WorldWideScience

Sample records for cngs beam operation

  1. CNGS beam monitor with the LVD detector

    International Nuclear Information System (INIS)

    Aglietta, M.; Antonioli, P.; Bari, G.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Garbini, M.; Ghia, P.L.; Giusti, P.; Kemp, E.; Malguin, A.S.; Menghetti, H.; Pesci, A.; Pless, I.A.; Porta, A.; Ryasny, V.G.; Ryazhskaya, O.G.; Saavedra, O.; Sartorelli, G.; Selvi, M.; Vigorito, C.; Votano, L.; Yakushev, V.F.; Zatsepin, G.T.; Zichichi, A.

    2004-01-01

    The importance of an adequate CNGS beam monitor at the Gran Sasso Laboratory has been stressed in many papers. Since the number of internal ν μ CC and NC interactions in the various detectors will not allow to collect statistics rapidly, one should also be able to detect the ν μ CC interactions in the upstream rock. In this study, we have investigated the performances of the LVD detector as a monitor for the CNGS neutrino beam. Thanks to its wide area (13x11 m 2 orthogonal to the beam direction) LVD can detect about 120 muons per day originated by ν μ CC interactions in the rock. The LVD total mass is ∼2 kt. This allows to get 30 more CNGS events per day as internal (NC+CC) ν μ interactions, for a total of ∼150 events/day. A 3% statistical error can be reached in 7 days. Taking into account the time characteristics of the CNGS beam, the cosmic muon background can be reduced to a negligible level, of the order of 1.5 events/day

  2. Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Aprili, P. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Baiboussinov, B.; Baldo Ceolin, M. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Benetti, P.; Calligarich, E. [Dipartimento di Fisica Nucleare e Teorica e INFN, Universita di Pavia, Via Bassi 6, I-27100, Pavia (Italy); Canci, N. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Centro, S. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Cesana, A. [INFN, Sezione di Milano e Politecnico, Via Celoria 16, I-20133, Milano (Italy); Cieslik, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Cline, D.B. [Department of Physics and Astronomy, University of California, LA (United States); Cocco, A.G. [Dipartimento di Scienze Fisiche e INFN, Universita Federico II, Napoli (Italy); Dabrowska, A. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Dequal, D. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Dermenev, A. [Institute for Nuclear Research of the Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow 117312 (Russian Federation); Dolfini, R. [Dipartimento di Fisica Nucleare e Teorica e INFN, Universita di Pavia, Via Bassi 6, I-27100, Pavia (Italy); Farnese, C.; Fava, A. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Ferrari, A. [CERN, European Laboratory for Particle Physics, CH-1211 Geneve 23 (Switzerland); and others

    2012-06-18

    At the end of the 2011 run, the CERN CNGS neutrino beam has been briefly operated in lower intensity mode with {approx}10{sup 12} p.o.t./pulse and with a proton beam structure made of four LHC-like extractions, each with a narrow width of {approx}3 ns, separated by 524 ns. This very tightly bunched beam allowed a very accurate time-of-flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. The ICARUS T600 detector (CNGS2) has collected 7 beam-associated events, consistent with the CNGS collected neutrino flux of 2.2 Multiplication-Sign 10{sup 16} p.o.t. and in agreement with the well-known characteristics of neutrino events in the LAr-TPC. The time of flight difference between the speed of light and the arriving neutrino LAr-TPC events has been analysed. The result {delta}t=0.3{+-}4.9(stat.){+-}9.0(syst.) ns is compatible with the simultaneous arrival of all events with speed equal to that of light. This is in a striking difference with the reported result of OPERA (OPERA Collaboration, 2011) claiming that high energy neutrinos from CERN arrive at LNGS {approx}60 ns earlier than expected from luminal speed.

  3. CNGS Muon Monitors

    CERN Document Server

    Marsili, A; Ferioli, G; Gschwendtner, E; Holzer, E B; Kramer, Daniel; CERN. Geneva. AB Department

    2008-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) beam facility uses two muon detector stations as on-line feed back for the quality control of the neutrino beam. The muon detector stations are assembled in a cross-shaped array to provide the muon intensity and the vertical and horizontal muon profiles. Each station is equipped with 42 ionisation chambers, which are originally designed as Beam Loss Monitors (BLMs) for the Large Hadron Collider(LHC). The response of the muon detectors during the CNGS run 2007 and possible reasons for a non-linear behaviour with respect to the beam intensity are discussed. Results of the CNGS run 2008 are shown: The modifications done during the shutdown 2007/08 were successful and resulted in the expected linear behaviour of the muon detector response.

  4. CNGS Reflector installed

    CERN Multimedia

    2006-01-01

    A major component that will help target the CNGS neutrino beam for its 732km journey through the earth's crust, from CERN to the Gran Sasso laboratory in Italy, has been installed in its final position. The transport of the huge magnetic horn reflector through the CNGS access gallery. A team from CNGS and TS/IC, and the contractors DBS, transported the magnetic horn reflector on 5th December, in a carefully conducted operation that took just under two hours. The reflector is 7m long, 1.6m in diameter and 1.6 tonnes in weight. With only a matter of centimetres to spare on either side, the reflector was transported through the CNGS access gallery, before being installed in the experiment's target chamber. The larger of two magnetic horns, the reflector will help refocus sprays of high energy pions and kaons emitted after a 0.5MW stream of protons from the Super Proton Synchrotron (SPS) strikes nucleons in a graphite target. The horns are toroidal magnetic lenses and work with high pulsed currents: 150 kA f...

  5. First CNGS events detected by LVD

    International Nuclear Information System (INIS)

    Selvi, M.

    2007-01-01

    The Cern Neutrino to Gran Sasso (CNGS) project aims to produce a high energy, wide band ν μ beam at Cern and send it towards the INFN Gran Sasso National Laboratory (LNGS), 732 km away. Its main goal is the observation of the ν τ appearance, through neutrino flavour oscillation. The beam started its operation in August 2006 for about 12 days: a total amount of 7.6 10 17 protons were delivered to the target. The LVD detector, installed in hall A of the LNGS and mainly dedicated to the study of supernova neutrinos, was fully operating during the whole CNGS running time. A total number of 569 events were detected in coincidence with the beam spill time. This is in good agreement with the expected number of events from Montecarlo simulations

  6. First CNGS events detected by LVD

    International Nuclear Information System (INIS)

    Agafonova, N.Yu.; Boyarkin, V.V.; Kuznetsov, V.V.; Kuznetsov, V.A.; Malguin, A.S.; Ryasny, V.G.; Ryazhskaya, O.G.; Yakushev, V.F.; Zatsepin, G.T.; Aglietta, M.; Bonardi, A.; Fulgione, W.; Galeotti, P.; Porta, A.; Saavedra, O.; Vigorito, C.; Antonioli, P.; Bari, G.; Giusti, P.; Menghetti, H.; Persiani, R.; Pesci, A.; Sartorelli, G.; Selvi, M.; Zichichi, A.; Bruno, G.; Ghia, P.L.; Garbini, M.; Kemp, E.; Pless, I.A.; Votano, L.

    2007-01-01

    The CERN Neutrino to Gran Sasso (CNGS) project aims to produce a high energy, wide band ν μ beam at CERN and send it toward the INFN Gran Sasso National Laboratory (LNGS), 732 km away. Its main goal is the observation of the ν τ appearance, through neutrino flavour oscillation. The beam started its operation in August 2006 for about 12 days: a total amount of 7.6 x 10 17 protons were delivered to the target. The LVD detector, installed in hall A of the LNGS and mainly dedicated to the study of supernova neutrinos, was fully operating during the whole CNGS running time. A total number of 569 events were detected in coincidence with the beam spill time. This is in good agreement with the expected number of events from Monte Carlo simulations. (orig.)

  7. First events from the CNGS neutrino beam detected in the OPERA experiment

    CERN Document Server

    Acquafredda, R.; Ambrosio, M.; Anokhina, A.; Aoki, S.; Ariga, A.; Arrabito, L.; Autiero, D.; Badertscher, A.; Bergnoli, A.; Bersani Greggio, F.; Besnier, M.; Beyer, M.; Bondil-Blin, S.; Borer, K.; Boucrot, J.; Boyarkin, V.; Bozza, C.; Brugnera, R.; Buontempo, S.; Caffari, Y.; Campagne, Jean-Eric; Carlus, B.; Carrara, E.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chon-Sen, N.; Chukanov, A.; Ciesielski, R.; Consiglio, L.; Cozzi, M.; Dal Corso, F.; D'Ambrosio, N.; Damet, J.; De Lellis, G.; Declais, Y.; Descombes, T.; De Serio, M.; Di Capua, F.; Di Ferdinando, D.; Di Giovanni, A.; Di Marco, N.; Di Troia, C.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dulach, B.; Dusini, S.; Ebert, J.; Enikeev, R.; Ereditato, A.; Esposito, L.S.; Fanin, C.; Favier, J.; Felici, G.; Ferber, T.; Fournier, L.; Franceschi, A.; Frekers, D.; Fukuda, T.; Fukushima, C.; Galkin, V.I.; Galkin, V.A.; Gallet, R.; Garfagnini, A.; Gaudiot, G.; Giacomelli, G.; Giarmana, O.; Giorgini, M.; Girard, L.; Girerd, C.; Goellnitz, C.; Goldberg, J.; Gornoushkin, Y.; Grella, G.; Grianti, F.; Guerin, C.; Guler, M.; Gustavino, C.; Hagner, C.; Hamane, T.; Hara, T.; Hauger, M.; Hess, M.; Hoshino, K.; Ieva, M.; Incurvati, M.; Jakovcic, K.; Janicsko Csathy, J.; Janutta, B.; Jollet, C.; Juget, F.; Kazuyama, M.; Kim, S.H.; Kimura, M.; Knuesel, J.; Kodama, K.; Kolev, D.; Komatsu, M.; Kose, U.; Krasnoperov, A.; Kreslo, I.; Krumstein, Z.; Laktineh, I.; de La Taille, C.; Le Flour, T.; Lieunard, S.; Ljubicic, A.; Longhin, A.; Malgin, A.; Manai, K.; Mandrioli, G.; Mantello, U.; Marotta, A.; Marteau, J.; Martin-Chassard, G.; Matveev, V.; Messina, M.; Meyer, L.; Micanovic, S.; Migliozzi, P.; Miyamoto, S.; Monacelli, Piero; Monteiro, I.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Mugnier, P.; Naganawa, N.; Nakamura, M.; Nakano, T.; Napolitano, T.; Natsume, M.; Niwa, K.; Nonoyama, Y.; Nozdrin, A.; Ogawa, S.; Olchevski, A.; Orlandi, D.; Ossetski, D.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pellegrino, L.; Pessard, H.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Publichenko, P.; Raux, L.; Repellin, J.P.; Roganova, T.; Romano, G.; Rosa, G.; Rubbia, A.; Ryasny, V.; Ryazhskaya, O.; Ryzhikov, D.; Sadovski, A.; Sanelli, C.; Sato, O.; Sato, Y.; Saveliev, V.; Savvinov, N.; Sazhina, G.; Schembri, A.; Schmidt Parzefall, W.; Schroeder, H.; Schutz, H.U.; Scotto Lavina, L.; Sewing, J.; Shibuya, H.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spaeti, R.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strolin, Paolo Emilio; Sugonyaev, V.; Takahashi, S.; Tereschenko, V.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tikhomirov, I.; Tolun, P.; Toshito, T.; Tsarev, V.; Tsenov, R.; Ugolino, U.; Ushida, N.; Van Beek, G.; Verguilov, V.; Vilain, P.; Votano, L.; Vuilleumier, J.L.; Waelchli, T.; Waldi, R.; Weber, M.; Wilquet, G.; Wonsak, B.; Wurth, R.; Wurtz, J.; Yakushev, V.; Yoon, C.S.; Zaitsev, Y.; Zamboni, I.; Zimmerman, R.

    2006-01-01

    The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode, through the study of nu_mu to nu_tau oscillations. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. In August 2006 a first run with CNGS neutrinos was successfully conducted. A first sample of neutrino events was collected, statistically consistent with the integrated beam intensity. After a brief description of the beam and of the various sub-detectors, we report on the achievement of this milestone, presenting the first data and some analysis results.

  8. Neutrino velocity measurement with the OPERA experiment in the CNGS beam

    International Nuclear Information System (INIS)

    Brunetti, G.

    2011-05-01

    The thesis concerns the measurement of the neutrino velocity with the OPERA experiment in the CNGS beam. There are different theoretical models that allow for Lorentz violating effects which can be investigated with measurements on terrestrial neutrino beams. The MINOS experiment published in 2007 a measure on the muon neutrinos over a distance of 730 km finding a deviation with respect to the expected time of flight of 126 ns with a statistical error of 32 ns and a systematic error of 64 ns. The OPERA experiment observes as well muon neutrinos 730 km away from the source, with a sensitivity significantly better than MINOS thanks to the higher number of interactions in the detector due to the higher energy beam and the much more sophisticated timing system explicitly upgraded in view of the neutrino velocity measurement. This system is composed by atomic cesium clocks and GPS receivers operating in 'common view mode'. Thanks to this system a time-transfer between the two sites with a precision at the level of 1 ns is possible. Moreover, a Fast Waveform Digitizer was installed along the proton beam line at CERN in order to measure the internal time structure of the proton pulses that are sent to the CNGS target. The result on the neutrino velocity is the most precise measurement so far with terrestrial neutrino beams: the neutrino time of flight was determined with a statistical uncertainty of about 10 ns and a systematic uncertainty smaller than 20 nano-seconds. (author)

  9. Data evaluation and CNGS beam localization with the precision tracker of the OPERA detector

    International Nuclear Information System (INIS)

    Bick, D.

    2007-04-01

    In this diploma thesis, the data evaluation for the OPERA precision tracker is presented. Furthermore investigations of a precise CNGS beam localization with the precision tracker are performed. After an overview of past and present developments in neutrino physics, the OPERA detector is presented in this thesis. Emphasis is given to the precision tracker which has been partly commissioned in the end of the last year. A first analysis of the functionality with cosmic muons has been performed, as well as the inclusion of data in the OPERA software framework. Within this thesis some useful tools have been developed which are also presented. Finally, divergence effects from the nominal beam line of the CNGS neutrino beam and possible detection with the precision tracker are studied. (orig.)

  10. Data evaluation and CNGS beam localization with the precision tracker of the OPERA detector

    Energy Technology Data Exchange (ETDEWEB)

    Bick, D.

    2007-04-15

    In this diploma thesis, the data evaluation for the OPERA precision tracker is presented. Furthermore investigations of a precise CNGS beam localization with the precision tracker are performed. After an overview of past and present developments in neutrino physics, the OPERA detector is presented in this thesis. Emphasis is given to the precision tracker which has been partly commissioned in the end of the last year. A first analysis of the functionality with cosmic muons has been performed, as well as the inclusion of data in the OPERA software framework. Within this thesis some useful tools have been developed which are also presented. Finally, divergence effects from the nominal beam line of the CNGS neutrino beam and possible detection with the precision tracker are studied. (orig.)

  11. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam

    CERN Document Server

    Adam, T.; Aleksandrov, A.; Altinok, O.; Alvarez Sanchez, P.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Dhahbi, A.Ben; Bertolin, A.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buontempo, S.; Carlus, B.; Cavanna, F.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chukanov, A.; Colosimo, G.; Crespi, M.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Declais, Y.; del Amo Sanchez, P.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievsky, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Efthymiopoulos, I.; Egorov, O.; Ereditato, A.; Esposito, L.S.; Favier, J.; Ferber, T.; Fini, R.A.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Giovannozzi, M.; Girerd, C.; Goldberg, J.; Gollnitz, C.; Golubkov, D.; Goncharova, L.; Gornushkin, Y.; Grella, G.; Grianti, F.; Gschwendtner, E.; Guerin, C.; Guler, A.M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Enikeev, R.; Hierholzer, M.; Hollnagel, A.; Ieva, M.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Jones, M.; Juget, F.; Kamiscioglu, M.; Kawada, J.; Kim, S.H.; Kimura, M.; Kiritsis, E.; Kitagawa, N.; Klicek, B.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Malgin, A.; Mandrioli, G.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Mazzoni, A.; Medinaceli, E.; Meisel, F.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Missiaen, D.; Monacelli, P.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Naumov, D.; Nikitina, V.; Nitti, F.; Ogawa, S.; Okateva, N.; Olchevsky, A.; Palamara, O.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, Laura; Pennacchio, E.; Pessard, H.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Pupilli, F.; Rescigno, R.; Riguzzi, F.; Roganova, T.; Rokujo, H.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryasny, V.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Sahnoun, Z.; Schembri, A.; Schuler, J.; Scotto Lavina, L.; Serrano, J.; Shakiryanova, I.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S.; Stipcevic, M.; Strauss, T.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; N.T. Tran,i; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yakushev, V.; Yoon, C.S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.

    2012-01-01

    The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km with much higher accuracy than previous studies conducted with accelerator neutrinos. The measurement is based on high-statistics data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies. An early arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (60.7 \\pm 6.9 (stat.) \\pm 7.4 (sys.)) ns was measured. This anomaly corresponds to a relative difference of the muon neutrino velocity with respect to the speed of light (v-c)/c = (2.48 \\pm 0.28 (stat.) \\pm 0.30 (sys.)) \\times 10-5.

  12. Geodetic parametrisation of the CNGS project

    International Nuclear Information System (INIS)

    Jones, Mark; Mayoud, Michel; Wiart, Aude

    2003-01-01

    The CNGS (CERN Neutrinos to Gran Sasso) project aims to investigate the oscillation' of neutrinos. A beam extracted from the CERN SPS accelerator will produce a beam consisting uniquely of muon-type neutrinos that will be directed underground to their destination, the Gran Sasso National Laboratory (LNGS) in Italy, 730 km from CERN. For the CNGS project it is evident that our knowledge of the relative position of the two Laboratories, indeed the relative position of the neutrino target at CERN and the detector at Gran Sasso, is essential. Up until the CNGS Project the position of the CERN accelerators on a global scale has not been critical. Two GPS campaigns carried out in 1998, have now resolved this question to a high degree of accuracy, and a GPS survey campaign at Gran Sasso has provided us with the relative position. The parameters for the civil engineering work that started in September 2000 are all based upon the information from these two GPS campaigns. However, consultation with the national surveying bodies in France (IGN) and Switzerland (OFT) showed that the geoid model used for the LEP would probably need to be updated for the alignment of the CNGS accelerator components. Based upon the 1998 Swiss geoid model (CHGEO98) a new model of the geoid and technique for its exploitation has been implemented at CERN (CG2000). The parameters establishing the position of the CERN Laboratory together with those of the CNGS beam line have now been refined again. This new geoid model is currently being incorporated into our various algorithms. (author)

  13. The CNGS Project

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    CERN Director-General Luciano Maiani (second from the right) with Mrs Maiani in front of the tunnelling machine to excavate the 1 kilometre decay tunnel producing neutrinos for the CERN Neutrinos to Gran Sasso (CNGS) project. A beam of neutrinos will be produced at CERN by colliding a proton beam with a graphite target and manipulating the decay products. This beam will then travel 730 km to Gran Sasso, Italy where huge detectors will be used to study the phenomenon of neutrino oscillation.

  14. CNGS: Opening the way to Gran Sasso

    CERN Multimedia

    2003-01-01

    The excavation and concreting of the underground structures of the CNGS (CERN Neutrinos to Gran Sasso) project has just been completed. The way to Gran Sasso is now open and, to mark the occasion, we are publishing a special two-part Bulletin report on the CNGS project. The first part, which appears this week, covers the facility which will allow a beam of neutrinos to be sent from CERN to INFN's underground laboratory at Gran Sasso in Italy in 2006. The second part, to appear in next week's issue, will feature the two CNGS experiments, OPERA and ICARUS.

  15. The magnetic horn being installed in the CNGS target chamber

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The magnetic system that focuses the beam of particles arising from the graphite target of the CERN Neutrinos to Gran Sasso project (CNGS) has been installed in its final position in the tunnel.The CNGS secondary beam magnetic system consists of two elements: the horn and the reflector, both acting as focusing lenses for the positively-charged pions and kaons produced by proton interactions in the target.

  16. Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam

    CERN Document Server

    Antonello, M; Benetti, P.; Boffelli, F.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.; Alvarez Sanchez, P.; Biagi, L.; Barzaghi, R.; Betti, B.; Bernier, L.G.; Cerretto, G.; de Gaetani, C.; Esteban, H.; Feldmann, T.; Gonzalez Cobas, J.D.; Passoni, D.; Pettiti, V.; Pinto, L.; Serrano, J.; Spinnato, P.; Visconti, M.G.; Wlostowski, T.

    2012-01-01

    During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks for a total of 1.8 10^17 pot in bunched mode, with a 3 ns narrow width proton beam bunches, separated by 100 ns. This tightly bunched beam structure allows a very accurate time of flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing synchronization have been substantially improved for this campaign, taking ad-vantage of additional independent GPS receivers, both at CERN and LNGS as well as of the deployment of the "White Rabbit" protocol both at CERN and LNGS. The ICARUS-T600 detector has collected 25 beam-associated events; the corresponding time of flight has been accurately evaluated, using all different time synchronization paths. The measured neutrino time of flight is compatible with the arrival of all events with speed equivalent to the one of light: the difference between the expected value based on the speed of light and the measured value is tof_...

  17. ST Implications in the CNGS Project

    CERN Document Server

    Wilhelmsson, M

    2000-01-01

    The CNGS project concerns the construction of a neutrino beam facility (CNGS = CERN Neutrino beam to Gran Sasso). A 450 GeV proton beam will be extracted from the SPS accelerator. This proton beam will hit a target a few hundred metres downstream from the extraction point (BA4). In the debris of the proton beam we will find pions which continue down a 1000 m, evacuated tunnel and a fraction of which decay into a neutrino beam. After this decay tunnel (1.1 km), a 'hadron stop' will separate the neutrinos, after which they will resume their journey down to a detector pit, outside Rome (Gran Sasso). The CERN facility has a total length of approximately 3 km. The ST division has an important share in the construction work, both of the above-mentioned tunnels as well as of all other infrastructure services, and this work concerns most of the groups in the division. This report will outline the technical design of the facility and explain how we, in the ST division, are involved in the project. The CERN council app...

  18. The New SPS Extraction Channel for LHC and CNGS

    CERN Document Server

    Goddard, B; Schröder, G; Weterings, W; Uythoven, J

    2000-01-01

    The Large Hadron Collider (LHC) and CERN Neutrino to Gran Sasso (CNGS) projects require the construction of a new fast-extraction system in the long straight section LSS4 of the Super Proton Synchrotron (SPS) at CERN. A conventional DC septum magnet will be used, in conjunction with the installation of horizontal and vertical extraction bumpers, main quadrupoles with enlarged apertures, extraction kicker magnets and additional hardware protection, instrumentation, controls and electronics. The extraction channel must be able to accept the bright LHC proton beam at 450 GeV/c, and also the high intensity, large emittance fixed target CNGS proton beam at the nominal 400 GeV/c extraction momentum. This paper describes the extraction channel to be installed in 2003, and shows how the requirements for both the LHC and CNGS project can be met.

  19. Work finishes on CNGS

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Construction work on the CERN Neutrinos to Gran Sasso (CNGS) project is completed. These views are of the l km long CNGS vacuum tube, where particles decay to produce neutrinos, just before it is sealed.

  20. Study of the CNGS beam and identification of muons in the Opera experiment. Optimization of the beam line from SPL-Frejus project; Etude du faisceau CNGS et identification des muons dans l'experience OPERA. Optimisation de la ligne de faisceau du projet SPL-Frejus

    Energy Technology Data Exchange (ETDEWEB)

    Cazes, A

    2004-12-15

    Neutrino oscillations are the subject of most of the experiments looking at this particle. This mechanism uses the fact that neutrinos have mass to allow the transformation from one flavour to another one. The OPERA experiment will start to take data in spring 2006. Its goal is to proof this mechanism with no ambiguity using the appearance of tau neutrinos in the CNGS beam, which is made of muon neutrinos. This thesis presents a description of neutrino beams in general, and more precisely of the CNGS beam, which is sent from CERN to Gran Sasso in Italy. The neutrino flux are recalculated, and simulations have been performed in order to study miss positioning of the beam line elements. The OPERA detector is made of bricks containing a pile of lead plates and photographic emulsion films, of two trackers and two spectrometers. The high position resolution of the emulsions (< 1 {mu}m ), allows to identify the {tau} created by the tau neutrino charged current interactions. The brick localisation is made using a scintillator array. The pattern recognition in these scintillators as well as in the spectrometers is one of the part of this thesis. Furthermore, a muon identification algorithm has been set up. It allows to reject by a factor 20 the charm background. Future of neutrino oscillation physics is the building of more and more intense neutrino beams, in order to measure the last unknown parameters ({theta}{sub 13} and {delta}{sub CP}). The project of neutrino beam from CERN to the Fr us tunnel is fully revisited in the last part of this thesis. An optimisation of all the beam line element is proposed, and allows to reach a sensitivity to {theta}{sub 13} around one degree. (author)

  1. Measurement of CNGS muon neutrino speed with Borexino

    CERN Document Server

    Alvarez Sanchez, P.; Bellini, G.; Benziger, J.; Betti, B.; Biagi, L.; Bick, D.; Bonfini, G.; Bravo, D.; Avanzini, M.Buizza; Caccianiga, B.; Cadonati, L.; Carraro, C.; Cavalcante, P.; Cerretto, G.; Chavarria, A.; D'Angelo, D.; Davini, S.; De Gaetani, C.; Derbin, A.; Etenko, A.; Esteban, H.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Kayunov, A.; Kobychev, V.; Korablev, D.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, P.; Lombardi, F.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Missiaen, D.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Passoni, D.; Pinto, L.; Perasso, L.; Perasso, S.; Pettiti, V.; Plantard, C.; Pocar, A.; Raghavan, R.S.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schonert, S.; Serrano, J.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Spinnato, P.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Visconti, M.G.; Vogelaar, R.B.; Von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2012-10-02

    We have measured the speed of muon neutrinos with the Borexino detector using short-bunch CNGS beams. The final result for the difference in time-of-flight between a =17 GeV muon neutrino and a particle moving at the speed of light in vacuum is {\\delta}t = 0.8 \\pm 0.7stat \\pm 2.9sys ns, well consistent with zero.

  2. Measurement of CNGS muon neutrino speed with Borexino

    International Nuclear Information System (INIS)

    Alvarez Sanchez, P.; Barzaghi, R.; Bellini, G.; Benziger, J.; Betti, B.; Biagi, L.; Bick, D.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Carraro, C.; Cavalcante, P.; Cerretto, G.; Chavarria, A.; D'Angelo, D.; Davini, S.; De Gaetani, C.; Derbin, A.

    2012-01-01

    We have measured the speed of muon neutrinos with the Borexino detector using short-bunch CNGS beams. The final result for the difference in time-of-flight between an 〈E〉=17 GeV muon neutrino and a particle moving at the speed of light in vacuum is δt=0.8±0.7 stat ±2.9 sys ns, well consistent with zero.

  3. Measurement of CNGS muon neutrino speed with Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Sanchez, P., E-mail: spokeperson-borex@lngs.infn.it [CERN, Geneva (Switzerland); Barzaghi, R. [DIIAR-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Bellini, G. [Dipartimento di Fisica, Universita degli Studi e INFN, Milano 20133 (Italy); Benziger, J. [Chemical Engineering Department, Princeton University, Princeton, NJ 08544 (United States); Betti, B.; Biagi, L. [DIIAR-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Bick, D. [University of Hamburg, Hamburg (Germany); Bonfini, G. [INFN-Laboratori Nazionali del Gran Sasso, Assergi 67010 (Italy); Bravo, D. [Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buizza Avanzini, M.; Caccianiga, B. [Dipartimento di Fisica, Universita degli Studi e INFN, Milano 20133 (Italy); Cadonati, L. [Physics Department, University of Massachusetts, Amherst, MA 01003 (United States); Carraro, C. [Dipartimento di Fisica, Universita e INFN, Genova 16146 (Italy); Cavalcante, P. [INFN-Laboratori Nazionali del Gran Sasso, Assergi 67010 (Italy); Cerretto, G. [Optics Division, INRIM (Istituto Nazionale di Ricerca Metrologica), Torino (Italy); Chavarria, A. [Physics Department, Princeton University, Princeton, NJ 08544 (United States); D' Angelo, D. [Dipartimento di Fisica, Universita degli Studi e INFN, Milano 20133 (Italy); Davini, S. [Dipartimento di Fisica, Universita e INFN, Genova 16146 (Italy); Physics Department, Houston University, Houston, TX 77204-5005 (United States); De Gaetani, C. [DIIAR-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Derbin, A. [St. Petersburg Nuclear Physics Institute, Gatchina 188350 (Russian Federation); and others

    2012-10-02

    We have measured the speed of muon neutrinos with the Borexino detector using short-bunch CNGS beams. The final result for the difference in time-of-flight between an Left-Pointing-Angle-Bracket E Right-Pointing-Angle-Bracket =17 GeV muon neutrino and a particle moving at the speed of light in vacuum is {delta}t=0.8{+-}0.7{sub stat}{+-}2.9{sub sys} ns, well consistent with zero.

  4. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam using the 2012 dedicated data

    CERN Document Server

    Adam, T.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Dhahbi, A.Ben; Beretta, M.; Bertolin, A.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buettner, B.; Buontempo, S.; Carlus, B.; Cavanna, F.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chukanov, A.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievsky, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Esposito, L.S.; Favier, J.; Felici, G.; Ferber, T.; Fini, R.A.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Girerd, C.; Goellnitz, C.; Goldberg, J.; Golubkov, D.; Gornushkin, Y.; Grella, G.; Grianti, F.; Guerin, C.; Guler, A.M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Hierholzer, M.; Hollnagel, A.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kawada, J.; Kim, J.H.; Kim, S.H.; Kimura, M.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Mancini-Terracciano, C.; Malgin, A.; Mandrioli, G.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Monacelli, P.; Montesi, M.C.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Naumov, D.; Nikitina, V.; Ogawa, S.; Olchevsky, A.; Ozaki, K.; Palamara, O.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Pupilli, F.; Rescigno, R.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Schembri, A.; Schmidt-Parzefall, W.; Schuler, J.; Shakiryanova, I.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S.M.; Stipcevic, M.; Strauss, T.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tolun, P.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yoon, C.S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.; Zimmermann, R.

    2013-01-01

    In spring 2012 CERN provided two weeks of a short bunch proton beam dedicated to the neutrino velocity measurement over a distance of 730 km. The OPERA neutrino experiment at the underground Gran Sasso Laboratory used an upgraded setup compared to the 2011 measurements, improving the measurement time accuracy. An independent timing system based on the Resistive Plate Chambers was exploited providing a time accuracy of $\\sim$1 ns. Neutrino and anti-neutrino contributions were separated using the information provided by the OPERA magnetic spectrometers. The new analysis profited from the precision geodesy measurements of the neutrino baseline and of the CNGS/LNGS clock synchronization. The neutrino arrival time with respect to the one computed assuming the speed of light in vacuum is found to be $\\delta t_\

  5. The CNGS target

    CERN Multimedia

    Patrice Loïez

    2005-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) target ‘magazine’ of five target units. Each unit contains a series of 10-cm long graphite rods distributed over a length of 2 m. It is designed to maximize the number of secondary particles produced and hence the number of neutrinos. One unit is used at a time to prevent over heating.

  6. Welding the CNGS decay tube

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    3.6 km of welds were required for the 1 km long CERN Neutrinos to Gran Sasso (CNGS) decay tube, in which particles produced in the collision with a proton and a graphite target will decay into muons and muon neutrinos. Four highly skilled welders performed this delicate task.

  7. The target of the CNGS facility at CERN, which will enable the production of neutrino

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The final target system (base table, alignment table with target magazine and BPKG) was installed in the target chamber on 8 March 2006. The pictures show the material in the test set-up in the laboratory, before transportation. On 29 May, CNGS (CERN Neutrinos to Gran Sasso) will send the first neutrino beams from CERN to the Gran Sasso Laboratory in Italy. The neutrinos will journey 730 km through the earth's crust.

  8. Horn installed in CNGS tunnel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The horn is installed for the CERN Neutrinos to Gran Sasso (CNGS) project. Protons collide with a graphite target producing charged particles that are focussed by the magnetic field in the horn. These particles will then pass into a decay tube where they decay into neutrinos, which travel towards a detector at Gran Sasso 732 km away in Italy.

  9. The SPS beam parameters, the operational cycle, and proton sharing with the SHiP facility

    CERN Document Server

    Arduini, Gianluigi; Gatignon, Lau; Cornelis, Karel

    2015-01-01

    The SHiP experiment aims at acquiring a total of 4×1019 protons on target per year. Based on demonstrated SPS performance for CNGS, the expected proton sharing between the TCC2 targets and SHiP is estimated taking into account the constraints in the super-cycle composition. We review the SPS beam parameters, the operational cycles taking into account the concurrent operation of the SPS as LHC injector and for the TCC2 experiments and the limitations on the maximum possible power dissipation and the expected sharing of the protons on target of the SHiP facility with the TCC2 targets. As a typical example this aim could be achieved while maintaining a duty cycle for the other fixed target experiments of about 18%.

  10. A new proton spill from CERN to Gran Sasso

    CERN Document Server

    CERN Bulletin

    2011-01-01

    Since 21 October, CERN has been sending a new type of neutrino beam to Gran Sasso. The new configuration is intended to allow the experiments to define the departure time of the neutrinos more accurately and thus check the previous results obtained using the nominal beam configuration.   The CERN Neutrino to Gran Sasso (CNGS) beam no longer operates using the standard beam time structure. Instead, a new type of proton pulse is being produced by CERN’s accelerators and sent to the graphite target to generate neutrinos. “We are now producing extremely short beam pulses,” explains Edda Gschwendtner, the physicist in charge of the CNGS secondary beam. “During a CNGS cycle we now have a LHC type bunched beam with four bunches, each about 2 ns long. Each bunch contains more than 2.5 x 1011 protons; bunches are spaced by 500 ns. In total, this makes about 1012 protons on target for each extraction from the SPS.” The CNGS beam was originally designed to m...

  11. Beam Transfer Line Design for a Plasma Wakefield Acceleration Experiment (AWAKE) at the CERN SPS

    CERN Document Server

    Bracco, C; Brethoux, D; Clerc, V; Goddard, B; Gschwendtner, E; Jensen, L K; Kosmicki, A; Le Godec, G; Meddahi, M; Muggli, P; Mutin, C; Osborne, O; Papastergiou, K; Pardons, A; Velotti, F M; Vincke, H

    2013-01-01

    The world’s first proton driven plasma wakefield acceleration experiment (AWAKE) is presently being studied at CERN. The experimentwill use a high energy proton beam extracted from the SPS as driver. Two possible locations for installing the AWAKE facility were considered: the West Area and the CNGS beam line. The previous transfer line from the SPS to the West Area was completely dismantled in 2005 and would need to be fully re-designed and re-built. For this option, geometric constraints for radiation protection reasons would limit the maximum proton beam energy to 300 GeV. The existing CNGS line could be used by applying only minor changes to the lattice for the final focusing and the interface between the proton beam and the laser, required for plasma ionisation and bunch-modulation seeding. The beam line design studies performed for the two options are presented.

  12. On the Neutrino Opera in the CNGS Beam

    Directory of Open Access Journals (Sweden)

    Assis A. V. D. B.

    2011-10-01

    Full Text Available In this brief paper, we solve the relativistic kinematics related to the intersection be- tween a relativistic beam of particles (neutrinos, e.g. and consecutive detectors. The gravitational effects are neglected, but the effect of the Earth rotation is taken into con- sideration under a simple approach in which we consider two instantaneous inertial reference frames in relation to the fixed stars: an instantaneous inertial frame of refer- ence having got the instantaneous velocity of rotation (about the Earth axis of rotation of the Cern at one side, the lab system of reference in which the beam propagates, and another instantaneous inertial system of reference having got the instantaneous velocity of rotation of the detectors at Gran Sasso at the other side, this latter being the system of reference of the detectors. Einstein’s relativity theory provides a velocity of intersection between the beam and the detectors greater than the velocity of light in the empty space as derived in this paper, in virtue of the Earth rotation. We provide a simple calculation for the discrepancy between a correct measure for the experiment and a measure arising due to the effect derived in this paper.

  13. Longitudinal stability of the LHC beam in the SPS

    CERN Document Server

    Shaposhnikova, Elena

    2001-01-01

    Longitudinal beam stability is analysed for the LHC Beam in the SPS. The most critical area is shown to be the top energy. Analysis explains some results of measurements with the beam done d uring the MDs last year. The possibility of using this cycle for CNGS is considered as well. There, without special requirements on bunch parameters at extraction, the impedance limitations move to the lowest energy. An option with low transition energy is presented also.

  14. A Novel Eddy Current Septum Magnet for SPS Extraction towards LHC and CNGS

    CERN Document Server

    Schröder, G H; Carlier, E; Dieperink, J H; Ducimetière, L; Goddard, B; Lázár, C; Mayer, M; Vossenberg, Eugène B; Weterings, W

    2000-01-01

    A new East Fast-Extraction System is under construction in the SPS, to supply particles with a maximum batch length of 7.8 us and 10.5 us to the LHC and to CNGS (CERN Neutrino to Gran Sasso), respectively. The extraction septum magnets actually used at the SPS have been designed for slow extraction over several seconds, have large cooling and electrical power demands and need frequently maintenance in a high radiation environment. A fast system of only 250 us pulse duration has therefore been developed, using a half-sine excitation pulse with a superimposed third harmonic. The short pulse duration requires very thin magnetic yoke laminations, which can not easily be stamped and stacked. Profiting from a development for the LHC beam dump kicker magnets, the yoke is therefore built-up from tape-wound cylindrical cores, employing 50 um thick Si-steel tape. Thirty two cores are stacked longitudinally to produce a yoke of 3.2 meter length. The aperture is cut radial into each cylinder. The cores are radial compres...

  15. OPERA's overture

    CERN Multimedia

    2006-01-01

    When neutrinos interact, they mainly produce one muon and a shower of hadrons. Here we see two interactions in the heart of the OPERA detector: one in the steel plates of the first magnet (left), the other in the target's scintillation counters (right). OPERA's opening score has been played at the Gran Sasso Laboratory in Italy, and it's in perfect harmony with the melody of the CNGS neutrino beam from CERN, 730 kilometres away. OPERA's overture was played on 18 August 2006, when the first tracks, corresponding to interactions with CNGS neutrinos, were recorded in its detectors. To the great satisfaction of the teams on both of the Alps, the quality of the CNGS beam is fully in line with expectations, as are the first tracks observed by OPERA, which records data with hardly any down time. Over a five-day period, a little over 300 interactions correlated with the CNGS beam were identified, just as predicted. During this first run it has been possible to verify the correct operation of the electronic detector...

  16. Transient Thermo-Mechanical Analysis of the TPSG4 Beam Diluter

    CERN Document Server

    Goddard, B; Herrera-Martínez, A; Kadi, Y; Marque, S

    2002-01-01

    A new extraction channel is being built in the Super Proton Synchrotron (SPS) Long Straight Section 4 (LSS4) to transfer proton beams to the Large Hadron Collider (LHC) and also to the CERN Neutrino to Gran Sasso (CNGS) target. The beam is extracted in a fast mode during a single turn. For this purpose a protection of the MSE copper septum coil, in the form of a beam diluting element placed upstream, will be required to cope with the new failure modes associated with the fast extraction operation. The present analysis focuses on the thermo-mechanical behavior of the proposed TPSG4 diluter element irradiated by a fast extracted beam (up to 4.9 x 10^13 protons per 7.2 mus pulse) from the SPS. The deposited energy densities, estimated from primary and secondary particle simulations using the high-energy particle transport code FLUKA, were converted to internal heat generation rates taken as a thermal load input for the finite-element engineering analyses code ANSYS. According to the time dependence of the extrac...

  17. PSB beam longitudinal blow-up by phase modulation with the digital LLRF prototype system

    CERN Document Server

    Angoletta, M E; Butterworth, A; Findlay, A; Jaussi, M; Leinonen, P; Molendijk, J; Sanchez-Quesada, J

    2014-01-01

    The PSB will be upgraded to a new, Digital Low-Level RF (DLLRF) system in 2014 at the injectors’ restart after LS1. This DLLRF is an evolution of that successfully deployed in LEIR and comprises new hardware, software and implementation strategies. Machine development studies have been carried out in the PSB over recent years with the existing LEIR-style hardware installed in PSB ring four. These studies have allowed testing approaches and validating implementation strategies. This note focuses on a series of MDs carried out during the 2011 run where a new implementation of the longitudinal beam blow-up obtained by phase modulation was tested. Test results and effects on the beam are show for a CNGS-type beam. Finally, an overview is given of the final longitudinal blow-up implementation planned with the new hardware, which will be operationally deployed in 2014.

  18. CERN Neutrinos search for sunshine in Italy!

    CERN Document Server

    Wednesday, 18th June 2008. The CNGS (CERN Neutrinos to Gran Sasso) beam has re-started, shooting muon neutrinos towards Italy. The neutrino beam should run this year until mid November.The aim of CNGS is to understand the oscillation of neutrinos, for example their transformation from muon into tau neutrinos over long distances.Edda Gschwendtner, the liaison physicist of the CNGS beam, describes the progress of the project, “We did a lot of modifications this year to CNGS, which was a huge amount of work, with many groups and services involved. In parallel the OPERA detector in Italy made an enormous progress in completing their detector and we are looking forward to seeing tau neutrinos soon.”

  19. Radiation Tests on the Complete System of the Instrumentation of the LHC Cryogenics at the CERN Neutrinos to Gran Sasso (CNGS) Test Facility

    CERN Document Server

    Gousiou, E; Casas Cubillos, J; de la Gama Serrano, J

    2009-01-01

    There are more than 6000 electronic cards for the instrumentation of the LHC cryogenics, housed in crates and distributed around the 27 km tunnel. Cards and crates will be exposed to a complex radiation field during the 10 years of LHC operation. Rad-tol COTS and rad-hard ASIC have been selected and individually qualified during the design phase of the cards. The test setup and the acquired data presented in this paper target the qualitative assessment of the compliance with the LHC radiation environment of an assembled system. It is carried out at the CNGS test facility which provides exposure to LHC-like radiation field.

  20. Computerized operation of the DIII-D neutral beams

    International Nuclear Information System (INIS)

    Glad, A.S.; Tooker, J.F.

    1986-01-01

    Operation of the DIII-D neutral beams utilizes computerized control to provide routine tokamak beam heating shots and an effective method for automatic ion source operation. Computerized control reduces operational complexity, thus providing consistent reliability and availability of beams and a significant reduction in the the costs of routine operation. The objectives in implementing computerized control for operation were: (1) to improve operator efficiency for controlling multiple beam lines and increasing beam availability through standard procedures, (2) to provide a simplified scheme that operators and coordinators can construct and maintain, and (3) to provide a single integrated mechanism for both tokamak operation and automatic source conditioning. The years of experience in operating neutral beams at Doublet III provided the data necessary to meet the objectives. The method for computerized control consisted of three integrated functions: (1) a structured command language was implemented to provide the mechanism for automatically sequencing beams, (2) a historical file was constructed from the operational parameters to characterize the ion source, and consists of data from approximately 100,000 beam shots, and (3) procedures were developed integrating the language to the historical file for normal operation and source conditioning. This paper describes the method for sequencing beams automatically, the structure of the historical data file, and the procedures which integrate the historical data with tokamak operation and automatic source conditioning

  1. Beam studies and experimental facility for the AWAKE experiment at CERN

    CERN Document Server

    Bracco, Chiara; Petrenko, Alexey; Timko, Helga; Argyropoulos, Theodoros; Bartosik, Hannes; Bohl, Thomas; Esteban Müller, Juan; Goddard, Brennan; Meddahi, Malika; Pardons, Ans; Shaposhnikova, Elena; Velotti, Francesco M; Vincke, Helmut

    2014-01-01

    A Proton Driven Plasma Wakefield Acceleration Experiment has been proposed as an approach to eventually accelerate an electron beam to the TeV energy range in a single plasma section. To verify this novel technique, a proof of principle R&D experiment, AWAKE, is planned at CERN using 400 GeV proton bunches from the SPS. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility profiting from existing infrastructure where only minor modifications need to be foreseen. The design of the experimental area and the proton and electron beam lines are shown. The achievable SPS proton bunch properties and their reproducibility have been measured and are presented.

  2. The operational procedure of an electron beam accelerator

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-01

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator

  3. The operational procedure of an electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-15

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator.

  4. Summary of the CERN Workshop on Materials for Collimators and Beam Absorbers

    CERN Document Server

    Schmidt, R; Bertarelli, A; Ferrari, A; Weterings, W; Mokhov, N V

    2008-01-01

    The main focus of the workshop was on collimators and beam absorbers for (mainly) High Energy Hadron Accelerators, with the energy stored in the beams far above damage limit. The objective was to better understand the technological limits imposed by mechanisms related to beam impact on materials. The idea to organise this workshop came up during the High Intensity High Brightness Hadron Beams, ICFA-HB2006 in Japan [1]. The workshop was organised 3-5 September 2007 at CERN, with about 60 participants, including 20 from outside CERN. About 30 presentations were given [2]. The event was driven by the LHC challenge, with more than 360 MJoule stored in each proton beam. The entire beam or its fraction will interact with LHC collimators and beam absorbers, and with the LHC beam dump blocks. Collimators and beam absorbers are also of the interest for other labs and accelerators: - CERN: for the CNGS target, for SPS beam absorbers (extraction protection) and collimators for protecting the transfer line between SPS an...

  5. R2E – identifying problems, mitigating risks

    CERN Document Server

    Anaïs Schaeffer

    2013-01-01

    During LS1, the R2E project team will be working on a task as painstaking as it is crucial: to achieve a sixfold reduction in the number of electronic malfunctions caused by radiation. On their success depends the ability of the accelerator to function correctly at nominal energy. No mean challenge, considering it comes on top of the tenfold reduction already achieved since 2009.   The graph plots the rate of LHC beam dumps due to single-event effects against beam luminosity. An indication of the challenge that faces the R2E project teams during LS1! The origins of the project known as R2E (Radiation to Electronics) go back to 2007, when the CNGS (CERN Neutrinos to Gran Sasso) experiment was being commissioned. "Right from the outset, some CNGS control systems were causing problems. They would regularly break down in operations with beam," recalls Markus Brugger, head of the R2E project. "Even though the beam intensity was very low, we began to suspect that radiati...

  6. Operational experience with SLAC's beam containment electronics

    International Nuclear Information System (INIS)

    Constant, T.N.; Crook, K.; Heggie, D.

    1977-03-01

    Considerable operating experience was accumulated at SLAC with an extensive electronic system for the containment of high power accelerated beams. Average beam power at SLAC can approach 900 kilowatts with the potential for burning through beam stoppers, protection collimators, and other power absorbers within a few seconds. Fast, reliable, and redundant electronic monitoring circuits have been employed to provide some of the safeguards necessary for minimizing the risk to personnel. The electronic systems are described, and the design philosophy and operating experience are discussed

  7. Search for anomalies in the {nu}{sub e} appearance from a {nu}{sub {mu}} beam

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Canci, N.; Segreto, E.; Stefan, D.; Vignoli, C. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Baibussinov, B.; Centro, S.; Dequal, D.; Farnese, C.; Fava, A.; Gibin, D.; Guglielmi, A.; Meng, G.; Pietropaolo, F.; Varanini, F.; Ventura, S. [Universita di Padova (Italy); INFN, Dipartimento di Fisica e Astronomia, Padova (Italy); Benetti, P.; Boffelli, F.; Calligarich, E.; Dolfini, R.; Falcone, A.; Menegolli, A.; Montanari, C.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Torti, M.; Zani, A. [Universita di Pavia (Italy); INFN, Dipartimento di Fisica, Pavia (Italy); Bubak, A.; Holeczek, J.; Kisiel, J.; Kochanek, I.; Mania, S. [University of Silesia, Institute of Physics, Katowice (Poland); Cesana, A.; Sala, P.; Scaramelli, A.; Terrani, M. [Politecnico di Milano (Italy); INFN, Milano (Italy); Cieslik, K.; Dabrowska, A.; Haranczyk, M.; Szarska, M.; Zalewska, A. [Polish Academy of Science, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Cline, D.B.; Otwinowski, S.; Wang, H.G.; Yang, X. [UCLA, Department of Physics and Astronomy, Los Angeles (United States); Cocco, A.G.; Fiorillo, G. [Universita Federico II di Napoli (Italy); INFN, Dipartimento di Scienze Fisiche, Napoli (Italy); Dermenev, A.; Gninenko, S.; Kirsanow, M. [INR RAS, Moscow (Russian Federation); Ferrari, A. [CERN, Geneva (Switzerland); Lagoda, J. [National Centre for Nuclear Research, Otwock/Swierk (Poland); Picchi, P. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Plonski, P.; Zaremba, K. [Warsaw University of Technology, Institute for Radioelectronics, Warsaw (Poland); Rubbia, C. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); CERN, Geneva (Switzerland); GSSI, L' Aquila (Italy); Sergiampietri, F. [INFN, Pisa (Italy); Sulej, R. [CERN, Geneva (Switzerland); National Centre for Nuclear Research, Otwock/Swierk (Poland)

    2013-10-15

    We report an updated result from the ICARUS experiment on the search for {nu}{sub {mu}} {yields}{nu} {sub e} anomalies with the CNGS beam, produced at CERN with an average energy of 20 GeV and traveling 730 km to the Gran Sasso Laboratory. The present analysis is based on a total sample of 1995 events of CNGS neutrino interactions, which corresponds to an almost doubled sample with respect to the previously published result. Four clear {nu}{sub e} events have been visually identified over the full sample, compared with an expectation of 6.4 {+-}0.9 events from conventional sources. The result is compatible with the absence of additional anomalous contributions. At 90 % and 99 % confidence levels, the limits to possible oscillated events are 3.7 and 8.3 respectively. The corresponding limit to oscillation probability becomes consequently 3.4 x 10{sup -3} and 7.6 x 10{sup -3}, respectively. The present result confirms, with an improved sensitivity, the early result already published by the ICARUS Collaboration. (orig.)

  8. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    Science.gov (United States)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  9. Neutrino oscillations on and off the beam: studies of the OPERA acquisition system performance

    International Nuclear Information System (INIS)

    Brugiere, T.

    2011-01-01

    OPERA (Oscillation Project with Emulsion-tracking Apparatus) is a neutrino beam experiment located in hall C of the Gran Sasso underground laboratory (LNGS), in Italia, under a equivalent of 3.8 km water (corresponding to a cut at 1.5 TeV for the muons). The first purpose of OPERA is the direct observation of the ν μ → ν τ oscillation in the atmospheric sector observing a ν τ appearance 730 km away from the target in a quasi pure ν μ beam (CNGS). OPERA is an hybrid detector with an instrumented target part (about 125000 bricks made with emulsion and lead sheets) and a spectrometer. Collecting data started in 2006 and 55000 events have been recorded. The first ν τ candidate have been observed this year. The work done during this thesis is oriented around three main topics: Define the trigger rules of the target tracker acquisition system for beam neutrino events, synchronise target tracker and RPC elements, implement the results inside the simulation and the study of the feasibility of an atmospheric neutrino analysis using o-beam data. The new trigger rules succeeds to reach the values of OPERA proposal, i.e. a trigger efficiency greater than 99%. This improvement have been done thanks to coincidence time windows with the CNGS beam during which lower cut are applied, allowing low multiplicity events to be kept. A deep study of electronic detectors intercalibration makes possible the target tracker and RPC data synchronisation. The analysis results are now included in the official simulation. This calibration work have been then used for a study of 'off-beam' atmospheric neutrino oscillation thanks to the selection of up-going particles. The analysis shown in the thesis has improved the OPERA detector understanding and demonstrates the feasibility of an observation of phenomena independent from the Cgs beam. Analysis on atmospherics neutrino detection and muons flux characterisation (seasonal variations for example) are now possible thanks to the

  10. Dual-beam operation of the Astra Gemini laser facility

    International Nuclear Information System (INIS)

    Bryan Parry; Nicola Booth; Oleg Chekhlov; John Collier; Edwin Divall; Klaus Ertel; Peta Foster; Steve Hawkes; Chris Hooker; Victoria Marshall

    2010-01-01

    Complete text of publication follows. Gemini is a Petawatt class Ti:Sapphire laser system at the Rutherford Appleton Laboratory, UK. It was designed as a dual beam laser, with two independently configurable 800 nm beams delivering 15 J to target in 30 fs pulse duration, giving 0.5 PW peak power per beam. It is capable of reaching intensities over 10 22 W/cm 2 . Gemini can achieve a maximum repetition rate of one shot every 20 seconds, allowing it to deliver hundreds of shots per day; a feature which makes it unique among PW lasers. Already this has proved valuable in experiments involving electron acceleration in gas jets. The first Gemini beamline became operational in 2008. Commissioning of the second beam was deferred to allow earlier access to the facility by experimental scientists, and to develop operational experience. In this mode, Gemini has already produced significant results from a number of advanced plasma physics experiments. The second beam of Gemini is now coming online, with the first dual beam experiment starting in June 2010. The flexibility offered by two short pulse, ultra high intensity beams is another aspect that makes this laser system unique. The dual beams enable versatile configurations and illumination geometries, facilitating a wider range of experiments than is possible with only a single beam. Operationally however, it introduces additional factors which must be monitored and controlled in order to achieve experimental success. The beams must be timed with respect to each other with accuracy less than the pulse duration. The beam foci must also be overlapped spatially, and the stability of both these factors maintained over extended periods. We report on the second beam commissioning process, including the latest results on the characteristics, stability and spatio-temporal overlap of the two beams. We present details of amplifier performance, along with measurements of beam quality, focal spot, pulse duration and contrast, to give a

  11. LHC beam dump system Consequences of abnormal operation

    CERN Document Server

    Kramer, T; Uythoven, J

    2010-01-01

    The LHC beam dump system is one of the most critical systems concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated using particle tracking in MAD-X, including an asynchronous dump action, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setting up and operation of these protection elements are discussed.

  12. Beam studies and experimental facility for the AWAKE experiment at CERN

    International Nuclear Information System (INIS)

    Bracco, Chiara; Gschwendtner, Edda; Petrenko, Alexey; Timko, Helga; Argyropoulos, Theodoros; Bartosik, Hannes; Bohl, Thomas; Esteban Müller, Juan; Goddard, Brennan; Meddahi, Malika; Pardons, Ans; Shaposhnikova, Elena; Velotti, Francesco M.; Vincke, Helmut

    2014-01-01

    A Proton Driven Plasma Wakefield Acceleration Experiment has been proposed as an approach to eventually accelerate an electron beam to the TeV energy range in a single plasma section. To verify this novel technique, a proof of principle R and D experiment, AWAKE, is planned at CERN using 400 GeV proton bunches from the SPS. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility profiting from existing infrastructure where only minor modifications need to be foreseen. The design of the experimental area and the proton and electron beam lines are shown. The achievable SPS proton bunch properties and their reproducibility have been measured and are presented. - Highlights: • A proton driven plasma wakefield experiment using the first time protons as drive beam is proposed. • The integration of AWAKE experiment, the proton, laser and electron beam line in an existing CERN facility is demonstrated. • The necessary modifications in the experimental facility are presented. • Proton beam optics and a new electron beam line are adapted to match with the required beam parameters. • Short high-intensity bunches were studied in the SPS to guide the design parameters of the AWAKE project

  13. The OPERA experiment. ν{sub μ}→ν{sub τ} oscillation discovered in appearance mode

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Benjamin [Universitaet Hamburg, Institut fuer Experimentalphysik (Germany); Collaboration: OPERA-Hamburg-Collaboration

    2016-07-01

    The primary goal of the OPERA long-baseline neutrino oscillation experiment is the first direct detection of ν{sub μ}→ν{sub τ} oscillations. The hybrid OPERA detector consists of a large-mass target made from lead and photo emulsions - providing micrometric resolution - and electronic detector parts for online readout. It is located in the LNGS underground laboratory, at a distance of 730 km from the SPS at CERN, where the CNGS ν{sub μ} beam is produced. The measurement of ν{sub τ} appearance relies on the detection of the decay of τ leptons which are created in ν{sub τ} charged current reactions. Data acquisition lasted from 2008 to 2012. With the collected data the OPERA experiment discovered ν{sub τ} appearance in the CNGS neutrino beam with a significance of 5.1 σ. This poster will give an overview about the OPERA experiment and the discovery of τ neutrino appearance in the CNGS neutrino beam.

  14. Ionization beam profile monitor for operation under hard environmental conditions

    International Nuclear Information System (INIS)

    Teterev, Yu.G.; Kaminski, G.; Phi Thanh Huong; Kaminski, G.; Kozik, E.

    2010-01-01

    The design and the performance of the Ionization Beam Profile Monitor (IBPM) operating on the residual gas ionization principle are described. The main advantage of the constructed device is the non-contact measuring method. Operating under hard environmental conditions it delivers the information about the primary beam position, profile and intensity in 'on-line' regime. It was found out that the device is capable to operate in vacuum in the range of 10 -6 /10 -3 mbar without the loss of the resolution power at the beam current as low as a few nA. The IBPM is prospective for beam profile monitoring due to long time. Emergency situations do not lead to decrease of its operability.

  15. Digging the CNGS decay tunnel

    CERN Multimedia

    Patrice Loiez

    2002-01-01

    Products of the collision between a proton beam and a graphite target will pass through a horn containing an electric field that will produce a focused beam. These particles will decay into muon neutrinos within the tunnel that is being constructed in these images. The neutrinos will then travel 730 km to Gran Sasso in Italy where huge detectors will observe the beam to study a process called neutrino oscillation.

  16. Beam emittance reduction during operation of Indus-2

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Ali Akbar, E-mail: fakhri@rrcat.gov.in; Kant, Pradeep; Ghodke, A. D.; Singh, Gurnam [Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-11-15

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed.

  17. The TFTR 40 MW neutral beam injection system and DT operations

    International Nuclear Information System (INIS)

    Stevenson, T.; O'Connor, T.; Garzotto, V.

    1995-01-01

    Since December 1993, TFTR has performed DT experiments using tritium fuel provided mainly by neutral beam injection. Significant alpha particle populations and reactor-like conditions have been achieved at the plasma core, and fusion output power has risen to a record 10.7 MW using a record 40 MW NB heating. Tritium neutral beams have injected into over 480 DT plasmas and greater than 500 kCi have been processed through the neutral beam gas, cryo, and vacuum systems. Beam tritium injections, as well as tritium feedstock delivery and disposal, have now become part of routine operations. Shot reliability with tritium is about 90% and is comparable to deuterium shot reliability. This paper describes the neutral beam DT experience including the preparations, modifications, and operating techniques that led to this high level of success, as well as the critical differences in beam operations encountered during DT operations. Also, the neutral beam maintenance and repair history during DT operations, the corrective actions taken, and procedures developed for handling tritium contaminated components are discussed in the context of supporting a continuous DT program

  18. Beam commissioning and operation of the J-PARC main ring synchrotron

    International Nuclear Information System (INIS)

    Koseki, Tadashi; Arakaki, Yoshitugu; Chin, Yong Ho; Hara, Keigo; Hasegawa, Katsushi; Hashimoto, Yoshinori; Hori, Yoichiro; Igarashi, Susumu; Ishii, Koji; Kamikubota, Norihiko; Kimura, Takuro; Koseki, Kunio; Fan, Kuanjyun; Kubota, Chikashi; Kuniyasu, Yuu; Kurimoto, Yoshinori; Lee, Seishu; Matsumoto, Hiroshi; Molodozhentsev, Alexander; Morita, Yuichi; Murasugi, Shigeru; Muto, Ryotaro; Naito, Fujio; Nakagawa, Hidetoshi; Nakamura, Shu; Niki, Kazuaki; Ohmi, Kazuhito; Ohmori, Chihiro; Okada, Masashi; Okamura, Katsuya; Oogoe, Takao; Ooya, Kazufumi; Sato, Kenichi; Sato, Yoichi; Sato, Yoshihiro; Satou, Kenichirou; Shimamoto, Masayuki; Shirakata, Masashi; Someya, Hirohiko; Sugimoto, Takuya; Takano, Junpei; Takeda, Yasuhiro; Takiyama, Yoichi; Tejima, Masaki; Toda, Makoto; Tomizawa, Masahito; Toyama, Takeshi; Uota, Masahiko; Yamada, Shuei; Yamamoto, Noboru; Yanaoka, Eiichi; Yoshii, Masahito; Harada, Hiroyuki; Hatakeyama, Shuichiro; Hotchi, Hideaki; Nomura, Masahiro; Schnase, Alexander; Shimada, Taihei; Tamura, Fumihiko; Yamamoto, Masanobu; Shimogawa, Tetsushi

    2012-01-01

    The slow cycling main ring synchrotron (MR) is located the furthest downstream in the J-PARC accelerator cascade. It became available for user operation in 2009 and provides high-intensity 30 GeV proton beams for various experiments on particle and nuclear physics. The MR has two beam extraction systems: a fast extraction system for beam delivery to the neutrino beam line of the Tokai-to-Kamioka (T2K) experiment and a slow extraction system for beam delivery to the hadron experimental hall. After a nine-month beam shutdown during the recovery from the Great East Japan Earthquake, the J-PARC facility resumed beam operation in December 2011. The MR delivers a 160-200 kW beam to the T2K experiment and a 3.5-6 kW beam to users in the hadron experimental hall. In this paper, a brief review of the MR and the recent status of beam operation are presented. Near-future plans for a beam intensity upgrade are also discussed. (author)

  19. Beam tests and operation of superconducting cavities

    International Nuclear Information System (INIS)

    Akai, Kazunori

    1990-01-01

    Beam tests and operation of superconducting cavities conducted since the third workshop on RF superconductivity (Argonne, Sep. 1987) are reported in this paper. The paper is concerned particularly with electron machines. Storage and acceleration of the beam are discussed, focusing on the CERN test in SPS, the DESY test in PETRA, the superconducting injector at Darmstadt, and the KEK beam tests in T-AR. Then, long-term performance of the cavity in the ring is discussed focusing on Eacc (max) and O-value, environmental conditions, and operational experience in T-MR. RF controllability is addressed, centering on the Robinson stability, cavity tuning loop, quench detection and interlocks, recovery procedure, field calibration, and phase adjustment. Higher order modes are also discussed. Superconducting cavities have been operated successfully in accelerators. It has been confirmed that the superconducting cavities can be used stably for experimental use. For more than 5000 hours the cavities have indicated no essential degradation of the cavity performance. The study of long-term performance should be continued in longer range of period. (N.K.)

  20. Operation of the NuMI Beam Monitoring System

    International Nuclear Information System (INIS)

    Zwaska, Robert M.; Indurthy, Dharma; Keisler, Ryan; Kopp, Sacha; Mendoza, Steven; Pavlovich, Zarko; Proga, Marek; Bishai, Mary; Diwan, Milind; Viren, Brett; Harris, Debbie; Marchionni, Alberto; Morfin, Jorge; McDonald, Jeffrey; Naples, Donna; Northacker, David; Erwin, Albert; Ping, Huican; Velissaris, Cristos

    2006-01-01

    The NuMI (Neutrinos at the Main Injector) facility produces an intense neutrino beam for experiments. The NuMI Beam Monitoring system consists of four arrays of ion chambers that measure the intensity and distribution of the remnant hadron and tertiary muon beams produced in association with the neutrinos. The ion chambers operate in an environment of high particle fluxes and high radiation

  1. CERN neutrino project on target

    CERN Multimedia

    2005-01-01

    Scientists at CERN announced the completion of the target assembly for the CERN neutrinos to Gran Sasso project, CNGS. On schedule for start-up in May 2006, CNGS will send a beam of neutrinos through the Earth to the Gran Sasso laboratory 730 km away in Italy in a bid to unravel the mysteries of nature's most elusive particles (½ page)

  2. Beam beam tune shifts for 36 bunch operation in the Tevatron

    International Nuclear Information System (INIS)

    Bagley, P.

    1996-10-01

    We are preparing to upgrade the Tevatron Collider from 6 to 36 bunch operation. The 36 bunches are in 3 ''trains'' of 12 bunches. The spacing between bunches within a train is 21 RF buckets (53.106 MHz) and 139 empty buckets separate the trains. Because the 36 bunches are not evenly spaced around the machine, the different bunches within a train pass the opposing bunches at different points in the ring and so feel different beam beam effects. Through most of the machine the beams have helical separation, so these are mainly long range beam beam effects. As a first, very simple step, we've looked at the differences in the tunes of the different anti-proton (anti p) bunches. During the 36 bunch studies in Fall 1995, we used a new tune measurement system to measure these in several different machine conditions. We compare these measurements to calculations of the tunes for a anti p with zero transverse and longitudinal oscillation amplitudes. We discuss experimental problems, and the assumptions, approximations, and effects included in the calculations. Our main intent is to gain confidence that we can accurately model beam beam effects in the Tevatron

  3. Initial operation and performance of the PDX neutral-beam injection system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Eubank, H.P.; Kozub, T.A.; Rossmassler, J.E.; Schilling, G.; van Halle, A.; Williams, M.D.

    1982-01-01

    In 1981, the joint ORNL/PPPL PDX neutral beam heating project succeeded in reliably injecting 7.2 MW of D 0 into the PDX plasma, at nearly perpendicular angles, and achieved ion temperatures up to 6.5 keV. The expeditious achievement of this result was due to the thorough conditioning and qualification of the PDX neutral beam ion sources at ORNL prior to delivery coupled with several field design changes and improvements in the injection system made at PPPL as a result of neutral beam operating experience with the PLT tokamak. It has been found that the operation of high power neutral beam injection systems in a tokamak-neutral beam environment requires procedures and performance different from those required for development operation on test stands. In this paper, we review the installatin of the PDX neutral beam injection system, and its operation and performance during the initial high power plasma heating experiments with the PDX tokamak

  4. Experimental search for the ''LSND anomaly'' with the ICARUS detector in the CNGS neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Canci, N.; Scantamburlo, E.; Segreto, E.; Stefan, D.; Vignoli, C. [INFN - Laboratori Nazionali del Gran Sasso, Assergi (Italy); Baibussinov, B.; Centro, S.; Dequal, D.; Farnese, C.; Fava, A.; Gibin, D.; Guglielmi, A.; Meng, G.; Pietropaolo, F.; Varanini, F.; Ventura, S. [Universita di Padova (Italy); INFN, Padova (Italy); Benetti, P.; Calligarich, E.; Dolfini, R.; Menegolli, A.; Montanari, C.; Piazzoli, A.; Rappoldi, A.; Raselli, G.L.; Rossella, M. [Universita di Pavia (Italy); INFN, Pavia (Italy); Cesana, A.; Terrani, M. [Politecnico di Milano (Italy); INFN, Milano (Italy); Cieslik, K.; Dabrowska, A.; Haranczyk, M.; Szarska, M.; Zalewska, A. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Cline, D.B.; Otwinowski, S.; Wang, H.G.; Yang, X. [UCLA, Department of Physics, Los Angeles (United States); Cocco, A.G.; Fiorillo, G. [Universita Federico II di Napoli (Italy); INFN, Napoli (Italy); Dermenev, A.; Gninenko, S.; Kirsanov, M. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Ferrari, A. [CERN, Geneva (Switzerland); Holeczek, J.; Ivashkin, A.; Kisiel, J.; Kochanek, I.; Mania, S. [A. Soltan Institute for Nuclear Studies, Warszawa (Poland); Lagoda, J.; Stepaniak, J. [University of Silesia, Institute of Physics, Katowice (Poland); Picchi, P. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Plonski, P.; Zaremba, K. [Warsaw University of Technology, Institute for Radioelectronics, Warsaw (Poland); Rubbia, C. [INFN - Laboratori Nazionali del Gran Sasso, Assergi (Italy); CERN, Geneva (Switzerland); Sala, P.R.; Scaramelli, A. [INFN Milano, Milano (Italy); Sergiampietri, F. [Universita di Pisa (Italy); INFN, Pisa (Italy); Sulej, R. [INFN - Laboratori Nazionali del Gran Sasso, Assergi (Italy); University of Silesia, Institute of Physics, Katowice (Poland)

    2013-03-15

    We report an early result from the ICARUS experiment on the search for a {nu}{sub {mu}} {yields} {nu}{sub e} signal due to the LSND anomaly. The search was performed with the ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS neutrinos from CERN at an average energy of about 20 GeV, after a flight path of {proportional_to}730 km. The LSND anomaly would manifest as an excess of {nu}{sub e} events, characterized by a fast energy oscillation averaging approximately to sin {sup 2}(1.27{Delta} m{sup 2}{sub new}L/E{sub {nu}}){approx} 1/2 with probability P{sub {nu}{sub {mu}{yields}{nu}{sub e}}} = 1/2 sin{sup 2}(2{theta}{sub new}). The present analysis is based on 1091 neutrino events, which are about 50 % of the ICARUS data collected in 2010-2011. Two clear {nu}{sub e} events have been found, compared with the expectation of 3.7 {+-} 0.6 events from conventional sources. Within the range of our observations, this result is compatible with the absence of a LSND anomaly. At 90 % and 99 % confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation probabilities left angle P{sub {nu}{sub {mu}{yields}{nu}{sub e}}} right angle {<=} 5.4 x 10{sup -3} and left angle P{sub {nu}{sub {mu}{yields}{nu}{sub e}}} right angle {<=} 1.1 x 10{sup -2} are set respectively. The result strongly limits the window of open options for the LSND anomaly to a narrow region around ({Delta}m{sup 2}, sin{sup 2}(2{theta})){sub new} = (0.5 eV{sup 2}, 0.005), where there is an overall agreement (90 % CL) between the present ICARUS limit, the published limits of KARMEN and the published positive signals of LSND and MiniBooNE Collaborations. (orig.)

  5. The SPS Beam quality monitor, from design to operation

    CERN Document Server

    Papotti, G; Follin, F; Shaposhnikova, E

    2011-01-01

    The SPS Beam Quality Monitor is a system that monitors longitudinal beam parameters on a cycle-by-cycle basis and prevents extraction to the LHC in case the specifications are not met. This avoids losses, unnecessary stress of machine protection components and luminosity degradation, additionally helping efficiency during the filling process. The system has been operational since the 2009 LHC run, checking the beam pattern, its correct position with respect to the LHC references, individual bunch lengths and stability. In this paper the algorithms used, the hardware implementation and the operational aspects are presented.

  6. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  7. External post-operational checks for the LHC beam dumping system

    International Nuclear Information System (INIS)

    Magnin, N.; Baggiolini, V.; Carlier, E.; Goddard, B.; Gorbonosov, R.; Khasbulatov, D.; Uythoven, J.; Zerlauth, M.

    2012-01-01

    The LHC Beam Dumping System (LBDS) is a critical part of the LHC machine protection system. After every LHC beam dump action the various signals and transient data recordings of the beam dumping control systems and beam instrumentation measurements are automatically analysed by the external Post-Operational Checks (XPOC) system to verify the correct execution of the dump action and the integrity of the related equipment. This software system complements the LHC machine protection hardware, and has to ascertain that the beam dumping system is 'as good as new' before the start of the next operational cycle. This is the only way by which the stringent reliability requirements can be met. The XPOC system has been developed within the framework of the LHC 'Post-Mortem' system, allowing highly dependable data acquisition, data archiving, live analysis of acquired data and replay of previously recorded events. It is composed of various analysis modules, each one dedicated to the analysis of measurements coming from specific equipment. This paper describes the global architecture of the XPOC system and gives examples of the analyses performed by some of the most important analysis modules. It explains the integration of the XPOC into the LHC control infrastructure along with its integration into the decision chain to allow proceeding with beam operation. Finally, it discusses the operational experience with the XPOC system acquired during the first years of LHC operation, and illustrates examples of internal system faults or abnormal beam dump executions which it has detected. (authors)

  8. LHC beam dump system : analysis of beam commissioning, performance and the consequences of abnormal operation

    International Nuclear Information System (INIS)

    Kramer, T.

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. lt is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. lt is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missing MKD elements. Therefore a sophisticated simulation environment was developed based on the use of the MAD-X tracking code. A system of tracking jobs was set up to study failure cases and losses for various dump events. Those jobs can be distributed to available CPU power and be calculated in parallel. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated including an asynchronous dump action, prefire cases, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setup and operation of these protection elements are discussed. Particle distributions can be created according to the used orbit. Simulations with different orbit parameters (including magnet field errors, beam position read out errors

  9. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  10. First operational experience with the LHC machine protection system when operating with beam energies beyond the 100MJ range

    CERN Document Server

    Assmann, R; Ferro-Luzzi, M; Goddard, B; Lamont, M; Schmidt, R; Siemko, A; Uythoven, J; Wenninger, J; Zerlauth, M

    2012-01-01

    The Large Hadron Collider (LHC) at CERN has made remarkable progress during 2011, surpassing its ambitious goal for the year in terms of luminosity delivered to the LHC experiments. This achievement was made possible by a progressive increase of beam intensities by more than 5 orders of magnitude during the first months of operation, reaching stored beam energies beyond the 100MJ range at the end of the year, less than a factor of 4 from the nominal design value. The correct functioning of the machine protection systems is vital during the different operational phases, for initial operation and even more when approaching nominal beam parameters where already a small fraction of the stored energy is sufficient to damage accelerator equipment or experiments in case of uncontrolled beam loss. Safe operation of the machine in presence of such high intensity proton beams is guaranteed by the interplay of many different systems: beam dumping system, beam interlocks, beam instrumentation, equipment monitoring, colli...

  11. The OPERA Experiment. Latest results

    Energy Technology Data Exchange (ETDEWEB)

    Hollnagel, Annika [Universitaet Hamburg, Institut fuer Experimentalphysik (Germany); Collaboration: OPERA-Hamburg-Collaboration

    2015-07-01

    The long-baseline neutrino oscillation experiment OPERA has been designed for the direct observation of ν{sub τ} appearance in the CNGS ν{sub μ} beam. The OPERA detector is located at the LNGS underground laboratory, with a distance of 730 km from the neutrino source at CERN. It is a hybrid detector, combining the micrometric precision of emulsion cloud chambers with electronic detector elements for online readout. While CNGS beam data taking lasted from 2008 to 2012, the neutrino oscillation analysis is still ongoing. Updated results with increased statistics are presented, including the recent observation of ν{sub τ} appearance.

  12. The ITER Neutral Beam Test Facility towards SPIDER operation

    Science.gov (United States)

    Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.

    2017-08-01

    SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.

  13. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  14. TFTR neutral beam control and monitoring for DT operations

    International Nuclear Information System (INIS)

    O'Connor, T.; Kamperschroer, J.; Chu, J.

    1995-01-01

    Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were also added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions

  15. From cosmic OPERA to neutrino ballet

    CERN Multimedia

    2006-01-01

    View of the OPERA detector (on the CNGS facility) with its two identical Super Modules, each of which contains one target section and one spectrometer.As the CNGS (CERN Neutrinos to Gran Sasso) project prepares to send its high intensity neutrino beam, some 730 km away in Italy, the OPERA collaboration is beginning to commission its electronic detectors in the underground Gran Sasso National Laboratory (LNGS). OPERA is ready to come on stage. Based in the INFN Gran Sasso National Laboratory, 732 km from CERN, the experiment will commission its electronic detectors with the high intensity neutrino beam sent by CNGS (see Bulletin n°29-30/2006). The OPERA Collaboration, which comprises 170 physicists from 35 research institutes and universities worldwide, aims to clear up the mystery of neutrino oscillation. The installation of the OPERA detector began in 2003 in Hall C of the underground laboratory at the LNGS. The detector is made of two identical Super Modules, each one containing one target section and ...

  16. 4th Evian Workshop on LHC beam operation

    CERN Document Server

    Goddard, B; Dubourg, S

    2013-01-01

    The principle aims of the workshop are to: review and capture 2012 LHC beam operations experience; review system performance; examine the foreseen challenges and limitations of post long shutdown operations; have a look at possible running scenarios in the post long shutdown era.

  17. Operational experience with synchrotron light interferometers for CEBAF experimental beam lines

    Energy Technology Data Exchange (ETDEWEB)

    Pavel Chevtsov

    2006-10-24

    Beam size and energy spread monitoring systems based on Synchrotron Light Interferometers (SLI) have been in operations at Jefferson Lab for several years. A non-invasive nature and a very high (a few mm) resolution of SLI make these instruments valuable beam diagnostic tools for the CEBAF accelerator. This presentation describes the evolution of the Synchrotron Light Interferometer at Jefferson Lab and highlights our extensive experience in the installation and operation of the SLI for CEBAF experimental beam lines.

  18. Diagram of the CNGS neutrino beam

    CERN Multimedia

    Jean-Luc Caron

    2001-01-01

    Protons accelerated in the Super Proton Synchrotron (SPS) at CERN collide with a graphite target producing mainly pions and kaons, particles with short lifetimes, which will decay in the decay tube, producing muon neutrinos. Some of these neutrinos are expected to change into another type called the tau neutrino that will be looked for by a huge detector 732 km away in Gran Sasso, Italy.

  19. Operating instructions for ORELA [Oak Ridge Electron Linear Accelerator] positron beam line

    International Nuclear Information System (INIS)

    Donohue, D.L.; Hulett, L.D. Jr.; Lewis, T.A.

    1990-11-01

    This report will contain details of the construction and operation of the positron beam line. Special procedures which are performed on a less frequent basis will also be described. Appendices will contain operating instructions for experiments which make use of the positron beam and are connected to the beam line. Finally, a review of safety-related considerations will be presented

  20. Beam Loss Simulation Studies for ALS Top-Off Operation

    CERN Document Server

    Nishimura, Hiroshi; Robin, David; Steier, Christoph

    2005-01-01

    The ALS is planning to operate with top-off injection at higher beam currents and smaller vertical beam size. As part of a radiation safety study for top-off, we carried out two kinds of tracking studies: (1) to confirm that the injected beam cannot go into users' photon beam lines, and (2) to control the location of beam dump when the storage ring RF is tripped. (1) is done by tracking electrons from a photon beam line to the injection sector inversely by including the magnetic field profiles, varying the field strength with geometric aperture limits to conclude that it is impossible. (2) is done by tracking an electron with radiation in the 6-dim space for different combinations of vertical scrapers for the realistic lattice with errors.

  1. BEAM EMITTANCE MEASUREMENT TOOL FOR CEBAF OPERATIONS

    International Nuclear Information System (INIS)

    Chevtsov, Pavel; Tiefenback, Michael

    2008-01-01

    A new software tool was created at Jefferson Lab to measure the emittance of the CEBAF electron beams. The tool consists of device control and data analysis applications. The device control application handles the work of wire scanners and writes their measurement results as well as the information about accelerator settings during these measurements into wire scanner data files. The data analysis application reads these files and calculates the beam emittance on the basis of a wire scanner data processing model. Both applications are computer platform independent but are mostly used on LINUX PCs recently installed in the accelerator control room. The new tool significantly simplifies beam emittance measurement procedures for accelerator operations and contributes to a very high availability of the CEBAF machine for the nuclear physics program at Jefferson Lab.

  2. PC application in DIII-D neutral beam operation

    International Nuclear Information System (INIS)

    Gladd, A.S.

    1986-01-01

    An IBM PC/AT has been implemented to improve operation of the DIII-D neutral beams. The PC system provides centralization of all beam data with reasonable access for online shot-to-shot control and analysis. The PC hardware was configured to interface all four neutral beam host mini-computers, support multi-tasking, and provide storage for approximately one month's accumulation of beam data. The PC software is composed of commercial packages used for performance and statistical analysis (i.e. LOTUS 123, PC PLOT, etc.) host communications software (i.e. PCLINK, KERMIT, etc.) and applications developed software utilizing FORTRAN and BASIC. The objectives of this paper are to describe the implementation of the PC system, the methods of integrating the various software packages, and the scenario for online control and analysis

  3. Beams dynamics optimisation of LINAC4 structures for increased operational flexibility

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L M; Lallement, J B; Lombardi, A M; Posocco, P A; Sargsyan, E; Stovall, J

    2010-01-01

    Linac4 is a new 160 MeV, 40 mA pulsed beam current H- accelerator which will be the source of particles for all proton accelerators at CERN. Construction started in October 2008, and beam commissioning of the 3 MeV front-end is scheduled for early next year. A baseline design of the linac beam dynamics was completed 2 years ago and validated by a systematic campaign of transverse and longitudinal error studies to assess tolerance limits and machine activation levels. Recent studies have been mainly focused on optimising this design to achieve both a smoother performance for nominal beam conditions and to gain operational flexibility for non-nominal scenarios. These include a review of the chopper beam dynamics design, a re-definition of the DTL and CCDTL inter-tank regions and a study of operational schemes for reduced beam currents (either permanent or in pulse-to-pulse mode). These studies have been carried out in parallel to first specifications for a beam commissioning strategy of the linac and its low-en...

  4. Operation of the PEP transverse beam feedback

    International Nuclear Information System (INIS)

    Olson, C.W.; Paterson, J.M.; Pellegrin, J.L.; Rees, J.R.

    1981-02-01

    The PEP Storage Ring has been equipped with a wide band beam feedback system capable of damping the vertical and horizontal motion of six bunches. The oscillation detection is done at a symmetry point on the Storage Ring and feedback is applied at the same location one orbital period later. The signal is synchronously gated and the system appears as twelve independent feedback loops, operating on the two coordinates of each of the six bunches. Two beam deflection electrodes are driven each by a low-Q push-pull amplifier which is tuned at the 72nd harmonic of the revolution frequency and suppressed-carrier modulation is generated by a sequence of the detected bunch oscillations. The design parameters are reviewed as well as the salient features of the hardware, and the impact of this system on the machine operation is evaluated in the light of experimental results

  5. Measurement of the neutrino velocity in OPERA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dracos, M., E-mail: marcos.dracos@in2p3.fr [IPHC, Université de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg (France)

    2013-02-15

    The OPERA neutrino experiment has measured the neutrino velocity using the CERN CNGS beam over a baseline of 730 km. The measurement is based on data taken by OPERA in the years 2009, 2010, 2011. An arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (6.5±7.4(stat.){sub −8.0}{sup +8.3}(sys.))ns was measured corresponding to a relative difference of the muon neutrino velocity with respect to the speed of light (v−c)/c=(2.7±3.1(stat.){sub −3.3}{sup +3.4}(sys.))×10{sup −6}. During spring 2012 the CNGS provided during two weeks a short proton bunched beam dedicated to the neutrino velocity measurement. The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos with slightly modified setup compared to 2011 measurements. These modifications increased the timing accuracy and also fixed previous problems. The arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum has been found to be in agreement with the previous measurement. This result confirms the revised OPERA result and that indeed the neutrino anticipation announced in September 2011 was due to technical problems.

  6. SPS in training for LHC

    CERN Document Server

    2003-01-01

    On 8 and 9 September the new beam extraction system of the SPS and the downstream transfer line were successfully commissioned and tested. Using this extraction, a beam will be sent towards LHC in 2004 and to the CNGS facility in 2006.

  7. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    International Nuclear Information System (INIS)

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed

  8. ICARUS report to the CXVIII Meeting of SPSC, June 23-24, 2015

    CERN Document Server

    Gibin, D Dipartimento di Fisica e Atronomia Università di Padova Italy

    2015-01-01

    The ICARUS-T600 detector, with about 500 ton of sensitive mass, is the largest LAr TPC ever constructed representing the state of the art for this detection technology. ICARUS concluded in June 2013 a very successful, long duration run with the T600 detector at the LNGS underground laboratory taking data both with both the CNGS neutrino beam and cosmic rays. The successful, continuous, long-term operation of the ICARUS T600 detector has conclusively demonstrated that the single phase LAr-TPC [1][2] is the leading technology for the future short and long baseline accelerator driven neutrino physics. This achievement was made possible by the long and continuing efforts of the ICARUS Collaboration and by the support of INFN, which allowed bringing the LAr TPC technology to full maturity. Relevant physics and technical results were achieved during the three years long run at CNGS, demonstrating the excellent detection performance as tracking device with ~1 mm3 spatial resolution and as homogenous calorimeter meas...

  9. Crowd gathers for phantom particles

    CERN Multimedia

    2006-01-01

    The CNGS team set up models to demonstrate the oscillation of neutrinos...... and brought prototypes and equipment to explain how to manufacture a beam of neutrinos and send it a distance of 730 km! (Above: A scientist explains the methods to observe the position of protons.) There was a record attendance at the last Discovery Monday! Neutrinos and the CNGS facility (CERN Neutrinos to Gran Sasso) attracted some 300 visitors to the Microcosm. The success was well deserved as the CNGS team, which is close to bringing the project into service at the end of May, put forth great effort and imagination to interest the general public. A dozen physicists and engineers were stationed at six stands with models and posters. The OPERA collaboration from the Gran Sasso National Laboratory took part in the event with a stand presenting the experiments that will try to collect the neutrinos in Italy. A big thank-you to the CNGS and OPERA teams for this success! Come to the next Discovery Monday on 8 Mayto discover how ...

  10. Personal computer applications in DIII-D neutral beam operation

    International Nuclear Information System (INIS)

    Glad, A.S.

    1986-01-01

    An IBM PC AT has been implemented to improve operation of the DIII-D neutral beams. The PC system provides centralization of all beam data with reasonable access for on-line shot-to-shot control and analysis. The PC hardware was configured to interface all four neutral beam host minicomputers, support multitasking, and provide storage for approximately one month's accumulation of beam data. The PC software is composed of commercial packages used for performance and statistical analysis (i.e., LOTUS 123, PC PLOT, etc.), host communications software (i.e., PCLink, KERMIT, etc.), and applications developed software utilizing fortran and basIc. The objectives of this paper are to describe the implementation of the PC system, the methods of integrating the various software packages, and the scenario for on-line control and analysis

  11. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    Science.gov (United States)

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  12. Neutrino oscillations with the OPERA experiment

    CERN Document Server

    Galati, Giuliana

    2016-01-01

    OPERA (Oscillation Project with Emulsion tRacking Apparatus) was a long-baseline experiment at the Gran Sasso laboratory (LNGS) designed to search for ν μ → ν τ oscillations in appearance mode. OPERA took data from 2008 to 2012 with the CNGS neutrino beam from CERN. The observation of five ν τ candidates allowed assessing the discovery of ν μ → ν τ appearance in the CNGS neutrino beam with a significance of 5 . 1 σ . The data analysis is still ongoing, with the goal of improving the sensitivity to the sterile neutrino search in the ν μ → ν τ and ν μ → ν e appearance channels and oscillation parameters with reduced statistical uncertainties. Current results will be presented and perspectives discussed.

  13. Operation of medical accelerator PATRO at Hyogo Ion Beam Medical Center

    International Nuclear Information System (INIS)

    Itano, A.; Akagi, T.; Higashi, A.; Fukushima, S.; Fujita, A.; Honda, Y.; Isa, H.; Nishikigouri, K.

    2004-01-01

    PATRO (Particle Accelerator for Therapy, Radiology and Oncology) is a medical accelerator facility for hadrontherapy of cancer at Hyogo Ion Beam Medical Center (HIBMC). Beam particles are proton (230 MeV) and carbon (320 MeV/u). After the beam commissioning and the tuning of irradiation system in 2000, we performed the clinical trials with proton and carbon beams from May 2001 until July 2002. We operated the accelerator for about 11,000 hours since the beginning of the beam tuning until the end of the clinical trials and for about 5,000 hours during the clinical trials. No serious troubles happened during the clinical trials. The stability and the reproducibility of the beams were well proved. (author)

  14. LHC Beam Dump Design Study - Part III : Off-normal operating conditions

    CERN Document Server

    Bruno, L; Ross, M; Sala, P

    2000-01-01

    The LHC beam dump design study has been preliminarily substantiated by energy deposition simulations (Part I) and heat transfer analyses (Part II). The present report is devoted to the abnormal operating conditions induced by a malfunction of the beam diluters. A general approach to the analysis of off-normal operation is presented, which is derived from standard design norms adopted in the nuclear industry. Attention is focused mainly on the carbon core, which is longitudinally split into segments of different density in order to better distribute the deposited energy. The maximum energy density it absorbs decreases by at least 33%, compared to a uniform standard density carbon core. This structure may sustain any partial sweep failure without major damage, up to the ultimate beam intensity and energy. To minimise the risks inherent in a fully unswept beam, a sacrificial graphite mandrel will be placed on the core axis, surrounded by a thick high strength carbon-carbon composite tube. With this arrangement, ...

  15. Advances in the operation of the DIII-D neutral beam computer systems

    International Nuclear Information System (INIS)

    Phillips, J.C.; Busath, J.L.; Penaflor, B.G.; Piglowski, D.; Kellman, D.H.; Chiu, H.K.; Hong, R.M.

    1998-02-01

    The DIII-D neutral beam system routinely provides up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak, and is a critical part of the DIII-D physics experimental program. The four computer systems previously used to control neutral beam operation and data acquisition were designed and implemented in the late 1970's and used on DIII and DIII-D from 1981--1996. By comparison to modern standards, they had become expensive to maintain, slow and cumbersome, making it difficult to implement improvements. Most critical of all, they were not networked computers. During the 1997 experimental campaign, these systems were replaced with new Unix compliant hardware and, for the most part, commercially available software. This paper describes operational experience with the new neutral beam computer systems, and new advances made possible by using features not previously available. These include retention and access to historical data, an asynchronously fired ''rules'' base, and a relatively straightforward programming interface. Methods and principles for extending the availability of data beyond the scope of the operator consoles will be discussed

  16. SPS Machine Protection Incident in 2009

    CERN Document Server

    Wenninger, J

    2009-01-01

    During the 008 SPS run a single machine operation incident happened on June 27th when a high intensity CNGS beam was lost in a dipole of sextant 1 following a time system ‘freeze’. The vacuum chamber was punctured over a length of over 10 cm, and the vacuum in the affected sector rose to atmospheric pressure. The dipole was exchanged June 30th. This note describes the incident in detail and presents the measures taken to avoid a similar incident in the future.

  17. Impact of large beam-induced heat loads on the transient operation of the beam screens and the cryogenic plants of the Future Circular Collider (FCC)

    Science.gov (United States)

    Correia Rodrigues, H.; Tavian, L.

    2017-12-01

    The Future Circular Collider (FCC) under study at CERN will produce 50-TeV high-energy proton beams. The high-energy particle beams are bent by 16-T superconducting dipole magnets operating at 1.9 K and distributed over a circumference of 80 km. The circulating beams induce 5 MW of dynamic heat loads by several processes such as synchrotron radiation, resistive dissipation of beam image currents and electron clouds. These beam-induced heat loads will be intercepted by beam screens operating between 40 and 60 K and induce transients during beam injection. Energy ramp-up and beam dumping on the distributed beam-screen cooling loops, the sector cryogenic plants and the dedicated circulators. Based on the current baseline parameters, numerical simulations of the fluid flow in the cryogenic distribution system during a beam operation cycle were performed. The effects of the thermal inertia of the headers on the helium flow temperature at the cryogenic plant inlet as well as the temperature gradient experienced by the beam screen has been assessed. Additionally, this work enabled a thorough exergetic analysis of different cryogenic plant configurations and laid the building-block for establishing design specification of cold and warm circulators.

  18. 5th Evian Workshop on LHC beam operation

    CERN Document Server

    Goddard, B; Dubourg, S; Evian 2014

    2014-01-01

    The principal aims of the workshop are to: • Suggest operational parameter ranges for re-commissioning and operation in 2015; • Establish re-commissioning requirements for beam based LHC systems; • Establish planning for re-commissioning 2015; • Revisit overall strategy for 2015 (bunch spacing, scrubbing, special runs, MD etc.); • Provide input to Chamonix 2014. Chair: Mike LAMONT Deputy Chairs: Malika MEDDAHI, Brennan GODDARD Editors of the Proceedings: Brennan GODDARD, Sylvia DUBOURG Informatics & infrastructure support: Pierre CHARRUE Workshop Secretary: Sylvia DUBOURG

  19. Operating characteristics of the Columbia University α-μ beam

    International Nuclear Information System (INIS)

    Randers-Pehrson, G.

    1994-01-01

    The authors have constructed and are now operating an external alpha particle microbeam in a single ion mode for the study of radiation damage to living mammalian cells. Their objective is to understand the biological effects of radon-daughter exposures in the environment. The alpha particle beam is produced by accelerating helium ions with a 4.2 MV Van de Graaff. The beam is directed vertically through the floor of a biology laboratory and into a vibration-isolated microscope. The beam is collimated to a diameter of 6 micrometers by a pair of laser-drilled apertures mounted on a goniometric alignment fixture immediately below the microscope stage. A laser beam used to optically locate the beam also passes through the apertures. Cells growing on thin-bottomed petri dishes are treated with a nuclear stain and illuminated with UV light. The cell nuclei are observed with a microscope fitted with an image intensifier and CCD camera which feeds a PC-based frame grabber and commercial video analysis system. The analysis program is used to locate cellnuclei on the culture dish and then to communicate with an in-house program that controls the microscope stage. This latter program visits each cell in turn and, after final positioning by the operator using a joy stick, a chosen small number of alpha particles are allowed to penetrate the cell nucleus. The alpha particles are detected after passing through the cells by a gas proportional counter mounted on the microscope objective. Observation of the cells and the irradiation are simultaneous. The system presently requires about two minutes to locate the cells on the dish and then about five seconds per cell to visit and irradiate each one. Technical details concerning each of the subsystems in the apparatus and representative biological data will be presented

  20. A novel current mode operating beam counter based on not preamplified HPDs

    CERN Document Server

    Fujiwara, M.C.

    2002-01-01

    A novel system to monitor the intensity and the stability of a bunched beam of $\\simeq 1.2\\times 10^{7}$ antiprotons ($\\bar{p}$s) with a length of $\\simeq$ 250 ns (FWHM) and to measure its trapping efficiency in a Penning trap is described. This system operates parasitically detecting the pions from the annihilation of part of the beam in a degrader. Six plastic scintillators have been coupled from one side to six proximity focused HPDs without preamplifiers and operating in current mode. This device works in the stray field of the ATHENA magnet with no loss of efficiency; the gain can be varied from zero to a few thousands with a precision better than 0.1% and the dynamic range is larger than 8 orders of magnitude. Linearity and stability have been measured up to charge responses of 100 nC, corresponding to the beam completely dumped. The beam counter has been calibrated in two different and independent ways giving consistent results.

  1. Design features and operational characteristics of the PEP beam-transport and injection system

    International Nuclear Information System (INIS)

    Peterson, J.M.; Brown, K.L.; Truher, J.B.

    1981-03-01

    The PEP beam-transport system was designed to transmit 4-to-15 GeV electron and positron beams from the SLAC linac within a +- 0.8% momentum band, to have flexible tuning of the betatron and off-momentum functions for matching into the PEP storage ring, and to have convenient operating characteristics. The transport lines were brought into operation quickly and have operated well. Electron injection has been consistent and efficient and relatively easy to accomplish. Positron injection also has been satisfactory but is variable and more sensitive to ring conditions

  2. Operational beams for the LHC

    CERN Document Server

    Papaphilippou, Y.; Rumolo, G.; Manglunki, D.

    2014-01-01

    The variety of beams, needed to set-up in the injectors as requested in the LHC, are reviewed, in terms of priority but also performance expectations and reach during 2015. This includes the single bunch beams for machine commissioning and measurements (probe, Indiv) but also the standard physics beams with 50 ns and 25 ns bunch spacing and their high brightness variants using the Bunch Compression Merging and Splitting (BCMS) scheme. The required parameters and target performance of special beams like the doublet for electron cloud enhancement and the more exotic 8b$\\oplus$4e beam, compatible with some post-scrubbing scenarios are also described. The progress and plans for the LHC ion production beams during 2014-2015 are detailed. Highlights on the current progress of the setting up of the various beams are finally presented with special emphasis on potential performance issues across the proton and ion injector chain.

  3. Physics at the AD/PS/SPS (1/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Lecture 1: The CERN injector complex and beams for non-LHC physics. The various machines and beam lines in the CERN injector complex are presented, from the linacs to the SPS. Special emphasis is given to the beam lines at the PS and SPS machines: AD, North and East Areas, nTOF and CNGS and HiRadMad as well as the ion beams. A short outlook is given to possible future upgrades and projects.

  4. First Operational Experience with the LHC Beam Dump Trigger Synchronisation Unit

    CERN Document Server

    Antoine, A; Magnin, N; Juteau, P; Voumard, N

    2011-01-01

    Two LHC Beam Dumping Systems (LBDS) remove the counter-rotating beams safely from the collider during setting up of the accelerator, at the end of a physics run and in case of emergencies. Dump requests can come from 3 different sources: the machine protection system in emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These dump requests are synchronized with the 3 μs beam abort gap in a fail-safe redundant Trigger Synchronization Unit (TSU) based on a Digital Phase Locked Loop (DPLL), locked onto the LHC beam revolution frequency with a maximum phase error of 40 ns. The synchronized trigger pulses coming out of the TSU are then distributed to the high voltage generators of the beam dump kickers through a redundant fault-tolerant trigger distribution system. This paper describes the operational experience gained with the TSU since its commissioning with beam in 2009, and highlights the improvements, which have been implemented f...

  5. Commissioning and operational scenarios of the LHC beam loss monitor system

    International Nuclear Information System (INIS)

    Holzer, E.B.

    2007-01-01

    One of the most critical elements for the protection of CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. It must prevent quenches in the super conducting magnets and damage of machine components due to beam losses. The contribution will discuss the commissioning procedures of the BLM system and envisaged operational scenarios. About 4000 monitors will be installed around the ring. When the loss rate exceeds a predefined threshold value, a beam abort is requested. Magnet quench and damage levels vary as a function of beam energy and loss duration. Consequently, the beam abort threshold values vary accordingly. By measuring the loss pattern, the BLM system helps to identify the loss mechanism. Furthermore, it will be an important tool for commissioning, machine setup and studies. Special monitors will be used for the setup and control of the collimators. (author)

  6. Neutrinos, on your marks...!

    CERN Multimedia

    2006-01-01

    As the Bulletin was about to be released, the CNGS team was ready to produce its first neutrinos. The gradual commissioning of the installation should result in the production of a nominal beam during the month of August.

  7. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    International Nuclear Information System (INIS)

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J.

    1994-01-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mmx2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler (λ w =9.6 mm) with a peak wiggler amplitude of 2--5 kG. Linear amplification of a 5--10 W, 94 GHz signal injected in the TE 01 rectangular mode is observed. All features of the amplified signal, including pulse shape and duration, are in accordance with the predictions of numerical simulation. Amplified signal gain has been measured as a function of injected beam energy, current, and wiggler field amplitude and is also in good agreement with simulation results. Continuation of this experiment will involve studying nonlinear amplifier operation and adding a section of tapered wiggler

  8. Possible operation of the European XFEL with ultra-low emittance beams

    International Nuclear Information System (INIS)

    Brinkmann, R.; Schneidmiller, E.A.; Yurkov, M.V.

    2010-01-01

    Recent successful lasing of the Linac Coherent Light Source (LCLS) in the hard x-ray regime and the experimental demonstration of a possibility to produce low-charge bunches with ultra-small normalized emittance have lead to the discussions on optimistic scenarios of operation of the European XFEL. In this paper we consider new options that make use of low-emittance beams, a relatively high beam energy, tunable-gap undulators, and a multibunch capability of this facility. We study the possibility of operation of a spontaneous radiator (combining two of them, U1 and U2, in one beamline) in the SASE mode in the designed photon energy range 20-90 keV and show that it becomes possible with ultra-low emittance electron beams similar to those generated in LCLS. As an additional attractive option we consider the generation of powerful soft X-ray and VUV radiation by the same electron bunch for pump-probe experiments, making use of recently invented compact afterburner scheme. We also propose a betatron switcher as a simple, cheap, and robust solution for multi-color operation of SASE1 and SASE2 undulators, allowing to generate 2 to 5 X-ray beams of different independent colors from each of these undulators for simultaneous multi-user operation. We describe a scheme for pump-probe experiments, based on a production of two different colors by two closely spaced electron bunches (produced in photoinjector) with the help of a very fast betatron switcher. Finally, we discuss how without significant modifications of the layout the European XFEL can become a unique facility that continuously covers with powerful, coherent radiation a part of the electromagnetic spectrum from far infrared to gamma-rays. (orig.)

  9. Operating experience with high beam currents and transient beam loading in the SLC damping rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Akre, R.; Krejcik, P.; Siemann, R.H.

    1995-01-01

    During the 1994 SLC run the nominal operating intensity in the damping rings was raised from 3.5 x 10 10 to greater than 4 x 10 10 particles per bunch (ppb). Stricter regulation of rf system parameters was required to maintain stability of the rf system and particle beam. Improvements were made in the feedback loops which control the cavity amplitude and loading angles. Compensation for beam loading was also required to prevent klystron saturation during repetition rate changes. To minimize the effects of transient loading on the rf system, the gain of the direct rf feedback loop and the loading angles were optimized

  10. Organic ice resists for 3D electron-beam processing: Instrumentation and operation

    DEFF Research Database (Denmark)

    Tiddi, William; Elsukova, Anna; Beleggia, Marco

    2018-01-01

    Organic vapors condensed into thin layers of ice on the surface of a cold substrate are exposed with an electron beam to create resist patterns for lithography applications. The entire spin- and development-free lithography process requires a single custom instrument. We report the design, material...... choice, implementation and operation of this apparatus. It is based on a scanning electron microscope fitted with an electron beam control system that is normally used for electron beam lithography in a multi-user open-access laboratory. The microscope was also equipped with a gas injection system......, a liquid nitrogen cooled cryostage, a temperature control system, and a load-lock. Three steps are required to initialize the apparatus for organic ice resist processing, and two steps are required to restore the apparatus for routine multi-user operations. Five steps are needed to create organic ice...

  11. Operational status of the uranium beam upgrade of the ATLAS accelerator

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Nolen, J.A.

    1993-01-01

    The Positive-Ion Injector (PII) for ATLAS is complete. First beams from the new injector have been accelerated and used for experiments at ATLAS. The PH consists of an ECR ion source on a 350-kV platform and a low-velocity superconducting linac. The first acceleration of uranium for the experimental program has demonstrated the design goals of the project have been met. Since the summer of 1992, the new injecter has been used for the research program approximately 50% of the time. Longitudinal beam quality from the new injector has been measured to be significantly better than comparable beams from the tandem injecter. Changes to the mix of resonators in the main ATLAS accelerator to match better the velocity profile for heavy beams such as uranium are nearly complete and uranium energies up to 6.45 MeV per nucleon have been achieved. The operating experience of the new ATLAS facility will be discussed with emphasis on the measured beam quality as well as achieved beam energies and currents

  12. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    Energy Technology Data Exchange (ETDEWEB)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim; Wang, Ju

    2017-06-25

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance of the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.

  13. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    Science.gov (United States)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  14. Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector

    CERN Document Server

    Antonello, M

    2013-01-01

    Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach of three-dimensional reconstruction for the LAr TPC with a practical application to track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of real data tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  15. Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector

    Directory of Open Access Journals (Sweden)

    M. Antonello

    2013-01-01

    Full Text Available Liquid Argon Time Projection Chamber (LAr TPC detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  16. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    International Nuclear Information System (INIS)

    Peng, S. X.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Zhang, A. L.; Chen, J. E.

    2016-01-01

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment

  17. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    Science.gov (United States)

    Peng, S. X.; Zhang, A. L.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.

  18. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Zhang, A. L.; Chen, J. E. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.

  19. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  20. Recent results from the ICARUS experiment - Measurements concerning neutrino velocity

    International Nuclear Information System (INIS)

    Cieslik, K.

    2014-01-01

    The ICARUS T600 detector at the LNGS Gran Sasso underground Laboratory is the first large mass Liquid Argon Time Projection Chamber (LAr-TPC) designed to study the ν μ → ν τ oscillation for neutrinos from the CERN-CNGS beam, the atmospheric neutrinos and matter stability. In stable conditions the detector has been collecting data since October 2010. The results, presented here, of the search for analogue to the Cherenkov radiation at superluminal speeds and the measurement of the neutrino time of flight are incompatible with the OPERA collaboration claiming that CNGS muon neutrinos arrive to Gran Sasso, after covering a distance of about 732 km, earlier than expected from the luminal speed. (author)

  1. Microwave Power Beaming Infrastructure for Manned Lightcraft Operations: Part 2

    International Nuclear Information System (INIS)

    Myrabo, Leik N.

    2008-01-01

    In the past ∼7 years, microwave gyrotron technology has rapidly evolved to a critical threshold wherein ultra-energetic space launch missions based on beamed energy propulsion (BEP) now appear eminently feasible. Over the next 20 years, hundred megawatt-class microwave power-beaming stations could be prototyped on high deserts and 3- to 4 km mountain peaks before migrating into low Earth orbit, along with their passive microwave relay satellites. Described herein is a 20 GW rechargeable nuclear power satellite and microwave power-beaming infrastructure designed for manned space launch operations in the year 2025. The technological readiness of 2500 GJ superconducting magnetic energy storage 'batteries', 433-m ultralight space structures, 100 MW liquid droplet radiators, 1-6+ MW gyrotron sources, and mega-scale arrays (e.g., 3000 phase-locked units) is addressed. Microwave BEP is 'breakthrough' technology with the very real potential to radically reduce space access costs by factors of 100 to 1000 in the forseeable future

  2. Backstage at OPERA

    CERN Multimedia

    2003-01-01

    In the latest in our series of articles on the neutrino beam to Gran Sasso we turn the spotlight this week onto the two experiments under construction at the Gran Sasso Laboratory - OPERA and ICARUS. In March 2003, installation of the OPERA (Oscillation Project with Emulsion tRacking Apparatus) detector began in Hall C of the INFN's Gran Sasso Laboratory in Italy. The OPERA-CNGS1 Collaboration comprises 170 physicists from 35 research institutes and universities worldwide. It is expected that the complete detector will be ready to receive the CNGS neutrino beam and start data acquisition in August 2006. This article gives an overview of the OPERA experiment. The OPERA experiment aims to clear up the mystery of neutrino oscillation. But what are more precisely its objectives ? When cosmic rays interact in the atmosphere, two kinds of neutrino - muon-neutrinos and electron-neutrinos - are produced. In theory there should be twice as many muon-neutrinos as electron-neutrinos, but experiments find too few of the...

  3. Design and implementation of a user-friendly interface for DIII-D neutral beam automated operation

    International Nuclear Information System (INIS)

    Phillips, J.; Colleraine, A.P.; Hong, R.; Kim, J.; Lee, R.L.; Wight, J.J.

    1989-12-01

    The operational interface to the DIII-D neutral beam system, in use for the past 10 years, consisted of several interactive devices that the operator used to sequence neutral beam conditioning and plasma heating shots. Each of four independent MODCOMP Classic control computers (for four DIII-D beamlines) included a touch screen, rotary knobs, an interactive dual port terminal, and a keyboard to selectively address each of five display screens. Most of the hardware had become obsolete and repair was becoming increasingly expensive. It was clear that the hardware could be replaced with current equipment, while improving the ergonomics of control. Combined with an ongoing effort to increase the degree of automated operation and its reliability, a single microcomputer-based interface for each of the four neutral beam MODCOMP Classic control computers was developed, effectively replacing some twenty pieces of hardware. Macintosh II microcomputers were selected, with 1 megabyte of RAM and ''off-the-shelf'' input/output (I/O) consisting of a mouse, serial ports, and two monochrome high-resolution video monitors. The software is written in PASCAL and adopts standard Macintosh ''window'' techniques. From the Macintosh interface to the MODCOMP Classic, the operator can control the power supply setpoints, adjust ion source timing and synchronization, call up waveform displays on the Grinnell color display system, view the sequencing of procedures to ready a neutral beam shot, and add operator comments to an automated shot logging system. 3 refs., 2 figs

  4. Discovery Mondays - Neutrinos: journeying with the phantom particles

    CERN Multimedia

    2006-01-01

    The target of the CNGS facility at CERN, which will enable the production of neutrinos. On 29 May, CNGS (CERN Neutrinos to Gran Sasso) will send the first neutrino beams from CERN to the Gran Sasso Laboratory in Italy. The neutrinos will journey 730 km through the earth's crust. To mark the occasion, Discovery Mondays is organising a special evening devoted to the CNGS project, whose purpose is to provide us with a better understanding of the neutrino, a particle that is still shrouded in mystery. The neutrino is an elusive particle that is very difficult to study. Masters of the art of evading capture, neutrinos can pass through thousands of kilometres of matter with little or no interaction. As you are reading this text, 400000 billion neutrinos from the sun are passing through your body every second. However, only one or two will be stopped by your body during your entire lifetime. Detecting neutrinos is therefore a very arduous task. This is why we still know so little about them. At the next Discovery ...

  5. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  6. Description and operation of the LEDA beam-position/intensity measurement module

    International Nuclear Information System (INIS)

    Rose, C.R.; Stettler, M.W.

    1997-01-01

    This paper describes the specification, design and preliminary operation of the beam-position/intensity measurement module being built for the Low Energy Demonstration Accelerator (LEDA) and Accelerator Production of Tritium (APT) projects at Los Alamos National Laboratory. The module, based on the VXI footprint, is divided into three sections: first, the analog front-end which consists of logarithmic amplifiers, anti-alias filters, and digitizers; second, the digital-to-analog section for monitoring signals on the front panel; and third, the DSP, error correction, and VXI-interface section. Beam position is calculated based on the log-ratio transfer function. The module has four, 2-MHz, IF inputs suitable for two-axis position measurements. It has outputs in both digital and analog format for x- and y-position and beam intensity. Real-time error-correction is performed on the four input signals after they are digitized and before calculating the beam position to compensate for drift, offsets, gain non-linearities, and other systematic errors. This paper also describes how the on-line error-correction is implemented digitally and algorithmically

  7. Design, operational experiences and beam results obtained with the SNS H- ion source and LEBT at Berkeley Lab

    International Nuclear Information System (INIS)

    Keller, R.; Thomae, R.; Stockli, M.; Welton, R.

    2002-01-01

    The ion source and Low-Energy Transport (LEBT) system that will provide H - ion beams to the Spallation Neutron Source (SNS)** Front End and the accelerator chain have been developed into a mature unit that fully satisfies the operational requirements through the commissioning and early operating phases of SNS. Compared to the early R and D version, many features of the ion source have been improved, and reliable operation at 6% duty factor has been achieved producing beam currents in the 35-mA range and above. LEBT operation proved that the purely electrostatic focusing principle is well suited to inject the ion beam into the RFQ accelerator, including the steering and pre-chopping functions. This paper will discuss the latest design features of the ion source and LEBT, give performance data for the integrated system, and report on commissioning results obtained with the SNS RFQ and Medium-Energy Beam Transport (MEBT) system. Prospects for further improvements will be outlined in concluding remarks

  8. Commissioning and first operation of the pCVD diamond ATLAS Beam Conditions Monitor

    CERN Document Server

    Dobos, D

    2009-01-01

    The main aim of the ATLAS Beam Conditions Monitor is to protect the ATLAS Inner Detector silicon trackers from high radiation doses caused by LHC beam incidents, e.g. magnet failures. The BCM uses in total 16 1x1 cm2 500 μm thick polycrystalline chemical vapor deposition (pCVD) diamond sensors. They are arranged in 8 positions around the ATLAS LHC interaction point. Time difference measurements with sub nanosecond resolution are performed to distinguish between particles from a collision and spray particles from a beam incident. An abundance of the latter leads the BCM to provoke an abort of the LHC beam. A FPGA based readout system with a sampling rate of 2.56 GHz performs the online data analysis and interfaces the results to ATLAS and the beam abort system. The BCM diamond sensors, the detector modules and their readout system are described. Results of the operation with the first LHC beams are reported and results of commissioning and timing measurements (e.g. with cosmic muons) in preparation for first ...

  9. He leaks in the CERN LHC beam vacuum chambers operating at cryogenic temperatures

    CERN Document Server

    Baglin, V

    2007-01-01

    The 27 km long large hadron collider (LHC), currently under construction at CERN, will collide protons beam at 14 TeV in the centre of mass. In the 8 arcs, the superconducting dipoles and quadrupoles of the FODO cells operate with superfluid He at 1.9 K. In the 8 long straight sections, the cold bores of the superconducting magnets are held at 1.9 or 4.5 K. Thus, in the LHC, 75% of the beam tube vacuum chamber is cooled with He. In many areas of the machine, He leaks could appear in the beam tube. At cryogenic temperature, the gas condenses onto the cold bores or beam screens, and interacts with the circulating beam. He leaks creates a He front propagating along the vacuum chambers, which might cause magnet quench. We discuss the consequences of He leaks, the possible means of detections, the strategies to localise them and the methods to measure their size.

  10. Physics at the AD/PS/SPS (3/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Lecture 3: Flavour and Neutrinos The CERN SPS provides kaon and neutrino beams which are unique in the world. The lecture will describe the flavour and neutrino research conducted with these beams. The flavour programme is centered around the study of kaons. It includes a broad spectrum of topics such as CP-Violation, the precise determination of quark-mixing parameters, lepton universality and very rare decays. The CNGS neutrino beam enables to perform long baseline neutrino oscillation experiments with unique features such as the tau lepton appearance.

  11. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    International Nuclear Information System (INIS)

    Bedeschi, F.; Bolognesi, V.; Dell'Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F.; Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M.; Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Yao, W.; Carter, H.; Flaugher, B.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.R.; Barnett, B.; Boswell, C.; Skarha, J.; Snider, F.D.; Spies, A.; Tseng, J.; Vejcik, S.; Amidei, D.; Derwent, P.F.; Song, T.Y.; Dunn, A.; Gold, M.; Matthews, J.; Bacchetta, N.; Azzi, P.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Tipton, P.; Watts, G.

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given

  12. RF Group Annual Report 2011

    CERN Document Server

    Angoletta, M E; Betz, M; Brunner, O; Baudrenghien, P; Calaga, R; Caspers, F; Ciapala, E; Chambrillon, J; Damerau, H; Doebert, S; Federmann, S; Findlay, A; Gerigk, F; Hancock, S; Höfle, W; Jensen, E; Junginger, T; Liao, K; McMonagle, G; Montesinos, E; Mastoridis, T; Paoluzzi, M; Riddone, G; Rossi, C; Schirm, K; Schwerg, N; Shaposhnikova, E; Syratchev, I; Valuch, D; Venturini Delsolaro, W; Völlinger, C; Vretenar, M; Wuensch, W

    2012-01-01

    The highest priority for the RF group in 2011 was to contribute to a successful physics run of the LHC. This comprises operation of the superconducting 400 MHz accelerating system (ACS) and the transverse damper (ADT) of the LHC itself, but also all the individual links of the injector chain upstream of the LHC – Linac2, the PSB, the PS and the SPS – don’t forget that it is RF in all these accelerators that truly accelerates! A large variety of RF systems had to operate reliably, often near their limit. New tricks had to be found and implemented to go beyond limits; not to forget the equally demanding operation with Pb ions using in addition Linac3 and LEIR. But also other physics users required the full attention of the RF group: CNGS required in 2011 beams with very short, intense bunches, AD required reliable deceleration and cooling of anti-protons, Isolde the post-acceleration of radioactive isotopes in Rex, just to name a few. In addition to the supply of beams for physics, the RF group has a num...

  13. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    International Nuclear Information System (INIS)

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed

  14. Design and Control of Small Neutral Beam Arc Chamber for Investigations of DIII-D Neutral Beam Failure During Helium Operation

    Science.gov (United States)

    Fremlin, Carl; Beckers, Jasper; Crowley, Brendan; Rauch, Joseph; Scoville, Jim

    2017-10-01

    The Neutral Beam system on the DIII-D tokamak consists of eight ion sources using the Common Long Pulse Source (CLPS) design. During helium operation, desired for research regarding the ITER pre-nuclear phase, it has been observed that the ion source arc chamber performance steadily deteriorates, eventually failing due to electrical breakdown of the insulation. A significant investment of manpower and time is required for repairs. To study the cause of failure a small analogue of the DIII-D neutral beam arc chamber has been constructed. This poster presents the design and analysis of the arc chamber including the PLC based operational control system for the experiment, analysis of the magnetic confinement and details of the diagnostic suite. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  15. Electron Cloud Observations during LHC Operation with 25 ns Beams

    CERN Document Server

    Li, Kevin; Iadarola, Giovanni; Mether, Lotta; Romano, Annalisa; Rumolo, Giovanni; Schenk, Michael

    2016-01-01

    While during the Run 1 (2010-2012) of the Large Hadron Collider (LHC) most of the integrated luminosity was produced with 50 ns bunch spacing, for the Run 2 start-up (2015) it was decided to move to the nominal bunch spacing of 25 ns. As expected, with this beam configuration strong electron cloud effects were observed in the machine, which had to be mitigated with dedicated 'scrubbing' periods at injection energy. This enabled to start the operation with 25 ns beams at 6.5 TeV, but e-cloud effects continued to pose challenges while gradually increasing the number of circulating bunch trains. This contribution will review the encountered limitations and the mitigation measures that where put in place and will discuss possible strategies for further performance gain.

  16. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  17. Limits on neutrino oscillations in the CNGS neutrino beam and event classification with the OPERA detector

    International Nuclear Information System (INIS)

    Ferber, Torben

    2012-09-01

    OPERA, the oscillation project with emulsion-tracking apparatus, is a long-baseline neutrino oscillation experiment. It combines an almost pure, high-energy ν μ beam produced at the SPS accelerator at CERN, Switzerland, with the OPERA neutrino detector located at a distance of about 730 km in the LNGS underground laboratory in Italy. By using a lead/photo emulsion target, ν τ charged current (CC) interactions of ν τ from ν μ → ν τ oscillations can be observed on an event-by-event basis with very low background rates. Within this thesis, a ν μ →ν μ disappearance search is described that uses a flux normalization. independent measurement of the CC event fraction as a function of the hadronic energy as measured by the electronic detectors of OPERA. This allows to derive limits on ν μ →ν μ oscillations, complementary to the main ν τ appearance analysis. For maximal mixing, vertical stroke Δm 2 23 vertical stroke >4.4 x 10 -3 eV 2 is excluded at 90% C.L. by the disappearance analysis. This thesis represents the first application of this method, including systematic uncertainties, in a long-baseline neutrino oscillation experiment.

  18. ICARUS T600: Latest physics results

    International Nuclear Information System (INIS)

    Zani, A.

    2014-01-01

    The ICARUS T600 detector is the largest Liquid Argon (LAr) Time Projection Chamber (TPC) ever built and operated to date. The detector, assembled underground in the Hall B of the Gran Sasso Laboratory (LNGS), has been collecting neutrino events with the CERN to Gran Sasso (CNGS) beam and from cosmic rays from May 2010 to June 2013. The ICARUS excellent spatial and calorimetric resolution, coupled to very refined 3D event reconstruction techniques, allows to search, among others, for ν μ →ν e transitions which may be related to the 'LSND anomaly'. Though no evidence of this is detected, an important region of the parameter space remains unexplored. For this reason the joint ICARUS-NESSiE collaboration is proposing an experiment, at the new foreseen CERN-SPS neutrino beam facility (CENF), to solve the sterile neutrino puzzle.

  19. Effect of pulsed hollow electron-lens operation on the proton beam core in LHC

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, Miriam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-11-08

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the HL-LHC. In order to further increase the diffusion rates for a fast halo removal as e.g. desired before the squeeze, the electron lens (e-lens) can be operated in pulsed mode. In case of profile imperfections in the electron beam the pulsing of the e-lens induces noise on the proton beam which can, depending on the frequency content and strength, lead to emittance growth. In order to study the sensitivity to the pulsing pattern and the amplitude, a beam study (machine development MD) at the LHC has been proposed for August 2016 and we present in this note the preparatory simulations and estimates.

  20. Plasma waves and electrical discharges stimulated by beam operations on a high altitude satellite

    International Nuclear Information System (INIS)

    Koons, H.C.; Cohen, H.A.

    1982-01-01

    A satellite experiment was conducted to measure the characteristics of the spacecraft charging process near synchronous orbit. The payload included a particle beam system (both an electron gun and an ion gun) and a charging electrical effects analyzer consisting of a pulse shape analyzer, a VLF analyzer, and an RF analyzer. The characteristics of plasma waves and electrical discharges measured by these instruments during electron and ion beam operations are discussed

  1. Ground-water activation from the upcoming operation of MI40 beam absorber

    International Nuclear Information System (INIS)

    Bhat, C.M.; Read, A.L.

    1996-09-01

    During the course of normal operation, a particle accelerator can produce radionuclides in the adjacent soil and in the beam line elements through the interactions of accelerated particles and/or secondary particles produced in the beam absorbers, targets, and sometimes elsewhere through routine beam losses. The production and concentration of these radionuclides depends on the beam parameters such as energy, intensity, particle type, and target configuration. The radionuclides produced in the soil can potentially migrate to the ground water. Soil activation and migration to the ground water depends on the details of the local hydrogeology. Generally, very few places such as the beam stops, target stations, injection and extraction sectors can have high enough radiation fields to produce radionuclides in the soil outside the enclosures. During the design, construction, or an upgrade in the intensity of existing beams, measures are taken to minimize the production of activated soil. The only leachable radionuclides known to be produced in the Fermilab soil are 3 H, 7 Be , 22 Na, 45 Ca and 54 Mn and it has been determined that only 3 H, and 22 Na, because of their longer half lives and greater leachabilities, may significantly impact ground water resources.In the past, Fermilab has developed and used the Single Resident Well Model (SRWM) to estimate the ground water activation. Recently, the Concentration Model (CM), a more realistic method which depends on the site hydrogeology has been developed to decide the shielding requirements of the high radiation sites, and to calculate the ground water activation and its subsequent migration to the aquifer. In this report, the concentration of radionuclide released to the surface waters and the aquifer around the MI40 beam absorber are calculated. Subsequently, the ultimate limit on the primary proton beam intensity to be aborted on the Main Injector beam absorber is determined

  2. Early operational experience with uranium beams at ATLAS

    International Nuclear Information System (INIS)

    Pardo, R.C.; Nolen, J.A.; Specht, J.R.

    1994-01-01

    The first acceleration of a uranium beam using the new ATLAS Positive Ion Injector(PII) took place on July 27, 1992. Since that first run, ATLAS and PII have completely achieved the design goals of the project and now provide high-current heavy-ion beams with energies beyond the Coulomb barrier for the research program. ATLAS routinely and reliably provides low-emittance beams of uranium and other very high-mass ions at energies in excess of 6 MeV/n with available on-target beam intensities exceeding 5 particle nA. The expectation that the beam quality for heavy beams would be significantly better than that of the tandem injector has been fully realized. The longitudinal emittance of beams from the PII is typically one-third that of similar beams from the tandem injector. In the past year ATLAS provided uranium beams for approximately 19% of the total research beam time, while beams with A≥100 were used 33% of the time. The system performance and techniques developed which made for this successful result will be discussed. Improvement projects underway will be presented and future goals described

  3. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  4. Limits on neutrino oscillations in the CNGS neutrino beam and event classification with the OPERA detector

    Energy Technology Data Exchange (ETDEWEB)

    Ferber, Torben

    2012-09-15

    OPERA, the oscillation project with emulsion-tracking apparatus, is a long-baseline neutrino oscillation experiment. It combines an almost pure, high-energy {nu}{sub {mu}} beam produced at the SPS accelerator at CERN, Switzerland, with the OPERA neutrino detector located at a distance of about 730 km in the LNGS underground laboratory in Italy. By using a lead/photo emulsion target, {nu}{sub {tau}} charged current (CC) interactions of {nu}{sub {tau}} from {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillations can be observed on an event-by-event basis with very low background rates. Within this thesis, a {nu}{sub {mu}}{yields}{nu}{sub {mu}} disappearance search is described that uses a flux normalization. independent measurement of the CC event fraction as a function of the hadronic energy as measured by the electronic detectors of OPERA. This allows to derive limits on {nu}{sub {mu}}{yields}{nu}{sub {mu}} oscillations, complementary to the main {nu}{sub {tau}} appearance analysis. For maximal mixing, vertical stroke {Delta}m{sup 2}{sub 23} vertical stroke >4.4 x 10{sup -3} eV{sup 2} is excluded at 90% C.L. by the disappearance analysis. This thesis represents the first application of this method, including systematic uncertainties, in a long-baseline neutrino oscillation experiment.

  5. Determination of residual load-bearing capacity of concrete beams at the operation stage by the strength reinforcement and concrete criterion

    OpenAIRE

    V.S. Utkin

    2015-01-01

    An experimental theoretical method was considered for estimating the residual load-bearing capacity of an individual reinforced concrete beam at the operational stage according to the criteria of the working strength and durability of concrete reinforcement compressed zone of the beam. Integrated methods of beam testing and probabilistic methods of random variables definition were used. Ultimate load in the form of interval during the operational phase was accepted as the measure of carr...

  6. First two operational years of the electron-beam ion trap charge breeder at the National Superconducting Cyclotron Laboratory

    Directory of Open Access Journals (Sweden)

    A. Lapierre

    2018-05-01

    Full Text Available The electron-beam ion trap (EBIT charge breeder of the ReA post-accelerator, located at the National Superconducting Cyclotron Laboratory (Michigan State University, started on-line operation in September 2015. Since then, the EBIT has delivered many pilot beams of stable isotopes and several rare-isotope beams. An operating aspect of the ReA EBIT is the breeding of high charge states to reach high reaccelerated beam energies. Efficiencies in single charge states of more than 20% were measured with ^{39}K^{15+}, ^{85}Rb^{27+}, ^{47}K^{17+}, and ^{34}Ar^{15+}. Producing high charge states demands long breeding times. This reduces the ejection frequency and, hence, increases the number of ions ejected per pulse. Another operating aspect is the ability to spread the distribution in time of the ejected ion pulses to lower the instantaneous rate delivered to experiments. Pulse widths were stretched from a natural 25  μs up to ∼70  ms. This publication reviews the progress of the ReA EBIT system over the years and presents the results of charge-breeding efficiency measurements and pulse-stretching tests obtained with stable- and rare-isotope beams. Studies performed with high sensitivity to identify and quantify stable-isotope contaminants from the EBIT are also presented, along with a novel method for purifying beams.

  7. Status of the OPERA Experiment

    CERN Document Server

    Zimmermann, R.

    2006-01-01

    In this article the physics motivation and the detector design of the OPERA experiment will be reviewed. The construction status of the detector, which will be situated in the CNGS beam from CERN to the Gran Sasso laboratory, will be reported. A survey on the physics performance will be given and the physics plan in 2006 will be presented.

  8. Beam-beam collisions and crossing angles in RHIC

    International Nuclear Information System (INIS)

    Peggs, S.

    1999-01-01

    This paper evaluates the strength of head on and parasitic beam-beam collisions in RHIC when the crossing angle is zero. A non-zero crossing angle is not required in normal operation with 120 bunches, thanks to the early separation of the two beams. The RHIC lattice is shown to easily accommodate even conservatively large crossing angles, for example in beam dynamics studies, or in future operational upgrades to as many as 360 bunches per ring. A modest loss in luminosity is incurred when gold ions collide at an angle after 10 hours of storage

  9. Design, installation, commissioning and operation of a beamlet monitor in the negative ion beam test stand at NIFS

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, V.; Agostinetti, P.; Brombin, M.; Cervaro, V.; Delogu, R.; Fasolo, D.; Franchin, L.; Ghiraldelli, R.; Molon, F.; Pasqualotto, R.; Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Tollin, M.; Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) (Italy); De Muri, M. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) (Italy); INFN-LNL, v.le dell' Università 2, I-35020, Legnaro (PD) Italy (Italy); Ikeda, K.; Kisaki, M.; Nakano, H.; Takeiri, Y.; Tsumori, K. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Muraro, A. [Istituto di Fisica del Plasma (IFP-CNR) – Via Cozzi 53, 20125, Milano (Italy)

    2015-04-08

    In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with the aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.

  10. The design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Patterson, J.A.; Fong, M.; Koehler, G.W.; Low, W.; Purgalis, P.; Wells, R.P.

    1983-01-01

    The Neutral Beam Engineering Test Facility (NBETF) at the Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. The thermal hydraulic design of the panels permits the dissipation of 2 kW/cm 2 anywhere on the panel surface. The cooling water requirements of the actively cooled dump system are provided by the closed loop Primary High Pressure Cooling Water System. To minimize the operating costs of continuously running this high power system, a variable speed hydraulic drive is used for the main pump. During beam pulses, the pump rotates at high speed, then cycles to low speed upon completion of the beam shot. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline also has an inertially cooled duct calorimeter assembly. This assembly is a moveable hinged matrix of copper plates that can be used as a beam stop up to pulse lengths of 50 ms. The beamline is also equipped with many beam scraper plates of differing detail design and dissipation capabilities

  11. Design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Paterson, J.A.; Biagi, L.A.; Fong, M.; Koehler, G.W.; Low, W.; Purgalis, P.; Wells, R.P.

    1983-12-01

    The Neutral Beam Engineering Test Facility (NBETF) at Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline is also equpped with many beam scraper plates of differing detail design and dissipation capabilities

  12. Construction, test and operation in a high intensity beam of a small system of microstrip gas chambers

    CERN Document Server

    Barr, A J; Boimska, B; Bouclier, Roger; Braem, André; Camps, C; Capéans-Garrido, M; Commichau, V; Dominik, Wojciech; Flügge, G; Gómez, F; Hammarström, R; Hangarter, K; Hoch, M; Labbé, J C; Macke, D; Manzin, G; Meijers, F; Million, Gilbert; Mühlemann, K; Nagaslaev, V P; Peisert, Anna; Ropelewski, Leszek; Runólfsson, O; Sauli, Fabio; Schulte, R; Schulz, M; Sharma, A; Shekhtman, L I; Wolff, C

    1998-01-01

    We describe the construction, test and installation procedures, and the experience gained with the operation of a small but complete system of high rate Micro-Strip Gas Chambers, made on thin boro-silicate glass with a diamond-like coating with chromium or gold strips. A set of detectors, fully equipped with readout electronics and each with an active area of 100x100 mm2, was exposed during six months to a high intensity muon beam at CERN with a peak intensity of ~104 mm-2s-1. Continuous monitoring of the performance of the chambers during the beam runs allowed the evaluation of detection efficiency and the monitoring of accidental rates, as well as the study of ambient induced variations and aging in realistic beam conditions. No significant difference has been found in the operation of under- and over-coated plates. Efficiencies could reach ~98% in best operating conditions, although local lower values were often observed due to missing channels (open strips, broken bonds and dead electronic channels). The ...

  13. Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides.

    Science.gov (United States)

    Stenberg, Lena; Stößel, Maria; Ronchi, Giulia; Geuna, Stefano; Yin, Yaobin; Mommert, Susanne; Mårtensson, Lisa; Metzen, Jennifer; Grothe, Claudia; Dahlin, Lars B; Haastert-Talini, Kirsten

    2017-07-18

    Delayed reconstruction of transection or laceration injuries of peripheral nerves is inflicted by a reduced regeneration capacity. Diabetic conditions, more frequently encountered in clinical practice, are known to further impair regeneration in peripheral nerves. Chitosan nerve guides (CNGs) have recently been introduced as a new generation of medical devices for immediate peripheral nerve reconstruction. Here, CNGs were used for 45 days delayed reconstruction of critical length 15 mm rat sciatic nerve defects in either healthy Wistar rats or diabetic Goto-Kakizaki rats; the latter resembling type 2 diabetes. In short and long-term investigations, we comprehensively analyzed the performance of one-chambered hollow CNGs (hCNGs) and two-chambered CNGs (CFeCNGs) in which a chitosan film has been longitudinally introduced. Additionally, we investigated in vitro the immunomodulatory effect provided by the chitosan film. Both types of nerve guides, i.e. hCNGs and CFeCNGs, enabled moderate morphological and functional nerve regeneration after reconstruction that was delayed for 45 days. These positive findings were detectable in generally healthy as well as in diabetic Goto-Kakizaki rats (for the latter only in short-term studies). The regenerative outcome did not reach the degree as recently demonstrated after immediate reconstruction using hCNGs and CFeCNGs. CFeCNG-treatment, however, enabled tissue regrowth in all animals (hCNGs: only in 80% of animals). CFeCNGs did further support with an increased vascularization of the regenerated tissue and an enhanced regrowth of motor axons. One mechanism by which the CFeCNGs potentially support successful regeneration is an immunomodulatory effect induced by the chitosan film itself. Our in vitro results suggest that the pro-regenerative effect of chitosan is related to the differentiation of chitosan-adherent monocytes into pro-healing M2 macrophages. No considerable differences appear for the delayed nerve regeneration

  14. Mechanical design criteria for continuously operating neutral beams

    International Nuclear Information System (INIS)

    Vosen, S.R.; Bender, D.J.; Fink, J.H.; Lee, J.D.

    1977-01-01

    A schematic of a neutral beam injector is shown. Neutral gas is injected into the ion source, where a discharge ionizes the gas. The ions are drawn from the source by an extractor grid and then accelerated to full energy by the accel grids. After acceleration the ions pass through the neutralizer cell. Once through the neutralizer cell, the beam consists of neutrals and ions. The ions traveling with the beam are space charge neutralized by background electrons. The grid which precedes the direct converter is negatively charged and acts to separate the electrons from the rest of the beam. As a result of the beam's uncompensated space charge the remaining ions spread out from the beam to be collected at the direct converter. This paper presents a generalized analysis which will be useful in determining effects of energy and particle fluxes on the long-term performance of the grids

  15. Simulation study on beam loss in the alpha bucket regime during SIS-100 proton operation

    Science.gov (United States)

    Sorge, S.

    2018-02-01

    Crossing the transition energy γt in synchrotrons for high intensity proton beams requires well tuned jump schemes and is usually accompanied by longitudinal emittance growth. In order to avoid γt crossing during proton operation in the projected SIS-100 synchrotron special high-γt lattice settings have been developed, in order to keep γt above the beam extraction energy. A further advantage of this scheme is the formation of alpha buckets which naturally lead to short proton bunches, required for the foreseen production and storage of antiprotons for the FAIR facility. Special attention is turned on the imperfections of the superconducting SIS-100 magnets because together with the high-γt lattice settings, they could potentially lead to enhanced beam loss. The aim of the present work is to estimate the beam loss by means of particle tracking simulations.

  16. Extending DIII-D Neutral Beam Modulated Operations with a Camac Based Total on Time Interlock

    International Nuclear Information System (INIS)

    Baggest, D.S.; Broesch, J.D.; Phillips, J.C.

    1999-01-01

    A new total-on-time interlock has increased the operational time limits of the Neutral Beam systems at DIII-D. The interlock, called the Neutral Beam On-Time-Limiter (NBOTL), is a custom built CAMAC module utilizing a Xilinx 9572 Complex Programmable Logic Device (CPLD) as its primary circuit. The Neutral Beam Injection Systems are the primary source of auxiliary heating for DIII-D plasma discharges and contain eight sources capable of delivering 20MW of power. The delivered power is typically limited to 3.5 s per source to protect beam-line components, while a DIII-D plasma discharge usually exceeds 5 s. Implemented as a hardware interlock within the neutral beam power supplies, the NBOTL limits the beam injection time. With a continuing emphasis on modulated beam injections, the NBOTL guards against command faults and allows the beam injection to be safely spread over a longer plasma discharge time. The NBOTL design is an example of incorporating modern circuit design techniques (CPLD) within an established format (CAMAC). The CPLD is the heart of the NBOTL and contains 90% of the circuitry, including a loadable, 1 MHz, 28 bit, BCD count down timer, buffers, and CAMAC communication circuitry. This paper discusses the circuit design and implementation. Of particular interest is the melding of flexible modern programmable logic devices with the CAMAC format

  17. Vaccum and beam diagnostic controls for ORIC beam lines

    International Nuclear Information System (INIS)

    Tatum, B.A.

    1991-01-01

    Vacuum and beam diagnostic equipment on beam lines from the Oak Ridge Isochronous Cyclotron, ORIC, is now controlled by a new dedicated system. The new system is based on an industrial programmable logic controller with an IBM AT personal computer providing control room operator interface. Expansion of this system requires minimal reconfiguration and programming, thus facilitating the construction of additional beam lines. Details of the implementation, operation, and performance of the system are discussed. 2 refs., 2 figs

  18. Measurements of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes

    Directory of Open Access Journals (Sweden)

    Yosuke Honda

    2003-09-01

    Full Text Available We present the measurement results of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes. The measurements were carried out with an upgraded laser wire beam profile monitor. The monitor has now a vertical wire as well as a horizontal one and is able to make much faster measurements thanks to an increased effective laser power inside the cavity. The measured emittance shows no large bunch-to-bunch dependence in either the horizontal or vertical directions. The values of the vertical emittance are similar to those obtained in the single-bunch operation. The present results are an important step toward the realization of a high-energy linear collider.

  19. Comparative Evaluation of Chitosan Nerve Guides with Regular or Increased Bendability for Acute and Delayed Peripheral Nerve Repair: A Comprehensive Comparison with Autologous Nerve Grafts and Muscle-in-Vein Grafts.

    Science.gov (United States)

    Stößel, Maria; Wildhagen, Vivien M; Helmecke, Olaf; Metzen, Jennifer; Pfund, Charlotte B; Freier, Thomas; Haastert-Talini, Kirsten

    2018-05-08

    Reconstruction of joint-crossing digital nerves requires the application of nerve guides with a much higher flexibility than used for peripheral nerve repair along larger bones. Nevertheless, collapse-resistance should be preserved to avoid secondary damage to the regrowing nerve tissue. In recent years, we presented chitosan nerve guides (CNGs) to be highly supportive for the regeneration of critical gap length peripheral nerve defects in the rat. Now, we evidently increased the bendability of regular CNGs (regCNGs) by developing a wavy wall structure, that is, corrugated CNGs (corrCNGs). In a comprehensive in vivo study, we compared both types of CNGs with clinical gold standard autologous nerve grafts (ANGs) and muscle-in-vein grafts (MVGs) that have recently been highlighted in the literature as a suitable alternative to ANGs. We reconstructed rat sciatic nerves over a critical gap length of 15 mm either immediately upon transection or after a delay period of 45 days. Electrodiagnostic measurements were applied to monitor functional motor recovery at 60, 90, 120, and 150 (only delayed repair) days postreconstruction. Upon explanation, tube properties were analyzed. Furthermore, distal nerve ends were evaluated using histomorphometry, while connective tissue specimens were subjected to immunohistological stainings. After 120 days (acute repair) or 150 days (delayed repair), respectively, compression-stability of regCNGs was slightly increased while it remained stable in corrCNGs. In both substudies, regCNGs and corrCNGs supported functional recovery of distal plantar muscles in a similar way and to a greater extent when compared with MVGs, while ANGs demonstrated the best support of regeneration. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  20. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papotti, G [CERN; Redaelli, S. [CERN; Valentino, G. [Malta U.; Valentino, G. [CERN; Valuch, D. [CERN; Xu, C. [CERN

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  1. The Low-Level Control System for the CERN PS Multi-Turn Extraction Kickers

    CERN Document Server

    Schipper, J; Boucly, C; Carlier, E; Fowler, T; Gaudillet, H; Noulibos, R; Sermeus, L

    2010-01-01

    To reduce the beam losses when preparing high intensity proton beam for the CERN Neutrino to Gran Sasso (CNGS) facility, a new Multi-Turn extraction (MTE) scheme has been implemented in the PS, to replace the present Continuous Transfer (CT) to the SPS. Industrial off-the-shelf components have been used for the low-level part of the MTE kicker control system. National Instruments PXI systems are used to control the high voltage pulse generators and a SIEMENS programmable logic controller (PLC) handles the centralised oil cooling and gas insulation sub-systems

  2. Beam-beam interaction working group summary

    International Nuclear Information System (INIS)

    Siemann, R.H.

    1995-01-01

    The limit in hadron colliders is understood phenomenologically. The beam-beam interaction produces nonlinear resonances and makes the transverse tunes amplitude dependent. Tune spreads result from the latter, and as long as these tune spreads do not overlap low order resonances, the lifetime and performance is acceptable. Experience is that tenth and sometimes twelfth order resonances must be avoided, and the hadron collider limit corresponds roughly to the space available between resonances of that and lower order when operating near the coupling resonance. The beam-beam interaction in e + e - colliders is not understood well. This affects the performance of existing colliders and could lead to surprises in new ones. For example. a substantial amount of operator tuning is usually required to reach the performance limit given above, and this tuning has to be repeated after each major shutdown. The usual interpretation is that colliding beam performance is sensitive to small lattice errors, and these are being reduced during tuning. It is natural to ask what these errors are, how can a lattice be characterized to minimize tuning time, and what aspects of a lattice should receive particular attention when a new collider is being designed. The answers to this type of question are not known, and developing ideas for calculations, simulations and experiments that could illuminate the details of the beam-beam interaction was the primary working group activity

  3. Multipacting in a coaxial coupler with bias voltage for SRF operation with a large beam current

    Science.gov (United States)

    Liu, Z.-K.; Wang, Ch.; Chang, F.-Y.; Chang, L.-H.; Chang, M.-H.; Chen, L.-J.; Chung, F.-T.; Lin, M.-C.; Lo, C.-H.; Tsai, C.-L.; Tsai, M.-H.; Yeh, M.-S.; Yu, T.-C.

    2016-09-01

    A superconducting radio-frequency (SRF) module is commonly used for a high-energy accelerator; its purpose is to provide energy to the particle beam. Because of the low power dissipation and smaller impedance of a higher-order mode for this module, it can provide more power to the particle beam with better stability through decreasing the couple bunch instability. A RF coupler is necessary to transfer the high power from a RF generator to the cavity. A coupler of coaxial type is a common choice. With high-power operation, it might suffer from multipacting, which is a resonance phenomenon due to re-emission of secondary electrons. Applying a bias voltage between inner and outer conductors of the coaxial coupler might increase or decrease the strength of the multipacting effect. We studied the effect of a bias voltage on multipacting using numerical simulation to track the motion of the electrons. The simulation results and an application for SRF operation with a large beam current are presented in this paper.

  4. Academic Training Lecture Regular Programme: Physics at the AD/PS/SPS

    CERN Multimedia

    2012-01-01

    Physics at the AD/PS/SPS (1/4), by Lau Gatignon (CERN).   Monday, June 18, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 222-R-001 - Filtration Plant )   Lecture 1: The CERN injector complex and beams for non-LHC physics. The various machines and beam lines in the CERN injector complex are presented, from the linacs to the SPS. Special emphasis is given to the beam lines at the PS and SPS machines: AD, North and East Areas, nTOF and CNGS and HiRadMad as well as the ion beams. A short outlook is given to possible future upgrades and projects.   More information here.  

  5. Colloidal chitin nanogels: A plethora of applications under one shell.

    Science.gov (United States)

    Vishnu Priya, M; Sabitha, M; Jayakumar, R

    2016-01-20

    Chitin nanogels (CNGs) are a relatively new class of natural polymeric nanomaterials which have a large potential in the field of drug delivery and nanotherapeutics. These nanogels being very biocompatible are non-toxic when internalized by cells. In this review various properties, preparation techniques and applications of CNGs have been described. CNGs because of their nano-size possess certain unique properties which enable them to be used in a number of biomedical applications. CNGs are prepared by simple regeneration technique without using any cross-linkers. Various polymers, drugs and fluorescent dyes can be blended or incorporated or labelled with the chitin hydrogel network. Drugs and molecules encapsulated within CNGs can be used for targeted delivery, in vivo monitoring or even for therapeutic purposes. Here various applications of CNGs in the field of drug delivery, imaging, sensing and therapeutics have been discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Operating experience with LAMPF main beam lines instrumentation and control system

    International Nuclear Information System (INIS)

    van Dyck, O.B.; Harvey, A.; Howard, H.H.; Roeder, D.L.

    1975-01-01

    Instrumentation and control (I and C) for the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) main beam line is based upon central computer control through remote stations which provide input and output to most devices. Operating experience shows that the ability of the computer to give high-quality graphical presentation of the measurements enhances operator performance and instrument usefulness. Experience also shows that operator efficiency degrades rapidly with increasing instrument response time, that is, with increasing delay between the time a control is changed and the result can be observed. For this reason, instrumentation upgrade includes speeding up data acquisition and display times to under 10 s. Similarly, television-viewed phosphors are being retained where possible since their instantaneous response is very useful. Other upgrading of the instrumentation system is planned to improve data accuracy, reliability, redundancy, and instrument radiation tolerance. Past experience is being applied in adding or relocating devices to simplify tuning procedures. (U.S.)

  7. Operating results for the beam profile monitor system currently in use at Bevalac Facility

    International Nuclear Information System (INIS)

    Stover, G.; Fowler, K.

    1987-03-01

    Three stations of a soon to be completed multi-station, multi-wire beam monitoring system have been installed in the Bevalac transfer line. The following article will provide a cursory analysis of the electronic circuitry, discuss new design additions and summarize the operating results obtained over the last year

  8. Petit-exposure at neutrino beamline (PEANUT)

    International Nuclear Information System (INIS)

    Niwa, K.

    2005-01-01

    The advantages of using nuclear emulsion as a particle detector are well known. The high resolution of emulsion has made it a medium of choice for a number of applications where the required spatial and angular resolution are paramount and its limitations due to the lack of timing information are less important. Emulsions are commonly used as cosmic ray detectors and have found applications in high energy experiments for detecting short lived particles such as charm, beauty and tau. The addition of electronic detectors to emulsion experiments solved the problem of the lack of timing information in the emulsion, but it was the development of automatic scanning machines that revolutionized the use of these hybrid detectors, making them capable of performing even in high rate environments. Most recently, The DONuT experiment (FNAL-E872), used a hybrid emulsion spectrometer to make the first direct observation of tau neutrino interactions [1]. The CNGS facility is being constructed to deliver a ν μ beam from the CERN SPS to the Gran Sasso Laboratory. Since it is believed that ν μ (leftrightarrow) ν τ oscillations explain the observed atmospheric ν μ deficit, the CNGS beam, coupled with a detector capable of observing τ appearance is an important experiment in the context of the world wide effort to determine the neutrino mass mixing matrix. The OPERA detector has been optimized to detect a significant sample of ν τ interactions by the subsequent observation of τ production and decay [2]. The OPERA target is a massive emulsion detector made in a sandwich structure of lead plates and layers of nuclear emulsion. For historical reasons this arrangement has been called an Emulsion Cloud Chamber or ECC. The ECC concept, which has many advantages over the use of bulk emulsion, has been used in the DONuT experiment. The ECC detector is capable of measuring all of the tracks, not due to nuclear fragments, coming from the primary neutrino interaction vertex, with

  9. Test Beam Coordination: 2003 ATLAS Combined Test Beam

    CERN Multimedia

    Di Girolamo, B.

    The 2003 Test Beam Period The 2003 Test Beam period has been very fruitful for ATLAS. In spite of several days lost because of the accelerator problems, ATLAS has been able to achieve many results: FCAL has completed the calibration program in H6 Tilecal has completed the calibration program in H8 Pixel has performed extensive studies with normal and high intensity beams (up to 1.4*108 hadrons/spill) SCT has completed a variety of studies with quite a high number of modules operated concurrently TRT has performed several studies at high, low and very low energy (first use of the new H8 beam in the range 1 to 9 GeV) Muons (MDT,RPC and TGC) have been operating a large setup for about 5 months. The almost final MDT ROD (MROD) has been integrated in the readout and the final trigger electronics for TGC and RPC has been tested and certified with normal beam and during dedicated 40 MHz beam periods. The TDAQ has exploited a new generation prototype successfully and the new Event Filter infrastructure f...

  10. RHIC Beam Loss Monitor System Initial Operation

    International Nuclear Information System (INIS)

    Witkover, R. L.; Michnoff, R. J.; Geller, J. M.

    1999-01-01

    The RHIC Beam Loss Monitor (BLM) System is designed to prevent beam loss quenching of the superconducting magnets, and acquire loss data. Four hundred ion chambers are located around the rings to detect losses. The required 8-decade range in signal current is compressed using an RC pre-integrator ahead of a low current amplifier. A beam abort may be triggered if fast or slow losses exceed programmable threshold levels. A micro-controller based VME module sets references and gains and reads trip status for up to 64 channels. Results obtained with the detectors in the RHIC Sextant Test and the prototype electronics in the AGS-to-RHIC (AtR) transfer line are presented along with the present status of the system

  11. Beam-Beam effects at the CMS BRIL van-der-Meer scans

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is devoted to the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS Experiment at CERN. The project is engaged in operating and developing new detectors, compatible with the high luminosity experimental environments at the LHC. BRIL operates several detectors based on different physical principles and technologies. The detectors are calibrated using van-der-Meer scans to measure the luminosity that is a fundamental quantity of the LHC beam. In van-der-Meer scans the count rate in a detector is measured as a function of the distance between beams in the plane perpendicular to beam direction, to extract the underlying beam overlap area. The goal of the van-der-Meer scans is to obtain the calibration constant for each luminometer to be used at calibration then in physics data taking runs. The note presents the overview of beam-beam effects at the van-der-Meer scan and the corresponding corrections that sh...

  12. SU-E-T-14: A Feasibility Study of Using Modified AP Proton Beam for Post-Operative Pancreatic Cancer Therapy

    International Nuclear Information System (INIS)

    Ding, X; Witztum, A; Kenton, O; Younan, F; Dormer, J; Kremmel, E; Lin, H; Liu, H; Tang, S; Both, S; Kassaee, A; Avery, S

    2014-01-01

    Purpose: Due to the unpredictability of bowel gas movement, the PA beam direction is always favored for robust proton therapy in post-operative pancreatic cancer treatment. We investigate the feasibility of replacing PA beam with a modified AP beam to take the bowel gas uncertainty into account. Methods: Nine post-operative pancreatic cancer patients treated with proton therapy (5040cGy, 28 fractions) in our institution were randomly selected. The original plan uses PA and lateral direction passive-scattering proton beams. Beam weighting is about 1:1. All patients received weekly verification CTs to assess the daily variations(total 17 verification CTs). The PA direction beam was replaced by two other groups of AP direction beam. Group AP: takes 3.5% range uncertainty into account. Group APmod: compensates the bowel gas uncertainty by expanding the proximal margin to 2cm more. The 2cm margin was acquired from the average bowel diameter in from 100 adult abdominal CT scans near pancreatic region (+/- 5cm superiorly and inferiorly). Dose Volume Histograms(DVHs) of the verification CTs were acquired for robustness study. Results: Without the lateral beam, Group APmod is as robust as Group PA. In Group AP, more than 10% of iCTV D98/D95 were reduced by 4–8%. LT kidney and Liver dose robustness are not affected by the AP/PA beam direction. There is 10% of chance that RT kidney and cord will be hit by AP proton beam due to the bowel gas. Compared to Group PA, APmod plan reduced the dose to kidneys and cord max significantly, while there is no statistical significant increase in bowel mean dose. Conclusion: APmod proton beam for the target coverage could be as robust as the PA direction without sacrificing too much of bowel dose. When the AP direction beam has to be selected, a 2cm proximal margin should be considered

  13. Simulation of beam-beam effects in tevatron

    International Nuclear Information System (INIS)

    Mishra, C.S.; Assadi, S.; Talman, R.

    1995-08-01

    The Fermilab accelerator complex is in the middle of an upgrade plan Fermilab III. In the last phase of this upgrade the luminosity of the Tevatron will increase by at least one order of magnitude. In order to keep the number of interactions per crossing manageable for experiments, the number of bunches will be increased from 6 x 6 to 36 x 36 and finally to ∼100 x 100 bunches. The beam dynamics of the Tevatron has been studied from Beam-Beam effect point of view in a ''Strong-Weak'' representation with a single particle being tracked in presence of other beam. This paper describes the beam-beam effect in 6 x 6 operation of Tevatron

  14. Experimental Performance of the NRL 8-Beam, 4-Cavity Multiple-Beam Klystron

    Science.gov (United States)

    Abe, D. K.; Pershing, D. E.; Nguyen, K. T.; Wood, F. N.; Myers, R. E.; Eisen, E. L.; Cusick, M.; Levush, B.

    2006-01-01

    Multiple-beam amplifiers (MBAs) represent a device technology with the potential to produce high-power, efficient amplifiers with relatively wide bandwidths that are compact, low-weight, low-noise, and operate at reduced voltages relative to comparable single-beam devices. To better understand the device physics and technical issues involved in the design, fabrication, and operation of these devices, the U.S. Naval Research Laboratory (NRL) has an on-going program to develop high peak power (> 600 kW) multiple-beam klystrons (MBKs) operating in S-band (˜3.3 GHz).

  15. Materials research and beam line operation utilizing NSLS [National Synchrotron Light Source]: Progress report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1987-10-01

    MATRIX is a group of scientists who have common interests in utilizing x-ray synchrotron radiation for materials research. This group has developed a specialized beam line (X-18A) for x-ray scattering studies at the National Synchrotron Light Source (NSLS). The beam line was designed to optimize experimental conditions for diffuse scattering and surface/interface studies. An extension of diffuse scattering to provide better quantitative data has been shown as well as a unique application to the solution of the phase problem. In the x-ray surface scattering area the first reported experiment to illustrate the capabilities for studying monolayers on water was performed. Current beam line upgrade projects are also described. In addition to a change to a UHV system and improvements dictated by operational experience, two new systems are described, a unique small angle scattering chamber (SAXS) for dynamic studies of nucleation and growth and a surface scattering chamber. 5 figs

  16. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    International Nuclear Information System (INIS)

    Zhang, Ting; Xu, Jian-yi; Cheng, Ying; Liu, Xiao-jun; Guo, Jian-zhong

    2015-01-01

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations

  17. An RF driven H- source and a low energy beam injection system for RFQ operation

    International Nuclear Information System (INIS)

    Leung, K.N.; Bachman, D.A.; Chan, C.F.; McDonald, D.S.

    1992-01-01

    An RF driven H - source has been developed at LBL for use in the Superconducting Super Collider (SSC). To date, an H - current of ∼40 mA can be obtained from a 5.6-cm-diam aperture with the source operated at a pressure of about 12 m Torr and 50 kW of RF power. In order to match the accelerated H - beam into the SSC RFQ, a low-energy H - injection system has been designed. This injector produces an outgoing H - beam free of electron contamination, with small radius, large convergent angle and small projectional emittance

  18. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    International Nuclear Information System (INIS)

    Barr, D.

    2000-01-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system

  19. Design of a multi beam klystron cavity from its single beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M. [CSIR-Central Electronics Engineering Research Institute, Pilani (India); Janyani, Vijay [Department of ECE, MNIT, Jaipur (India)

    2016-03-09

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  20. Design of a multi beam klystron cavity from its single beam parameters

    International Nuclear Information System (INIS)

    Kant, Deepender; Joshi, L. M.; Janyani, Vijay

    2016-01-01

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  1. Study of beam-beam long range compensation with octupoles

    CERN Document Server

    AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Tambasco, Claudia

    2017-01-01

    Long range beam-beam effects are responsible for particle losses and define fundamental operational parameters of colliders (i.e. crossing angles, intensities, emittances, ${\\beta}$${^∗}$). In this study we propose octuple magnets as a possible scheme to efficiently compensate long-range beam-beam interactions with a global correction scheme. The impact and improvements on the dynamic aperture of colliding beams together with estimates of the luminosity potentials are dis- cussed for the HL-LHC upgrade and extrapolations made for the FCC project.

  2. Construction, test and operation in a high intensity beam of a small system of micro-strip gas chambers

    Science.gov (United States)

    Barr, A.; Bachmann, S.; Boimska, B.; Bouclier, R.; Braem, A.; Camps, C.; Capeáns, M.; Commichau, V.; Dominik, W.; Flügge, G.; Gómez, F.; Hammarstrom, R.; Hangarter, K.; Hoch, M.; Labbé, J. C.; Macke, D.; Manzin, G.; Meijers, F.; Million, G.; Muhlemann, K.; Nagaslaev, V.; Peisert, A.; Ropelewski, L.; Runolfsson, O.; Sauli, F.; Schulte, R.; Schulz, M.; Sharma, A.; Shekhtman, L.; Wolff, C.

    1998-02-01

    We describe the construction, test and installation procedures, and the experience gained with the operation of a small but complete system of high-rate Micro-Strip Gas Chambers, made on thin borosilicate glass with a diamond-like coating with chromium or gold strips. A set of detectors, fully equipped with read-out electronics and each with an active area of 100 × 100 mm 2, was exposed during six months to a high-intensity muon beam at CERN with a peak intensity of ˜ 10 4 mm -2s -1. Continuous monitoring of the performance of the chambers during the beam runs allowed the evaluation of detection efficiency and the monitoring of accidental rates, as well as the study of ambient induced variations and aging in realistic beam conditions. No significant difference has been found in the operation of under-and over-coated plates. Efficiencies could reach ˜ 98% in best operating conditions, although local lower values were often observed due to missing channels (open strips, broken bonds and dead electronic channels). The long-term operation of the chambers has been more difficult than expected, with the appearance of break-downs and loss of efficiency in some detectors, possibly induced by the presence of small gas leaks, to water permeation or to residual reactivity of the quencher gas (dimethylether).

  3. Radiological and the other safety aspects in the operation of electron beam facility

    International Nuclear Information System (INIS)

    Loterina, Roel Alamares

    2003-01-01

    The radiological safety aspects of the operation of an electron beam facility in general and the 3 MeV ALURTRON electron beam facility of the Malaysian Institute of Nuclear Technology Research (MINT) in particular were reviewed and evaluated. Evaluation was made based on existing records as well as actual monitoring around facility. Area monitoring results using TLDs are within permissible levels. The maximum reading of 7.29 mSv measured in year 2000 is very low as compared to the annual dose limit of 50 mSv/year. In general, the shielding for the installation is adequate and no significant radiation leakage were detected based on radiation survey results. However, measured radiation levels with a maximum of 1.9 mSv/h at the sampling ports easily exceed the limit of 25μSv/h. The facility is equipped with safety features, such as interlocked system, adequate shielding, engineered safety design of irradiation and accelerator rooms, and accessories such as conveyor system and product handling system. Warning lights and signals are adequately installed around the facility. Other identified hazards that may affect the operator, workers, and personnel were also evaluated based on previous records of monitoring. The ozone concentration levels with a maximum reading of 0.05 ppm measured in the environment of the facility are within the threshold limit value of 0.1 ppm. The measured noise levels at all locations around facility are generally below the maximum permissible level of 80dB. The ALURTRON has achieved a minimum safety requirement to warrant its full operation without relying on administrative controls and procedures to ensure safety in operation. (Auth.)

  4. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  5. STRUCTURAL ANALYSIS OF RAILWAYS BOLSTER-BEAM UNDER COMMERCIAL OPERATION CONDITIONS: OVER-TRACTION AND OVER-BRAKING

    Directory of Open Access Journals (Sweden)

    Ronald M. MARTINOD

    2016-06-01

    Full Text Available The conditions for the operation of railway systems are closely related to the increase of the commercial demand; as a consequence, the performance of the structural elements of railways changes. The present paper focuses on a study of the structural behaviour of bolster-beams under commercial operation conditions of railway systems, specifically in the dynamic conditions generated in events of over-traction and over-braking on the vehicle running. The proposed work is constructed based on the following phases: (i analysis of the kinematics of the vehicle; (ii development of numerical models, a model based on the multibody theory, and a Finite Elements model; (iii development of experimental field tests; and (iv development of simulations for a detailed analysis of the structural behaviour for a study of the strain distribution in the main bolster-beam. This study is applied to a particular case of a railway system that provides commercial service to passengers.

  6. Operation and Development on the Positive-Ion Based Neutral Beam Injection System for JT-60 and JT-60U

    International Nuclear Information System (INIS)

    Kuriyama, M.; Akino, N.; Ebisawa, N.; Honda, A.; Itoh, T.; Kawai, M.; Mogaki, K.; Ohga, T.; Oohara, H.; Umeda, N.; Usui, K.; Yamamoto, M.; Yamamoto, T.; Matsuoka, M.

    2002-01-01

    The positive-ion based neutral beam injection (NBI) system for JT-60, which consists of 14 beamline units and has a beam energy of 70 to 100 keV, started operation in 1986 with hydrogen beams and injected a neutral beam power of 27 MW at 75 keV into the JT-60 plasma. In 1991, the NBI system was modified to be able to handle deuterium beams as part of the JT-60 upgrade modification. After executing some research and developments, deuterium beams of 40 MW at 95 keV were injected in 1996. As a result, NBI has contributed to the achievement of the highest performance plasmas, a DT-equivalent fusion power gain of 1.25 and a fusion triple product of 1.55 x 10 21 keVs/m 3 , in the world on JT-60U

  7. Beam profile monitors for a tagged photon beam facility

    International Nuclear Information System (INIS)

    Arends, J.; Breuer, M.; Dahmen, H.D.; Detemple, P.; Schneider, W.; Urban, D.; Zucht, B.

    1991-01-01

    A beam profile monitor for electron and photon beams is described, which operates at the low intensities encountered in a tagged bremsstrahlung beam environment, typically 10 10 electrons/s and 10 7 photons/s. The method is based on a wire scanner and utilizes the presence of a tagging spectrometer. The accuracy of the measurements can be tuned in a wide range to meet the requirements set by the actual beam parameters. Examples of measured electron and photon beam profiles at the tagged photon beam of the PHOENICS experiment at the electron stretcher ring ELSA in Bonn are given. (orig.)

  8. Beam, multi-beam and broad beam production with COMIC devices

    International Nuclear Information System (INIS)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Peaucelle, C.

    2012-01-01

    The COMIC discharge cavity is a very versatile technology. We will present new results and devices that match new applications like: molecular beams, ultra compact beam line for detectors calibrations, quartz source for on-line application, high voltage platform source, sputtering /assistance broad beams and finally, a quite new use, high energy multi-beam production for surface material modifications. In more details, we will show that the tiny discharge of COMIC can mainly produce molecular ions (H 3+ ). We will present the preliminary operation of the fully quartz ISOLDE COMIC version, in collaboration with IPN Lyon, we will present a first approach for a slit extraction version of a three cavity device, and after discussing about various extraction systems on the multi discharge device (41 cavities) we will show the low energy broad beam (2 KV) and high energy multi-beams (10 beams up to 30 KV) productions. We will specially present the different extraction systems adapted to each application and the beams characteristics which are strongly dependent on the voltage distribution of an accel-accel two electrodes extraction system. The paper is followed by the slides of the presentation. (authors)

  9. OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; BLASKIEWICZ, M.; BRENNAN, J.M.; CAMERON, P.; CONNOLLY, R.; MONTAG, C.; PEGGS, S.; PILAT, F.; PTITSYN, V.; TEPIKIAN, S.; TRBOJEVIC, D.; VAN ZEIJTS, J.

    2003-01-01

    RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far

  10. Studies and optimization of Pohang Light Source-II superconducting radio frequency system at stable top-up operation with beam current of 400 mA

    International Nuclear Information System (INIS)

    Joo, Youngdo; Yu, Inha; Park, Insoo; Chun, Myunghwan; Lee, Byung-Joon; Hwang, Ilmoon; Ha, Taekyun; Shin, Seunghwan; Sohn, Younguk

    2014-01-01

    After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is better to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out

  11. 'Electron compression' of beam-beam footprint in the Tevatron

    International Nuclear Information System (INIS)

    Shiltsev, V.; Finley, D.A.

    1997-08-01

    The beam-beam interaction in the Tevatron collider sets some limits on bunch intensity and luminosity. These limits are caused by a tune spread in each bunch which is mostly due to head-on collisions, but there is also a bunch-to-bunch tune spread due to parasitic collisions in multibunch operation. We describe a counter-traveling electron beam which can be used to eliminate these effects, and present general considerations and physics limitations of such a device which provides 'electron compression' of the beam-beam footprint in the Tevatron

  12. Simulation of the beam halo from the beam-beam interaction in LEP

    International Nuclear Information System (INIS)

    Chen, T.; Irwin, J.; Siemann, R.

    1994-02-01

    The luminosity lifetimes of e + e - colliders are often dominated by the halo produced by the beam-beam interaction. They have developed a simulation technique to model this halo using the flux across boundaries in amplitude space to decrease the CPU time by a factor of one-hundred or more over 'brute force' tracking. It allows simulation of density distributions and halos corresponding to realistic lifetimes. Reference 1 shows the agreement with brute force tracking in a number of cases and the importance of beam-beam resonances in determining the density distribution of large amplitudes. this research is now directed towards comparisons with operating colliders and studies of the combined effects of lattice and beam-beam nonlinearities. LEP offers an ideal opportunity for both, and in this paper they are presenting the first results of LEP simulations

  13. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    CERN Document Server

    Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K

    2005-01-01

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  14. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  15. Study of the beam of the 60MeV LINAC and automation of the accelerator operation

    International Nuclear Information System (INIS)

    Roland, Sixte.

    1975-07-01

    The on-line automation of a Linac depends essentially on a very extensive use of measuring and control devices. In particular, peak currents from 15 mA to 6 A to pulse configuration from 2 μs to 6 ns respectively are continuously monitored by ferrite transformers at the end of each section. A special study of low intensity beams, of the order of 0.1 μA, has also been made by means of transition radiation phenomena which produce visible radiation whenever an electron beam traverses thin metallic foils (5μ). Thus electron energies, beam profile position and energy as well as pulse widths have been measured by appropriately adapted detectors. A precise knowledge of the behavior of the above cited beam characteristics then enabled the linac performances to attain a stability of the order of one per cent over periods of several weeks. The beam monitoring is performed numerically, analogically and by an ''on-off'' system coupled to a mini-computer. If some error is detected in a section one can then replace the fast numerical controls by the slower analogical ones. The beam control is initiated through monitoring data obtained from certain experimental results which in turn affect the beam energy and intensity. A fully automatic operation for a 4 μA beam covering the 28 MeV - 60 MeV energy range has thus been performed by means of an automatic phase control of the last section together with the appropriate automatic adjustment of the associated magnetic guidance system [fr

  16. Development of an automated system for the operation of an electron beam accelerator

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Moura, João A.; Calvo, Wilson Ap. Parejo

    2017-01-01

    Electron beam accelerators are used in many applications, such as basic physical research, chemistry, medicine, molecular biology, microelectronics, agriculture and industry, among others. The majority of the accelerators have electrons from a hot tungsten filament and their energy is increased as it passes through an electric field in the vacuum chamber. For industrial purposes, the most common model is Dynamitrons®. At IPEN-CNEN/SP, there is an electron beam accelerator Dynamitron® Type (Manufactured by RDI- Radiation Dynamics Inc., 1978) model DC1500/25/4. The technology applied was available in the 60's and 70's, but, nowadays is obsolete. Moreover, there are not original spare parts for this equipment any longer. The aim of this work is to develop a nationalized automated operation system for the accelerator, to replace the old equipment. (author)

  17. Development of an automated system for the operation of an electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Moura, João A.; Calvo, Wilson Ap. Parejo, E-mail: somessar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Electron beam accelerators are used in many applications, such as basic physical research, chemistry, medicine, molecular biology, microelectronics, agriculture and industry, among others. The majority of the accelerators have electrons from a hot tungsten filament and their energy is increased as it passes through an electric field in the vacuum chamber. For industrial purposes, the most common model is Dynamitrons®. At IPEN-CNEN/SP, there is an electron beam accelerator Dynamitron® Type (Manufactured by RDI- Radiation Dynamics Inc., 1978) model DC1500/25/4. The technology applied was available in the 60's and 70's, but, nowadays is obsolete. Moreover, there are not original spare parts for this equipment any longer. The aim of this work is to develop a nationalized automated operation system for the accelerator, to replace the old equipment. (author)

  18. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    Science.gov (United States)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.

    2015-05-01

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.

  19. A beam profile monitor for a tagged photon beam

    International Nuclear Information System (INIS)

    Arends, J.; Breuer, M.; Dahmen, H.D.; Detemple, P.; Noeldeke, G.; Schneider, W.; Zucht, B.

    1990-10-01

    A beam profile monitor for electron and photon beams is described, which operates at the low intensities encountered in a tagged bremsstrahlung beam environment, typically 10 10 electrons/s and 10 7 photons/s. The method is based on a wire scanner and utilizes the presence of a tagging spectrometer. The accuracy of the measurements can be tuned in a wide range (at the expense of measuring time) to meet the requirements set by the actual beam size. Examples of measured electron and photon beam profiles at the tagged photon beam of the PHOENICS experiment at the electron stretcher ring ELSA are given. (orig.)

  20. A beam profile monitor for a tagged photon beam

    Energy Technology Data Exchange (ETDEWEB)

    Arends, J.; Breuer, M.; Dahmen, H.D.; Detemple, P.; Noeldeke, G.; Schneider, W.; Zucht, B.

    1990-10-01

    A beam profile monitor for electron and photon beams is described, which operates at the low intensities encountered in a tagged bremsstrahlung beam environment, typically 10{sup 10} electrons/s and 10{sup 7} photons/s. The method is based on a wire scanner and utilizes the presence of a tagging spectrometer. The accuracy of the measurements can be tuned in a wide range (at the expense of measuring time) to meet the requirements set by the actual beam size. Examples of measured electron and photon beam profiles at the tagged photon beam of the PHOENICS experiment at the electron stretcher ring ELSA are given. (orig.).

  1. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  2. First Full Beam Loading Operation with the CTF3 Linac

    CERN Multimedia

    Corsini, R; Bienvenu, G; Braun, H; Carron, G; Ferrari, A; Forstner, O; Garvey, Terence; Geschonke, Günther; Groening, L; Jensen, E; Koontz, R; Lefèvre, T; Miller, R; Rinolfi, Louis; Roux, R; Ruth, Ronald D; Schulte, Daniel; Tecker, F A; Thorndahl, L; Yeremian, A D

    2004-01-01

    The aim of the CLIC (Compact Linear Collider) Study is to investigate the feasibility of a high luminosity, multi-TeV linear e+e- collider. CLIC is based on a two-beam method, in which a high current drive beam is decelerated to produce 30 GHz RF power needed for high-gradient acceleration of the main beam running parallel to it. To demonstrate the outstanding feasibility issues of the scheme a new CLIC Test Facility, CTF3, is being constructed at CERN by an international collaboration. In its final configuration CTF3 will consist of a 150 MeV drive beam linac followed by a 42 m long delay loop and an 84 m combiner ring. The installation will include a 30 GHz high power test stand, a representative CLIC module and a test decelerator. The first part of the linac was installed and commissioned with beam in 2003. The first issue addressed was the generation and acceleration of a high-current drive beam in the "full beam loading" condition where RF power is converted into beam power with an efficiency of more tha...

  3. High field superconducting beam transport in a BNL primary proton beam

    International Nuclear Information System (INIS)

    Allinger, J.; Brown, H.N.; Carroll, A.S.; Danby, G.; DeVito, B.; Glenn, J.W.; Jackson, J.; Keith, W.; Lowenstein, D.; Prodell, A.G.

    1979-01-01

    Construction of a slow external beam switchyard at the BNL AGS requires a rapid 20.4 0 bend in the upstream end of the beam line. Two curved superconducting window dipole magnets, operating at 6.0 T and about 80% of short sample magnetic field, will be utilized with two small superconducting sextupoles to provide the necessary deflection for a 28.5 GeV/c primary proton beam. Because the magnets will operate in a primary proton beam environment, they are designed to absorb large amounts of radiation heating from the beam without quenching. The field quality of the superconducting magnets is extremely good. Computer field calculations indicate a field error, ΔB/B 0 , equivalent to approx. = 1 x 10 -4 up to 75% of the 8.26 cm full aperture diameter in the magnet

  4. Recent results from the OPERA experiment

    CERN Document Server

    del Amo Sanchez, P

    2013-01-01

    The OPERA neutrino experiment recently nished data-taking, its recorded sample compris- ing 18 : 0 10 19 POT delivered by the CERN CNGS beam from 2008 to 2012. The goal of the OPERA experiment is to establish ! oscillations in appearance mode by observing the leptons produced in Charged Current interactions. Here we report on the status of the data analysis, and describe, in particular, two ! candidate events. Results on ! e oscillations are also presented.

  5. Effectiveness of operation tools developed by KEKB operators

    International Nuclear Information System (INIS)

    Sugino, K.; Satoh, Y.; Kitabayashi, T.

    2004-01-01

    The main tasks of KEKB (High Energy Accelerator Research Organization B-physics) operators are beam tuning and injection, operation logging, monitoring of accelerator conditions and safety management. New beam tuning methods are frequently applied to KEKB in order to accomplish high luminosity. In such a situation, various operation tools have been developed by the operators to realize efficient operation. In this paper, we describe effectiveness of tools developed by the operators. (author)

  6. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  7. LANSCE Beam Current Limiter (XL)

    International Nuclear Information System (INIS)

    Gallegos, F.R.; Hall, M.J.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) is an engineered safety system that provides personnel protection from prompt radiation due to accelerated proton beams. The Beam Current Limiter (XL), as an active component of the RSS, limits the maximum average current in a beamline, thus the current available for a beam spill accident. Exceeding the pre-set limit initiates action by the RSS to mitigate the hazard (insertion of beam stoppers in the low energy beam transport). The beam limiter is an electrically isolated, toroidal transformer and associated electronics. The device was designed to continuously monitor beamline currents independent of any external timing. Fail-safe operation was a prime consideration in its development. Fail-safe operation is defined as functioning as intended (due to redundant circuitry), functioning with a more sensitive fault threshold, or generating a fault condition. This report describes the design philosophy, hardware, implementation, operation, and limitations of the device

  8. Medium Energy Industrial Electron Beam Accelerator (ILU-EBA) at Navi Mumbai for technology demonstration and commercial operations

    International Nuclear Information System (INIS)

    Benny, P.G.; Khader, S.A.; Sarma, K.S.S.

    2017-01-01

    BARC in early nineties installed a unique high pulse-powered electron beam accelerator of energy 2 MeV, (for the first time in India), in Trombay for developing industrial applications. The accelerator was capable of delivering powered electron beams up to 20kW average beam power (with 1200kW peak pulse power) with energy range from 1 to 2 MeV. Several applications have been developed and commercially exploited in the field of polymer cross linking, degradation, crystalline alterations etc. In addition, applications pertaining to the environmental remediation using electron beams were also worked out. The facility has been relocated at Navi Mumbai a decade ago operated under BARC safety regulatory body and was developed into a technology demonstration cum commercial plant with several product handling gadgets to evaluate the feasibility of different EB treatment processes for the industry viz. waste water treatment, polymer modifications, recycling to name a few

  9. Stable operation of an effectively axisymmetric neutral beam driven tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Barter, J.D.; Buchenauer, D.A.; Casper, T.A.; Correll, D.L.; Dimonte, G.; Falabella, S.; Foote, J.H.; Pincosy, P.A.

    1990-01-01

    A quiescent plasma is sustained for 80 energy confinement times by only gas fuelling and neutral beam heating in an axisymmetric region of the Tandem Mirror Experiment Upgrade (TMX-U). This plasma should be unstable because of the bad magnetic curvature and the absence of ion cyclotron heating which previously provided ponderomotive stabilization to sustain plasmas in bad-curvature regions of other axisymmetric mirror experiments. The TMX-U data are consistent with stabilization by a symbiosis between two mechanisms - line tying, which reduces the growth rate, and finite Larmor radius edge stabilization, which can result in quiescent operation. (author). 42 refs, 8 figs, 1 tab

  10. A new atomic beam polarized ion source for the Triangle Universities Nuclear Laboratory: overview, operating experience, and performance

    International Nuclear Information System (INIS)

    Clegg, T.B.; Karwowski, H.J.; Lemieux, S.K.; Sayer, R.W.; Crosson, E.R.; Hooke, W.M.; Howell, C.R.; Lewis, H.W.; Lovette, A.W.; Pfutzner, H.J.; Sweeton, K.A.; Wilburn, W.S.

    1995-01-01

    A newly constructed source of polarized H ± and D ± ions is described. Atomic H or D beams from a dissociator with a cooled nozzle enter a system of two sextupole magnets and several radio-frequency transitions where they are focused and polarized. They enter a downstream electron-cyclotron-resonance-heated plasma ionizer from which positive ions are extracted. When negative ions are desired, they may be produced from the positive beam by charge-exchange in cesium vapor. Emerging beams are intense, have good polarization, low energy spread, and good optical quality. Descriptions are included for all major systems and for diagnostic procedures used to optimize both the intensity and the polarization of the output H ± or D ± beams obtained. Typical operating experience, performance figures, and a description of routine maintenance procedures are given. ((orig.))

  11. A beam profile monitor for heavy ion beams at high impact energies

    International Nuclear Information System (INIS)

    Hausmann, A.; Stiebing, K.E.; Bethge, K.; Froehlich, O.; Koehler, E.; Mueller, A.; Rueschmann, G.

    1994-01-01

    A beam profile monitor for heavy ion beams has been developed for the use in experiments at the Heavy Ion Synchrotron SIS at Gesellschaft fuer Schwerionenforschung Darmstadt (GSI). Four thin scintillation fibres are mounted on one wheel and scan the ion beam sequentially in two linearly independent directions. They are read out via one single photomultiplier common to all four fibres into one time spectrum, which provides all information about beam position, beam extension, time structure and lateral homogeneity of the beam. The system operates in a wide dynamic range of beam intensities. ((orig.))

  12. Beam Instrumentation and Diagnostics

    CERN Document Server

    Strehl, Peter

    2006-01-01

    This treatise covers all aspects of the design and the daily operations of a beam diagnostic system for a large particle accelerator. A very interdisciplinary field, it involves contributions from physicists, electrical and mechanical engineers and computer experts alike so as to satisfy the ever-increasing demands for beam parameter variability for a vast range of operation modi and particles. The author draws upon 40 years of research and work, most of them spent as the head of the beam diagnostics group at GSI. He has illustrated the more theoretical aspects with many real-life examples that will provide beam instrumentation designers with ideas and tools for their work.

  13. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M.R.; Eisel, T.; Fabjan, C.; Rementeria, C.A. [CERN, Geneva (Switzerland); Griesmayer, E. [CIVIDEC Instrumentation, GmbH, Vienna (Austria); Eremin, V. [Ioffe Institute, St. Petersburg (Russian Federation); Verbitskaya, E., E-mail: elena.verbitskaya@cern.ch [Ioffe Institute, St. Petersburg (Russian Federation); Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I. [Ioffe Institute, St. Petersburg (Russian Federation); Egorov, N. [Research Institute of Material Science and Technology, Zelenograd, Moscow (Russian Federation); Härkönen, J.; Luukka, P.; Tuominen, E. [Helsinki Institute of Physics, Helsinki (Finland)

    2015-05-11

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×10{sup 16} proton/cm{sup 2}, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×10{sup 16} p/cm{sup 2} irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage. - Highlights: • Silicon and diamond detectors are proposed for beam loss monitoring at LHC. • The first in situ radiation test of Si and diamond detectors at 1.9 K is described. • Both diamond and silicon detectors survived after 1×10{sup 16} p/cm{sup 2} irradiation at 1.9 K. • The rate of Si detectors degradation depends on bias polarity and is larger at V{sub forw}. • Sensitivity of Si detectors irradiated to 1×10{sup 16} p/cm{sup 2} is independent on resistivity.

  14. Icarus

    CERN Document Server

    Montanari, Claudio

    2015-01-01

    ICARUS T600 Liquid Argon Time Projection Chamber is the first large mass (760 tons) exam- ple of a new generation of detectors able to combine the imaging capabilities of the old famous bubble chamber with the excellent energy measurement of electronic detectors. In 2013 ICARUS concluded a very successful, long duration run with the T600 detector at the LNGS underground laboratory taking data both with the CNGS neutrino beam and with cosmic rays. Several rele- vant physics and technical results were achieved. A joint ICARUS/SBND/MicroBooNE effort is taking place to develop a collaborative, international program at FNAL’s Booster Neutrino Beam (and NuMI off-axis) with three detectors at different baselines by 2018 (near: SBND, mid: Mi- croBooNE, far: ICARUS). The T600 detector was transported to CERN at the end of 2014 for a series of upgrades before being taken to FNAL. The refurbishment operations, inside the WA104 programme at CERN, of the Icarus T600 detector will be outlined, with an introduction to the...

  15. Analysis of RHIC beam dump pre-fires

    International Nuclear Information System (INIS)

    Zhang, W.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Sandberg, J.; Tan, Y.

    2011-01-01

    It has been speculated that the beam may cause instability of the RHIC Beam Abort Kickers. In this study, we explore the available data of past beam operations, the device history of key modulator components, and the radiation patterns to examine the correlations. The RHIC beam abort kicker system was designed and built in the 90's. Over last decade, we have made many improvements to bring the RHIC beam abort kicker system to a stable operational state. However, the challenge continues. We present the analysis of the pre-fire, an unrequested discharge of kicker, issues which relates to the RHIC machine safety and operational stability.

  16. Detection of Equipment Faults Before Beam Loss

    CERN Document Server

    Galambos, J.

    2016-01-01

    High-power hadron accelerators have strict limits on fractional beam loss. In principle, once a high-quality beam is set up in an acceptable state, beam loss should remain steady. However, in practice, there are many trips in operational machines, owing to excessive beam loss. This paper deals with monitoring equipment health to identify precursor signals that indicate an issue with equipment that will lead to unacceptable beam loss. To this end, a variety of equipment and beam signal measurements are described. In particular, several operational examples from the Spallation Neutron Source (SNS) of deteriorating equipment functionality leading to beam loss are reported.

  17. Search for $\

    CERN Document Server

    Agafonova, N.

    2011-01-01

    The OPERA neutrino experiment in the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in direct appearance mode in the nu_mu to nu_tau channel, the nu_tau signature being the identification of the tau-lepton created in its charged current interaction. The hybrid apparatus consists of a large mass emulsion film/lead target complemented by electronic detectors. It is placed in the high energy long-baseline CERN to LNGS neutrino beam (CNGS) 730 km away from the neutrino source. The observation of a first nu_tau candidate event was reported in 2010. In this paper, we present the status of the experiment based on the analysis of the data taken during the first two years of operation (2008-2009). The statistical significance of the one event observed so far is then assessed.

  18. Annual modulation of the muon flux in the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstein, Raphael; Freund, Kai; Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Schmitt, Christopher; Schuetz, Ann-Kathrin [Eberhard Karls Univeritaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of {sup 76}Ge. In Phase I, the experimental background was reduced to 10{sup -2} cts/(keV.kg.yr) in the region around Q{sub ββ}. For Phase II we want to reduce the background contribution by one order of magnitude. Cosmic muons induce part of this dangerous background and must be vetoed. The muon veto consists of a water Cherenkov detector with 66 PMTs in the water tank surrounding the Gerda cryostat which contains the germanium crystals. The muon veto operated stably for 806 days where only 2 PMTs were lost. The rate however is modulated by the Cngs neutrino beam and the atmospheric temperature effect, both will be presented in this talk.

  19. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures

    CERN Document Server

    Garion, C; Koettig, T; Machiocha, W; Morrone, M

    2015-01-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the sup...

  20. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  1. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    Halle, A. von; Anderson, J.L.; Gentile, C.; Grisham, L.; Hosea, J.; Kamperschroer, J.; LaMarche, P.; Oldaker, M.; Nagy, A.; Raftopoulos, S.; Stevenson, T.

    1995-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grams of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the U.S. Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described. (orig.)

  2. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    von Halle, A.; Gentile, C.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grains of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes- the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the US Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described

  3. A Taxonomy of Medical Uncertainties in Clinical Genome Sequencing

    Science.gov (United States)

    Han, Paul K. J.; Umstead, Kendall L.; Bernhardt, Barbara A.; Green, Robert C.; Joffe, Steven; Koenig, Barbara; Krantz, Ian; Waterston, Leo B.; Biesecker, Leslie G.; Biesecker, Barbara B.

    2017-01-01

    Purpose Clinical next generation sequencing (CNGS) is introducing new opportunities and challenges into the practice of medicine. Simultaneously, these technologies are generating uncertainties of unprecedented scale that laboratories, clinicians, and patients are required to address and manage. We describe in this report the conceptual design of a new taxonomy of uncertainties around the use of CNGS in health care. Methods Interviews to delineate the dimensions of uncertainty in CNGS were conducted with genomics experts, and themes were extracted in order to expand upon a previously published three-dimensional taxonomy of medical uncertainty. In parallel we developed an interactive website to disseminate the CNGS taxonomy to researchers and engage them in its continued refinement. Results The proposed taxonomy divides uncertainty along three axes: source, issue, and locus, and further discriminates the uncertainties into five layers with multiple domains. Using a hypothetical clinical example, we illustrate how the taxonomy can be applied to findings from CNGS and used to guide stakeholders through interpretation and implementation of variant results. Conclusion The utility of the proposed taxonomy lies in promoting consistency in describing dimensions of uncertainty in publications and presentations, to facilitate research design and management of the uncertainties inherent in the implementation of CNGS. PMID:28102863

  4. Surrey Ion Beam Centre: the EPSRC MRF for ion beam applications - 01002

    International Nuclear Information System (INIS)

    Webb, R.P.

    2016-01-01

    The SIBC (Surrey Ion Beam Centre) is an element of the Virtual Ion Beam Centre that coordinates 3 U.K. experimental facilities: SIBC (University of Surrey) for implantation and ion beam applications, Miami and MEIS facility (University of Huddersfield) and gamma ray and neutron irradiation emulation facility (University of Manchester). The SIBC works actively with industry, developing bespoke processes and services, particularly for the photonics industry and provides ion beam facilities to about 20 companies across the world. It operates a stringent quality control program and is one of the few ion beam laboratories in the world to operate under ISO 9001 certification. The equipment of SIBC is presented and some applications of ion beam analysis concerning the identification of gunshot residues, the determination of the origin of a painting, the analysis of proteins are described. Different techniques such as PIXE (Particle Induced X-ray Emission), RBS (Rutherford Backscattering Spectroscopy), NRA (Nuclear Reaction Analysis), SIMS (Secondary Ion Mass Spectrometry) are also explained in the slides of the presentation that have been added at the end of the paper

  5. Transverse beam splitting made operational: Key features of the multiturn extraction at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    A. Huschauer

    2017-06-01

    Full Text Available Following a successful commissioning period, the multiturn extraction (MTE at the CERN Proton Synchrotron (PS has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.

  6. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  7. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    International Nuclear Information System (INIS)

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology

  8. LHC Beam Instrumentation: Beam Position and Intensity Measurements (1/3)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  9. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  10. Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction

    International Nuclear Information System (INIS)

    Sobol, A.; Ellison, J.A.

    2003-01-01

    We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique

  11. Beam control and matching for the transport of intense beams

    International Nuclear Information System (INIS)

    Li, H.; Bernal, S.; Godlove, T.; Huo, Y.; Kishek, R.A.; Haber, I.; Quinn, B.; Walter, M.; Zou, Y.; Reiser, M.; O'Shea, P.G.

    2005-01-01

    The transport of intense beams for heavy-ion inertial fusion demands tight control of beam characteristics from the source to the target. The University of Maryland Electron Ring (UMER), which uses a low-energy (10 keV), high-current electron beam to model the transport physics of a future recirculator driver, employs real-time beam characterization and control in order to optimize beam quality throughout the strong focusing lattice. We describe the main components and operation of the diagnostics/control system in UMER. It employs phosphor screens, real-time image analysis, quadrupole scans and electronic skew correctors. The procedure is not only indispensable for optimum transport over a long distance, but also provides important insights into the beam physics involved. We discuss control/optimization issues related to beam steering, quadrupole rotation errors and rms envelope matching

  12. High-intensity pulsed beam source with tunable operation mode

    Science.gov (United States)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  13. Physics Programme for ICARUS after 2012

    CERN Document Server

    Rubbia, C

    2011-01-01

    The ICARUS experiment is expected to continue CNGS beam data taking in the Hall B of the LNGS during most of 2011 and 2012 to produce a few ντ events with large pt electron signatures and to search for sterile neutrino production, covering the recent anti-neutrino anomaly presented by MiniBooNE. It must be however remarked that the surviving MiniBooNE signal is nowadays associated to anti-neutrino production. A long anti-neutrino run at the CNGS, although apriori possible, is probably unrealistic because of the consequences on compatibility with OPERA and the corresponding reductions in the event rate. A considerable numbers of other neutrino related “anomalies” have grown the interest for the possible existence of exciting new physics beyond the Standard Model for values of Δm2 in the order of 1 eV2. The presence of such a phenomena, presumably due to sterile neutrinos, if confirmed, will have inevitable contributions also to the Dark Matter problem. Other hints for “anomalies” may even indicate t...

  14. Safe LHC beam commissioning

    International Nuclear Information System (INIS)

    Uythoven, J.; Schmidt, R.

    2007-01-01

    Due to the large amount of energy stored in magnets and beams, safety operation of the LHC is essential. The commissioning of the LHC machine protection system will be an integral part of the general LHC commissioning program. A brief overview of the LHC Machine Protection System will be given, identifying the main components: the Beam Interlock System, the Beam Dumping System, the Collimation System, the Beam Loss Monitoring System and the Quench Protection System. An outline is given of the commissioning strategy of these systems during the different commissioning phases of the LHC: without beam, injection and the different phases with stored beam depending on beam intensity and energy. (author)

  15. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  16. Initial operation of the LEDA beam-induced fluorescence diagnostic

    International Nuclear Information System (INIS)

    Kamperschroer, James H.; Gurd, Pamela A.; Martinez, Derwin G.; Gilpatrick, J. Douglas; Shurter, R. Bradford; Stettler, Matthew W.; Madsen, David W.; O'Hara, James F.; Sage, Joan; Schaefer, Timothy L.

    2000-01-01

    A diagnostic based on beam-induced fluorescence has been developed and used to examine the expanded beam in the High-Energy Beam Transport (HEBT) section of the Low Energy Demonstration Accelerator (LEDA). The system consists of a camera, a gas injector, a spectrometer, and a control system. Gas is injected to provide a medium for the beam to excite, the camera captures the resulting image of the fluorescing gas, and the spectrometer measures the spectrum of the emitted light. EPICS was used to control the camera and acquire and store images. Data analysis is presently being performed offline. A Kodak DCS420m professional CCD camera is the primary component of the optical system. InterScience, Inc. modified the camera with the addition of a gain of 4000 image intensifier, thereby producing an intensified camera with a sensitivity of ∼0.5 milli-lux. Light is gathered with a 1 '' format, 16-160 mm, Computar zoom lens. This lens is attached to the camera via a Century Precision Optics relay lens. Images obtained using only hydrogen from the beam stop exhibited features not yet understood. Images with good signal-to-noise ratio were obtained with the injection of sufficient nitrogen to raise the HEBT pressure to 2-8x10 -6 torr. Two strong nitrogen lines, believed to be of the first negative group of N 2 + , were identified at 391 and 428 nm

  17. A Beam Quality Monitor for LHC Beams in the SPS

    CERN Document Server

    Papotti, G

    2008-01-01

    The SPS Beam Quality Monitor (BQM) system monitors the longitudinal parameters of the beam before extraction to the LHC to prevent losses and degradation of the LHC luminosity by the injection of low quality beams. It is implemented in two priority levels. At the highest level the SPS-LHC synchronization and global beam structure are verified. If the specifications are not met, the beam should be dumped in the SPS before extraction. On the second level, individual bunch position, length and stability are checked for beam quality assessment. Tolerances are adapted to the mode of operation and extraction to the LHC can also be inhibited. Beam parameters are accessed by acquiring bunch profiles with a longitudinal pick up and fast digital oscilloscope. The beam is monitored for instabilities during the acceleration cycle and thoroughly checked a few ms before extraction for a final decision on extraction interlock. Dedicated hardware and software components implementing fast algorithms are required. In this pape...

  18. Beam based systems and controls

    CERN Document Server

    Jacquet, D

    2012-01-01

    This presentation will give a review from the operations team of the performance and issues of the beam based systems, namely RF, ADT, beam instrumentation, controls and injection systems. For each of these systems, statistics on performance and availability will be presented with the main issues encountered in 2012. The possible improvements for operational efficiency and safety will be discussed, with an attempt to answer the question "Are we ready for the new challenges brought by the 25ns beam and increased energy after LSI? ".

  19. The Colliding Beams Sequencer

    International Nuclear Information System (INIS)

    Johnson, D.E.; Johnson, R.P.

    1989-01-01

    The Colliding Beam Sequencer (CBS) is a computer program used to operate the pbar-p Collider by synchronizing the applications programs and simulating the activities of the accelerator operators during filling and storage. The Sequencer acts as a meta-program, running otherwise stand alone applications programs, to do the set-up, beam transfers, acceleration, low beta turn on, and diagnostics for the transfers and storage. The Sequencer and its operational performance will be described along with its special features which include a periodic scheduler and command logger. 14 refs., 3 figs

  20. Novel utilization of 3D technology and the hybrid operating theatre: Peri-operative assessment of posterior sterno-clavicular dislocation using cone beam CT

    International Nuclear Information System (INIS)

    Crowhurst, James A; Campbell, Douglas; Whitby, Mark; Pathmanathan, Pavthrun

    2013-01-01

    A patient with a medial and posterior dislocation of the right sterno-clavicular (SC) joint and displacement of the trachea and brachiocephalic artery by the medial head of the clavicle underwent general anaesthetic in the operating theatre for an open reduction procedure. The surgeon initially attempted a closed reduction, but this required imaging to check SC alignment. The patient was transferred to an adjacent hybrid operating theatre for imaging. Cone beam computed tomography (CBCT) was performed, which successfully demonstrated a significant reduction in the dislocation of the SC joint. The trachea and brachiocephalic artery were no longer compressed or displaced. This case study demonstrates an alternative to the patient being transferred to the medical imaging department for multi-slice CT. It also describes a novel use of the hybrid operating theatre and its CBCT capabilities

  1. Novel utilization of 3D technology and the hybrid operating theatre: Peri-operative assessment of posterior sterno-clavicular dislocation using cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Crowhurst, James A; Campbell, Douglas; Whitby, Mark; Pathmanathan, Pavthrun [The Prince Charles Hospital, Rode Road, Chermside, Queensland (Australia)

    2013-06-15

    A patient with a medial and posterior dislocation of the right sterno-clavicular (SC) joint and displacement of the trachea and brachiocephalic artery by the medial head of the clavicle underwent general anaesthetic in the operating theatre for an open reduction procedure. The surgeon initially attempted a closed reduction, but this required imaging to check SC alignment. The patient was transferred to an adjacent hybrid operating theatre for imaging. Cone beam computed tomography (CBCT) was performed, which successfully demonstrated a significant reduction in the dislocation of the SC joint. The trachea and brachiocephalic artery were no longer compressed or displaced. This case study demonstrates an alternative to the patient being transferred to the medical imaging department for multi-slice CT. It also describes a novel use of the hybrid operating theatre and its CBCT capabilities.

  2. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures.

    Science.gov (United States)

    Garion, C.; Dufay-Chanat, L.; Koettig, T.; Machiocha, W.; Morrone, M.

    2015-12-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented.

  3. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garion, C; Dufay-Chanat, L; Koettig, T; Machiocha, W; Morrone, M

    2015-01-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb -1 ). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented. (paper)

  4. TFTR neutral beam D-T gas injection system operational experiences of the first two years

    International Nuclear Information System (INIS)

    Oldaker, M.E.; Lawson, J.E.; Stevenson, T.N.; Kamperschroer, J.H.

    1995-01-01

    The TFTR Neutral Beam Tritium Gas Injection System (TGIS) has successfully performed tritium operations since December 1993. TGIS operation has been reliable, with no leaks to the secondary containment to date. Notable operational problems include throughput leaks on fill, exit and piezoelectric valves. Repair of a TGIS requires replacement of the assembly, involving TFTR downtime and extensive purging, since the TGIS assembly is highly contaminated with residual tritium, and is located within secondary containment. Modifications to improve reliability and operating range include adjustable reverse bias voltage to the piezoelectric valves, timing and error calculation changes to tune the PLC and hardwired timing control, and exercising piezoelectric valves without actually pulsing gas prior to use after extended inactivity. A pressure sensor failure required the development of an open loop piezoelectric valve drive control scheme, using a simple voltage ramp to partially compensate for declining plenum pressure. Replacement of TGIS's have been performed, maintaining twelve system tritium capability as part of scheduled project maintenance activity

  5. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERA-p beam-loss-monitor system

    International Nuclear Information System (INIS)

    Wittenburg, K.

    1994-01-01

    The beam-loss-monitors (BLMs) in the HERA-Proton-ring (HERAp) must fulfil the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System. (orig.)

  6. CLIC Drive Beam Position Monitor

    CERN Document Server

    Smith, S; Gudkov, D; Soby, L; Syratchev, I

    2011-01-01

    CLIC, an electron-positron linear collider proposed to probe the TeV energy scale, is based on a two-beam scheme where RF power to accelerate a high energy luminosity beam is extracted from a high current drive beam. The drive beam is efficiently generated in a long train at modest frequency and current then compressed in length and multiplied in frequency via bunch interleaving. The drive beam decelerator requires >40000 quadrupoles, each holding a beam position monitor (BPM). Though resolution requirements are modest (2 microns) these BPMs face several challenges. They must be compact and inexpensive. They must operate below waveguide cutoff to insure locality of position signals, ruling out processing at the natural 12 GHz bunch spacing frequency. Wakefields must be kept low. We find compact conventional stripline BPM with signals processed below 40 MHz can meet requirements. Choices of mechanical design, operating frequency, bandwidth, calibration and processing algorithm are presented. Calculations of wa...

  7. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators

    Science.gov (United States)

    Galucio, A. C.; Deü, J.-F.; Ohayon, R.

    This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.

  8. Conical pinched electron beam diode for intense ion beam source

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu; Nakagawa, Yoshiro

    1982-01-01

    For the purpose of improvement of the pinched electron beam diode, the production of an ion beam by a diode with electrodes in a conical shape was studied at low voltage operation (--200 kV). The ion beam is emitted from a small region of the diode apex. The mean ion beam current density near the axis at 12 cm from the diode apex is two or three times that from an usual flat parallel diode with the same dimension and impedance. The brightness and the power brightness at the otigin are 450 MA/cm 2 sr and 0.12 TW/cm 2 sr respectively. (author)

  9. Two Methods For Simulating the Strong-Strong Beam-Beam Interaction in Hadron Colliders

    International Nuclear Information System (INIS)

    Warnock, Robert L.

    2002-01-01

    We present and compare the method of weighted macro particle tracking and the Perron-Frobenius operator technique for simulating the time evolution of two beams coupled via the collective beam-beam interaction in 2-D and 4-D (transverse) phase space. The coherent dipole modes, with and without lattice nonlinearities and external excitation, are studied by means of the Vlasov-Poisson system

  10. Beam-Beam Simulation of Crab Cavity White Noise for LHC Upgrade

    CERN Document Server

    Qiang, J; Pieloni, Tatiana; Ohmi, Kazuhito

    2015-01-01

    High luminosity LHC upgrade will improve the luminosity of the current LHC operation by an order of magnitude. Crab cavity as a critical component for compensating luminosity loss from large crossing angle collision and also providing luminosity leveling for the LHC upgrade is being actively pursued. In this paper, we will report on the study of potential effects of the crab cavity white noise errors on the beam luminosity lifetime based on strong-strong beam-beam simulations.

  11. Conditioner for a helically transported electron beam

    International Nuclear Information System (INIS)

    Wang, Changbiao.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value

  12. Conditioner for a helically transported electron beam

    International Nuclear Information System (INIS)

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value

  13. Linear beam-beam tune shift calculations for the Tevatron Collider

    International Nuclear Information System (INIS)

    Johnson, D.

    1989-01-01

    A realistic estimate of the linear beam-beam tune shift is necessary for the selection of an optimum working point in the tune diagram. Estimates of the beam-beam tune shift using the ''Round Beam Approximation'' (RBA) have over estimated the tune shift for the Tevatron. For a hadron machine with unequal lattice functions and beam sizes, an explicit calculation using the beam size at the crossings is required. Calculations for various Tevatron lattices used in Collider operation are presented. Comparisons between the RBA and the explicit calculation, for elliptical beams, are presented. This paper discusses the calculation of the linear tune shift using the program SYNCH. Selection of a working point is discussed. The magnitude of the tune shift is influenced by the choice of crossing points in the lattice as determined by the pbar ''cogging effects''. Also discussed is current cogging procedures and presents results of calculations for tune shifts at various crossing points in the lattice. Finally, a comparison of early pbar tune measurements with the present linear tune shift calculations is presented. 17 refs., 13 figs., 3 tabs

  14. The OPERA neutrino velocity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Universitaet Hamburg (Germany)

    2012-07-01

    OPERA is a long-baseline neutrino oscillation experiment designed to find tau neutrinos appearing in a pure muon neutrino beam. Recently, a measurement of the flight time of the neutrinos between the CNGS at CERN and the OPERA detector at the LNGS has been performed. It was found that the neutrinos arrive at the detector significantly earlier in time than expected if travelling at the speed of light. In this talk, the main aspects of this measurement are presented, including timing and geodesy issues and the analysis procedure. An update concerning results with a fine structured time distribution of the beam is given, as well as latest information on some additional cross checks.

  15. Paul Collier : Balancing beams

    CERN Multimedia

    2009-01-01

    As former head of AB Operations, Paul Collier and his group were in the ‘cockpit’ for the LHC’s maiden voyage - piloting the first beam around the ring. But now, as Head of the Beams Department, he will need his feet firmly on the ground in order to balance all the beam activities at CERN. "As Department Head, I’ll have less direct contact with the machines," Collier says with a hint of regret. "I’ll still obviously be very involved, but they won’t actually let me loose in front of the keyboard anymore!" As the new Head of the BE Department, Collier will be in charge of nearly 400 people, and will oversee all the beam activities, including the preparations for the longest period of beam operation in the history of CERN. In the new organization, the BE, TE and EN Departments have been grouped together in the Accelerator and Technology Sector. "‘Partnership’ is a key word for the three departments," says Collier. "The n...

  16. Visual assistance system for cyclotron operation

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Tachikawa, Toshiki; Murakami, Tohru.

    1994-01-01

    A computer-based operation system for a cyclotron which assists operators has been developed. It is the operation assistance system depending on visual sense to indicate beam parameters to operators. First, the mental model of operators at the time of beam adjustment was analyzed, and it was presumed to be composed of five partial mental models, that is, beam behavior model, feasible setting region model, parameter sensitivity model, parameter interrelation model and status map model. Next, three visual interfaces were developed. Beam trajectory is rapidly calculated and graphically displayed whenever operators change parameters. Feasible setting regions (FSR) for parameters that satisfy the beam acceptance criteria of a cyclotron are indicated. The distribution of beam current values which are the quantity for evaluating adjustment is indicated as search history. Finally, for evaluating the system effectiveness, the search time required to reach the optimum conditions was measured. In addition, the system usability was evaluated by written questionnaires. The result of experiment showed the reduction of search time by about 65%. The written questionnaires survey showed the operators highly evaluate system usability. (K.I.)

  17. JET neutral beam duct Optical Interlock

    Energy Technology Data Exchange (ETDEWEB)

    Ash, A.D.; Jones, T.T.C.; Surrey, E.; Ćirić, D.; Hall, S.I.; Young, D.; Afzal, M.; Hackett, L.; Day, I.E.; King, R.

    2015-10-15

    Highlights: • Optical Interlocks were installed on the JET NBI system as part of the EP2 upgrade. • The system protects the JET tokamak and NBI systems from thermal load damage. • Balmer-α beam emission is used to monitor the neutral beam-line pressure. • We demonstrate an improved trip delay of 2 ms compared to 50 ms before EP2. - Abstract: The JET Neutral Beam Injection (NBI) system is the most powerful neutral beam plasma heating system currently operating. Optical Interlocks were installed on the beam lines in 2011 for the JET Enhancement Project 2 (EP2), when the heating power was increased from 23 MW to 34 MW. JET NBI has two beam lines. Each has eight positive ion injectors operating in deuterium at 80 kV–125 kV (accelerator voltage) and up to 65 A (beam current). Heating power is delivered through two ducts where the central power density can be more than 100 MW/m{sup 2}. In order to deliver this safely, the beam line pressure should be below 2 × 10{sup −5} mbar otherwise the power load on the duct from the re-ionised fraction of the beam is excessive. The new Optical Interlock monitors the duct pressure by measuring the Balmer-α beam emission (656 nm). This is proportional to the instantaneous beam flux and the duct pressure. Light is collected from a diagnostic window and focused into 1-mm diameter fibres. The Doppler shifted signal is selected using an angle-tuned interference filter. The light is measured by a photo-multiplier module with a logarithmic amplifier. The interlock activation time of 2 ms is sufficient to protect the system from a fully re-ionised beam—a significant improvement on the previous interlock. The dynamic range is sufficient to see bremsstrahlung emission from JET plasma and not saturate during plasma disruptions. For high neutron flux operations the optical fibres within the biological shield can be annealed to 350 °C. A self-test is possible by illuminating the diagnostic window with a test lamp and measuring

  18. A visual assistance environment for cyclotron operation

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Murakami, Tohru; Agematsu, Takashi; Okumura, Susumu; Arakawa, Kazuo.

    1993-01-01

    A computer-based operation system for a cyclotron which assists inexperienced operators has been developed. Cyclotron start-up operations require dozens of adjustable parameters to be finely tuned to maximize extracted beam current. The human interfaces of the system provide a visual environment designed to enhance beam parameter adjustments. First, the mental model of operators is analyzed. It is supposed to be composed of five partial mental models: beam behavior model, feasible setting regions model, parameter sensitivity model, parameter mutual relation model, and status map model. Next, based on these models, three visual interfaces are developed, i.e., (1) Beam trajectory is rapidly calculated and graphically displayed whenever the operators change the cyclotron parameters. (2) Feasible setting regions (FSR) of the parameters that satisfy the cyclotron's beam acceptance criteria are indicated. (3) Search traces, being a historical visual map of beam current values, are superimposed on the FSRs. Finally, to evaluate system effectiveness, the search time required to reach maximum beam current conditions was measured. In addition, system operability was evaluated using written questionnaires. Results of the experiment showed that the search time to reach specific beam conditions was reduced by approximately 65% using these interfaces. The written questionnaires survey showed the operators highly evaluate system operability. (author)

  19. ICARUS at FNAL

    CERN Document Server

    Antonello, M; Bellini, V.; Bilokon, H.; Boffelli, F.; Bonesini, M.; Calligarich, E.; Centro, S.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Curioni, A.; Dermenev, A.; Dolfini, R.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Guber, F.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Kurepin, A.; Lagoda, J.; Mammoliti, F.; Mania, S.; Mannocchi, G.; Matveev, V.; Menegolli, A.; Meng, G.; Mills, G.B.; Montanari, C.; Noto, F.; Otwinowski, S.; Palczewski, T.J.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Potenza, R.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Segreto, E.; Stefan, D.; Stepaniak, J.; Sulej, R.; Sutera, C.M.; Tlisov, D.; Torti, M.; Van de Water, R.G.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zani, A.; Zaremba, K.

    2013-01-01

    The INFN and the ICARUS collaboration originally developed the technology of the LAr-TPC. Located the underground LNGS Hall-B, the ICARUS T600 detector has been performed over three years with remarkable detection efficiency featuring a smooth operation, high live time, and high reliability. About 3000 CNGS neutrino events have been collected and are being actively analyzed. ICARUS will now be moved to CERN for an extensive R&D program. The T600 detector will be overhauled and complemented with a similar T150 detector. These improvements are performed in collaboration with the LBNE experiment, of which several INFN Institutions are now members. As a novelty, a SC magnetic field of about 1 T will be introduced. During 2016 it is proposed to move the experiment to FNAL where short base line neutrino beams are available, complementing the approved MicroBooNe experiment which will start operation in 2014. The ICARUS detectors at FNAL will be an important addition since, in absence of anomalies, the signals of...

  20. Beam feasibility study of a collimator with in-jaw beam position monitors

    Science.gov (United States)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  1. The Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    Grunder, H.A.; Bisognano, J.J.; Diamond, W.I.; Hartline, B.K.; Leemann, C.W.; Mougey, J.; Sundelin, R.M.; York, R.C.

    1987-01-01

    On February 13, 1987, construction started on the Continuous Electron Beam Accelerator Facility - a 4-GeV, 200-μA, continuous beam, electron accelerator facility designed for nuclear physics research. The machine has a racetrack configuration with two antiparallel, 500-MeV, superconducting linac segments connected by beam lines to allow four passes of recirculation. The accelerating structure consists of 1500-MHz, five-cell niobium cavities developed at Cornell University. A liquid helium cryogenic system cools the cavities to an operating temperature of 2 K. Beam extraction after any three of the four passes allows simultaneous delivery of up to three beams of independently variable currents and different, but correlated, energies to the three experimental areas. Beam breakup thresholds exceed the design current by nearly two orders of magnitude. Project completion and the start of physics operations are scheduled for 1993. The total estimated cost is $255 million

  2. Spectral resolution control of acousto-optical cells operating with collimated and divergent beams

    Science.gov (United States)

    Voloshinov, Vitaly B.; Mishin, Dimitry D.

    1994-01-01

    The paper is devoted to theoretical and experimental investigations of acousto-optical interactions in crystals which may be used for spectral filtration of light in tunable acousto- optical filters. Attention is paid to spectral resolution control during operation with divergent or collimated noncoherent optical beams. In all examined cases spectral bands of anisotropic Bragg diffraction were regulated by means of novel electronical methods. Resolution control was achieved in paratellurite cells with non-collinear and quasi-collinear regimes of the diffraction. Filtration spectral bandwidths for visible light were electronically changed by a factor of 10 divided by 20 by drive electrical signals switching and drive electrical power regulations.

  3. Beam determination of quadrupole misalignments and beam position monitor biases in the SLC linac

    International Nuclear Information System (INIS)

    Lavine, T.L.; Seeman, J.T.; Atwood, W.B.; Himel, T.M.; Petersen, A.; Adolphsen, C.E.

    1988-09-01

    Misalignments of magnetic quadrupoles and biases in beam position monitors (BPMs) in the Stanford Linear Collider (SLC) linac can lead to a situation in which the beam is off-center in the disk-loaded waveguide accelerator structure. The off-center beam produces wakefields which can limit SLC performance by causing unacceptably large emittance growth. We present a general method for determining quadrupole misalignments and BPM biases in the SLC linac by using beam trajectory measurements. The method utilizes both electron and positron beams on opposite rf cycles in the same linac lattice to determine simultaneously magnetic quadrupole misalignments and BPM biases. The two-beam trajectory data may be acquired without interrupting SLC colliding beam operations. 2 refs., 5 figs

  4. Advanced Light Source beam diagnostics systems

    International Nuclear Information System (INIS)

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed

  5. The OPERA Long Baseline Experiment: Status and First Results

    CERN Document Server

    Duchesneau, Dominique

    2008-01-01

    OPERA (Oscillation Project with Emulsion tRacking Apparatus)is an international collaboration between Europe and Asia, aiming to give the first direct proof of tau neutrino appearance in a pure muon neutrino beam, in order to validate the hypothesis for atmospheric neutrino oscillations. The first european long baseline neutrino beam called CNGS is produced at CERN and sent in the direction of the Gran Sasso underground laboratory 730 km away, where the OPERA detector is located. Since 2006 the electronic detector part is fully commissioned and running. Cosmic ray events have been recorded on a regular basis and the first neutrino beam events have been observed in the target elements made of very precise emulsion films and lead sheets during the last run in autumn 2007. This paper reviews the status of the detector, the beam performances, the first results from the neutrino event analysis and the prospects.

  6. Refined Calculation of Beam Dynamics During UMER Injection

    CERN Document Server

    Bai, Gang; Godlove, Terry; Haber, Irving; Kishek, Rami A; Quinn, Bryan; Reiser, Martin; Thangaraj, Jayakar C T; Walter, Mark

    2005-01-01

    The University of Maryland Electron Ring (UMER) is built as a low-cost testbed for intense beam physics for benefit of larger ion accelerators. The beam intensity is designed to be variable, spanning the entire range from low current operation to highly space-charge-dominated transport. The ring has recently been closed and multi-turn commissioning has begun. Although we have conducted many experiments at high space charge during UMER construction, lower-current beams have become quite useful in this commissioning stage for assisting us with beam steering, measurement of phase advance, etc. One of the biggest challenges of multi-turn operation of UMER is correctly operating the Y-shaped injection section, hence called the Y-section, which is specially designed for UMER multi-turn operation. It is a challenge because the system requires several quadrupoles and dipoles in a very stringent space, resulting in mechanical, electrical, and beam control complexities. This paper presents a simulation study of the bea...

  7. Observations and open questions in beam-beam interactions

    International Nuclear Information System (INIS)

    Sen, Tanaji

    2010-01-01

    The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.

  8. Measurement of beam energy spread in a space-charge dominated electron beam

    Directory of Open Access Journals (Sweden)

    Y. Cui

    2004-07-01

    Full Text Available Characterization of beam energy spread in a space-charge dominated beam is very important to understanding the physics of intense beams. It is believed that coupling between the transverse and longitudinal directions via Coulomb collisions will cause an increase of the beam longitudinal energy spread. At the University of Maryland, experiments have been carried out to study the energy evolution in such intense beams with a high-resolution retarding field energy analyzer. The temporal beam energy profile along the beam pulse has been characterized at the distance of 25 cm from the anode of a gridded thermionic electron gun. The mean energy of the pulsed beams including the head and tail is reported here. The measured rms energy spread is in good agreement with the predictions of the intrabeam scattering theory. As an application of the beam energy measurement, the input impedance between the cathode and the grid due to beam loading can be calculated and the impedance number is found to be a constant in the operation region of the gun.

  9. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  10. Experimental observations and theoretical models for beam-beam phenomena

    International Nuclear Information System (INIS)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10 10 -10 11 and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented

  11. Beam-plasma discharge in a Kyoto beam-plasma-ion source

    International Nuclear Information System (INIS)

    Ishikawa, J.; Takagi, T.

    1983-01-01

    A beam-plasma type ion source employing an original operating principle has been developed by the present authors. The ion source consists of an ion extraction region with an electron gun, a thin long drift tube as the plasma production chamber, and a primary electron beam collector. An electron beam is effectively utilized for the dual purpose of high density plasma production as a result of beam-plasma discharge, and high current ion beam extraction with ion space-charge compensation. A high density plasma of the order of 10 11 --10 13 cm -3 was produced by virtue of the beam-plasma discharge which was caused by the interaction between a space-charge wave on the electron beam and a high frequency plasma wave. The plasma density then produced was 10 2 --10 3 times the density produced only by collisional ionization by the electron beam. In order to obtain a stable beam-plasma discharge, a secondary electron beam emitted from the electron collector should be utilized. The mechanism of the beam-plasma discharge was analyzed by use of a linear theory in the case of the small thermal energy of the electron beam, and by use of a quasilinear theory in the case of the large thermal energy. High current ion beams of more than 0.1 A were extracted even at a low extraction voltage of 1--5 kV

  12. A beam position feedback system for beam lines at the photon factory

    International Nuclear Information System (INIS)

    Katsura, T.; Kamiya, Y.; Haga, K.; Mitsuhashi, T.

    1987-01-01

    The beam position of the synchrotron radiation produced from the Storage Ring was stabilized by a twofold position feedback system. A digital feedback system was developed to suppress the diurnal beam movement (one cycle of sin-like drifting motion per day) which became a serious problem in low-emittance operation. The feedback was applied to the closed-orbit-distortion (COD) correction system in order to cancel the position variation at all the beam lines proportionately to the variation monitored at one beam line. An analog feedback system is also used to suppress frequency components faster than the slow diurnal movement

  13. An example of enhancement of a non-classical feature of a light beam by mixing with another classical light beam using a beam splitter

    International Nuclear Information System (INIS)

    Prakash, Hari; Mishra, Devendra Kumar

    2005-01-01

    We present here an example where a non-classical feature of a light beam is enhanced simply by mixing with another classical coherent light beam using a beam splitter. This non-classical feature is amplitude-squared squeezing of a Gaussian light beam expressed by a negative value of Y e or a negative value of the normalized quantity W e which can become more negative on enhancement. Here, these values comprise the density, annihilation and creation operators, respectively

  14. Cooled heavy ion beams at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Klepper, O.; Nolden, F.; Reich, H.; Schlitt, B.; Spaedtke, P.; Winkler, T.

    1996-01-01

    The storage ring ESR has been used in various operational modes for experiments with electron cooled heavy ion beams. Besides the standard storage mode including injection and beam accumulation the deceleration of highly charged ions has been demonstrated. Beams of highly charged ions have been injected and accumulated and finally decelerated to a minimum energy of 50 MeV/u. An ultraslow extraction method using charge changing processes is now also available for cooled beams of highly charged ions. For in ring experiments the internal gas jet and the cold electron beam of the cooling system are applied as targets. High precision mass spectrometry by Schottky noise detection has been demonstrated. Operation at transition energy has been achieved with cooled beams opening the field for experiments which require an isochronous revolution of the ions. (orig.)

  15. WORKSHOP: Crystalline beams

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Following pioneer work by specialists at the Soviet Novosibirsk Laboratory some ten years ago, interest developed in the possibility of 'freezing' ion beams in storage rings by pushing cooling (to smooth out beam behaviour) to its limits, the final goal being to lock the ions into a neat crystal pattern. After advances by groups working on laser cooled ions in traps, and with several cooling rings now in operation, a workshop on crystalline ion beams was organized recently by the GSI (Darmstadt) Laboratory and held at Wertheim in Germany

  16. Challenges and Plans for Injection and Beam Dump

    Science.gov (United States)

    Barnes, M.; Goddard, B.; Mertens, V.; Uythoven, J.

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  17. A comparison in cosmetic outcome between per-operative interstitial breast implants and delayed interstitial breast implants after external beam radiotherapy

    NARCIS (Netherlands)

    Pieters, Bradley R.; Hart, Augustinus A. M.; Russell, Nicola S.; Jansen, Edwin P. M.; Peterse, Johannes L.; Borger, Jacques; Rutgers, Emiel J. Th

    2003-01-01

    Background and purpose: Interstitial implants for brachytherapy boost in the breast conserving therapy of breast cancer can be performed in two ways; implants during the tumor excision (per-operative implants) or after the external beam therapy (delayed interstitial implants). Differences in

  18. The beam transport system

    International Nuclear Information System (INIS)

    1986-01-01

    The first proton beams have been transported along the transfer beamline and the diagnostic components have thus been used and tested under real operating conditions. The various electronic systems have been linked to the control system and the equipment can now be operated from the control console. The performance of the diagnostic system for the transfer beamline is satisfactory. The beam diagnostic components for the high-energy beamlines up to the isotope production and neutron therapy vaults and the first experimental target rooms have been installed. The high-energy slits have been delivered. The scanner and harp electronics have been installed and linked to their respective components in the beamlines. The pneumatic acuator control electronics has been manufactured, installed and is operational; provision has been made for special control features of the equipment in the therapy beamline. The high-voltage bias supply for the Faraday cups has been implemented. The installation of the beam current measurement system is nearing completion although part of it is already operational. A coaxial relay multiplexer for the capacitive phase probe signals has been manufactured and installed. The diagnostic equipment for the beamlines to isotope production and neutron therapy is thus ready for operation. 4 figs

  19. Low-temperature H2-4He and H2-3He targets for operation on an electron beam

    International Nuclear Information System (INIS)

    Gol'dshtejn, V.A.; Lubyanyj, V.V.

    1981-01-01

    Structures and basic characteristics of H 2 - 4 He and H 2 - 3 He low temperature targets are given. Technique of 3 He target filling is described. Initial target cooling up to liquid 4 He temperature and its filling up take near approximately 1 h, at that 4 He flow rate equals 15 l. Repeated filling up of 4 He takes 20 min, and target filling up with 3 He - 10-15 min. Good thermal insulation of a cryostat and targets permits the 4 He target to be operated with an electron beam of a mean current of up to 0.5 μA without filling up 4 He for 70 h. At that flow rate of liquid 4 He amounts to 0.2 l/h, and liquid hydrogen - 0.04 l/h. It is concluded that H 2 - 4 He and H 2 - 3 He targets are reliable and simple in operation and permit to work with accelerated particle beams of intensity corresponding to power release >= 0.5 W without corrections for density change [ru

  20. Lepton Collider Operation With Constant Currents

    International Nuclear Information System (INIS)

    Wienands, U.

    2006-01-01

    Electron-positron colliders have been operating in a top-up-and-coast fashion with a cycle time depending on the beam life time, typically one or more hours. Each top-up involves ramping detector systems in addition to the actual filling time. The loss in accumulated luminosity may be 20-50%. During the last year, both B-Factories have commissioned a continuous-injection mode of operation in which beam is injected without ramping the detector, thus raising luminosity integration by always operating at peak luminosity. Constant beam currents also reduce thermal drift and trips caused by change in beam loading. To achieve this level of operation, special efforts were made to reduce the injection losses and also to implement gating procedures in the detectors, minimizing dead time. Beam collimation can reduce injection noise but also cause an increase in background rates. A challenge can be determining beam lifetime, important to maintain tuning of the beams

  1. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  2. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  3. Surface-ionization ion source designed for in-beam operation with the BEMS-2 isotope separator

    International Nuclear Information System (INIS)

    Bogdanov, D.D.; Voboril, J.; Demyanov, A.V.; Karnaukhov, V.A.; Petrov, L.A.

    1976-01-01

    A surface-ionization ion source designed to operate in combination with the BEMS-2 isotope separator in a heavy ion beam is described. The ion source is adjusted for the separation of rare-earth elements. The separation efficiency for 150 Dy is determined to be equal to about 20% at the ionizer temperature of 2600 deg K. The hold-up times for praseodymium, promethium and dysprosium in the ion source range from 5 to 10 sec at the ionizer temperature of 2500-2700 deg K

  4. The Two-Beam Free Electron Laser Oscillator

    CERN Document Server

    Thompson, Neil R

    2004-01-01

    A one-dimensional model of a free-electron laser operating simultaneously with two electron beams of different energies [1] is extended to an oscillator configuration. The electron beam energies are chosen so that an harmonic of the lower energy beam is at the fundamental radiation wavelength of the higher energy beam. Potential benefits over a single-beam free-electron laser oscillator are discussed.

  5. Operation of CEBAF with heavy beamloading

    International Nuclear Information System (INIS)

    Hutton, A.

    1997-01-01

    CEBAF is a 4 GeV, 200 microA five-pass recirculating superconducting electron accelerator that has been operating for nuclear physics research at full energy since November 95. The beam current has been increased to over 180 microA at 4 GeV with the maximum current in the linac over 900 microA. The superconducting cavities operate in a regime where the beam-induced voltage is comparable to the accelerating gradient. The operational limits and the issues required to maintain stable operation of the 1,497 MHz superconducting cavities will be discussed, together with the implications for the other accelerator systems. There are three experimental Halls which can run simultaneously with three interleaved 499 MHz bunch trains and RF separators. Operation with simultaneous beams to two Halls is now routine, and simultaneous three beam operation has been demonstrated. The maximum design current per bunch train (120 microA) has been achieved. Hall B eventually requires beam currents as low as 1 nA (200 pA has been delivered) simultaneous with delivery of up to 200 microA to the other Halls. The required beam current ratio of 10,000 has been achieved; development of 1 nA beam position monitors continues

  6. Prebunched-beam free electron maser

    Science.gov (United States)

    Arbel, M.; Ben-Chaim, D.; Cohen, M.; Draznin, M.; Eichenbaum, A.; Gover, Abraham; Kleinman, H.; Kugel, A.; Pinhasi, Yosef; Witman, S.; Yakover, Y. M.

    1994-05-01

    The development status of a prebunched FEM is described. We are developing a 70 KeV FEM to allow high gain wideband operation and to enable variation of the degree of prebunching. We intend to investigate its operation as an amplifier and as an oscillator. Effects of prebunching, frequency variation, linear and nonlinear effects, will be investigated. The prebuncher consists of a Pierce e-gun followed by a beam modulating section. The prebunched beam is accelerated to 70 KeV and injected into a planar wiggler containing a waveguide. The results obtained to date will be presented. These include: characterization of the e-gun, e-beam transport to and through the wiggler, use of field modifying permanent magnets near the entrance and along the wiggler to obtain good e-beam transport through the wiggler, waveguide selection and characterization.

  7. Water-cooled beam line components at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1981-01-01

    The beam line components that comprise the main experimental beam at the Clinton P. Anderson Meson Physics Facility (LAMPF) have been operating since February 1976. This paper will define the functions of the primary water-cooled elements, their design evolution, and our operating experience to the present time

  8. Implementation of EPICS based Control System for Radioisotope Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.

  9. Development of BPM/BLM DAQ System for KOMAC Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Song, Young-Gi; Kim, Jae-Ha; Yun, Sang-Pil; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2016-10-15

    The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The KOMAC installed 10 beam lines, 5 for 20-MeV beams and 5 for 100-MeV beams. The proton beam is transmitted to two target room. The KOMAC has been operating two beam lines, one for 20 MeV and one for 100 MeV. New beam line, RI beam line is under commissioning. A Data Acquisition (DAQ) system is essential to monitor beam signals in an analog front-end circuitry from BPM and BLM at beam lines. A data acquisition (DAQ) system is essential to monitor beam signals in an analog front-end circuitry from BPM and BLM at beam lines. The DAQ digitizes beam signal and the sampling is synchronized with a reference signal which is an external trigger for beam operation. The digitized data is accessible by the Experimental Physics and Industrial Control System (EPICS)-based control system, which manages the whole accelerator control. The beam monitoring system integrates BLM and BPM signals into the control system and offers realtime data to operators. The IOC, which is implemented with Linux and a PCI driver, supports data acquisition as a very flexible solution.

  10. Superconducting rf and beam-cavity interactions

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1987-01-01

    Beam-cavity interactions can limit the beam quality and current handling capability of linear and circular accelerators. These collective effects include cumulative and regenerative transverse beam breakup (BBU) in linacs, transverse multipass beam breakup in recirculating linacs and microtrons, longitudinal and transverse coupled-bunch instabilities in storage rings, and a variety of transverse and longitudinal single-bunch phenomena (instabilities, beam breakup, and energy deposition). The superconducting radio frequency (SRF) environment has a number of features which distinguish it from room temperature configuration with regard to these beam-cavity interactions. Typically the unloaded Qs of the lower higher order modes (HOM) are at the 10 9 level and require significant damping through couplers. High gradient CW operation, which is a principal advantage of SRF, allows for better control of beam quality, which for its preservation requires added care which respect to collective phenomena. Gradients are significantly higher than those attainable with copper in CW operation but remain significantly lower than those obtainable with pulsed copper cavities. Finally, energy deposition by the beam into the cavity can occur in a cryogenic environment. In this note those characteristics of beam-cavity interactions which are of particular importance for superconducting RF cavities are highlighted. 6 refs., 4 figs

  11. Beam dynamics studies of the photo-injector in low-charge operation mode for the ERL test facility at IHEP

    International Nuclear Information System (INIS)

    Jiao Yi; Xiao Ouzheng

    2014-01-01

    The energy recovery linac test facility (ERL-TF), which is a compact ERL-FEL (free electron laser) two-purpose machine, was proposed at the Institute of High Energy Physics, Beijing. As one important component of the ERL-TF, the photo-injector that started with a photocathode direct-current gun has been designed. In this paper, optimization of the injector beam dynamics in low-charge operation mode is performed with iterative scans using Impact-T. In addition, the dependencies between the optimized beam quality and the initial offset at cathode and element parameters are investigated. The tolerance of alignment and rotation errors is also analyzed. (authors)

  12. Recent Emulsion Technologies

    International Nuclear Information System (INIS)

    Ariga, A.

    2011-01-01

    Emulsion technologies are very much developed in the last decade and still developing in both the emulsion gel and the data taking. Emulsion detectors are suitable for the neutrino experiments because they can distinguish all 3 flavors of neutrino. The OPERA experiment, a recent pillar in the emulsion experiments aiming at the first observation of the neutrino oscillation in CNGS beam in appearance mode, is running, showing the good capability to separate 3 flavor neutrino interactions. In this poster, the recent developments and prospects of the emulsions for the next generation experiments are reported.

  13. Beaconless operation for optimal laser beam propagation through turbulent atmosphere

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-09-01

    Corruption of the wavefront, beam wondering and power density degradation at the receiving end are the effects typically observed at laser beam propagation through turbulent atmosphere. Compensation of these effects can be achieved if the reciprocal conditions for the propagating wave are satisfied along the propagation range. Practical realization of these conditions requires placing a localized beacon at the receiving end of the range and high-performance adaptive optics system (AOS). The key condition for an effective performance of AOS is a high value of the reciprocal component in the outgoing wave, since only this component is getting compensated after propagating turbulence perturbed path. The nonreciprocal components that is present in the wave directed toward the target is caused by three factors (detailed in this paper) that determine the partial restoration of the structure of the beacon beam. Thus solution of a complex problem of focusing the laser beam propagating through turbulent media can be achieved for the share of the outgoing wave that has a reciprocal component. This paper examines the ways and means that can be used in achieving the stated goal of effective laser power delivery on the distant image-resolved object.

  14. Operation of the accelerator

    International Nuclear Information System (INIS)

    GANIL Team

    1992-01-01

    The operation of the GANIL accelerator during 1991 and the first half of 1992 is reported. Results obtained with new beams, metallic beams and the first tests with the new injector system using an ECR source installed on a 100 kV platform are also given. Statistics of operation and beam characteristics are presented. The computer control system is also discussed. (K.A.) 7 refs.; 3 figs.; 8 tabs

  15. Testing beam-induced quench levels of LHC superconducting magnets

    CERN Document Server

    Auchmann, B.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P.P.; Hofle, W.; Holzer, E.B.; Lechner, A.; Del Busto, E. Nebot; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-25

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy depositio...

  16. AECL IMPELA electron beam industrial irradiators

    International Nuclear Information System (INIS)

    Labrie, J.P.; Drewell, N.H.; Ebrahim, N.A.; Lawrence, C.B.; Mason, V.A.; Ungrin, J.; White, B.F.

    1989-01-01

    A family of industrial irradiators is being developed by AECL to cover an electron-beam energy range from 5 to 18 MeV at beam powers between 20 and 250 kW. The IMPELA family of irradiators is designed for push button, reliable operation. The major irradiator components are modular, allowing for later upgrades to meet increased demands in either electron or X-ray mode. Interface between the control system, irradiator availability and dose quality assurance is in conformance with the most demanding specifications. The IMPELA irradiators use a klystron-driven, standing-wave, L-band accelerator structure with direct injection from a rugged, triode electron gun. Direct control of the accelerating field during the beam pulse ensures constant output beam energy, independent of beam power. The first member of the family, the IMPELA 10/50 (10 MeV, 50 kW), is in the final stages of assembly at Chalk River Nuclear Laboratories. The IMPELA 10/50 is constructed around a 3.25 m long, high-power-capacity accelerator structure operated at a duty factor of 5%. Beam loading exceeds 60%. The rf power is provided by a 2 MW/150 kW modulated-anode klystron protected from load mismatches by a circulator. This prototype will be used to demonstrate the reliability and dose uniformity targets of the IMPELA family. Full beam operation of the IMPELA 10/50 is scheduled for early 1989. (orig.)

  17. Experience with Kicker Beam Coupling Reduction Techniques

    CERN Document Server

    Gaxiola, Enrique; Caspers, Friedhelm; Ducimetière, Laurent; Kroyer, Tom

    2005-01-01

    SPS beam impedance is still one of the worries for operation with nominal LHC beam over longer periods, once the final configuration will be installed in 2006. Several CERN SPS kickers suffer from significant beam induced ferrite heating. In specific cases, for instance beam scrubbing, the temperature of certain ferrite yokes went beyond the Curie point. Several retrofit impedance reduction techniques have been investigated theoretically and with practical tests. We report on experience gained during the 2004 SPS operation with resistively coated ceramic inserts in terms of kicker heating, pulse rise time, operating voltage, and vacuum behaviour. For another technique using interleaved metallic stripes we observed significant improvements in bench measurements. Advantages and drawbacks of both methods and potential combinations of them are discussed and simulation as well as measured data are shown. Prospects for further improvements beyond 2006 are briefly outlined.

  18. Narrow linewidth operation of a spectral beam combined diode laser bar.

    Science.gov (United States)

    Zhu, Zhanda; Jiang, Menghua; Cheng, Siqi; Hui, Yongling; Lei, Hong; Li, Qiang

    2016-04-20

    Our experiment is expected to provide an approach for realizing ultranarrow linewidth for a spectral beam combined diode laser bar. The beams of a diode laser bar are combined in a fast axis after a beam transformation system. With the help of relay optics and a transform lens with a long focal length of 1.5 m, the whole wavelength of a spectral combined laser bar can be narrowed down to 0.48 nm from more than 10 nm. We have achieved 56.7 W cw from a 19-element single bar with an M2 of 1.4  (in horizontal direction)×11.6  (in vertical direction). These parameters are good evidence that all the beams from the diode laser bar are combined together to increase the brightness.

  19. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  20. Modification of beam lines at VEC

    Energy Technology Data Exchange (ETDEWEB)

    Shoor, Bivas; Chakraborty, P S; Mallik, C; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1997-12-01

    From the experience of light ion beam transportation through the Variable Energy Cyclotron beam line, it was observed that the beam line performance has to be improved in view of heavy ion acceleration program at the centre. The aim of this work was to study the feasibility of reducing the number of operational parameters without hampering the beam transmission and at the same time, to improve the vacuum of the beam line by reducing the hardware 2 refs., 1 fig.

  1. Radiation and shielding around beam absorbers

    International Nuclear Information System (INIS)

    Hurkmans, A.; Maas, R.

    1978-12-01

    During operational conditions it is anticipated that a fair amount of the total available beam power is dumped in either the slit system on one of the beam dumps. Thses beam absorbers therefore become strong radioactive sources. The radiation level due to the absorption of a 100 kW electron beam is estimated and the problem of residual activity is treated. Proposed shielding materials are discussed. (C.F.)

  2. A rotating and warping projector/backprojector for fan-beam and cone-beam iterative algorithm

    International Nuclear Information System (INIS)

    Zeng, G.L.; Hsieh, Y.L.; Gullberg, G.T.

    1994-01-01

    A rotating-and-warping projector/backprojector is proposed for iterative algorithms used to reconstruct fan-beam and cone-beam single photon emission computed tomography (SPECT) data. The development of a new projector/backprojector for implementing attenuation, geometric point response, and scatter models is motivated by the need to reduce the computation time yet to preserve the fidelity of the corrected reconstruction. At each projection angle, the projector/backprojector first rotates the image volume so that the pixelized cube remains parallel to the detector, and then warps the image volume so that the fan-beam and cone-beam rays are converted into parallel rays. In the authors implementation, these two steps are combined so that the interpolation of voxel values are performed only once. The projection operation is achieved by a simple weighted summation, and the backprojection operation is achieved by copying weighted projection array values to the image volume. An advantage of this projector/backprojector is that the system point response function can be deconvolved via the Fast Fourier Transform using the shift-invariant property of the point response when the voxel-to-detector distance is constant. The fan-beam and cone-beam rotating-and-warping projector/backprojector is applied to SPECT data showing improved resolution

  3. Testing beam-induced quench levels of LHC superconducting magnets

    Directory of Open Access Journals (Sweden)

    B. Auchmann

    2015-06-01

    Full Text Available In the years 2009–2013 the Large Hadron Collider (LHC has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012 instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  4. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  5. The development and operation of a method for the remote determination of X-ray beam parameters used in dental radiography

    International Nuclear Information System (INIS)

    Hewitt, J.M.

    1984-07-01

    The method described is a part of the Dental Monitoring Service operated by the Board in the UK for the assessment of radiation protection in dental practice. This postal service, which provides a comprehensive survey of dental X-ray sets and radiographic procedures, is undertaken by means of a questionnaire, film cassettes for exposure to the X-ray set and a personal monitoring component to check operator doses. The film cassettes and the methods by which the X-ray beam parameters are obtained are described in detail. The cassettes use radiation monitoring film to realise, by means of measurements of relative transmission through selected copper filters, the extended dynamic range of exposure necessary for accurate indication of the operating kilovoltage and total beam filtration. The standard of the X-ray unit with regard to the relevant regulations and code of practice can then be assessed, and, from the values of radiation dose determined for chosen exposure times, exposure settings for optimum quality radiographs can be recommended where appropriate. Although designed primarily for dental X-ray units, use of the film cassette package may be extended, with suitable calibration, to general diagnostic X-ray survey measurements. (author)

  6. Glow-discharge-created electron beams and beam-excited lasers

    International Nuclear Information System (INIS)

    Meyer, J.D.

    1989-01-01

    Efficiently created glow discharge electron beams have been developed and studied in detail. The beam mode of operation occurs in the abnormal glow adjacent to the glow-to-arc transition regime. In contrast to electron beams generated in high vacuum from thermionic electron emitting sources, this type of discharge creates electrons directly in soft vacuum by secondary electron emission from cold cathode surfaces following the bombardment of the cathode surface by fast ions and neutral atoms. Factors influencing the efficient electron emission from cold cathodes are presented with emphasis on cathode materials. Sintered ceramic-metal cathodes and oxide-coated cathodes are presented, both of which can produce high power, efficiently generated, d.c. electron beams with discharge currents up to 1 amp (∼130 mA/cm 2 ) at volt ages of up to 6 kV. Novel cathode designs and discharge geometries are presented with specific emphasis on both self-focussed beams emitted from circular cathodes and line-source electron beams emitted from rectangular cathodes forming a thin sheet of electrons. Electrostatically focussed line-source electron beams are spatially characterized by experimentally measuring the effect of discharge parameters and cathode design upon the focussed beam width, focal point, and uniformity. This is achieved by scanning a current collecting detector in three dimensions in order to profile the distribution of electron beam current. Discharge electron beams are further characterized by their electron energy distribution. Measured electron flux energy distributions of transmitted beam electrons in the negative glow are compared to theoretical models. The relative effects of elastic and inelastic collisions mechanisms upon both the overall form and detailed structure of the energy distribution are discussed

  7. PC-Link historical data base system MODCOMP/IBM at link for neutral particle beam operation

    International Nuclear Information System (INIS)

    Thurgood, P.

    1989-01-01

    PC-Link is a combination of hardware and software that connects an IBM PC/AT to a MODCOMP minicomputer. It is designed as an aid to the Neutral Beam operations coordinator during injection into the DIII-D tokamak project. An IBM PC/AT is linked to 4 MODCOMP realtime acquisition systems, each of which controls 2 neutral particle beam sources. At various points in the shot sequence, data is sent to the IBM PC/AT. This data can then be integrated with the data from the other sources into tables or graphics displays for use by the Beam Coordinator. In this way, the coordinator gets realtime feedback on the relative settings and performance of the sources and can observe trends within a particular source at one location. The PC-Link is used for observing relative timing information and for post shot historical archiving. The concept of the PC-Link was originally proposed several years ago. In April 1988, in-house implementation of the link software was begun. The PC-Link receives approximately 2 Kbytes of data per source per shot. This data is converted from MODCOMP format to IBM PC format and archived to disk. The last 280 shots per source are stored to disk to observe trends. The data can be displayed in a number of formats depending upon the situation. For example, prior to a shot, the beam MODCOMPs are sent timing information from the DIII-D tokamak control system. This data is echoed on the PC in a graphical representation displaying all 8 sources. At the end of the shot, the actual running times are displayed along with the requested settings. Any subset of the Historical data may be displayed either graphically or in tables for realtime comparisons between sources. 4 figs

  8. ICARUS T600: Status and perspectives of liquid-argon technology for neutrino physics

    International Nuclear Information System (INIS)

    Raselli, G.L.

    2013-01-01

    ICARUS T600 is the largest Liquid-Argon (LAr) Time Projection Chamber (TPC) ever built: the detector, assembled underground in the Hall B of the Gran Sasso laboratory (LNGS), is collecting neutrino events with the CERN to Gran Sasso CNGS beam since May 2010. The excellent spatial and calorimetric resolutions and the three-dimensional visualization capabilities make the detector a sort of “electronic bubble chamber”: for these reasons ICARUS T600 represents a major milestone towards the realization of future LAr detectors for neutrino physics and for the search of rare events, such as the idea to use two identical LAr-TPCs in a “near-far” configuration at the foreseen new CERN-SPS neutrino beam to solve the sterile neutrino puzzle.

  9. Very-high-level neutral-beam control system

    International Nuclear Information System (INIS)

    Elischer, V.; Jacobson, V.; Theil, E.

    1981-10-01

    As increasing numbers of neutral beams are added to fusion machines, their operation can consume a significant fraction of a facility's total resources. LBL has developed a very high level control system that allows a neutral beam injector to be treated as a black box with just 2 controls: one to set the beam power and one to set the pulse duration. This 2 knob view allows simple operation and provides a natural base for implementing even higher level controls such as automatic source conditioning

  10. ICARUS report to the 126th Meeting of SPSC, June 20-21, 2017

    CERN Document Server

    Antonello, M; Bellini, V; Benetti, P; Boffelli, F; Bubak, A; Calligarich, E; Centro, S; Cesana, A; Cieslik, K; Cocco, AG; Dabrowska, A; Dermenev, A; Falcone, A; Farnese, C; Fava, A; Ferrari, A; Gibin, D; Gninenko, S; Guglielmi, A; Haranczyk, M; Holeczek, J; Janik, M; Kirsanov, M; Kisiel, J; Kochanek, I; Lagoda, J; Mania, S; Menegolli, A; Meng, G; Montanari, C; Otwinowski, S; Picchi, P; Pietropaolo, F; Plonski, P; Rappoldi, A; Raselli, GL; Rossella, M; Rubbia, C; Sala, P; Scaramelli, A; Sergiampietri, F; Stefan, D; Sulej, R; Szarska, M; Terrani, M; Torti, M; Tortorici, F; Varanini, F; Ventura, S; Vignoli, C; Wang, H; Yang, X; Zalewska, A; Zani, A; Zaremba, K

    2017-01-01

    ICARUS-T600, the biggest LAr-TPC ever realized, completed in 2013 a successful continuous three years run at LNGS, being exposed to both CNGS neutrino beam and cosmic rays. During the LNGS operation, ICARUS obtained many different technical and physical achievements proving the validity of the LAr-TPC technology. The adopted cryogenic and purification plant permitted to reach an impressive LAr purity, with less than 20 parts per trillion of oxygen-equivalent contamination, corresponding to an extremely high free electron lifetime exceeding 16 ms, a milestone for the all future LAr-TPC projects involving much higher volumes and larger electron drift paths. The recorded events demonstrated the excellent detection performance of ICARUS as a tracking device and as a homogeneous calorimeter, permitting also remarkable particle identification capabilities by the measurement of dE/dx vs. range and the determination of muon momentum by Multiple Coulomb Scattering. The collected data allowed studying with high acc...

  11. Fluka Studies of the Asynchronous Beam Dump Effects on LHC Point 6 for a 7 TeV beam

    CERN Document Server

    VERSACI, R; GODDARD, B; MEREGHETTI, A; SCHMIDT, R; VLACHOUDIS, V

    2012-01-01

    The LHC is a record-breaking machine for beam energy and intensity. An intense effort has therefore been deployed in simulating critical operational scenarios of energy deposition. Using FLUKA Monte Carlo simulations, we have investigated the effects of an asynchronous beam dump at the LHC Point 6 where beams, with a stored energy of 360 MJ, can instantaneously release up to a few J cm^{-3} in the cryogenic magnets which have a quench limit of the order of the mJ cm^{-3}. In the present paper we will describe the simulation approach, and discuss the evaluated maximum energy release onto the superconducting magnets during an asynchronous beam dump of a 7 TeV beam. We will then analyze the shielding provided by collimators installed in the area and discuss safety limits for the operation of the LHC.

  12. Water-cooled U-tube grids for continuously operated neutral-beam injectors

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Duffy, T.J.

    1979-01-01

    A design for water-cooled extractor grids for long-pulse and continuously operated ion sources for neutral-beam injectors is described. The most serious design problem encountered is that of minimizing the thermal deformation (bowing) of these slender grid rails, which have typical overall spans of 150 mm and diameters on the order of 1 mm. A unique U-tube design is proposed that offers the possibility of keeping the thermal bowing down to about 0.05 mm (about 2.0 mils). However, the design requires high-velocity cooling water at a Reynolds number of about 3 x 10 4 and an inlet pressure on the order of 4.67 x 10 6 Pa (677 psia) in order to keep the axial and circumferential temperature differences small enough to achieve the desired small thermal bowing. It appears possible to fabricate and assemble these U-tube grids out of molybdenum with high precision and with a reasonably small number of brazes

  13. Status of the studies on collective effects involving beam-beam interactions at the HL-LHC

    CERN Document Server

    Buffat, Xavier; Metral, Elias; Ribes Metidieri, Ariadna; Barranco Garcia, Javier; Goncalves Jorge, Patrik; Pieloni, Tatiana; Tambasco, Claudia; CERN. Geneva. ATS Department

    2018-01-01

    This note summarised the status of the studies on the coherent beam-beam effects in the HL-LHC project. It is shown that the obit, tune, chromaticity and dynamic β effects due to head-on and long-range beam-beam interactions are tolerable without dedicated mitigations in the baseline scenario. The stability of coherent beam-beam modes under the influence of the beam coupling impedance is evaluated, as well as the impact of the beam-beam induced tune spread on the Landau damping of single beam head-tail modes of oscillation. Since the beam stability is marginal at the end of the squeeze for the ultimate scenario, it is suggested to use the ATS optics to increase the effect of the octupoles at constant current, thus providing sufficient margins. Measurements suggesting that the transverse damper noise has to be significantly reduced to allow for operation with large beam-beam parameter are shown.

  14. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  15. Ignition Features of Plasma-Beam Discharge in Gas-Discharge Electron Gun Operation

    Directory of Open Access Journals (Sweden)

    Valery A. Tutyk

    2013-01-01

    Full Text Available The current paper presents the results of experimental researches to determine the mode features of plasma-beam discharge (PBD generation by an electron beam injected by a low-vacuum gasdischarge electron gun (LGEG with the cold cathode and hollow anode on the basis of the high-voltage glow discharge and in the range of helium pressure of P ? 10 ÷ 130 Pa. The PBD boundaries and their dependences on parameters of an electron beam are found. The influence of PBD on parameters of low-vacuum gas-discharge electron gun is revealed. It causes an avalanche increase of electron beam current and burning of plasma-beam discharge in the whole space of the vacuum chamber volume and generation of electromagnetic radiation is revealed. Achieved results will be used for implementation of various vacuum technologies in the medium of reaction gas and generated electromagnetic radiation.

  16. The Beam Instrumentation and Diagnostic Challenges for LHC Operation at high Energy

    CERN Document Server

    Jones, OR

    2014-01-01

    This contribution will present the role of beam diagnostics in facing the challenges posed by running the LHC close to its design energy of 7TeV. Machine protection will be ever more critical, with the quench level of the magnets significantly reduced, so relying heavily on the beam loss system, abort gap monitor, interlocks on the beam position and fast beam current change system. Non-invasive profile monitoring also becomes more of a challenge, with standard synchrotron light imaging limited by diffraction and rest gas ionization monitoring dominated by space charge effects. There is also a requirement to better understand beam instabilities, of which several were observed during Run I, leading to the need for synchronised bunch-by-bunch, turn-by-turn information from many distributed instrumentation systems. All of these challenges will be discussed along with the strategies adopted to overcome them.

  17. Beam stabilization at SPEAR

    International Nuclear Information System (INIS)

    Corbett, J.

    1996-01-01

    The SPEAR storage ring began routine synchrotron radiation operation with a dedicated injector in 1990. Since then, a program to improve beam stability has steadily progressed. This paper, based on a seminar given at a workshop on storage ring optimization (1995 SRI conference) reviews the beam stability program for SPEAR. copyright 1996 American Institute of Physics

  18. Upstream from OPERA: extreme attention to detail

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Two weeks ago, at a seminar held at CERN, the OPERA collaboration revealed their astonishing observation: neutrinos might move faster than light. The finding is currently under scrutiny in the scientific community. While the result downstream at Gran Sasso speaks for itself, upstream at CERN things are no less intriguing, with high-tech GPS systems, novel techniques for accurately measuring the time, and unique ways keeping the initial particle beam stable. Take away one ingredient and the accuracy needed for the final measurement is spoiled.   Underground installations of the CERN Neutrinos to Gran Sasso (CNGS) project. First ingredient: a stable beam CERN produces neutrinos by sending a beam of protons to hit a target. The collisions produce a secondary beam, which mostly consists of pions and kaons that decay in flight within an evacuated tunnel. Their decay products are muons and muon-neutrinos. An absorber stops the pions and kaons that do not decay, while the resulting muons are absorb...

  19. Performance with lead ions of the LHC beam dump system

    CERN Document Server

    Bruce, R; Jensen, L; Lefèvre, T; Weterings, W

    2007-01-01

    The LHC beam dump system must function safely with 208Pb82+ions. The differences with respect to the LHC proton beams are briefly recalled, and the possible areas for performance concerns discussed, in particular the various beam intercepting devices and the beam instrumentation. Energy deposition simulation results for the most critical elements are presented, and the conclusions drawn for the lead ion operation. The expected performance of the beam instrumentation systems are reviewed in the context of the damage potential of the ion beam and the required functionality of the various safety and post-operational analysis requirements.

  20. Fusion Energy Division automation of the ISX-B neutral beams

    International Nuclear Information System (INIS)

    Bates, S.C.; Hanna, P.C.

    1982-06-01

    Operation of the two neutral beams on the ISX-B tokamak has been fully automated for an injected power up to 2 MW. A PDP 11/34 FORTRAN program conditions and injects the beams using commercial CAMAC hardware and ad hoc modifications of the beam controls. The fundamental beam conditioning algorithm is based on the breakdown history of the source. Difficulties encountered were noise entering the CAMAC system through control and data lines and the lack of well-defined operating heuristics detailed problem diagnostic techniques. A brief description is given of the hardware and software systems, operating techniques, and items of special concern

  1. Flat beams in the SLC

    International Nuclear Information System (INIS)

    Adolphsen, C.; Barklow, T.; Burke, D.; Decker, F.J.; Emma, P.; Hildreth, M.; Himel, T.; Krejcik, P.; Limberg, T.; Minty, M.

    1993-01-01

    The Stanford Linear Collider was designed to operate with round beams; horizontal and vertical emittance made equal in the damping rings. The main motivation was to facilitate the optical matching through beam lines with strong coupling elements like the solenoid spin rotator magnets and the SLC arcs. Tests in 1992 showed that open-quote flat close-quote beams with a vertical to horizontal emittance ratio of around 1/10 can be successfully delivered to the end of the linac. Techniques developed to measure and control the coupling of the SLC arcs allow These beams to be transported to the Interaction Point (IP). Before flat beams could be used for collisions with polarized electrons, a new method of rotating the electron spin orientation with vertical arc orbit bumps had to be developed. Early in the 1993 run, the SLC was switched to open-quote flat close-quote beam operation. Within a short time the peak luminosity of the previous running cycle was reached and then surpassed. The average daily luminosity is now a factor of about two higher than the best achieved last year. In the following the authors present an overview of the problems encountered and their solutions for different parts of the SLC

  2. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  3. Beam-machine Interaction at the CERN LHC

    CERN Document Server

    Boccone, V; Brugger, M; Calviani, M; Cerutti, F; Esposito, L S; Ferrari, A; Lechner, A; Mereghetti, A; Nowak, E; Shetty, N V; Skordis, E; Versaci, R; Vlachoudis, V

    2014-01-01

    The radiation field generated by a high energy and intensity accelerator is of concern in terms of element functionality threat, component damage, electronics reliability, and material activation, but also provides signatures that allow actual operating conditions to be monitored. The shower initiated by an energetic hadron involves many different physical processes, down to slow neutron interactions and fragment de-excitation, which need to be accurately described for design purposes and to interpret operation events. The experience with the transport and interaction Monte Carlo code FLUKA at the Large Hadron Collider (LHC), operating at CERN with 4 TeV proton beams (and equivalent magnetic rigidity Pb beams) and approaching nominal luminosity and energy, is presented. Design, operation and upgrade challenges are reviewed in the context of beam-machine interaction account and relevant benchmarking examples based on radiation monitor measurements are shown.

  4. Modular beam diagnostics instrument design for Cyclotrons

    International Nuclear Information System (INIS)

    Chaddha, N.; Bhole, R.B.; Sahoo, S.; Nandy, P.P.; Pal, S.

    2012-01-01

    The Cyclotrons at VECC, Kolkata i.e. Room Temperature Cyclotron (RTC) and Superconducting Cyclotron (SCC) comprise of internal and external Beam Diagnostic systems. These systems provide the beam developer with position, intensity, beam profile, a visual impression of the size and shape of ion beam, and operational control over diagnostic components like 3-finger probe, Beam Viewer probe, Deflector probe, Faraday cup, X-Y slit, Beam viewer etc. Automation of these components was initially done using customised modules for individual sub-system. An expansion of this facility and various levels of complexity demand modular design to cater easy modification and upgradation. The overall requirements are analysed and modular cards are developed based on basic functionalities like valve operation, probe/slit/viewer control, position read-out, Interlock, aperture control of beam line and communication. A 32-bit Advanced RISC Machine (ARM) based card with embedded EPICS is chosen as the master controller and FPGA/microcontroller is used for functional modules. The paper gives a comprehensive description of all modules and their integration with the control system. (author)

  5. Operational experience of electron beam flue gases treatment pilot installation at the Maritsa East 2 Thermal Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Dutskinov, N. [NEK-EAD (Bulgaria)

    2011-07-01

    The electron beam flue gases treatment process is very versatile and effective technology for simultaneous removal of acidic pollutants i.e. sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) from the flue gas produced in the combustion of fossil fuel. The technology allows decomposition of VOC (volatile organic compound) such as polycyclic aromatic compound (PAC) and persistent organic pollutants (POP). The electron beam flue gases treatment technology for combustion flue gases purification was applied in Maritsa-East 2 Thermal Power Plant. The decision for construction of Electron Beam Pilot Plant at Maritsa-East 2 TPP was taken at the technical meeting in IAEA Vienna, November 1998. The flue gases of 10 000 nm³/h are irradiated by three high energy electron accelerators of 800 keV and 35 kW beam power each. The plant has been operated since November 2003. The removal efficiency 90-99% for SO{sub x} and 85-90% for NO{sub x} was observed. The quality of coals are characterised with high ash content up to 45%, high moisture up to 57%, low calorific value from 1196 kcal/kg up to 1603 kcal/kg and high concentration of sulphur. The Bulgarian lignite coals are unique in their usage as fuel for the thermal power plants in Maritsa East region. (author)

  6. NCenter wide band neutrino beam

    International Nuclear Information System (INIS)

    Stutte, L.G.

    1985-01-01

    This memo describes the physical properties of the currently operating N-Center wide band neutrino beam---commonly called the triplet train, following a past tradition of a triplet lens configuration. In reality, in order to gain a larger momentum acceptance and to minimize the angular divergence of the beam, a quadruplet beam (4 lenses) employing point-to-parallel optics at a central momentum of 300 GeV was built. 6 refs., 13 figs., 1 tab

  7. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  8. Future e+e- linear colliders and beam-beam effects

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-05-01

    Numerous concepts, ranging from conventional to highly exotic, hae been proposed for the acceleration of electrons and positrons to very high energies. For any such concept to be viable, it must be possible to produce from it a set of consistent parameters for one of these ''benchmark'' machines. Attention is directed to the choice of parameters for a collider in the 300 GeV energy range, operating at a gradient on the order of 200 MV/m, using X-band power sources to drive a conventional disk-loaded accelerating structure. These rf power sources, while not completely conventional represent a reasonable extrapolation from present technology. The choice of linac parameters is strongly coupled to various beam-beam effects which take place when the electron and positron bunches collide. We summarize these beam-beam effects, and then return to the rf design of a 650 GeV center-of-mass collider. 14 refs

  9. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.; MI, J.; OERTER, B.; SANDBERG, J.; WARBURTON, D.

    2003-01-01

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved more than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge

  10. Neutral beam injection system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.H.; Lee, K.W.; Chung, K.S.; Oh, B.H.; Cho, Y.S.; Bae, Y.D.; Han, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    The NBI system for KSTAR (Korean Superconducting Tokamak Advanced Research) has been designed based on conventional positive ion beam technology. One beam line consists of three ion sources, three neutralizers, one bending magnet, and one drift tube. This system will deliver 8 MW deuterium beam to KSTAR plasma in normal operation to support the advanced experiments on heating, current drive and profile control. The key technical issues in this design were high power ion source(120 kV, 65 A), long pulse operation (300 seconds; world record is 30 sec), and beam rotation from vertical to horizontal direction. The suggested important R and D points on ion source and beam line components are also included. (author). 7 refs., 27 figs., 1 tab.

  11. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    International Nuclear Information System (INIS)

    Wang, Guimei

    2011-01-01

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q ext with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam energy

  12. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guimei [Peking Univ., Beijing (China)

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  13. Accelerator operation in 1995-1996

    International Nuclear Information System (INIS)

    Loyer, F.

    1998-01-01

    This report presents the operation of the GANIL accelerator between 1995 and 1996. A table is given in which the time distribution of the accelerator operation in the two years is indicated as: beam availability, time devoted to nuclear and non-nuclear physics research, radioactive ion separator operation, industrial irradiation, machine studies and maintenance. A statistics of the accelerated elements and their energy (MeV/u) shows an increase in the number of beam types and new beams from 18 and 9, respectively, in 1995 to 19 and 11 respectively in 1996. The report mentions also the safety incident of June 9, 1995, the failures in operation in 1995-1996 and events connected to SISSI, UGS-R and THI operations

  14. Video-based beam position monitoring at CHESS

    Science.gov (United States)

    Revesz, Peter; Pauling, Alan; Krawczyk, Thomas; Kelly, Kevin J.

    2012-10-01

    CHESS has pioneered the development of X-ray Video Beam Position Monitors (VBPMs). Unlike traditional photoelectron beam position monitors that rely on photoelectrons generated by the fringe edges of the X-ray beam, with VBPMs we collect information from the whole cross-section of the X-ray beam. VBPMs can also give real-time shape/size information. We have developed three types of VBPMs: (1) VBPMs based on helium luminescence from the intense white X-ray beam. In this case the CCD camera is viewing the luminescence from the side. (2) VBPMs based on luminescence of a thin (~50 micron) CVD diamond sheet as the white beam passes through it. The CCD camera is placed outside the beam line vacuum and views the diamond fluorescence through a viewport. (3) Scatter-based VBPMs. In this case the white X-ray beam passes through a thin graphite filter or Be window. The scattered X-rays create an image of the beam's footprint on an X-ray sensitive fluorescent screen using a slit placed outside the beam line vacuum. For all VBPMs we use relatively inexpensive 1.3 Mega-pixel CCD cameras connected via USB to a Windows host for image acquisition and analysis. The VBPM host computers are networked and provide live images of the beam and streams of data about the beam position, profile and intensity to CHESS's signal logging system and to the CHESS operator. The operational use of VBPMs showed great advantage over the traditional BPMs by providing direct visual input for the CHESS operator. The VBPM precision in most cases is on the order of ~0.1 micron. On the down side, the data acquisition frequency (50-1000ms) is inferior to the photoelectron based BPMs. In the future with the use of more expensive fast cameras we will be able create VBPMs working in the few hundreds Hz scale.

  15. LHC Beam Diagnostics - the Users Point of View

    CERN Document Server

    Wenninger, J

    2011-01-01

    The LHC started up with beam in November 2009, and within less then on year its luminosity reached 2·1032 cm-2s−1 at 3.5 TeV in October 2010. A few weeks later, in November 2010, lead ion collisions were established within little over 2 days. The fast progress and successes of the LHC commissioning and early operation would not have been possible without the excellent performance of its beam instrumentation. All essential instruments worked from the first day or were commissioned in a very short time, providing rapid diagnostics for the beam parameters. Tune and orbit feedbacks that rely on high quality measurements were used early on to achieve smooth operation with minimal beam losses. This presentation will address the performance of the LHC beam instrumentation, in particular the very large beam position and beam loss monitoring systems, both composed of many thousand channels. Present limitations and future improvements will also be discussed.

  16. Evaluation of the BEAM--BEAM effect in PEP using Myer's simulation program

    International Nuclear Information System (INIS)

    Hutton, A.

    1982-09-01

    The program BEAM BEAM written by Steve Myers for the LEP machine at CERN has given encouraging results in the simulation of the beam-beam effect in electron-positron storage rings. It therefore seemed worthwhile to apply the program to PEP with two main intentions. Firstly, to confirm the validity of the program by comparison with experimental data from previous PEP runs and secondly, to search for an improvement in the operating conditions of PEP. Clearly a successful prediction would also enhance the credibility of the program. The program itself has been extensively described in the literature and will not be repeated here, except for some comments of direct relevance to the present simulation. 14 refs., 15 figs., 4 tabs

  17. Active and passive beam application design guide for global application

    CERN Document Server

    Rimmer, Julian

    2015-01-01

    The Active and Passive Beam Application Design Guide is the result of collaboration by worldwide experts to give system designers a current, authoritative guide on successfully applying active and passive beam technology. Active and Passive Beam Application Design Guide provide energy-efficient methods of cooling, heating, and ventilating indoor areas, especially spaces that require individual zone control and where internal moisture loads are moderate. The systems are simple to operate, with low maintenance requirements. This book is an essential resource for consulting engineers, architects, owners, and contractors who are involved in the design, operation, and installation of these systems. Building on REHVA’s Chilled Beam Application Guidebook, this new guide provides up-to-date tools and advice for designing, commissioning, and operating chilled-beam systems to achieve a determined indoor climate, and includes examples of active and passive beam calculations and selections. Dual units (SI and I-P) are...

  18. Design of HELIOS beam diagnostics

    International Nuclear Information System (INIS)

    Seagrave, J.D.; Bigio, I.J.; Jackson, S.V.; Laird, A.M.

    1979-01-01

    Verification of satisfactory operation of the HELIOS eight-beam laser system requires measurement of many parameters of each beam on each shot. Fifty-joule samples of each of the eight 1250-J, subnanosecond 34-cm-diameter beams of the HELIOS system are diverted to a gallery of eight folded telescopes and beamsplit to provide diagnostic measurements. Total pulse energy, and prepulse and postlase energy of each beam are measured; pulse shape details and a wavelength spectrum of a selected beam from each shot are measured; and provision is made for retropulse measurement and optical quality monitoring. All data are recorded digitally in a local screen room, with control and communication through a fiberoptic link to the main HELIOS computer

  19. The cedar counters for particle identification in the SPS secondary beams: A description and an operation manual

    International Nuclear Information System (INIS)

    Bovet, C.; Maleyran, R.; Piemontese, L.; Placci, A.; Placidi, M.

    1982-01-01

    The Cerenkov Differential counter with Achromatic Ring Focus (Cedar) has been designed and a number built at Cern for the identification (and selection) of particles in the secondary beams of a high-energy accelerator. Cedar-N can separate kaons from pions up to 300 GeV/c but can detect protons only down to 60 GeV/c; Cedar-W can flag protons of 12 GeV/c and separate kaons from pions up to 150 GeV/c. After a brief account of the relevant physics of the Cerenkov effect, this report describes Cedars with emphasis on those characteristics and construction features that are of interest to the user. Details are given of the high-precision optical system, the mechanical construction to achieve uniform temperature (0.1 K) and rigidity, and the gas handling and measurement. The layout of the Cedars in the secondary beams of the Cern Super Proton Synchrotron is described. The signals provided to the user are listed and explained, together with the programs for on-line control of the counters. Details are given of the performances attained, together with various hints and suggestions on the procedure to follow in order to set-up, tune, and operate a Cedar. The dependence of the performance on beam optics is stressed. (orig.)

  20. Improving beam set-up using an online beam optics tool

    International Nuclear Information System (INIS)

    Richter, S.; Barth, W.; Franczak, B.; Scheeler, U.; Wilms, D.

    2004-01-01

    The GSI accelerator facility [1] consists of the Universal Linear Accelerator (Unilac), the heavy ion synchrotron SIS, and the Experimental Storage Ring (ESR). Two Unilac injectors with three ion source terminals provide ion species from the lightest such as hydrogen up to uranium. The High Current Injector (HSI) for low charge state ion beams provides mostly high intense but short pulses, whereas the High Charge State Injector (HLI) supplies long pulses with a high duty factor of up to 27%. Before entering the Alvarez section of the Unilac the ion beam from the HSI is stripped in a supersonic gas jet. Up to three different ion species can be accelerated for up to five experiments in a time-sharing mode. Frequent changes of beam energy and intensity during a single beam time period may result in time consuming set-up and tuning especially of the beam transport lines. To shorten these changeover times an online optics tool (MIRKO EXPERT) had been developed. Based on online emittance measurements at well-defined locations the beam envelopes are calculated using the actual magnet settings. With this input improved calculated magnet settings can be directly sent to the magnet power supplies. The program reads profile grid measurements, such that an atomized beam alignment is established and that steering times are minimized. Experiences on this tool will be reported. At the Unilac a special focus is put on high current operation with short but intense beam pulses. Limitations like missing non-destructive beam diagnostics, insufficient longitudinal beam diagnostics, insufficient longitudinal beam matching, and influence of the hard edged model for magnetic fields will be discussed. Special attention will be put on the limits due to high current effects with bunched beams. (author)

  1. APPARATUS FOR ELECTRON BEAM HEATING CONTROL

    Science.gov (United States)

    Jones, W.H.; Reece, J.B.

    1962-09-18

    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  2. Antiproton source beam position system

    International Nuclear Information System (INIS)

    Bagwell, T.; Holmes, S.; McCarthy, J.; Webber, R.

    1984-05-01

    The TeV I Beam Position Monitor (BPM) system is designed to provide a useful diagnostic tool during the commissioning and operational phases of the antiproton source. Simply stated the design goal is to provide single turn position information for intensities of > 1x10 9 particles, and multi-turn (clocked orbit) information for beam intensities of > 1x10 7 particles, both with sub-millimeter resolution. It is anticipated that the system will be used during commissioning for establishing the first turn through the Debuncher and Accumulator, for aligning injection orbits, for providing information necessary to correct closed orbits, and for measuring various machine parameters (e.g. tunes, dispersion, aperture, chromaticity). During normal antiproton operation the system will be used to monitor the beam position throughout the accumulation process

  3. FIRST BEAM TESTS OF THE MUON COLLIDER TARGET TEST BEAM LINE AT THE AGS

    International Nuclear Information System (INIS)

    BROWN, K.A.; GASSNER, D.; GLENN, J.W.; PRIGL, R.; SIMOS, N.; SCADUTO, J.; TSOUPAS, N.

    2001-01-01

    In this report we will describe the muon collider target test beam line which operates off one branch of the AGS switchyard. The muon collider target test facility is designed to allow a prototype muon collider target system to be developed and studied. The beam requirements for the facility are ambitious but feasible. The system is designed to accept bunched beams of intensities up to 1.6 x 10 13 24 GeV protons in a single bunch. The target specifications require beam spot sizes on the order of 1 mm, 1 sigma rms at the maximum intensity. We will describe the optics design, the instrumentation, and the shielding design. Results from the commissioning of the beam line will be shown

  4. Compensation of head-on beam-beam induced resonance driving terms and tune spread in the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    W. Fischer

    2017-09-01

    Full Text Available A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015PRLTAO0031-900710.1103/PhysRevLett.115.264801]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.

  5. Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode

    CERN Document Server

    Kramer, Thomas; Borburgh, Jan; Ducimetière, Laurent; Feliciano, Luis; Ferrero Colomo, Alvaro; Goddard, Brennan; Sermeus, Luc

    2016-01-01

    Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying...

  6. Recent DIII-D neutral beam calibration results

    International Nuclear Information System (INIS)

    Wight, J.; Hong, R.M.; Phillips, J.

    1991-10-01

    Injected DIII-D neutral beam power is estimated based on three principle quantities: the fraction of ion beam that is neutralized in the neutralizer gas cell, the beamline transmission efficiency, and the fraction of beam reionized in the drift duct. System changes in the past few years have included a new gradient grid voltage operating point, ion source arc regulation, routine deuterium operations and new neutralizer gas flow controllers. Additionally, beam diagnostics have been improved and better calibrated. To properly characterize the beams the principle quantities have been re-measured. Two diagnostics are primarily used to measure the quantities. The beamline waterflow calorimetry system measures the neutralization efficiency and the beamline transmission efficiency, and the target tile thermocouples measure the reionization loss. An additional diagnostic, the target tile pyrometer, confirmed the reionization loss measurement. Descriptions and results of these measurements will be presented. 4 refs., 5 figs., 2 tabs

  7. Lepton Collider Operation with Constant Currents

    CERN Document Server

    Wienands, Ulrich

    2005-01-01

    Traditionally, electron-positron colliders have been operating in a top-off-and-coast fashion with a cycle time depending on the beam life time, typically on the order of an hour. Each top-off involves ramping detector systems in addition to the actual filling time. The loss in accumulated luminosity is typically 20-50%. During the last year, both B-Factories have commissioned a continuous-injection mode of operation in which beam is injected without ramping the detector, thus raising luminosity integration by constant operation at peak luminosity. Constant beam currents reduce thermal drift and trips caused by change in beam loading. To achieve this level of operation, special efforts were made to reduce the injection losses and also to implement special gating procedures in the detectors, minimizing dead time. Bunch-injection control decides which bunch to inject into next while maintaining small charge variation between bunches. Beam collimation can reduce injection noise but also cause an increase in back...

  8. Carbon Fiber Damage in Accelerator Beam

    CERN Document Server

    Sapinski, M; Guerrero, A; Koopman, J; Métral, E

    2009-01-01

    Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

  9. A Phase Space Monitoring of Injected Beam of J-PARC MR

    Science.gov (United States)

    Hatakeyama, Shuichiro; Toyama, Takeshi

    Beam power of J-PARC MR (30 GeV Proton Synchrotron Main Ring) has been improved since 2008 and now achieved over 200 kW for the user operation. A part of beam loss is localized at the beam injection phase so it is important to monitor the beam bunch behavior in the transverse direction. In this paper it is described the method how to measure the position and momentum for each injected beam bunch using Beam Position Monitors (BPMs). It is also mentioned some implementation of an operator's interface (OPI) to display the plots of injected and circulating beam bunches in phase space coordinate.

  10. The LEP RF Trip and Beam Loss Diagnostics System

    CERN Document Server

    Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R

    2002-01-01

    During the last years of operation the number of operationally independent RF stations distributed around LEP reached a total of 40. A serious difficulty when running at high energy and high beam intensities was to establish cause and effect in beam loss situations, where the trip of any single RF station would result in beam loss, rapidly producing further multiple RF station trips. For the last year of operation a fast post-mortem diagnostics system was developed to allow precise time-stamping of RF unit trips and beam intensity changes. The system was based on eight local DSP controlled fast acquisition and event recording units, one in each RF sector, connected to critical RF control signals and fast beam intensity monitors and synchronised by GPS. The acquisition units were armed and synchronised at the start of each fill. At the end of the fill the local time-stamped RF trip and beam intensity change history tables were recovered, events ordered and the results stored in a database for subsequent analys...

  11. Introduction to electron beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Waichiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs.

  12. Introduction to electron beam processing

    International Nuclear Information System (INIS)

    Waichiro Kawakami

    1994-01-01

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs

  13. Theoretical aspects of the electronical devices operating due to interaction between annular electron beams and the azimuthal surface waves

    Energy Technology Data Exchange (ETDEWEB)

    Girka, V O; Girka, I O [Kharkiv State Univ. (Ukraine)

    1997-12-31

    The physical basis is discussed of electronic devices whose operation is based on the beam or dissipative instability of the azimuthal surface waves (ASW). The ASW are electromagnetic surface waves with extraordinary polarization (with field components E{sub r}, E{sub {phi}}, H{sub z}), propagating across the axial external steady magnetic field in the cylindrical metal waveguide with cold plasma filling. The ASW fields are described by Maxwell equations. To solve the problem, the authors used the Fourier method and numerical simulation of the equations obtained. The ASW excitation was examined under conditions of beam and dissipative instabilities due to the electron beam motion. The correction to ASW eigenfrequencies caused by the waveguide chamber noncircularity was also studied. ASW delaying leads to a negative frequency correction. The ASW energy can be emitted from the narrow slot in the metallic chamber of the waveguide. The optimum wavenumber range was found where the increment values are much greater than those of the ASW decrement caused by their energy radiation. (author). 2 figs., 3 refs.

  14. Superconducting resonator used as a beam phase detector

    Directory of Open Access Journals (Sweden)

    S. I. Sharamentov

    2003-05-01

    Full Text Available Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a “pure” (or reference rf and the beam-induced signal. A new method of circular phase rotation (CPR, allowing extraction of the beam phase information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1° (at 48 MHz for a beam current of 100 nA. The electronics design is described and experimental data are presented.

  15. Development of the TFTR neutral beam injection system

    International Nuclear Information System (INIS)

    Prichard, B.A. Jr.

    1978-01-01

    The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources are being developed by LBL and a prototype beam line which will be tested at Berkeley is being developed as a cooperative effort by LLL and LBL. The implementation of these beam lines has required the development of several associated pieces of hardware. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982

  16. Negative-ion-based neutral beams for fusion

    International Nuclear Information System (INIS)

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D - ions and then removing the electron. Sources are being developed that generate the D - ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D - beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D - beam can be transported through a maze in the neutron shielding. The D - ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs

  17. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  18. Four-way rf beam separator

    International Nuclear Information System (INIS)

    Neil, V.K.

    1982-01-01

    A method for separating a continuous beam of relativistic particles into four pulsed beams is investigated theoretically. The separation is periodic with period 2π/#betta# so that each of the four beams consists of current pulses of duration π/#betta#. The separation is accomplished by a series of rf cavities in the beam line. The cavities operate in the TM 110 and have frequencies, #betta#, 3#betta#, 5#betta#, 7#betta#, etc. The transverse momentum imparted to the beam particles results in a time-dependent displacement of the beam centroid at a position downstream of the cavity array. The mathematical limitations imposed by truncating a Fourier series are discussed, and an expression derived for the necessary phase and amplitude of each cavity. The rf induced by the beam in the cavities is treated in detail, and does not appear to be a serious problem

  19. The control of powerful neutral beams

    International Nuclear Information System (INIS)

    Theil, E.; Jacobson, V.

    1986-01-01

    While significant progress has been made in the development of neutral beams for the heating and sustaining of plasmas in large fusion experiments, the control of such devices has largely been a matter of hardware interlocks and operator experience. The need for computer-assisted control becomes more evident, however, with the initiation of multi-beamline experiments. This paper describes a software system that incorporates simple mathematical models coupled to Kalman filters for control of the high power (6 to 8 MW) beams currently under development at Lawrence Berkeley Laboratory's Neutral Beam Engineering Test Facility. Among the principal features of the system are: reduction of a large number of operator variables to just a few (usually one or two); the ability to describe most of the major neutral beams in use and under development; a foundation resting on statistical data analysis and control system principles rather than rules-of-thumb

  20. SPS Beam Steering for LHC Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Bartosik, Hannes [CERN; Cornelis, Karel [CERN; Norderhaug Drøsdal, Lene [CERN; Goddard, Brennan [CERN; Kain, Verena [CERN; Meddahi, Malika [CERN; Papaphilippou, Yannis [CERN; Wenninger, Jorg [CERN

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.

  1. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  2. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  3. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  4. PC-Link historical data base system MODCOMP/IBM at link for neutral particle beam operation

    International Nuclear Information System (INIS)

    Thurgood, P.

    1989-12-01

    ''PC-Link'' is a combination of hardware and software that connects an IBM PC/AT to a MODCOMP minicomputer. It is designed as an aid to the Neutral Beam operations coordinator during injection into the DIII-D tokamak project. An IBM PC/AT is linked to 4 MODCOMP ''realtime'' acquisition systems, each of which controls 2 neutral particle beam sources. At various points in the shot sequence, data is sent to the IBM PC/AT. This data can then be integrated with the data from the other sources into tables or graphics displays for use by the Beam Coordinator. In this way, the coordinator gets realtime feedback on the relative settings and performance of the sources and can observe trends within a particular source at one location. The PC- Link is used for observing relative timing information and for post shot historical archiving. The concept of the PC-Link was originally proposed several years ago. In April 1988, in-house implementation of the link software was begun. The PC-Link receives approximately 2 Kbytes of data per source per shot. This data is converted from MODCOMP format to IBM PC format and archived to disk. The last 280 shots per source are stored to disk to observe trends. The data can be displayed in a number of formats depending upon the situation. For example, prior to a shot, the beam MODCOMPs are sent timing information from the DIII-D tokamak control system. This data is echoed on the PC in a graphical representation displaying all 8 sources. At the end of the shot, the actual running times are displayed along with the requested settings. Any subset of the Historical data may be displayed either graphically or in tables for realtime comparisons between sources. This system is designed for realtime use, not for complete archiving purposes. This same data is also sent to a VAX computer for full integration into the archive database. This system is easily upgradable and extremely versatile. 4 figs

  5. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams

    Directory of Open Access Journals (Sweden)

    C. A. Valerio-Lizarraga

    2018-03-01

    Full Text Available The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.

  6. LHC Report: Freshly squeezed beams!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    After careful validation of  new machine settings, the LHC was ready for higher luminosity operation. New luminosity records have been set, but the operations team continues to wrestle with machine availability issues.   The commissioning of the squeeze to a ß* of 1 m in ATLAS and CMS described in the last Bulletin took until Wednesday, 7 September to complete. In order to validate the new set-up, beam losses were provoked in a controlled way with low intensity beams. The distribution of beam loss around the machine in these tests is known as a loss map. The loss maps showed that the collimation system is catching the large majority of beam losses as it should, and that the machine was ready for us to ramp the number of bunches back up and go to physics production. The ramp-up of the number of bunches went smoothly with fills at 264, 480, and 912 bunches on the way back to the machine’s previous record of 1380 bunches (first fill on Friday, 9 Se...

  7. Construction of a beam rebuncher for RIKEN RI-beam factory

    International Nuclear Information System (INIS)

    Aoki, T.; Stingelin, L.; Kamigaito, O.; Sakamoto, N.; Fukunishi, N.; Yokouchi, S.; Maie, T.; Kase, M.; Goto, A.; Yano, Y.

    2008-01-01

    A beam rebuncher for the RIKEN radioactive-isotope beam factory project has been constructed and is placed in a long beam line between the first two ring cyclotrons in the accelerator cascade. The rebuncher resonator, having four rf gaps in it, operates at a fixed frequency of 109.5 MHz for the longitudinal focusing of heavy ion beams at 11.0MeV/u. To reduce the sparking problem in the rf gaps, a new type of H-mode resonator has been adopted, where the distribution of the gap voltage is well equalized. In fact, the ratio of the gap voltages is about 1.26, whereas those of the interdigital-H (IH)- and crossed-bar-H (CH)-mode structures are larger than 2.0. The total gap voltage, which is defined as the sum of the four gap voltages, has reached 495 kV at a power consumption of 4.7 kW

  8. Luminosity, Beamstrahlung energy loss and beam-beam deflections for e+e- and e-e- collisions at the ILC with 500 GeV and varying transverse beam sizes

    International Nuclear Information System (INIS)

    Alabau Pons, M.; Bambade, P.; Faus-Golfe, A.

    2006-01-01

    At the interaction point of the International Linear Collider, beam-beam effects due to the strong electromagnetic fields that the bunches experience during collisions cause a mutual focusing, called pinch effect, which enhances the luminosity in the case of e + e - collisions. The opposite is true for e - e - collisions. In this case the luminosity is reduced by mutual defocusing, or anti-pinching. The resulting Beamstrahlung energy loss and beam-beam deflection angles as function of the vertical transverse offset are also different for both modes of operation. The dependence of these quantities with transverse beam sizes are presented for the case of e - e - collisions

  9. Fast-scan, beam-profile monitor

    International Nuclear Information System (INIS)

    Waugh, A.F.

    1977-01-01

    A minimodular, data-acquisition system can be used to rapidly interrogate a 45-point matrix of beam-current sampling targets over the 3- x 12-in. rectangular, output beam cross section of a 50-A, neutral-beam ion source. This system, operating at a throughput rate of 12 μs per channel, can make several complete scans during the 10- to 25-ms-duration beam pulse. Data obtained are available in both analog and digital form. The analog signal is used to create an immediately interpretable CRT display of the beam-current density profile that shows how well the source is aimed. The digital data are held in buffer memory until transfer to a minicomputer for software processing and plotting

  10. Large static tuning of narrow-beam terahertz plasmonic lasers operating at 78K

    Directory of Open Access Journals (Sweden)

    Chongzhao Wu

    2017-02-01

    Full Text Available A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ∼57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs, which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7° is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.

  11. In-beam PET at clinical proton beams with pile-up rejection

    Energy Technology Data Exchange (ETDEWEB)

    Helmbrecht, Stephan; Fiedler, Fine; Iltzsche, Marc [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiation Physics; Enghardt, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiation Physics; OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiooncology; German Cancer Research Center (DKFZ), Heidelberg (Germany); German Cancer Consortium (DKTK), Dresden (Germany); Pausch, Guntram [OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Tintori, Carlo [CAEN S.p.A., Viareggio (Italy); Kormoll, Thomas [OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Technische Univ. Dresden (Germany). AG Radiation Physics

    2017-10-01

    Positron emission tomography (PET) is a means of imaging the β{sup +}-activity produced by the radiation field in ion beam therapy and therefore for treatment verification. Prompt γ-rays that are emitted during beam application challenge the detectors and electronics of PET systems, since those are designed for low and medium count rates. Typical PET detectors operated according to a modified Anger principle suffer from multiple events at high rates. Therefore, in-beam PET systems using such detectors rely on a synchronization of beam status and measurement to reject deteriorated data. In this work, a method for pile-up rejection is applied to conventional Anger logic block detectors. It allows for an in-beam data acquisition without further synchronization. Though cyclotrons produce a continuous wave beam, the radiation field shaping technique introduces breaks in the application. Time regimes mimicking synchrotrons as well as cyclotron based ones using double-scattering or pencil beam scanning field shaping at dose rates of 0.5, 1.0 and 2.0 Gy/min were investigated. Two types of inhomogeneous phantoms were imaged. The first one simulates cavity structures, the other one mimics a static lung irradiation. It could be shown that, depending on the dose rate and the beam time structure, in-beam measurement including a few seconds decay time only, yield images which revealed all inhomogeneities in the phantoms. This technique can be the basis for the development of an in-beam PET system with traditional detectors and off-the-shelf electronics.

  12. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  13. Study of charged hadron multiplicities in charged-current neutrino-lead interactions in the OPERA detector

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N.; Malgin, A.; Matveev, V.; Ryazhskaya, O.; Shakirianova, I. [INR - Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation); Aleksandrov, A.; Buontempo, S.; Consiglio, L.; Tioukov, V.; Voevodina, E. [INFN Sezione di Napoli, Naples (Italy); Anokhina, A.; Dzhatdoev, T.; Podgrudkov, D.; Roganova, T. [Lomonosov Moscow State University, SINP MSU - Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Aoki, S.; Hara, T.; Mizutani, F.; Ozaki, K.; Shibayama, E.; Takahashi, S. [Kobe University, Kobe (Japan); Ariga, A.; Ereditato, A.; Kreslo, I.; Vuilleumier, J.L. [University of Bern, Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Ariga, T. [University of Bern, Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Kyushu University, Faculty of Arts and Science, Fukuoka (Japan); Bertolin, A.; Dusini, S.; Kose, U.; Longhin, A.; Pupilli, F.; Stanco, L. [INFN Sezione di Padova, Padua (Italy); Bodnarchuk, I.; Chukanov, A.; Dmitrievski, S.; Gornushkin, Y.; Sotnikov, A.; Vasina, S. [JINR - Joint Institute for Nuclear Research, Dubna (Russian Federation); Bozza, C.; Grella, G.; Stellacci, S.M. [Dipartimento di Fisica, Universita di Salerno (Italy); ' ' Gruppo Collegato' ' INFN, Fisciano, Salerno (Italy); Brugnera, R.; Garfagnini, A.; Laudisio, F.; Medinaceli, E.; Roda, M.; Sirignano, C. [INFN Sezione di Padova, Padua (Italy); Dipartimento di Fisica e Astronomia, Universita di Padova, Padua (Italy); Buonaura, A.; De Lellis, G.; Di Crescenzo, A.; Galati, G.; Hosseini, B.; Lauria, A.; Montesi, M.C.; Strolin, P. [INFN Sezione di Napoli, Naples (Italy); Dipartimento di Fisica, Universita Federico II di Napoli, Naples (Italy); Chernyavskiy, M.; Gorbunov, S.; Okateva, N.; Shchedrina, T.; Starkov, N. [LPI - Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); D' Ambrosio, N.; Di Marco, N.; Schembri, A. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); De Serio, M.; Muciaccia, M.T.; Paparella, L.; Pastore, A.; Simone, S. [Dipartimento di Fisica, Universita di Bari, Bari (Italy); INFN Sezione di Bari, Bari (Italy); Amo Sanchez, P. del; Duchesneau, D.; Pessard, H. [LAPP, Universite Savoie Mont Blanc, CNRS/IN2P3, Annecy-le-Vieux (France); Di Ferdinando, D.; Mandrioli, G.; Patrizii, L.; Sirri, G.; Tenti, M. [INFN Sezione di Bologna, Bologna (Italy); Dracos, M.; Jollet, C.; Meregaglia, A. [IPHC, Universite de Strasbourg, CNRS/IN2P3, Strasbourg (France); Ebert, J.; Hagner, C.; Hollnagel, A.; Wonsak, B. [Hamburg University, Hamburg (Germany); Fini, R.A. [INFN Sezione di Bari, Bari (Italy); Fornari, F.; Mauri, N.; Pasqualini, L.; Pozzato, M. [INFN Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica e Astronomia, Universita di Bologna, Bologna (Italy); Fukuda, T.; Hayakawa, T.; Ishiguro, K.; Kitagawa, N.; Komatsu, M.; Miyanishi, M.; Morishima, K.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Niwa, K.; Rokujo, H.; Sato, O.; Shiraishi, T. [Nagoya University, Nagoya (Japan); Gentile, V. [Gran Sasso Science Institute, L' Aquila (Italy); Goldberg, J. [Technion, Department of Physics, Haifa (Israel); Guler, A.M.; Kamiscioglu, M. [METU - Middle East Technical University, Ankara (Turkey); Gustavino, C.; Loverre, P.; Monacelli, P.; Rosa, G. [INFN Sezione di Roma, Rome (Italy); Jakovcic, K.; Ljubicic, A.; Malenica, M. [Rudjer Boskovic Institute, Zagreb (Croatia); Kamiscioglu, C. [METU - Middle East Technical University, Ankara (Turkey); Ankara University, Ankara (Turkey); Kim, S.H.; Park, B.D.; Yoon, C.S. [Gyeongsang National University, Jinju (Korea, Republic of); Klicek, B.; Stipcevic, M. [Center of Excellence for Advanced Materials and Sensing Devices, Ruder Boskovic Institute, Zagreb (Croatia); Kodama, K. [Aichi University of Education, Kariya, Aichi (Japan); Matsuo, T.; Ogawa, S.; Shibuya, H. [Toho University, Funabashi (Japan); Mikado, S. [Nihon University, Narashino, Chiba (Japan); Paoloni, A.; Spinetti, M.; Votano, L. [INFN - Laboratori Nazionali di Frascati, Rome (Italy); Polukhina, N. [LPI - Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Engineering Physical Institute Moscow, Moscow (Russian Federation); Terranova, F. [Dipartimento di Fisica, Universita di Milano-Bicocca, Milan (Italy); Vilain, P.; Wilquet, G. [IIHE, Universite Libre de Bruxelles, Brussels (Belgium)

    2018-01-15

    The OPERA experiment was designed to search for ν{sub μ} → ν{sub τ} oscillations in appearance mode through the direct observation of tau neutrinos in the CNGS neutrino beam. In this paper, we report a study of the multiplicity of charged particles produced in charged-current neutrino interactions in lead. We present charged hadron average multiplicities, their dispersion and investigate the KNO scaling in different kinematical regions. The results are presented in detail in the form of tables that can be used in the validation of Monte Carlo generators of neutrino-lead interactions. (orig.)

  14. Formation of an intense proton beam of microsecond duration

    Energy Technology Data Exchange (ETDEWEB)

    Engelko, V [Efremov Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Giese, H; Schalk, S [Forschungszentrum Karlsruhe (Germany)

    1997-12-31

    The proton beam facility PROFA serves as a test installation for ion source development and beam transport optimization for an intense pulsed proton beam of low kinetic energy, envisaged for ITER divertor load simulation. The present state of the investigations is discussed with emphasis on the diode operation parameters, beam divergence and beam transport efficiency. (author). 7 figs., 5 refs.

  15. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  16. LHC Commissioning and First Operation

    OpenAIRE

    Myers, S

    2010-01-01

    A description is given of the repair of the LHC after the accident of September 2008. The LHC hardware and beam commissioning and initial operation are reviewed both in terms of beam and hardware performance. The implemented machine protection measures and their impact on LHC operation are presented.

  17. CERN: Producing radioactive beams

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Accelerating radioactive beams has long been of interest at CERN's ISOLDE on-line isotope separator - the possibility was discussed at a CERN Workshop on intermediate energy physics as early as 1977. Meanwhile, as was highlighted in the 1991 report of the Nuclear Physics European Collaboration Committee, widespread scientific interest in these beams has developed and a range of projects are proposed, under construction or operational throughout the world

  18. INTOR neutral beam injector concept

    International Nuclear Information System (INIS)

    Metzler, D.H.; Stewart, L.D.

    1981-01-01

    The US INTOR phase 1 effort in the plasma heating area is described. Positive ion based sources extrapolated from present day technology are proposed. These sources operate at 175 keV beam energy for 6 s. Five injectors - plus one spare - inject 75 MW. Beam energy, source size, interface, radiation hardening, and many other studies are summarized

  19. Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm

    Science.gov (United States)

    Gong, Guoliang; Chen, Yujin; Lin, Yanfu; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-04-01

    An Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 (CNGS) crystal was grown by the Czochralski method. Spectral properties of the crystal, including the polarized absorption and fluorescence spectra, the fluorescence decay, as well as the energy transfer efficiency from Yb3+ to Er3+ were investigated in detail. End-pumped by a 976 nm diode laser, a 1556 nm continuous-wave laser with a maximum output power of 202 mW and a slope efficiency of 11.4% was achieved in the Er,Yb,Ce:CNGS crystal. The results indicate the Er,Yb,Ce:CNGS crystal is a promising 1.55 µm laser gain medium.

  20. Trial lectures for accelerator operators in SPring-8

    International Nuclear Information System (INIS)

    Ohshima, T.

    2004-01-01

    In case of the SPring-8, accelerator operators are working in three shifts of eight hours. They are making the scheduled beam injection to the storage ring, routine measurements of beam parameters such as the COD, the betatron tunes, the bunch current of stored beam and so on. They are keeping watch on operational state every time. In case of something wrong, they will take measures to meet the situation. Newcomer of operator works with an experienced one to learn sequence of the beam injection, how to operate Graphical User Interface and (GUI) so on. In addition, we organise preliminary lectures on accelerator for operators. Topics done in the lectures are RF system, vacuum system, magnet system, monitors, beam diagnostics, accelerator and beamline control system etc. The contents of the lecture can be seen through web browser again and again. It is useful for operators to understand the SPring-8 facility and details of their work because some of them are not familiar with the accelerator field before being an operator of SPring-8. (author)

  1. Multi-beam linear accelerator EVT

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, Vladimir E., E-mail: vladimir_teryaev@mail.ru [Omega-P, Inc., New Haven, CT 06510 (United States); Kazakov, Sergey Yu. [Fermilab, Batavia, IL 60510 (United States); Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT 06510 (United States); Yale University, New Haven, CT 06511 (United States)

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  2. LHC MD2877: Beam-beam long range impact on coupling measurements

    CERN Document Server

    Wenninger, Jorg; Carlier, Felix Simon; Coello De Portugal - Martinez Vazquez, Jaime Maria; Fuchsberger, Kajetan; Hostettler, Michi; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; Valuch, Daniel; Garcia-Tabares Valdivieso, Ana; CERN. Geneva. ATS Department

    2018-01-01

    The LHC is now operating with a tune separation of ∼0.004 in collision. This puts tight constraints on the allowed transverse coupling since a |C−| larger than a fraction of the fractional tune split may lead to beam instabilities. In the last years a new tool based on the ADT used in a similar way as an AC-dipole to excite the beam was developed. The ADT AC-dipole gives coherent oscillations without increasing the beam emittance. These oscillations are analyzed automatically to obtain the value of the coupling. A coupling measurement campaign was done in 2017 and while the correction converged and stayed rather constant over time it was observed that depending on the target bunch and filling scheme the results could vary by Δ|C−| ∼ 0.002. In this MD report we investigated 3 different bunches, one with Long Range Beam-Beam (LRBB) in IPs 1 and 5, one with LRBB in all IPs and one with no LRBB. The results indicate that there are differences in coupling between the bunches experiencing different LR...

  3. Beam Dynamics Studies in Recirculating Machines

    CERN Document Server

    Pellegrini, Dario; Latina, A

    The LHeC and the CLIC Drive Beam share not only the high-current beams that make them prone to show instabilities, but also unconventional lattice topologies and operational schemes in which the time sequence of the bunches varies along the machine. In order to asses the feasibility of these projects, realistic simulations taking into account the most worrisome effects and their interplays, are crucial. These include linear and non-linear optics with time dependent elements, incoherent and coherent synchrotron radiation, short and long-range wakefields, beam-beam effect and ion cloud. In order to investigate multi-bunch effects in recirculating machines, a new version of the tracking code PLACET has been developed from scratch. PLACET2, already integrates most of the effects mentioned before and can easily receive additional physics. Its innovative design allows to describe complex lattices and track one or more bunches accordingly to the machine operation, reproducing the bunch train splitting and recombinat...

  4. Survey of beam instrumentation used in SLC

    International Nuclear Information System (INIS)

    Ecklund, S.D.

    1991-03-01

    A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs

  5. Tandem accelerator operation and improvements

    International Nuclear Information System (INIS)

    Yang Bingfan; Zhang Canzhe; Qin Jiuchang; Hu Yueming; Zhang Guilian; Jiang Yongliang; Hou Deyi; Yang Weimin; Yang Zhiren; Su Shengyong; Kan Chaoxin; Liu Dezhong; Wang Liyong; Bao Yiwen; You Qubo; Yang Tao; Zhang Yan; Zhou Lipeng; Chai Shiqin; Wang Meiyan

    1998-01-01

    The scheduled operation of HI-13 tandem accelerator for various experiments was performed well in 1996 and 1997. The machine running time was 4600 h and 4182 h while the beam time was 3845 h and 3712 h in 1996 and 1997, respectively. The operation of HI-13 tandem accelerator is pretty well. The beam distribution with terminal voltage and the distribution of beam time with ion species are shown out. The development of accelerating tubes for HI-13 tandem is in progress

  6. Two frequency beam-loading compensation in the drive-beam accelerator of the CLIC Test Facility

    CERN Document Server

    Braun, Hans Heinrich

    1999-01-01

    The CLIC Test Facility (CTF) is a prototype two-beam accelerator, in which a high-current "drive beam" is used to generate the RF power for the main-beam accelerator. The drive-beam accelerator consists of two S-band structures which accelerate a bunch train with a total charge of 500 nC. The substantial beam loading is compensated by operating the two accelerating structures at 7.81 MHz above and below the bunch repetition frequency, respectively. This introduces a change of RF phase from bunch to bunch, which leads, together with off-crest injection into the accelerator, to an approximate compensation of the beam loading. Due to the sinusoidal time-dependency of the RF field, an energy spread of about 7% remains in the bunch train. A set of idler cavities has been installed to reduce this residual energy spread further. In this paper, the considerations that motivated the choice of the parameters of the beam-loading compensation system, together with the experimental results, are presented.

  7. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  8. Design and characterization of a prototype stripline beam position monitor for the Clic Drive Beam*

    CERN Document Server

    Benot-Morell, A; Wendt, M; Nappa, J M; Tassan-Viol, J; Vilalte, S; Smith, S

    2012-01-01

    The prototype of a stripline Beam Position Monitor (BPM) with its associated readout electronics is under development at CERN, in collaboration with SLAC, LAPP and IFIC. The anticipated position resolution and accuracy are expected to be below 2μm and 20μm respectively for operation of the BPM in the CLIC drive beam (DB) linac. This paper describes the particular CLIC DB conditions with respect to the beam position monitoring, presents the measurement concept, and summarizes electromagnetic simulations and RF measurements performed on the prototype.

  9. Hybrid beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The first proton-ion beams were successfully circulated in the LHC a couple of weeks ago. Everything went so smoothly that the LHC teams had planned the first p-Pb collisions for Wednesday, 16 November. Unfortunately, a last-minute problem with a component of the PS required for proton acceleration prevented the LHC teams from making these new collisions. However, the way is open for a possible physics run with proton-lead collisions in 2012.   Members of the LHC team photographed when the first hybrid beams got to full energy. The proton and lead beams are visible on the leftmost screen up on the wall (click to enlarge the photo). The technical challenge of making different beams circulate in the LHC is by no means trivial. Even if the machine is the same, there are a number of differences when it is operated with beams of protons, beams of lead or beams of proton and lead. Provided that the beams are equal, irrespective of whether they consist of protons or lead nuclei, they revolve at the...

  10. Doublet III neutral beam multi-stream command language system

    International Nuclear Information System (INIS)

    Campbell, L.; Garcia, J.R.

    1983-01-01

    A multi-stream command language system was developed to provide control of the dual source neutral beam injectors on the Doublet III experiment at GA Technologies Inc. The Neutral Beam command language system consists of three parts: compiler, sequencer, and interactive task. The command language, which was derived from the Doublet III tokamak command language, POPS, is compiled, using a recursive descent compiler, into reverse polish notation instructions which then can be executed by the sequencer task. The interactive task accepts operator commands via a keyboard. The interactive task directs the operation of three input streams, creating commands which are then executed by the sequencer. The streams correspond to the two sources within a Doublet III neutral beam, plus an interactive stream. The sequencer multiplexes the execution of instructions from these three streams. The instructions include reads and writes to an operator terminal, arithmetic computations, intrinsic functions such as CAMAC input and output, and logical instructions. The neutral beam command language system was implemented using Modular Computer Systems (ModComp) Pascal and consists of two tasks running on a ModComp Classic IV computer. The two tasks, the interactive and the sequencer, run independently and communicate using shared memory regions. The compiler runs as an overlay to the interactive task when so directed by operator commands. The system is succesfully being used to operate the three neutral beams on Doublet III

  11. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    Considerable experience has now been gained with the various beam transport lines, and a number of minor changes have been made to improve the ease of operation. These include: replacement of certain little-used slits by profile monitors (harps or scanners); relocation of steering magnets, closer to diagnostic harps or profile scanners; installation of a scanner inside the isocentric neutron therapy system; and conversion of a 2-doublet quadrupole telescope (on the neutron therapy beamline) to a 2-triplet telescope. The beam-swinger project has been delayed by very late delivery of the magnet iron to the manufacturer, but is now progressing smoothly. The K=600 spectrometer magnets have now been delivered and are being assembled for field mapping. The x,y-table with its associated mapping equipment is complete, together with the driver software. One of the experimental areas has been dedicated to the production of collimated neutron beams and has been equipped with a bending magnet and beam dump, together with steel collimators fixed at 4 degrees intervals from 0 degrees to 16 degrees. Changes to the target cooling and shielding system for isotope production have led to a request for much smaller beam spot sizes on target, and preparations have been made for rearrangement of the isotope beamline to permit installation of quadrupole triplets on the three beamlines after the switching magnet. A practical system of quadrupoles for matching beam properties to the spectrometer has been designed. 6 figs

  12. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  13. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    CERN Document Server

    AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry

    2015-01-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  14. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  15. Intense ion beam generator

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Sudan, R.N.

    1977-01-01

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation

  16. Beam position determination for the Test Storage Ring

    International Nuclear Information System (INIS)

    Baumann, P.

    1987-01-01

    The Test Storage Ring (TSR) for heavy ions, currently under design and construction at the Max Planck Institute for Nuclear Physics in Heidelberg, requires an extensive beam diagnostics system in order to enable it to operate without friction. This thesis concerns the beam position determination sub-system of this diagnostics system which is intended to determine the beam center of gravity of a bunched beam inside the cross section of the beam tube in a non-destructive manner. An electrostatic pickup is used to sense the location of the beam; the mode of operation of this device will be explained in detail. The signals go to a preamplifier from where they are then sent via a multiplex system to the measuring unit. This point also represents the interface to the computer system that controls the TSR. The prototype developed here was tested with the aid of a particle beam, as well as with other measurement methods. Resolutions of better than 1 mm about the center have been measured. In order to achieve or even improve such resolutions later in actual operation, it is possible to determine the properties of the preamplifiers with the aid of calibration signals and to take these into account in the course of the signal evaluation in the computer. The differences between the individual electrodes of a given pickup must also be compensated. These procedures and their associated electronic circuits are also described in this paper

  17. Beam Dynamics Challenges for FCC-ee

    CERN Document Server

    AUTHOR|(SzGeCERN)442987; Benedikt, Michael; Oide, Katsunobu; Bogomyagkov, Anton; Levichev, Evgeny; Migliorati, Mauro; Wienands, Uli

    2015-01-01

    The goals of FCC-ee include reaching luminosities of up to a few 1036 cm-2s-1 per interaction point at the Z pole or some 1034 cm-2s-1 at the ZH production peak, and pushing the beam energy up to ≥175 GeV, in a ring of 100 km circumference, with a total synchrotron-radiation power not exceeding 100 MW. A parameter baseline as well as high-luminosity crab-waist options were described in [1] and [2], respectively. The extremely high luminosity and resulting short beam lifetime (due to radiative Bhabha scattering) are sustained by top-up injection. The FCC-ee design status and typical beam parameters for different modes of operation are reported in [3]. One distinct feature of the FCC-ee design is its conception as a double ring, with separate beam pipes for the two counter-rotating (electron and positron) beams, resembling, in this aspect, the high-luminosity B factories PEP-II, KEKB and SuperKEKB as well as the LHC. The two separate rings do not only permit operation with a large number of bunches, up to a f...

  18. RAMSES stands guard over the accelerator chain

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    RAMSES, the system that is used to monitor radiation at the LHC, CNGS, CTF3 and n-TOF facilities, will soon be installed at strategic points in the accelerator chain, replacing the older monitoring system ARCON. The replacement programme has already begun.   RAMSES (which stands for “Radiation Monitoring System for the Environment and Safety”) is designed to protect workers, the general public and the environment, both on the Organization’s site and in the surrounding areas. It is currently operational on all the LHC sites and at CTF3, CNGS and n-TOF, while the remaining sites are still equipped with the ARCON (Area CONtroller) system. Daniel Perrin, head of the Instrumentation and Logistics Section of the HSE Unit's Radiation Protection Group, explains: “ARCON was designed for the old LEP accelerator and dates back to the early 1980s, while RAMSES is a much more recent design intended specifically for the LHC. With 389 detectors distributed across 124 mea...

  19. LLRF beam results on the first year of ELENA’s commissioning with beam

    CERN Document Server

    Angoletta, Maria Elena; Molendijk, John; Sanchez Quesada, Jorge; CERN. Geneva. ATS Department

    2018-01-01

    CERN’s Extra Low ENergy Antiproton (ELENA) ring’s commissioning with beam started in earnest in March 2017. Ions from an H- source were injected in ELENA at low energy, although in a degraded way (lower voltage and intensity than planned) and with not constant reproducibility of the injection. From August 2017 onwards antiprotons from the AD were also injected in ELENA at high energy for up to three, weekly MD session. The 2017 ELENA commissioning run stopped on December 1st to allow the installation of the electron cooler. This note gives an overview of the successful operation carried out by the ELENA Low-Level RF (LLRF) during the first year of ELENA commissioning and of the main beam results obtained. Operation with H- ions and with antiprotons are considered, together with different operational settings and problems encountered. Hints on future deployment and commissioning steps are also provided.

  20. Beam Loss Monitoring for LHC Machine Protection

    Science.gov (United States)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  1. Merged neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Osterwalder, Andreas [Ecole Polytechnique Federale de Lausanne (EPFL), Institute for Chemical Sciences and Engineering, Lausanne (Switzerland)

    2015-12-15

    A detailed description of a merged beam apparatus for the study of low energy molecular scattering is given. This review is intended to guide any scientist who plans to construct a similar experiment, and to provide some inspiration in describing the approach we chose to our goal. In our experiment a supersonic expansion of paramagnetic particles is merged with one of polar molecules. A magnetic and an electric multipole guide are used to bend the two beams onto the same axis. We here describe in detail how the apparatus is designed, characterised, and operated. (orig.)

  2. Generation of ninety-six angularly multiplexed KrF beams at Aurora

    International Nuclear Information System (INIS)

    Rose, E.A.

    1987-01-01

    The Aurora KrF laser facility is designed to produce ninety-six laser beams at 248 nm with total energy of -- 10 kJ. The 5-ns duration beams are angularly multiplexed to allow sequential amplification in electron-beam-pumped amplifiers. These amplifiers operated over a half-microsecond period. Previous to this investigation, all individual components of the Aurora system have been operated independently. As a first step toward integration of the full system, the author operated the front end, beam slicer, small-aperture module (SAM), and angle encoder to generate ninety-six angularly multiplexed beams. These beams have been delivered to the first of the three large amplifiers, which will boost the pulse train energy from <1 J to 10 kJ. Measurements to date have concentrated on the total energy of the pulse train and pulse shapes of the individual beams at positions preceding and following SAM. Measured gain through SAM is -- 13 with 20 the target figure. Relative pulse heights are preserved through SAM with the exception of the first pulse of the 12

  3. History of the polarized beam

    International Nuclear Information System (INIS)

    Parker, E.F.

    1979-01-01

    In 1973, the first high energy polarized proton beam was developed at the Argonne Zero Gradient Synchrotron (ZGS). It operated very successfully and productively until 1979 when the ZGS was shut down permanently. This report describes the development, characteristics, and operations of this facility

  4. Development of the TFTR neutral beam injection system

    International Nuclear Information System (INIS)

    Prichard, B.A. Jr.

    1977-01-01

    The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources and a prototype beam line are being developed. The implementation of these beam lines has required the development of several associated pieces of hardware. 200 kV switch tubes for the power supplies are being developed for modulation and regulation of the accelerating supplies. A 90 cm metallic seal gate valve capable of sealing against atmosphere in either direction is being developed for separating the torus and beam line vacuum systems. A 70 x 80 cm fast shutter valve is also being developed to limit tritium migration from the torus into the beam line. Internal to the beam line a calorimeter, ion dump and deflection magnet have been designed to handle three beams, and optical diagnostics utilizing the doppler broadening and doppler shift of light emitted from the accelerated beam are being developed. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982

  5. Windowless Electron Beam Experimental Irradiation WEBExplr

    International Nuclear Information System (INIS)

    Heyse, J.

    2009-01-01

    The design of the MYRRHA/XT-ADS, the European eXperimental Accelerator Driven System for the demonstration of Transmutation, includes a high power windowless spallation target operating with liquid LBE (Lead-Bismuth Eutectic) that will be irradiated with a 600 MeV proton beam at currents of up to 2.5 mA. When considering such a high power windowless target design, a number of questions need to be addressed, such as the stability of the free surface flow and its ability to remove the power deposited by the proton beam by forced convection, the compatibility of a large hot LBE reservoir with the beam line vacuum and the outgassing of the LBE in the spallation target circuit. These issues have been studied during previous experiments supported by numerical simulations. Another crucial point in the development of the spallation target is the demonstration of the safe and stable operation of the free LBE surface during irradiation with a high power proton beam. As a first step in this program, the WEBExpIr (Windowless target Electron Beam Experimental Irradiation) experiment was set up. The purpose of the WEBExpIr experiment was to investigate the influence of LBE surface heating caused by a charged particle beam in a situation representative of the MYRRHA/XT-ADS. More in particular, we wanted to assess possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation

  6. MD 2197: Experimental studies of Landau damping by means of Beam Transfer Function measurements in the presence of beam-beam interactions and diffusive mechanisms

    CERN Document Server

    Tambasco, Claudia; Barranco Garcia, Javier; Boccardi, Andrea; Buffat, Xavier; Bruce, Roderik; Gasior, Marek; Hostettler, Michi; Lefevre, Thibaut; Louro Alves, Diogo Miguel; Metral, Elias; Persson, Tobias Hakan Bjorn; Pieloni, Tatiana; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2018-01-01

    Beam Transfer Function (BTF) measurements are direct measurement of the stability diagrams that define the stability threshold of coherent beam instabilities driven by the impedance. At the LHC, some coherent instabilities at flat top energy are still not fully understood and the BTF measurements provide a method to experimentally probe the Landau damping of the proton beams. The BTF response is sensitive to the particle distribution changes and contain information about the transverse tune spread in the beams. The BTF system has been installed in the LHC in the 2015 in order to investigate the Landau damping at different stages of the operational cycle, machine configurations (different octupole currents, crossing angles, tunes etc...) and in presence of beam-beam excited resonances that may provoke diffusion mechanisms with a consequence change of Landau damping. Past MDs showed some difficulties for the reconstruction of the stability diagram from BTF measurements and several improvements on the BTF sy...

  7. Intra-beam Scattering Theory and RHIC Experiments

    International Nuclear Information System (INIS)

    Wei, J.; Fedotov, A.; Fischer, W.; Malitsky, N.; Parzen, G.; Qiang, J.

    2005-01-01

    Intra-beam scattering is the leading mechanism limiting the luminosity in heavy-ion storage rings like the Relativistic Heavy Ion Collider (RHIC). The multiple Coulomb scattering among the charged particles causes transverse emittance growth and longitudinal beam de-bunching and beam loss, compromising machine performance during collision. Theoretically, the original theories developed by Piwinski, Bjorken, and Mtingwa only describe the rms beam size growth of an unbounded Gaussian distribution. Equations based on the Fokker-Planck approach are developed to further describe the beam density profile evolution and beam loss. During the 2004 RHIC heavy-ion operation, dedicated IBS experiments were performed to bench-mark the rms beam size growth, beam loss, and profile evolution both for a Gaussian-like and a longitudinal hollow beam. This paper summarizes the IBS theory and discusses the experimental bench-marking results

  8. Ion source for ion beam deposition employing a novel electrode assembly

    Science.gov (United States)

    Hayes, A. V.; Kanarov, V.; Yevtukhov, R.; Hegde, H.; Druz, B.; Yakovlevitch, D.; Cheesman, W.; Mirkov, V.

    2000-02-01

    A rf inductively coupled ion source employing a novel electrode assembly for focusing a broad ion beam on a relatively small target area was developed. The primary application of this ion source is the deposition of thin films used in the fabrication of magnetic sensors and optical devices. The ion optics consists of a three-electrode set of multiaperture concave dished grids with a beam extraction diameter of 150 mm. Also described is a variation in the design providing a beam extraction diameter of 120 mm. Grid hole diameters and grid spacing were optimized for low beamlet divergence and low grid impingement currents. The radius of curvature of the grids was optimized to obtain an optimally focused ion beam at the target location. A novel grid fabrication and mounting design was employed which overcomes typical limitations of such grid assemblies, particularly in terms of maintaining optimum beam focusing conditions after multiple cycles of operation. Ion beam generation with argon and xenon gases in energy ranges from 0.3 to 2.0 keV was characterized. For operation with argon gas, beam currents greater than 0.5 A were obtained with a beam energy of 800 eV. At optimal beam formation conditions, beam profiles at distances about equal to the radius of curvature were found to be close to Gaussian, with 99.9% of the beam current located within a 150 mm target diameter. Repeatability of the beam profile over long periods of operation is also reported.

  9. The synchrotron and its related technology for ion beam therapy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo; Umezawa, Masumi; Saito, Kazuyoshi; Tootake, Satoshi; Nishiuchi, Hideaki; Hara, Shigemistu; Tanaka, Masanobu; Matsuda, Koji; Sakurabata, Hiroaki; Moriyama, Kunio

    2007-01-01

    Hitachi has developed several new technologies for the synchrotron and its related system to realize reliable and flexible operation of a proton therapy system. Especially important among them are a non-resonant RF acceleration cavity using FINEMET core with multiple power feeding and radio frequency driven beam extraction technique (RF-DE) for a synchrotron. Various treatment operations such as variable acceleration energy or respiration gating became possible and simple due to the above technique. For beam transport, a beam steering method for the beam, using transfer matrix realizes quick and precise correction of the beam orbit. A compact microwave ion source has also been developed for the injector to obtain further higher reliability and availability. Most of these technologies are also effective to enhance the reliability and flexibility of other ion beam therapy systems

  10. Importance of beam-beam tune spread to collective beam-beam instability in hadron colliders

    International Nuclear Information System (INIS)

    Jin Lihui; Shi Jicong

    2004-01-01

    In hadron colliders, electron-beam compensation of beam-beam tune spread has been explored for a reduction of beam-beam effects. In this paper, effects of the tune-spread compensation on beam-beam instabilities were studied with a self-consistent beam-beam simulation in model lattices of Tevatron and Large Hodron Collider. It was found that the reduction of the tune spread with the electron-beam compensation could induce a coherent beam-beam instability. The merit of the compensation with different degrees of tune-spread reduction was evaluated based on beam-size growth. When two beams have a same betatron tune, the compensation could do more harm than good to the beams when only beam-beam effects are considered. If a tune split between two beams is large enough, the compensation with a small reduction of the tune spread could benefit beams as Landau damping suppresses the coherent beam-beam instability. The result indicates that nonlinear (nonintegrable) beam-beam effects could dominate beam dynamics and a reduction of beam-beam tune spread by introducing additional beam-beam interactions and reducing Landau damping may not improve the stability of beams

  11. Potential kaon and antiproton beams at BNL

    International Nuclear Information System (INIS)

    Lazarus, D.M.

    1991-01-01

    The AGS at Brookhaven is the worlds most prolific producer of kaons and low energy antiprotons during operations. With the imminent operation of the AGS Booster which will increase intensities by an anticipated factor of six in the next few years, it will become possible to have purified beams of particles containing strange quarks and anti-quarks with intensities comparable to the pion beams which have so successfully dominated precision hadron spectroscopy in the past. 10 refs., 3 figs

  12. The neutral beam test facility cryopumping operation: preliminary analysis and design of the cryogenic system

    International Nuclear Information System (INIS)

    Gravil, B.; Henry, D.; Cordier, J.J.; Hemsworth, R.; Van Houtte, D.

    2004-01-01

    The ITER neutral beam heating and current drive system is to be equipped with a cryosorption cryopump made up of 12 panels connected in parallel, refrigerated by 4.5 K 0.4 MPa supercritical helium. The pump is submitted to a non homogeneous flux of H 2 or D 2 molecules, and the absorbed flux varies from 3 Pa.m -3 .s -1 to 35 Pa.m -3 .s -1 . In the frame of the 'ITER first injector and test facility CSU-EFDA task' (TW3-THHN-IITF1), the ITER reference cryo-system and cryo-plant designs have been assessed and compared to optimised designs devoted to the Neutral Beam Test Facility (NBTF). The 4.5 K cryo-panel, which has a mass of about 1000 kg, must be periodically regenerated up to 90 K and occasionally to 470 K. The cool-down time after regeneration depends strongly on the refrigeration capacity. Fast regeneration and cool-down of the cryo-panels are not considered a priority for the test facility operation, and an analysis of the consequences of a limited cold power refrigerator on the cooling down time has been carried out and will be discussed. This paper presents a preliminary evaluation of the NBTF cryo-plant and the associated process flow diagram. (authors)

  13. Long-range beam-beam interactions in the Tevatron: Comparing simulation to tune shift data

    International Nuclear Information System (INIS)

    Saritepe, S.; Michelotti, L.; Peggs, S.

    1990-07-01

    Fermilab upgrade plans for the collider operation include a separation scheme in the Tevatron, in which protons and antiprotons are placed on separate helical orbits. The average separation distance between the closed orbits will be 5σ (σ of the proton bunch) except at the interaction regions, B0 and D0, where they collide head-on. The maximum beam-beam total tune shift in the Tevatron is approximately 0.024 (the workable tune space between 5th and 7th order resonances), which was reached in the 1988--1989 collider tun. Helical separation scheme allows us to increase the luminosity by reducing the total beam-beam tune shift. The number of bunches per beam will be 6 in the 1991 collider tun, to be increased to 36 in the following collider runs. To test the viability of this scenario, helical orbit studies are being conducted. The most recent studies concentrated on the injection of 36 proton bunches, procedures related to opening and closing of the helix, the feed-down circuits and the beam-beam interaction. In this paper, we present the results of the beam-beam interaction studies only. Our emphasis is on the tune shift measurements and the comparison to simulation. 4 refs., 9 figs., 2 tabs

  14. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  15. TFTR neutral beam power system

    International Nuclear Information System (INIS)

    Deitz, A.; Murray, H.; Winje, R.

    1977-01-01

    The TFTR NB System will be composed of four beam lines, each containing three ion sources presently being developed for TFTR by the Lawrence Berkeley Laboratories (LBL). The Neutral Beam Power System (NBPS) will provide the necessary power required to operate these Ion Sources in both an experimental or operational mode as well as test mode. This paper describes the technical as well as the administrative/management aspects involved in the development and building of this system. The NBPS will combine the aspects of HV pulse (120 kV) and long pulse width (0.5 sec) together to produce a high power system that is unique in the Electrical Engineering field

  16. Hyperon beams as a source of polarized protons

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1978-01-01

    A high energy polarized proton beam which would utilize lambda decays as a source of polarized protons was proposed. We discuss the operation of such a beam and related physics experiments. 12 references

  17. Design and operation of a button-probe, beam-position measurements

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.; Power, J.F.; Meyer, R.E.; Rose, C.R.

    1993-01-01

    Beam position measurement systems have been installed on the Advanced Free Electron Laser (AFEL) facility at Los Alamos National Laboratory. The position measurement uses a capacitive- or button-style probe that differentiates the beam-bunch charge distribution induced on each of the four probe lobes. These induced signals are fed to amplitude-to-phase processing electronics that provide output signals proportional to the arc tangent of the probe's opposite-lobe, signal-voltage ratios. An associated computer system then digitizes and linearizes these processed signals based on theoretical models and measured responses. This paper will review the processing electronics and capacitive probe responses by deriving simple theoretical models and comparing these models to actual measured responses

  18. AWAKE starts the equipment installation phase

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    AWAKE is the proof-of-principle experiment whose aim is to use protons to generate powerful wakefields to accelerate an electron beam. With accelerator gradients hundreds of times higher than those used in current systems, this technique could revolutionise the field of particle acceleration. Installed in the tunnel previously used by the CNGS facility, AWAKE is completing the service installation phase and will receive the plasma cell in the coming months.   The AWAKE proton line with all the magnets installed. (Image: AWAKE collaboration.) AWAKE is the world’s first proton-driven plasma wakefield acceleration experiment. In AWAKE, a beam of protons from the SPS will be travelling through a plasma cell and this will generate a wakefield that, in turn, will accelerate an electron beam. A laser will ionise the gas in the plasma cell and seed the self-modulation instability that will trigger the wakefield in the plasma. The project aims to prove that the plasma wakefield can be driv...

  19. Bringing up beams

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, commissioning began on CERN’s newest linear accelerator: Linac4. As the replacement machine for Linac2, Linac4 will take a negative hydrogen ion beam to a staggering 160 MeV. We check in to see how the Linac4 team is preparing its machine for its new role as the first link in the accelerator chain.   The Linac4 3 MeV beam line, with the ion source in the back, the RFQ in the middle and the chopping line in the front. On 14 November, members of the Linac4 collaboration and the CERN Operations Group were brought together for their first “real day” in the Linac4 Control Room. Together, they successfully accelerated their first hydrogen ion beam to 3 MeV. It was an exciting moment for everyone involved and marked the start of one of the most critical commissioning phases for the new accelerator. At the start of the Linac4 beam line sits the CERN-made Radio Frequency Quadrupole (RFQ). This vital piece of machinery takes the beam from 45 keV to 3 MeV in ju...

  20. LS1 Report: first beams in the Booster

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    On Monday, 2 June, the Operations Group injected the first beams into the PS Booster (PSB). The PSB, the second machine in the LHC injector chain to be recommissioned (Linac2 was the first), also provides beams for non-LHC experiments, some of which will need beams for physics as early as this summer.   The PS Booster. The Operations Group has been back in control of the PS Booster for a month now, having taken over where the engineers and experts of the EN Department, who were responsible for the maintenance work, left off. The group first ran tests with no beam (known as “cold check-out”) to check and requalify all the machine instrumentation, from the control room to the ring itself. Now in beam mode, the Booster is being prepared both to begin supplying the PS at the end of June and, above all, for physics to restart in the ISOLDE experimental area. The PS Booster console in the CERN Control Centre. “We have around 15 types of beams to ‘prepa...

  1. Operation and development 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This issue of the Technical Report on the Accelerators describes the operations for physics experiments and beam tests, various technical improvements and ongoing projects during the year 1999. As usual, the first chapter reports on the standard operation of GANIL with stable ions, with analysis of the beam time distribution and statistics, including failures. A major project was the production and subsequent acceleration, over a long period of time, of an intense {sub 58}Ni{sup 11+} beam produced using the MIVOC method, which contributed strongly to the discovery of the doubly-magic {sub 48}Ni element. The renovation and development program (Chapter 2), including methods for producing metallic ion beams, gathered speed thanks to the completion of SPIRAL. A large share of these projects were high-intensity oriented. This trend also obviously applies to projects directly linked to the THI operation. In a special test, a 1.3 x 10{sup 13} pps {sub 13}C beam (later raised to 2 x 10{sup 13} pps for several hours) was accelerated and extracted from SSC2 at an energy of 75 MeV/n. Simultaneously, comparisons were made between simulations and beam test results for a clearer understanding of space charge effects on accelerator transmission efficiency. Chapter 3 covers the THI related projects. The final chapter deals with IRRSUD. This project, which is funded and on the way to completion, uses low energy beams delivered by the two injector cyclotrons for industrial applications and research, such as nano-technologies and simulation of defects in solids. (author)

  2. Operation and development 1999

    International Nuclear Information System (INIS)

    2001-01-01

    This issue of the Technical Report on the Accelerators describes the operations for physics experiments and beam tests, various technical improvements and ongoing projects during the year 1999. As usual, the first chapter reports on the standard operation of GANIL with stable ions, with analysis of the beam time distribution and statistics, including failures. A major project was the production and subsequent acceleration, over a long period of time, of an intense 58 Ni 11+ beam produced using the MIVOC method, which contributed strongly to the discovery of the doubly-magic 48 Ni element. The renovation and development program (Chapter 2), including methods for producing metallic ion beams, gathered speed thanks to the completion of SPIRAL. A large share of these projects were high-intensity oriented. This trend also obviously applies to projects directly linked to the THI operation. In a special test, a 1.3 x 10 13 pps 13 C beam (later raised to 2 x 10 13 pps for several hours) was accelerated and extracted from SSC2 at an energy of 75 MeV/n. Simultaneously, comparisons were made between simulations and beam test results for a clearer understanding of space charge effects on accelerator transmission efficiency. Chapter 3 covers the THI related projects. The final chapter deals with IRRSUD. This project, which is funded and on the way to completion, uses low energy beams delivered by the two injector cyclotrons for industrial applications and research, such as nano-technologies and simulation of defects in solids. (author)

  3. 1 nA beam position monitoring system

    International Nuclear Information System (INIS)

    Ursic, R.; Flood, R.; Piller, C.

    1997-01-01

    A system has been developed at Jefferson Lab for measuring transverse position of very low current beams delivered to the Experimental Hall B of the Continuous Electron Beam Accelerator Facility (CEBAF). At the heart of the system is a position sensitive cavity operating at 1497 MHz. The cavity utilizes a unique design which achieves a high sensitivity to beam position at a relatively low cavity Q. The cavity output RF signal is processed using a down-converter and a commercial lock-in amplifier operating at 100 kHz. The system interfaces with a VME based EPICS control system using the IEEE, 488 bus. The main features of the system are simple and robust design, and wide dynamic range capable of handling beam currents from 1 nA to 1000 nA with an expected resolution better than 100 μm. This paper outlines the design of the system

  4. Design consideration of relativistic klystron two-beam accelerator for suppression of beam-break-up

    International Nuclear Information System (INIS)

    Li, H.; Houck, T.L.; Yu, S.; Goffeney, N.

    1994-03-01

    It is demonstrated in this simulation study that by using the scheme of operating rf extraction structures on the betatron nodes of electron drive beam in conjunction with adequate de-Q-ing, appropriate choice of geometries for the rf structures (reducing transverse impedence) and/or staggered tuning we can suppress the overall growth of transverse instabilities to 4 e-folds in a relativistic klystron two-beam accelerator with 200 extraction cavities

  5. Toward automated beam optics control

    International Nuclear Information System (INIS)

    Silbar, R.R.; Schultz, D.E.

    1987-01-01

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a ''mouseable'' representation of a typical beam line. This responds actively to changes entered from the mouse or keyboard, giving an updated display of the beam line itself, its optical properties, and the instrumentation and control devices as seen by the operater. We have incorporated TRANSPORT, written in Fortran but running as a callable procedure in the LISP environment, for simulation of the beam-line optics. This paper describes the experience gained in meeting our first goal and discusses plans to extend the work so that it is usable, in realtime, on an operating beam line. 11 refs

  6. DIII-D Neutral Beam control system operator interface

    International Nuclear Information System (INIS)

    Harris, J.J.; Campbell, G.L.

    1993-10-01

    A centralized graphical user interface has been added to the DIII-D Neutral Beam (NB) control systems for status monitoring and remote control applications. This user interface provides for automatic data acquisition, alarm detection and supervisory control of the four NB programmable logic controllers (PLC) as well as the Mode Control PLC. These PLCs are used for interlocking, control and status of the NB vacuum pumping, gas delivery, and water cooling systems as well as beam mode status and control. The system allows for both a friendly user interface as well as a safe and convenient method of communicating with remote hardware that formerly required interns to access. In the future, to enable high level of control of PLC subsystems, complete procedures is written and executed at the touch of a screen control panel button. The system consists of an IBM compatible 486 computer running the FIX DMACS trademark for Windows trademark data acquisition and control interface software, a Texas Instruments/Siemens communication card and Phoenix Digital optical communications modules. Communication is achieved via the TIWAY (Texas Instruments protocol link utilizing both fiber optic communications and a copper local area network (LAN). Hardware and software capabilities will be reviewed. Data and alarm reporting, extended monitoring and control capabilities will also be discussed

  7. RF Plasma Source for Heavy Ion Beam Charge Neutralization

    Science.gov (United States)

    Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.

    2003-10-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.

  8. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  9. Backprojection filtering for variable orbit fan-beam tomography

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Zeng, G.L.

    1995-01-01

    Backprojection filtering algorithms are presented for three variable Orbit fan-beam geometries. Expressions for the fan beam projection and backprojection operators are given for a flat detector fan-beam geometry with fixed focal length, with variable focal length, and with fixed focal length and off-center focusing. Backprojection operators are derived for each geometry using transformation of coordinates to transform from a parallel geometry backprojector to a fan-beam backprojector for the appropriate geometry. The backprojection operator includes a factor which is a function of the coordinates of the projection ray and the coordinates of the pixel in the backprojected image. The backprojection filtering algorithm first backprojects the variable orbit fan-beam projection data using the appropriately derived backprojector to obtain a 1/r blurring of the original image then takes the two-dimensional (2D) Fast Fourier Transform (FFT) of the backprojected image, then multiples the transformed image by the 2D ramp filter function, and finally takes the inverse 2D FFT to obtain the reconstructed image. Computer simulations verify that backprojectors with appropriate weighting give artifact free reconstructions of simulated line integral projections. Also, it is shown that it is not necessary to assume a projection model of line integrals, but the projector and backprojector can be defined to model the physics of the imaging detection process. A backprojector for variable orbit fan-beam tomography with fixed focal length is derived which includes an additional factor which is a function of the flux density along the flat detector. It is shown that the impulse response for the composite of the projection and backprojection operations is equal to 1/r

  10. Longitudinal beam instabilities in a double RF system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00229208; Gazis, Evangelos

    Operation with a double RF system is essential for many accelerators in order to increase beam stability, to change the bunch shape or to perform various RF manipulations. This is also the case for the operation of the CERN SPS as the LHC proton injector, where in addition to the main RF system, a fourth harmonic RF system is used in bunch shortening mode in order to increase the synchrotron frequency spread inside the bunch and thus to enhance Landau damping of the collective instabilities. In fact the double RF system operation in the SPS is one of the essential means, together with the controlled longitudinal emittance blow-up to significantly increase the longitudinal instability thresholds (single and multi-bunch) and deliver a good quality beam for the LHC. However, for the HiLumi-LHC (HL-LHC) and LHC injector upgrade (LIU) projects higher beam intensities are required. After all upgrades are in place, the main performance limitations of the LHC injector complex are beam instabilities and high intensity...

  11. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com [DREEBIT GmbH, 01109 Dresden (Germany); Zschornack, G.; Kentsch, U.; Ritter, E. [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany)

    2014-02-15

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  12. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    Science.gov (United States)

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  13. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    International Nuclear Information System (INIS)

    Schmidt, M.; Zschornack, G.; Kentsch, U.; Ritter, E.

    2014-01-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup

  14. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  15. Validation of electro-thermal simulation with experimental data to prepare online operation of a molten salt target at ISOLDE for the Beta Beams

    CERN Document Server

    Cimmino, S; Marzari, S; Stora, T

    2013-01-01

    The main objective of the Beta Beams is to study oscillation property of pure electrons neutrinos. It produces high energy beams of pure electron neutrinos and anti-neutrinos for oscillation experiments by beta decay of He-6 and Ne-18 radioactive ion beams, stored in a decay ring at gamma = 100. The production of He-6 beam has already been accomplished using a thick beryllium oxide target. However, the production of the needed rate of Ne-18 has proven to be more challenging. In order to achieve the requested yield for Ne-18 a new high power target design based on a circulating molten salt loop has been proposed. To verify some elements of the design, a static molten salt target prototype has been developed at ISOLDE and operated successfully. This paper describes the electro-thermal study of the molten salt target taking into account the heat produced by Joule effect, radiative heat exchange, active water cooling due to forced convection and air passive cooling due to natural convection. The numerical results...

  16. Beam dynamics studies at DAΦNE: from ideas to experimental results

    Science.gov (United States)

    Zobov, M.; DAΦNE Team

    2017-12-01

    DAΦNE is the electron-positron collider operating at the energy of Φ-resonance, 1 GeV in the center of mass. The presently achieved luminosity is by about two orders of magnitude higher than that obtained at other colliders ever operated at this energy. Careful beam dynamic studies such as the vacuum chamber design with low beam coupling impedance, suppression of different kinds of beam instabilities, investigation of beam-beam interaction, optimization of the beam nonlinear motion have been the key ingredients that have helped to reach this impressive result. Many novel ideas in accelerator physics have been proposed and/or tested experimentally at DAΦNE for the first time. In this paper we discuss the advanced accelerator physics studies performed at DAΦNE.

  17. Computer codes for automatic tuning of the beam transport at the UNILAC

    International Nuclear Information System (INIS)

    Dahl, L.; Ehrich, A.

    1984-01-01

    For application in routine operation fully automatic computer controlled algorithms are developed for tuning of beam transport elements at the Unilac. Computations, based on emittance measurements, simulate the beam behaviour and evaluate quadrupole settings, in order to produce defined beam properties at specified positions along the accelerator. The interactive program is controlled using a graphic display on which the beam emittances and envelopes are plotted. To align the beam onto the ion-optical axis of the accelerator two automatic computer controlled procedures have been developed. The misalignment of the beam is determined by variation of quadrupole or steering magnet settings with simultaneous measurement of the beam distribution on profile grids. According to the result a pair of steering magnet settings are adjusted to bend the beam on the axis. The effects of computer controlled tuning on beam quality and operation are reported

  18. Alignment and girder position of MSE septa in the new LSS4 extraction channel of the SPS

    CERN Document Server

    Balhan, B; Rizzo, A; Weterings, W; CERN. Geneva. SPS and LHC Division

    2002-01-01

    For the extraction of the beam from the Super Proton Synchrotron (SPS) to ring 2 of the Large Hadron Collider (LHC) and the CERN Neutrino to Gran Sasso (CNGS)facility, a new fast-extraction system is being constructed in the long straight section LSS4 of the SPS. Besides extraction bumpers, enlarged aperture quadrupoles and extraction kicker magnets (MKE), six conventional DC septum magnets (MSE) are used. These magnets are mounted on a single rigid support girder, pre-aligned so as to follow the trajectory of the extracted beam and optimise the available aperture. The girder has been motorised in order to optimise the local SPS aperture during setting up, so as to avoid the risk of circulating beam impact on the septum coils. In this note, we briefly present the trajectory and apertures of the beam, we describe the calculations and methods that have been used to determine the magnet position on the girder, and finally we report on the details of the girder movement and alignment.

  19. The AWAKE Experimental Facility at CERN

    CERN Document Server

    Gschwendtner, E; Bracco, C; Butterworth, A; Cipiccia, S; Doebert, S; Fedosseev, V; Feldbaumer, E; Hessler, C; Hofle, W; Martyanov, M; Meddahi, M; Osborne, J; Pardons, A; Petrenko, A; Vincke, H

    2014-01-01

    AWAKE, an Advanced Wakefield Experiment is launched at CERN to verify the proton driven plasma wakefield acceleration concept. Proton bunches at 400 GeV/c will be extracted from the CERN SPS and sent along a 750 m long proton line to a plasma cell, a Rubidium vapour source, where the proton beam drives wakefields reaching accelerating gradients of several gigavolts per meter. A high power laser pulse will copropagate within the proton bunch creating the plasma by ionizing the (initially) neutral gas. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility. First proton beam to the plasma cell is expected by end 2016. The installation planning and the baseline parameters of the experiment are shown. The design of the experimental area and the integration of the new beam-lines as well as the experimental equipment are presented. The needed modifications of the infrastructure in the facility and a few challenges are h...

  20. An Electronically Controlled 8-Element Switched Beam Planar Array

    KAUST Repository

    Sharawi, Mohammad S.

    2015-02-24

    An 8-element planar antenna array with electronically controlled switchable-beam pattern is proposed. The planar antenna array consists of patch elements and operates in the 2.45 GHz ISM band. The array is integrated with a digitally controlled feed network that provides the required phases to generate 8 fixed beams covering most of the upper hemisphere of the array. Unlike typical switchable beam antenna arrays, which operate only in one plane, the proposed design is the first to provide full 3D switchable beams with simple control. Only a 3-bit digital word is required for the generation of the 8 different beams. The integrated array is designed on a 3-layer PCB on a Taconic substrate (RF60A). The total dimensions of the fabricated array are 187.1 × 261.3 × 1.3mm3.

  1. PLT neutral beam injection systems

    International Nuclear Information System (INIS)

    Menon, M.M.; Barber, G.C.; Blue, C.W.

    1979-01-01

    A brief description of the Princeton Large Torus (PLT) neutral beam injection system is given and its performance characteristics are outlined. A detailed operational procedure is included, as are some tips on troubleshooting. Proper operation of the source is shown to be a crucial factor in system performance

  2. Subharmonic beam-loading in electron linear accelerators

    International Nuclear Information System (INIS)

    Gallagher, W.J.

    1983-01-01

    The intention of operating an electron linear accelerator subharmonically beam loaded for free electron laser application requires justification of the beam-loaded energy gain equation. The mode of operation typically planned is 5 to 10 nanocoulombs single RF cycle pulses at 25 to 50 nanosecond intervals. This inquiry investigates the details of this sort of beam loading and discusses the performance achievable. Several other investigations of single bunch beam loading have been undertaken, notably at SLAC, where it has been found experimentally that the beam-loading varies directly as the bunch charge and independently of its energy; that investigation also included radiation effects of the wake field and losses owing to parasitic effects of higher order modes. In the case of beam loading where there are multiple pulses transiting at the same time, and spaced far enough apart that significant RF power is introduced between pulses, the energy gain may be calculated by dividing the waveguide into a number of segments, each equal in length to the integral of the interpulse time and the local group velocity. Equations which reveal that the net energy gain in the steady state is the sum of the energy gains in these segments, which compute the initial field intensity, and which calculate the energy gain in the subharmonic case on the basis of the equivalent beam current are presented

  3. Developments in non-destructive beam diagnostics

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1981-01-01

    With the large average beam currents being achieved in accelerators and storage rings, there is an increasing need for non-destructive beam diagnostic devices. For continuous beams, position monitors of the capacitive pick-up type are replaced by resonant devices that respond to the transverse displacement of the beam centroid. Bunch length monitors of the SLAC type using resonant cavities operating in the TM 010 mode can be used for continuous beams. The more detailed information derivable from beam profile scanners requires development of improved non-destructive devices. Profile monitors which scan the visible light produced by high current beams may be more reliable than ones using the residual ionization if the light intensity from gas molecules following nonionizing collisions with beam particles gives a measure of the beam current density independent of the local electron density. The intense Balmer series lines from neutral hydrogen beams have been used successfully to measure beam profiles. At CRNL and at LASL, beam light profile monitors are being developed for high average current accelerators. Three or more projections will be recorded to allow tomographic reconstruction of the two-dimensional beam current density. Light detection is either by intensified Reticons or ISIT vidicons. The use of three or more beam light monitors on a beam transport line will also permit estimates of the transverse emittance to be made through the reconstruction technique

  4. Dumping the decelerated beams of CLIC

    CERN Document Server

    Jeanneret, Bernard

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  5. Standard beam PWC for Fermilab

    International Nuclear Information System (INIS)

    Fenker, H.

    1983-02-01

    As one of its projects the Fermilab Experimental Areas Department has been designed and tested a relatively small proportional wire chamber for use in the secondary beam lines. It is intended to supplement the variety of detectors known in the vernacular as SWICS that are used to obtain profiles for beam tuning. The new detector, described in this report, operates in the limited proportional mode and allows experimenters to use a standard, lab supported device for associating trajectories of individual beam particles with events triggering their own experiment's apparatus. A completed triple plane module is shown

  6. CAVITY BEAM POSITION MONITOR SYSTEM FOR ATF2

    CERN Document Server

    Boogert, S T; Cullinan, F; Joshi, N; Lyapin, A; Aryshev, A; Honda, Y; Naito, T; Terunuma, N; Urakara, J; Heo, A; Kim, E-S; Kim, Y I; McCormick, D; Frisch, J; Nelson, J; Smith, T; White, G R

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 41 high resolution C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitisers. In addition 4 high resolution BPMs have been recently installed at the interaction point, we briefly describe the first operational experience of these cavities in the ATF2 beam-line. The current status of the overall BPM system is also described, with a focus on operational techniques and performance.

  7. PULSED MOLECULAR BEAM PRODUCTION WITH NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Hagena, Otto-Friedrich

    1963-05-15

    Molecular beam experiments that can be carried out in pulsed operation may be performed at considerably reduced expense for apparatus if, for pulse generation, the gas supply to the beam production system is interrupted as opposed to the usual steady molecular beam. This technique is studied by measuring intensity vs time of molecular beam impulses of varying length, how fast and through which intermediate states the initial intensity of the impulse attains equilibrium, and in which way the intensity of the molecular-beam impulse is affected by the pulse length and by increasing pressure in the first pressure stage. For production of pulses, a magnetically actuated, quick shutting, valve is used whose scaling area is the inlet cone of the nozzle used for the beam generation. The shortest pulses produced had a pulse length of 1.6 ms. (auth)

  8. Modematic: a fast laser beam analyzing system for high power CO2-laser beams

    Science.gov (United States)

    Olsen, Flemming O.; Ulrich, Dan

    2003-03-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.

  9. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  10. Negative ions as a source of low energy neutral beams

    International Nuclear Information System (INIS)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems

  11. Beam Divergence from an SMF-28 Optical Fiber

    National Research Council Canada - National Science Library

    Kowalevicz, Jr., Andrew M; Bucholtz, Frank

    2006-01-01

    ...) operating near 1550 nm wavelength. The analysis shows some pitfalls for a common imaging technique for determining beam width and shows good agreement with theory when the beam width measurement is performed using either a knife-edge...

  12. Beam-dynamics driven design of the LHeC energy-recovery linac

    Science.gov (United States)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  13. Neutral beam data systems at ORNL

    International Nuclear Information System (INIS)

    Stewart, C.R.

    1982-01-01

    A control system for neutral injection beam lines has been designed, implemented, and used with much success. Despite the problems with very high power levels this system is very successful in relieving the operators burdens of slow conditioning, data recording, and mode switching. The use of computer control with multiple beam lines now appears very promising

  14. ORNL 150 keV neutral beam test facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Kim, J.; Menon, M.M.; Schilling, G.

    1977-01-01

    The 150 keV neutral beam test facility provides for the testing and development of neutral beam injectors and beam systems of the class that will be needed for the Tokamak Fusion Test Reactor (TFTR) and The Next Step (TNS). The test facility can simulate a complete beam line injection system and can provide a wide range of experimental operating conditions. Herein is offered a general description of the facility's capabilities and a discussion of present system performance

  15. Electron-beam-fusion progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Research progress is reported for the following areas: (1) Proto I, (2) Proto II, (3) EBFA, (4) power flow, (5) contract progress reports, (6) progress in the Sandia program, (7) repetitively operated pulse generator development, (8) electron beam power from inductive storage, (9) fusion target design, (10) beam physics research, (11) power flow, (12) heavy ion fusion, (13) particle beam source development, (14) beam target interaction and target response studies, (15) diagnostic development, and (16) hybrid systems

  16. Automated cyclotron tuning using beam phase measurements

    International Nuclear Information System (INIS)

    Timmer, J.H.; Roecken, H.; Stephani, T.; Baumgarten, C.; Geisler, A.

    2006-01-01

    The ACCEL K250 superconducting cyclotron is specifically designed for the use in proton therapy systems. The compact medical 250 MeV proton accelerator fulfils all present and future beam requirements for fast scanning treatment systems and is delivered as a turn key system; no operator is routinely required. During operation of the cyclotron heat dissipation of the RF system induces a small drift in iron temperature. This temperature drift slightly detunes the magnetic field and small corrections must be made. A non-destructive beam phase detector has been developed to measure and quantify the effect of a magnetic field drift. Signal calculations were made and the design of the capacitive pickup probe was optimised to cover the desired beam current range. Measurements showed a very good agreement with the calculated signals and beam phase can be measured with currents down to 3 nA. The measured phase values are used as input for a feedback loop controlling the current in the superconducting coil. The magnetic field of the cyclotron is tuned automatically and online to maintain a fixed beam phase. Extraction efficiency is thereby optimised continuously and activation of the cyclotron is minimised. The energy and position stability of the extracted beam are well within specification

  17. The IFUSP microtron accelerator beam transport line

    International Nuclear Information System (INIS)

    Rios, Paulo Beolchi

    2002-01-01

    In this work, the electron optical project of the IFUSP microtron beam transport line is presented, including the operational values for the parameters of the dipolar and quadrupolar electromagnets, as well as their location along the beam line. Analytical calculations and computer simulations were performed to obtain these results, and a programming tool was developed in order to analyze the beam parameters and to help studying racetrack microtrons. The electron optical simulations were split into two different study cases: the microtron booster, and the transfer line. In the first case, it was determined the main operational parameters of a microtron working far from its usual stability conditions. In the latter, it was done the basic design of the linking line between the booster and main (not yet built) microtrons, and between them and the experimental hall, with a total path length of approximately 32 m including large horizontal and vertical deflections with variable beam energy. (author)

  18. Double-heterostructure PbSnTe lasers grown by molecular-beam epitaxy with cw operation up to 114 K

    International Nuclear Information System (INIS)

    Walpole, J.N.; Calawa, A.R.; Harman, T.C.; Groves, S.H.

    1976-01-01

    Double-heterostructure Pb/sub 1-x/Sn/sub x/Te lasers with active regions of Pb 0 . 782 Sn 0 . 218 Te have been grown by molecular-beam epitaxy which operate cw up to heat-sink temperatures of 114 0 K. Temperature tuning of the emission from 15.9 to 8.54 μm wavelength is obtained, with emission at 77 0 K near 11.5 μm. The current-voltage characteristics show an abrupt change in slope at threshold, indicating high incremental internal quantum efficiency

  19. Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Reyes, S

    2006-05-02

    Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.

  20. Laser beam propagation in atmospheric turbulence

    Science.gov (United States)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  1. Micro computer aided beam transport for the SF cyclotron

    International Nuclear Information System (INIS)

    Honma, Toshihiro; Yamazaki, Tsutomu.

    1984-01-01

    An improvement of the beam transport system for the SF cyclotron is described. The system was designed to handle on-line alignment of the beam extracted from the SF cyclotron onto the optical axis of the transport line. It also enables to measure the beam emittance. The measurement of the emittance parameters is in particular necessary to calculate the beam optics. The calculation has been modified to become easy to handle. With the help of the computer-aided on-line beam profile measurement system, the operation of the beam transport system is very subservient to shorten the beam-tuning time and to improve the beam-transmission efficiency and the quality. (author)

  2. Analysis of the beam induced heat loads on the LHC arc beam screens during Run 2

    CERN Document Server

    Iadarola, Giovanni; Dijkstal, Philipp; Mether, Lotta; CERN. Geneva. ATS Department

    2017-01-01

    During Run 2 the Large Hadron Collider (LHC) has been routinely operated with 25 ns bunch spacing. In these conditions large heat loads have been measured on the beam screens of the superconducting magnets, together with other observations indicating that an electron cloud develops in the beam chambers. The analysis of these heat loads has revealed several interesting features allowing to pinpoint peculiar characteristics of the observed beam-induced heating. This document describes the main findings of this analysis including the evolution taking place during the run, the observed dependence on the beam conditions and the results from special tests and dedicated instrumentation. The differences observed in the behavior of the eight LHC arcs are also discussed.

  3. Multi-megawatt neutral beams for MFTF-B

    International Nuclear Information System (INIS)

    Kerr, R.G.

    1982-01-01

    Multi-megawatt neutral-beam sources have successfully made the transition from prototype to commercial production, with some operational improvements due to the commercialization. Long pulse source operation results will be available soon

  4. Gas utilization in the Tokamak Fusion Test Reactor neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.; Jones, T.T.C.

    1989-01-01

    Measurements of gas utilization were performed using hydrogen and deuterium beams in the Tokamak Fusion Test Reactor (TFTR) neutral beam test beamline to study the feasibility of operating tritium beams with existing ion sources under conditions of minimal tritium consumption. (i) It was found that the fraction of gas molecules introduced into the TFTR long-pulse ion sources that are converted to extracted ions (i.e., the ion source gas efficiency) was higher than with previous short-pulse sources. Gas efficiencies were studied over the range 33%--55%, and its effect on neutralization of the extracted ions was studied. At the high end of the gas efficiency range, the neutral fraction of the beam fell below that predicted from room-temperature molecular gas flow (similar to observations at the Joint European Torus). (ii) Beam isotope change studies were performed. No extracted hydrogen ions were observed in the first deuterium beam following a working gas change from H 2 to D 2 . There was no arc conditioning or gas injection preceding the first beam extraction attempt. (iii) Experiments were also performed to determine the reliability of ion source operation during the long waiting periods between pulses that are anticipated during tritium operation. It was found that an ion source conditioned to 120 kV could produce a clean beam pulse after a waiting period of 14 h by preceding the beam extraction with several acceleration voltage/filament warm-up pulses. It can be concluded that the operation of up to six ion sources on tritium gas should be compatible with on-site inventory restrictions established for D--T, Q = 1 experiments on TFTR

  5. A polarized atomic-beam target for COSY-Juelich

    International Nuclear Information System (INIS)

    Eversheim, P. D.; Altmeier, M.; Felden, O.; Glende, M.; Walker, M.; Hiemer, A.; Gebel, R.

    1998-01-01

    An atomic-beam target (ABT) for the EDDA experiment has been built in Bonn and was tested for the very first time at the cooler synchrotron COSY. The ABT differs from the polarized colliding-beams ion source for COSY in the DC-operation of the dissociator and the use of permanent 6-pole magnets. At present the beam optics of the ABT is set-up for maximum density in the interaction zone, but for target-cell operation it can be modified to give maximum intensity. The modular concept of this atomic ground-state target allows to provide all vector- (and tensor) polarizations for protons and deuterons, respectively. Up to now the polarization of the atomic-beam could be verified by the EDDA experiment to be > or approx. 80% with a density in the interaction zone of > or approx. 10 11 atoms/cm 2

  6. Electron beam halo monitor for a compact x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2013-03-01

    Full Text Available An electron beam halo monitor using diamond-based detectors, which are operated in the ionization mode, has been developed for the SPring-8 Angstrom compact free-electron laser (SACLA to protect its undulator magnets from radiation damage. Diamond-based detectors are inserted in a beam duct to measure the intensity of the beam halo directly. To suppress the degradation of the electron beam due to the installation of the beam halo monitor, rf fingers with aluminum windows are newly employed. We evaluated the effect of radiation from the Al windows on the output signal both experimentally and by simulation. The operational results of the beam halo monitor employed in SACLA are presented.

  7. Influence of rebinning on the reconstructed resolution of fan-beam SPECT

    International Nuclear Information System (INIS)

    Koole, M.; D'Asseler, Y.; Staelens, S.; Vandenberghe, S.; Eede, I. van den; Walle, R. van de; Lemahieu, I.

    2002-01-01

    Aim: Fan-beam projection data can be rebinned to a parallel-beam geometry. This rebinning operation allows these data to be reconstructed with algorithms for parallel-beam projection data. The advantage of such an operation is that a dedicated projection/backprojection step for fan-beam geometry doesn't need to be developed. In clinical practice bilinear interpolation is often used for this rebinning operation. The aim of this study is to investigate the influence of the rebinning operation on the resolution properties of the reconstructed SPECT-image. Materials and methods: We have simulated the resolution properties of a fan-beam collimator, used in clinical routine, by means of a dedicated projector operation which models the distance dependent sensitivity and resolution of the collimator. With this projector, we generated noise-free sinograms for a point source located at various distances from the center of rotation. The number of angles of these sinograms varied from 60 to 180, corresponding to a step angle of 6 to 2 degrees. These generated fan-beam projection data were reconstructed directly with a filtered backprojection algorithm for fan-beam projection data, which consists of weighting and filtering the projection data with a ramp filter and of a weighted backprojection. Next, the generated fan-beam projection data were rebinned by means of bilinear interpolation and reconstructed with standard filtered backprojection for parallel-beam data. A two-dimensional Gaussian was fitted to the two point sources, one reconstructed with FBP for fan-beam and one reconstructed with FBP for parallel-beam after rebinning, yielding an estimate for the reconstructed Full Width at Half Maximum (FWHM) in the radial and tangential direction, for different locations in the field of view. Results: Results show little difference in resolution degradation in the radial direction between direct reconstruction and reconstruction after rebinning. However, significant loss in

  8. Initial operation of SSRL wiggler in spear

    International Nuclear Information System (INIS)

    Berndt, M.; Brunk, W.; Cronin, R.; Jensen, D.; Johnson, R.; King, A.; Spencer, J.; Taylor, T.; Winick, H.

    1979-03-01

    A 3 lambda planar, magnetic wiggler has been designed, built, installed and operated in the SPEAR storage ring. Its primary purpose is to provide tunable synchrotron radiation (SR) with a higher energy and intensity than previously available for a new SR beam line just commissioned at the Stanford Synchrotron Radiation Laboratory. Because the magnet operates from 0-18 kG, it should also produce undulator radiation (UR). Since the wiggler influences storage ring operation in both single beam and colliding beam modes, measurements were made of tune changes, emittance changes and energy spreads which are compared to predictions. Significant improvements in luminosity for high energy physics experiments were observed. The ability to do x-ray experiments easily that were not previously feasible at low electron beam energies and currents has also been demonstrated. The basic design, some interesting characteristics of the magnetic measurements and initial operating experience and results are discussed

  9. First beam test of a combined ramp and squeeze at LHC

    CERN Document Server

    Wenninger, Jorg; Coello De Portugal - Martinez Vazquez, Jaime Maria; Gorzawski, Arkadiusz; Redaelli, Stefano; Schaumann, Michaela; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2015-01-01

    With increasing maturity of LHC operation it is possible to envisage more complex beam manipulations. At the same time operational efficiency receives increasing attention. So far ramping the beams to their target energy and squeezing the beams to smaller or higher beta are decoupled at the LHC. (De-)squeezing is always performed at the target energy, currently 6.5 TeV. Studies to combine the ramp and squeeze processes have been made for the LHC since 2011, but so far no experimental test with beam had ever performed. This note describes the first machine experiment with beam aiming at validating the combination of ramp and squeeze, the so-called combined ramp and squeeze (CRS).

  10. Hollow Electron Beam Collimation For HL-LHC - Effect On The Beam Core

    CERN Document Server

    Fitterer, M; Valishev, A; Bruce, R; Papadopoulou, S; Papotti, G; Pellegrini, D; Redaelli, S; Valuch, D; Wagner, J F

    2017-01-01

    Collimation with hollow electron beams or lenses (HEL) is currently one of the most promising concepts for active halo control in HL-LHC. In previous studies it has been shown that the halo can be efficiently removed with a hollow electron lens. Equally important as an efficient removal of the halo, is also to demonstrate that the core stays unperturbed. In this paper, we present a summary of the experiment at the LHC and simulations in view of the effect of the HEL on the beam core in case of a pulsed operation.

  11. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  12. Operation of a novel two-pipe active beam system in an office building: a thermal comfort study

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Hultmark, Göran; Bergsøe, Niels Christian

    2018-01-01

    This paper presents an investigation regarding a thermal comfort study carried out in an office building located in Jönköping, Sweden. The particularity is that, in authors’ knowledge, this is the first building equipped with a novel active beam system that operates a water loop with temperatures...... for a continuous period of 24 hours. The daily monitoring of the thermal environment showed that the room air temperature was between approximately 21 °C and 23 °C all year round. No significant vertical air temperature difference was noticed, and the draught rate was below 10% for most of the cases....

  13. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  14. Ion beam studies

    International Nuclear Information System (INIS)

    Freeman, J.H.; Chivers, D.J.; Gard, G.A.; Temple, W.

    1977-04-01

    A description of techniques for the production of intense beams of heavy ions is given. A table of recommended operational procedures for most elements is included. The ionisation of boron is considered in some detail because of its particular importance as a dopant for ion implantation. (author)

  15. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  16. E-beam-pumped semiconductor lasers

    Science.gov (United States)

    Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.

    1995-04-01

    The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.

  17. Real Time Management of the AD Schottky/BTF Beam Measurement

    CERN Document Server

    Angoletta, Maria Elena

    2003-01-01

    The AD Schottky and BTF system relies on rapid acquisition and analysis of beam quantisation noise during the AD cycle which is based on an embedded receiver and digital signal processing board hosted in a VME system. The software running in the VME sets up the embedded system and amplifiers, interfaces to the RF and control system, manages the execution speed and sequence constraints with respect to the various operating modes, schedules measurements during the AD cycle and performs post processing taking into account the beam conditions in an autonomous way. The operating modes of the instrument dynamically depend on a detailed configuration, the beam parameters during the AD cycle and optional user interaction. Various subsets of the processed data are available on line and in quasi real time for beam intensity, momentum spread and several spectrum types, which form an important part of AD operation today.

  18. Formation of a single-bunch beam in the booster synchrotron at SPring-8

    CERN Document Server

    Suzuki, H; Ego, H; Hara, M; Hosoda, N; Kawashima, Y; Ohashi, Y; Ohshima, T; Tani, N; Yabashi, M; Yonehara, H

    2000-01-01

    In order to fill a radio frequency (rf) bucket with an electron beam in the storage ring at SPring-8, an rf knockout system was installed in the booster synchrotron. With this system, the energy of the electron beam injected from the linac was increased from 1 to 8 GeV. The time width of multi-bunch beams from the linac operated at 2856 MHz rf can be selected as 1 or 40 ns. The beam injected from the linac is distributed in rf buckets of the booster synchrotron operated at 508.58 MHz rf. To fill a single rf bucket with a beam, the rf knockout system is operated at a minimum beam energy of 1 GeV. By using the rf knockout system, the electron beam is effectively kept in a single rf bucket. Then the beam is injected into a targeted rf bucket in the storage ring with a precise timing system. The beam intensity of satellite rf buckets in the storage ring was measured with a photon counting method and determined to be 10 sup - sup 6 less than that of the main rf bucket. In this paper, we describe the rf knockout sy...

  19. HAWC2 and BeamDyn: Comparison Between Beam Structural Models for Aero-Servo-Elastic Frameworks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pavese, Christian; Kim, Taeseong; Wang, Qi; Jonkman, Jason; Sprague, Michael A.

    2016-08-01

    This work presents a comparison of two beam codes for aero-servo-elastic frameworks: a new structural model for the aeroelastic code HAWC2 and a new nonlinear beam model, BeamDyn, for the aeroelastic modularization framework FAST v8. The main goal is to establish the suitability of the two approaches to model the structural behaviour of modern wind turbine blades in operation. Through a series of benchmarking structural cases of increasing complexity, the capability of the two codes to simulate highly nonlinear effects is investigated and analyzed. Results show that even though the geometrically exact beam theory can better model effects such as very large deflections, rotations, and structural couplings, an approach based on a multi-body formulation assembled through linear elements is capable of computing accurate solutions for typical nonlinear beam theory benchmarking cases.

  20. Sub-μrad laser beam tracking

    Science.gov (United States)

    Buske, Ivo; Riede, Wolfgang

    2006-09-01

    We compare active optical elements based on different technologies to accomplish the requirements of a 2-dim. fine tracking control system. A cascaded optically and electrically addressable spatial light modulator (OASLM) based on liquid crystals (LC) is used for refractive beam steering. Spatial light modulators provide a controllable phase wedge to generate a beam deflection. Additionally, a tip/tilt mirror approach operating with piezo-electric actuators is investigated. A digital PID controller is implemented for closed-loop control. Beam tracking with a root-mean-squared accuracy of Δα=30 nrad has been laboratory-confirmed.

  1. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mastoridis, Themistoklis [Stanford Univ., CA (United States)

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  2. Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Adriana; et al.

    2017-05-01

    Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.

  3. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    Science.gov (United States)

    Arrabito, L.; Bozza, C.; Buontempo, S.; Consiglio, L.; Cozzi, M.; D'Ambrosio, N.; DeLellis, G.; DeSerio, M.; Di Capua, F.; Di Ferdinando, D.; Di Marco, N.; Ereditato, A.; Esposito, L. S.; Fini, R. A.; Giacomelli, G.; Giorgini, M.; Grella, G.; Ieva, M.; Janicsko Csathy, J.; Juget, F.; Kreslo, I.; Laktineh, I.; Manai, K.; Mandrioli, G.; Marotta, A.; Migliozzi, P.; Monacelli, P.; Moser, U.; Muciaccia, M. T.; Pastore, A.; Patrizii, L.; Petukhov, Y.; Pistillo, C.; Pozzato, M.; Romano, G.; Rosa, G.; Russo, A.; Savvinov, N.; Schembri, A.; Scotto Lavina, L.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Strolin, P.; Tioukov, V.; Waelchli, T.

    2007-05-01

    The OPERA experiment, designed to conclusively prove the existence of νμ→ντ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ντ's in the CNGS νμ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ~20 cm2/h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA.

  4. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    International Nuclear Information System (INIS)

    Arrabito, L; Bozza, C; Buontempo, S

    2007-01-01

    The OPERA experiment, designed to conclusively prove the existence of ν μ →ν τ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ν τ 's in the CNGS ν μ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ∼20 cm 2 /h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA

  5. A Magnetic Transport Middle Eastern Positron Beam

    International Nuclear Information System (INIS)

    Al-Qaradawi, I.Y.; Britton, D.T.; Rajaraman, R.; Abdulmalik, D.

    2008-01-01

    A magnetically guided slow positron beam is being constructed at Qatar University and is currently being optimised for regular operation. This is the first positron beam in the Middle East, as well as being the first Arabic positron beam. Novel features in the design include a purely magnetic in-line deflector, working in the solenoid guiding field, to eliminate un-moderated positrons and block the direct line of sight to the source. The impact of this all-magnetic transport on the Larmor radius and resultant beam characteristics are studied by SIMION simulations for both ideal and real life magnetic field variations. These results are discussed in light of the coupled effect arising from electrostatic beam extraction

  6. Electron beam dynamics in Pasotron microwave sources

    International Nuclear Information System (INIS)

    Carmel, Y.; Shkvarunets, A.; Nusinovich, G.S.; Rodgers, J.; Bliokh, Yu.P.; Goebel, D.M.

    2003-01-01

    The Pasotron is a high efficiency (∼50%), plasma-assisted microwave generator in which the beam electrons exhibit two-dimensional motion in the slow wave structure. The electron beam propagates in the ion-focusing regime (Bennett pinch regime) because there is no applied magnetic field. Since initially only the neutral gas is present in the vacuum system and the ions in the neutralizing plasma channel are produced only due to the beam impact ionization, the beam dynamics in Pasotrons is inherently a nonstationary process, and important for efficient operation. The present paper contains results of experimental studies of stationary and nonstationary effects in the beam dynamics in Pasotrons and their theoretical interpretation

  7. High efficiency beam splitting for H- accelerators

    International Nuclear Information System (INIS)

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H - accelerators. This technique uses a high intensity flash of light to strip a fraction of the H - beam to H 0 which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10 -3 to 10 -2 splitting of a 50 MeV H - beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction

  8. LHC Abort Gap Filling by Proton Beam

    CERN Document Server

    Fartoukh, Stéphane David; Shaposhnikova, Elena

    2004-01-01

    Safe operation of the LHC beam dump relies on the possibility of firing the abort kicker at any moment during beam operation. One of the necessary conditions for this is that the number of particles in the abort gap should be below some critical level defined by quench limits. Various scenarios can lead to particles filling the abort gap. Time scales associated with these scenarios are estimated for injection energy and also coast where synchrotron radiation losses are not negligible for uncaptured particle motion. Two cases are considered, with RF on and RF off. The equilibrium distribution of lost particles in the abort gap defines the requirements for maximum tolerable relative loss rate and as a consequence the minimum acceptable longitudinal lifetime of the proton beam in collision.

  9. Raman beam combining for laser brightness enhancement

    Science.gov (United States)

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  10. LHC Report: 25 ns spacing yields record beam intensity

    CERN Multimedia

    The LHC team

    2012-01-01

    Over the weekend the LHC broke two records: a record number of 2,748 proton bunches were injected into the accelerator giving a record beam intensity of around 2.7 x 1014 protons in both beams. These beams have yet to face the challenge of "ramping" to high energy.   These very good results were made possible by a new beam configuration: the design value of 25 nanosecond spacing between proton bunches replaced - for the first time – the typical 50 nanosecond spacing. This test run was done at 450 GeV with no collisions. Up to now, the LHC has been running with around 1,380 bunches with 50 nanoseconds between bunches. By going to 25 nanoseconds, the LHC operations team can double the number of bunches to around 2,800. One of the main limitations for this mode of operation is the so-called electron cloud (see Bulletin 15-16/2011) that is strongly enhanced by the reduced spacing among bunches.  The electron cloud has nasty effects on the beam (beam size increase...

  11. Beam-gas Background Observations at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00214737; The ATLAS collaboration; Alici, Andrea; Lazic, Dragoslav-Laza; Alemany Fernandez, Reyes; Alessio, Federico; Bregliozzi, Giuseppe; Burkhardt, Helmut; Corti, Gloria; Guthoff, Moritz; Manousos, Athanasios; Sjoebaek, Kyrre; D'Auria, Saverio

    2017-01-01

    Observations of beam-induced background at LHC during 2015 and 2016 are presented in this paper. The four LHC experiments use the non-colliding bunches present in the physics-filling pattern of the accelerator to trigger on beam-gas interactions. During luminosity production the LHC experiments record the beam-gas interactions using dedicated background monitors. These data are sent to the LHC control system and are used to monitor the background levels at the experiments during accelerator operation. This is a very important measurement, since poor beam-induced background conditions can seriously affect the performance of the detectors. A summary of the evolution of the background levels during 2015 and 2016 is given in these proceedings.

  12. Beam monitoring in the transport channel

    International Nuclear Information System (INIS)

    Kalinin, A.S.; Levichev, E.B.; Samorukov, M.M.; Yupinov, Yu.L.

    1983-01-01

    Monitoring system for a single beam of charged particles, measuring peak current, centre of gravity displacement from equilibrium trajectory and cross section quadrupolar moment is described. Magnetoinduction sensors are used in the system. Beam parameter determination is made using a computer. The measurement accuracy is expected to be not worse than +-1mm in the current range (0.01-1)A at the beam duration more than 50 ns. The system is designed for the operation under conditions of background radiation and electromagnetic noise. The system described is developed for beam monitoring in electron-optical channel, connecting the ''Fakel'' LEA injector and small storage ring ''Plamja 1'', which is a part of storage ring complex-sources of synchrotron radiation

  13. The positioning device of beam probes for accelerator LUE-200

    International Nuclear Information System (INIS)

    Becher, Yu.; Kalmykov, A.V.; Minashkin, M.F.; Sumbaev, A.P.

    2011-01-01

    The description of a device for the positioning of sliding beam probes which is the part of the beam diagnostic system for the LUE-200 electron linac of IREN installation is presented. The device provides remote control of input-output operation of beam probes of five diagnostic stations established in an accelerating tract and in the beam transportation channel of the accelerator

  14. LHC Injection Beam Quality During LHC Run I

    CERN Document Server

    AUTHOR|(CDS)2079186; Kain, Verena; Stapnes, Steinar

    The LHC at CERN was designed to accelerate proton beams from 450 GeV to 7 TeV and collide them in four large experiments. The 450 GeV beam is extracted from the last pre-accelerator, the SPS, and injected into the LHC via two 3 km long transfer lines, TI 2 and TI 8. The injection process is critical in terms of preservation of beam quality and machine protection. During LHC Run I (2009-2013) the LHC was filled with twelve high intensity injections per ring, in batches of up to 144 bunches of 1.7*10^11 protons per bunch. The stored beam energy of such a batch is already an order of magnitude above the damage level of accelerator equipment. Strict quality and machine protection requirements at injection have a significant impact on operational efficiency. During the first years of LHC operation, the injection phase was identified as one of the limiting factors for fast LHC turnaround time. The LHC Injection Quality Check (IQC) software framework was developed as a part of this thesis to monitor the beam quality...

  15. Beam-dynamics driven design of the LHeC energy-recovery linac

    Directory of Open Access Journals (Sweden)

    Dario Pellegrini

    2015-12-01

    Full Text Available The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ∼150  mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  16. Beam Diagnostics Systems for the National Ignition Facility

    International Nuclear Information System (INIS)

    Demaret, R D; Boyd, R D; Bliss, E S; Gates, A J; Severyn, J R

    2001-01-01

    The National Ignition Facility (NIF) laser focuses 1.8 megajoules of ultraviolet light (wavelength 351 nanometers) from 192 beams into a 600-micrometer-diameter volume. Effective use of this output in target experiments requires that the power output from all of the beams match within 8% over their entire 20-nanosecond waveform. The scope of NIF beam diagnostics systems necessary to accomplish this task is unprecedented for laser facilities. Each beamline contains 110 major optical components distributed over a 510-meter path, and diagnostic tolerances for beam measurement are demanding. Total laser pulse energy is measured with 2.8% precision, and the interbeam temporal variation of pulse power is measured with 4% precision. These measurement goals are achieved through use of approximately 160 sensor packages that measure the energy at five locations and power at three locations along each beamline using 335 photodiodes, 215 calorimeters, and 36 digitizers. Successful operation of such a system requires a high level of automation of the widely distributed sensors. Computer control systems provide the basis for operating the shot diagnostics with repeatable accuracy, assisted by operators who oversee system activities and setup, respond to performance exceptions, and complete calibration and maintenance tasks

  17. Pulsed rf operation analysis

    International Nuclear Information System (INIS)

    Puglisi, M.; Cornacchia, M.

    1981-01-01

    The need for a very low final amplifier output impedance, always associated with class A operation, requires a very large power waste in the final tube. The recently suggested pulsed rf operation, while saving a large amount of power, increases the inherent final amplifier non linearity. A method is presented for avoiding the large signal non linear analysis and it is shown how each component of the beam induced voltage depends upon all the beam harmonics via some coupling coefficients which are evaluated

  18. SSCL Commissioning and Operations

    International Nuclear Information System (INIS)

    1992-01-01

    The SSC, with an energy of 20 TeV/Beam, requires a sequence of individual accelerators of increasing energy in the injector chain. These are the Linac, Low Energy Booster, Medium Energy Booster, and High Energy Booster. Each accelerator system must be completed in sequence in order to provide beam to the next higher energy accelerator. The collider itself is comprised of ten sectors, each of which in terms of superconducting magnet bending strength, is equivalent to two HEB injectors. The completion of all injectors and collider sectors is required before stored beams can circulate in preparation for colliding beam operation. Four experimental halls are planned for the detector systems. Each major detector will be assembled in one of the halls by a world-wide collaboration of scientists. In addition, above ground facilities provide shops and test facilities for accelerator technical systems, superconducting magnet and materials research and development, and for detector assembly and operations. The purpose of this report is to present a plan for the sequential commissioning and operation of these individual accelerators and other technical facilities of the SSC. A central objective of this plan is to describe the activities at the SSCL that are not included as part of the construction project TPC, even though they occur during the overall project construction time-frame. Examples of such activities include the operation of general laboratory facilities and services not specifically related to construction, the operating costs for the individual accelerators in the injector chain once these facilities have been commissioned, and the costs of SSCL physics research groups. The Department of Energy has provided the following decision with regard to these operations categories for the SSCL

  19. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.A.; MI, J.; OERTER, B.; SANDERS, R.; SANDBERG, J.

    2001-01-01

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beam dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful

  20. Top-up operation at Pohang Light Source-II

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, I.; Huang, J. Y.; Kim, M.; Lee, B.-J.; Kim, C.; Choi, J.-Y.; Kim, M.-H.; Lee, H. S.; Moon, D.; Lee, E. H.; Kim, D.-E.; Nam, S. H.; Shin, S. [Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-834 (Korea, Republic of); Cho, Moohyun [Department of Physics, POSTECH, Pohang, Kyungbuk 790-834 (Korea, Republic of)

    2014-05-15

    After three years of upgrading work, PLS-II (S. Shin, Commissioning of the PLS-II, JINST, January 2013) is now successfully operating. The top-up operation of the 3 GeV linear accelerator had to be delayed because of some challenges encountered, and PLS-II was run in decay mode at the beginning in March 2012. The main difficulties encountered in the top-up operation of PLS-II are different levels between the linear accelerator and the storage ring, the 14 narrow gap in-vacuum undulators in operation, and the full energy injection by 3 GeV linear accelerator. Large vertical emittance and energy jitter of the linac were the major obstacles that called for careful control of injected beam to reduce beam loss in the storage ring during injection. The following measures were taken to resolve these problems: (1) The high resolution Libera BPM (see http://www.i-tech.si ) was implemented to measure the beam trajectory and energy. (2) Three slit systems were installed to filter the beam edge. (3) De-Qing circuit was applied to the modulator system to improve the energy stability of injected beam. As a result, the radiation by beam loss during injection is reduced drastically, and the top-up mode has been successfully operating since 19th March 2013. In this paper, we describe the experimental results of the PLS-II top-up operation and the improvement plan.