuring Myelin, Axons, and G-Ratio.

    Science.gov (United States)

    Hagiwara, A; Hori, M; Yokoyama, K; Nakazawa, M; Ueda, R; Horita, M; Andica, C; Abe, O; Aoki, S

    2017-10-01

    Myelin and axon volume fractions can now be estimated via MR imaging in vivo, as can the g-ratio, which equals the ratio of the inner to the outer diameter of a nerve fiber. The purpose of this study was to evaluate WM damage in patients with MS via this novel MR imaging technique. Twenty patients with relapsing-remitting MS with a combined total of 149 chronic plaques were analyzed. Myelin volume fraction was calculated based on simultaneous tissue relaxometry. Intracellular and CSF compartment volume fractions were quantified via neurite orientation dispersion and density imaging. Axon volume fraction and g-ratio were calculated by combining these measurements. Myelin and axon volume fractions and g-ratio were measured in plaques, periplaque WM, and normal-appearing WM. All metrics differed significantly across the 3 groups ( P ratio between periplaque WM and normal-appearing WM). Those in plaques differed most from those in normal-appearing WM. The percentage changes in plaque and periplaque WM metrics relative to normal-appearing WM were significantly larger in absolute value for myelin volume fraction than for axon volume fraction and g-ratio ( P ratio may potentially be useful for evaluating WM damage in patients with MS. © 2017 by American Journal of Neuroradiology.

  6. Normal centrolineal myelination of the callosal splenium reflects the development of the cortical origin and size of its commissural fibers

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Matthew T. [University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Children' s National Medical Center, Department of Radiology, Washington, DC (United States); Raju, Anand; Choudhri, Asim F. [University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States)

    2014-04-15

    Commissural white matter fibers comprising the callosal splenium are diverse. Subsections of the splenium myelinate at different times, in a centrolineal manner. The aims of this study are to depict the normal callosal splenium myelination pattern and to distinguish the transient age-related mid splenium hypointensity from pathology. We reviewed 131 consecutive brain MRIs in patients between ages 3 and 6 months from a single academic children's hospital. Patients that were preterm, hydrocephalic, and/or had volume loss were excluded. Fifty total MR exams that included T1-weighted MR imaging (T1WI), T2-weighted MR imaging (T2WI), and diffusion tensor imaging (DTI) were reviewed. Regions of callosal splenium myelination manifested by T1 and T2 shortening were evaluated. Tractography was performed with seeds placed over the posterior, mid, and anterior splenium to define the origin, destination, and course of traversing fibers. Splenium signal varied significantly from 3 to 6 months, with distinct age-related trends. On T1WI, the splenium was hypointense at 3 months (12/13), centrally hypointense/peripherally hyperintense at 4 months (15/16), and hyperintense at 6 months (10/11). Tractography revealed three distinct white matter tract populations: medial occipital (posterior); precuneus, posterior cingulate, and medial temporal (middle); and postcentral gyri (anterior). Specific commissural fiber components of the splenium myelinate at different times. The transient developmental mid splenium hypointensity on T1WI corresponds to tracts from the associative cortex, principally the precuneus. Heterogeneous splenium signal alteration in patients ages 3-6 months is a normal developmental phenomenon that should not be confused with pathologic lesions. (orig.)

  7. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    Energy Technology Data Exchange (ETDEWEB)

    Vismari, Lucio Flavio, E-mail: lucio.vismari@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil); Batista Camargo Junior, Joao, E-mail: joaocamargo@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil)

    2011-07-15

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  8. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    International Nuclear Information System (INIS)

    Vismari, Lucio Flavio; Batista Camargo Junior, Joao

    2011-01-01

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  9. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  10. CD11c-expressing cells affect Treg behavior in the meninges during CNS infection1

    Science.gov (United States)

    O’Brien, Carleigh A.; Overall, Christopher; Konradt, Christoph; O’Hara Hall, Aisling C.; Hayes, Nikolas W.; Wagage, Sagie; John, Beena; Christian, David A.; Hunter, Christopher A.; Harris, Tajie H.

    2017-01-01

    Treg cells play an important role in the CNS during multiple infections as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, the Treg cells in the CNS during T. gondii infection are Th1-polarized, exemplified by T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC Class II tetramer reagent specific for T. gondii did not recognize Treg cells isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector and regulatory T cells in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Treg cells were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, while Treg cells moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 antibodies to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg cell migration. These data suggest that Treg cells are anatomically restricted within the CNS and the interaction with CD11c+ populations regulates their local behavior during T. gondii infection. PMID:28389591

  11. In vivo human apolipoprotein E isoform fractional turnover rates in the CNS.

    Directory of Open Access Journals (Sweden)

    Kristin R Wildsmith

    Full Text Available Apolipoprotein E (ApoE is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4 each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD. Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS, we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis.

  12. Elevated interferon-gamma in CNS inflammatory disease: a potential complication for bone marrow reconstitution in MS

    DEFF Research Database (Denmark)

    Hassan-Zahraee, M; Tran, E H; Bourbonnière, L

    2000-01-01

    but levels were higher in IFNgamma transgenics. BM transplantation into IFNgamma-deficient recipients also had a high failure rate. Transplants of BM from mice lacking expression of IFNgamma-receptor failed, whereas IFNgamma-deficient grafts survived, suggesting that IFNgamma response status of the graft can......Bone marrow transplantation (BMT) is increasingly used to treat Multiple Sclerosis (MS) a CNS inflammatory disease with elevated CNS and systemic IFNgamma levels. We wished to determine the effect of IFNgamma on BM graft survival in a transgenic mouse model for chronic MS. BM transplantation...... into transgenic mice which express elevated levels of IFNgamma in the CNS was unsuccessful. By contrast, there was 100% survival of even fully allogeneic, T-depleted transplants to transgenics that over express TNFalpha in the CNS, using the same MBP promoter. IFNgamma was detectable in spleen of irradiated mice...

  13. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells.

    Science.gov (United States)

    Cheng, Xiaoxin; Wang, Yaping; He, Qian; Qiu, Mengsheng; Whittemore, Scott R; Cao, Qilin

    2007-12-01

    Promotion of remyelination is an important therapeutic strategy for the treatment of the demyelinating neurological disorders. Adult oligodendrocyte precursor cells (OPCs), which normally reside quiescently in the adult central nervous system (CNS), become activated and proliferative after demyelinating lesions. However, the extent of endogenous remyelination is limited because of the failure of adult OPCs to mature into myelinating oligodendrocytes (OLs) in the demyelinated CNS. Understanding the molecular mechanisms that regulate the differentiation of adult OPCs could lead to new therapeutic strategies to treat these disorders. In this study, we established a stable culture of adult spinal cord OPCs and developed a reliable in vitro protocol to induce their sequential differentiation. Adult OPCs expressed bone morphogenetic protein (BMP) type Ia, Ib, and II receptor subunits, which are required for BMP signal transduction. BMP2 and 4 promoted dose-dependent astrocyte differentiation of adult OPCs with concurrent suppression of OL differentiation. Treatment of OPCs with BMP2 and 4 increased ID4 expression and decreased the expression of olig1 and olig2. Overexpression of olig1 or olig2 blocked the astrocyte differentiation of adult OPCs induced by BMP2 and 4. Furthermore, overexpression of both olig1 and olig2, but not olig1 or olig2 alone, rescued OL differentiation from inhibition by BMP2 and 4. Our results demonstrated that downregulation of olig1 and olig2 is an important mechanism by which BMP2 and 4 inhibit OL differentiation of adult OPCs. These data suggest that blocking BMP signaling combined with olig1/2 overexpression could be a useful therapeutic strategy to enhance endogenous remyelination and facilitate functional recovery in CNS demyelinated disorders. Disclosure of potential conflicts of interest is found at the end of this article.

  14. Regional oligodendrocytopathy and astrocytopathy precede myelin loss and blood-brain barrier disruption in a murine model of osmotic demyelination syndrome.

    Science.gov (United States)

    Bouchat, Joanna; Couturier, Bruno; Marneffe, Catherine; Gankam-Kengne, Fabrice; Balau, Benoît; De Swert, Kathleen; Brion, Jean-Pierre; Poncelet, Luc; Gilloteaux, Jacques; Nicaise, Charles

    2018-03-01

    The osmotic demyelination syndrome (ODS) is a non-primary inflammatory disorder of the central nervous system myelin that is often associated with a precipitous rise of serum sodium concentration. To investigate the physiopathology of ODS in vivo, we generated a novel murine model based on the abrupt correction of chronic hyponatremia. Accordingly, ODS mice developed impairments in brainstem auditory evoked potentials and in grip strength. At 24 hr post-correction, oligodendrocyte markers (APC and Cx47) were downregulated, prior to any detectable demyelination. Oligodendrocytopathy was temporally and spatially correlated with the loss of astrocyte markers (ALDH1L1 and Cx43), and both with the brain areas that will develop demyelination. Oligodendrocytopathy and astrocytopathy were confirmed at the ultrastructural level and culminated with necroptotic cell death, as demonstrated by pMLKL immunoreactivity. At 48 hr post-correction, ODS brains contained pathognomonic demyelinating lesions in the pons, mesencephalon, thalamus and cortical regions. These damages were accompanied by blood-brain barrier (BBB) leakages. Expression levels of IL-1β, FasL, TNFRSF6 and LIF factors were significantly upregulated in the ODS lesions. Quiescent microglial cells type A acquired an activated type B morphology within 24 hr post-correction, and reached type D at 48 hr. In conclusion, this murine model of ODS reproduces the CNS demyelination observed in human pathology and indicates ambiguous causes that is regional vulnerability of oligodendrocytes and astrocytes, while it discards BBB disruption as a primary cause of demyelination. This study also raises new queries about the glial heterogeneity in susceptible brain regions as well as about the early microglial activation associated with ODS. © 2017 Wiley Periodicals, Inc.

  15. Structure and function of the contactin-associated protein family in myelinated axons and their relationship with nerve diseases

    Institute of Scientific and Technical Information of China (English)

    Yan Zou; De-en Xu; Wei-feng Zhang; Hai-ying Liu; Xia Li; Xing Zhang; Xiao-fang Ma; Yang Sun; Shi-yi Jiang; Quan-hong Ma

    2017-01-01

    The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family–CNTNAP1 (Caspr1), CNTNAP2 (Caspr2), CNTNAP3 (Caspr3), CNTNAP4 (Caspr4) and CNTNAP5 (Caspr5), Caspr1–5 is not only involved in the formation of myelinated axons, but also participates in maintaining the stability of adjacent connections. Caspr1 participates in the formation, differentiation, and proliferation of neurons and astrocytes, and in motor control and cognitive function. We also analyzed the relationship between the Caspr family and neurodegenerative diseases, multiple sclerosis, and autoimmune encephalitis. However, the effects of Caspr on disease course and prognosis remain poorly understood. The effects of Caspr on disease diagnosis and treatment need further investigation.

  16. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells of the hippocampal neurogenesis in rat offspring via dysfunction of cholinergic inputs by myelin vacuolation

    International Nuclear Information System (INIS)

    Itahashi, Megu; Abe, Hajime; Tanaka, Takeshi; Mizukami, Sayaka; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • The effect of maternal exposure to HCP on rat hippocampal neurogenesis was examined. • HCP induces myelin vacuolation of nerve tracts in the septal–hippocampal pathway. • Myelin changes suppress Chrnb2-mediated cholinergic inputs to the dentate gyrus. • SGZ apoptosis occurs via the mitochondrial pathway and targets type-2b cells. • Dysfunction of cholinergic inputs is related to type-2b SGZ cell apoptosis. - Abstract: Hexachlorophene (HCP) is known to induce myelin vacuolation corresponding to intramyelinic edema of nerve fibers in the central and peripheral nervous system in animals. This study investigated the effect of maternal exposure to HCP on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 100, or 300 ppm HCP in the diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, the numbers of T box brain 2 + progenitor cells and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling + apoptotic cells in the hippocampal subgranular zone (SGZ) decreased in female offspring at 300 ppm, which was accompanied by myelin vacuolation and punctate tubulin beta-3 chain staining of nerve fibers in the hippocampal fimbria. In addition, transcript levels of the cholinergic receptor, nicotinic beta 2 (Chrnb2) and B-cell CLL/lymphoma 2 (Bcl2) decreased in the dentate gyrus. HCP-exposure did not alter the numbers of SGZ proliferating cells and reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)-ergic interneuron subpopulations in the dentate hilus on PND 21 and PND 77. Although some myelin vacuolation remained, all other changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77. These results suggest that maternal HCP exposure reversibly decreases type-2b intermediate-stage progenitor cells via the mitochondrial apoptotic pathway in offspring hippocampal neurogenesis at 300 ppm HCP. Neurogenesis may be affected by dysfunction

  17. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition.

    Science.gov (United States)

    Singhal, N K; Huang, H; Li, S; Clements, R; Gadd, J; Daniels, A; Kooijman, E E; Bannerman, P; Burns, T; Guo, F; Pleasure, D; Freeman, E; Shriver, L; McDonough, J

    2017-01-01

    The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L -/- ) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L -/- mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination.

  18. Cerebrospinal fluid analysis in the context of CNS demyelinating diseases

    Directory of Open Access Journals (Sweden)

    Sandro Luiz de Andrade Matas

    2013-09-01

    Full Text Available The central nervous system demyelinating diseases are a group of disorders with different etiologies, characterized by inflammatory lesions that are associated with loss of myelin and eventually axonal damage. In this group the most studied ones are multiple sclerosis (MS, neuromyelitis optic (NMO and acute disseminated encephalomyelitis (ADEM. The cerebrospinal fluid is essential to differentiate between these different syndromes and to define multiple sclerosis, helping to assess the probability of Clinical Isolated Syndrome turn into multiple sclerosis.

  19. Sulfocerebrosides upregulate liposome uptake in human astrocytes without inducing a proinflammatory response.

    Science.gov (United States)

    Suesca, Elizabeth; Alejo, Jose Luis; Bolaños, Natalia I; Ocampo, Jackson; Leidy, Chad; González, John M

    2013-07-01

    Astrocytes are involved in the pathogenesis of demyelinating diseases, where they actively regulate the secretion of proinflammatory factors, and trigger the recruitment of immune cells in the central nervous system (CNS). Antigen presentation of myelin-derived proteins has been shown to trigger astrocyte response, suggesting that astrocytes can directly sense demyelination. However, the direct response of astrocytes to lipid-debris generated during demyelination has not been investigated. The lipid composition of the myelin sheath is distinct, presenting significant amounts of cerebrosides, sulfocerebrosides (SCB), and ceramides. Studies have shown that microglia are activated in the presence of myelin-derived lipids, pointing to the possibility of lipid-induced astrocyte activation. In this study, a human astrocyte cell line was exposed to liposomes enriched in each myelin lipid component. Although liposome uptake was observed for all compositions, astrocytes had augmented uptake for liposomes containing sulfocerebroside (SCB). This enhanced uptake did not modify their expression of human leukocyte antigen (HLA) molecules or secretion of chemokines. This was in contrast to changes observed in astrocyte cells stimulated with IFNγ. Contrary to human monocytes, astrocytes did not internalize beads in the size-range of liposomes, indicating that liposome uptake is lipid specific. Epifluorescence microscopy corroborated that liposome uptake takes place through endocytosis. Soluble SCB were found to partially block uptake of liposomes containing this same lipid. Endocytosis was not decreased when cells were treated with cytochalasin D, but it was decreased by cold temperature incubation. The specific uptake of SCB in the absence of a proinflammatory response indicates that astrocytes may participate in the trafficking and regulation of sulfocerebroside metabolism and homeostasis in the CNS. Copyright © 2013 International Society for Advancement of Cytometry.

  20. Electroacupuncture Reduces Weight Gain Induced by Rosiglitazone through PPARγ and Leptin Receptor in CNS

    Directory of Open Access Journals (Sweden)

    Xinyue Jing

    2016-01-01

    Full Text Available We investigate the effect of electroacupuncture (EA on protecting the weight gain side effect of rosiglitazone (RSG in type 2 diabetes mellitus (T2DM rats and its possible mechanism in central nervous system (CNS. Our study showed that RSG (5 mg/kg significantly increased the body weight and food intake of the T2DM rats. After six-week treatment with RSG combined with EA, body weight, food intake, and the ratio of IWAT to body weight decreased significantly, whereas the ratio of BAT to body weight increased markedly. HE staining indicated that the T2DM-RSG rats had increased size of adipocytes in their IWAT, but EA treatment reduced the size of adipocytes. EA effectively reduced the lipid contents without affecting the antidiabetic effect of RSG. Furthermore, we noticed that the expression of PPARγ gene in hypothalamus was reduced by EA, while the expressions of leptin receptor and signal transducer and activator of transcription 3 (STAT3 were increased. Our results suggest that EA is an effective approach for inhibiting weight gain in T2DM rats treated by RSG. The possible mechanism might be through increased levels of leptin receptor and STAT3 and decreased PPARγ expression, by which food intake of the rats was reduced and RSG-induced weight gain was inhibited.

  1. Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum.

    Science.gov (United States)

    Naeimi, Reza; Safarpour, Fatemeh; Hashemian, Mona; Tashakorian, Hamed; Ahmadian, Seyed Raheleh; Ashrafpour, Manouchehr; Ghasemi-Kasman, Maryam

    2018-05-01

    Curcumin has been introduced as effective anti-inflammatory agent in treatment of several inflammatory disorders. Despite the wide range pharmacological activities, clinical application of curcumin is restricted mainly due to the low water solubility of this substance. More recently, we could remarkably improve the aqueous solubility of curcumin by its encapsulation in chitosan-alginate-sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). In this study, the anti-inflammatory and myelin protective effects of curcumin-loaded NPs were evaluated in lysolecithin (LPC)-induced focal demyelination model. Pharmacokinetic of curcumin was assessed using high performance liquid chromatography (HPLC). Local demyelination was induced by injection of LPC into corpus callosum of rats. Animals were pre-treated with intraperitoneal (i.p.) injections of curcumin or curcumin-loaded NPs at dose of 12.5 mg/kg, 10 days prior to LPC injection and the injections were continued for 7 or 14 days post lesion. Hematoxylin and eosin (H&E) staining and immunostaining against activated glial cells including astrocytes and microglia were carried out for assessment of inflammation level in lesion site. Myelin specific staining was performed to evaluate the effect of curcumin-loaded NPs on myelination of LPC receiving animals. HPLC results showed the higher plasma concentration of curcumin after administration of NPs. Histological evaluation demonstrated that, the extent of demyelination areas was reduced in animals under treatment of curcumin-loaded NPs. Furthermore, treatment with curcumin-loaded NPs effectively attenuated glial activation and inflammation in LPC-induced demyelination model compared to curcumin receiving animals. Overall; these findings indicate that treatment with curcumin-loaded NPs preserve myelinated axons through amelioration of glial activation and inflammation in demyelination context. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Pu-erh Tea Protects the Nervous System by Inhibiting the Expression of Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Li, Chunjie; Chai, Shaomeng; Ju, Yongzhi; Hou, Lu; Zhao, Hang; Ma, Wei; Li, Tian; Sheng, Jun; Shi, Wei

    2017-09-01

    Glutamate is one of the major excitatory neurotransmitters of the CNS and is essential for numerous key neuronal functions. However, excess glutamate causes massive neuronal death and brain damage owing to excitotoxicity via the glutamate receptors. Metabotropic glutamate receptor 5 (mGluR5) is one of the glutamate receptors and represents a promising target for studying neuroprotective agents of potential application in neurodegenerative diseases. Pu-erh tea, a fermented tea, mainly produced in Yunnan province, China, has beneficial effects, including the accommodation of the CNS. In this study, pu-erh tea markedly decreased the transcription and translation of mGluR5 compared to those by black and green teas. Pu-erh tea also inhibited the expression of Homer, one of the synaptic scaffolding proteins binding to mGluR5. Pu-erh tea protected neural cells from necrosis via blocked Ca 2+ influx and inhibited protein kinase C (PKC) activation induced by excess glutamate. Pu-erh tea relieved rat epilepsy induced by LiCl-pilocarpine in behavioural and physiological assays. Pu-erh tea also decreased the expression of mGluR5 in the hippocampus. These results show that the inhibition of mGluR5 plays a role in protecting neural cells from glutamate. The results also indicate that pu-erh tea contains biological compounds binding transcription factors and inhibiting the expression of mGluR5 and identify pu-erh tea as a novel natural neuroprotective agent.

  3. Serial brain MRI findings in CNS involvement of familial erythrophagocytic lymphohistiocytosis: a case report

    International Nuclear Information System (INIS)

    Cho, Kyung Soo; Yoo, Jeong Hyun; Suh, Jeong Soo; Ryu, Kyung Ha; Hong, Ki Sook; Kim, Hak Jin

    2002-01-01

    Familial erythrophagocytic lymphohistiocytosis is a fatal early childhood disorder characterized by multiorgan lymphohistiocytic infiltration and active hemophagocytosis. Involvement of the central nervous system (CNS) is not uncommon and is characterized by rapidly progressive tissue damage affecting both the gray and white matter. We encountered a case of familial erythrophagocytic lymphohistiocytosis with CNS involvement. Initial T2-weighted MRI of the brain demonstrated high signal intensity in the right thalamus, though after chemotherapy, which led to the relief of neurologic symptoms, this disappeared. After four months. however, the patient's neurologic symptoms recurred, and follow-up T2-weighted MR images showed high signal intensity in the thalami, basal ganglia, and cerebral and cerebellar white matter. Brain MRI is a useful imaging modality for the evaluation of CNS involvement and monitoring the response to treatment

  4. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    Energy Technology Data Exchange (ETDEWEB)

    Ruskamo, Salla [University of Oulu, Oulu (Finland); University of Oulu, Oulu (Finland); Yadav, Ravi P. [Banaras Hindu University, Varanasi (India); Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg (Germany); Sharma, Satyan; Lehtimäki, Mari [University of Oulu, Oulu (Finland); University of Oulu, Oulu (Finland); Laulumaa, Saara [University of Oulu, Oulu (Finland); University of Oulu, Oulu (Finland); Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg (Germany); Aggarwal, Shweta; Simons, Mikael [Max Planck Institute for Experimental Medicine, Göttingen (Germany); Bürck, Jochen; Ulrich, Anne S. [Karlsruhe Institute for Technology (KIT), Karlsruhe (Germany); Juffer, André H. [University of Oulu, Oulu (Finland); University of Oulu, Oulu (Finland); Kursula, Inari [University of Oulu, Oulu (Finland); Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg (Germany); Kursula, Petri, E-mail: petri.kursula@oulu.fi [University of Oulu, Oulu (Finland); University of Oulu, Oulu (Finland); Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg (Germany); University of Hamburg, Hamburg (Germany)

    2014-01-01

    The structure of the human myelin peripheral membrane protein P2 has been refined at 0.93 Å resolution. In combination with functional experiments in vitro, in vivo and in silico, the fine details of the structure–function relationships in P2 are emerging. P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.

  5. Encapsulated oligodendrocyte precursor cell fate is dependent on PDGF-AA release kinetics in a 3D microparticle-hydrogel drug delivery system.

    Science.gov (United States)

    Pinezich, Meghan R; Russell, Lauren N; Murphy, Nicholas P; Lampe, Kyle J

    2018-04-16

    Biomaterial drug delivery systems (DDS) can be used to regulate growth factor release and combat the limited intrinsic regeneration capabilities of central nervous system (CNS) tissue following injury and disease. Of particular interest are systems that aid in oligodendrocyte regeneration, as oligodendrocytes generate myelin which surrounds neuronal axons and helps transmit signals throughout the CNS. Oligodendrocyte precursor cells (OPCs) are found in small numbers in the adult CNS, but are unable to effectively differentiate following CNS injury. Delivery of signaling molecules can initiate a favorable OPC response, such as proliferation or differentiation. Here, we investigate the delivery of one such molecule, platelet derived growth factor-AA (PDGF-AA), from poly(lactic-co-glycolic) acid microparticles to OPCs in a 3D polyethylene glycol-based hydrogel. The goal of this DDS was to better understand the relationship between PDGF-AA release kinetics and OPC fate. The system approximates native brain tissue stiffness, while incorporating PDGF-AA under seven different delivery scenarios. Within this DDS, supply of PDGF-AA followed by PDGF-AA withdrawal caused OPCs to upregulate gene expression of myelin basic protein (MBP) by factors of 1.6-9.2, whereas continuous supply of PDGF-AA caused OPCs to remain proliferative. At the protein expression level, we observed an upregulation in O1, a marker for mature oligodendrocytes. Together, these results show that burst release followed by withdrawal of PDGF-AA from a hydrogel DDS stimulates survival, proliferation, and differentiation of OPCs in vitro. Our results could inform the development of improved neural regeneration strategies that incorporate delivery of PDGF-AA to the injured CNS. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  6. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics.

    Science.gov (United States)

    de Lange, Elizabeth C M; van den Brink, Willem; Yamamoto, Yumi; de Witte, Wilhelmus E A; Wong, Yin Cheong

    2017-12-01

    CNS drug development has been hampered by inadequate consideration of CNS pharmacokinetic (PK), pharmacodynamics (PD) and disease complexity (reductionist approach). Improvement is required via integrative model-based approaches. Areas covered: The authors summarize factors that have played a role in the high attrition rate of CNS compounds. Recent advances in CNS research and drug discovery are presented, especially with regard to assessment of relevant neuro-PK parameters. Suggestions for further improvements are also discussed. Expert opinion: Understanding time- and condition dependent interrelationships between neuro-PK and neuro-PD processes is key to predictions in different conditions. As a first screen, it is suggested to use in silico/in vitro derived molecular properties of candidate compounds and predict concentration-time profiles of compounds in multiple compartments of the human CNS, using time-course based physiology-based (PB) PK models. Then, for selected compounds, one can include in vitro drug-target binding kinetics to predict target occupancy (TO)-time profiles in humans. This will improve neuro-PD prediction. Furthermore, a pharmaco-omics approach is suggested, providing multilevel and paralleled data on systems processes from individuals in a systems-wide manner. Thus, clinical trials will be better informed, using fewer animals, while also, needing fewer individuals and samples per individual for proof of concept in humans.

  7. Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Toft-Hansen, Henrik; Nuttall, Robert K; Edwards, Dylan R

    2004-01-01

    animal model, experimental autoimmune encephalomyelitis (EAE). We used real-time RT-PCR to profile the expression of all 22 known mouse MMPs, seven ADAMs, and all four known TIMPs in spinal cord from SJL/J mice and mice with adoptively transferred myelin basic protein (MBP)-specific EAE. A significant...... cellular sources of these strongly affected proteins in the inflamed CNS, we isolated macrophages, granulocytes, microglia, and T cells by cell sorting from the CNS of mice with EAE and analyzed their expression by real-time RT-PCR. This identified macrophages as a major source of MMP-12 and TIMP-1...

  8. Immune regulation and CNS autoimmune disease

    DEFF Research Database (Denmark)

    Antel, J P; Owens, T

    1999-01-01

    The central nervous system is a demonstrated target of both clinical and experimental immune mediated disorders. Immune regulatory mechanisms operative at the levels of the systemic immune system, the blood brain barrier, and within the CNS parenchyma are important determinants of the intensity...... and duration of the tissue directed injury. Convergence of research, involving direct manipulation of specific cells and molecular mediators in animal models and in vitro analysis of human immune and neural cells and tissues, is providing increasing insight into the role of these immune regulatory functions...

  9. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Kazuya Takahashi

    2007-04-01

    Full Text Available BACKGROUND: In multiple sclerosis, inflammation can successfully be prevented, while promoting repair is still a major challenge. Microglial cells, the resident phagocytes of the central nervous system (CNS, are hematopoietic-derived myeloid cells and express the triggering receptor expressed on myeloid cells 2 (TREM2, an innate immune receptor. Myeloid cells are an accessible source for ex vivo gene therapy. We investigated whether myeloid precursor cells genetically modified to express TREM2 affect the disease course of experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis. METHODS AND FINDINGS: EAE was induced in mice by immunization with a myelin autoantigen. Intravenous application of TREM2-transduced bone marrow-derived myeloid precursor cells at the EAE peak led to an amelioration of clinical symptoms, reduction in axonal damage, and prevention of further demyelination. TREM2-transduced myeloid cells applied intravenously migrated into the inflammatory spinal cord lesions of EAE-diseased mice, showed increased lysosomal and phagocytic activity, cleared degenerated myelin, and created an anti-inflammatory cytokine milieu within the CNS. CONCLUSIONS: Intravenously applied bone marrow-derived and TREM2-tranduced myeloid precursor cells limit tissue destruction and facilitate repair within the murine CNS by clearance of cellular debris during EAE. TREM2 is a new attractive target for promotion of repair and resolution of inflammation in multiple sclerosis and other neuroinflammatory diseases.

  10. Heterogeneity of Multiple Sclerosis Lesions in Multislice Myelin Water Imaging.

    Directory of Open Access Journals (Sweden)

    Tobias Djamsched Faizy

    Full Text Available To assess neuroprotection and remyelination in Multiple Sclerosis (MS, we applied a more robust myelin water imaging (MWI processing technique, including spatial priors into image reconstruction, which allows for lower SNR, less averages and shorter acquisition times. We sought to evaluate this technique in MS-patients and healthy controls (HC.Seventeen MS-patients and 14 age-matched HCs received a 3T Magnetic Resonance Imaging (MRI examination including MWI (8 slices, 12 minutes acquisition time, T2w and T1mprage pre and post gadolinium (GD administration. Black holes (BH, contrast enhancing lesions (CEL and T2 lesions were marked and registered to MWI. Additionally, regions of interest (ROI were defined in the frontal, parietal and occipital normal appearing white matter (NAWM/white matter (WM, the corticospinal tract (CST, the splenium (SCC and genu (GCC of the corpus callosum in patients and HCs. Mean values of myelin water fraction (MWF were determined for each ROI.Significant differences (p≤0.05 of the MWF were found in all three different MS-lesion types (BH, CEL, T2 lesions, compared to the WM of HCs. The mean MWF values among the different lesion types were significantly differing from each other. Comparing MS-patients vs. HCs, we found a significant (p≤0.05 difference of the MWF in all measured ROIs except of GCC and SCC. The mean reduction of MWF in the NAWM of MS-patients compared to HCs was 37%. No age, sex, disability score and disease duration dependency was found for the NAWM MWF.MWF measures were in line with previous studies and lesions were clearly visible in MWI. MWI allows for quantitative assessment of NAWM and lesions in MS, which could be used as an additional sensitive imaging endpoint for larger MS studies. Measurements of the MWF also differ between patients and healthy controls.

  11. Neurolymphomatosis: An International Primary CNS Lymphoma Collaborative Group report

    NARCIS (Netherlands)

    S. Grisariu (Sigal); B. Avni (Batia); T.T. Batchelor (Tracy); M.J. van den Bent (Martin); F. Bokstein (Felix); D. Schiff (David); O. Kuittinen (Outi); M.C. Chamberlain (Marc C.); P. Roth (Patrick); A. Nemets (Anatoly); E. Shalom (Edna); D. Ben-Yehuda (Dina); T. Siegal (Tali)

    2010-01-01

    textabstractNeurolymphomatosis (NL) is a rare clinical entity. The International Primary CNS Lymphoma Collaborative Group retrospectively analyzed 50 patients assembled from 12 centers in 5 countries over a 16-year period. NL was related to non-Hodgkin lymphoma in 90% and to acute leukemia in 10%.

  12. Structure and function of the contactin-associated protein family in myelinated axons and their relationship with nerve diseases

    Directory of Open Access Journals (Sweden)

    Yan Zou

    2017-01-01

    Full Text Available The contactin-associated protein (Caspr family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family–CNTNAP1 (Caspr1, CNTNAP2 (Caspr2, CNTNAP3 (Caspr3, CNTNAP4 (Caspr4 and CNTNAP5 (Caspr5, Caspr1–5 is not only involved in the formation of myelinated axons, but also participates in maintaining the stability of adjacent connections. Caspr1 participates in the formation, differentiation, and proliferation of neurons and astrocytes, and in motor control and cognitive function. We also analyzed the relationship between the Caspr family and neurodegenerative diseases, multiple sclerosis, and autoimmune encephalitis. However, the effects of Caspr on disease course and prognosis remain poorly understood. The effects of Caspr on disease diagnosis and treatment need further investigation.

  13. Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation.

    Directory of Open Access Journals (Sweden)

    Feng Mei

    Full Text Available Quetiapine (Que, a commonly used atypical antipsychotic drug (APD, can prevent myelin from breakdown without immune attack. Multiple sclerosis (MS, an autoimmune reactive inflammation demyelinating disease, is triggered by activated myelin-specific T lymphocytes (T cells. In this study, we investigated the potential efficacy of Que as an immune-modulating therapeutic agent for experimental autoimmune encephalomyelitis (EAE, a mouse model for MS. Que treatment was initiated on the onset of MOG(35-55 peptide induced EAE mice and the efficacy of Que on modulating the immune response was determined by Flow Cytometry through analyzing CD4(+/CD8(+ populations and the proliferation of effector T cells (CD4(+CD25(- in peripheral immune organs. Our results show that Que dramatically attenuates the severity of EAE symptoms. Que treatment decreases the extent of CD4(+/CD8(+ T cell infiltration into the spinal cord and suppresses local glial activation, thereby diminishing the loss of mature oligodendrocytes and myelin breakdown in the spinal cord of EAE mice. Our results further demonstrate that Que treatment decreases the CD4(+/CD8(+ T cell populations in lymph nodes and spleens of EAE mice and inhibits either MOG(35-55 or anti-CD3 induced proliferation as well as IL-2 production of effector T cells (CD4(+CD25(- isolated from EAE mice spleen. Together, these findings suggest that Que displays an immune-modulating role during the course of EAE, and thus may be a promising candidate for treatment of MS.

  14. Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1

    Directory of Open Access Journals (Sweden)

    Wilson Pak-Kin Lou

    2018-01-01

    Full Text Available Adult mammalian central nervous system (CNS neurons are unable to regenerate following axonal injury, leading to permanent functional impairments. Yet, the reasons underlying this regeneration failure are not fully understood. Here, we studied the transcriptome and translatome shortly after spinal cord injury. Profiling of the total and ribosome-bound RNA in injured and naïve spinal cords identified a substantial post-transcriptional regulation of gene expression. In particular, transcripts associated with nervous system development were down-regulated in the total RNA fraction while remaining stably loaded onto ribosomes. Interestingly, motif association analysis of post-transcriptionally regulated transcripts identified the cytoplasmic polyadenylation element (CPE as enriched in a subset of these transcripts that was more resistant to injury-induced reduction at the transcriptome level. Modulation of these transcripts by overexpression of the CPE binding protein, Cpeb1, in mouse and Drosophila CNS neurons promoted axonal regeneration following injury. Our study uncovered a global evolutionarily conserved post-transcriptional mechanism enhancing regeneration of injured CNS axons.

  15. Detail Design of the hydrogen system and the gas blanketing system for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Kim, Young Ki; Wu, Sang Ik; Kim, Bong Su; Lee, Yong Seop

    2007-04-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system (HRS). Because of its installed location, the hydrogen system is designed to be surrounded by the gas blanketing system to notify the leakage on the system and to prevent hydrogen leakage out of the CNS. The hydrogen system, consisted of hydrogen charging unit, hydrogen storage unit, hydrogen buffer tank, and hydrogen piping, is designed to smoothly and safely supply hydrogen to and to draw back hydrogen from the IPA of the CNS under the HRS operation mode. Described is that calculation for total required hydrogen amount in the CNS as well as operation schemes of the hydrogen system. The gas blanketing system (GBS) is designed for the supply of the compressed nitrogen gas into the air pressurized valves for the CNS, to isolate the hydrogen system from the air and the water, and to prevent air or water intrusion into the vacuum system as well as the hydrogen system. All detail descriptions are shown inhere as well as the operation scheme for the GBS

  16. Epizootic vacuolar myelinopathy of the central nervous system of bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana)

    Science.gov (United States)

    Thomas, N.J.; Meteyer, C.U.; Sileo, L.

    1998-01-01

    Unprecedented mortality occurred in bald eagles (Haliaeetus leucocephalus) at DeGray Lake, Arkansas, during the winters of 1994-1995 and 1996-1997. The first eagles were found dead during November, soon after arrival from fall migration, and deaths continued into January during both episodes. In total, 29 eagles died at or near DeGray Lake in the winter of 1994-1995 and 26 died in the winter of 1996-1997; no eagle mortality was noted during the same months of the intervening winter or in the earlier history of the lake. During the mortality events, sick eagles were observed overflying perches or colliding with rock walls. Signs of incoordination and limb paresis were also observed in American coots (Fulica americana) during the episodes of eagle mortality, but mortality in coots was minimal. No consistent abnormalities were seen on gross necropsy of either species. No microscopic findings in organs other than the central nervous system (CNS) could explain the cause of death. By light microscopy, all 26 eagles examined and 62/77 (81%) coots had striking, diffuse, spongy degeneration of the white matter of the CNS. Vacuolation occurred in all myelinated CNS tissue, including the cerebellar folia and medulla oblongata, but was most prominent in the optic tectum. In the spinal cord, vacuoles were concentrated near the gray matter, and occasional swollen axons were seen. Vacuoles were uniformly present in optic nerves but were not evident in the retina or peripheral or autonomic nerves. Cellular inflammatory response to the lesion was distinctly lacking. Vacuoles were 8-50 microns in diameter and occurred individually, in clusters, or in rows. In sections stained by luxol fast blue/periodic acid-Schiff stain, the vacuoles were delimited and transected by myelin strands. Transmission electron microscopy revealed intramyelinic vacuoles formed in the myelin sheaths by splitting of one or more myelin lamellae at the intraperiodic line. This lesion is characteristic of

  17. T(2)-weighted microMRI and evoked potential of the visual system measurements during the development of hypomyelinated transgenic mice.

    Science.gov (United States)

    Martin, Melanie; Reyes, Samuel D; Hiltner, Timothy D; Givogri, M Irene; Tyszka, J Michael; Fisher, Robin; Campagnoni, Anthony T; Fraser, Scott E; Jacobs, Russell E; Readhead, Carol

    2007-02-01

    Our objective was to follow the course of a dysmyelinating disease followed by partial recovery in transgenic mice using non-invasive high-resolution (117 x 117 x 70 microm) magnetic resonance (microMRI) and evoked potential of the visual system (VEP) techniques. We used JOE (for J37 golli overexpressing) transgenic mice engineered to overexpress golli J37, a product of the Golli-mbp gene complex, specifically in oligodendrocytes. Individual JOE transgenics and their unaffected siblings were followed from 21 until 75-days-old using non-invasive in vivo VEPs and 3D T2-weighted microMRI on an 11.7 T scanner, performing what we believe is the first longitudinal study of its kind. The microMRI data indicated clear, global hypomyelination during the period of peak myelination (21-42 days), which was partially corrected at later ages (>60 days) in the JOE mice compared to controls. These microMRI data correlated well with [Campagnoni AT (1995) "Molecular biology of myelination". In: Ransom B, Kettenmann H (eds) Neuroglia--a Treatise. Oxford University Press, London, pp 555-570] myelin staining, [Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene-expression. Mol Neurobiol 2:41-89] a transient intention tremor during the peak period of myelination, which abated at later ages, and [Lees MB, Brostoff SW (1984) Proteins in myelin. In: Morell (ed) Myelin. Plenum Press, New York and London, pp 197-224] VEPs which all indicated a significant delay of CNS myelin development and persistent hypomyelination in JOE mice. Overall these non-invasive techniques are capable of spatially resolving the increase in myelination in the normally developing and developmentally delayed mouse brain.

  18. Plasma myelin basic protein assay using Gilford enzyme immunoassay cuvettes.

    Science.gov (United States)

    Groome, N P

    1981-10-01

    The assay of myelin basic protein in body fluids has potential clinical importance as a routine indicator of demyelination. Preliminary details of a competitive enzyme immunoassay for this protein have previously been published by the author (Groome, N. P. (1980) J. Neurochem. 35, 1409-1417). The present paper now describes the adaptation of this assay for use on human plasma and various aspects of routine data processing. A commercially available cuvette system was found to have advantages over microtitre plates but required a permuted arrangement of sample replicates for consistent results. For dose interpolation, the standard curve could be fitted to a three parameter non-linear equation by regression analysis or linearised by the logit/log transformation.

  19. Flavonoids and the CNS

    DEFF Research Database (Denmark)

    Jäger, Anna Katharina; Saaby, Lasse

    2011-01-01

    Flavonoids are present in almost all terrestrial plants, where they provide UV-protection and colour. Flavonoids have a fused ring system consisting of an aromatic ring and a benzopyran ring with a phenyl substituent. The flavonoids can be divided into several classes depending on their structure....... Flavonoids are present in food and medicinal plants and are thus consumed by humans. They are found in plants as glycosides. Before oral absorption, flavonoids undergo deglycosylation either by lactase phloridzin hydrolase or cytosolic ß-glucocidase. The absorbed aglycone is then conjugated by methylation......, sulphatation or glucuronidation. Both the aglycones and the conjugates can pass the blood-brain barrier. In the CNS several flavones bind to the benzodiazepine site on the GABA(A)-receptor resulting in sedation, anxiolytic or anti-convulsive effects. Flavonoids of several classes are inhibitors of monoamine...

  20. A map of taste neuron projections in the Drosophila CNS

    Indian Academy of Sciences (India)

    2014-07-08

    Jul 8, 2014 ... information that they represent. The extensive ... physiology and behaviour in the wild type and in these mutants .... taste information is processed in the CNS. 2. ..... gene affecting the specificity of the chemosensory neurons of.

  1. [Non-structural abnormalities of CNS function resulting in coincidence of endocrinopathies, epilepsy and psychoneurologic disorders in children and adolescents].

    Science.gov (United States)

    Starzyk, Jerzy; Pituch-Noworolska, Anna; Pietrzyk, Jacek A; Urbanik, Andrzej; Kroczka, Sławomir; Drozdz, Ryszard; Wójcik, Małgorzata

    2010-01-01

    chiasm glioma (2 patients), suprasellar germinal tumor (1 patient), ii) children with Hashimoto encephalopathy (2 patients), iii) children with Prader-Willi syndrome (20 patients), with Klinefelter syndrome (10 patients), with Albright syndrome (9 patients). Of the 49 patients, a group of 6 children representative for individual disorders was selected. In those patients, the etiology of both endocrine disorders, epilepsy and neuropsychiatric disorders was suspected to be common, and the diagnosis was usually delayed. 1. Cranial irradiation and chemotherapy, encephalopathy associated with Hashimoto disease and some of the syndromes with the chromosomal and genetic background are the causes of non-structural CNS abnormalities and coincidence of endocrinopathies, epilepsy and psychoneurologic disorders. 2. MR/CT CNS imaging should be performed in any case of central neurological disorders, disorders of behavior, epilepsy or seizures, but also in patients with delayed psycho-motor development, delayed or accelerated growth and pubertal development. All of the above-mentioned manifestations may be symptoms of structural CNS abnormalities and their early treatment determines the child's future. 3. Excluding structural CNS abnormalities allows for forming suspicions associated with diseases resulting in non-structural disorders of the CNS function, predisposing to coincidence of endocrine and neurological disorders. 4. In the diagnosis of Hashimoto's encephalopathy, a decisive factor is exclusion of structural, infectious, traumatic and metabolic causes, intoxications, epilepsy and presence of neuropsychiatric symptoms in patients with high level of against TPO antibodies. In cases of steroids resistance, a good therapeutic effect may be achieved by plasmapheresis, Rituximab therapy and progestagene inhibition of the menstrual cycle.

  2. Phantom limb pain: a case of maladaptive CNS plasticity?

    DEFF Research Database (Denmark)

    Flor, Herta; Nikolajsen, Lone; Jensen, Troels Staehelin

    2006-01-01

    might be a phenomenon of the CNS that is related to plastic changes at several levels of the neuraxis and especially the cortex. Here, we discuss the evidence for putative pathophysiological mechanisms with an emphasis on central, and in particular cortical, changes. We cite both animal and human...

  3. CLIPPERS among patients diagnosed with non-specific CNS neuroinflammatory diseases

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, B M; Lindelof, M; Illes, Zsolt

    2014-01-01

    Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS) is an inflammatory CNS disorder characterized by 1) subacute onset of cerebellar and brainstem symptoms, 2) peripontine contrast-enhancing perivascular lesions with a "salt-and-pepper" appeara...

  4. Inhibition of KLF7-Targeting MicroRNA 146b Promotes Sciatic Nerve Regeneration.

    Science.gov (United States)

    Li, Wen-Yuan; Zhang, Wei-Ting; Cheng, Yong-Xia; Liu, Yan-Cui; Zhai, Feng-Guo; Sun, Ping; Li, Hui-Ting; Deng, Ling-Xiao; Zhu, Xiao-Feng; Wang, Ying

    2018-06-01

    A previous study has indicated that Krüppel-like factor 7 (KLF7), a transcription factor that stimulates Schwann cell (SC) proliferation and axonal regeneration after peripheral nerve injury, is a promising therapeutic transcription factor in nerve injury. We aimed to identify whether inhibition of microRNA-146b (miR-146b) affected SC proliferation, migration, and myelinated axon regeneration following sciatic nerve injury by regulating its direct target KLF7. SCs were transfected with miRNA lentivirus, miRNA inhibitor lentivirus, or KLF7 siRNA lentivirus in vitro. The expression of miR146b and KLF7, as well as SC proliferation and migration, were subsequently evaluated. In vivo, an acellular nerve allograft (ANA) followed by injection of GFP control vector or a lentiviral vector encoding an miR-146b inhibitor was used to assess the repair potential in a model of sciatic nerve gap. miR-146b directly targeted KLF7 by binding to the 3'-UTR, suppressing KLF7. Up-regulation of miR-146b and KLF7 knockdown significantly reduced the proliferation and migration of SCs, whereas silencing miR-146b resulted in increased proliferation and migration. KLF7 protein was localized in SCs in which miR-146b was expressed in vivo. Similarly, 4 weeks after the ANA, anti-miR-146b increased KLF7 and its target gene nerve growth factor cascade, promoting axonal outgrowth. Closer analysis revealed improved nerve conduction and sciatic function index score, and enhanced expression of neurofilaments, P0 (anti-peripheral myelin), and myelinated axon regeneration. Our findings provide new insight into the regulation of KLF7 by miR-146b during peripheral nerve regeneration and suggest a potential therapeutic strategy for peripheral nerve injury.

  5. Disubstituted thiourea derivatives and their activity on CNS: synthesis and biological evaluation.

    Science.gov (United States)

    Stefanska, Joanna; Szulczyk, Daniel; Koziol, Anna E; Miroslaw, Barbara; Kedzierska, Ewa; Fidecka, Sylwia; Busonera, Bernardetta; Sanna, Giuseppina; Giliberti, Gabriele; La Colla, Paolo; Struga, Marta

    2012-09-01

    A series of new thiourea derivatives of 1,2,4-triazole have been synthesized. The difference in structures of obtained compounds are directly connected with the kind of isothiocyanate (aryl/alkyl). The (1)H NMR, (13)C NMR, MS methods were used to confirm structures of obtained thiourea derivatives. The molecular structure of (1, 17) was determined by an X-ray analysis. Two of the new compounds (8 and 14) were tested for their pharmacological activity on animal central nervous system (CNS) in behavioural animal tests. The results presented in this work indicate the possible involvement of the serotonergic system in the activity of 8 and 14. In the case of 14 is also a possible link between its activity and the endogenous opioid system. All obtained compounds were tested for antibacterial activity against gram-positive cocci, gram-negative rods and antifungal activity. Compounds (1, 2, 5, 7, 9) showed significant inhibition against gram-positive cocci. Microbiological evaluation was carried out over 20 standard strains and 30 hospital strains. Selected compounds (1-13) were examined for cytotoxicity, antitumor, and anti-HIV activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair.

    Science.gov (United States)

    Kim, Han-Seop; Lee, Jungwoon; Lee, Da Yong; Kim, Young-Dae; Kim, Jae Yun; Lim, Hyung Jin; Lim, Sungmin; Cho, Yee Sook

    2017-06-06

    Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-β and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia.

    Science.gov (United States)

    Delgado, R; Carlin, A; Airaghi, L; Demitri, M T; Meda, L; Galimberti, D; Baron, P; Lipton, J M; Catania, A

    1998-06-01

    Inflammatory processes contribute to neurodegenerative disease, stroke, encephalitis, and other central nervous system (CNS) disorders. Activated microglia are a source of cytokines and other inflammatory agents within the CNS and it is therefore important to control glial function in order to preserve neural cells. Melanocortin peptides are pro-opiomelanocortin-derived amino acid sequences that include alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). These peptides have potent and broad anti-inflammatory effects. We tested effects of alpha-MSH (1-13), alpha-MSH (11-13), and ACTH (1-24) on production of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) in a cultured murine microglial cell line (N9) stimulated with lipopolysaccharide (LPS) plus interferon gamma (IFN-gamma). Melanocortin peptides inhibited production of these cytokines and NO in a concentration-related fashion, probably by increasing intracellular cAMP. When stimulated with LPS + IFN-gamma, microglia increased release of alpha-MSH. Production of TNF-alpha, IL-6, and NO was greater in activated microglia after innmunoneutralization of endogenous alpha-MSH. The results suggest that alpha-MSH is an autocrine factor in microglia. Because melanocortin peptides inhibit production of pro-inflammatory mediators by activated microglia they might be useful in treatment of inflammatory/degenerative brain disorders.

  8. Regulatory effect of triiodothyronine on brain myelination and astrogliosis after cuprizone-induced demyelination in mice.

    Science.gov (United States)

    Zendedel, Adib; Kashani, Iraj Ragerdi; Azimzadeh, Maryam; Pasbakhsh, Parichehr; Omidi, Negar; Golestani, Abolfazl; Beyer, Cordian; Clarner, Tim

    2016-04-01

    Chronic demyelination and plaque formation in multiple sclerosis is accompanied by persisting astrogliosis, negatively influencing central nervous system recovery and remyelination. Triiodothyronin (T3) is thought to enhance remyelination in the adult brain by the induction of oligodendrocyte maturation. We investigated additional astrocyte-mediated mechanisms by which T3 might promote remyelination in chronically demyelinated lesions using the cuprizone mouse model. C57BL/6 mice were fed cuprizone for 12 weeks to induce lesions with an impaired remyelination capacity. While the expression of oligodenrocyte progenitor markers, i.e., platelet derived growth factor-α receptor was not affected by T3 administration, myelination status, myelin protein expression as well as total and adult oligodendrocyte numbers were markedly increased compared to cuprizone treated controls. In addition to these effects on oligodendrocyte numbers and function, astrogliosis but not microgliosis was ameliorated by T3 administration. Intermediate filament proteins vimentin and nestin as well as the extracellular matrix component tenascin C were significantly reduced after T3 exposure, indicating additional effects of T3 on astrocytes and astrogliosis. Our data clearly indicate that T3 promotes remyelination in chronic lesions by both enhancing oligodendrocyte maturation and attenuating astrogliosis.

  9. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons

    NARCIS (Netherlands)

    Battefeld, A.; Tran, B.T.; Gavrilis, J.; Cooper, E.C.; Kole, Maarten|info:eu-repo/dai/nl/256257574

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of Kv7 potassium channels and voltage-gated sodium (Nav ) channels in the axonal

  10. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons

    NARCIS (Netherlands)

    Battefeld, A.; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the

  11. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    Science.gov (United States)

    Owens, T; Renno, T; Taupin, V; Krakowski, M

    1994-12-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.

  12. Malignant lymphoma in central nervous system (CNS)

    International Nuclear Information System (INIS)

    Fujiyoshi, Kenji; Fukuyama, Hidenao; Akiguchi, Ichiro; Kameyama, Masakuni; Nishimura, Toshio.

    1984-01-01

    A 71-year-old male was admitted to Kohka Public Hospital on January 4, 1980, because of frequent vomiting and recent memory loss. Two weeks before admission upper G-I series showed no abnormalities. Physical and neurological examinations revealed no abnormalities except for slightly apathetic appearance and recent memory loss. Mild pleocytosis and marked increase of protein in CSF were observed. CT scan on January 17 showed high density areas in both medial sides of temporal lobes with remarkable contrast enhancement. His memory and, consciousness disturbances gradually aggravated, accompanied by abnormal density spreading around the ventricle walls like ventriculitis. He was transfered to Kyoto University Hospital on March 17, and malignant lymphoma was diagnosed on the basis of CSF cytology. Radiation and chemotherapy alleviated the CNS involvement and he regained normal mental function. On June 16, he developed pneumonia followed by status epilepticus. Autopsy findings revealed no lymphoid cell infiltration, but fibrous tissues in both hippocampal gyri and lymphomatous cells in the liver, which could not be suspected on clinical examinations. Apparent malignant lymphoma cells were not found in lymph nodes. This case indicated peculiar evolution of malignant lymphoma from liver to CNS or vice versa. We could not decide which organ was primary. CT findings of this case was very interesting; they resembled ventriculitis, which simulate tumors such as medulloblastoma or ependymoma spreading under ependymal lining. (author)

  13. A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2016-03-01

    Full Text Available Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS and celestial navigation system (CNS can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter.

  14. MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE

    DEFF Research Database (Denmark)

    Thyagabhavan Mony, Jyothi; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Myelin-specific T cells are implicated in multiple sclerosis (MS) and drive experimental autoimmune encephalomyelitis (EAE). EAE is commonly induced with short peptides, whereas in MS, whole myelin proteins are available for immune response. We asked whether immunization with the immunoglobulin-l...

  15. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    Science.gov (United States)

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  16. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka; Watanabe, Yousuke [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-11-01

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO{sup +} oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO{sup +} oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression

  17. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Watanabe, Yousuke; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO + oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO + oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression profiling was performed. • CPZ

  18. A Mechanism of Virus-Induced Demyelination

    Directory of Open Access Journals (Sweden)

    Jayasri Das Sarma

    2010-01-01

    Full Text Available Myelin forms an insulating sheath surrounding axons in the central and peripheral nervous systems and is essential for rapid propagation of neuronal action potentials. Demyelination is an acquired disorder in which normally formed myelin degenerates, exposing axons to the extracellular environment. The result is dysfunction of normal neuron-to-neuron communication and in many cases, varying degrees of axonal degeneration. Numerous central nervous system demyelinating disorders exist, including multiple sclerosis. Although demyelination is the major manifestation of most of the demyelinating diseases, recent studies have clearly documented concomitant axonal loss to varying degrees resulting in long-term disability. Axonal injury may occur secondary to myelin damage (outside-in model or myelin damage may occur secondary to axonal injury (inside-out model. Viral induced demyelination models, has provided unique imminent into the cellular mechanisms of myelin destruction. They illustrate mechanisms of viral persistence, including latent infections, virus reactivation and viral-induced tissue damage. These studies have also provided excellent paradigms to study the interactions between the immune system and the central nervous system (CNS. In this review we will discuss potential cellular and molecular mechanism of central nervous system axonal loss and demyelination in a viral induced mouse model of multiple sclerosis.

  19. Nogo-A is a reliable oligodendroglial marker in adult human and mouse CNS and in demyelinated lesions

    DEFF Research Database (Denmark)

    Kuhlmann, Tanja; Remington, Leah; Maruschak, Brigitte

    2007-01-01

    to be strongly expressed in mature oligodendrocytes in vivo. In the present investigation we analyzed the expression patterns of Nogo-A in adult mouse and human CNS as well as in demyelinating animal models and multiple sclerosis lesions. Nogo-A expression was compared with that of other frequently used...... oligodendroglial markers such as CC1, CNP, and in situ hybridization for proteolipid protein mRNA. Nogo-A strongly and reliably labeled oligodendrocytes in the adult CNS as well as in demyelinating lesions and thus represents a valuable tool for the identification of oligodendrocytes in human and mouse CNS tissue...

  20. Biology of the repair of central nervous system demyelinated lesions: an appraisal Biologia da reparação de lesões desmielinizantes do sistema nervoso central: uma avaliação

    Directory of Open Access Journals (Sweden)

    L. A. V Peireira

    1996-06-01

    Full Text Available The integrity of myelin sheaths is maintained by oligodendrocytes and Schwann cells respectively in the central nervous system (CNS and in the peripheral nervous system. The process of demyelination consisting of the withdrawal of myelin sheaths from their axons is a characteristic feature of multiple sclerosis, the most common human demyelinating disease. Many experimental models have been designed to study the biology of demyelination and remyelination (repair of the lost myelin in the CNS, due to the difficulties in studying human material. In the ethidium bromide (an intercalating gliotoxic drug model of demyelination, CNS remyelination may be carried out by surviving oligodendrocytes and/or by cells differentiated from the primitive cell lines or either by Schwann cells that invade the CNS. However, some factors such as the age of the experimental animals, intensity and time of exposure to the intercalating chemical and the topography of the lesions have marked influence on the repair of the tissue.A integridade da bainha de mielina é fornecida pelos oligodendrócitos e pelas células de Schwann, no sistema nervoso central (SNC e no sistema nervoso periférico, respectivamente. O fenômeno de desmielinização refere-se à remoção das bainhas de mielina de axônios e este fato é característico na esclerose múltipla, a doença desmielinizante do SNC mais comum no homem. Muitos modelos experimentais têm sido utilizados para o estudo da biologia da desmielinização e remielinização no SNC, face à dificuldade de estudo de material humano. No modelo experimental da droga intercalate, gliotóxica, brometo de etídio, a remielinização do SNC pode ser efetuada por oligodendrócitos sobreviventes à lesão e/ou oriundos de diferenciação de linhagens celulares mais primitivas e por células de Schwann que invadem o SNC. No entanto, fatores como a idade dos animais, a intensidade, e o tempo de exposição ao agente intercalante e a

  1. Comparative analysis of acid sphingomyelinase distribution in the CNS of rats and mice following intracerebroventricular delivery.

    Directory of Open Access Journals (Sweden)

    Christopher M Treleaven

    Full Text Available Niemann-Pick A (NPA disease is a lysosomal storage disorder (LSD caused by a deficiency in acid sphingomyelinase (ASM activity. Previously, we reported that biochemical and functional abnormalities observed in ASM knockout (ASMKO mice could be partially alleviated by intracerebroventricular (ICV infusion of hASM. We now show that this route of delivery also results in widespread enzyme distribution throughout the rat brain and spinal cord. However, enzyme diffusion into CNS parenchyma did not occur in a linear dose-dependent fashion. Moreover, although the levels of hASM detected in the rat CNS were determined to be within the range shown to be therapeutic in ASMKO mice, the absolute amounts represented less than 1% of the total dose administered. Finally, our results also showed that similar levels of enzyme distribution are achieved across rodent species when the dose is normalized to CNS weight as opposed to whole body weight. Collectively, these data suggest that the efficacy observed following ICV delivery of hASM in ASMKO mice could be scaled to CNS of the rat.

  2. Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene

    DEFF Research Database (Denmark)

    Rosberg, Mette Romer; Alvarez, Susana; Krarup, Christian

    2013-01-01

    Mice with a heterozygous knock-out of the myelin protein P0 gene (P0+/-) develop a neuropathy similar to human Charcot-Marie-Tooth disease. They are indistinguishable from wild-types (WT) at birth and develop a slowly progressing demyelinating neuropathy. The aim of this study was to investigate...... whether the regeneration capacity of early symptomatic P0+/- is impaired as compared to age matched WT. Right sciatic nerves were lesioned at the thigh in 7-8 months old mice. Tibial motor axons at ankle were investigated by conventional motor conduction studies and axon excitability studies using...... threshold tracking. To evaluate regeneration we monitored the recovery of motor function after crush, and then compared the fiber distribution by histology. The overall motor performance was investigated using Rotor-Rod. P0+/- had reduced compound motor action potential amplitudes and thinner myelinated...

  3. Tendencies the treatment of the central nervous system (CNS) tumors

    International Nuclear Information System (INIS)

    Alert Silva, Jose; Jimenez Medina, Jose

    2004-01-01

    It is known that the treatment of the central nervous system (CNS) tumors is based on the use of surgery and radiotherapy (RT) and that chemotherapy (QMT) is used even more, as well as the other drugs. A bibliographic review was made to update the knowledge on the current trends and perspectives of RT applied to CNS tumors. The following were found among them: a) combinations of RT and CMT; b) radiosensitizers incorporated to the radiant treatment; c) angiogenesis inhibitors associated with RT; d) the scale-up or increase of the RT doses thanks to the development of new technologies, such as 3 D conformal radiotherapy, intensity- modulated radiotherapy, surgery and others. Another field of research is that of the changes in the rhythm or fractioning of the RT: hyperfractionated, accelerated, combinations of both, etc., which will allow mainly to increase the dosage scale-up

  4. Commercial viability of CNS drugs: balancing the risk/reward profile.

    Science.gov (United States)

    Johnson, Ginger S

    2014-01-01

    CNS has historically been a formidable therapeutic area in which to innovate owing to biological (e.g., complex neurobiology, difficulty reaching the target), as well as clinical (e.g., subjective clinical endpoints, high placebo response, lack of biomarkers) challenges. In the current market where many of the larger diseases are dominated by a generic standard of care, commercial challenges now make the triple threat of scientific-clinical-commercial risk too much for many players to tackle. However, opportunities do exist for smaller biotech companies to concentrate on narrowly focused patient populations associated with high unmet need for which risk can be tightly defined. In CNS, there are two major areas to balance the risk/reward profile and create commercially viable opportunities: To realize value, all companies (start-ups and big players) must define, measure and quantify clear and meaningful value to all stakeholders: physicians, patients, caregivers and payers. © 2013.

  5. Improved determination of the myelin water fraction in human brain using magnetic resonance imaging through Bayesian analysis of mcDESPOT.

    Science.gov (United States)

    Bouhrara, Mustapha; Spencer, Richard G

    2016-02-15

    Myelin water fraction (MWF) mapping with magnetic resonance imaging has led to the ability to directly observe myelination and demyelination in both the developing brain and in disease. Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) has been proposed as a rapid approach for multicomponent relaxometry and has been applied to map MWF in the human brain. However, even for the simplest two-pool signal model consisting of myelin-associated and non-myelin-associated water, the dimensionality of the parameter space for obtaining MWF estimates remains high. This renders parameter estimation difficult, especially at low-to-moderate signal-to-noise ratios (SNRs), due to the presence of local minima and the flatness of the fit residual energy surface used for parameter determination using conventional nonlinear least squares (NLLS)-based algorithms. In this study, we introduce three Bayesian approaches for analysis of the mcDESPOT signal model to determine MWF. Given the high-dimensional nature of the mcDESPOT signal model, and, therefore the high-dimensional marginalizations over nuisance parameters needed to derive the posterior probability distribution of the MWF, the Bayesian analyses introduced here use different approaches to reduce the dimensionality of the parameter space. The first approach uses normalization by average signal amplitude, and assumes that noise can be accurately estimated from signal-free regions of the image. The second approach likewise uses average amplitude normalization, but incorporates a full treatment of noise as an unknown variable through marginalization. The third approach does not use amplitude normalization and incorporates marginalization over both noise and signal amplitude. Through extensive Monte Carlo numerical simulations and analysis of in vivo human brain datasets exhibiting a range of SNR and spatial resolution, we demonstrated markedly improved accuracy and precision in the estimation of MWF

  6. Postnatal Sonic hedgehog (Shh) responsive cells give rise to oligodendrocyte lineage cells during myelination and in adulthood contribute to remyelination.

    Science.gov (United States)

    Sanchez, Maria A; Armstrong, Regina C

    2018-01-01

    Sonic hedgehog (Shh) regulates a wave of oligodendrocyte production for extensive myelination during postnatal development. During this postnatal period of oligodendrogenesis, we fate-labeled cells exhibiting active Shh signaling to examine their contribution to the regenerative response during remyelination. Bitransgenic mouse lines were generated for induced genetic fate-labeling of cells actively transcribing Shh or Gli1. Gli1 transcription is an effective readout for canonical Shh signaling. Shh CreERT2 mice and Gli1 CreERT2 mice were crossed to either R26 tdTomato mice to label cells with red fluorescence, or, R26 IAP mice to label membranes with alkaline phosphatase. When tamoxifen (TMX) was given on postnatal days 6-9 (P6-9), Shh ligand synthesis was prevalent in neurons of Shh CreERT2 ; R26 tdTomato mice and Shh CreERT2 ;R26 IAP mice. In Gli1 CreERT2 crosses, TMX from P6-9 detected Gli1 transcription in cells that populated the corpus callosum (CC) during postnatal myelination. Delaying TMX to P14-17, after the peak of oligodendrogenesis, significantly reduced labeling of Shh synthesizing neurons and Gli1 expressing cells in the CC. Importantly, Gli1 CreERT2 ;R26 tdTomato mice given TMX from P6-9 showed Gli1 fate-labeled cells in the adult (P56) CC, including cycling progenitor cells identified by EdU incorporation and NG2 immunolabeling. Furthermore, after cuprizone demyelination of the adult CC, Gli1 fate-labeled cells incorporated EdU and were immunolabeled by NG2 early during remyelination while forming myelin-like membranes after longer periods for remyelination to progress. These studies reveal a postnatal cell population with transient Shh signaling that contributes to oligodendrogenesis during CC myelination, and gives rise to cells that continue to proliferate in adulthood and contribute to CC remyelination. Published by Elsevier Inc.

  7. Metallothionein Expression and Roles During Neuropathology in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2006-01-01

    , their receptors and neurotrophins (TGFb, TGFb-Receptor, bFGF, bFGF-Receptor, VEGF, NT-3, NT-4/5, NGF); angiogenesis; and growth cone formation. Hence, MT-I+II enhance CNS tissue repair as seen clearly after the cryogenic injury, after which MT-I+II promote substitution of the necrotic lesion cavity with a glial...

  8. The central nervous system environment controls effector CD4+ T cell cytokine profile in experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Krakowski, M L; Owens, T

    1997-01-01

    In experimental allergic encephalomyelitis (EAE), CD4+ T cells infiltrate the central nervous system (CNS). We derived CD4+ T cell lines from SJL/J mice that were specific for encephalitogenic myelin basic protein (MBP) peptides and produced both Th1 and Th2 cytokines. These lines transferred EAE...... to naive mice. Peptide-specific cells re-isolated from the CNS only produced Th1 cytokines, whereas T cells in the lymph nodes produced both Th1 and Th2 cytokines. Mononuclear cells isolated from the CNS, the majority of which were microglia, presented antigen to and stimulated MBP-specific T cell lines...... in vitro. Although CNS antigen-presenting cells (APC) supported increased production of interferon (IFN)-gamma mRNA by these T cells, there was no increase in the interleukin (IL)-4 signal, whereas splenic APC induced increases in both IFN-gamma and IL-4. mRNA for IL-12 (p40 subunit) was up...

  9. Endovascular transplantation of stem cells to the injured rat CNS

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan [Karolinska University Hospital, Department of Clinical Neuroscience, Karolinska Institutet, Department of Neuroradiology, Stockholm (Sweden); Le Blanc, Katarina [Karolinska University Hospital, Department of Stem Cell Research, Karolinska Institutet, Department of Clinical Immunology, Stockholm (Sweden)

    2009-10-15

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  10. Endovascular transplantation of stem cells to the injured rat CNS

    International Nuclear Information System (INIS)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan; Le Blanc, Katarina

    2009-01-01

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  11. Primary CNS lymphoma as a cause of Korsakoff syndrome.

    Science.gov (United States)

    Toth, Cory; Voll, Chris; Macaulay, Robert

    2002-01-01

    Korsakoff syndrome presents with memory dysfunction with retrograde amnesia, anterograde amnesia, limited insight into dysfunction, and confabulation. The most common etiology of Korsakoff syndrome is thiamine deficiency secondary to alcoholism. There are limited case reports of structural lesions causing Korsakoff syndrome. A 46-year-old male with a long history of alcoholism presented with a history of confusion, amnesia, and confabulation with no localizing features on neurological examination. The patient showed no clinical change with intravenous thiamine. Computed tomography of the brain revealed a heterogenous, enhancing mass lesion centered within the third ventricle, with other lesions found throughout cortical and subcortical regions. The patient was given dexamethasone i.v. without noticeable clinical improvement but with marked radiological improvement with mass reduction. Stereotactic biopsy revealed a diagnosis of primary central nervous system (CNS) lymphoma. Most patients presenting with Korsakoff syndrome have thiamine deficiency; however, mass lesions can produce an identical clinical picture. This is the first case report of a patient with primary CNS lymphoma presenting as Korsakoff syndrome.

  12. CSF Hypocretin-1 Levels and Clinical Profiles in Narcolepsy and Idiopathic CNS Hypersomnia in Norway

    Science.gov (United States)

    Heier, Mona Skard; Evsiukova, Tatiana; Vilming, Steinar; Gjerstad, Michaela D.; Schrader, Harald; Gautvik, Kaare

    2007-01-01

    Objective: To evaluate the relationship between CSF hypocretin-1 levels and clinical profiles in narcolepsy and CNS hypersomnia in Norwegian patients. Method: CSF hypocretin-1 was measured by a sensitive radioimmunoassay in 47 patients with narcolepsy with cataplexy, 7 with narcolepsy without cataplexy, 10 with idiopathic CNS hypersomnia, and a control group. Results: Low hypocretin-1 values were found in 72% of the HLA DQB1*0602 positive patients with narcolepsy and cataplexy. Patients with low CSF hypocretin-1 levels reported more extensive muscular involvement during cataplectic attacks than patients with normal levels. Hypnagogic hallucinations and sleep paralysis occurred more frequently in patients with cataplexy than in the other patient groups, but with no correlation to hypocretin-1 levels. Conclusion: About three quarters of the HLA DQB1*0602 positive patients with narcolepsy and cataplexy had low CSF hypocretin-1 values, and appear to form a distinct clinical entity. Narcolepsy without cataplexy could not be distinguished from idiopathic CNS hypersomnia by clinical symptoms or biochemical findings. Citation: Heier MS; Evsiukova T; Vilming S; Gjerstad MD; Schrader H; Gautvik K. CSF hypocretin-1 levels and clinical profiles in narcolepsy and idiopathic CNS hypersomnia in norway. SLEEP 2007;30(8):969-973. PMID:17702265

  13. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights

  14. Palmitoylethanolamide in CNS health and disease.

    Science.gov (United States)

    Mattace Raso, Giuseppina; Russo, Roberto; Calignano, Antonio; Meli, Rosaria

    2014-08-01

    The existence of acylethanolamides (AEs) in the mammalian brain has been known for decades. Among AEs, palmitoylethanolamide (PEA) is abundant in the central nervous system (CNS) and conspicuously produced by neurons and glial cells. Antihyperalgesic and neuroprotective properties of PEA have been mainly related to the reduction of neuronal firing and to control of inflammation. Growing evidence suggest that PEA may be neuroprotective during CNS neurodegenerative diseases. Advances in the understanding of the physiology and pharmacology of PEA have potentiated its interest as useful biological tool for disease management. Several rapid non-genomic and delayed genomic mechanisms of action have been identified for PEA as peroxisome proliferator-activated receptor (PPAR)-α dependent. First, an early molecular control, through Ca(+2)-activated intermediate- and/or big-conductance K(+) channels opening, drives to rapid neuronal hyperpolarization. This is reinforced by the increase of the inward Cl(-) currents due to the modulation of the gamma aminobutyric acid A receptor and by the desensitization of the transient receptor potential channel type V1. Moreover, the gene transcription-mediated mechanism sustains the long-term anti-inflammatory effects, by reducing pro-inflammatory enzyme expression and increasing neurosteroid synthesis. Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis. In this review, we will discuss the effect of PEA on metabolism, behavior, inflammation and pain perception, related to the control of central functions and the emerging evidence demonstrating its therapeutic efficacy in several neurodegenerative diseases. Copyright © 2014. Published by Elsevier Ltd.

  15. Cranial nerve vascular compression syndromes of the trigeminal, facial and vago-glossopharyngeal nerves: comparative anatomical study of the central myelin portion and transitional zone; correlations with incidences of corresponding hyperactive dysfunctional syndromes.

    Science.gov (United States)

    Guclu, Bulent; Sindou, Marc; Meyronet, David; Streichenberger, Nathalie; Simon, Emile; Mertens, Patrick

    2011-12-01

    The aim of this study was to evaluate the anatomy of the central myelin portion and the central myelin-peripheral myelin transitional zone of the trigeminal, facial, glossopharyngeal and vagus nerves from fresh cadavers. The aim was also to investigate the relationship between the length and volume of the central myelin portion of these nerves with the incidences of the corresponding cranial dysfunctional syndromes caused by their compression to provide some more insights for a better understanding of mechanisms. The trigeminal, facial, glossopharyngeal and vagus nerves from six fresh cadavers were examined. The length of these nerves from the brainstem to the foramen that they exit were measured. Longitudinal sections were stained and photographed to make measurements. The diameters of the nerves where they exit/enter from/to brainstem, the diameters where the transitional zone begins, the distances to the most distal part of transitional zone from brainstem and depths of the transitional zones were measured. Most importantly, the volume of the central myelin portion of the nerves was calculated. Correlation between length and volume of the central myelin portion of these nerves and the incidences of the corresponding hyperactive dysfunctional syndromes as reported in the literature were studied. The distance of the most distal part of the transitional zone from the brainstem was 4.19  ±  0.81 mm for the trigeminal nerve, 2.86  ±  1.19 mm for the facial nerve, 1.51  ±  0.39 mm for the glossopharyngeal nerve, and 1.63  ±  1.15 mm for the vagus nerve. The volume of central myelin portion was 24.54  ±  9.82 mm(3) in trigeminal nerve; 4.43  ±  2.55 mm(3) in facial nerve; 1.55  ±  1.08 mm(3) in glossopharyngeal nerve; 2.56  ±  1.32 mm(3) in vagus nerve. Correlations (p  nerves and incidences of the corresponding diseases. At present it is rather well-established that primary trigeminal neuralgia, hemifacial spasm and vago

  16. Sleep disorders in children after treatment for a CNS tumour

    NARCIS (Netherlands)

    Verberne, Lisa M.; Maurice-Stam, Heleen; Grootenhuis, Martha A.; van Santen, Hanneke M.; Schouten-van Meeteren, Antoinette Y. N.

    2012-01-01

    The long-term survival of children with a central nervous system (CNS) tumour is improving. However, they experience late effects, including altered habits and patterns of sleep. We evaluated the presence and type of sleep disorders and daytime sleepiness in these children, and its associations with

  17. BET bromodomain inhibition promotes neurogenesis while inhibiting gliogenesis in neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Jingjun Li

    2016-09-01

    Full Text Available Neural stem cells and progenitor cells (NPCs are increasingly appreciated to hold great promise for regenerative medicine to treat CNS injuries and neurodegenerative diseases. However, evidence for effective stimulation of neuronal production from endogenous or transplanted NPCs for neuron replacement with small molecules remains limited. To identify novel chemical entities/targets for neurogenesis, we had established a NPC phenotypic screen assay and validated it using known small-molecule neurogenesis inducers. Through screening small molecule libraries with annotated targets, we identified BET bromodomain inhibition as a novel mechanism for enhancing neurogenesis. BET bromodomain proteins, Brd2, Brd3, and Brd4 were found to be downregulated in NPCs upon differentiation, while their levels remain unaltered in proliferating NPCs. Consistent with the pharmacological study using bromodomain selective inhibitor (+-JQ-1, knockdown of each BET protein resulted in an increase in the number of neurons with simultaneous reduction in both astrocytes and oligodendrocytes. Gene expression profiling analysis demonstrated that BET bromodomain inhibition induced a broad but specific transcription program enhancing directed differentiation of NPCs into neurons while suppressing cell cycle progression and gliogenesis. Together, these results highlight a crucial role of BET proteins as epigenetic regulators in NPC development and suggest a therapeutic potential of BET inhibitors in treating brain injuries and neurodegenerative diseases.

  18. Heteromeric K(v)7.2/7.3 Channels Differentially Regulate Action Potential Initiation and Conduction in Neocortical Myelinated Axons

    NARCIS (Netherlands)

    Battefeld, Arne; Tran, Baouyen T.; Gavrilis, Jason; Cooper, Edward C.; Kole, Maarten H. P.

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na-v) channels in the

  19. Antibodies to myelin oligodendrocyte glycoprotein in idiopathic optic neuritis.

    Science.gov (United States)

    Nakajima, Hideki; Motomura, Masakatsu; Tanaka, Keiko; Fujikawa, Azusa; Nakata, Ruka; Maeda, Yasuhiro; Shima, Tomoaki; Mukaino, Akihiro; Yoshimura, Shunsuke; Miyazaki, Teiichiro; Shiraishi, Hirokazu; Kawakami, Atsushi; Tsujino, Akira

    2015-04-02

    To investigate the differences of clinical features, cerebrospinal fluid (CSF), MRI findings and response to steroid therapies between patients with optic neuritis (ON) who have myelin oligodendrocyte glycoprotein (MOG) antibodies and those who have seronegative ON. We recruited participants in the department of neurology and ophthalmology in our hospital in Japan. We retrospectively evaluated the clinical features and response to steroid therapies of patients with ON. Sera from patients were tested for antibodies to MOG and aquaporin-4 (AQP4) with a cell-based assay. Between April 2009 and March 2014, we enrolled serial 57 patients with ON (27 males, 30 females; age range 16-84 years) who ophthalmologists had diagnosed as having or suspected to have ON with acute visual impairment and declined critical flicker frequency, abnormal findings of brain MRI, optical coherence tomography and fluorescein fundus angiography at their onset or recurrence. We excluded those patients who fulfilled the diagnostic criteria of neuromyelitis optica (NMO)/NMO spectrum disorders (NMOSD), MS McDonald's criteria, and so on. Finally we defined 29 patients with idiopathic ON (14 males, 15 females, age range 16-84 years). 27.6% (8/29) were positive for MOG antibodies and 3.4% (1/29) were positive for AQP4. Among the eight patients with MOG antibodies, five had optic pain (p=0.001) and three had prodromal infection (p=0.179). Three of the eight MOG-positive patients showed significantly high CSF levels of myelin basic protein (p=0.021) and none were positive for oligoclonal band in CSF. On MRIs, seven MOG-positive patients showed high signal intensity on optic nerve, three had a cerebral lesion and one had a spinal cord lesion. Seven of the eight MOG-positive patients had a good response to steroid therapy. Although not proving primary pathogenicity of anti-MOG antibodies, the present results indicate that the measurement of MOG antibodies is useful in diagnosing and treating ON

  20. CpG Type A Induction of an Early Protective Environment in Experimental Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    James Crooks

    2017-01-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is an inflammatory, demyelinating disease of the CNS that mimics human multiple sclerosis (MS, and it is thought to be driven by Th1 and Th17 myelin-reactive cells. Although adaptive immunity is clearly pivotal in the pathogenesis of EAE, with an essential role of CD4+ T cells, little is known of early, innate responses in this experimental setting. CpG-rich oligodeoxynucleotides (ODNs, typically found in microbial genomes, are potent activators of TLR9 in plasmacytoid dendritic cells (pDCs. In this study, we compared the effects of two types of CpG, namely, type A and type B, on EAE. We found that treatment with CpG type A ODN (CpG-A, known to induce high amounts of IFN-α in pDCs, significantly reduced disease severity in EAE, relative to controls (12.63±1.86 versus 23.49±1.46, resp.; p=0.001. Treatment also delayed onset of neurological deficits and reduced spinal cord demyelination, while increasing the percentage of splenic regulatory (Foxp3+ CD4+ T cells. CpG-A likewise reduced the levels of IL-17 and IFN-γ in the CNS. Mechanistic insight into those events showed that CpG-A promoted a regulatory phenotype in pDCs. Moreover, adoptive transfer of pDCs isolated from CpG-A-treated mice inhibited CNS inflammation and induced disease remission in acute-phase EAE. Our data thus identify a link between TLR9 activation by specific ligands and the induction of tolerance via innate immunity mechanisms.

  1. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    NARCIS (Netherlands)

    Sturm, Dominik; Orr, Brent A.; Toprak, Umut H.; Hovestadt, Volker; Jones, David T. W.; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A.; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J.; Balasubramanian, Gnanaprakash; Worst, Barbara C.; Pajtler, Kristian W.; Brabetz, Sebastian; Johann, Pascal D.; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M.; Remke, Marc; Phillips, Joanna J.; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C.; Schniederjan, Matthew J.; Santi, Mariarita; Buccoliero, Anna M.; Dahiya, Sonika; Kramm, Christof M.; von Bueren, André O.; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C.; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V. Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U.; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S.; Taylor, Michael D.; Jones, Chris; Jabado, Nada; Karajannis, Matthias A.; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M.; Ellison, David W.; Korshunov, Andrey; Kool, Marcel

    2016-01-01

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally

  2. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    NARCIS (Netherlands)

    Sturm, Dominik; Orr, Brent A.; Toprak, Umut H.; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A.; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J.; Balasubramanian, Gnanaprakash; Worst, Barbara C.; Pajtler, Kristian W.; Brabetz, Sebastian; Johann, Pascal D.; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M.; Remke, Marc; Phillips, Joanna J.; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C.; Schniederjan, Matthew J.; Santi, Mariarita; Buccoliero, Anna M.; Dahiya, Sonika; Kramm, Christof M.; Von Bueren, André O.; Von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C.; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V. Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U.; Shalaby, Tarek; Grotzer, Michael; Van Meter, Timothy; Monoranu, Camelia Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; Van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S.; Taylor, Michael D.; Jones, Chris; Jabado, Nada; Karajannis, Matthias A.; Eils, Roland; Schlesner, Matthias; Lichter, Peter; Von Deimling, Andreas; Pfister, Stefan M.; Ellison, David W.; Korshunov, Andrey; Kool, Marcel

    2016-01-01

    Summary Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of

  3. Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.

    Science.gov (United States)

    Matthews, Paul R; Eastwood, Sharon L; Harrison, Paul J

    2012-01-01

    Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.

  4. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, K.; Sugiyama, N.; Kawanishi, C. [Yokohama City Univ., Yokohama (Japan)] [and others

    1996-07-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10% - 25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP gene duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be an important genetic abnormality in PMD and affect myelin formation. 38 ref., 5 figs., 2 tabs.

  5. 4th ENRI International Workshop on ATM/CNS

    CERN Document Server

    2017-01-01

    This book is a compilation of selected papers from the 4th ENRI International Workshop on ATM/CNS (EIWAC2015). The work focuses on novel techniques for aviation infrastructure in air traffic management (ATM) and communications, navigation, surveillance, and informatics (CNSI) domains. The contents make valuable contributions to academic researchers, engineers in the industry, and regulators of aviation authorities. As well, readers will encounter new ideas for realizing a more efficient and safer aviation system. .

  6. Rapid whole brain myelin water content mapping without an external water standard at 1.5T.

    Science.gov (United States)

    Nguyen, Thanh D; Spincemaille, Pascal; Gauthier, Susan A; Wang, Yi

    2017-06-01

    The objective of this study is to develop rapid whole brain mapping of myelin water content (MWC) at 1.5T. The Fast Acquisition with Spiral Trajectory and T2prep (FAST-T2) pulse sequence originally developed for myelin water fraction (MWF) mapping was modified to obtain fast mapping of T1 and receiver coil sensitivity needed for MWC computation. The accuracy of the proposed T1 mapping was evaluated by comparing with the standard IR-FSE method. Numerical simulations were performed to assess the accuracy and reliability of the proposed MWC mapping. We also compared MWC values obtained with either cerebrospinal fluid (CSF) or an external water tube attached to the subject's head as the water reference. Our results from healthy volunteers show that whole brain MWC mapping is feasible in 7min and provides accurate brain T1 values. Regional brain WC and MWC measurements obtained with the internal CSF-based water standard showed excellent correlation (R>0.99) and negligible bias within narrow limits of agreement compared to those obtained with an external water standard. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Nf1 Loss and Ras Hyperactivation in Oligodendrocytes Induce NOS-Driven Defects in Myelin and Vasculature

    Directory of Open Access Journals (Sweden)

    Debra A. Mayes

    2013-09-01

    Full Text Available Patients with neurofibromatosis type 1 (NF1 and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB developed, implicating a soluble mediator. Nitric oxide (NO can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1–NOS3 were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that antioxidants may improve some behavioral deficits in Rasopathy patients.

  8. Disrupted SOX10 function causes spongiform neurodegeneration in gray tremor mice

    Science.gov (United States)

    Anderson, Sarah R.; Lee, Inyoul; Ebeling, Christine; Stephenson, Dennis A.; Schweitzer, Kelsey M.; Baxter, David; Moon, Tara M.; LaPierre, Sarah; Jaques, Benjamin; Silvius, Derek; Wegner, Michael; Hood, Leroy E.; Carlson, George; Gunn, Teresa M.

    2014-01-01

    Mice homozygous for the gray tremor (gt) mutation have a pleiotropic phenotype that includes pigmentation defects, megacolon, whole body tremors, sporadic seizures, hypo- and dysmyelination of the CNS and PNS, vacuolation of the CNS, and early death. Vacuolation similar to that caused by prions was originally reported to be transmissible, but subsequent studies showed the inherited disease was not infectious. The gt mutation mapped to distal mouse chromosome 15, to the same region as Sox10, which encodes a transcription factor with essential roles in neural crest survival and differentiation. As dominant mutations in mouse or human SOX10 cause white spotting and intestinal aganglionosis, we screened the Sox10 coding region for mutations in gt/gt DNA. An adenosine to guanine transversion was identified in exon 2 that changes a highly conserved glutamic acid residue in the SOX10 DNA binding domain to glycine. This mutant allele was not seen in wildtype mice, including the related GT/Le strain, and failed to complement a Sox10 null allele. Gene expression analysis revealed significant down-regulation of genes involved in myelin lipid biosynthesis pathways in gt/gt brains. Knockout mice for some of these genes develop CNS vacuolation and/or myelination defects, suggesting that their down-regulation may contribute to these phenotypes in gt mutants and could underlie the neurological phenotypes associated with Peripheral demyelinating neuropathy-Central dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschsprung (PCWH) disease, caused by mutations in human SOX10. PMID:25399070

  9. Comparative miRNA-Based Fingerprinting Reveals Biological Differences in Human Olfactory Mucosa- and Bone-Marrow-Derived Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Susan Louise Lindsay

    2016-05-01

    Full Text Available Previously we reported that nestin-positive human mesenchymal stromal cells (MSCs derived from the olfactory mucosa (OM enhanced CNS myelination in vitro to a greater extent than bone-marrow-derived MSCs (BM-MSCs. miRNA-based fingerprinting revealed the two MSCs were 64% homologous, with 26 miRNAs differentially expressed. We focused on miR-146a-5p and miR-140-5p due to their reported role in the regulation of chemokine production and myelination. The lower expression of miR-140-5p in OM-MSCs correlated with higher secretion of CXCL12 compared with BM-MSCs. Addition of CXCL12 and its pharmacological inhibitors to neural co-cultures supported these data. Studies on related miR-146a-5p targets demonstrated that OM-MSCs had lower levels of Toll-like receptors and secreted less pro-inflammatory cytokines, IL-6, IL-8, and CCL2. OM-MSCs polarized microglia to an anti-inflammatory phenotype, illustrating potential differences in their inflammatory response. Nestin-positive OM-MSCs could therefore offer a cell transplantation alternative for CNS repair, should these biological behaviors be translated in vivo.

  10. Evaluation of calcium, magnesium, zinc, aluminum and manganese deposition in bones and CNS of rats fed calcium-deficient diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa; Iwata, Shiro.

    1994-01-01

    The long term intake of unbalanced mineral diets has been reported to be one of the pathogenetic factors of central nervous system (CNS) degeneration, and the unbalanced mineral distribution in the bones clinically is expressed as a metabolic bone disorder or deposition of neurotoxic minerals/metals. The unbalanced mineral or metal diets in animals provoke the unbalanced mineral distribution in bones and soft tissues. In this study, the calcium (Ca), magnesium (Mg), zinc (Zn), aluminum (Al) and manganese (Mn) contents in the CNS and the bones of rats maintained on unbalanced mineral diets were analyzed to investigate the roles of bone on CNS degeneration. Male Wistar rats were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn contents were determined in the frontal cortex, spinal cord, lumbar spine and femur using inductively coupled plasma emission spectrometry (ICP) for Ca, Mg and Zn, and neutron activation analysis (NAA) for Al and Mn. Intake of low Ca and Mg with added Al in rats led to the abnormal distribution of metals or minerals in the bones and in the CNS. These results illustrate that unbalanced mineral diets and metal-metal interactions may lead to the irregular deposition of Al and Mn in the bones and ultimately in the CNS, thus inducing CNS degeneration. (author)

  11. CARR-CNS with crescent-shape moderator cell and sub-cooling helium jacket surrounding cell

    International Nuclear Information System (INIS)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Shen, Feng; Yuan, Luzheng

    2005-01-01

    The new type of the moderator cell was developed for the Cold Neutron Source (CNS) of the China Advanced Research Reactor (CARR) which is now constructing at the China Institute of Atomic Energy in Beijing. A crescent-shape moderator cell covered by the sub-cooling helium jacket is adopted. A crescent-shape would help to increase the volume of the moderator cell for corresponding it to the 4 cold neutron guide tubes, even if liquid hydrogen not liquid deuterium were used as a cold moderator. The sub-cooling helium jacket covering the moderator cell removes the nuclear heating of the outer shell wall of the cell. It contributes to reduce the void fraction of liquid hydrogen in the inner shell. Such a type of a moderator cell is suitable for the CNS with higher nuclear heating. The cold helium gas flows down firstly into the sub-cooling helium jacket and then flows up to the condenser. Therefore, the theory of the self-regulation for the thermo-siphon type of the CNS is also applicable

  12. CARR-CNS with crescent-shape moderator cell and sub-cooling helium jacket around cell

    International Nuclear Information System (INIS)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Cheng, Liang; Shen, Feng; Yuan, Luzheng

    2005-01-01

    The new type of the moderator cell was developed for the Cold Neutron Source (CNS) of the China Advanced Research Reactor (CARR) which is now constructing at the China Institute of Atomic Energy in Beijing. A crescent-shape moderator cell covered by the sub-cooling helium jacket is adopted. A crescent-shape would help to increase the volume of the moderator cell for corresponding it to the 4 cold neutron guide tubes, even if liquid hydrogen not liquid deuterium were used as a cold moderator. The sub-cooling helium jacket covering the moderator cell removes the nuclear heating of the outer shell wall of the cell. It contributes to reduce the void fraction of liquid hydrogen in the inner shell. Such a type of a moderator cell is suitable for the CNS with higher nuclear heating. The cold helium gas flows down firstly into the sub-cooling helium jacket and then flows up to the condenser. Therefore, the theory of the self-regulation for the thermo-siphon type of the CNS is also applicable

  13. Distribution of CNS Species on Teat Skin and in Milk Samples from Dairy Cows in Automatic Milking Systems

    DEFF Research Database (Denmark)

    Mahmmod, Yasser; Svennesen, Line; Pedersen, Karl

    identified in milk samples. Staphylococcus chromogenes was detected in both milk (n= 2) and teat skin (n= 1) samples. Data collection will be finished in April 2017. The final results will give new insights into herd specific CNS species patterns and the microbial ecology and epidemiology of common CNS...

  14. Mer tyrosine kinase promotes the survival of t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central nervous system (CNS).

    Science.gov (United States)

    Krause, Sarah; Pfeiffer, Christian; Strube, Susanne; Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Loges, Sonja; Waizenegger, Jonas; Ben-Batalla, Isabel; Cario, Gunnar; Möricke, Anja; Stanulla, Martin; Schrappe, Martin; Schewe, Denis M

    2015-01-29

    Patients with t(1;19)-positive acute lymphoblastic leukemia (ALL) are prone to central nervous system (CNS) relapses, and expression of the TAM (Tyro3, Axl, and Mer) receptor Mer is upregulated in these leukemias. We examined the functional role of Mer in the CNS in preclinical models and performed correlative studies in 64 t(1;19)-positive and 93 control pediatric ALL patients. ALL cells were analyzed in coculture with human glioma cells and normal rat astrocytes: CNS coculture caused quiescence and protection from methotrexate toxicity in Mer(high) ALL cell lines, which was antagonized by short hairpin RNA-mediated knockdown of Mer. Mer expression was upregulated, prosurvival Akt and mitogen-activated protein kinase signaling were activated, and secretion of the Mer ligand Galectin-3 was stimulated. Mer(high) t(1;19) primary cells caused CNS involvement to a larger extent in murine xenografts than in their Mer(low) counterparts. Leukemic cells from Mer(high) xenografts showed enhanced survival in coculture. Treatment of Mer(high) patient cells with the Mer-specific inhibitor UNC-569 in vivo delayed leukemia onset, reduced CNS infiltration, and prolonged survival of mice. Finally, a correlation between high Mer expression and CNS positivity upon initial diagnosis was observed in t(1;19) patients. Our data provide evidence that Mer is associated with survival in the CNS in t(1;19)-positive ALL, suggesting a role as a diagnostic marker and therapeutic target. © 2015 by The American Society of Hematology.

  15. Utility of FDG-PETCT and magnetic resonance spectroscopy in differentiating between cerebral lymphoma and non-malignant CNS lesions in HIV-infected patients

    Energy Technology Data Exchange (ETDEWEB)

    Westwood, Thomas D., E-mail: tdwestwood@googlemail.com [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Hogan, Celia, E-mail: celiahogan@hotmail.com [Monsall Unit, Department of Infectious Diseases and Tropical Medicine, North Manchester General Hospital, Pennine Acute Hospitals NHS Trust (United Kingdom); Julyan, Peter J., E-mail: Peter.Julyan@christie.nhs.uk [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Coutts, Glyn, E-mail: Glyn.Coutts@christie.nhs.uk [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Bonington, Suzie, E-mail: suzi.bonington@christie.nhs.uk [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Carrington, Bernadette, E-mail: Bernadette.Carrington@christie.nhs.uk [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Taylor, Ben, E-mail: Ben.taylor@christie.nhs.uk [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Khoo, Saye, E-mail: S.H.Khoo@liverpool.ac.uk [Department of Infectious Diseases and Tropical Medicine, Royal Liverpool Hospital, Liverpool (United Kingdom); Bonington, Alec, E-mail: Alec.Bonington@pat.nhs.uk [Monsall Unit, Department of Infectious Diseases and Tropical Medicine, North Manchester General Hospital, Pennine Acute Hospitals NHS Trust (United Kingdom)

    2013-08-15

    Background and purpose: In HIV infected patients, MRI cannot reliably differentiate between central nervous system (CNS) lymphoma and non-malignant CNS lesions, particularly cerebral toxoplasmosis (CTOX). This study prospectively investigates the utility of FDG PET-CT and magnetic resonance spectroscopy (MRS) in discriminating CNS lymphoma from non-malignant CNS lesions in HIV infected patients, and assesses the ability of FDG PET-CT to guide the use of early brain biopsy. Methods: 10 HIV patients with neurological symptoms and contrast enhancing lesions on MRI were commenced on anti-toxoplasmosis therapy before undergoing FDG PET-CT and MRS. Brain biopsies were sought in those with FDG PET-CT suggestive of CNS lymphoma, and in those with a negative FDG PET-CT scan who failed to respond to therapy. Final diagnosis was based on histology or treatment response. Results: Two patients were confirmed to have CNS lymphoma and FDG PET-CT was consistent with this diagnosis in both. Six patients had cerebral toxoplasmosis in all of whom FDG PET-CT was consistent with non-malignant disease. One patient had progressive multifocal leukoencephalopathy (PML), FDG PET-CT was equivocal. One patient had a haemorrhagic brain metastasis and FDG PET-CT wrongly suggested non-malignant disease. MRS was performed successfully in eight subjects: three results were suggestive of CNS lymphoma (one true positive, two false positive), four suggested CTOX (two false negative, two true negative), one scan was equivocal. Conclusion: FDG PET-CT correctly identified all cases of CNS lymphoma and CTOX, supporting its use in this situation. MRS was unhelpful in our cohort.

  16. Utility of FDG-PETCT and magnetic resonance spectroscopy in differentiating between cerebral lymphoma and non-malignant CNS lesions in HIV-infected patients

    International Nuclear Information System (INIS)

    Westwood, Thomas D.; Hogan, Celia; Julyan, Peter J.; Coutts, Glyn; Bonington, Suzie; Carrington, Bernadette; Taylor, Ben; Khoo, Saye; Bonington, Alec

    2013-01-01

    Background and purpose: In HIV infected patients, MRI cannot reliably differentiate between central nervous system (CNS) lymphoma and non-malignant CNS lesions, particularly cerebral toxoplasmosis (CTOX). This study prospectively investigates the utility of FDG PET-CT and magnetic resonance spectroscopy (MRS) in discriminating CNS lymphoma from non-malignant CNS lesions in HIV infected patients, and assesses the ability of FDG PET-CT to guide the use of early brain biopsy. Methods: 10 HIV patients with neurological symptoms and contrast enhancing lesions on MRI were commenced on anti-toxoplasmosis therapy before undergoing FDG PET-CT and MRS. Brain biopsies were sought in those with FDG PET-CT suggestive of CNS lymphoma, and in those with a negative FDG PET-CT scan who failed to respond to therapy. Final diagnosis was based on histology or treatment response. Results: Two patients were confirmed to have CNS lymphoma and FDG PET-CT was consistent with this diagnosis in both. Six patients had cerebral toxoplasmosis in all of whom FDG PET-CT was consistent with non-malignant disease. One patient had progressive multifocal leukoencephalopathy (PML), FDG PET-CT was equivocal. One patient had a haemorrhagic brain metastasis and FDG PET-CT wrongly suggested non-malignant disease. MRS was performed successfully in eight subjects: three results were suggestive of CNS lymphoma (one true positive, two false positive), four suggested CTOX (two false negative, two true negative), one scan was equivocal. Conclusion: FDG PET-CT correctly identified all cases of CNS lymphoma and CTOX, supporting its use in this situation. MRS was unhelpful in our cohort

  17. Developmental hyperoxia alters CNS mechanisms underlying hypoxic ventilatory depression in neonatal rats.

    Science.gov (United States)

    Hill, Corey B; Grandgeorge, Samuel H; Bavis, Ryan W

    2013-12-01

    Newborn mammals exhibit a biphasic hypoxic ventilatory response (HVR), but the relative contributions of carotid body-initiated CNS mechanisms versus central hypoxia on ventilatory depression during the late phase of the HVR are not well understood. Neonatal rats (P4-5 or P13-15) were treated with a nonselective P2 purinergic receptor antagonist (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, or PPADS; 125mgkg(-1), i.p.) to pharmacologically denervate the peripheral chemoreceptors. At P4-5, rats reared in normoxia showed a progressive decline in ventilation during a 10-min exposure to 12% O2 (21-28% decrease from baseline). No hypoxic ventilatory depression was observed in the older group of neonatal rats (i.e., P13-15), suggesting that the contribution of central hypoxia to hypoxic ventilatory depression diminishes with age. In contrast, rats reared in moderate hyperoxia (60% O2) from birth exhibited no hypoxic ventilatory depression at either age studied. Systemic PPADS had no effect on the ventilatory response to 7% CO2, suggesting that the drug did not cross the blood-brain barrier. These findings indicate that (1) CNS hypoxia depresses ventilation in young, neonatal rats independent of carotid body activation and (2) hyperoxia alters the development of CNS pathways that modulate the late phase of the hypoxic ventilatory response. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Discrimination of different brain metastases and primary CNS lymphomas using morphologic criteria and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bette, S.; Wiestler, B.; Huber, T.; Boeckh-Behrens, T.; Zimmer, C.; Kirschke, J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neuroradiology; Delbridge, C. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neuropathology; Meyer, B.; Gempt, J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neurosurgery

    2016-12-15

    Brain metastases are a common complication of cancer and occur in about 15-40% of patients with malignancies. The aim of this retrospective study was to differentiate between metastases from different primary tumors/CNS lymphyomas using morphologic criteria, fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Morphologic criteria such as hemorrhage, cysts, pattern of contrast enhancement and location were reported in 200 consecutive patients with brain metastases/primary CNS lymphomas. FA and ADC values were measured in regions of interest (ROIs) placed in the contrast-enhancing tumor part, the necrosis and the non-enhancing peritumoral region (NEPTR). Differences between histopathological subtypes of metastases were analyzed using non-parametric tests, decision trees and hierarchical clustering analysis. Significant differences were found in morphologic criteria such as hemorrhage or pattern of contrast enhancement. In diffusion measurements, significant differences between the different tumor entities were only found in ADC analyzed in the contrast-enhancing tumor part. Among single tumor entities, primary CNS lymphomas showed significantly lower median ADC values in the contrast-enhancing tumor part (ADC{sub lymphoma} 0.92 [0.83-1.07] vs. ADC{sub no} {sub lymphoma} 1.35 [1.10-1.64] P=0.001). Further differentiation between types of metastases was not possible using FA and ADC. There were morphologic differences among the main subtypes of brain metastases/CNS lymphomas. However, due to a high variability of common types of metastases and low specificity, prospective differentiation remained challenging. DTI including FA and ADC was not a reliable tool for differentiation between different histopathological subtypes of brain metastases except for CNS lymphomas showing lower ADC values. Biopsy, surgery and staging remain essential for diagnosis.

  19. Effects on DHEA levels by estrogen in rat astrocytes and CNS co-cultures via the regulation of CYP7B1-mediated metabolism

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Wicher, Grzegorz; Lundqvist, Johan

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA) is formed locally in the CNS and has been implicated in several processes essential for CNS function, including control of neuronal survival. An important metabolic pathway for DHEA in the CNS involves the steroid hydroxylase CYP7B1. In previous...... studies, CYP7B1 was identified as a target for estrogen regulation in cells of kidney and liver. In the current study, we examined effects of estrogens on CYP7B1-mediated metabolism of DHEA in primary cultures of rat astrocytes and co-cultures of rat CNS cells. Astrocytes, which interact with neurons...... whereby estrogen can exert protective effects in the CNS may involve increase of the levels of DHEA by suppression of its metabolism....

  20. Comparative antibiogram of coagulase-negative Staphylococci (CNS) associated with subclinical and clinical mastitis in dairy cows.

    Science.gov (United States)

    Bansal, B K; Gupta, D K; Shafi, T A; Sharma, S

    2015-03-01

    The present study was planned to determine the in vitro antibiotic susceptibility of coagulase-negative Staphylococci (CNS) strains isolated from clinical and subclinical cases of mastitis in dairy cows. Antibiotic sensitivity profile will be helpful to recommend early therapy at the field level prior to availability of CST results. The milk samples from cases of clinical mastitis received in Mastitis Laboratory, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana and those of subclinical mastitis collected during routine screening of state dairy farms, were subjected to microbial culture. Identification of CNS organisms was done by standard biochemical tests. Antibiotic sensitivity testing, based on 30 antibiotics belonging to 12 groups, was done on 58 randomly selected CNS isolates (clinical isolates: 41, subclinical isolates: 17). Isolates were highly susceptible to chloramphenicol (98.3%), gentamicin (93.1%), streptomycin (91.4%), linezolid (91.4%), ceftixozime (87.9%), cloxacillin (86.2%), clotrimazole (86.2%), bacitracin (86.2%), enrofloxacin (84.5%) and ceftrioxone + tazobactum (70.7%), while resistance was observed against amoxicillin (77.6%), penicillin (75.9%), ampicillin (74.1%) and cefoperazone (51.7%). Overall, isolates from clinical cases of mastitis had a higher resistance than subclinical isolates. CNS isolates were susceptible to chloramphenicol, gentamicin and streptomycin, while higher resistance was recorded against routinely used penicillin group.