WorldWideScience

Sample records for cng process

  1. Performance Characteristics Comparison of CNG Port and CNG Direct Injection in Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Rajesh Patel

    2018-03-01

    Full Text Available A comparative performance analysis is being carried out on a four cylinder, four stroke cycle, spark ignition engine having displacement volume 1297cc. The cylinder head of original gasoline based engine was modified by drilling holes from upper surfaces of head to individual combustion chamber to convert the engine in a CNG direct injection engine. The CNG port injection (CNG-PI system and CNG direct injection (CNG-DI system were incorporated with the single engine.  The engine was retrofitted to run on both CNG-PI and CNG-DI system alternately with common CNG tank and other engine loading and measurement system. The engine was equipped with electrical dynamometer having rheostat type loading. The CNG direct injection system was incorporated with various sensors and engine ECU. The operating parameters can be obtained on computer screen by loading the computer with engine through switch box. The engine was run over the speed range of 1000 rpm to 3000 rpm with incremental speed of 300 rpm. The performance parameters were calculated from observations and recorded for both CNG-PI and CNG-DI system. The experimental investigation exhibits that, the average 7-8% reduction in BSFC while the engine was running with CNG-DI system as compared to that of CNG-PI system. Also the engine produced 8-9% higher brake torque and hence higher brake power. The engine gives 6-7% higher brake thermal efficiency with CNG-DI system as compared to CNG-PI system.

  2. Compressed natural gas (CNG) in fueled systems and the significance of CNG in vehicular transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ayar, G. [Besikduzu, Trabzon (Turkey)

    2006-05-15

    Most NG vehicles operate using compressed natural gas (CNG). CNG's popularity stems, in part, from its clean-burning properties. In addition, more than 85,000 CNG vehicles, including one out of every five transit buses, are operating successfully today. This compressed gas is stored in similar fashion to a car's gasoline tank, attached to the rear, top, or undercarriage of the vehicle in a tube-shaped storage tank. A CNG tank can be filled in a similar manner, and in a similar amount of time, to a gasoline tank. (author)

  3. Low-cost, low-weight CNG cylinder development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Mark E.; Melford, K.; Wong, J.; Gambone, L.

    1999-09-01

    This program was established to develop and commercialize new high-strength steel-lined, composite hoop-wrapped compressed natural gas (CNG) cylinders for vehicular applications. As much as 70% of the cost of natural gas vehicles can be related to on-board natural gas storage costs. The cost and weight targets for this program represent significant savings in each characteristic when compared to comparable containers available at the initiation of the program. The program objectives were to optimize specific weight and cost goals, yielding CNG cylinders with dimensions that should, allowing for minor modifications, satisfy several vehicle market segments. The optimization process encompassed material, design, and process improvement. In optimizing the CNG cylinder design, due consideration was given to safety aspects relative to national, international, and vehicle manufacturer cylinder standards and requirements. The report details the design and development effort, encompassing plant modifications, material selection, design issues, tooling development, prototype development, and prototype testing. Extenuating circumstances prevented the immediate commercialization of the cylinder designs, though significant progress was made towards improving the cost and performance of CNG cylinders. A new low-cost fiber was successfully employed while the weight target was met and the cost target was missed by less than seven percent.

  4. CNG: a potential transport fuel

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Compressed Natural Gas (CNG) is an alternative transport fuel. Advantages of its use are briefly described. Infra structural requirements, if it is to be used in India are outlined. Applications of CNG as transport fuel for buses and trucks in India are discussed. (P.R.K.). 5 refs

  5. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Compressed natural gas (CNG). 48.4041-21 Section... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply tank...

  6. Innovation Ecosystem of CNG Vehicles: A Case Study of Its Cultivation and Characteristics in Sichuan, China

    Directory of Open Access Journals (Sweden)

    Ling Ding

    2017-12-01

    Full Text Available Under the constraints of resources and environment, China is eager to cultivate a new industrial system with ecological characteristics in light of local circumstances. This paper selects the innovation ecosystem of Compressed Natural Gas (CNG vehicles in Sichuan, China as the objective of the case study to explore its cultivation and characteristics. The theoretical significance lies in three areas. Firstly, the cultivation path of the CNG vehicle innovation ecosystem is manifested. Secondly, the symbiotic process model among the communities within the CNG vehicle innovation ecosystem is found. Thirdly, the substitutive process model of the CNG vehicle innovation ecosystem is discovered, which reveals the substitutability among innovation ecosystems, the communities of similar products, and the enterprises of similar products. This paper is of theoretical, practical, and political significance for the development of a CNG vehicle innovation ecosystem in emerging markets in terms of regional energy security and emission reduction.

  7. CNG transport by ship with FRP pressure vessels access to east coast gas

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, S. [Trans Ocean Gas Inc., St. John' s, NL (Canada)

    2005-07-01

    This paper discussed the Trans Ocean Gas (TOG) method for transporting compressed natural gas (CNG). CNG transportation offers an alternative method for transporting stranded natural gas to existing markets and for creating new natural gas markets that are not feasible for liquefied natural gas (LNG) or pipelines. Trans Ocean Gas Inc. (TOG) modified an existing fibre reinforced plastic (FRP) pressure vessel technology to safely store CNG on a ship. The newly developed containment system has proven to overcome all the deficiencies of steel-based systems. TOG patented the containment system and will license its use to owners of stranded gas and shipping service providers around the world. The CNG systems will be built and assembled throughout facilities in Atlantic Canada. FRP pressure vessels have been proven safe and reliable through critical applications in the national defense, aerospace, and natural gas vehicle industries. They are light-weight, highly reliable, have very safe failure modes, are corrosion resistant, and have excellent low temperature characteristics. Under TOG's scheme, natural gas can be stored at two thirds the density of LNG without costly processing. TOG's proposed design and testing of a CNG system was reviewed in detail. figs.

  8. CNG Fuelling Stations Design Philosophy

    International Nuclear Information System (INIS)

    Radwan, H.

    2004-01-01

    I. Overview (a) Compressed Natural Gas - CNG:- Natural Gas, as an alternative fuel for vehicles, is supplied from the Natural Gas Distribution Network to the CNG fuelling stations to be compressed to 250 bars. It is then dispensed, to be stored on board of the vehicle at about 200 bars in a cylinder installed in the rear, under carriage, or on top of the vehicle. When the Natural Gas is required by the engine, it leaves the cylinder traveling through a high pressure pipe to a high pressure regulator, where the pressure is reduced close to atmospheric pressure, through a specially designed mixer, where it is properly mixed with air. The mixture then flows into the engine's combustion chamber, and is ignited to create the power required to drive the vehicle. (b) CNG Fuelling Stations General Description: as Supply and Metering The incoming gas supply and metering installation primarily depend on the pressure and flow demands of the gas compressor. Natural Gas Compressor In general, gas compressors for natural gas filling stations have relatively low flow rates

  9. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  10. Impact of CNG Crisis on Student's Academic Life

    Science.gov (United States)

    Azeem, Kiran; Nadeem, Wajiha; Zia, Afsa; Shehzad, Shiza; Anwar, Zara

    2017-01-01

    The goal of this study is to determine the impact of Compressed Natural Gas (CNG) crisis on Student's Academic Life of Karachi Pakistan. This research helps in observing the behavior of students and their educational progress includes depression and anxiety, rate of absenteeism and undesirable results in exams threatens due to CNG crisis and…

  11. Survey for the development of compressed natural gas systems (CNG) for vehicles

    OpenAIRE

    Abulamosha, A.M.

    2005-01-01

    Compressed Natural Gas (CNG) vehicles have been used internationally by fleets for decades. The use of CNG vehicles results in less petroleum consumption, resulting in fewer air pollutants and greenhouse gas emissions in most applications. In Europe, the adoption of CNG among consumers has been slowed by the availability of affordable gasoline and diesel fuel. This investigation addresses the current situation of the CNG vehicle at the manufacturing level and the consumer level in Europe. Bas...

  12. H/CNG pathway to hydrogen

    International Nuclear Information System (INIS)

    Bugyra, W.J.; Martin, D.R.

    2004-01-01

    'Full text:' The addition of hydrogen to natural gas to produce a 'premium' fuel offers an ideal bridge to the hydrogen and fuel cell era. This pathway provides many of the expected benefits of hydrogen and fuel cells, reduces cost and risk, and facilitates the transition to hydrogen incrementally through existing infrastructure, technologies and channels. The H/CNG pathway is evaluated qualitatively and quantitatively in the context of: barriers to introducing hydrogen infrastructure and how they can be addressed; potential benefits (emissions, energy security) and drawbacks (range, technical compatibility) of H/CNG blended fuels; economics; and, comparative analysis to the use of ethanol in gasoline. Leveraging the NGV industry eases the transition to fuel cells by taking advantage of existing infrastructure, technologies, skills, codes and standards, and provides for incremental change that may be more acceptable to consumers, regulators and incumbent technology providers. The greatest benefits can be achieved through a two-track pathway. One would utilize small amounts of hydrogen in existing NGVs and installed power systems - much as ethanol is added to gasoline. The second introduce products designed specifically to operate on higher levels of H/CNG, like buses, in concentrations where the greatest emission benefits can be achieved. (author)

  13. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  14. Trans Ocean Gas CNG transportation development plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-11-01

    Liquefied natural gas (LNG) transportation is on the rise due to increased global demand for natural gas. However, the challenge of transporting LNG lies in finding suitable locations for import terminals. Compressed natural gas (CNG) transportation offers an alternative method for transporting stranded natural gas to existing markets and for creating new natural gas markets not practical for LNG or pipelines. The founder of Trans Ocean Gas Inc. (TOG) modified an existing fibre reinforced plastic (FRP) pressure vessel technology to safely store CNG on a ship. The newly developed containment system has proven to overcome all the deficiencies of steel-based systems. TOG patented the containment system and will license its use to owners of stranded gas and shipping service providers around the world. Financial support is needed to perform verification testing and for regulatory approval. The CNG systems will be built and assembled throughout facilities in Atlantic Canada. 2 tabs., 3 figs.

  15. Fracture Analysis of CNG High Pressure Container using Fractography and Measurement of Property

    Directory of Open Access Journals (Sweden)

    Kim Eui-Soo

    2017-01-01

    Full Text Available Bursting accidents of pressure containers due to design and manufacturing defects are frequently occurring. Due to high-pressure gas or harmful substances, when this vessel is fractured, it can lead to catastrophic disasters. Especially, in the event of bursting accident of composite pressure vessel for CNG bus, many unspecified people can be damaged. Most of the accidents were caused by problems in the manufacturing process. The manufacturing process for TYPE2 pressure vessel is very complicated such as three drawing processes, two ironing processes and one spinning process. In the middle of process, various heat treatments are performed for imparting toughness and removing residual stresses. It should cause a serious problem such as bursting and fragmentation of the pressure container due to defects of this process. In this research, the fracture cause of CNG vessel is evaluated through fractography and measuring material property using IIT and analysis of chemical composition.

  16. On-road emission characteristics of CNG-fueled bi-fuel taxis

    Science.gov (United States)

    Yao, Zhiliang; Cao, Xinyue; Shen, Xianbao; Zhang, Yingzhi; Wang, Xintong; He, Kebin

    2014-09-01

    To alleviate air pollution and lessen the petroleum demand from the motor vehicle sector in China, natural gas vehicles (NGVs) have been rapidly developed over the last several years. However, the understanding of the real-world emissions of NGVs is very limited. In this study, the emissions from 20 compressed-natural-gas-fueled bi-fuel taxis were measured using a portable emission measurement system (PEMS) under actual driving conditions in Yichang, China. The emission characteristics of the tested vehicles were analyzed, revealing that the average CO2, CO, HC and NOx emissions from the tested compressed-natural-gas (CNG) taxis under urban driving conditions were 1.6, 4.0, 2.0 and 0.98 times those under highway road conditions, respectively. The CO, HC and NOx emissions from Euro 3 CNG vehicles were approximately 40%, 55% and 44% lower than those from Euro 2 vehicles, respectively. Compared with the values for light-duty gasoline vehicles reported in the literature, the CO2 and CO emissions from the tested CNG taxis were clearly lower; however, significant increases in the HC and NOx emissions were observed. Finally, we normalized the emissions under the actual driving cycles of the entire test route to the New European Driving Cycle (NEDC)-based emissions using a VSP modes method developed by North Carolina State University. The simulated NEDC-based CO emissions from the tested CNG taxis were better than the corresponding emissions standards, whereas the simulated NEDC-based HC and NOx emissions greatly exceeded the standards. Thus, more attention should be paid to the emissions from CNG vehicles. As for the CNG-fueled bi-fuel taxis currently in use, the department of environmental protection should strengthen their inspection and supervision to reduce the emissions from these vehicles. The results of this study will be helpful in understanding and controlling emissions from CNG-fueled bi-fuel vehicles in China.

  17. Perspectives of Biogas Conversion into Bio-CNG for Automobile Fuel in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. S. Shah

    2017-01-01

    Full Text Available The need for liquid and gaseous fuel for transportation application is growing very fast. This high consumption trend causes swift exhaustion of fossil fuel reserve as well as severe environment pollution. Biogas can be converted into various renewable automobile fuels such as bio-CNG, syngas, gasoline, and liquefied biogas. However, bio-CNG, a compressed biogas with high methane content, can be a promising candidate as vehicle fuel in replacement of conventional fuel to resolve this problem. This paper presents an overview of available liquid and gaseous fuel commonly used as transportation fuel in Bangladesh. The paper also illustrates the potential of bio-CNG conversion from biogas in Bangladesh. It is estimated that, in the fiscal year 2012-2013, the country had about 7.6775 billion m3 biogas potential equivalent to 5.088 billion m3 of bio-CNG. Bio-CNG is competitive to the conventional automobile fuels in terms of its properties, economy, and emission.

  18. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    OpenAIRE

    Abbanat, Brian A.

    2001-01-01

    Compressed natural gas (CNG) vehicles have been used internationally by fleets and households for decades. The use of CNG vehicles results in less petroleum consumption, and fewer air pollutant and greenhouse gas emissions in most applications. In the United States, the adoption of CNG technology has been slowed by the availability of affordable gasoline and diesel fuel. This study addresses the potential market for CNG vehicles at the consumer level in California. Based on semi-structured pe...

  19. A comparative study of emission motorcycle with gasoline and CNG fuel

    Science.gov (United States)

    Sasongko, M. N.; Wijayanti, W.; Rahardja, R. A.

    2016-03-01

    A comparison of the exhaust emissions of the engine running gasoline and Compressed Natural Gas have been performed in this study. A gasoline engine 4 stroke single-cylinder with volume of 124.8 cc and compression ratio of 9.3:1 was converted to a CNG gaseous engine. The fuel injector was replaced with a solenoid valve system for injecting CNG gas to engine. The concentrations of CO, CO2, O2 and HC in the exhaust gas of engine were measured over the range of fuel flow rate from 25.32 mg/s to 70.22 mg/s and wide range of Air Fuel Ratio. The comparative analysis of this study showed that CNG engine has a lower HC, CO2 and CO emission at the stoichiometry mixture of fuel and air combustion. The emissions increased when the Air-Fuel ratio was switched from the stoichiometry condition. Moreover, CNG engine produced a lower HC and CO emission compared to the gasoline for difference air flow rate. The average of HC and CO emissions of the CNG was 92 % and 78 % lower than that of the gasoline

  20. Experimental investigation of the concomitant injection of gasoline and CNG in a turbocharged spark ignition engine

    International Nuclear Information System (INIS)

    Momeni Movahed, M.; Basirat Tabrizi, H.; Mirsalim, M.

    2014-01-01

    Highlights: • Concomitant injection of gasoline and CNG is compared with gasoline and CNG modes. • BSFC, HC and CO emissions of the concomitant injection are lower than gasoline mode. • Deteriorations of the concomitant injection are negligible compared to gasoline mode. • Cylinder peak pressure and heat loss to coolant of the concomitant injection are lower than CNG mode. • Some shortcomings in CNG mode can be solved by changing the spark timing and lambda. - Abstract: Concomitant injection of gasoline and CNG is a new concept to overcome problems of bi-fueled spark ignition engines, which operate in single fuel mode, either in gasoline or in CNG mode. This experimental study indicates how some problems of gasoline mode such as retarded ignition timings for knock prevention and rich air–fuel mixture for component protection can be resolved with the concomitant injection of gasoline and CNG. Results clearly show that the concomitant injection improves thermal efficiency compared to gasoline mode. On the other hand, simultaneous injection of gasoline and CNG reduces some problems of CNG mode such as high cylinder pressure and heat loss to the engine coolant. This decreases the stringent requirements for thermal and mechanical strength of the engine components in CNG mode. In addition, it is shown that by modifying the spark advance and air fuel ratio in CNG mode, the engine operation improves in terms of NOx emissions and maximum in-cylinder pressure as the concomitant injection does. Nevertheless, new requirements such as an intercooler with higher cooling capacity are implied to the engine configuration. Finally, the most important concerns in control strategies of the engine control unit for a vehicle with concomitant injection of gasoline and CNG are discussed

  1. Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability

    Science.gov (United States)

    Sinor, J. E.

    1994-05-01

    This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

  2. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker

    2014-07-01

    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  3. Diesel/CNG Mixture Autoignition Control Using Fuel Composition and Injection Gap

    Directory of Open Access Journals (Sweden)

    Firmansyah

    2017-10-01

    Full Text Available Combustion phasing is the main obstacle to the development of controlled auto-ignition based (CAI engines to achieve low emissions and low fuel consumption operation. Fuel combinations with substantial differences in reactivity, such as diesel/compressed natural gas (CNG, show desirable combustion outputs and demonstrate great possibility in controlling the combustion. This paper discusses a control method for diesel/CNG mixture combustion with a variation of fuel composition and fuel stratification levels. The experiments were carried out in a constant volume combustion chamber with both fuels directly injected into the chamber. The mixture composition was varied from 0 to 100% CNG/diesel at lambda 1 while the fuel stratification level was controlled by the injection phasing between the two fuels, with gaps between injections ranging from 0 to 20 ms. The results demonstrated the suppressing effect of CNG on the diesel combustion, especially at the early combustion stages. However, CNG significantly enhanced the combustion performance of the diesel in the later stages. Injection gaps, on the other hand, showed particular behavior depending on mixture composition. Injection gaps show less effect on combustion phasing but a significant effect on the combustion output for higher diesel percentage (≥70%, while it is contradictive for lower diesel percentage (<70%.

  4. Future perspective for CNG (Compressed Natural Gas)

    International Nuclear Information System (INIS)

    Veen, D.

    1999-01-01

    Driving on natural gas (CNG, Compressed Natural Gas) has been the talk of the industry for many years now. Although the benefits of natural gas as an engine fuel have become well-known, this phenomenon does not seem to gain momentum in the Netherlands. Over the last few months, however, the attitude towards CNG seems to be changing. Energy companies are increasingly engaged in commercial activities, e.g. selling natural gas at petrol stations, an increasing number of car manufacturers are delivering natural gas vehicles ex-works, and recently the NGV (Natural Gas Vehicles) Holland platform was set up for the unequivocal marketing of natural gas as an engine fuel

  5. An assessment of the market for LPG and CNG in Peru's transport sector

    International Nuclear Information System (INIS)

    Boykiw, A. L.

    1999-01-01

    This is an abridged version of the report prepared by Boykiw and Company Limited to provide a technical, statistical and financial assessment of potential sales of liquefied petroleum gases (LPG) or propane, and compressed natural gas (CNG) to the transportation sector in Peru. Results show that use of CNG and LPG in Peru's transportation sector will primarily be a function of the counrty's vehicle population, the economics of conversion and the availability of infrastructure. With regard to conversion, the fact that 62 per cent of the nation's one million vehicles are located in Lima, combined with their age, the prospects appear to be very favourable. Changing to LPG will also benefit the environment since carbon monoxide and nitrogen oxides emissions will be significantly reduced. Similar environmental benefits are expected from the use of CNG. Assuming that low cost first generation conversion kits can be made available, in combination with the growing refueling infrastructure ( from one in 1994 to 9 by the end of 1999, and an additional five in 2000) should result in a dramatic increase in the number of vehicles using LPG. By contrast, the prospect for CNG as vehicle fuel is less favourable because of the much more complex and costly refuelling station required to make it practicable. Based on very incomplete information on the Lima fleet of vehicles and their operating characteristics, the total number of CNG-fuelled vehicles five years after CNG becomes available in Lima, is estimated at between 2,000 and 3,000, and CNG requirements of between 800,000 and 1,500,000 cubic feet per day

  6. CNG transport opportunities

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The recent announcement by the Australian Government of funding for a dramatic increase in supply infrastructure for Compressed Natural Gas (CNG) powered vehicles has shored up predictions that natural gas will achieve a thirty-fold increase in its share of the Australian transport energy market by 2015. This projection, would put sales of natural gas for transport fuel in the year 2014/15 at about 10% of current retail sales across the nation. In the general transport sector, the lower particulate and noise pollution, compared with diesel-powered vehicles, is a significant advantage

  7. A study on the amount of pilot injection and its effects on rich and lean boundaries of the premixed CNG/air mixture for a CNG/diesel dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhiqiang Lin; Wanhua Su [Tianjin University (China). State Key Laboratory of Engines

    2003-07-01

    A sequential port injection, lean-burn, fully electronically-controlled compressed natural gas (CNG)/diesel dual-fuel engine has been developed based on a turbo-charged and inter-cooled direct injection (D.I.) diesel engine. During the optimisation of engine overall performance, the effects of pilot diesel and premixed CNG/air mixture equivalence ratio on emissions (CO, HC, NO{sub x}, soot), knocking, misfire and fuel economy are studied. The rich and lean boundaries of the premixed CNG/air mixture versus engine load are also provided, considering the acceptable values of NO{sub x} and THC emissions, respectively. It is interesting to find that there is a critical amount of pilot diesel for each load and speed point, which proved to be the optimum amount of pilot fuel. Any decrease in the amount of pilot diesel from this optimum amount results in an increase of NO{sub x} emissions, because the premixed CNG/air mixture must be made richer, otherwise THC emissions would increase. However, the soot emissions remain almost unchanged at a very low level. (author)

  8. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. An experimental investigation of performance of diesel to CNG engine

    Science.gov (United States)

    Misra, Sheelam; Gupta, Ayush; Garg, Ashutosh

    2018-05-01

    Over the past few decades, diesel engines are widely used in automobiles which is responsible for hazardous increase in pollution. Around the world, many countries are trying to reduce it by replacing diesel with CNG as a fuel which is more economical and leads to pollution free environment. Engineers came up with an idea to convert diesel engine to CNG engine. This conversion is possible by doing some alteration of engine components and it also include adding some extra components to the system which includes spark plug, valves etc. and by decreasing the compression ratio of the engine. It is used worldwide today and many countries have many programs to convert older, polluting diesel vehicles to CNG enable vehicles so that they can run on clean, economical natural gas. This is, an excellent way to reduce fuel cost, reduce pollution, reduce noise with minimum possible capital costs.first, second, and third level headings.

  10. Particle and gaseous emissions from individual diesel and CNG buses

    Directory of Open Access Journals (Sweden)

    Å. M. Hallquist

    2013-05-01

    Full Text Available In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz. The gaseous constituents (CO, HC and NO were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.. Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III–V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs with different after-treatment, including selective catalytic reduction (SCR, exhaust gas recirculation (EGR and with and without diesel particulate filter (DPF. The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel−1. In the accelerating mode, size-resolved emission factors (EFs showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel−1 and for the CNG buses 41

  11. Effects of pilot injection pressure on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun

    2013-01-01

    Highlights: • Injection pressure of pilot fuel in dual fuel combustion (DFC) affects the engine power and exhaust emissions. • In the biodiesel–CNG DFC mode, the combustion begins and ends earlier as the pilot-fuel injection pressure increases. • The ignition delay in the DFC mode is about 1.2–2.6 °CA longer than that in the diesel single fuel combustion (SFC) mode. • The smoke and NOx emissions are significantly reduced in the DFC mode. - Abstract: Biodiesel–compressed natural gas (CNG) dual fuel combustion (DFC) system is studied for the simultaneous reduction of particulate matters (PM) and nitrogen oxides (NOx) from diesel engine. In this study, biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC system. In particular, the pilot injection pressure is controlled to investigate the characteristics of engine performance and exhaust emissions in a single cylinder diesel engine. The results show that the indicated mean effective pressure (IMEP) of biodiesel–CNG DFC mode is lower than that of diesel single fuel combustion (SFC) mode at higher injection pressure. However, the combustion stability of biodiesel–CNG DFC mode is increased with the increase of pilot injection pressure. At the same injection pressure, the start of combustion of biodiesel–CNG DFC is delayed compared to diesel SFC due to the increase of ignition delay of pilot fuel. On the contrary, it is observed that as the pilot injection pressure increase, the combustion process begins and ends a little earlier for biodiesel–CNG DFC. The ignition delay in the DFC is about 1.2–2.6 °CA longer compared to diesel SFC, but decreases with increases of pilot injection pressure. Smoke and NOx emissions are decreased and increased, respectively, as the pilot injection pressure increases in the biodiesel–CNG DFC. In comparison to diesel SFC, smoke emissions are significantly reduced over all the operating conditions and NOx emissions also exhibited similar

  12. Influence of extensive compressed natural gas (CNG) usage on air quality

    Science.gov (United States)

    Suthawaree, Jeeranut; Sikder, Helena Akhter; Jones, Charlotte Emily; Kato, Shungo; Kunimi, Hitoshi; Mohammed Hamidul Kabir, Abu Naser; Kajii, Yoshizumi

    2012-07-01

    Compressed Natural Gas (CNG) is an inexpensive, indigenous energy resource which currently accounts for the majority of automobile and domestic energy consumption in Bangladesh. This extensive CNG usage, particularly within the capital city, Dhaka, heavily influences the atmospheric composition (and hence air quality), yet to date measurements of trace gases in regions dominated by CNG emissions are relatively limited. Here we report continuous observations of the atmospherically important trace gases O3, CO, SO2, NOx and volatile organic compounds (VOC), in ambient air in Dhaka City, Bangladesh, during May 2011. The average mixing ratios of O3, CO, SO2, and NOx for the measurement period were 18.9, 520.9, 7.6 and 21.5 ppbv, respectively. The ratios of CO to NO reveal that emissions from gasoline and CNG-fuelled vehicles were dominant during the daytime (slope of ˜26), while in contrast, owing to restrictions imposed on diesel fuelled vehicles entering Dhaka City, emissions from these vehicles only became significant during the night (slope of ˜10). The total VOC mixing ratio in Dhaka was ˜5-10 times higher than the levels reported in more developed Asian cities such as Tokyo and Bangkok, which consequently gives rise to a higher ozone formation potential (OFP). However, the most abundant VOC in Dhaka were the relatively long-lived ethane and propane (with mean mixing ratios of ˜115 and ˜30 ppbv, respectively), and as a consequence, the ozone formation potential per ppb carbon (ppbC) was lower in Dhaka than in Tokyo and Bangkok. Thus the atmospheric composition of air influenced by extensive CNG combustion may be characterized by high VOC mixing ratios, yet mixing ratios of the photochemical pollutant ozone do not drastically exceed the levels typical of Asian cities with considerably lower VOC levels.

  13. CNG (compressed natural gas) as fuel for the transport sector in Trinidad and Tobago

    Energy Technology Data Exchange (ETDEWEB)

    So`Brien, G.C.; Persad, P.; Satcunanathan, S. [University of the West Indies, St. Augustine (Trinidad)

    1996-08-01

    Several studies have established that Trinidad and Tobago is well positioned to consider the substitution of compressed natural gas (CNG) for gasoline or diesel in the transport sector. Consequently a programme of conversion of private motors was initiated. Despite considerable advertisement programs projecting CNG as an environmentally friendly and cheap fuel, there is not yet widespread acceptance of the technology. The reasons for this are analysed. It is recommended that the policy of CNG usage be reviewed and the emphasis be shifted to transport fleets. It is also recommended that tax credits be considered as an incentive to users. (author)

  14. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    Science.gov (United States)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  15. Urban air quality improvement by using a CNG lean burn engine for city buses

    NARCIS (Netherlands)

    Merétei, T.; Ling, J.A.N. van; Havenith, C.

    1998-01-01

    The use of compressed natural gas (CNG)-fuelled lean-burn city bus engines has a significant potential for air quality improvement in urban areas. Particularly important is the reduction of NO, as well as particulate and non regulated HC-emissions. For this reason, a CNG-fuelled, lean-burn,

  16. Cost-effectiveness analysis of CNG urban taxi operations.

    Science.gov (United States)

    1993-10-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives : examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes compressed : natural gas (CNG)....

  17. Performance of CO2 enrich CNG in direct injection engine

    Science.gov (United States)

    Firmansyah, W. B.; Ayandotun, E. Z.; Zainal, A.; Aziz, A. R. A.; Heika, M. R.

    2015-12-01

    This paper investigates the potential of utilizing the undeveloped natural gas fields in Malaysia with high carbon dioxide (CO2) content ranging from 28% to 87%. For this experiment, various CO2 proportions by volume were added to pure natural gas as a way of simulating raw natural gas compositions in these fields. The experimental tests were carried out using a 4-stroke single cylinder spark ignition (SI) direct injection (DI) compressed natural gas (CNG) engine. The tests were carried out at 180° and 300° before top dead centre (BTDC) injection timing at 3000 rpm, to establish the effects on the engine performance. The results show that CO2 is suppressing the combustion of CNG while on the other hand CNG combustion is causing CO2 dissociation shown by decreasing CO2 emission with the increase in CO2 content. Results for 180° BTDC injection timing shows higher performance compared to 300° BTDC because of two possible reasons, higher volumetric efficiency and higher stratification level. The results also showed the possibility of increasing the CO2 content by injection strategy.

  18. Developing a strategy to speed up large-scale adoption of compressed-natural-gas-driven (CNG) cars

    Energy Technology Data Exchange (ETDEWEB)

    Egmond, Cees; Houtman, Simone; Jonkers, R.; Gelissen, R. [SenterNovem (Netherlands)

    2007-07-01

    Large-scale adoption of environmentally friendly, clean, silent and CO{sub 2}-neutral technological innovations into the market is necessary to reduce the human causes of the greenhouse effect and global warming. In theory, an innovation diffuses smoothly into the market following an S-shaped curve when the number of adopters is plotted against time. In practice, diffusion of innovation does not move smoothly from left to right on the S-shaped curve. Fundamental differences in the adoption characteristics between the visionary early adopters and the pragmatic mainstream cause diffusion to stop before reaching the mainstream market segment. This 'chasm' in the diffusion process is not the result of bad technology or bad products, but rather the result of 'incomplete' products that do not meet the needs of the pragmatic mainstream. In this paper, we report on a case study, conducted in the Netherlands, aimed at speeding up the adoption of the CNG car. This study contains an analysis of the market segments within a target group of local fleet owners. We used survey data covering about 200 local fleet owners. Through structured interviews and a questionnaire, we identified a niche group of the mainstream that would be most likely to adopt the CNG car. This niche is the group to target in a marketing strategy aimed at crossing the chasm. A focus-group discussion held with members of the niche identified the conditions under which the niche actors would consider buying CNG cars. Based on the results of this focus group and the niche market analysis, we concluded that the marketing of the CNG car is still in its beginning phase and has to focus on the early market. Following our recommendations, car dealers and the municipality of Leeuwarden are now developing a plan for marketing the CNG car. The marketing will focus on the early market as the first step into the mainstream.

  19. Cost-Effectiveness of Emissions Reduction through Vehicle Repair Compared to CNG Conversion.

    Science.gov (United States)

    Guenther, Paul L; Lesko, Jon M; Stedman, Donald H

    1996-10-01

    In return for a temporary waiver from converting five vehicles to operate on compressed natural gas (CNG) for the Denver Clean Fuels program, the University of Denver identified, tested, repaired, and retested nine employee commuter vehicles. The results of the study validated the concept that employer-based identification and repair programs can be carried out in a cost-effective way. On average, each repaired vehicle removed fifty times more carbon monoxide (CO) emissions from Denver air than each CNG conversion. The average cost of each repair was eight times less than the average cost of each conversion. The average fuel economy benefit from the repairs was enough to pay for the average cost of repairs in less than three years of normal driving. When the expected lifetimes of repairs and conversions are included, the targeted repair program appears to be over sixty times more cost-effective as a CO emissions reduction strategy than CNG conversion.

  20. Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India.

    Science.gov (United States)

    Ravindra, Khaiwal; Wauters, Eric; Tyagi, Sushil K; Mor, Suman; Van Grieken, René

    2006-04-01

    Public transport in Delhi was amended by the Supreme Court of India to use Compressed Natural Gas (CNG) instead of diesel or petrol. After the implementation of CNG since April 2001, Delhi has the highest fraction of CNG-run public vehicles in the world and most of them were introduced within 20 months. In the present study, the concentrations of various criteria air pollutants (SPM, PM(10), CO, SO(2) and NO(x)) and organic pollutants such as benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) were assessed before and after the implementation of CNG. A decreasing trend was found for PAHs, SO(2) and CO concentrations, while the NO(x) level was increased in comparison to those before the implementation of CNG. Further, SPM, PM(10), and BTX concentrations showed no significant change after the implementation of CNG. However, the BTX concentration demonstrated a clear relation with the benzene content of gasoline. In addition to the impact of the introduction of CNG the daily variation in PAHs levels was also studied and the PAHs concentrations were observed to be relatively high between 10 pm to 6 am, which gives a proof of a relation with the limited day entry and movement of heavy vehicles in Delhi.

  1. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    Science.gov (United States)

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.; Horne, D. B.

    2010-09-01

    This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

  3. The Coselle CNG carrier : a new way to ship natural gas by sea

    International Nuclear Information System (INIS)

    Stenning, D.

    1999-01-01

    Coselle CNG carriers represent an emerging technology option for water-borne natural gas transportation. The idea behind the Coselle is to create a large but compact CNG storage system using pipe coiled into a carousel. The system promises to significantly improve the economics of shipping natural gas over short sea routes. This would unlock many gas reserves which are stranded because of the high costs associated with shipping natural gas by conventional tankers. The innovative patented technology for Coselle CNG carriers was described in this paper. The completed work on the technology is sufficient to allow a pilot project to proceed before the next step of commercialization of the technology. The technology can be applied in the Mediterranean Sea, the Caribbean Sea, the Arabian Sea, Sakhalin Island, Canada's east coast, Deepwater offshore Brazil and Gulf of Mexico, and West Africa. 4 refs., 1 tab., 5 figs

  4. CONVERSION OF DIESEL ENGINE INTO SPARK IGNITION ENGINE TO WORK WITH CNG AND LPG FUELS FOR MEETING NEW EMISSION NORMS

    Directory of Open Access Journals (Sweden)

    Syed Kaleemuddin

    2010-01-01

    Full Text Available Fluctuating fuel prices and associated pollution problems of largely exploited petroleum liquid fuel has stimulated the research on abundantly available gaseous fuels to keep the mobility industry intact. In the present work an air cooled diesel engine was modified suitably into a spark ignition engine incorporating electronic ignition and variable speed dependant spark timing to accommodate both LPG and CNG as fuels. Engine was optimized for stoichiometric operation on engine dynamometer. Materials of a few intricate engine components were replaced to suit LPG and CNG application. Ignition timing was mapped to work with gaseous fuels for different speeds. Compensation was done for recovering volumetric efficiency when operated with CNG by introducing more volume of air through resonator. Ignition timing was observed to be the pertinent parameter in achieving good performance with gaseous fuels under consideration. Performance and emission tests were carried out on engine dynamometer and chassis dynamometer. Under wide open throttle and at rated speed condition, it was observed that the peak pressure with LPG was lying between diesel fuel and CNG fuel operation due to slow burning nature of gaseous fuels. As compression ratio was maintained same for LPG and CNG fuel operation, low CO emissions were observed with LPG where as HC + NOx emissions were lower with CNG fuel operation. Chassis dynamometer based emission tests yielded lower CO2 levels with CNG operation.

  5. CNG: Aiming to be an energy company, not a gas company

    International Nuclear Information System (INIS)

    Wheatley, R.

    1997-01-01

    Long before regulatory changes in the US paved the way for the union of natural gas and electric utility companies, Consolidated Natural Gas Co. (CNG) embarked on a strategy that would serve the company well in the 1990s. In 1995, CNG began a corporate repositioning to meet mounting competition, switching emphasis from its regulated businesses to the non-regulated side. The goal: to become an energy player, not only in the US but internationally. This paper focuses on the company's operations, business plans, and management strategies. The paper gives an overview, then discusses production of oil and gas, the growing exploration program and plans for the future

  6. Developing a strategy to speed up large-scale adoption of compressed-natural-gas-driven (CNG) cars. Volume 1

    International Nuclear Information System (INIS)

    Egmond, Cees; Houtman, Simone; Jonkers, R.; Gelissen, R.

    2007-01-01

    Large-scale adoption of environmentally friendly, clean, silent and CO 2 -neutral technological innovations into the market is necessary to reduce the human causes of the greenhouse effect and global warming. In theory, an innovation diffuses smoothly into the market following an S-shaped curve when the number of adopters is plotted against time. In practice, diffusion of innovation does not move smoothly from left to right on the S-shaped curve. Fundamental differences in the adoption characteristics between the visionary early adopters and the pragmatic mainstream cause diffusion to stop before reaching the mainstream market segment. This 'chasm' in the diffusion process is not the result of bad technology or bad products, but rather the result of 'incomplete' products that do not meet the needs of the pragmatic mainstream. In this paper, we report on a case study, conducted in the Netherlands, aimed at speeding up the adoption of the CNG car. This study contains an analysis of the market segments within a target group of local fleet owners. We used survey data covering about 200 local fleet owners. Through structured interviews and a questionnaire, we identified a niche group of the mainstream that would be most likely to adopt the CNG car. This niche is the group to target in a marketing strategy aimed at crossing the chasm. A focus-group discussion held with members of the niche identified the conditions under which the niche actors would consider buying CNG cars. Based on the results of this focus group and the niche market analysis, we concluded that the marketing of the CNG car is still in its beginning phase and has to focus on the early market. Following our recommendations, car dealers and the municipality of Leeuwarden are now developing a plan for marketing the CNG car. The marketing will focus on the early market as the first step into the mainstream

  7. Developing a strategy to speed up large-scale adoption of compressed-natural-gas-driven (CNG) cars. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Egmond, Cees; Houtman, Simone; Jonkers, R.; Gelissen, R. [SenterNovem (Netherlands)

    2007-07-01

    Large-scale adoption of environmentally friendly, clean, silent and CO{sub 2}-neutral technological innovations into the market is necessary to reduce the human causes of the greenhouse effect and global warming. In theory, an innovation diffuses smoothly into the market following an S-shaped curve when the number of adopters is plotted against time. In practice, diffusion of innovation does not move smoothly from left to right on the S-shaped curve. Fundamental differences in the adoption characteristics between the visionary early adopters and the pragmatic mainstream cause diffusion to stop before reaching the mainstream market segment. This 'chasm' in the diffusion process is not the result of bad technology or bad products, but rather the result of 'incomplete' products that do not meet the needs of the pragmatic mainstream. In this paper, we report on a case study, conducted in the Netherlands, aimed at speeding up the adoption of the CNG car. This study contains an analysis of the market segments within a target group of local fleet owners. We used survey data covering about 200 local fleet owners. Through structured interviews and a questionnaire, we identified a niche group of the mainstream that would be most likely to adopt the CNG car. This niche is the group to target in a marketing strategy aimed at crossing the chasm. A focus-group discussion held with members of the niche identified the conditions under which the niche actors would consider buying CNG cars. Based on the results of this focus group and the niche market analysis, we concluded that the marketing of the CNG car is still in its beginning phase and has to focus on the early market. Following our recommendations, car dealers and the municipality of Leeuwarden are now developing a plan for marketing the CNG car. The marketing will focus on the early market as the first step into the mainstream.

  8. Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.

    Science.gov (United States)

    Wadud, Zia; Khan, Tanzila

    2013-12-17

    Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects.

  9. A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels.

    Science.gov (United States)

    Napolitano, Luisa Maria Rosaria; Bisha, Ina; De March, Matteo; Marchesi, Arin; Arcangeletti, Manuel; Demitri, Nicola; Mazzolini, Monica; Rodriguez, Alex; Magistrato, Alessandra; Onesti, Silvia; Laio, Alessandro; Torre, Vincent

    2015-07-07

    Cyclic nucleotide-gated (CNG) ion channels, despite a significant homology with the highly selective K(+) channels, do not discriminate among monovalent alkali cations and are permeable also to several organic cations. We combined electrophysiology, molecular dynamics (MD) simulations, and X-ray crystallography to demonstrate that the pore of CNG channels is highly flexible. When a CNG mimic is crystallized in the presence of a variety of monovalent cations, including Na(+), Cs(+), and dimethylammonium (DMA(+)), the side chain of Glu66 in the selectivity filter shows multiple conformations and the diameter of the pore changes significantly. MD simulations indicate that Glu66 and the prolines in the outer vestibule undergo large fluctuations, which are modulated by the ionic species and the voltage. This flexibility underlies the coupling between gating and permeation and the poor ionic selectivity of CNG channels.

  10. Temporal variability of benzene concentration in the ambient air of Delhi: a comparative assessment of pre- and post-CNG periods.

    Science.gov (United States)

    Khillare, P S; Hoque, Raza Rafiqul; Shridhar, Vijay; Agarwal, Tripti; Balachandran, S

    2008-06-15

    CNG (compressed natural gas) was fully implemented in public transport system in Delhi in December 2002. The study assesses the benzene concentration trends at two busy traffic intersections and a background site in Delhi, India. Monitoring was done for two different time periods viz; in the year 2001-2002 (pre-CNG) and two winter months (January and February) of the year 2007 (post-CNG) to assess the impact of various policy measures adopted by the government of Delhi to improve the air quality in the city. Annual average benzene concentration for the pre-CNG period was found to be 86.47+/-53.24 microg m(-3). Average benzene concentrations for the winter months (January-February) of pre- and post-CNG periods were 116.32+/-51.65 microg m(-3) and 187.49+/-22.50 microg m(-3), respectively. Enhanced values could be solely attributed to the increase in the vehicular population from 3.5 million in the year 2001-2002 to approximately 5.1 millions in the year 2007.

  11. An analysis of price competitiveness of CNG (compressed natural gas) versus gasoline: estimation of the elasticities of demand by CNG in a recent period in Brazil; Uma analise da competitividade de preco do GNV (Gas Natural Veicular) frente a gasolina: estimacao das elasticidades da demanda por GNV no Brasil no periodo recente

    Energy Technology Data Exchange (ETDEWEB)

    Iootty, Mariana; Pinto Junior, Helder; Roppa, Bruna; Biasi, Guilherme de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Economia

    2004-07-01

    One of the main determinants to the expansion of natural gas on the Brazilian domestic market is its price. Hence, it is important to analyze the price competitiveness of natural gas vis-a-vis its competitors. The current paper focuses on the market of natural gas in vehicles (the compressed natural gas - CNG), and uses co-integration techniques to estimate the price-elasticity of CNG, the cross-elasticity of CNG and gasoline, and the income-elasticity. The results suggest that price is a relevant factor in the long-run, while in the short-run income is the most significant determinant of the demand variation. In addition, the paper also shows an imperfect substitutability between CNG and gasoline. (author)

  12. Numerical Evaluation ofThe Performance ofA Compression Ignition Cng Engine For Heavy DutyTrucksWithAn Optimum Speed PowerTurbine

    Directory of Open Access Journals (Sweden)

    Alberto A. Boretti

    2011-10-01

    Full Text Available The turbocharged direct injection lean burn Diesel engine is the most efficient engine now in production for transport applications. CNG is an alternative fuel with a better carbon to hydrogen ratio therefore permitting reduced carbon dioxide emissions. It is injected in gaseous form for a much cleaner combustion almost cancelling some of the emissions of the Diesel and it permits a much better energy security within Australia. The paper discusses the best options currently available to convert Diesel engine platforms to CNG, with particular emphasis to the use of these CNG engines within Australia where the refuelling network is scarce. This option is determined in the dual fuel operation with a double injector design that couples a second CNG injector to the Diesel injector. This configuration permits the operation Diesel only or Diesel pilot and CNG main depending on the availability of refuelling stations where the vehicle operates. Results of engine performance simulations are performed for a straight six cylinder 13 litres truck engine with a novel power turbine connected to the crankshaft through a constant variable transmission that may be by-passed when non helpful to increase the fuel economy of the vehicle or when damaging the performances of the after treatment system.

  13. Project risk perspective on using LNG, CNG, and GTL concepts to monetise offshore stranded gas

    Energy Technology Data Exchange (ETDEWEB)

    Danielsen, Hans Kristian; Blikom, Lars Petter

    2010-09-15

    This paper discusses technology maturity and the key risks involved in establishing LNG, CNG, and GTL value chains in order to monetise offshore stranded and associated gas. The paper uses Monte Carlo simulations to evaluate the economics of the various concepts and the impact of uncertainty. The conclusion is that LNG offers the most flexible value chain with the lowest level of risk exposure. CNG may offer better economics as long as the distance to market is fairly short. GTL must overcome significant technological challenges before becoming available for offshore use and also offers higher uncertainty in economic terms.

  14. Ford F250 Dedicated CNG Pickup

    International Nuclear Information System (INIS)

    Eudy, Leslie

    1999-01-01

    The U.S. Department of Energy (DOE) is encouraging the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. In this study, we tested a pair of 1998 Ford F-250 pickups: one dedicated compressed natural gas (CNG) model and a gasoline model as closely matched as possible. Each vehicle was run through a series of tests to evaluate acceleration, fuel economy, braking, and cold-start capabilities, as well as more subjective performance indicators such as handling, climate control, and noise

  15. New gas-fuelled engine. SBZ takes a look at the Iveco Daily CNG; Mit neuem Erdgasmotor. SBZ-Redaktion testet den Iveco Daily CNG

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-01-15

    In the van class, there are fewer natural-gas vehicles now on the market than before. One of these is the new Iveco Daily CNG, a low-emission industrial vehicle which is available both as a van or as a flatbed vehicle with sufficient rotary momentum and power. SBZ editor Thomas Dietrich of the Bonn office of SBZ tested several variants of the vehicle. (orig.)

  16. Simulation and Empirical Studies of the Commercial SI Engine Performance and Its Emission Levels When Running on a CNG and Hydrogen Blend

    Directory of Open Access Journals (Sweden)

    Rafaa Saaidia

    2017-12-01

    Full Text Available This article is a report on a simulation based on Computational Fluid Dynamics (CFD and an empirical investigation of in-cylinder flow characteristics, In addition, it assesses the performance and emission levels of a commercial-spark ignited engine running on a CNG and Hydrogen blend in different ratios. The main objective was to determine the optimum hydrogen ratio that would yield the best brake torque and release the least polluting gases. The in-cylinder flow velocity and turbulence aspects were investigated during the intake stroke in order to analyze the intake flow behavior. To reach this goal, a 3D CFD code was adopted. For various engine speeds were investigated for gasoline, CNG and hydrogen and CNG blend (HCNG fueled engines via external mixtures. The variation of brake torque (BT, NOX and CO emissions. A series of tests were conducted on the engine within the speed range of 1000 to 5000 rpm. For this purpose, a commercial Hyundai Sonata S.I engine was modified to operate with a blend of CNG and Hydrogen in different ratios. The experiments attempted to determine the optimum allowable hydrogen ratio with CNG for normal engine operation. The engine performance and the emission levels were also analyzed. At the engine speed of 4200 rpm, the results revealed that beyond a ratio of 50% of the volume of hydrogen added to CNG a backfire phenomenon appeared. Below this ratio (0~40% of the hydrogen volume, the CNG and Hydrogen blend seemed to be beneficial for the engine performance and for curtailing the emission level. However, at low engine speeds, the NOX concentration increased simultaneously with hydrogen content. In contrast, at high engine speeds, the NOX concentration decreased to its lowest level compared to that reached with gasoline as a running fuel. The concentration levels of HC, CO2, and CO decreased with the increase of hydrogen percentage.

  17. Studi Eksperimen Unjuk Kerja Mesin Diesel Menggunakan Sistem Dual Fuel Solar Gas CNG Dengan Variasi Tekanan Injeksi Gas Dan Derajat Waktu Injeksi

    Directory of Open Access Journals (Sweden)

    Dicky Yoko Exoryanto

    2017-01-01

    Full Text Available Bahan bakar gas ini jika ditinjau dari ekonomis tergolong sangat murah dan ramah lingkungan. Namun, pengaplikasian bahan bakar gas CNG pada generator diesel dengan sistem dual fuel berdampak pada penurunan performansinya. Hal ini terjadi karena rasio campuran udara dan bahan bakar pada sistem dual fuel belum sesuai, sehingga perlunya penelitian lebih lanjut. Penelitian ini bertujuan untuk meningkatkan performa pada mesin diesel dengan memodifikasi saluran masuk udara dengan memasang injector gas CNG untuk memasukkan bahan bakar tersebut kedalam ruang bakar sehingga mesin diesel berubah menjadi sitem dual fuel. Tidak hanya saluran masuk udara saja yang di modifikasi tetapi, variasi start of injection dan tekanan gas yang masuk juga di variasikan. Penelitian ini di lakukan secara eksperimental dengan menginjeksikan gas CNG ke dalam ruang bakar melalui saluran hisap yang sudah terpasang injector. Proses pengaturan injeksi gas CNG diatur oleh ECU programamble melalui software VEMSTUNE. Sistem pengaturan yang dilakukan adalah mengatur derajat waktu injection (SOI dengan nilai 5o, 30o, 55o, dan 80o CA BTDC dan variasi tekanan masuk gas CNG dengan nilai 1, 1,5, 2, dan 2,5 N/m2. Penelitian ini dilakukan dengan putaran mesin konstan sebesar 2000 rpm dengan beban 0 sampai 100 %. Hasil yang didapatkan dari eksperimen yang dilakukan kali ini, antara lain : performa dual fuel lebih optimal dibandingkan saat pengoperasian single fuel. Pengaturan paling optimal terjadi pada start of injection 80° CA BTDC dengan tekanan 1,5 gas CNG. Gas CNG dapat menggantikan porsi bahan bakar minyak solar sebesar 45,30 %. Nilai subtitusi minyak solar yang optimal sebesar 61,39 % dan SFC minyak solar rata-rata mengalami penurunan sebesar 47,10 %, tetapi SFC dual fuel rata-rata meningkat sebesar 47,67 % dibandingkan SFC single fuel. Nilai rata-rata efisiensi thermal turun sebesar 40,89 %, nilai AFR rata-rata turun dari 25,60 menjadi 12,90 dan Temperatur gas buang meningkat dari

  18. UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project

    International Nuclear Information System (INIS)

    Walkowicz, K.

    2001-01-01

    UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies

  19. Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery

    International Nuclear Information System (INIS)

    Yang, Fubin; Zhang, Hongguang; Yu, Zhibin; Wang, Enhua; Meng, Fanxiao; Liu, Hongda; Wang, Jingfu

    2017-01-01

    In this study, a dual loop ORC (organic Rankine cycle) system is adopted to recover exhaust energy, waste heat from the coolant system, and intercooler heat rejection of a six-cylinder CNG (compressed natural gas) engine. The thermodynamic, heat transfer, and optimization models for the dual loop ORC system are established. On the basis of the waste heat characteristics of the CNG engine over the whole operating range, a GA (genetic algorithm) is used to solve the Pareto solution for the thermodynamic and heat transfer performances to maximize net power output and minimize heat transfer area. Combined with optimization results, the optimal parameter regions of the dual loop ORC system are determined under various operating conditions. Then, the variation in the heat transfer area with the operating conditions of the CNG engine is analyzed. The results show that the optimal evaporation pressure and superheat degree of the HT (high temperature) cycle are mainly influenced by the operating conditions of the CNG engine. The optimal evaporation pressure and superheat degree of the HT cycle over the whole operating range are within 2.5–2.9 MPa and 0.43–12.35 K, respectively. The optimal condensation temperature of the HT cycle, evaporation and condensation temperatures of the LT (low temperature) cycle, and exhaust temperature at the outlet of evaporator 1 are kept nearly constant under various operating conditions of the CNG engine. The thermal efficiency of the dual loop ORC system is within the range of 8.79%–10.17%. The dual loop ORC system achieves the maximum net power output of 23.62 kW under the engine rated condition. In addition, the operating conditions of the CNG engine and the operating parameters of the dual loop ORC system significantly influence the heat transfer areas for each heat exchanger. - Highlights: • A dual loop ORC system is adopted to recover the waste heat of a CNG engine. • Parametric optimization and heat transfer analysis are

  20. Carbonyl compounds and PAH emissions from CNG heavy-duty engine

    International Nuclear Information System (INIS)

    Gambino, M.; Cericola, R.; Corbo, P.; Iannaccone, S.

    1993-01-01

    Previous works carried out in Istituto Motori laboratories have shown that natural gas is a suitable fuel for general means of transportation. This is because of its favorable effects on engine performance and pollutant emissions. The natural gas fueled engine provided the same performance as the diesel engine, met R49 emission standards, and showed very low smoke levels. On the other hand, it is well known that internal combustion engines emit some components that are harmful for human health, such as carbonyl compounds and polycyclic aromatic hydrocarbons (PAH). This paper shows the results of carbonyl compounds and PAH emissions analysis for a heavy-duty Otto cycle engine fueled with natural gas. The engine was tested using the R49 cycle that is used to measure the regulated emissions. The test analysis has been compared with an analysis of a diesel engine, tested under the same conditions. Total PAH emissions from the CNG engine were about three orders of magnitude lower than from the diesel engine. Formaldehyde emission from the CNG engine was about ten times as much as from the diesel engine, while emissions of other carbonyl compounds were comparable

  1. Analysis of a combustion, performance and emission characteristics of a CNG-B20 fuelled diesel engine under dual fuel mode

    Directory of Open Access Journals (Sweden)

    Pankaj S. Shelke

    2016-09-01

    Full Text Available The Carbon dioxide (CO2 is one of the primary greenhouse gases emitted by various human activities. CO2 is naturally present in the atmosphere as part of carbon cycle. Human activities are altering the carbon cycle by adding or removing CO2 to the atmosphere. The main human activity that emits the CO2 is combustion of fossil fuels for energy and transportation. Compression ignition (CI engines emit high amount of CO2 emission as it is the end product of complete combustion of hydro carbon fuels. Moreover, they emit higher NOx (nitrogen oxides and PM (particulate matter emissions and have higher fuel consumption. In the present study, experimental investigations were carried out on a CI engine under dual fuel mode with biodiesel as a pilot fuel and compressed natural gas (CNG as a main fuel. The effects of 10 % and 20 % CNG energy shares on performance and emission characteristics of the engine at rated (100% loads were studied. Experimental results indicate the beneficial of CNG addition on improvement in the engine efficiency, and reduction in NOx and CO2 emissions. The NOx and CO2 emissions decreased by 14.24 % and 30 % respectively at the rated load with biodiesel + CNG (20 % energy share as compared to base diesel. No knocking combustion was observed during the tests which confirm the smooth operation. The dual fuel operation with combination of CNG-biodiesel is an effective method to reduce NOx and CO2 emissions with an additional benefit of lower specific energy consumption.

  2. Exhaust gas concentration of CNG fuelled direct injection engine at MBT timing

    International Nuclear Information System (INIS)

    Hassan, M.K.; Aris, I.; Mahmod, S.; Sidek, R.

    2009-01-01

    Full text: This paper presents an experimental result of exhaust gas concentration of high compression engine fuelled with compressed natural gas (CNG) at maximum brake torque (MBT). The engine uses central direct injection (DI) technique to inject the CNG into the cylinder. The engine geometry bases on gasoline engine with 14:1 compression ratio and called CNGDI engine. The injectors are positioned within a certain degrees of spark plug location. The objective of the experiment is to study the influence and significant of MBT timing in CNGDI engine towards exhaust gases. The experimental tests were carried out using computer-controlled eddy-current dynamometer, which measures the CNGDI engine performance. At MBT region, exhaust gas concentration as such CO, HC, NO x , O 2 and CO 2 , were recorded and analyzed during the test using the Horiba analyzer. A closed loop wide band lambda sensor has been mounted at the exhaust manifold to indicate the oxygen level during the exercise. (author)

  3. Energy based source location by using acoustic emission for damage detection in steel and composite CNG tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Sik; Han, Byeong Hee; Park, Choon Su; Yoon, Dong Jin [Center for Safety Measurements, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-10-15

    Acoustic emission (AE) is an effective nondestructive test that uses transient elastic wave generated by the rapid release of energy within a material to detect any further growth or expansion of existing defects. Over the past decades, because of environmental issues, the use of compressed natural gas (CNG) as an alternative fuel for vehicles is increasing because of environmental issues. For this reason, the importance and necessity of detecting defects on a CNG fuel tank has also come to the fore. The conventional AE method used for source location is highly affected by the wave speed on the structure, and this creates problems in inspecting a composite CNG fuel tank. Because the speed and dispersion characteristics of the wave are different according to direction of structure and laminated layers. In this study, both the conventional AE method and the energy based contour map method were used for source location. This new method based on pre-acquired D/B was used for overcoming the limitation of damage localization in a composite CNG fuel tank specimen which consists of a steel liner cylinder overwrapped by GFRP. From the experimental results, it is observed that the damage localization is determined with a small error at all tested points by using the energy based contour map method, while there were a number of mis-locations or large errors at many tested points by using the conventional AE method. Therefore, the energy based contour map method used in this work is more suitable technology for inspecting composite structures.

  4. Feasibility study on utilization of associated gas as CNG

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The Back Ho oilfield is the largest oilfield in Vietnam and at the same time is producing the largest amount of natural gas (associated gas) in Vietnam. Although the majority of the associated gas has been used in the power generation plant, a large amount of surplus gas is not effectively used because of shortage of fund and technologies. Accordingly, a feasibility study has been executed for a project to compress 20% of the associated gas into CNG, and use it effectively as automobile and factory fuel. As a result of the site survey, it was found that, although Vietnam consumes less amount of energy and emits less amount of CO2, the nation has a strong interest and a large amount of knowledge about global warming and CDM because the country is subjected to large effect of warming. Furthermore, it has been reconfirmed that introducing CNG into this territory is highly effective. Discussions have been made on places of installing the facilities, effective surplus gas utilization systems, facility specifications, utilities, and number of workers. Calculations were made on approximate cost of the facilities and the running cost. As a result of the surveys and discussions, it was determined that technological support from Japan and the Yen loan for environment with low interest rate are necessary. (NEDO)

  5. Injection characteristics study of high-pressure direct injector for Compressed Natural Gas (CNG) using experimental and analytical method

    Science.gov (United States)

    Taha, Z.; Rahim, MF Abdul; Mamat, R.

    2017-10-01

    The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.

  6. On Combustion in the CNG-Diesel Dual Fuel Engine

    OpenAIRE

    Königsson, Fredrik

    2014-01-01

    Currently there is a large interest in alternative transport fuels. There are two underlying reasons for this interest: the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors, the CNG-diesel dual fuelengine is an attractive concept. The primary fuel of the dual fuel engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste, co...

  7. Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine

    International Nuclear Information System (INIS)

    Jahirul, M.I.; Masjuki, H.H.; Saidur, R.; Kalam, M.A.; Jayed, M.H.; Wazed, M.A.

    2010-01-01

    A comparative analysis is being performed of the engine performance and exhaust emission on a gasoline and compressed natural gas (CNG) fueled retrofitted spark ignition car engine. A new 1.6 L, 4-cylinder petrol engine was converted to the computer incorporated bi-fuel system which operated with either gasoline or CNG using an electronically controlled solenoid actuated valve mechanism. The engine brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature and exhaust emissions (unburnt hydrocarbon, carbon mono-oxide, oxygen and carbon dioxides) were measured over a range of speed variations at 50% and 80% throttle positions through a computer based data acquisition and control system. Comparative analysis of the experimental results showed 19.25% and 10.86% reduction in brake power and 15.96% and 14.68% reduction in brake specific fuel consumption (BSFC) at 50% and 80% throttle positions respectively while the engine was fueled with CNG compared to that with the gasoline. Whereas, the retrofitted engine produced 1.6% higher brake thermal efficiency and 24.21% higher exhaust gas temperature at 80% throttle had produced an average of 40.84% higher NO x emission over the speed range of 1500-5500 rpm at 80% throttle. Other emission contents (unburnt HC, CO, O 2 and CO 2 ) were significantly lower than those of the gasoline emissions.

  8. Guidance on Biogas used to Produce CNG or LNG under the Renewable Fuel Standard Program

    Science.gov (United States)

    Provides EPA’s interpretation of biogas quality and RIN generation requirements that apply to renewable fuel production pathways involving the injection into a commercial pipeline of biogas for use in producing renewable CNG or renewable LNG.

  9. CNG INJECTOR RESEARCH FOR DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    Adam Majczak

    2017-03-01

    Full Text Available The article presents the tests results of the prototype design of hydraulically assisted injector, that is designed for gas supply into diesel engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose a injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.

  10. Natural gas for ship propulsion in Denmark - Possibilities for using LNG and CNG on ferry and cargo routes

    Energy Technology Data Exchange (ETDEWEB)

    Stuer-Lauridsen, F.; Nielsen, Jesper B. (LITEHAUZ, Copenhagen (Denmark)); Odgaard, T.; Birkeland, M. (IncentivePartners, Birkeroed (Denmark)); Winter Graugaard, C.; Blikom, L.P. (DNV, Copenhagen (Denmark)); Muro-Sun, N.; Andersen, Morten; OEvlisen, F. (Ramboell Oil and Gas, Esbjerg (Denmark))

    2010-07-01

    The project's main task was to review logistical, technical and economic feasibility for using Liquefied Natural Gas (LNG) and Compressed Natural Gas (CNG) as fuel for ship propulsion and the supply of LNG or CNG to Danish ports from existing natural gas lines, trucks or by ship. The following key findings are related to the use of natural gas as fuel for ships in Denmark: Natural gas as propulsion fuel in ships: 1) Advantages: Provide solution to present air emission challenges 2) Barriers: Capital investments large 3) Synergies: Developments in Norway and Baltic Sea area 4) Economy: Positive case for operation for large consumers 5) Future: Develop bunkering options for short sea shipping LNG: 6) Propulsion technology in ships is mature and proven 7) Distribution network not yet developed for use in ships 8) Safety concerns are demanding but manageable 9) Can enter existing bunkering value chain CNG: 10) Well developed for land based transport, not yet for shipping 11) Distribution network for natural gas exists in Denmark 12) Safety concerns are demanding but manageable 13) No seaborne CNG value chains in operation An immediate focus on the ferry sector in Denmark will reap benefits on a relatively short time scale. For the short sea shipping sector away to promote the conversion to natural gas is to support the development of storage and bunkering facilities in main ports. Given the general expectations in the shipping community LNG will presumably be the de facto choice at least for the 5-10 years ahead and the demand for facilities and bunkers will be for LNG. (LN)

  11. Analysis of Engine Parameters at Using Diesel-LPG and Diesel-CNG Mixture in Compression-ignition Engine

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This work is aimed on influence of diesel engine parameters that is used with mixture of gas and diesel fuel. The first part of the article describes diesel fuel systems where small part of diesel fuel is replaced by LPG or CNG fuel. These systems are often called as Diesel-Gas systems. Next part of the article focuses on tested car and measurement equipment. Measurement was performed by common-rail diesel engine in Fiat Doblň. Tests were carried out in laboratories of the Department of Engineering and Automobile Transport at the Mendel University in Brno. They were observed changes between emissions of used fuels – diesel without addition of gas, diesel + LPG and diesel + CNG mixture. It was found that that the addition of gas had positive effect on the performance parameters and emissions.

  12. Impact source location on composite CNG storage tank using acoustic emission energy based signal mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byeong Hee; Yoon, Dong Jin; Park, Chun Soo [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Lee, Young Shin [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    Acoustic emission (AE) is one of the most powerful techniques for detecting damages and identify damage location during operations. However, in case of the source location technique, there is some limitation in conventional AE technology, because it strongly depends on wave speed in the corresponding structures having heterogeneous composite materials. A compressed natural gas(CNG) pressure vessel is usually made of carbon fiber composite outside of vessel for the purpose of strengthening. In this type of composite material, locating impact damage sources exactly using conventional time arrival method is difficult. To overcome this limitation, this study applied the previously developed Contour D/B map technique to four types of CNG storage tanks to identify the source location of damages caused by external shock. The results of the identification of the source location for different types were compared.

  13. Regulated and unregulated exhaust gas components from LD vehicles on petrol, diesel, LPG and CNG

    NARCIS (Netherlands)

    Hendriksen, P.; Rijkeboer, R.C.

    1993-01-01

    Four fuels (petrol, LPG, CNG and diesel) are compared on passenger cars and lighter vans. The comparisons are made for the usual regulated components, but also for a number of unregulated components. The project was financed by the Dutch government, the association of gas suppliers, a number of

  14. The CNG program in Argentine transport sector sources: present and forecasting

    International Nuclear Information System (INIS)

    Andres G, D.

    1988-01-01

    The CNG program in Argentina was formulated in the early 80's with the goal of reaching energy independence by means of a greater participation of natural gas in the energy demand. The transport sector is responsible of 30% of the total energy demand and 60% of all the oil consumption, so that any plan for substituting liquid fuels had to tackle transportation. The experiences which allowed gas to increase its participation from 27% to 33% may be profited by others interested in producing similar projects. (author)

  15. Evaluation of the environmental impact of modern passenger cars on petrol, diesel, automotive LPG and CNG

    NARCIS (Netherlands)

    Hendriksen, P.; Vermeulen, R.J.; Rijkeboer, R.C.; Bremmers, D.A.C.M.; Smokers, R.T.M.; Winkel, R.G.

    2003-01-01

    The project reported here concerns an investigation into the environmental performance of modern passenger cars on four different fuels: petrol, diesel, automotive LPG and CNG. The objectives of the project were twofold: - To make a valid and useful comparison between modern vehicles fuelled by

  16. Screening of tank-to-wheel efficiencies for CNG, DME and methanol-ethanol fuel blends in road transport

    DEFF Research Database (Denmark)

    Kappel, Jannik; Mathiesen, Brian Vad

    efficiency. This screening indicates methanol, methanol-ethanol blends and CNG to be readily availability, economic feasible and with the introduction of the DISI engine not technologically challenging compared to traditional fuels. Studies across fuel types indicate a marginally better fuel utilization...

  17. Assessment of on-road emissions of four Euro V diesel and CNG waste collection trucks for supporting air-quality improvement initiatives in the city of Milan

    Energy Technology Data Exchange (ETDEWEB)

    Fontaras, Georgios, E-mail: georgios.fontaras@jrc.ec.europa.eu [Institute for Energy and Transport, Joint Research Centre, Ispra (Italy); Martini, Giorgio; Manfredi, Urbano; Marotta, Alessandro; Krasenbrink, Alois [Institute for Energy and Transport, Joint Research Centre, Ispra (Italy); Maffioletti, Francesco; Terenghi, Roberto; Colombo, Mauro [AMSA, Azienda Milanese Servizi Ambientali, Milano (Italy)

    2012-06-01

    This paper summarizes the results of an extensive experimental study aiming to evaluate the performance and pollutant emissions of diesel and CNG waste collection trucks under realistic and controlled operating conditions in order to support a fleet renewal initiative in the city of Milan. Four vehicles (1 diesel and 3 CNG) were tested in two phases using a portable emission measurement system. The first phase included real world operation in the city of Milan while the second involved controlled conditions in a closed track. Emissions recorded from the diesel truck were on average 2.4 kg/km for CO{sub 2}, 0.21 g/km for HC, 7.4 g/km for CO, 32.3 g/km for NO{sub x} and 46.4 mg/km for PM. For the CNG the values were 3.6 kg/km for CO{sub 2}, 2.19 g/km for HC, 15.8 g/km for CO, 4.38 g/km for NO{sub x} and 11.4 mg/km for PM. CNG vehicles presented an important advantage with regards to NO{sub x} and PM emissions but lack the efficiency of their diesel counterparts when it comes to CO, HC and particularly greenhouse gas emissions. This tradeoff needs to be carefully analyzed prior to deciding if a fleet should be shifted towards either technology. In addition it was shown that existing emission factors, used in Europe for environmental assessment studies, reflect well the operation for CNG but were not so accurate when it came to the diesel engine truck particularly for CO{sub 2} and NO{sub x}. With regard to NO{sub x}, it was also shown that the limits imposed by current emission standards are not necessarily reflected in real world operation, under which the diesel vehicle presented almost 4 times higher emissions. Regarding CO{sub 2}, appropriate use of PEMS data and vehicle information allows for accurate emission monitoring through computer simulation. - Highlights: Black-Right-Pointing-Pointer Investigated diesel and CNG Euro V waste collection vehicles for municipal use Black-Right-Pointing-Pointer NO{sub x}-GhG emission trade-off should be considered prior to

  18. Experimental investigations of effects of EGR on performance and emissions characteristics of CNG fueled reactivity controlled compression ignition (RCCI) engine

    International Nuclear Information System (INIS)

    Singh Kalsi, Sunmeet; Subramanian, K.A.

    2016-01-01

    Highlights: • NO_x emission decreased drastically in RCCI engine with EGR. • CO and HC emissions decreased with 8% EGR. • Smoke emission increased with EGR but is still less than base diesel. • Brake thermal efficiency does not change with EGR up to 15% • 8% EGR is optimum based on less CO, HC, NO_x except smoke. - Abstract: Experimental: tests were carried out on a single cylinder diesel engine (7.4 kW rated power at 1500 rpm) under dual fuel mode (CNG-Diesel) with EGR (exhaust gas recirculation). Less reacting fuel (CNG) was injected inside the intake manifold using timed manifold gas injection system whereas high reactive diesel fuel was directly injected into the engine’s cylinder for initiation of ignition. EGR at different percentages (8%, 15% and 30%) was inducted to the engine through intake manifold and tests were conducted at alternator power output of 2 kW and 5 kW. The engine can operate under dual fuel mode with maximum CNG energy share of 85% and 92% at 5 kW and 2 kW respectively. The brake thermal efficiency of diesel engine improved marginally at 5 kW power output under conventional dual fuel mode with the CNG share up to 37% whereas the efficiency did not change with up to 15% EGR however it decreased beyond the EGR percentage. NO_x emission in diesel engine under conventional dual fuel mode decreased significantly and it further decreased drastically with EGR. The notable point emerged from this study is that CO and HC emissions, which are major problems at part load in reactivity controlled compression ignition engine (RCCI), decreased with 8% EGR along with further reduction of NO_x. However, smoke emission is marginally higher with EGR than without EGR but it is still less than conventional mode (Diesel alone). The new concept emerged from this study is that CO and HC emissions of RCCI engine at part load can be reduced using EGR.

  19. RDE-based assessment of a factory bi-fuel CNG/gasoline light-duty vehicle

    Science.gov (United States)

    Rašić, Davor; Rodman Oprešnik, Samuel; Seljak, Tine; Vihar, Rok; Baškovič, Urban Žvar; Wechtersbach, Tomaž; Katrašnik, Tomaž

    2017-10-01

    On-road exhaust emissions of a Euro 5 factory bi-fuel CNG/gasoline light-duty vehicle equipped with the TWC were assessed considering the Real Driving Emissions (RDE) guidelines. The vehicle was equipped with a Portable Emission Measurement System (PEMS) that enabled the measurement of THC, CO, NOx, CO2, and CH4. With respect to the characteristics of the vehicle, the appropriate Worldwide Harmonized Light-Duty Vehicle Test Cycles (WLTC) were selected and based on the requirements of the RDE legislation a suitable route was conceived. In addition to the moderate RDE-based route, an extended RDE-based route was also determined. The vehicle was driven along each defined route twice, once with each individual fuel option and with a fully warm vehicle. RDE routes feature a multitude of new driving patterns that are significantly different to those encountered in the NEDC. However, as these driving patterns can greatly influence the cumulative emissions an insight in to local time trace phenomena is crucial to understand, reason and to possibly reduce the cumulative emissions. Original contributions of this paper comprise analyses of the RDE-LDV local time resolved driving emissions phenomena of a CNG-powered vehicle that are benchmarked against the ones measured under the use of gasoline in the same vehicle and under similar operating conditions to reason emission trends through driving patterns and powertrain parameters and exposing the strong cold-start independent interference of CO and N2O infrared absorption bands in the non-dispersive infrared (NDIR) analyzer. The paper provides experimental evidence on this interference, which significantly influences on the readings of CO emissions. The paper further provides hypotheses why CO and N2O interference is more pronounced when using CNG in LDVs and supports these hypotheses by PEMS tests. The study reveals that the vehicle's NOx real-world emission values of both conceived RDE-based routes when using both fuels are

  20. Study of gas (CNG) SI engine with pre-chamber. Improvement of the indicated thermal efficiency on lean mixture with EGR and supercharging; Fukushitsushiki hibana tenka asshuku tennen gas (CNG) engine ni kansuru kenkyu. Kakyu to EGR ni yoru kihakuiki no netsukoritsu kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Yonetani, H.; Fukutani, I. [Polytechnic University, Kanagawa (Japan)

    1998-10-15

    As lean burn of compressed natural gas (CNG) is applied to conventional gasoline engines, a combustion period largely increases, resulting in large combustion fluctuation and low thermal efficiency. Heterogeneous spacial air/fuel ratios also have an effect on combustion in lean burn area. By preparing a pre-chamber for a combustion chamber of high- compression ratio CNG pre-mixing SI engines to utilize premixture turbulence, rapid flame propagation is obtained in lean burn area, resulting high combustion performance. Furthermore, study was made on improvement of combustion performance in lean burn area under various compression ratios, intake pressures, pre-chamber shapes and EGR ratios. As a result, lean burn operation at high intake pressure by supercharging showed possible improvement of a thermal efficiency and expansion of inflammable limits. Higher thermal efficiency in lean burn area was also obtained by using higher compression ratios considering heat loss. Although EGR was effective in controlling NOx formed in lean burn area, strict control of both air excess rate and EGR rate was required to prevent lower thermal efficiency. 2 refs., 8 figs., 1 tab.

  1. Environmentální aspekty provozu vozů na CNG

    OpenAIRE

    Raiskup, Martin

    2016-01-01

    Tato bakalářská práce je zaměřená na téma environmentální aspekty provozu vozů na CNG. Nejprve je představen zemní plyn jako palivo pro spalovací motory. Jsou zhodnoceny jeho výhody a nevýhody. Dále jsou popsány jednotlivé spalovací systémy a komponenty motoru na stlačený zemní plyn. Hlavní část práce je zaměřená na ekologii. Je popsán vliv na životní prostředí u spalování stlačeného zemního plynu v porovnání s konvenčními palivy. Toto porovnání je provedeno také podle objektivnější Well to W...

  2. Diesel Engine Convert to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Problem statement: The regular development of internal combustion engines change direction to answer the two most important problems determining the development trends of engines technology and in particular, their combustion systems. They were environmental protection against emission and noise, shortage of hydrocarbon fuels, ...

  3. Air quality assessment in Delhi: before and after CNG as fuel.

    Science.gov (United States)

    Chelani, Asha B; Devotta, Sukumar

    2007-02-01

    A number of policy measures have been activated in India in order to control the levels of air pollutants such as particulate matter, sulphur dioxide (SO(2)) and nitrogen dioxide (NO(2)). Delhi, which is one of the most polluted cities in the world, is also going through the implementation phase of the control policies. Ambient air quality data monitored during 2000 to 2003, at 10 sites in Delhi, were analyzed to assess the impact of implementation of these measures, specifically fuel change in vehicles. This paper presents the impact of policy measures on ambient air quality levels and also the source apportionment. CO and NO(2) concentration levels in ambient air are found to be associated with the mobile sources. The temporal variation of air quality data shows the significant effect of shift to CNG (Compressed Natural Gas) in vehicles.

  4. Report on investigations in fiscal 2000 on the basic investigation on promotion of joint implementation. Effective utilization of associated gas as CNG; 2000 nendo kyodo jisshi nado kiso chosa hokokusho. Zuihan gas no CNG to shite no yuko riyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The Back Ho oilfield is the largest oilfield in Vietnam and at the same time is producing the largest amount of natural gas (associated gas) in Vietnam. Although the majority of the associated gas has been used in the power generation plant, a large amount of surplus gas is not effectively used because of shortage of fund and technologies. Accordingly, a feasibility study has been executed for a project to compress 20% of the associated gas into CNG, and use it effectively as automobile and factory fuel. As a result of the site survey, it was found that, although Vietnam consumes less amount of energy and emits less amount of CO2, the nation has a strong interest and a large amount of knowledge about global warming and CDM because the country is subjected to large effect of warming. Furthermore, it has been reconfirmed that introducing CNG into this territory is highly effective. Discussions have been made on places of installing the facilities, effective surplus gas utilization systems, facility specifications, utilities, and number of workers. Calculations were made on approximate cost of the facilities and the running cost. As a result of the surveys and discussions, it was determined that technological support from Japan and the Yen loan for environment with low interest rate are necessary. (NEDO)

  5. An experimental study on premixed CNG/H2/CO2 mixture flames

    Science.gov (United States)

    Yilmaz, Ilker; Yilmaz, Harun; Cam, Omer

    2018-03-01

    In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW). All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  6. An experimental study on premixed CNG/H2/CO2 mixture flames

    Directory of Open Access Journals (Sweden)

    Yilmaz Ilker

    2018-03-01

    Full Text Available In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW. All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  7. Lessons of the Past. Development of an alternative fuel infrastructure. The case of LPG/CNG in the Netherlands and other countries

    International Nuclear Information System (INIS)

    Backhaus, J.; Bunzeck, I.G.

    2010-04-01

    The introduction of an alternative transport fuel always bears a challenge that is often referred to as a 'chicken and egg' problem: while people will only become interested in and start switching to a new fuel if sufficient refuelling stations are available, industry will only start investing in the development of a refuelling infrastructure if the market is sufficiently developed and existing stations are economically viable. Governments have a variety of, for example, fiscal or regulatory measures at hand to facilitate and support the introduction of an alternative transport fuel. This report describes and analyses the introduction of liquefied petroleum gas (LPG) or compressed natural gas (CNG) in the Netherlands, Germany, Poland, Canada and Argentina. In particular, the report pays attention to the development of station coverage and vehicle numbers for these alternative fuels. Drivers and barriers to the introduction of LPG or CNG, such as fuel price developments, supporting policy instruments or a lack thereof were identified. Main focus are the Netherlands where LPG was introduced in the mid-1950s. A comparison of developments in the Netherlands with the other four countries reveals that well concerted efforts by policy makers and industry supporting a parallel development of vehicle uptake and refuelling station availability may lead to the firm establishment of an alternative fuel market. The report concludes with lessons learned for the introduction of hydrogen as an alternative transport fuel.

  8. COMBUSTION ANALYSIS OF A CNG DIRECT INJECTION SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    A. Rashid A. Aziz

    2010-12-01

    Full Text Available An experimental study was carried out on a dedicated compressed natural gas direct injection (CNG-DI engine with a compression ratio (CR of 14 and a central injection system. Several injection timing parameters from early injection timing (300 BTDC to partial direct injection (180 BTDC to full direct injection (120 BTDC were investigated. The 300 BTDC injection timing experiment was carried out to simulate the performance of a port injection engine and the result is used as a benchmark for engine performance. The full DI resulted in a 20% higher performance than the early injection timing for low engine speeds up to 2750 rpm. 180 BTDC injection timing shows the highest performance over an extensive range of engine speed because it has a similar volumetric efficiency to full DI. However, the earlier injection timing allowed for a better air–fuel mixing and gives superior performance for engine speeds above 4500 rpm. The engine performance could be explained by analysis of the heat release rate that shows that at low and intermediate engine speeds of 2000 and 3000, the full DI and partial DI resulted in the fastest heat release rate whereas at a high engine speed of 5000 rpm, the simulated port injection operation resulted in the fastest heat release rate.

  9. Gas Phase Emission Ratios From In-Use Diesel and CNG Curbside Passenger Buses in New York City

    Science.gov (United States)

    Herndon, S. C.; Shorter, J.; Canagaratna, M.; Jayne, J.; Nelson, D. D.; Wormhoudt, J. C.; Williams, P.; Silva, P. J.; Shi, Q.; Ghertner, A.; Zahniser, M.; Worsnop, D.; Kolb, C.; Lanni, T.; Drewnick, F.; Demerjian, K. L.

    2002-12-01

    The Aerodyne Mobile Laboratory simultaneously measured gas phase and particulate emissions from in use vehicles during two campaigns in New York City. The campaigns took place during two weeks in October, 2000 and four weeks in July-August, 2001. Passenger curbside buses were the primary focus of the study, but school buses and several other heavy duty diesel vehicles were also characterized. This paper describes the methodologies used to measure individual in use vehicles and presents the results of the gas phase measurements. Emission ratios for NO, NO2, SO2, N2O, CO, CH4 and H2CO relative to CO2 have been determined across several classes of buses. The gas phase concentrations were measured each second, using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS). Some of the categories of buses into which the data has been sorted are; diesel (both 6V92 and Series 50) with and without the Continuous Regenerative Technology (CRT) retrofit, compressed natural gas powered(CNG) and hybrid diesel-electric buses. The New York Metropolitan Transit Authority (MTA) cooperated with this work, providing details about each of their buses followed. In addition to MTA buses, other New York City passenger bus operators were also measured. In September 2000, MTA began to switch to 30 ppm sulfur diesel fuel while it is believed the non MTA operators did not. The measured emission ratios show that low sulfur fuel greatly reduces the amount of SO2 per CO2. Roughly one third of the MTA fleet of diesel buses have been equipped with the CRT retrofit. The gas phase results of interest in this category show increased direct emission of NO2 and companion work (also submitted to the 12th CRC) show the impact the CRT refit has on particulate emissions. CNG buses show increased H2CO and CH4 emission ratios relative to diesel powered motors.

  10. Computational exploration of cis-regulatory modules in rhythmic expression data using the "Exploration of Distinctive CREs and CRMs" (EDCC) and "CRM Network Generator" (CNG) programs.

    Science.gov (United States)

    Bekiaris, Pavlos Stephanos; Tekath, Tobias; Staiger, Dorothee; Danisman, Selahattin

    2018-01-01

    Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge of computational biology. We developed two programs that allow simple, fast and reliable analysis of candidate CREs and CRMs that may affect specific gene expression and that determine positional features between individual CREs within a CRM. The first program, "Exploration of Distinctive CREs and CRMs" (EDCC), correlates candidate CREs and CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines positional preferences of the single CREs in relation to each other and to the transcriptional start site. The second program, "CRM Network Generator" (CNG), prioritizes these positional preferences using a neural network and thus allows unbiased rating of the positional preferences that were determined by EDCC. We tested these programs with data from a microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than 1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which several contained known clock promoter elements together with elements that had not been identified as relevant to circadian gene expression before. CNG analysis further identified positional preferences of these CRE pairs, hinting at positional information that may be relevant for circadian gene expression. Future wet lab experiments will have to determine which of these combinations confer daytime specific circadian gene expression.

  11. Preliminary technical and economic viability for the implantation of fluvial transport of CNG (Compressed Natural Gas) for barges in Amazon Region; Avaliacao preliminar de viabilidade tecnico-economica para implantacao de transporte fluvial de GNC (Gas Natual Comprimido) por barcacas na Regiao Amazonica

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcos C.C. de; Porto, Paulo L. Lemgruber [Interocean Engenharia e Ship Management, Rio de janeiro, RJ (Brazil); Cunha, Rafael H. da [Metro Rio, RJ (Brazil); Garcia, Rafael M. [Pic Brasil (Brazil); Almeida, Marco A.R. de [Universidade Gama Filho (UGF), Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The isolated regions of the Amazon present difficulties for integration with the electrical system which is creating some economic problems due to the consequent costs of electric generation of subsidies as a function of the fossil fuel use as oils diesel and fuel. A viable option is the use of Natural Gas - NG that is Also available in the region. Its modal of transport possible in the Region North they are for gas-lines or barges. The Compressed Natural Gas transport is distinguished that - CNG for barges was still not tested operationally in Brazil. Soon, to develop a Preliminary Study of Viability Technician - Economic - SVTE for the implantation of fluvial transport of CNG between the cities of Coari and Manaus is basic, therefore it is created strategical alternative for the electric generation in this region. The electric sector, the characteristics of the NG and the transport in this region had been analyzed to support to the work. The gas line and the fluvial transport of CNG for barges in this region are not conflicting, and they in a complementary form can act. The SVTE presented a Liquid Present Value and Internal Tax of very attractive Return justifying its implantation. (author)

  12. Screening of tank-to-wheel efficiencies for CNG, DME and methanol-ethanol fuel blends in road transport

    Energy Technology Data Exchange (ETDEWEB)

    Kappel, J.; Vad Mathiesen, B.

    2013-04-15

    The purpose of this report is to evaluate the fuel efficiency of selected alternative fuels based on vehicle performance in a standardised drive cycle test. All studies reviewed are either based on computer modelling of current or future vehicles or tests of just one alternative fuel, under different conditions and concentrations against either petrol or diesel. No studies were found testing more than one type of alternative fuel in the same setup. Due to this one should be careful when comparing results on several alternative fuels. Only few studies have been focused on vehicle energy efficiency. This screening indicates methanol, methanol-ethanol blends and CNG to be readily availability, economic feasible and with the introduction of the DISI engine not technologically challenging compared to traditional fuels. Studies across fuel types indicate a marginally better fuel utilization for methanol-ethanol fuel mixes. (Author)

  13. Exposure assessment of particulates originating from diesel and CNG fuelled engines

    Energy Technology Data Exchange (ETDEWEB)

    Oravisjaervi, K.; Pietikaeinen, M.; Keiski, R. L. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: kati.oravisjarvi@oulu.fi; Voutilainen, A. (Univ. of Kuopio, Dept. of Physics (Finland)); Haataja, M. (Oulu Univ. of Applied Sciences (Finland); Univ. of Oulu, Dept. of Mechanical Engineering (Finland)); Ruuskanen, J. (Univ. of Kuopio, Dept. of Environmental Sciences (Finland)); Rautio, A. (Univ. of Oulu, Thule Inst. (Finland))

    2009-07-01

    Particulates emitted from combustion engines have been a great concern in past years due to their adverse health effects, such as pulmonary and cardiovascular diseases, morbidity and mortality. The source of particulates can be stationary and transient, such as gas and oil fuelled engines, turbines and boilers. Particulate matter (PM) dispersed into ambient air can be classified in many ways: the mechanism of the formation, the size and the composition. Fine particles (PM2.5) are particles with an aerodynamic diameter less than 2.5 mum and particles, greater than 2.5 mum in diameter are generally referred to as coarse particles (PM10). PM2.5 is also called the respirable fraction, because they can penetrate to the unciliated regions of the lung. Fine particles consist of so called ultrafine particles (an aerodynamic diameter less than 0.1 mum). The sizes of particulates emitted from combustion processes range between 10 nm and 100 mum, and are usually a mixture of unburned and partially burned hydrocarbons. Diesel exhaust particles have a mass median diameter of 0.05-1.0 mum. They are a complex mixture of elemental carbon, a variety of hydrocarbons, sulphur compounds, and other species. They consist of a numerous spherical primary particles, which are agglomerated into aggregates. Particles from natural gas engine emissions range from 0.01-0.7 mum. Increase in PM10 pollution has been found to be associated with a range of adverse health effects, such as increased use of medication for asthma, attacks of asthma in patients with pre-existing asthma, attacks of chronic obstructive pulmonary disease (COPD), deaths from respiratory causes, admission to hospital for cardiovascular causes, deaths from heart attacks and deaths from strokes. While it is unknown, which particulate matter component is the most hazardous for humans, a number of factors suggest that ultrafine particles may be more toxic than larger particles. Ultrafine particles have a large surface area per

  14. Compressed natural gas transportation by utilizing FRP composite pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, S.C. [Trans Ocean Gas Inc., St. John' s, NF (Canada)

    2004-07-01

    This paper discussed the Trans Ocean Gas (TOG) method for transporting compressed natural gas (CNG). As demand for natural gas increases and with half of the world's reserves considered stranded, a method to transport natural gas by ship is needed. CNG transportation is widely viewed as a viable method. Transported as CNG, stranded gas reserves can be delivered to existing markets or can create new natural gas markets not applicable to liquefied natural gas (LNG). In contrast to LNG, compressed gas requires no processing to offload. TOG proposes that CNG be transported using fiber reinforced plastic (FRP) pressure vessels which overcome all the deficiencies of proposed steel-based systems. FRP pressure vessels have been proven safe and reliable through critical applications in the national defense, aerospace, and natural gas vehicle industries. They are light-weight, highly reliable, have very safe failure modes, are corrosion resistant, and have excellent low temperature characteristics. Under TOG's scheme, natural gas can be stored at two thirds the density of LNG without costly processing. TOG's proposed design and testing of a CNG system was reviewed in detail. 1 fig.

  15. Choice of precipitant and calcination temperature of precursor for synthesis of NiCo2O4 for control of CO-CH4 emissions from CNG vehicles.

    Science.gov (United States)

    Trivedi, Suverna; Prasad, Ram

    2018-03-01

    Compressed natural gas (CNG) is most appropriate an alternative of conventional fuel for automobiles. However, emissions of carbon-monoxide and methane from such vehicles adversely affect human health and environment. Consequently, to abate emissions from CNG vehicles, development of highly efficient and inexpensive catalysts is necessary. Thus, the present work attempts to scan the effects of precipitants (Na 2 CO 3 , KOH and urea) for nickel cobaltite (NiCo 2 O 4 ) catalysts prepared by co-precipitation from nitrate solutions and calcined in a lean CO-air mixture at 400°C. The catalysts were used for oxidation of a mixture of CO and CH 4 (1:1). The catalysts were characterized by X-ray diffractometer, Brunauer-Emmett-Teller surface-area, X-ray photoelectron spectroscopy; temperature programmed reduction and Scanning electron microscopy coupled with Energy-Dispersive X-Ray Spectroscopy. The Na 2 CO 3 was adjudged as the best precipitant for production of catalyst, which completely oxidized CO-CH 4 mixture at the lowest temperature (T 100 =350°C). Whereas, for catalyst prepared using urea, T 100 =362°C. On the other hand the conversion of CO-CH 4 mixture over the catalyst synthesized by KOH limited to 97% even beyond 400°C. Further, the effect of higher calcination temperatures of 500 and 600°C was examined for the best catalyst. The total oxidation of the mixture was attained at higher temperatures of 375 and 410°C over catalysts calcined at 500 and 600°C respectively. Thus, the best precipitant established was Na 2 CO 3 and the optimum calcination temperature of 400°C was found to synthesize the NiCo 2 O 4 catalyst for the best performance in CO-CH 4 oxidation. Copyright © 2017. Published by Elsevier B.V.

  16. Modification Design of Petrol Engine for Alternative Fueling using Compressed Natural Gas

    Directory of Open Access Journals (Sweden)

    Eliezer Uchechukwu Okeke

    2013-04-01

    Full Text Available This paper is on the modification design of petrol engine for alternative fuelling using Compressed Natural Gas (CNG. It provides an analytical background in the modification design process. A petrol engine Honda CR-V 2.0 auto which has a compression ratio of 9.8 was selected as case study. In order for this petrol engine to run on CNG, its compression had to be increased. An optimal compression ratio of 11.97 was computed using the standard temperature-specific volume relationship for an isentropic compression process. This computation of compression ratio is based on an inlet air temperature of 30oC (representative of tropical ambient condition and pre-combustion temperature of 540oC (corresponding to the auto-ignition temperature of CNG. Using this value of compression ratio, a dimensional modification Quantity =1.803mm was obtained using simple geometric relationships. This value of 1.803mm is needed to increase the length of the connecting rod, the compression height of the piston or reducing the sealing plate’s thickness. After the modification process, a CNG engine of air standard efficiency 62.7% (this represents a 4.67% increase over the petrol engine, capable of a maximum power of 83.6kW at 6500rpm, was obtained.

  17. COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES

    Energy Technology Data Exchange (ETDEWEB)

    COROLLER, P; PLASSAT, G

    2003-08-24

    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus

  18. Gaseous and particulate composition of fresh and aged emissions of diesel, RME and CNG buses using Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Psichoudaki, Magda; Le Breton, Michael; Hallquist, Mattias; Watne, Ågot; Hallquist, Asa

    2016-04-01

    Urban air pollution is becoming a significant global problem, especially for large cities around the world. Traffic emissions contribute significantly to both elevated particle concentrations and to gaseous pollutants in cities. The latter also have the potential of forming more particulate mass via their photochemical oxidation in the atmosphere. The International Agency for Research on Cancer and the US EPA have characterised diesel exhausts as a likely human carcinogen that can also contribute to other health problems. In order to meet the challenges with increased transportation and enhanced greenhouse gas emissions, the European Union have decided on a 10% substitution of traditional fuels in the road transport sector by alternative fuels (e.g. biodiesel, CNG) before the year 2020. However, it is also important to study the influence of fuel switches on other primary pollutants as well as the potential to form secondary aerosol mass. This work focuses on the characterisation of the chemical composition of the gas and the condensed phase of fresh bus emissions during acceleration, in order to mimic the exhaust plume that humans would inhale under realistic conditions. In addition, photochemical aging of the exhaust emissions was achieved by employing a Potential Aerosol Mass (PAM) flow reactor, allowing the characterization of the composition of the corresponding aged emissions. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the chamber. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in these measurements corresponded to a range from 4 to 8 days in the atmosphere. During June and July 2015, a total of 29 buses, 5 diesel, 13 CNG and 11 RME (rapeseed methyl ester), were tested in two different locations with limited influence from other types of emissions and traffic

  19. Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors

    International Nuclear Information System (INIS)

    Ouyang, Minggao; Zhang, Weilin; Wang, Enhua; Yang, Fuyuan; Li, Jianqiu; Li, Zhongyan; Yu, Ping; Ye, Xiao

    2015-01-01

    Highlights: • Four different types of hybrid powertrain for heavy-duty vehicles are reviewed. • A novel coaxial power-split hybrid powertrain is proposed and models are developed. • Performance characteristics are analyzed and compared to a conventional powertrain. • Fuel saving potential is evaluated and explained using energy efficiency method. - Abstract: Energy conservation is a very important task for the automotive industry. The use of hybrid electric vehicles can improve energy efficiency, thus reducing fuel consumption and carbon emissions. In this research, the performance characteristics of a novel coaxial power-split hybrid powertrain for a transit bus are presented. The power sources are a combination of a compressed natural gas (CNG) engine and supercapacitors. A mathematical model for the coaxial power-split hybrid powertrain is established. Subsequently, an analysis program is developed based on Matlab and Advisor. The parameters are specified using experimental data. Afterwards, a rule-based control strategy is designed and optimized from the viewpoint of energy efficiency. Later, the system performance is evaluated using the Chinese Transit Bus City Driving Cycle and compared to a conventional powertrain. The results indicate that the proposed coaxial power-split hybrid powertrain can fulfill the requirements of the transit bus and enhance the energy efficiency dramatically. Moreover, the average energy efficiency of the supercapacitors was found to be above 97% over the entire driving cycle. Using supercapacitors as energy storage devices for the coaxial power-split hybrid powertrain can effectively recover the kinetic energy during regenerative braking and is a good solution for transit buses that require frequent acceleration and deceleration.

  20. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy

    Directory of Open Access Journals (Sweden)

    Stylianos Michalakis

    2018-03-01

    Full Text Available The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP or cyclic adenosine monophosphate (cAMP. Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN channels and voltage-gated potassium channels (KCN. In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.

  1. Involvement of cyclic nucleotide-gated channels in spontaneous activity generated in isolated interstitial cells of Cajal from the rabbit urethra.

    Science.gov (United States)

    Sancho, Maria; Bradley, Eamonn; Garcia-Pascual, Angeles; Triguero, Domingo; Thornbury, Keith D; Hollywood, Mark A; Sergeant, Gerard P

    2017-11-05

    Cyclic nucleotide-gated (CNG) channels are non-selective cation channels that mediate influx of extracellular Na + and Ca 2+ in various cell types. L-cis-Diltiazem, a CNG channel blocker, inhibits contraction of urethral smooth muscle (USM), however the mechanisms underlying this effect are still unclear. We investigated the possibility that CNG channels contribute to spontaneous pacemaker activity in freshly isolated interstitial cells of Cajal (ICC) isolated from the rabbit urethra (RUICC). Using immunocytochemistry, we found intense CNG1-immunoreactivity in vimentin-immunoreactive RUICC, mainly within patches of the cellular body and processes. In contrast, α-actin immunoreactive smooth muscle cells (SMC) did not show significant reactivity to a specific CNGA1 antibody. Freshly isolated RUICC, voltage clamped at -60mV, developed spontaneous transient inward currents (STICs) that were inhibited by L-cis-Diltiazem (50µM). Similarly, L-cis-Diltiazem (50µM) also inhibited Ca 2+ waves in isolated RUICC, recorded using a Nipkow spinning disk confocal microscope. L-cis-Diltiazem (50µM) did not affect caffeine (10mM)-induced Ca 2+ transients, but significantly reduced phenylephrine-evoked Ca 2+ oscillations and inward currents in in RUICC. L-type Ca 2+ current amplitude in isolated SMC was reduced by ~18% in the presence of L-cis-Diltiazem (50µM), however D-cis-Diltiazem, a recognised L-type Ca 2+ channel blocker, abolished L-type Ca 2+ current but did not affect Ca 2+ waves or STICs in RUICC. These results indicate that the effects of L-cis-diltiazem on rabbit USM could be mediated by inhibition of CNG1 channels that are present in urethral ICC and therefore CNG channels contribute to spontaneous activity in these cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. On-road and laboratory emissions of NO, NO2, NH3, N2O and CH4 from late-model EU light utility vehicles: Comparison of diesel and CNG.

    Science.gov (United States)

    Vojtíšek-Lom, Michal; Beránek, Vít; Klír, Vojtěch; Jindra, Petr; Pechout, Martin; Voříšek, Tomáš

    2018-03-01

    Exhaust emissions of eight Euro 6 light duty vehicles - two station wagons and six vans - half powered by diesel fuel and half by compressed natural gas (CNG) were examined using both chassis dynamometer and on-road testing. A portable on-board FTIR analyzer was used to measure concentrations of reactive nitrogen compounds - NO, NO 2 and ammonia, of CO, formaldehyde, acetaldehyde and greenhouse gases CO 2 , methane and N 2 O. Exhaust flow was inferred from engine control unit data. Total emissions per cycle were compared and found to be in good agreement with laboratory measurements of NO X , CO and CO 2 during dynamometer tests. On diesel engines, mean NO X emissions were 136-1070mg/km in the laboratory and 537-615mg/km on the road, in many cases nearly an order of magnitude higher compared to the numerical value of the Euro 6 limit. Mean N 2 O emissions were 3-19mg/km and were equivalent to several g/km CO 2 . The measurements suggest that NO X and N 2 O emissions from late-model European light utility vehicles with diesel engines are non-negligible and should be continuously assessed and scrutinized. High variances in NO X emissions among the tested diesel vehicles suggest that large number of vehicles should be tested to offer at least some insights about distribution of fleet emissions among vehicles. CNG engines exhibited relatively low emissions of NO X (12-186mg/km) and NH 3 (10-24mg/km), while mean emissions of methane were 18-45mg/km, under 1g/km CO 2 equivalent, and N 2 O, CO, formaldehyde and acetaldehyde were negligible. The combination of a relatively clean-burning fuel, modern engine technology and a three-way catalyst has resulted in relatively low emissions under the wide variety of operating conditions encountered during the tests. The on-board FTIR has proven to be a useful instrument capable of covering, with the exception of total hydrocarbons, essentially all gaseous pollutants of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  4. Climate and health relevant emissions from in-use Indian three-wheelers fueled by natural gas and gasoline.

    Science.gov (United States)

    Reynolds, Conor C O; Grieshop, Andrew P; Kandlikar, Milind

    2011-03-15

    Auto-rickshaws in India use different fuels and engine technologies, with varying emissions and implications for air quality and climate change. Chassis dynamometer emission testing was conducted on 30 in-use auto-rickshaws to quantify the impact of switching from gasoline to compressed natural gas (CNG) in spark-ignition engines. Thirteen test vehicles had two-stroke CNG engines (CNG-2S) and 17 had four-stroke CNG engines (CNG-4S), of which 11 were dual-fuel and operable on a back-up gasoline (petrol) system (PET-4S). Fuel-based emission factors were determined for gaseous pollutants (CO(2), CH(4), NO(X), THC, and CO) and fine particulate matter (PM(2.5)). Intervehicle variability was high, and for most pollutants there was no significant difference (95% confidence level) between "old" (1998-2001) and "new" (2007-2009) age-groups within a given fuel-technology class. Mean fuel-based PM(2.5) emission factor (mean (95% confidence interval)) for CNG-2S (14.2 g kg(-1) (6.2-26.7)) was almost 30 times higher than for CNG-4S (0.5 g kg(-1) (0.3-0.9)) and 12 times higher than for PET-4S (1.2 g kg(-1) (0.8-1.7)). Global warming commitment associated with emissions from CNG-2S was more than twice that from CNG-4S or PET-4S, due mostly to CH(4) emissions. Comprehensive measurements and data should drive policy interventions rather than assumptions about the impacts of clean fuels.

  5. Sustainable driving with natural gas. Economic feasibility. Section report 2

    International Nuclear Information System (INIS)

    Kooistra, K.; De Vries, R.

    2004-11-01

    The economic feasibility of driving on compressed natural gas (CNG) was studied for the northern part of the Netherlands (provinces Drenthe, Friesland and Groningen). Data from interviews with three car fleet owners, which apply CNG, are used for a calculation model. Also interviews were held with seven organizations which might want to apply CNG for their vehicles. For each of the seven organizations the nett present value (NPV) of switching to CNG was calculated by means of the model. Also, a sensitivity analysis and a scenario analysis were carried out to determine the dependency of the NCW for several variables. Based on the results of those analyses an acceptable price for CNG was calculated and discussed [nl

  6. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  7. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G.

    2015-11-03

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largest rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.

  8. Developing a Natural Gas-Powered Bus Rapid Transit Service. A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, George [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largest rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.

  9. Characteristics of Early Flame Development in a Direct-Injection Spark-Ignition CNG Engine Fitted with a Variable Swirl Control Valve

    Directory of Open Access Journals (Sweden)

    Abd Rashid Abd Aziz

    2017-07-01

    Full Text Available An experimental study was conducted to investigate the effect of the structure of the induction flow on the characteristics of early flames in a lean-stratified and lean-homogeneous charge combustion of compressed natural gas (CNG fuel in a direct injection (DI engine at different engine speeds. The engine speed was varied at 1500 rpm, 1800 rpm and 2100 rpm, and the ignition timing was set at a 38.5° crank angle (CA after top dead center (TDC for all conditions. The engine was operated in a partial-load mode and a homogeneous air/fuel charge was achieved by injecting the fuel early (before the intake valve closure, while late injection during the compression stroke was used to produce a stratified charge. Different induction flow structures were obtained by adjusting the swirl control valves (SCV. Using an endoscopic intensified CCD (ICCD camera, flame images were captured and analyzed. Code was developed to analyze the level of distortion of the flame and its wrinkledness, displacement and position relative to the spark center, as well as the flame growth rate. The results showed a higher flame growth rate with the flame kernel in the homogeneous charge, compared to the stratified combustion case. In the stratified charge combustion scenario, the 10° SCV closure (medium-tumble resulted in a higher early flame growth rate, whereas a homogeneous charge combustion (characterized by strong swirl resulted in the highest rate of flame growth.

  10. Automotive fuel consumption in Brazil. Applying static and dynamic systems of demand equations

    Energy Technology Data Exchange (ETDEWEB)

    Iootty, Mariana [IE-UFRJ (Institute of Economics - Federal University of Rio de Janeiro), Energy Economics Group (Brazil); UFRRJ (Federal Rural University of Rio de Janeiro) (Brazil); Pinto, Helder Jr. [IE-UFRJ (Institute of Economics - Federal University of Rio de Janeiro), Energy Economics Group (Brazil); Ebeling, Francisco [Brazilian Petroleum Institute (Brazil)

    2009-12-15

    This paper aims to investigate and explain the performance of the Brazilian demand for automotive fuels in the period 1970-2005. It estimates the price and income elasticities for all the available fuels in the automotive sector in the country: gasoline, compressed natural gas (CNG), ethanol and diesel. The analysis of the expenditure allocation process among these fuels is carried out through the estimation of a linear approximation of an Almost Ideal Demand System (AIDS) model. Two estimation methods were implemented: the static (through a seemingly unrelated regression) and a dynamic (through a vector error correction model). Specification tests support the use of the latter. The empirical analysis suggests a high substitutability between gasoline and ethanol; being this relation higher than the one observed between gasoline and CNG. The study shows that gasoline, ethanol and diesel are normal goods, and with the exception of ethanol, they are expenditure elastic. CNG was estimated as an inferior good. (author)

  11. Automotive fuel consumption in Brazil. Applying static and dynamic systems of demand equations

    International Nuclear Information System (INIS)

    Iootty, Mariana; Pinto, Helder Jr.; Ebeling, Francisco

    2009-01-01

    This paper aims to investigate and explain the performance of the Brazilian demand for automotive fuels in the period 1970-2005. It estimates the price and income elasticities for all the available fuels in the automotive sector in the country: gasoline, compressed natural gas (CNG), ethanol and diesel. The analysis of the expenditure allocation process among these fuels is carried out through the estimation of a linear approximation of an Almost Ideal Demand System (AIDS) model. Two estimation methods were implemented: the static (through a seemingly unrelated regression) and a dynamic (through a vector error correction model). Specification tests support the use of the latter. The empirical analysis suggests a high substitutability between gasoline and ethanol; being this relation higher than the one observed between gasoline and CNG. The study shows that gasoline, ethanol and diesel are normal goods, and with the exception of ethanol, they are expenditure elastic. CNG was estimated as an inferior good. (author)

  12. Investigating the Methane Footprint of Compressed Natural Gas Stations in the Los Angeles Basin

    Science.gov (United States)

    Carranza, V.; Hopkins, F. M.; Randerson, J. T.; Bush, S.; Ehleringer, J. R.; Miu, J.

    2013-12-01

    In recent years, natural gas has taken on a larger role in the United States' discourse on energy policy because it is seen as a fuel that can alleviate the country's dependence on foreign energy while simultaneously reducing greenhouse gas emissions. To this end, the State of California promotes the use of vehicles fueled by compressed natural gas (CNG). However, the implications of increased CNG vehicles for greenhouse gas emission reduction are not fully understood. Specifically, methane (CH4) leakages from natural gas infrastructure could make the switch from conventional to CNG vehicles a source of CH4 to the atmosphere, and negate the greenhouse-gas reduction benefit of this policy. The goal of our research is to provide an analysis of potential CH4 leakages from thirteen CNG filling stations in Orange County, California. To improve our understanding of CH4 leakages, we used a mobile laboratory, which is a Ford Transit van equipped with cavity-ring down Picarro spectrometers, to measure CH4 mixing ratios in these CNG stations. MATLAB and ArcGIS were used to conduct statistical analysis and to construct spatial and temporal maps for each transect. We observed mean levels of excess CH4 (relative to background CH4 mixing ratios) ranging from 60 to 1700 ppb at the CNG stations we sampled. Repeated sampling of CNG stations revealed higher levels of excess CH4 during the daytime compared to the nighttime. From our observations, CNG storage tanks and pumps have approximately the same CH4 leakage levels. By improving our understanding of the spatial and temporal patterns of CH4 emissions from CNG stations, our research can provide valuable information to reduce the climate footprint of the natural gas industry.

  13. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  14. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  15. Compressed natural gas vehicles motoring towards a green Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  16. PERHITUNGAN HARGA POKOK PRODUK COMPRESSED NATURAL GAS DARI LANDFILL GAS SEBAGAI ENERGI ALTERNATIF PADA TPST BANTAR GEBANG, BEKASI

    Directory of Open Access Journals (Sweden)

    Srilarakasuri P Ardiagarini

    2013-06-01

    Full Text Available Pergeseran konsumsi bahan bakar minyak ke bahan bakar berbasis gas, sebagai alternatif energi untuk sektor transportasi di Indonesia diperlukan. Salah satu renewable energy yang saat ini populer adalah biogas. Landfill gas (LFG yaitu biogas yang dihasilkan dari timbunan sampah domestik dalam jumlah yang besar pada suatu lahan. Penelitian ini dibuat dengan tujuan menghitung harga pokok untuk memproduksi CNG yang terbuat dari LFG yang dihasilkan oleh TPST Bantar Gebang. CNG dapat digunakan untuk menggerakkan mesin-mesin industri dan juga kendaraan mobil. TPST Bantar Gebang termasuk sebagai salah satu institusi yang dapat mengelola sampah dengan baik memiliki 95 area aktif Ha yang dapat menghasilkan gas TPA (LFG dengan kapasitas 5.971 Nm3/hour. Kandungan utama dari gas yang terbentuk adalah metana (CH4 dan karbondioksida (CO2 diikuti dengan gas-gas lainnya dengan komposisi yang relatif kecil. LFG dapat dikonversi ke CNG menggunakan Acrion CO2 WASH yang melepaskan CH4 dari gas lainnya. Hasil penelitian menggunakan 2 skenario jangka waktu, yaitu selama 5 tahun dan 10 tahun, didapatkan kapasitas LFG yang digunakan saat ini untuk memproduksi CNG hanya 5% dari kapasitas LFG, yaitu sebesar 7,500 Nm3/hari, dan menghasilkan CNG sebanyak 3,570 Nm3/hari. Harga pokok produksi produk CNG yang dihasilkan dalam penelitian ini adalah Rp 160,00/ liter dengan perhitungan jangka waktu selama 5 tahun dan Rp 150,00 /liter dengan perhitungan jangka waktu selama 10 tahun. Kata kunci: renewable energy, biogas, TPST bantar gebang, LFG, CNG, harga pokok produksi Abstract In light of shifting fuel consumption from oil-based to gas-based fuel, researches on renewable energy as an alternative energy for trasportation sector in Indonesia are needed. Meanwhile, TPST Bantar Gebang has 95 Ha active area which can produce landfill gas (LFG with the capacity of 5,971 Nm3/hour. Landfill gas is biogas produced as a result of anaerob decomposition on organic material from piled

  17. Simulation study on the cold neutron guides in China advanced research reactor

    International Nuclear Information System (INIS)

    Guo Liping; Yang Tonghua; Wang Hongli; Sun Kai; Zhao Zhixiang

    2003-01-01

    The designs of the two cold neutron guides, CNG1 and CNG2, to be built in China advanced research reactor (CARR) are studied with Monte-Carlo simulation technique. The neutron flux density at the exit of the both guides can reach above 1 x10 9 cm -2 ·s -1 under the assumed flux spectrum of the cold neutron source. The transmission efficiency is 50% and 42%, and the maximum divergence is about 2.2 degree and 1.9 degree, respectively for CNG1 and CNG2. Neutron distribution along horizontal direction is quite uniform for both guides, with maximum fluctuation of less than 3%. Gravity can affect neutron distribution along vertical direction considerably

  18. Geography of Existing and Potential Alternative Fuel Markets in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Hettinger, D.

    2014-11-01

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  19. Natural Gas Driven Vehicles Safety and Regulatory Regime - Challenges in Bangladesh

    Directory of Open Access Journals (Sweden)

    Robiul Islam Rubel

    2017-09-01

    Full Text Available Natural gas driven vehicles (NGV is common in Bangladesh first introduced around 1995. Be that as it may, situation has changed because of minimal effort of CNG as fuel. The legislature additionally empowered the change of private vehicles by making a few strategy activities as Bangladesh has natural gas reserve, cost economy, low emission. Now passenger automobile like car, bus, and even agricultural vehicles are utilizing CNG as fuel. Faulty cylinders or other CNG-related kits in NGV not only endanger the lives of the passengers of the vehicles, but also of others somehow remaining close to the accident spots. The safety aspect of CNG runs vehicles are beyond regular and strict monitoring, even out of consideration. The objective of this paper is to find out the present scenario of the NGV of Bangladesh and safety perspective in compare to the CNG safety act of Bangladesh. For this purpose, other CNG safety standard of first world country along with exporter country is under consideration. This paper reviews the options available to policy makers in their efforts to reduce the causalities associated with NGV transport. It provides a summary of the categories of negative impacts targeted together with the specific policy initiatives available. The actions for regulation taken by policy makers and foregoing challenges are underlined. To fight against the challenges a framework has proposed.

  20. State of the art and environmental benefits using methane-hydrogen blends

    International Nuclear Information System (INIS)

    Faedo, D.

    2007-01-01

    Hythane is the patented mixture of 15% (by energy content) of hydrogen in CNG: in other proportions the blend is called HCNG. Hydrogen addition to CNG extends the lean burn limit of a natural gas engine, and has the potential to lower the nitrogen oxides emissions and to improve the engine thermal efficiency, with minor hardware changes necessary. This paper reports the benefits of hydrogen to CNG in S.I. engine, and a brief review of the results obtained in this field [it

  1. Modeling the performance of the anaerobic phased solids digester system for biogas energy production

    International Nuclear Information System (INIS)

    Rapport, Joshua L.; Zhang, Ruihong; Jenkins, Bryan M.; Hartsough, Bruce R.; Tomich, Thomas P.

    2011-01-01

    A process model was developed to predict the mass and energy balance for a full-scale (115 t d -1 ) high-solids anaerobic digester using research data from lab and pilot scale (1-3000 kg d -1 wet waste) systems. Costs and revenues were estimated in consultation with industry partners and the 20-year project cash flow, net present worth (NPW), simple payback, internal rate of return, and revenue requirements were calculated. The NPW was used to compare scenarios in order to determine the financial viability of using a generator for heat and electricity or a pressure swing adsorption unit for converting biogas to compressed natural gas (CNG). The full-scale digester consisted of five 786 m 3 reactors (one biogasification reactor and four hydrolysis reactors) treating a 50:50 mix (volatile solids basis) of food and green waste, of which 17% became biogas, 32% residual solids, and 51% wastewater. The NPW of the projects were similar whether producing electricity or CNG, as long as the parasitic energy demand was satisfied with the biogas produced. When producing electricity only, the power output was 1.2 MW, 7% of which was consumed parasitically. When producing CNG, the system produced 2 hm 3 y -1 natural gas after converting 22% of the biogas to heat and electricity which supplied the parasitic energy demand. The digester system was financially viable whether producing electricity or CNG for discount rates of up to 13% y -1 without considering debt (all capital was considered equity), heat sales, feed-in tariffs or tax credits.

  2. Circulating Tumor Cells with Aberrant ALK Copy Number Predict Progression-Free Survival during Crizotinib Treatment in ALK-Rearranged Non-Small Cell Lung Cancer Patients.

    Science.gov (United States)

    Pailler, Emma; Oulhen, Marianne; Borget, Isabelle; Remon, Jordi; Ross, Kirsty; Auger, Nathalie; Billiot, Fanny; Ngo Camus, Maud; Commo, Frédéric; Lindsay, Colin R; Planchard, David; Soria, Jean-Charles; Besse, Benjamin; Farace, Françoise

    2017-05-01

    The duration and magnitude of clinical response are unpredictable in ALK -rearranged non-small cell lung cancer (NSCLC) patients treated with crizotinib, although all patients invariably develop resistance. Here, we evaluated whether circulating tumor cells (CTC) with aberrant ALK -FISH patterns [ ALK -rearrangement, ALK -copy number gain ( ALK -CNG)] monitored on crizotinib could predict progression-free survival (PFS) in a cohort of ALK -rearranged patients. Thirty-nine ALK -rearranged NSCLC patients treated with crizotinib as first ALK inhibitor were recruited prospectively. Blood samples were collected at baseline and at an early time-point (2 months) on crizotinib. Aberrant ALK -FISH patterns were examined in CTCs using immunofluorescence staining combined with filter-adapted FISH after filtration enrichment. CTCs were classified into distinct subsets according to the presence of ALK -rearrangement and/or ALK -CNG signals. No significant association between baseline numbers of ALK -rearranged or ALK -CNG CTCs and PFS was observed. However, we observed a significant association between the decrease in CTC number with ALK -CNG on crizotinib and a longer PFS (likelihood ratio test, P = 0.025). In multivariate analysis, the dynamic change of CTC with ALK -CNG was the strongest factor associated with PFS (HR, 4.485; 95% confidence interval, 1.543-13.030, P = 0.006). Although not dominant, ALK -CNG has been reported to be one of the mechanisms of acquired resistance to crizotinib in tumor biopsies. Our results suggest that the dynamic change in the numbers of CTCs with ALK -CNG may be a predictive biomarker for crizotinib efficacy in ALK -rearranged NSCLC patients. Serial molecular analysis of CTC shows promise for real-time patient monitoring and clinical outcome prediction in this population. Cancer Res; 77(9); 2222-30. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city

    International Nuclear Information System (INIS)

    Rose, Lars; Hussain, Mohammed; Ahmed, Syed; Malek, Kourosh; Costanzo, Robert; Kjeang, Erik

    2013-01-01

    Consumers and organizations worldwide are searching for low-carbon alternatives to conventional gasoline and diesel vehicles to reduce greenhouse gas (GHG) emissions and their impact on the environment. A comprehensive technique used to estimate overall cost and environmental impact of vehicles is known as life cycle assessment (LCA). In this article, a comparative LCA of diesel and compressed natural gas (CNG) powered heavy duty refuse collection vehicles (RCVs) is conducted. The analysis utilizes real-time operational data obtained from the City of Surrey in British Columbia, Canada. The impact of the two alternative vehicles is assessed from various points in their life. No net gain in energy use is found when a diesel powered RCV is replaced by a CNG powered RCV. However, significant reductions (approximately 24% CO 2 -equivalent) in GHG and criteria air contaminant (CAC) emissions are obtained. Moreover, fuel cost estimations based on 2011 price levels and a 5-year lifetime for both RCVs reveal that considerable cost savings may be achieved by switching to CNG vehicles. Thus, CNG RCVs are not only favorable in terms of reduced climate change impact but also cost effective compared to conventional diesel RCVs, and provide a viable and realistic near-term strategy for cities and municipalities to reduce GHG emissions. - Highlights: ► Life cycle analysis is performed on two alternative refuse collection vehicle technologies. ► Real-time operational data obtained by the City of Surrey in British Columbia are utilized. ► The life cycle energy use is similar for diesel and CNG RCVs. ► A 24% reduction of GHG emissions (CO 2 -equivalent) may be realized by switching from diesel to CNG. ► CNG RCVs are estimated to be cost effective and may lead to reduced fuel costs.

  4. Exhaust energy conversion by thermoelectric generator: Two case studies

    International Nuclear Information System (INIS)

    Karri, M.A.; Thacher, E.F.; Helenbrook, B.T.

    2011-01-01

    This study reports predictions of the power and fuel savings produced by thermoelectric generators (TEG) placed in the exhaust stream of a sports utility vehicle (SUV) and a stationary, compressed-natural-gas-fueled engine generator set (CNG). Results are obtained for generators using either commercially-available bismuth telluride (Bi 2 Te 3 ) or quantum-well (QW) thermoelectric material. The simulated tests are at constant speed in the SUV case and at constant AC power load in the CNG case. The simulations make use of the capabilities of ADVISOR 2002, the vehicle modeling system, supplemented with code to describe the thermoelectric generator system. The increase in power between the QW- and Bi 2 Te 3 -based generators was about three times for the SUV and seven times for the CNG generator under the same simulation conditions. The relative fuel savings for the SUV averaged around -0.2% using Bi 2 Te 3 and 1.25% using QW generators. For the CNG case the fuel savings was around 0.4% using Bi 2 Te 3 and around 3% using QW generators. The negative fuel gains in the SUV were caused by parasitic losses. The power to transport the TEG system weight was the dominant parasitic loss for the SUV but was absent in the CNG generator. The lack of space constraint and the absence of parasitic loss from the TEG system weight in the CNG case allowed an increase in the TEG system size to generate more power.

  5. A Comparative study on VOCs and aldehyde-ketone emissions from a spark Ignition vehicle fuelled on compressed natural gas and gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.

    2012-01-01

    In this work, an experimental study was conducted on a spark ignition (SI) vehicle fuelled on compressed natural gas (CNG), and gasoline to compare the unregulated emissions such as volatile organic compounds (VOCs) and aldehyde-ketones or carbonyls. In the meantime, ozone forming potential (OFP) of pollutants was also calculated on the basis of their specific reactivity (SR). The vehicle was run on a chassis dynamometer following the Chinese National Standards test scheduled for light duty vehicle (LDV) emissions. According to the results, total aldehyde-ketones were increased by 39.4% due to the substantial increase in formaldehyde and acrolein + acetone emissions, while VOCs and BTEX (benzene, toluene, ethyl benzene, and xylene) reduced by 85.2 and 86% respectively, in case of CNG fuelled vehicle as compared to gasoline vehicle. Although total aldehyde-ketones were higher with CNG relative to gasoline, their SR was lower due decrease in acetaldehyde, propionaldehyde, crotonaldehyde, and methacrolein species having higher maximum incremental reactivity (MIR) values. The SR of VOCs and aldehyde-ketones emitted from CNG fuelled vehicle was decreased by above 10% and 32% respectively, owing to better physicochemical properties and more complete burning of CNG as compared to gasoline. (author)

  6. Unregulated emissions from compressed natural gas (CNG) transit buses configured with and without oxidation catalyst.

    Science.gov (United States)

    Okamoto, Robert A; Kado, Norman Y; Kuzmicky, Paul A; Ayala, Alberto; Kobayashi, Reiko

    2006-01-01

    The unregulated emissions from two in-use heavy-duty transit buses fueled by compressed natural gas (CNG) and equipped with oxidation catalyst (OxiCat) control were evaluated. We tested emissions from a transit bus powered by a 2001 Cummins Westport C Gas Plus 8.3-L engine (CWest), which meets the California Air Resources Board's (CARB) 2002 optional NOx standard (2.0 g/bhp-hr). In California, this engine is certified only with an OxiCat, so our study did not include emissions testing without it. We also tested a 2000 New Flyer 40-passenger low-floor bus powered by a Detroit Diesel series 50G engine (DDCs50G) that is currently certified in California without an OxiCat. The original equipment manufacturer (OEM) offers a "low-emission" package for this bus that includes an OxiCat for transit bus applications, thus, this configuration was also tested in this study. Previously, we reported that formaldehyde and other volatile organic emissions detected in the exhaust of the DDCs50G bus equipped with an OxiCat were significantly reduced relative to the same DDCs50G bus without OxiCat. In this paper, we examine othertoxic unregulated emissions of significance. The specific mutagenic activity of emission sample extracts was examined using the microsuspension assay. The total mutagenic activity of emissions (activity per mile) from the OxiCat-equipped DDC bus was generally lower than that from the DDC bus without the OxiCat. The CWest bus emission samples had mutagenic activity that was comparable to that of the OxiCat-equipped DDC bus. In general, polycyclic aromatic hydrocarbon (PAH) emissions were lower forthe OxiCat-equipped buses, with greater reductions observed for the volatile and semivolatile PAH emissions. Elemental carbon (EC) was detected in the exhaust from the all three bus configurations, and we found that the total carbon (TC) composition of particulate matter (PM) emissions was primarily organic carbon (OC). The amount of carbon emissions far exceeded the

  7. Exhaust energy conversion by thermoelectric generator: Two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Karri, M.A.; Thacher, E.F.; Helenbrook, B.T. [Department of Mechanical and Aeronautical Engineering, PO Box 5725, Clarkson University, Potsdam, NY 13699 (United States)

    2011-03-15

    This study reports predictions of the power and fuel savings produced by thermoelectric generators (TEG) placed in the exhaust stream of a sports utility vehicle (SUV) and a stationary, compressed-natural-gas-fueled engine generator set (CNG). Results are obtained for generators using either commercially-available bismuth telluride (Bi{sub 2}Te{sub 3}) or quantum-well (QW) thermoelectric material. The simulated tests are at constant speed in the SUV case and at constant AC power load in the CNG case. The simulations make use of the capabilities of ADVISOR 2002, the vehicle modeling system, supplemented with code to describe the thermoelectric generator system. The increase in power between the QW- and Bi{sub 2}Te{sub 3}-based generators was about three times for the SUV and seven times for the CNG generator under the same simulation conditions. The relative fuel savings for the SUV averaged around -0.2% using Bi{sub 2}Te{sub 3} and 1.25% using QW generators. For the CNG case the fuel savings was around 0.4% using Bi{sub 2}Te{sub 3} and around 3% using QW generators. The negative fuel gains in the SUV were caused by parasitic losses. The power to transport the TEG system weight was the dominant parasitic loss for the SUV but was absent in the CNG generator. The lack of space constraint and the absence of parasitic loss from the TEG system weight in the CNG case allowed an increase in the TEG system size to generate more power. (author)

  8. Driving on Natural Gas, Greening the Gasunie Fleet

    NARCIS (Netherlands)

    Faber, Tom

    2008-01-01

    Driving on CNG is preferable to conventional fuels because of diversification of the energy mix, local availability of natural gas, the financial benefit and the transition function towards (sustain-able) biogas and emission reduction. Furthermore, the CNG technology is expected to be safer than

  9. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Science.gov (United States)

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel...

  10. Natural gas application in light- and heavy-duty vehicles in Brazil: panorama, technological routes and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos, Cordeiro de Melo, Tadeu Cavalcante; Leao, Raphael Riemke de Campos Cesar; Iaccarino, Fernando Aniello; Figueiredo Moreira, Marcia

    2007-07-01

    The Brazilian CNG light-duty vehicle fleet has currently reached more than 1,300,000 units. This growth increased in the late 1990's, when CNG was approved for use in passenger cars. In 2001, the IBAMA (Brazilian Institute for Environment and Natural Renewable Resources), concerned with this uncontrolled growth, published CONAMA (National Environmental Council, controlled by IBAMA) resolution 291, which establishes rules for CNG conversion kit environmental certification.This paper discusses the technological challenges for CNG-converted vehicles to comply with PROCONVE (Brazilian Program for Automotive Air Pollution Control) emission limits. In the 1980's, because of the oil crisis, Natural Gas (NG) emerged as a fuel with great potential to replace Diesel in heavy-duty vehicles. Some experiences were conducted for partial conversions from Diesel to NG (Diesel-gas). Other experiences using NG Otto Cycle buses were conducted in some cities, but have not expanded. Another technological route called 'Ottolization' (Diesel to Otto cycle convertion) appeared recently. Population increase and the great growth in vehicle fleet promote a constant concern with automotive emissions. More restrictive emission limits, high international oil prices, and the strategic interest in replacing Diesel imports, altogether form an interesting scenario for CNG propagation to public transportation in the main Brazilian metropolises.

  11. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    Science.gov (United States)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  12. Metrological and operational performance of measuring systems used in vehicle compressed natural gas filling stations

    Energy Technology Data Exchange (ETDEWEB)

    Velosa, Jhonn F.; Abril, Henry; Garcia, Luis E. [CDT de GAS (Venezuela). Gas Technological Development Center Corporation

    2008-07-01

    Corporation CDT GAS financially supported by the Colombian government through COLCIENCIAS, carried out a study aimed at designing, developing and implementing in Colombia a calibration and metrological verification 'specialized service' for gas meters installed at dispensers of filling stations using compressed natural gas. The results permitted the identification of improving opportunities (in measuring systems, equipment and devices used to deliver natural gas) which are focused on achieving the highest security and reliability of trading processes of CNG for vehicles. In the development of the first stage of the project, metrological type variables were initially considered, but given the importance of the measuring system and its interaction with the various elements involving gas supply to the filling station, the scope of the work done included aspects related to the operational performance, that is, those influencing the security of the users and the metrological performance of the measuring system. The development of the second stage counted on the collaboration of national companies from the sector of CNG for vehicles, which permitted the carrying out of multiple calibrations to the measuring systems installed in the CNG dispensers, thus achieving, in a concrete way, valid and reliable technological information of the implemented procedures. (author)

  13. Natural Gas Vehicle Cylinder Safety, Training and Inspection Project

    Energy Technology Data Exchange (ETDEWEB)

    Hank Seiff

    2008-12-31

    Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

  14. Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin.

    Directory of Open Access Journals (Sweden)

    Sitali P Simwami

    2011-04-01

    Full Text Available The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI and exhibiting only ten nearly identical sequence types (STs, with three (STs 44, 45 and 46 dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47% of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD

  15. Some Results on the Graph Theory for Complex Neutrosophic Sets

    Directory of Open Access Journals (Sweden)

    Shio Gai Quek

    2018-05-01

    Full Text Available Fuzzy graph theory plays an important role in the study of the symmetry and asymmetry properties of fuzzy graphs. With this in mind, in this paper, we introduce new neutrosophic graphs called complex neutrosophic graphs of type 1 (abbr. CNG1. We then present a matrix representation for it and study some properties of this new concept. The concept of CNG1 is an extension of the generalized fuzzy graphs of type 1 (GFG1 and generalized single-valued neutrosophic graphs of type 1 (GSVNG1. The utility of the CNG1 introduced here are applied to a multi-attribute decision making problem related to Internet server selection.

  16. Case Study: Natural Gas Regional Transport Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, M.; Burnham, A.

    2016-08-01

    Learn about Ryder System, Inc.'s experience in deploying nearly 200 CNG and LNG heavy-duty trucks and construction and operation of L/CNG stations using ARRA funds. Using natural gas in its fleet, Ryder mitigated the effects of volatile fuel pricing and reduced lifecycle GHGs by 20% and petroleum by 99%.

  17. Alternative Fuels Data Center: North Carolina Transportation Data for

    Science.gov (United States)

    Private Biodiesel (B20 and above) 7 108 Compressed Natural Gas (CNG) 26 16 Electric 500 121 Ethanol (E85 CNG Installation a Boost Aug. 19, 2015 Video thumbnail for Biodiesel Offers an Easy Alternative for Fleets Biodiesel Offers an Easy Alternative for Fleets Aug. 18, 2015 Video thumbnail for Blue Skies

  18. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    International Nuclear Information System (INIS)

    MaClean, H.L.; Lave, L.B.

    2000-01-01

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency

  19. Experimental investigation and combustion analysis of a direct injection dual-fuel diesel-natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Carlucci, A.P.; De Risi, A.; Laforgia, D.; Naccarato, F. [Department of Engineering for Innovation, University of Salento, CREA, via per Arnesano, 73100 Lecce (Italy)

    2008-02-15

    A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG-air charge. The CNG was injected into the intake manifold via a gas injector on purpose designed for this application. The main performance of the gas injector, such as flow coefficient, instantaneous mass flow rate, delay time between electrical signal and opening of the injector, have been characterized by testing the injector in a constant-volume optical vessel. The CNG jet structure has also been characterized by means of shadowgraphy technique. The engine, operating in dual-fuel mode, has been tested on a wide range of operating conditions spanning different values of engine load and speed. For all the tested operating conditions, the effect of CNG and diesel fuel injection pressure, together with the amount of fuel injected during the pilot injection, were analyzed on the combustion development and, as a consequence, on the engine performance, in terms of specific emission levels and fuel consumption. (author)

  20. Methane-fueled vehicles: A promising market for coalbed methane

    International Nuclear Information System (INIS)

    Deul, M.

    1993-01-01

    The most acceptable alternative fuel for motor vehicles is compressed natural gas (CNG). An important potential source of such gas is coalbed methane, much of which is now being wasted. Although there are no technological impediments to the use of CNG it has not been adequately promoted for a variety of reasons: structural, institutional and for coalbed gas, legal. The benefits of using CNG fuel are manifold: clean burning, low cost, abundant, and usable in any internal combustion engine. Even though more than 30,000 CNG vehicles are now in use in the U.S.A., they are not readily available, fueling stations are not easily accessible, and there is general apathy on the part of the public because of negligence by such agencies as the Department of Energy, the Department of Transportation and the Environmental Protection Agency. The economic benefits of using methane are significant: 100,000 cubic feet of methane is equivalent to 800 gallons of gasoline. Considering the many millions of cubic feet methane wasted from coal mines conservation and use of this resource is a worthy national goal

  1. An analysis of the economic impact of non-pipeline options for developing Newfoundland's offshore natural gas resources

    International Nuclear Information System (INIS)

    Locke, W.; Millan, S.; Rodgers, B.

    2001-06-01

    The technical and economic feasibility of four non-pipeline development options for Newfoundland's offshore natural gas resources are examined. The options are: compressed natural gas (CNG) that is incremental to FPSO oil development (CNG FPSO Incremental); CNG as part of a Grand Bank System Gas Hub( CNG GBS Gas Hub); liquefied natural gas (LNG) that is incremental to FPSO oil development (LNG FPSO Incremental) and combined Fischer-Tropsch (gas-to-liquid technology) that is incremental to FPSO oil development (combined methanol/F-T). The economic impacts of each development option were considered in terms of project viability, employment and income impacts created through the supply of goods and services, employment effects resulting from project expenditures, incomes generated to Newfoundland factors of production, GDP impacts, and provincial treasury impacts, net of equalization losses. Results indicate that the largest employment and income impacts on the Newfoundland economy would be generated by the CNG GBS Gas Hub option (2,000 person-years of employment per year and $110 million income annually). The other three cases provide an equivalent level of benefits with an annual average of 1,650 person-years of employment and $90 million in incomes to business and labour. Each option is expected to generate between $16 and $21 million per annum to the Newfoundland treasury, net of equalization losses. GDP impacts are also close for all all four options, and provide no basis for preference of any option. In terms of project viability, the CNG FPSO Incremental option is considered by far the most attractive with a 33.7 per cent rate of return and a net present value of $1 billion, followed by the CNG GBS Gas Hub option at 18.3 per cent rate of return and a net present value of $317 million. The LNG FPSO incremental option has an internal rate of return of 17.8 per cent and a net present value of $263 million. The combined methanol/F-T option is not considered

  2. Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?

    Science.gov (United States)

    Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C

    2018-04-20

    Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Diesel vs. compressed natural gas for school buses: a cost-effectiveness evaluation of alternative fuels

    International Nuclear Information System (INIS)

    Cohen, J.T.

    2005-01-01

    Reducing emissions from school buses is a priority for both state and federal regulators. Two popular alternative technologies to conventional diesel (CD) are emission controlled diesel (ECD), defined here to be diesel buses equipped with continuously regenerating particle filters, and engines fueled by compressed natural gas (CNG). This paper uses a previously published model to quantify the impact of particulate matter (PM), oxides of nitrogen (NO x ), and sulfur dioxide (SO 2 ) emissions on population exposure to ozone and to primary and secondary PM, and to quantify the resulting health damages, expressed in terms of lost quality adjusted life years (QALYs). Resource costs include damages from greenhouse gas-induced climate change, vehicle procurement, infrastructure development, and operations. I find that ECD and CNG produce very similar reductions in health damages compared to CD, although CNG has a modest edge because it may have lower NO x emissions. However, ECD is far more cost effective ($400,000-900,000 cost per QALY saved) than CNG (around $4 million per QALY saved). The results are uncertain because the model used makes a series of simplifying assumptions and because emissions data and cost data for school buses are very limited

  4. FY 2000 report on the investigational study of the introduction/spread of clean energy vehicles for transportation business use; 2000 nendo chosa hokokusho. Unso jigyo yo clean energy jidosha no donyu fukyu ni kakawaru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A comparative study of the cost effectiveness in improvement of emission gas was made between the diesel particulate filter (DPF) which is studied as measures against toxic emission gas from the vehicles already sold and the compressed natural gas (CNG) vehicle which has a large number of spread among clean energy vehicles. In the trial calculation, 18 cases were set up using measures by year against diesel car emission gas, use period and annual running distance as valuables. As a result of the study, the following conclusions were obtained. At the present time, when the vehicle price dropped approximately 40% from that at the beginning of the introduction, the cost effectiveness of CNG vehicle is larger than that of diesel car with DPF. Since the unit price of natural gas is comparatively higher than that of light oil, the longer the annual running distance is, the smaller the cost effectiveness of CNG vehicle is than that of diesel car with DPF. The durability period of DPF is considered not so long, and therefore, the longer the use period is, the larger the cost effectiveness of CNG vehicle is than that of diesel car with DPF. (NEDO)

  5. COMBUSTION AND PERFORMANCE CHARACTERISTICS OF A SMALL SPARK IGNITION ENGINE FUELLED WITH HCNG

    Directory of Open Access Journals (Sweden)

    A. SONTHALIA

    2015-04-01

    Full Text Available Due to environmental concerns and fossil fuel depletion, large scale researches were carried out involving the use of natural gas in internal combustion engines. Natural gas is a clean burning fuel that is available from large domestic natural reserve. When it is used as a fuel in SI engines, it reduces emissions to meet EURO-III norms with carburettors and EURO-IV norms with manifold injection. Countries like India with fewer natural fossil fuel reserves depend heavily on oil imported from Middle East Asian countries and on the other hand combustion of fossil fuel has negative impact on air quality in urban areas. Use of CNG as a fuel in internal combustion engines can reduce the intensiveness of these pervasive problems. The performance of CNG can further be improved by addition of small percentages of hydrogen to it to overcome the drawbacks like lower energy density of the fuel, drop in engine power and engine out exhaust emissions. When hydrogen is added to CNG it is called as Hythane or Hydrogen enriched Compressed Natural Gas (HCNG. This can be considered as a first step towards promotion of hydrogen in automobiles. In this study, the effects of mixing hydrogen with CNG on a small air cooled four stroke SI engine’s performance, emissions and heat release rate was analyzed. A comparison of performance and emission by running engine separately on gasoline, hydrogen, CNG and HCNG was done. The results show a significant decrease in HC, CO and NOx emissions and marginal increase in specific energy consumption when fuelled with HCNG.

  6. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Yamazaki, Yasuo; Brown, R. Lane; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2008-01-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn 2+ -bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn 2+ ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn 2+ binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels

  7. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Nobuhiro [Department of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan); Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); Yamazaki, Yasuo [Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Brown, R. Lane [Neurological Science Institute, Oregon Health and Science University, Beaverton, Oregon 97006 (United States); Fujimoto, Zui [Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); Morita, Takashi, E-mail: tmorita@my-pharm.ac.jp [Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Mizuno, Hiroshi, E-mail: tmorita@my-pharm.ac.jp [Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); VALWAY Technology Center, NEC Soft Ltd, Koto-ku, Tokyo 136-8627 (Japan); Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6, Tsukuba, Ibaraki 305-8566 (Japan); Department of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan)

    2008-10-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn{sup 2+}-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn{sup 2+} ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn{sup 2+} binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.

  8. Potentiality of the Usage of Compressed Natural Gas for Competitiveness in Service Delivery Industries

    Directory of Open Access Journals (Sweden)

    Gazi Mohammad Hasan Jamil

    2014-08-01

    Full Text Available Abstract. With the rising costs of gasoline, many vehicle owners are looking for alternatives of it. Compressed natural gas (CNG has been tested for this very purpose in some countries and found as a better alternative so far. CNG comes from country’s natural resources and it is clean and less costly to use. This paper is mainly an analysis of the potential benefits of using natural gas as a transportation fuel by the service delivery industries. It will examine CNG’s potential contribution in reducing delivery and vehicle maintenance cost, saving money in the long run projects, improving fuel efficiency, enhancing physical safety and assuring environment friendly emissions of carbon monoxide or reactive gases for the service delivery industries.Keywords: Compressed natural gas (CNG, Service Delivery, Fossil fuel, Global warming, Competitiveness

  9. Investigation of in-cabin volatile organic compounds (VOCs) in taxis; influence of vehicle's age, model, fuel, and refueling.

    Science.gov (United States)

    Bakhtiari, Reza; Hadei, Mostafa; Hopke, Philip K; Shahsavani, Abbas; Rastkari, Noushin; Kermani, Majid; Yarahmadi, Maryam; Ghaderpoori, Afshin

    2018-06-01

    The air pollutant species and concentrations in taxis' cabins can present significant health impacts on health. This study measured the concentrations of benzene, toluene, ethylbenzene, xylene (BTEX), formaldehyde, and acetaldehyde in the cabins of four different taxi models. The effects of taxi's age, fuel type, and refueling were investigated. Four taxi models in 3 age groups were fueled with 3 different fuels (gas, compressed natural gas (CNG), and liquefied petroleum gas (LPG)), and the concentrations of 6 air pollutants were measured in the taxi cabins before and after refueling. BTEX, formaldehyde, and acetaldehyde sampling were actively sampled using NIOSH methods 1501, 2541, and 2538, respectively. The average BTEX concentrations for all taxi models were below guideline values. The average concentrations (±SD) of formaldehyde in Model 1 to Model 4 taxis were 889 (±356), 806 (±323), 1144 (±240), and 934 (±167) ppbv, respectively. Acetaldehyde average concentrations (±SD) in Model 1 to Model 4 taxis were 410 (±223), 441 (±241), 443 (±210), and 482 (±91) ppbv, respectively. Refueling increased the in-vehicle concentrations of pollutants primarily the CNG and LPG fuels. BTEX concentrations in all taxi models were significantly higher for gasoline. Taxi age inversely affected formaldehyde and acetaldehyde. In conclusion, it seems that refueling process and substitution of gasoline with CNG and LPG can be considered as solutions to improve in-vehicle air concentrations for taxis. Copyright © 2018. Published by Elsevier Ltd.

  10. A cost-benefit analysis of alternatively fueled buses with special considerations for V2G technology

    International Nuclear Information System (INIS)

    Shirazi, Yosef; Carr, Edward; Knapp, Lauren

    2015-01-01

    Motivated by climate, health and economic considerations, alternatively-fueled bus fleets have emerged worldwide. Two popular alternatives are compressed natural gas (CNG) and electric vehicles. The latter provides the opportunity to generate revenue through vehicle-to-grid (V2G) services if properly equipped. This analysis conducts a robust accounting of the costs of diesel, CNG and battery-electric powertrains for school buses. Both marginal and fleet-wide scenarios are explored. Results indicate that the marginal addition of neither a small CNG nor a small V2G-enabled electric bus is cost effective at current prices. Contrary to previous findings, a small V2G-enabled electric bus increases net present costs by $7,200/seat relative to diesel for a Philadelphia, PA school district. A small CNG bus increases costs by $1,200/seat relative to diesel. This analysis is the first to quantify and include the economic implications of cold temperature extremes on electric vehicle battery operations, and the lower V2G revenues that result. Additional costs and limitations imposed by electric vehicles performing V2G are frequently overlooked in the literature and are explored here. If a variety of technical, legal, and economic challenges are overcome, a future eBus may be economical. - Highlights: • We present a robust cost-benefit analysis of various bus technologies. • Diesel is a low-cost technology at current prices. • CNG represents slightly higher costs on a marginal bus basis. • V2G-enabled electric buses are not cost-effective at current prices. • We identify frequently overlooked costs and challenges to V2G implementation.

  11. Low pressure storage of natural gas on activated carbon

    Science.gov (United States)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  12. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  13. Development of natural gas vehicles in China

    Energy Technology Data Exchange (ETDEWEB)

    Zongmin, Cheng

    1996-12-31

    Past decade and current status of development of natural gas vehicles (NGVs) in China is described. By the end of 1995, 35 CNG refueling stations and 9 LPG refueling stations had been constructed in 12 regions, and 33,100 vehicles had been converted to run on CNG or LPG. China`s automobile industry, a mainstay of the national economy, is slated for accelerated development over next few years. NGVs will help to solve the problems of environment protection, GHGs mitigation, and shortage of oil supply. The Chinese government has started to promote the development of NGVs. Projects, investment demand, GHG mitigation potential, and development barriers are discussed. China needs to import advanced foreign technologies of CNGs. China`s companies expect to cooperate with foreign partners for import of CNG vehicle refueling compressors, conversions, and light cylinders, etc.

  14. Turbulent piloted partially-premixed flames with varying levels of O2/N2: stability limits and PDF calculations

    Science.gov (United States)

    Juddoo, Mrinal; Masri, Assaad R.; Pope, Stephen B.

    2011-12-01

    This paper reports measured stability limits and PDF calculations of piloted, turbulent flames of compressed natural gas (CNG) partially-premixed with either pure oxygen, or with varying levels of O2/N2. Stability limits are presented for flames of CNG fuel premixed with up to 20% oxygen as well as CNG-O2-N2 fuel where the O2 content is varied from 8 to 22% by volume. Calculations are presented for (i) Sydney flame B [Masri et al. 1988] which uses pure CNG as well as flames B15 to B25 where the CNG is partially-premixed with 15-25% oxygen by volume, respectively and (ii) Sandia methane-air (1:3 by volume) flame E [Barlow et al. 2005] as well as new flames E15 and E25 that are partially-premixed with 'reconstituted air' where the O2 content in nitrogen is 15 and 25% by volume, respectively. The calculations solve a transported PDF of composition using a particle-based Monte Carlo method and employ the EMST mixing model as well as detailed chemical kinetics. The addition of oxygen to the fuel increases stability, shortens the flames, broadens the reaction zone, and shifts the stoichiometric mixture fraction towards the inner side of the jet. It is found that for pure CNG flames where the reaction zone is narrow (∼0.1 in mixture fraction space), the PDF calculations fail to reproduce the correct level of local extinction on approach to blow-off. A broadening in the reaction zone up to about 0.25 in mixture fraction space is needed for the PDF/EMST approach to be able to capture these finite-rate chemistry effects. It is also found that for the same level of partial premixing, increasing the O2/N2 ratio increases the maximum levels of CO and NO but shifts the peak to richer mixture fractions. Over the range of oxygenation investigated here, stability limits have shown to improve almost linearly with increasing oxygen levels in the fuel and with increasing the contribution of release rate from the pilot.

  15. Compressed natural gas for vehicles and how we can develop and meet the market

    International Nuclear Information System (INIS)

    Pinkerton, W.E.

    1992-01-01

    This paper reports that state and federal legislation have mandated the use of clean burning fuels. Clean fuels include: compressed natural gas (CNG), ethanol, methanol, liquefied petroleum gas (LPG), electricity, and reformulated gasoline. The Clean Air Amendments 1990 have created support for the rapid utilization of the compressed natural gas (CNG). Responsively, diverse occupations related to this industry are emerging. A coordinated infrastructure is vital to the successful promotion of clean fuels and synchronized endorsement of the law

  16. The use of compressed natural gas as a strategy of development of natural gas industry; Utilizacao do GNC (Gas Natural Comprimido) como estrategia de desenvolvimento da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Jucemara [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Segmento Veicular; Rickmann, Cristiano [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Novos Negocios; Maestri, Juares [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Mercado de Grandes Consumidores

    2008-07-01

    This work emphasizes the Compressed Natural Gas (CNG) as modal of transport, used by the Company of Gas of the State of Rio Grande do Sul - Sulgas, through experience in pioneering project in Brazil: the introduction of the technology of Compressed Natural Gas (CNG) to assist areas where there is not the infrastructure of pipeline for the transport. The article offers a display of the project of expansion of the Natural gas in Rio Grande do Sul, through the supply of CNG to the company Tramontina in Carlos Barbosa's city in the year of 2002. The last aspect focused by this article demonstrates as the use of this transport technology impelled the development of the transport market in the State and it has been used as an important strategy for the development of the market of Natural Gas Vehicle (NGV) in the state. (author)

  17. Biogas as a renewable energy fuel – A review of biogas upgrading, utilisation and storage

    International Nuclear Information System (INIS)

    Ullah Khan, Imran; Hafiz Dzarfan Othman, Mohd; Hashim, Haslenda; Matsuura, Takeshi; Ismail, A.F.; Rezaei-DashtArzhandi, M.; Wan Azelee, I.

    2017-01-01

    Highlights: • It is attempted to provide critical considerations on various biogas upgrading techniques. • Membrane is an environmentally and economically sound technique for purification. • Purified biogas in compressed form is a substitute of compressed natural gas for vehicles. • Charged mass and compressor input work are the most important factors for storage. - Abstract: Biogas upgrading is a widely studied and discussed topic and its utilisation as a natural gas substitute has gained a significant attention in recent years. The production of biomethane provides a versatile application in both heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH 4 ) loss, environmental effect, development and commercialisation, and challenges in terms of energy consumption and economic assessment. The market situation for biogas upgrading has changed rapidly in recent years, making the membrane separation gets significant market share with traditional biogas upgrading technologies. In addition, the potential utilisation of biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used. The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy and mass emissions for bio-CNG and CNG filled vehicles are studied. There is the same fuel economy and less carbon dioxide (CO 2 ) emission for bio-CNG. Based on the results of comparisons between the technical features of upgrading technologies, various specific requirements for biogas utilisation and the relevant investment, and operating and maintenance costs, future recommendations are made for biogas upgrading.

  18. Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile.

    Science.gov (United States)

    Mena-Carrasco, Marcelo; Oliva, Estefania; Saide, Pablo; Spak, Scott N; de la Maza, Cristóbal; Osses, Mauricio; Tolvett, Sebastián; Campbell, J Elliott; Tsao, Tsao Es Chi-Chung; Molina, Luisa T

    2012-07-01

    Chilean law requires the assessment of air pollution control strategies for their costs and benefits. Here we employ an online weather and chemical transport model, WRF-Chem, and a gridded population density map, LANDSCAN, to estimate changes in fine particle pollution exposure, health benefits, and economic valuation for two emission reduction strategies based on increasing the use of compressed natural gas (CNG) in Santiago, Chile. The first scenario, switching to a CNG public transportation system, would reduce urban PM2.5 emissions by 229 t/year. The second scenario would reduce wood burning emissions by 671 t/year, with unique hourly emission reductions distributed from daily heating demand. The CNG bus scenario reduces annual PM2.5 by 0.33 μg/m³ and up to 2 μg/m³ during winter months, while the residential heating scenario reduces annual PM2.5 by 2.07 μg/m³, with peaks exceeding 8 μg/m³ during strong air pollution episodes in winter months. These ambient pollution reductions lead to 36 avoided premature mortalities for the CNG bus scenario, and 229 for the CNG heating scenario. Both policies are shown to be cost-effective ways of reducing air pollution, as they target high-emitting area pollution sources and reduce concentrations over densely populated urban areas as well as less dense areas outside the city limits. Unlike the concentration rollback methods commonly used in public policy analyses, which assume homogeneous reductions across a whole city (including homogeneous population densities), and without accounting for the seasonality of certain emissions, this approach accounts for both seasonality and diurnal emission profiles for both the transportation and residential heating sectors. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Natural Gas Container Transportation: the Alternative Way to Solve the World’s Energy Transportation Problems

    Directory of Open Access Journals (Sweden)

    A.M. Shendrik

    2014-03-01

    Full Text Available The container gas transportation for low and medium level consumers as an alternative to pipelines is considered. The options for gas supply schemes, based on road and rail transport are given. The advantages and disadvantages of both types of gas transporting are described, the areas of their effective using are separated in the article. Promising implementations of technology in environment of economic crisis and also considering world trends of energy development are presented. The most advanced organization of compressed gas condensate transportation of unprepared gas fields in large diameter universal cylindrical balloons (up to 1000 mm are reasoned. The problem of compressed gas sea transportation are well disclosed, but the alternative ways of gas transportation by land are not investigated enough. Compressed Natural Gas (CNG Technology - is new promising technology for natural gas transportation by specially designed vessels – CNG-vessels. The feature of this technology is that natural gas can be downloaded directly near gas deposits and unloaded - directly into the customer's network. This eliminates significant capital investments in underwater pipelining or gas liquefaction plants. The main objects of investment are CNG-vessels themselves. The most attractive places for implementation of CNG-technology are sea (offshore natural gas deposits. Numerous international experts estimate the natural gas transportation by CNG-vessels in 1.5-2.0 times more cost-beneficial in comparison with offshore pipelines transportation, or in comparison with LNG (Liquefied Natural Gas shipping with natural gas transportation volume between 0.5 and 4.0 billion cubic meters per year on the route from 250 to 2,500 sea miles. This technology makes possible to provide gas supplement to the mountain and abounding in water areas, remote and weakly gasified regions. Described technology deserves special attention in the case of depleted and low-power oil and

  20. Comparative evaluation of a two stroke compressed natural gas mixer design using simulation and experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, D.; Bakar, R.A.; Rahim, M.F.; Noor, M.M. [Malaysia Pahang Univ., Pahang (Malaysia). Automotive Focus Group

    2008-07-01

    A study was conducted in which a two-stroke engine was converted for use with bi-fuel, notably compressed natural gas and gasoline. The excessive by-products generated by two-stroke engine combustion can be attributed to the inefficient combustion process. This prototype uniflow-type single-cylinder engine was equipped with a bi-fuel conversion system. A dedicated mixer was also developed to meter the gaseous fuel through the engine intake system. It was designed to meet air and fuel requirement similar to its gasoline counterpart. The mixer was modeled to obtain optimum orifice diameter using three different sizes of 14, 16 and 18 mm respectively. A standard computational fluid dynamics (CFD) software package was used to simulate the flow. A pressure reading was obtained during the prototype test. The drop in pressure across the venturi was shown to be an important parameter as it determined the actual fuel-air ratio in the actual engine. A good agreement of CFD outputs with that of the experimental outputs was recorded. The experimental technique validated the pressure distribution predicted by CFD means on the effects of the three insert rings in the CNG mixer. The simulation exercise can be used to predict the amount of CNG consumed by the engine. It was concluded that the 14 mm throat ring was best suited for the CNG mixer because it provided the best suction. Once the mixer is tested on a real engine, it will clear any doubts as to whether the throat can function at high engine speeds. 5 refs., 3 tabs., 8 figs.

  1. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels.

    Science.gov (United States)

    Sidhu, S; Graham, J; Striebich, R

    2001-01-01

    Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels.

  2. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

    Science.gov (United States)

    Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang

    2015-10-14

    Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.

  3. Report of the results of the fiscal 1997 survey. R and D of high efficiency clean energy vehicles; 1997 nendo chosa hokokusho. Kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of developing an automobile which keeps low pollution using petroleum substituting clean energy, decreases the running energy consumption to a half at least, and reduces the CO2 emission to less than a half of the conventional one at the same time, the R and D started in fiscal 1997. As to the study of a high efficiency hybrid power system, conducted were the prediction of fuel consumption performance of the system proposed, evaluation of element technology using hybrid simulator, evaluation experiment on a new hybrid vehicle, and grasp of overseas trends. In relation to the development of hybrid vehicles, the following were studied: methanol fuel cell loading hybrid vehicle, CNG engine loading hybrid vehicle, CNG ceramic engine loading hybrid truck, CNG lean burn engine loading hybrid truck, LNG engine loading hybrid bus, and DME engine loading hybrid bus. Besides, a survey on synthetic fuel and the related survey were carried out. 17 refs., 185 figs., 101 tabs.

  4. Summary of beryllium qualification activity for ITER first-wall applications

    International Nuclear Information System (INIS)

    Barabash, V; Eaton, R; Hirai, T; Kupriyanov, I; Nikolaev, G; Wang Zhanhong; Liu Xiang; Roedig, M; Linke, J

    2011-01-01

    Beryllium is considered as an armor material for the ITER first wall. The ITER Final Design Report 2001 identified the reference grades S-65C vacuum hot pressed (VHP) from Brush Wellman and DShG-200 from the Russian Federation. These grades have been selected based on excellent thermal fatigue/shock behavior and the available comprehensive database. Later, Chinese and Russian ITER Parties proposed their new grades: CN-G01 (from China) and TGP-56FW (from Russia). To assess the performance of these new grades, the ITER Organization, Chinese and Russian Parties established a program for the characterization of these materials. A summary of the published data and new results are presented in the paper. It was concluded that the proposed Chinese (CN-G01) and Russian (TGP-56FW) beryllium grades can be accepted. Three grades of beryllium are now available for the armor application for the ITER first wall: S-65, CN-G01 and TGP-56FW.

  5. Summary of beryllium qualification activity for ITER first-wall applications

    Science.gov (United States)

    Barabash, V.; Eaton, R.; Hirai, T.; Kupriyanov, I.; Nikolaev, G.; Wang, Zhanhong; Liu, Xiang; Roedig, M.; Linke, J.

    2011-12-01

    Beryllium is considered as an armor material for the ITER first wall. The ITER Final Design Report 2001 identified the reference grades S-65C vacuum hot pressed (VHP) from Brush Wellman and DShG-200 from the Russian Federation. These grades have been selected based on excellent thermal fatigue/shock behavior and the available comprehensive database. Later, Chinese and Russian ITER Parties proposed their new grades: CN-G01 (from China) and TGP-56FW (from Russia). To assess the performance of these new grades, the ITER Organization, Chinese and Russian Parties established a program for the characterization of these materials. A summary of the published data and new results are presented in the paper. It was concluded that the proposed Chinese (CN-G01) and Russian (TGP-56FW) beryllium grades can be accepted. Three grades of beryllium are now available for the armor application for the ITER first wall: S-65, CN-G01 and TGP-56FW.

  6. Natural gas in road transport in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, C J

    1986-01-01

    This paper describes how the products of New Zealand's natural gas fields are to be used in the transport sector to reduce oil imports. As a result of such developments New Zealand will be about 53% self-sufficient in transport fuels in 1986/1987. This self-sufficiency will be made up as follows: 25% from condensate from gas fields, 18% from synthetic gasoline, 5% from the use of compressed natural gas (CNG) and liquefied petroleum gas (LPT) in vehicles and 5% from indigenous oil supplies. History and status of the CNG Programme are outlined. Government has set a goal of 200,000 vehicles operating on CNG by 1990 and, at present, about 80,000 vehicles are powered by natural gas. The Gas to Gasoline project is described in some detail. New Zealand's imports of crude oil and oil products for 1986/1987 are forecast to total 1,900,000 tonnes, less than one-half of the 4,257,000 tonnes of comparable imports in 1973/1974.

  7. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    Science.gov (United States)

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation

  8. Sustainable urban transportation: impact of CO{sub 2} mitigation strategies on local pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar Yedla; Jyoti K Parikh [Indira Ghandi Institute of Development Research, Mumbai (India); Ram M Shrestha [Asian Institute of Technology, Pathumthani (Thailand). School of Environment Resource and Development

    2003-07-01

    This paper assesses CO{sub 2} mitigation strategies in Delhi and Mumbai against the dynamics of local pollutants. After testing against techno-economic feasibility, compressed natural gas (CNG) technology, four-stroke two-wheelers and battery-operated vehicles (BOV) were selected as candidate options for Mumbai and Delhi. Multiple constrained optimization for finding out the optimal mix of vehicles to meet the travel demand under the business-as-usual scenario for the period of 1998-2020 revealed the dominance of CNG vehicles. CO{sub 2} mitigation targets of 5, 10, 15, 20, 25% resulted in reduced stock of diesel and petrol vehicles, with the reduction spanning over different points of the above time period. In the case of Mumbai, battery-operated three-wheelers dominated the vehicular mix, with the share of CNG vehicles remaining at a standard level. CO{sub 2} reduction targets did not influence the CNG option significantly. CO{sub 2} mitigation influenced the dynamics of local pollutants considerably in both Delhi and Mumbai. In Delhi, TSP and SO{sub x} reduction levels against the CO{sub 2} mitigation target were found to be significant. In Mumbai, the percentage reduction in local pollution (TSP in particular) was higher than the target CO{sub 2} reduction. Local pollutants other than TSP and SO{sub x} showed an increasing trend against the CO{sub 2} mitigation strategies in Delhi. In the case of Mumbai, all non-target pollutants showed a falling trend against the CO{sub 2} mitigation strategies, though insignificantly for pollutants other than TSP and SO{sub x}. (author)

  9. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Shihnan, A.H.; Nasri, N.S.; Sharer, Z.

    2014-01-01

    Highlights: • Engine and emission characteristics of biodiesel DDF engine system were measured. • Biodiesel DDF fuelled system produced high engine performance. • Lower hydrocarbons and carbon dioxide was emitted by biodiesel DDF system. • Biodiesel DDF produced slightly higher carbon monoxide and nitric oxides emission. - Abstract: Biodiesel derived from biomass is a renewable source of fuel. It is renovated to be the possible fuel to replace fossil derived diesel due to its properties and combustion characteristics. The integration of compressed natural gas (CNG) in diesel engine known as diesel dual fuel (DDF) system offered better exhaust emission thus become an attractive option for reducing the pollutants emitted from transportation fleets. In the present study, the engine performance and exhaust emission of HINO H07C DDF engine; fuelled by diesel, biodiesel, diesel–CNG, and biodiesel–CNG, were experimentally studied. Biodiesel and diesel fuelled engine system respectively generated 455 N m and 287 N m of torque. The horse power of biodiesel was found to be 10–20% higher compared to diesel. Biodiesel–CNG at 20% (B20-DDF) produced the highest engine torque compared to other fuel blends Biodiesel significantly increase the carbon monoxide (15–32%) and nitric oxides (6.67–7.03%) but in contrast reduce the unburned hydrocarbons (5.76–6.25%) and carbon dioxide (0.47–0.58%) emissions level. These results indicated that biodiesel could be used without any engine modifications as an alternative and environmentally friendly fuel especially the heavy transportation fleets

  10. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    Energy Technology Data Exchange (ETDEWEB)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP

  11. Le Gaz Naturel Véhicule Natural Gas for Vehicles

    Directory of Open Access Journals (Sweden)

    De Chauveron S.

    2006-11-01

    Full Text Available Cet article présente le GNV (Gaz Naturel Véhicule. Le GNV a en effet de sérieux atouts, à la fois comme carburant de substitution et comme carburant propre. Ces atouts sont aussi bien économiques que techniques. La première partie est consacrée aux enjeux du développement du GNV. Les premiers pays utilisateurs ont été ceux qui disposent sur leur sol de ressources de gaz naturel. Aujourd'hui, alors que de nombreux pays doivent faire face à l'inquiétude croissante relative à l'augmentation de la pollution urbaine, le gaz naturel apparaît également comme un carburant propre, permettant de réduire rapidement les émissions de polluants des véhicules. Dans une deuxième partie, nous donnons une description technique sommaire des stations GNV et des véhicules GNV. Il s'agit de familiariser le lecteur avec les quelques spécificités techniques du GNV, par rapport à l'essence et au gazole. On constatera d'ailleurs que les technologies GNV sont très proches des technologies classiques. Enfin, la dernière partie est consacrée aux actions en cours, qui permettront le développement du GNV en France et en Europe : programmes de recherche, réduction des coûts de la filière, actions réglementaires, communication, etc. This article presents compressed natural gas for vehicles (CNG, which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical description is given of CNG stations and vehicles, with the aim of acquainting the reader with

  12. Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kay L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ramsden, Margo M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gonzales, John E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lynch, Lauren [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coale, Bob [Gladstein, Neandross & Associates, Santa Monica, CA (United States); Kohout, Jarrod [Gladstein, Neandross & Associates, Santa Monica, CA (United States)

    2017-09-28

    To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. The hazard presented by liquid fuels, such as gasoline and diesel, results from the spillage of these liquids and subsequent ignition of vapors, causing a fire or explosion. Facilities that maintain liquid-fueled vehicles and implement appropriate safety measures are protected with ventilation systems designed to capture liquid fuel vapors at or near floor level. To minimize the potential for ignition in the event of a spill, receptacles, electrical fixtures, and hot-work operations, such as welding, are located outside of these areas. Compressed natural gas (CNG) is composed of methane with slight amounts of heavier simple hydrocarbons. Maintenance facilities that maintain CNG vehicles indoors must be protected against fire and explosion. However, the means of ensuring safety are different from those employed for liquid fuels because of the gaseous nature of methane and the fact that it is lighter than air. Because CNG is lighter than air, a release will rise to the ceiling of the maintenance facility and quickly dissipate rather than remaining at or near floor level like liquid fuel vapors. Although some of the means of protection for CNG vehicle maintenance facilities are similar to those used for liquid-fueled vehicles (ventilation and elimination of ignition sources), the types and placement of the protection equipment are different because of the behavior of the different fuels. The nature of gaseous methane may also require additional safeguards, such as combustible

  13. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    International Nuclear Information System (INIS)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2016-01-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions. (letter)

  14. Fiscal 1998 achievement report. Research and development of advanced clean energy vehicles; 1998 nendo kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The efforts aim to develop advanced clean energy vehicles (ACEVs) which drive on substitutes of oil low in pollution, consuming 1/2 or less energy and emitting 1/2 or less CO2 than the existing vehicles. Studies conducted in fiscal 1998 covered high-efficiency hybrid power systems and ACEVs. Efforts to develop ACEVs involved a reformed methanol fuel cell hybrid passenger car of Nissan Motor Co., Ltd. (improvement on element technologies, study of methanol concentration); CNG (compressed natural gas) engine hybrid passenger car of Honda Research and Development Co., Ltd. (improvement on flywheels, studies of ANG (adsorbent natural gas) adsorbent and ANG tank); CNG ceramics engine hybrid cargo truck of Isuzu Ceramics Research Institute Co., Ltd. (fabrication of ceramics single-cylinder engine, design and fabrication of vehicle control system, fabrication of prototype); CNG lean burn engine hybrid cargo truck of Mitsubishi Motors Co., Ltd. (studies, designing, and fabrication of engine element parts); LNG engine hybrid bus of Nissan Diesel Motor Co., Ltd. (development of engine and power storage); and DME (dimethylether) engine hybrid bus of Hino Motors, Ltd. (development of DME fuel injection system and high-efficiency power storage). (NEDO)

  15. Global warming and urban smog: Cost-effectiveness of CAFE standards and alternative fuels

    International Nuclear Information System (INIS)

    Krupnick, A.J.; Walls, M.A.; Collins, C.T.

    1993-01-01

    In this paper we estimate the cost-effectiveness, in terms of reducing greenhouse gas emissions, of increasing the corporate average fuel economy (CAFE) standard to 38 miles per gallon and substituting methanol, compressed natural gas (CNG), and reformulated gasoline for conventional gasoline. Greenhouse gas emissions are assessed over the entire fuel cycle and include carbon dioxide, methane, carbon monoxide, and nitrous oxide emissions. To account for joint environmental benefits, the cost per ton of greenhouse gas reduced is adjusted for reductions in volatile organic compound (VOC) emissions, an ozone precursor. CNG is found to be the most cost-effective of these alternatives, followed by increasing the CAFE standard, substituting methanol for gasoline, and substituting reformulated for conventional gasoline. Including the VOC benefits does not change the ranking of the alternatives, but does make the alternative fuels look better relative to increasing the CAFE standard. None of the alternatives look cost-effective should a carbon tax of $35 per ton be passed, and only CNG under optimistic assumptions looks cost-effective with a tax of $100 per ton of carbon. 35 refs., 4 figs., 6 tabs

  16. Preparation of activated carbon from waste plastics polyethylene terephthalate as adsorbent in natural gas storage

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.

    2017-02-01

    The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.

  17. In-vitro assessment and pharmacodynamics of nimesulide incorporated Aloe vera transemulgel.

    Science.gov (United States)

    Vandana, K R; Yalavarthi, Prasanna R; Sundaresan, C R; Sriramaneni, Raghava N; Vadlamudi, Harini C

    2014-06-01

    The aim of the investigation was to prepare nimesulide emulsion for incorporation in Aloe vera gel base to formulate 'nimesulide - Aloe vera transemulgel' (NAE) and to carryout in-vitro assessment and in-vivo anti-inflammatory studies of the product. Although the use of nimesulide is banned for oral administration, due to its potential for inducing hepatotoxicity and thrombocytopenia, the use of nimesulide for topical delivery is prominent in the treatment of many inflammatory conditions including rheumatoid arthritis. The drug loading capacity of transdermal gels is low for hydrophobic drugs such as nimesulide. Nimesulide can be effectively incorporated into emulgels (a combination of emulsion and gel). Aloe vera has a mild anti-inflammatory effect and in the present study Aloe vera gel was formulated and used as a gel base to prepare NAE. The emulgels thus prepared were evaluated for viscosity, pH, in-vitro permeation, stability and skin irritation test. In-vivo anti-inflammatory studies were performed using carrageenan induced hind paw edema method in Wistar rats. The results were compared with that of commercial nimesulide gel (CNG). From the in-vitro studies, effective permeation of nimesulide from NAE (53.04 %) was observed compared to CNG (44.72 %) at 30 min indicating better drug release from NAE. Topical application of the emulgel found no skin irritation. Stability studies proved the integrity of the formulation. The percentage of inhibition of edema was highest for the prepared NAE (67.4 % inhibition after 240 min) compared to CNG (59.6 %). From our results, it was concluded that the Aloe vera gel acts as an effective gel base to prepare nimesulide emulgel with high drug loading capacity (86.4 % drug content) compared to CNG (70.5 % drug content) with significant anti-inflammatory effect.

  18. Use of natural gas, methanol, and ethanol fuel emulsions as environmentally friendly energy carriers for mobile heat power plants

    Science.gov (United States)

    Likhanov, V. A.; Lopatin, O. P.

    2017-12-01

    The need for using environmentally friendly energy carriers for mobile heat power plants (HPPs) is grounded. Ecologically friendly sources of energy, such as natural gas as well as renewable methyl and ethyl alcohols, are investigated. In order to develop, determine, and optimize the composition of environmentally friendly energy carriers for an HPP, the latter has been tested when working on diesel fuel (DF), compressed natural gas (CNG), and methanol and ethanol fuel emulsions (MFE, EFE). It has been experimentally established that, for the application of environmentally friendly energy carriers for a 4Ch 11.0/12.5 diesel engine of a mobile fuel and power plant, it is necessary to maintain the following ratio of components when working on CNG: 80% gas and 20% DF primer portion. When working on an alcohol mixture, emulsions of the following composition were used: 25% alcohol (methanol or ethanol), 0.5% detergent-dispersant additive succinimide C-5A, 7% water, and 67.5% DF. When this diesel passed from oil DF to environmentally friendly energy sources, it allowed for the reduction of the content of exhaust gases (EG) (1) when working on CNG with recirculation of exhaust gases (EGR) (recirculation was used to eliminate the increased amount of nitric oxides by using CNG): carbon black by 5.8 times, carbon dioxide by 45.9%, and carbon monoxide by 23.8%; (2) when working on MFE: carbon black by 6.4 times, nitrogen oxides by 29.6%, carbon dioxide by 10.1%, and carbon oxide by 47.6%; (3) when working on EFE: carbon black by 4.8 times; nitrogen oxides by 40.3%, carbon dioxide by 26.6%, and carbon monoxide by 28.6%. The prospects of use of environmentally friendly energy carriers in diesels of mobile HPPs, such as natural gas, ethanol, and methanol, has been determined.

  19. Large-scale application of natural gas as an engine fuel in public transport

    International Nuclear Information System (INIS)

    Verstegen, P.; Nieuwenhuis, A.; Van Schagen, G.J.

    1993-02-01

    Options and bottlenecks for the use of compressed natural gas (CNG) as an automotive fuel in public transportation have been inventorized and discussed. Based on interviews with representatives of transportation businesses and their umbrella organizations the demands and wishes are listed in chapter one. In chapter two several types of natural gas storage cylinders, focusing on the weight and the costs of the cylinders and the consequences for the road tax. In chapter three attention is paid to the delivery possibilities of the bus manufacturers DAF, Mercedes-Benz, Volvo and MAN. Technical specifications and data on the energy consumption, emission and other aspects are presented. In chapter three the characteristics of fastfill stations and slowfill stations are assessed for implementing problems, costs and reliability. The costs for the use of CNG in buses, as discussed in chapter five, consist of additional costs for the bus, maintenance, road tax, filling station, safety provisions, and reduced costs for the fuel. In chapter six the regulations and legislation for the use of CNG in vehicles, filling stations and storage cylinders is dealt with. In the final chapters seven and eight the necessity of introductory courses and training is briefly discussed, and an overview of current projects in the Netherlands is given. 13 figs., 14 tabs., refs

  20. Lifecycle analysis of different urban transport options for Bangladesh

    International Nuclear Information System (INIS)

    Hossain, Ijaz; Guelen, Guercan

    2007-01-01

    Once again, sustained high oil prices are forcing policy makers in oil importing countries to consider alternatives to oil products as transportation fuels. Unlike in the past, advancements in technology, relative success of some experiments and increased familiarity among and acceptance by the public of some alternatives indicate a higher likelihood of success. In particular, natural gas offers a couple of the best options as compressed natural gas (CNG) and chemical conversion of natural gas into diesel (gas-to-liquids, GTL). These options are likely to be most attractive in countries that have cheap access to natural gas. We compare lifetime costs of several individual transportation options for Bangladesh, an oil importer with natural gas reserves. The results are then used to inform the natural gas policy debate in the country. Assuming a natural gas price of 1.5 per million Btu, both the CNG and GTL options are competitive with conventional gasoline/diesel cars if the oil price stays higher than 35-40 per barrel. If natural gas price increases after new upstream developments, CNG becomes less attractive while GTL remains competitive up to 2.5 if capital costs of GTL facilities decline as expected. Under a government policy push (lower discounting), the breakeven price of oil falls to 30-35 per barrel. (author)

  1. Techno-economic assessment of fuel cell vehicles for India

    International Nuclear Information System (INIS)

    Manish S; Rangan Banerjee

    2006-01-01

    This paper compares four alternative vehicle technologies for a typical small family car in India (Maruti 800) - two conventional i) Petrol driven internal combustion (IC) engine, ii) Compressed natural gas (CNG) driven IC engine and two based on proton exchange membrane (PEM) fuel cells with different storage iii) Compressed hydrogen storage and iv) Metal hydride (FeTi) storage. Each technology option is simulated in MATLAB using a backward facing algorithm to calculate the force and power requirement for the Indian urban drive cycle. The storage for the CNG and the fuel cell vehicles is designed to have driving range of 50% of the existing petrol vehicle. The simulation considers the part load efficiency vs. load characteristics for the computed ratings of the IC engine and the fuel cell. The analysis includes the transmission efficiency, motor efficiency and storage efficiencies. The comparison criteria used are the primary energy consumption (MJ/km), the cost (Rs./km) obtained by computing the annualized life cycle cost and dividing this by the annual vehicle travel and carbon dioxide emissions (g/km). For the primary energy analysis the energy required for extraction, processing of the fuel is also included. For the fuel cell vehicles, it is assumed that hydrogen is produced from natural gas through steam methane reforming. It is found that the fuel cell vehicles have the lowest primary energy consumption (1.3 MJ/km) as compared to the petrol and CNG vehicles (2.3 and 2.5 MJ/km respectively). The cost analysis is done based on existing prices in India and reveals that the CNG vehicle has the lowest cost (2.3 Rs./km) as compared to petrol (4.5 Rs./km). The fuel cell vehicles have a higher cost of 26 Rs./km mainly due to the higher fuel cell system cost (93% of the total cost). The CO 2 emissions are lowest for the fuel cell vehicle with compressed hydrogen storage (98 g/km) as compared to the petrol vehicle (162 g/km). If the incremental annual cost of the fuel

  2. Prediction of the combustion process and emission formation of a bi-fuel s.i. engine

    International Nuclear Information System (INIS)

    D'Errico, Gianluca

    2008-01-01

    A thermodynamic model is developed and validated for the prediction of the combustion process and pollutant formation in s.i. engines, fuelled by gasoline and compressed natural gas. Attention is focused on the main physical and chemical phenomena to allow a reliable evaluation of the burning rate and of the specie concentrations, including intermediates such as CO, O, H, and OH. A new correlation for laminar flame speed of methane-air mixtures is derived by interpolating more than 1000 different conditions at high pressure and temperature, computed by a detailed chemical approach. Successively an extended dissertation about the fundamental mechanisms which govern the pollutant formation in the turbulent premixed combustion which characterizes the s.i. engines is given. The conclusion of such analysis is the definition of a new reduced chemical scheme, based on the application of partial-equilibrium and steady-state assumptions for the radicals and the solution of a transport equation for each specie which is kinetically controlled. Finally the proposed schemes and formulations were embedded into the developed quasi-D model and into a CFD code, to simulate a s.i. engine fuelled by gasoline and CNG, allowing a deeper understanding of the reliability of the simplifications made in the quasi-dimensional model and a comprehensive investigation of several physical and chemical properties, whose experimental measurement is not usually available. Computed results were compared with the available experimental data of in-cylinder pressure histories and engine emissions for two different engine configurations

  3. Compressed natural gas as a vehicle to promote development of consumer market in Campina Grande - PB (Brazil); O gas natural comprimido como fomentador do desenvolvimento do mercado consumidor de gas natural na regiao de Campina Grande - PB

    Energy Technology Data Exchange (ETDEWEB)

    Bonfim, Marcelo dos Santos; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    Investments required for natural gas distribution networks are high. The use of compressed natural gas (CNG) is seen as a way to prepare and develop consuming markets to receive those networks. This paper outlines the socio-economic context and the reasons that motivated the creation of a CNG project in Campina Grande, in the state of Paraiba. Technical aspects of project implementation are described, including difficulties encountered and courses of action undertaken as a result. Other aspects considered include the social and economic impact and local consumer's expectations with the arrival of new fuel. The study also considers factors relevant to the project such as the distance from the pressure measurement and regulation station, transported volumes, technology used, infrastructure and road conditions. (author)

  4. Alternative Fuel News, Vol. 7, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    Quarterly magazine with articles on recent additions to the Clean Cities Alternative Fuel Station Locator database, biodiesel buying co-ops, and developing the CNG infrastructure in Bangladesh. Also a memo from CIVITAS 2003.

  5. Integrated energy planning for transportation sector-A case study for Iran with techno-economic approach

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Mehdi [Economics Department, Imam Sadiq University, Tehran (Iran, Islamic Republic of)], E-mail: Sadeghi@isu.ac.ir; Mirshojaeian Hosseini, Hossein [Tehran University, Tehran (Iran, Islamic Republic of)], E-mail: mirshojaeian@ut.ac.ir

    2008-02-15

    Transportation sectors in developing countries suffer from some diseases that one of them is ever-increasing energy consumption. Integrated National Energy Planning (INEP) in transportation sector is a solution for these countries to alter their suboptimal pattern and rationalize their energy consumption. One of the INEP targets is determining optimal patterns of fuels and transportation technologies to satisfy future demand of freight and passenger transportation at the lowest cost levels. Following the above target, this paper is concerned with the optimal consumption pattern of fuels focusing on vehicle technologies within the next 25 years (up to 2029). Using Energy Flow Optimization Model-ENVironment (EFOM-ENV) model, various steps as designing of 'Reference Energy System (RES)' of the model, data processing and scenario analysis are followed. Based on the modeling results, substitution of urban railroad technologies (subway, LRT and monorail), all of passenger CNG technologies (cars, buses and minibuses), rural railroad freight technologies (electrical, gas oil and LNG freight trains) and finally, CNG and LNG heavy and light trucks with current passenger and freight vehicle technologies are suggested. This scenario will decline fuel consumption by about 14% totally, that the most part of it belongs to gasoline and gas oil (24% and 17%, respectively). Total discounted cost of transportation system will decline from 806.20 to 691.74 billion dollars (14%) during the time horizon.

  6. Integrated energy planning for transportation sector - A case study for Iran with techno-economic approach

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Mehdi [Economics Department, Imam Sadiq University, Tehran (Iran); Mirshojaeian Hosseini, Hossein [Tehran University, Tehran (Iran)

    2008-02-15

    Transportation sectors in developing countries suffer from some diseases that one of them is ever-increasing energy consumption. Integrated National Energy Planning (INEP) in transportation sector is a solution for these countries to alter their suboptimal pattern and rationalize their energy consumption. One of the INEP targets is determining optimal patterns of fuels and transportation technologies to satisfy future demand of freight and passenger transportation at the lowest cost levels. Following the above target, this paper is concerned with the optimal consumption pattern of fuels focusing on vehicle technologies within the next 25 years (up to 2029). Using Energy Flow Optimization Model-ENVironment (EFOM-ENV) model, various steps as designing of ''Reference Energy System (RES)'' of the model, data processing and scenario analysis are followed. Based on the modeling results, substitution of urban railroad technologies (subway, LRT and monorail), all of passenger CNG technologies (cars, buses and minibuses), rural railroad freight technologies (electrical, gas oil and LNG freight trains) and finally, CNG and LNG heavy and light trucks with current passenger and freight vehicle technologies are suggested. This scenario will decline fuel consumption by about 14% totally, that the most part of it belongs to gasoline and gas oil (24% and 17%, respectively). Total discounted cost of transportation system will decline from 806.20 to 691.74 billion dollars (14%) during the time horizon. (author)

  7. Integrated energy planning for transportation sector-A case study for Iran with techno-economic approach

    International Nuclear Information System (INIS)

    Sadeghi, Mehdi; Mirshojaeian Hosseini, Hossein

    2008-01-01

    Transportation sectors in developing countries suffer from some diseases that one of them is ever-increasing energy consumption. Integrated National Energy Planning (INEP) in transportation sector is a solution for these countries to alter their suboptimal pattern and rationalize their energy consumption. One of the INEP targets is determining optimal patterns of fuels and transportation technologies to satisfy future demand of freight and passenger transportation at the lowest cost levels. Following the above target, this paper is concerned with the optimal consumption pattern of fuels focusing on vehicle technologies within the next 25 years (up to 2029). Using Energy Flow Optimization Model-ENVironment (EFOM-ENV) model, various steps as designing of 'Reference Energy System (RES)' of the model, data processing and scenario analysis are followed. Based on the modeling results, substitution of urban railroad technologies (subway, LRT and monorail), all of passenger CNG technologies (cars, buses and minibuses), rural railroad freight technologies (electrical, gas oil and LNG freight trains) and finally, CNG and LNG heavy and light trucks with current passenger and freight vehicle technologies are suggested. This scenario will decline fuel consumption by about 14% totally, that the most part of it belongs to gasoline and gas oil (24% and 17%, respectively). Total discounted cost of transportation system will decline from 806.20 to 691.74 billion dollars (14%) during the time horizon

  8. Passenger vehicles that minimize the costs of ownership and environmental damages in the Indian market

    International Nuclear Information System (INIS)

    Gilmore, Elisabeth A.; Patwardhan, Anand

    2016-01-01

    Highlights: • Full costs (private and social) are evaluated for Indian passenger cars. • Diesel has low ownership costs, but higher climate and health damages. • Compressed natural gas cars have lower costs and damages than petrol cars. • Electric cars have higher damages due to electricity generation emissions. • CNG and less carbon intensive electricity minimizes Indian cars’ full cost. - Abstract: Rapid expansion of population and income growth in developing countries, such as India, is increasing the demand for many goods and services, including four-wheeled passenger cars. Passenger cars provide personal mobility; however, they also have negative implications for human wellbeing from increased air pollutants and greenhouse gases (GHG). Here, we evaluate the range of passenger vehicles available in the Indian market to identify options that minimize costs, human health effects and climate damages. Our approach is to compare alternative fuel/powertrain vehicles with similar conventional gasoline fueled vehicles and assess the differences in full (private and societal) costs for each pair. Private costs are the combination of capital costs and the discounted expected future fuel costs over the vehicle lifetime. The costs to human health from air quality are calculated using intake fractions to estimate exposure and literature values for the damage costs adjusted by benefits transfer methods. We use the Social Cost of Carbon to estimate climate damages. We find that, on average, the net present value (NPV) of the full costs of compressed natural gas (CNG) vehicles are lower than comparable gasoline vehicles, while, diesel vehicles have higher costs. Presently, electric vehicles have higher private costs (due to high capital costs) and societal costs (due to electricity generation emissions). Either a less carbon intensive electricity grid or an increase in the CNG fleet would minimize total costs, human health effects and GHG emissions from the

  9. Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine

    International Nuclear Information System (INIS)

    Javaheri, A.; Esfahanian, V.; Salavati-Zadeh, A.; Darzi, M.

    2014-01-01

    Highlights: • Effects of CR and λ on CNG SI ICE 1st and 2nd law analyses are experimentally studied. • The performance of pure methane and a real CNG are observed and compared. • The ratio of actual to Otto cycle thermal efficiencies is 0.78 for all cases. • At least 25.5% of destructed availability is due to combustion irreversibility. • With decrease in methane content, CNG shows more combustion irreversibility. - Abstract: Considering the significance of obtaining higher efficiencies from internal combustion engines (ICE) along with the growing role of natural gas as a fuel, the present work is set to explore the effects of compression ratio (CR hereafter) and air/fuel equivalence ratio (AFER hereafter) on the energy and exergy potentials in a gas-fueled spark ignition internal combustion engine. Experiments are carried out using a single cylinder, port injection, water cooled, variable compression ratio (VCR hereafter), spark ignition engine at a constant engine speed of 2000 rpm. The study involves CRs of 12, 14 and 16 and 10 AFERs between 0.8 and 1.25. Pure methane is utilized for the analysis. In addition, a natural gas blend with the minimum methane content among Iranian gas sources is also tested in order to investigate the effect of real natural gas on findings. The energy analysis involves input fuel power, indicated power and losses due to high temperature of exhaust gases and their unburned content, blow-by and heat loss. The exergy analysis is carried out for availability input and piston, exhaust, and losses availabilities along with destructed entropy. The analysis indicates an increase in the ratio of thermo-mechanical exhaust availability to fuel availability by CR with a maximum near stoichiometry, whereas it is shown that chemical exhaust exergy is not dependent on CR and reduces with AFER. In addition, it is indicated that the ratio of actual cycle to Otto cycle thermal efficiencies is about constant (about 0.784) with changing CR

  10. Research Article Special Issue

    African Journals Online (AJOL)

    pc

    2017-10-05

    Oct 5, 2017 ... Keywords: air quality; correlation; principal component analysis; ... sources of air pollution in Malaysia are mobile sources, stationary ..... natural gas (CNG) usage, place higher fuel standards and increase the use of public.

  11. Clean air program : design guidelines for bus transit systems using electric and hybrid electric propulsion as an alternative fuel

    Science.gov (United States)

    2003-03-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including : Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and : Methanol/Ethanol, are already being used. At presen...

  12. 78 FR 23574 - Public Workshop on Marine Technology and Standards

    Science.gov (United States)

    2013-04-19

    ... Procedure for Marine Tubular Grooved Pipe Joints in Shipboard Applications Compressed Natural Gas (CNG... Dynamic Positioning Software Testing and Validation Development of Autonomous Underwater Platforms for... opportunity for classification societies, industry groups, standards development organizations, government...

  13. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 6, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    2002-07-01

    Quarterly magazine with articles on auctions of used alternative fuel vehicles (AFVs), Royalty Enterprises of Ohio, and introducing AFVs in neglected urban areas. Plus Ford's new CNG school bus and electric buses in Connecticut.

  14. Clean air program : design guidelines for bus transit systems using compressed natural gas as an alternative fuel

    Science.gov (United States)

    1996-06-01

    This report documents design guidelines for the safe use of Compressed Natural Gas (CNG). The report is designed to provide guidance, information on safe industry practices, applicable national codes and standards, and reference data that transit age...

  15. Measurement of vehicle emissions and power performance of an engine dedicated to gasoline converted to natural gas vehicular

    Directory of Open Access Journals (Sweden)

    Flores-Meneses Oscar Febo

    2017-05-01

    Full Text Available The present research work reports the factorial experiment carried out in the Institute of Mechanical and Electromechanical Research (IIME of the Major Saint Andrew University (UMSA, the purpose was to evaluate vehicle power and emission of greenhouse gas carbon dioxide, as well as other gases with harmful effects on human health, carbon monoxide, nitrogen oxides and total hydrocarbons generated by an internal combustion engine dedicated to gasoline and converted to bi-fuel CNG. For experimentation, a test stand was assembled with a motor commonly used in light transport vehicles in the city of La Paz, and converted to CNG in two types of transformation technology, third and fifth generation, the first being subsidized by the Bolivian State. The results allowed to determine that emissions depend on the operating regime and that the vehicles converted to CNG do not significantly reduce the emission of GHG issued per unit time in relation to original operation with gasoline, this is because they generate higher emission gas flows in the same operating regimes. Emission of other gases harmful to health are significantly superior when converting to the engine with technology of 3rd generation without use of mixer. Being also its performance of lower power, it falls between 87 and 75% of the original value. It is evident that the type of technology and mode of conversion applied influences the emissions and vehicular power.

  16. Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets

    KAUST Repository

    Guiberti, T. F.

    2016-10-11

    This paper reports an analysis of the influence of fuels on the stabilization of turbulent piloted jet flames with inhomogeneous inlets. The burner is identical to that used earlier by the Sydney Group and employs two concentric tubes within the pilot stream. The inner tube, carrying fuel, can be recessed, leading to a varying degree of inhomogeneity in mixing with the outer air stream. Three fuels are tested: dimethyl ether (DME), liquefied petroleum gas (LPG), and compressed natural gas (CNG). It is found that improvement in flame stability at the optimal compositional inhomogeneity is highest for CNG and lowest for DME. Three possible reasons for this different enhancement in stability are investigated: mixing patterns, pilot effects, and fuel chemistry. Numerical simulations realized in the injection tube highlight similarities and differences in the mixing patterns for all three fuels and demonstrate that mixing cannot explain the different stability gains. Changing the heat release rates from the pilot affects the three fuels in similar ways and this also implies that the pilot stream is unlikely to be responsible for the observed differences. Fuel reactivity is identified as a key factor in enhancing stability at some optimal compositional inhomogeneity. This is confirmed by inference from joint images of PLIF-OH and PLIF-CHO, collected at a repetition rate of 10kHz in turbulent flames of DME, and from one-dimensional calculations of laminar flames using detailed chemistry for DME, CNG, and LPG.

  17. Featured Partner: Saddle Creek Logistics Services

    Science.gov (United States)

    This EPA fact sheet spotlights Saddle Creek Logistics as a SmartWay partner committed to sustainability in reducing greenhouse gas emissions and air pollution caused by freight transportation, partly by growing its compressed natural gas (CNG) vehicles for

  18. Review and analysis of potential safety impacts of and regulatory barriers to fuel efficiency technologies and alternative fuels in medium- and heavy-duty vehicles

    Science.gov (United States)

    2015-06-01

    This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...

  19. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses.

    Science.gov (United States)

    Hammond, Davyda; Jones, Steven; Lalor, Melinda

    2007-02-01

    Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.

  20. Design Guidelines for Bus Transit Systems Using Liquefied Petroleum Gas (LPG) as an Alternative Fuel.

    Science.gov (United States)

    1996-09-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Petroleum Gas (LPG), Compressed Natural Gas (CNG), and Methanol/Ethanol, are already being used in buses. At present, there do not exist co...

  1. Development and test of a new catalytic converter for natural gas ...

    Indian Academy of Sciences (India)

    catalytic converter and a new natural gas engine such as compressed natural gas. (CNG) direct ..... bility to store oxygen from random gas flow within the substrate in comparison to flow through ..... and behaviour in the water–gas shift reaction.

  2. Waste-to-Fuel: A Case Study of Converting Food Waste to Renewable Natural Gas as a Transportation Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mintz, Marianne [Argonne National Lab. (ANL), Argonne, IL (United States); Tomich, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-01

    This case study explores the production and use of renewable compressed natural gas (R-CNG)—derived from the anaerobic digestion (AD) of organic waste—to fuel heavy-duty refuse trucks and other natural gas vehicles in Sacramento, California.

  3. Cow Power: A Case Study of Renewable Compressed Natural Gas as a Transportation Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mintz, Marianne [Argonne National Lab. (ANL), Argonne, IL (United States); Tomich, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This case study explores the production and use of renewable compressed natural gas (R-CNG)—derived from the anaerobic digestion (AD) of dairy manure—to fuel 42 heavy-duty milk tanker trucks operating in Indiana, Michigan, Tennessee, and Kentucky.

  4. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  5. On the substitution of energy sources: Prospective of the natural gas market share in the Brazilian urban transportation and dwelling sectors

    International Nuclear Information System (INIS)

    Kamimura, A.; Guerra, S.M.G.; Sauer, I.L.

    2006-01-01

    The substitution process resultant of the competition between two opponents fighting for the same resource or market is pointed out through a dynamic model derived from biomathematics. A brief description of the origin of the method based on coupled non-linear differential equations (NLDE) is presented. Numerical adherence of the proposed model to explain several substitution phenomena which have occurred in the past is examined. The proposed method is particularly suitable for prospective analysis and scenarios assessment. In this sense, two applications of the model to prospect the dynamic substitution process in the Brazilian case are done: firstly, the development of the urban gas pipeline system in substituting for the bottled LPG in the dwelling sector and, secondly, the substitution of the urban Diesel transportation fleet by compressed natural gas (CNG) buses

  6. Global warming and urban smog: The cost effectiveness of CAFE standards and alternative fuels

    International Nuclear Information System (INIS)

    Krupnick, A.J.; Walls, M.A.; Collins, C.T.

    1992-01-01

    This paper evaluates alternative transportation policies for reducing greenhouse gas emissions and ozone precursors. The net cost-effectiveness -- i.e., the cost per ton of greenhouse gas reduced, adjusted for ozone reduction benefits -- of substituting methanol, compressed natural gas (CNG), and reformulated gasoline for conventional gasoline is assessed and compared with the cost-effectiveness of raising the corporate average fuel economy (CAFE) standard to 38 miles per gallon. Computing this open-quotes netclose quotes cost-effectiveness is one way of measuring the joint environmental benefits that these alternatives provide. Greenhouse gas emissions are assessed over the entire fuel cycle and include not only carbon dioxide emissions, but also methane, carbon monoxide, and nitrous oxide emissions. In computing cost-effectiveness, we account for the so-called open-quotes rebound effectclose quotes -- the impact on vehicle-miles traveled of higher or lower fuel costs. CNG is found to be the most cost-effective of these alternatives, followed by increasing the CAFE standard, substituting methanol for gasoline, and substituting reformulated for conventional gasoline. Including the ozone reduction benefits does not change the rankings of the alternatives, but does make the alternative fuels look better relative to increasing the CAFE standard. Incorporating the rebound effect greatly changes the magnitude of the estimates but does not change the rankings of the alternatives. None of the alternatives look cost-effective should a carbon tax of $35 per ton be passes (the proposal in the Stark bill, H.R. 1086), and only CNG under optimistic assumptions looks cost-effective if a tax of $100 per ton of carbon is passed

  7. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Urgun Demirtas, Meltem [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), which can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic

  8. Alternative Fuels Data Center: Natural Gas Fueling Infrastructure

    Science.gov (United States)

    greater storage capacity and is tailored to meet fleets' needs. Cost of Installation Costs of installing ). According to a report published by the National Renewable Energy Laboratory, costs for installing a CNG accompanying Clean Cities Vehicle and Infrastructure Cash-Flow Evaluation (VICE) Model to evaluate the return

  9. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Science.gov (United States)

    primary fuel or to improve the efficiency of conventional vehicle designs. Hybrid Electric Vehicles Icon cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost

  10. 75 FR 6636 - Foreign-Trade Zone 77-Memphis, TN Application for Subzone Cummins, Inc. (Engine Components...

    Science.gov (United States)

    2010-02-10

    ...-origin internal combustion engine (diesel and CNG) parts and components for the U.S. market and export...-origin parts and components that would be admitted to the proposed subzone for distribution include... harnesses, lights, fuel injection components, turbochargers, and block heaters (duty rate range: free--9.9...

  11. Less greenhouse gas is being produced; Es entstehen weniger Treibhausgase

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, W [Messer Griesheim GmbH, Krefeld (Germany)

    1995-08-09

    The use of natural gas as fuel for vehicles has the advantage that much less ozone is produced compared to other fossil fuel sources. Also, considerably less CO, NO{sub x} and other hydrocarbons are released. However, natural gas drives have not succeeded so far. Compressed natural gas (CNG) or LPG (liquid petroleum gas) have been used so far, which also have disadvantages. This article deals with important questions on the use of gas fuels and their consequences for the car engine. (BWI) [Deutsch] Die Verwendung von Erdgas als Treibstoff fuer Kraftfahrzeuge hat den Vorteil, dass im Vergleich zu anderen fossilen Energietraegern sehr viel weniger Ozon entsteht. Aussderdem werden deutlich weniger Emissionen von CO, NO{sub x} und Kohlenwasserstoffen freigesetzt. Allerdings konnten sich Erdgas-Antriebe bislang nicht durchsetzen. Bislang wird verdichtetes Erdgas (CNG) bzw. LPG (Liquefied Petrol Gas) eingesetzt, die jedoch auch Nachteile in sich bergen. Der vorliegende Artikel geht auf die wesentlichen Fragen der Nutzung von Gastreibstoffen und deren Folgen fuer den Automobilmotor ein. (BWI)

  12. Hit the gas: go green!

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    Just one year ago, CERN took delivery of its first bi-fuel vehicles (see article in Bulletin 07-08/2011). Today, the fleet comprises 100 vehicles capable of running with petrol or natural gas. At that time, Véronique Marchal, head of the Site Services section in the GS Department, told us: “We are counting on CERN car users’ environmental awareness to use natural gas fuel whenever possible.” Observations one year later show that... well, let’s say there is still plenty of room for improvement. A new awareness campaign has therefore been launched.   “Running on natural gas reduces carbon dioxide emissions by some 40%,” explains Serge Micallef of the Services Industriels de Genève (SIG), CERN’s partners for this green mobility project. CNG contains 20% biogas, which is carbon-neutral. CNG produces 60 to 95% less pollution overall than ordinary petrol, and it is entirely soot-free. It is true that filli...

  13. (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition.

    Science.gov (United States)

    Owen, Barbara A L; Yang, Zungyoon; Lai, Maoyi; Gajec, Maciej; Gajek, Maciez; Badger, John D; Hayes, Jeffrey J; Edelmann, Winfried; Kucherlapati, Raju; Wilson, Teresa M; McMurray, Cynthia T

    2005-08-01

    Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2-Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2-Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate. CAG-hairpin binding inhibits the ATPase activity of Msh2-Msh3 and alters both nucleotide (ADP and ATP) affinity and binding interfaces between protein and DNA. These changes in Msh2-Msh3 function depend on the presence of A.A mispaired bases in the stem of the hairpin and on the hairpin DNA structure per se. These studies identify critical functional defects in the Msh2-Msh3-CAG hairpin complex that could misdirect the DNA repair process.

  14. 78 FR 21349 - Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To Export Compressed Natural Gas, Vacating Prior Authority and Denying Request for... OIL COMMERCIAL GP 12-164-NG XPRESS NATURAL GAS LLC 12-168-CNG MERRILL LYNCH COMMODITIES CANADA, ULC 12...

  15. 78 FR 9281 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards

    Science.gov (United States)

    2013-02-07

    ..., heating oil, biogas used as CNG, and ethanol. We are projecting that about 150 mill gal of domestic... established, and in several cases companies have signed contracts to obtain significant quantities of... centralized facility, is consistently available throughout the year, and can be obtained for a very low, or...

  16. CNG/diesel buses for Texas school districts

    International Nuclear Information System (INIS)

    Armstrong, J.H.

    1993-01-01

    At the present time, the preponderance of trucks, buses and other heavy duty vehicles are powered by diesel engines. The reasons for the change from gasoline to diesel engines are all basically economic, due to the longer life and lower operating costs of diesel engines, as compared to gasoline engines. This provides a compelling reason to continue to use these engines, even if powered by fuel other than diesel. A major strategy within the industry has been the various attempts to adapt diesel engines to alternative fuels. These conversions have been largely to either methanol or natural gas, with propane joining the race just recently. This strategy takes advantage of the remaining life of existing vehicles by converting engines rather than purchasing a new engine (and/or vehicle) designed for and dedicated to an alternate fuel. Although diesel engines have been converted to run on natural gas, there are substantial challenges that must be met. The following describes some of the technical approaches being used for diesel engine conversions

  17. New perspectives on auto propane

    International Nuclear Information System (INIS)

    Webb, R.F.

    1991-01-01

    In spite of the high level of propane use in vehicles in North America (relative to the use of compressed natural gas (CNG) or methanol), the alternate-fuel research and development activities of original equipment manufacturers (OEMs) are focusing on methanol, CNG, and electric vehicles. If OEM indifference to propane continues, propane vehicles will continue to be available only in after-market conversions, denying propane the benefits of OEM mass-production economics, quality control, retail distribution, and other factors. Recent developments in auto propane are reported which should be considered by OEMs and policymakers to allow propane to enter the mass-scale motor vehicle market. Propane and the liquefied petroleum gas (LPG) mix used as a motor vehicle fuel are often regarded as just a byproduct of natural gas production and oil refining, giving the impression that propane/LPG will not be available in sufficient quantities to support a mass market. It is shown that LPG supply is market-responsive and that over 20 billion gal of new supply could be made available from North American sources by the year 2000 and over 27 billion gal by 2005, sufficient to supply 12.5% of the projected North American vehicle fleet in 2005. The new supply would come from incremental expansion of existing production, displacement of LPG from lower-value uses, and LPG synthesis. The environmental performance of propane/LPG engines is also compared to that of engines running on gasoline, natural gas, and methanol. Advantages of LPG over gasoline include lower carbon content and lower CO emissions, and advantages over CNG arise from the high greenhouse gas activity and long life of methane. 12 figs

  18. Assessment on the occupational exposure of urban public bus drivers to bioaccessible trace metals through resuspended fraction of settled bus dust

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 (China); Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Liu, Sa [Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, 94720-7360 (United States); Ye, Wenyuan [Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46, B-3001 Heverlee (Belgium); Lin, Nan; Meng, Ping [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 (China); Feng, Yujie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 (China); Zhang, Zhaohan; Cui, Fuyi; Lu, Binyu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 (China); Xing, Baoshan [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-03-01

    Limited information is available on the bioaccessible fraction of trace metals in the resuspended fraction of settled bus dust in order to estimate bus drivers ' occupational exposure. In this study, 45 resuspended fraction of settled dust samples were collected from gasoline and compressed natural gas (CNG) powered buses and analyzed for trace metals and their fraction concentrations using a three-step sequential extraction procedure. Experimental results showed that zinc (Zn) had the greatest bioaccessible fraction, recorded as an average of 608.53 mg/kg, followed in order of decreasing concentration by 129.80 mg/kg lead (Pb), 56.77 mg/kg copper (Cu), 34.03 mg/kg chromium (Cr), 22.05 mg/kg nickel (Ni), 13.17 mg/kg arsenic (As) and 2.77 mg/kg cadmium (Cd). Among the three settled bus dust exposure pathways, ingestion was the main route. Total exposure hazard index (HIt) for non-carcinogenic effect trace metals was lower than the safety level of 1. The incremental lifetime cancer risk (ILCR) for drivers was estimated for trace metal exposure. Pb and Ni presented relatively high potential risks in the non-carcinogenic and potentially carcinogenic health assessment for all drivers. ILCR was in the range of 1.84E − 05 to 7.37E − 05 and 1.74E − 05 to 6.95E − 05 for gasoline and CNG buses, respectively. - Highlights: • As, Cd and Ni had relatively higher bioaccessibility and mobility in the resuspended fraction of settled bus dust. • Bioaccessible metal concentrations were higher in gasoline-fueled buses than those in CNG-fueled buses. • The carcinogenic risk probabilities to drivers were around the acceptable level.

  19. An integrated CAD/CAM system for CNG pressure vessel manufactured by deep drawing and ironing operation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon Hong; Kim, Chul; Choi, Jae Chan [Pusan National Univ., Pusan (Korea, Republic of)

    2004-06-01

    The fiber reinforced composite material is widely used in the multi-industrial field because of their high specific modulus and specific strength. It has two main merits which are to cut down energy by reducing weight and to prevent explosive damage proceeding to the sudden bursting which is generated by the pressure leakage condition. Therefore, pressure vessels using this composite material can be applied in the field such as defence industry and aerospace industry. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding of composite vessel subjected to internal pressure, the standard interpretation model is developed by using the ANSYS with AutoLISP and ANSYS APDL languages, general commercial software, which is verified as useful characteristic of the solution. Among the modules of the system, both the process planning module for carrying out the process planning of filament wound composite pressure vessel and the autofrettage process module for obtaining higher residual stress will minimize trial and error and reduce the period for developing new products. The system can serve as a valuable system for experts and as a dependable training aid for beginners.

  20. An integrated CAD/CAM system for CNG pressure vessel manufactured by deep drawing and ironing operation

    International Nuclear Information System (INIS)

    Park, Joon Hong; Kim, Chul; Choi, Jae Chan

    2004-01-01

    The fiber reinforced composite material is widely used in the multi-industrial field because of their high specific modulus and specific strength. It has two main merits which are to cut down energy by reducing weight and to prevent explosive damage proceeding to the sudden bursting which is generated by the pressure leakage condition. Therefore, pressure vessels using this composite material can be applied in the field such as defence industry and aerospace industry. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding of composite vessel subjected to internal pressure, the standard interpretation model is developed by using the ANSYS with AutoLISP and ANSYS APDL languages, general commercial software, which is verified as useful characteristic of the solution. Among the modules of the system, both the process planning module for carrying out the process planning of filament wound composite pressure vessel and the autofrettage process module for obtaining higher residual stress will minimize trial and error and reduce the period for developing new products. The system can serve as a valuable system for experts and as a dependable training aid for beginners

  1. 46 CFR 121.240 - Gas systems.

    Science.gov (United States)

    2010-10-01

    ... gas (LPG) and compressed natural gas (CNG) must meet the following requirements: (a) The design, installation and testing of each LPG system must meet ABYC A-1, “Marine Liquefied Petroleum Gas (LPG) Systems... 46 Shipping 4 2010-10-01 2010-10-01 false Gas systems. 121.240 Section 121.240 Shipping COAST...

  2. 76 FR 30146 - Nationwide Categorical Waivers Under Section 1605 (Buy American) of the American Recovery and...

    Science.gov (United States)

    2011-05-24

    ... conditioners; (4) Grid tied solar inverters of 800W or less, for applications where the panels generate 139VDC... systems; (10) 8000W solar inverters for use with U.S. manufactured 315W panels; (11) Electronically... remote shut down controls (transmitters and receivers) for those CNG systems; (10) 8000W solar inverters...

  3. Alternative Fuels Data Center: Alabama Transportation Data for Alternative

    Science.gov (United States)

    Public Private Biodiesel (B20 and above) 2 8 Compressed Natural Gas (CNG) 10 23 Electric 84 67 Ethanol Boasts 200-Plus Flex Fuel Vehicles May 24, 2013 Video thumbnail for Biodiesel Fuels Education in Alabama Biodiesel Fuels Education in Alabama May 1, 2012 More Case Studies Videos Text Version More Alabama Videos

  4. Alternative Fuels Data Center: Maine Transportation Data for Alternative

    Science.gov (United States)

    Biodiesel-Blended Diesel Documentation Requirement Data Download Fueling Stations 149 stations in Maine with alternative fuels Fuel Public Private Biodiesel (B20 and above) 2 1 Compressed Natural Gas (CNG) 0 2 Electric ://www.youtube.com/embed/jHftlruFR40 Video thumbnail for Maine's Only Biodiesel Manufacturer Powers Fleets in the

  5. Air quality effects of alternative fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  6. Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi

    Science.gov (United States)

    Srivastava, Arun; Gupta, Sandeep; Jain, V. K.

    2009-03-01

    A study of the winter time size distribution and source apportionment of total suspended particulate matter (TSPM) and associated heavy metal concentrations have been carried out for the city of Delhi. This study is important from the point of view of implementation of compressed natural gas (CNG) as alternate of diesel fuel in the public transport system in 2001 to reduce the pollution level. TSPM were collected using a five-stage cascade impactor at six sites in the winters of 2005-06. The results of size distribution indicate that a major portion (~ 40%) of TSPM concentration is in the form of PM0.7 (heavy metals associated with various size fractions of TSPM. A very good correlation between coarse and fine size fraction of TSPM was observed. It was also observed that the metals associated with coarse particles have more chances of correlation with other metals; rather they are associated with fine particles. Source apportionment was carried out separately in coarse and fine size modes of TSPM by Chemical Mass Balance Receptor Model (CMB8) as well as by Principle Component Analysis (PCA) of SPSS. Source apportionment by PCA reveals that there are two major sources (possibly vehicular and crustal re-suspension) in both coarse and fine size fractions. Results obtained by CMB8 show the dominance of vehicular pollutants and crustal dust in fine and coarse size mode respectively. Noticeably the dominance of vehicular pollutants are now confined to fine size only whilst during pre CNG era it dominated both coarse and fine size mode. An increase of 42.5, 44.4, 48.2, 38.6 and 38.9% in the concentrations of TSPM, PM10.9, coarse particles, fine particles and lead respectively was observed during pre (2001) to post CNG (2005-06) period.

  7. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport

    Science.gov (United States)

    Quiros, David C.; Smith, Jeremy; Thiruvengadam, Arvind; Huai, Tao; Hu, Shaohua

    2017-11-01

    Heavy-duty on-road vehicles account for 70% of all freight transport and 20% of transportation-sector greenhouse gas (GHG) emissions in the United States. This study measured three prevalent GHG emissions - carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) - from seven heavy-duty vehicles, fueled by diesel and compressed natural gas (CNG), and compliant to the MY 2007 or 2010 U.S. EPA emission standards, while operated over six routes used for freight movement in California. Total combined (tractor, trailer, and payload) weights were 68,000 ± 1000 lbs. for the seven vehicles. Using the International Panel on Climate Change (IPCC) radiative forcing values for a 100-year time horizon, N2O emissions accounted for 2.6-8.3% of total tailpipe CO2 equivalent emissions (CO2-eq) for diesel vehicles equipped with Diesel Oxidation Catalyst, Diesel Particulate Filter, and Selective Catalytic Reduction system (DOC + DPF + SCR), and CH4 emissions accounted for 1.4-5.9% of CO2-eq emissions from the CNG-powered vehicle with a three-way catalyst (TWC). N2O emissions from diesel vehicles equipped with SCR (0.17-0.30 g/mi) were an order of magnitude higher than diesel vehicles without SCR (0.013-0.023 g/mi) during highway operation. For the vehicles selected in this test program, we measured 11-22% lower CO2-eq emissions from a hybrid compared to conventional diesel vehicles during transport over lower-speed routes of the freight transport system, but 20-27% higher CO2-eq emissions during higher-speed routes. Similarly, a CNG vehicle emitted up to 15% lower CO2-eq compared to conventional diesel vehicles over more neutral-grade highway routes, but emitted up to 12% greater CO2-eq emissions over routes with higher engine loads.

  8. Canine CNGA3 Gene Mutations Provide Novel Insights into Human Achromatopsia-Associated Channelopathies and Treatment.

    Directory of Open Access Journals (Sweden)

    Naoto Tanaka

    Full Text Available Cyclic nucleotide-gated (CNG ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM. ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivo and channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivo channels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients.

  9. Alternative Fuels Data Center: Texas Transportation Data for Alternative

    Science.gov (United States)

    Biodiesel (B20 and above) 5 13 Compressed Natural Gas (CNG) 80 44 Electric 996 123 Ethanol (E85) 203 15 thumbnail for Students Power Remote-Controlled Cars With Biodiesel Students Power Remote-Controlled Cars With Biodiesel April 14, 2012 https://www.youtube.com/embed/05L49cfqOds Video thumbnail for Camp

  10. Alternative ways to transport natural gas; Transporte alternativo de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Moura, N.R.; Campos, F.B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The Brazilian energy matrix has been showing a huge increase in the demand of natural gas due mainly to industries and power plants. Today the Brazilian gas market is supplied with gas produced by PETROBRAS and imported from Bolivia. To increase the Brazilian gas supply, on the short and middle term, PETROBRAS will import LNG (liquefied natural gas) and exploit the new offshore fields discovered on the pre-salt area. The only proven technology available today to bring this offshore gas to the market is the pipeline, but its costs for the pre-salt area are high enough to keep the solution economically attractive. So, PETROBRAS are evaluating and developing alternative ways to transport offshore gas, such as LNG, CNG (Compressed Natural Gas), GTS (Gas-to-Solids or Natural Gas Hydrates) and ANG (Adsorbed Natural Gas). Using information available in the literature, this paper analyses the main concepts of CNG and LNG floating unities. This paper also presents the PETROBRAS R and D results on ANG and GTS aiming at offshore application. (author)

  11. Atmospheric levels of aldehydes and BTEX and their relationship with vehicular fleet changes in Rio de Janeiro urban area.

    Science.gov (United States)

    Martins, Eduardo Monteiro; Arbilla, Graciela; Bauerfeldt, Glauco Favilla; de Paula, Murilo

    2007-05-01

    A comprehensive monitoring campaign to assess aldehydes and BTEX concentrations was performed during 12 months, in the Tijuca district (Rio de Janeiro), an area with commercial activities and a high flux of vehicles. The mean concentrations of formaldehyde and acetaldehyde were 151 and 30 ppb, respectively. The high formaldehyde/acetaldehyde ratio was attributed to extensive use of compressed natural gas (CNG). The number of CNG vehicles in the metropolitan Region of Rio de Janeiro increased from 23000 in January 2001 to 161000 in January 2005. Monitoring data show that, for the same period, methane and formaldehyde concentrations increased while NO(x) and CO levels diminished. Mean concentrations for benzene, toluene, ethylbenzene, m,p-xylene and o-xylene, were 1.1, 4.8, 3.6, 10.4 and 3.0 micro gm(-3), respectively. Benzene and toluene concentrations were lower than the values determined in 1996, for the same location. The levels of ethylbenzene and xylenes determined in this work are similar to values obtained in 1996. This fact may be explained as a consequence of changes in the gasoline composition.

  12. Fiscal 2000 survey report on R and D results of advanced clean energy vehicle; 2000 nendo kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With problems inherent to clean energy vehicles such as cruising distance, fuel supply and fuel consumption, ACEVs (advanced clean energy vehicles) are in demand featuring both low pollution and high efficiency compatibly. This paper explains the fiscal 2000 results of development. The target is, by using oil-alternative fuel, to reduce driving energy consumption and carbon dioxide emission to less than half and to control the life cycle cost (total of manufacturing cost, operating cost, fuel cost, etc.) to not more than twice as much as those of conventional vehicles. As ACEVs, an ANG (adsorbed natural gas) engine and flywheel battery mounted passenger car was selected, as were a CNG ceramics engine and capacitor mounted truck, CNG engine and lithium-ion battery mounted truck, LNG engine and capacitor mounted bus, and a DME engine and capacitor mounted bus. All are hybrid systems with an energy saving device. In the research of synthetic fuels, the results of the studies were summarized including the effect of various synthetic light oils on engine performance, fuel characteristics, effect of PM grain size and the optimum properties. (NEDO)

  13. Electrophoretic variants of blood proteins in japanese, 5

    International Nuclear Information System (INIS)

    Fujita, Mikio; Satoh, Chiyoko; Asakawa, Jun-ichi; Nagahata, Yuko; Tanaka, Yoshiko; Hazama, Ryuji; Goriki, Kazuaki.

    1985-08-01

    The plasma ceruloplasmin (CP) of 22,367 children of atomic bomb survivors in Hiroshima and Nagasaki was examined for variants by electrophoresis. The sample was composed of 14,964 unrelated children and 7,403 siblings of the unrelated persons. A total of seven types of electrophoretic variants were detected; four migrating anodally and three cathodally to the normal B band. We have reported two of these variants, CP A sub(NG1) and CP C sub(NG1), previously but the other five, CP A sub(NG2), CP A sub(HR1), CP A sub(HR2), CP C sub(HR1), and CP C sub(HR2), are newly identified. The allelic frequency of CP*CNG1 was 0.00916, so that the variant is considered to be a polymorphic allele. Homozygosity for the CP*CNG1 allele was detected in five individuals. This is the first report of a homozygous phenotype for a CP variant in a Japanese population. Family study of the new five variants all demonstrated patterns of codominant inheritance. (author)

  14. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    Science.gov (United States)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  15. Concentrations of polycyclic aromatic hydrocarbons in resuspendable fraction of settled bus dust and its implications for human exposure.

    Science.gov (United States)

    Gao, Peng; Liu, Sa; Feng, Yujie; Lin, Nan; Lu, Binyu; Zhang, Zhaohan; Cui, Fuyi; Xing, Baoshan; Hammond, S Katharine

    2015-03-01

    This preliminary study measured Polycyclic Aromatic Hydrocarbons (PAHs) concentrations in the resuspendable fraction of settled dust on 39 bus lines, to evaluate the impact of engine type (gasoline and compressed natural gas) on exposure for commuters and drivers. Benzo(b)fluoranthene(BbF) was the predominant PAH in resuspendable fraction of settled bus dust. The concentration of total PAHs was 92.90 ± 116.00 μg/g (range: 0.57-410) in gasoline buses and 3.97 ± 1.81 (range: 2.01-9.47) in compressed natural gas (CNG) buses. Based on Benzo[a]pyrene (BaP) equivalent concentrations for the sum of 16 PAHs, the average daily dose (ADD) via dust ingestion and dermal contact was calculated. The ADD of PAHs was higher for commuters and drivers in gasoline-powered buses than in buses using CNG buses. For both short and long duration journeys, young commuters were exposed to higher levels of PAHs via dust ingestion and dermal contact than adult commuters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. FY 1999 report on the results of the R and D of high efficiency clean energy vehicles; 2000 nendo choteisonshitsu denryoku soshi gijutsu kaihatsu seika hokokusho. Kiban gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Using the petroleum substituting clean energy, the R and D were conducted with the aim of developing vehicles which reduce the consumption of travel energy to 1/2 and the CO2 emission to 1/2 or below of those of existing vehicles. The FY 1999 results were summed up. As to the R and D of the hybrid power system, carried out were the prediction of fuel consumption performance by numerical simulation, evaluation of performance of new hybrid electric vehicles, etc. Concerning the R and D of high efficiency clean energy vehicles, the R and D of the following were reported from each of the makers: hybrid passenger car loaded with methanol fuel cells, hybrid passenger car loaded with ANG engine, hybrid truck loaded with CNG ceramic engine, hybrid truck loaded with CNG engine, hybrid bus loaded with LNG engine, and hybrid bus loaded with DME engine. Further, in the survey of synthetic fuels, the paper reported on the results of the evaluation of synthetic light oil engines and evaluation of characteristics of synthetic light oil. (NEDO)

  17. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report (Report and Appendices)

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, K.; Eudy, L.

    2009-01-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses. This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008. These results are an addition to those provided in the previous three evaluation reports.

  18. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report (Report and Appendices)

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.

    2009-08-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  19. Alternative Fuels Data Center: New Hampshire Transportation Data for

    Science.gov (United States)

    Private Biodiesel (B20 and above) 1 3 Compressed Natural Gas (CNG) 3 1 Electric 80 20 Ethanol (E85) 0 0 YouTube Video thumbnail for New Hampshire Cleans up with Biodiesel Buses New Hampshire Cleans up with Biodiesel Buses May 26, 2017 https://www.youtube.com/embed/9Qq-Leiujjk Video thumbnail for New Hampshire

  20. Alternative Fuels Data Center: Vermont Transportation Data for Alternative

    Science.gov (United States)

    alternative fuels Fuel Public Private Biodiesel (B20 and above) 3 0 Compressed Natural Gas (CNG) 1 2 Electric Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in sold per GGE Biodiesel (B20) $2.79/gallon $2.54/GGE $2.84/gallon $2.58/GGE Biodiesel (B99-B100) $2.47

  1. Alternative Fuels Data Center: New Mexico Transportation Data for

    Science.gov (United States)

    to alternative fuels and advanced vehicles Recent Additions and Updates Biodiesel Blend Mandate Public Private Biodiesel (B20 and above) 1 4 Compressed Natural Gas (CNG) 8 3 Electric 59 4 Ethanol (E85 GGE Biodiesel (B20) $2.60/gallon $2.37/GGE $2.84/gallon $2.58/GGE Biodiesel (B99-B100) $2.49/gallon

  2. Petro-Safe '95: 6. Annual environmental, safety and health conference and exhibition for the oil, gas and petrochemical industries. Book 3: AFV '95 and Production economics '95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Book 3 of the proceedings contains papers from two symposia: Alternative Fueled Vehicles and Production Economics. The Alternative Fueled Vehicles symposium is divided into 3 sections which cover: (1) Hardware and vehicles--school bus fleets and LNG; (2) Fuels and infrastructure--CNG fueling facilities, reformulated gasoline and clean diesel, LNG, future supply trends and domestic energy security, safety issues, and methanol; and (3) Regulatory issues--Clean Cities program, Energy Policy Act and state legislation, Employee Trip Reduction program, and public awareness. The papers in the Production Economics symposium deal with cost-effective methods for marginal field development; economic considerations for offshore platforms and systems; enhanced oil recovery economics; floating production economics; and capital versus operating costs in oil and gas production. Thirty-five papers have been processed separately for inclusion on the data base

  3. Operating a locomotive on liquid methane fuel

    International Nuclear Information System (INIS)

    Stolz, J.L.

    1992-01-01

    This paper reports that several years ago, Burlington Northern Railroad looked into the feasibility of operating a diesel railroad locomotive to also run on compressed natural gas in a dual-fuel mode. Recognizing the large volume of on-board storage required and other limitations of CNG in the application, a program was begun to fuel a locomotive with liquefied natural gas. Because natural gas composition can vary with source and processing, it was considered desirable to use essentially pure liquid methane as the engine fuel. Initial testing results show the locomotive system achieved full diesel-rated power when operating on liquid methane and with equivalent fuel efficiency. Extended testing, including an American Association of Railroad 500-hour durability test, was undertaken to obtain information on engine life, wear rate and lubrication oil life

  4. Future view on Norwegian natural gas distribution, 2015 - 2025; Framtidsbilde for norsk naturgassdistribusjon, 2015 - 2025

    Energy Technology Data Exchange (ETDEWEB)

    Einang, P M; Hennie, E; Jetlund, A S; Bertelsen, T; Skjelvik, J M

    2005-05-15

    The report shows how the available market for natural gas can realised as LNG and CNG. The necessary investments in infrastructure and cost for the different solutions are also included. The expected price development natural gas and the connection prices for natural gas versus crude oil are shown. The report also shows the environmental benefits possible by choosing natural gas

  5. Analysis of cranial nerve growthine improving quality of life in cerebral infarction%脑神经生长素治疗脑梗死患者生存质量分析

    Institute of Scientific and Technical Information of China (English)

    吴建农; 刘建新

    2002-01-01

    Background: Cranial nerve growthine (CNG) is a kind of new biochemical drug containing many special neuroactive substances which have a good therapeutic effect in cerebrovascular diseases, and can distinctly improve quality of life for patients with cerebral infarction. The quality of life is an improtant factor for rehabilitation,it is life satisfaction, psychological well being,happiness,adaptation and mental health.

  6. Alternative Fuels Data Center: Arizona Transportation Data for Alternative

    Science.gov (United States)

    Biodiesel (B20 and above) 3 74 Compressed Natural Gas (CNG) 12 17 Electric 399 45 Ethanol (E85) 19 2 Arizona Videos on YouTube Video thumbnail for Phoenix Utility Fleet Drives Smarter with Biodiesel Phoenix Utility Fleet Drives Smarter with Biodiesel Aug. 26, 2017 https://www.youtube.com/embed/4pUL3sb4RA4 Video

  7. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  8. Pump-to-Wheels Methane Emissions from the Heavy-Duty Transportation Sector.

    Science.gov (United States)

    Clark, Nigel N; McKain, David L; Johnson, Derek R; Wayne, W Scott; Li, Hailin; Akkerman, Vyacheslav; Sandoval, Cesar; Covington, April N; Mongold, Ronald A; Hailer, John T; Ugarte, Orlando J

    2017-01-17

    Pump-to-wheels (PTW) methane emissions from the heavy-duty (HD) transportation sector, which have climate change implications, are poorly documented. In this study, methane emissions from HD natural gas fueled vehicles and the compressed natural gas (CNG) and liquefied natural gas (LNG) fueling stations that serve them were characterized. A novel measurement system was developed to quantify methane leaks and losses. Engine related emissions were characterized from twenty-two natural gas fueled transit buses, refuse trucks, and over-the-road (OTR) tractors. Losses from six LNG and eight CNG stations were characterized during compression, fuel delivery, storage, and from leaks. Cryogenic boil-off pressure rise and pressure control venting from LNG storage tanks were characterized using theoretical and empirical modeling. Field and laboratory observations of LNG storage tanks were used for model development and evaluation. PTW emissions were combined with a specific scenario to view emissions as a percent of throughput. Vehicle tailpipe and crankcase emissions were the highest sources of methane. Data from this research are being applied by the authors to develop models to forecast methane emissions from the future HD transportation sector.

  9. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

    Science.gov (United States)

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-09-08

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.

  10. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Directory of Open Access Journals (Sweden)

    Barouch Giechaskiel

    2018-02-01

    Full Text Available Particulate matter (PM, and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG, or Liquefied Natural Gas (LNG. Urban, rural and motorway (highway emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS. Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  11. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  12. Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle.

    Science.gov (United States)

    Shorter, Joanne H; Herndon, Scott; Zahniser, Mark S; Nelson, David D; Wormhoudt, Joda; Demerjian, Kenneth L; Kolb, Charles E

    2005-10-15

    New diesel engine technologies and alternative fuel engines are being introduced into fleets of mass transit buses to try to meet stricter emission regulations of nitrogen oxides and particulates: Real-time instruments including an Aerodyne Research tunable infrared laser differential absorption spectrometer (TILDAS) were deployed in a mobile laboratory to assess the impact of the implementation of the new technologies on nitrogen oxide emissions in real world driving conditions. Using a "chase" vehicle sampling strategy, the mobile laboratory followed target vehicles, repeatedly sampling their exhaust. Nitrogen oxides from approximately 170 in-use New York City mass transit buses were sampled during the field campaigns. Emissions from conventional diesel buses, diesel buses with continuously regenerating technology (CRT), diesel hybrid electric buses, and compressed natural gas (CNG) buses were compared. The chase vehicle sampling method yields real world emissions that can be included in more realistic emission inventories. The NO, emissions from the diesel and CNG buses were comparable. The hybrid electric buses had approximately one-half the NOx emissions. In CRT diesels, NO2 accounts for about one-third of the NOx emitted in the exhaust, while for non-CRT buses the NO2 fraction is less than 10%.

  13. Spatial distribution of calcium-gated chloride channels in olfactory cilia.

    Science.gov (United States)

    French, Donald A; Badamdorj, Dorjsuren; Kleene, Steven J

    2010-12-30

    In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.

  14. Crystallization and preliminary X-ray diffraction analyses of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Yamazaki, Yasuo; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2005-01-01

    Crystals of pseudechetoxin and pseudecin, potent peptidic inhibitors of cyclic nucleotide-gated ion channels, have been prepared and X-ray diffraction data have been collected to 2.25 and 1.90 Å resolution, respectively. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction of retinal and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins are structurally classified as cysteine-rich secretory proteins and exhibit structural features that are quite distinct from those of other known small peptidic channel blockers. This article describes the crystallization and preliminary X-ray diffraction analyses of these toxins. Crystals of PsTx belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 60.30, b = 61.59, c = 251.69 Å, and diffraction data were collected to 2.25 Å resolution. Crystals of Pdc also belonged to space group P2 1 2 1 2 1 , with similar unit-cell parameters a = 60.71, b = 61.67, c = 251.22 Å, and diffraction data were collected to 1.90 Å resolution

  15. Reformulated and alternative fuels: modeled impacts on regional air quality with special emphasis on surface ozone concentration.

    Science.gov (United States)

    Schell, Benedikt; Ackermann, Ingmar J; Hass, Heinz

    2002-07-15

    The comprehensive European Air Pollution and Dispersion model system was used to estimate the impacts of the usage of reformulated and alternative fuels on regional air quality with special emphasis on surface ozone concentrations. A severe western European summer smog episode in July 1994 has been used as a reference, and the model predictions have been evaluated for this episode. A forecast simulation for the year 2005 (TREND) has been performed, including the future emission development based on the current legislation and technologies available. The results of the scenario TREND are used as a baseline for the other 2005 fuel scenarios, including fuel reformulation, fuel sulfur content, and compressed natural gas (CNG) as an alternative fuel. Compared to the year 1994, significant reductions in episode peak ozone concentrations and ozone grid hours are predicted for the TREND scenario. These reductions are even more pronounced within the investigated alternative and reformulated fuel scenarios. Especially, low sulfur fuels are appropriate for an immediate improvement in air quality, because they effect the emissions of the whole fleet. Furthermore, the simulation results indicate that the introduction of CNG vehicles would also enhance air quality with respect to ozone.

  16. Gas fuels for the transport sector; Denmark; Gas til transportsektoren

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    Recent analyses suggest that especially biogas, but also natural gas in macroeconomic terms will be attractive propellants, including for heavy transport. To implement a Danish expansion of gas infrastructure for transportation, the report recommends the following essential elements: 1) A Danish rollout should be closely linked to contracts with fleet owners with heavy vehicles / taxis / vans and the like, thus ensuring high utilization of filling stations; 2) About 10 larger, flexible CNG filling stations set up at major fleet owners is estimated as sufficient for an initial deployment phase, strategically distributed in and around Copenhagen, the major cities and along the main road network from Sweden to Germany; 3) A certain time-limited funding for the construction of infrastructure is likely to cause a rapid spread, if desired, and if other business conditions are in place; 4) There is a need for adjustment of tax terms - the rules for green taxes should be adjusted, and it should be considered to lower the taxes on CNG and biogas; 5) Natural gas mixed with biogas should be an integral element of a comprehensive strategy to ensure maximum CO{sub 2} displacement. (LN)

  17. Alternative Fuels Data Center: Alaska Transportation Data for Alternative

    Science.gov (United States)

    fuels Fuel Public Private Biodiesel (B20 and above) 0 0 Compressed Natural Gas (CNG) 1 0 Electric 8 0 Coast Region National Average per unit sold per GGE per unit sold per GGE Biodiesel (B20) $3.01/gallon $2.74/GGE $2.84/gallon $2.58/GGE Biodiesel (B99-B100) $3.61/gallon $3.57/GGE $3.48/gallon $3.45/GGE

  18. Model curriculum outline for Alternatively Fueled Vehicle (AFV) automotive technician training in light and medium duty CNG and LPG

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This model curriculum outline was developed using a turbo-DACUM (Developing a Curriculum) process which utilizes practicing experts to undertake a comprehensive job and task analysis. The job and task analysis serves to establish current baseline data accurately and to improve both the process and the product of the job through constant and continuous improvement of training. The DACUM process is based on the following assumptions: (1) Expert workers are the best source for task analysis. (2) Any occupation can be described effectively in terms of tasks. (3) All tasks imply knowledge, skills, and attitudes/values. A DACUM panel, comprised of six experienced and knowledgeable technicians who are presently working in the field, was given an orientation to the DACUM process. The panel then identified, verified, and sequenced all the necessary job duty areas and tasks. The broad duty categories were rated according to relative importance and assigned percentage ratings in priority order. The panel then rated every task for each of the duties on a scale of 1 to 3. A rating of 3 indicates an {open_quotes}essential{close_quotes} task, a rating of 2 indicates an {open_quotes}important{close_quotes} task, and a rating of 1 indicates a {open_quotes}desirable{close_quotes} task.

  19. Assessment of the emissions and air quality impacts of biomass and biogas use in California.

    Science.gov (United States)

    Carreras-Sospedra, Marc; Williams, Robert; Dabdub, Donald

    2016-02-01

    It is estimated that there is sufficient in-state "technically" recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality. This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining

  20. Uncertainty in particle number modal analysis during transient operation of compressed natural gas, diesel, and trap-equipped diesel transit buses.

    Science.gov (United States)

    Holmén, Britt A; Qu, Yingge

    2004-04-15

    The relationships between transient vehicle operation and ultrafine particle emissions are not well-known, especially for low-emission alternative bus technologies such as compressed natural gas (CNG) and diesel buses equipped with particulate filters/traps (TRAP). In this study, real-time particle number concentrations measured on a nominal 5 s average basis using an electrical low pressure impactor (ELPI) for these two bus technologies are compared to that of a baseline catalyst-equipped diesel bus operated on ultralow sulfur fuel (BASE) using dynamometer testing. Particle emissions were consistently 2 orders of magnitude lower for the CNG and TRAP compared to BASE on all driving cycles. Time-resolved total particle numbers were examined in terms of sampling factors identified as affecting the ability of ELPI to quantify the particulate matter number emissions for low-emitting vehicles such as CNG and TRAP as a function of vehicle driving mode. Key factors were instrument sensitivity and dilution ratio, alignment of particle and vehicle operating data, sampling train background particles, and cycle-to-cycle variability due to vehicle, engine, after-treatment, or driver behavior. In-cycle variability on the central business district (CBD) cycle was highest for the TRAP configuration, but this could not be attributed to the ELPI sensitivity issues observed for TRAP-IDLE measurements. Elevated TRAP emissions coincided with low exhaust temperature, suggesting on-road real-world particulate filter performance can be evaluated by monitoring exhaust temperature. Nonunique particle emission maps indicate that measures other than vehicle speed and acceleration are necessary to model disaggregated real-time particle emissions. Further testing on a wide variety of test cycles is needed to evaluate the relative importance of the time history of vehicle operation and the hysteresis of the sampling train/dilution tunnel on ultrafine particle emissions. Future studies should

  1. Characterizing the range of children's air pollutant exposure during school bus commutes.

    Science.gov (United States)

    Sabin, Lisa D; Behrentz, Eduardo; Winer, Arthur M; Jeong, Seong; Fitz, Dennis R; Pankratz, David V; Colome, Steven D; Fruin, Scott A

    2005-09-01

    Real-time and integrated measurements of gaseous and particulate pollutants were conducted inside five conventional diesel school buses, a diesel bus with a particulate trap, and a bus powered by compressed natural gas (CNG) to determine the range of children's exposures during school bus commutes and conditions leading to high exposures. Measurements were made during 24 morning and afternoon commutes on two Los Angeles Unified School District bus routes from South to West Los Angeles, with seven additional runs on a rural/suburban route, and three runs to test the effect of window position. For these commutes, the mean concentrations of diesel vehicle-related pollutants ranged from 0.9 to 19 microg/m(3) for black carbon, 23 to 400 ng/m(3) for particle-bound polycyclic aromatic hydrocarbon (PB-PAH), and 64 to 220 microg/m(3) for NO(2). Concentrations of benzene and formaldehyde ranged from 0.1 to 11 microg/m(3) and 0.3 to 5 microg/m(3), respectively. The highest real-time concentrations of black carbon, PB-PAH and NO(2) inside the buses were 52 microg/m(3), 2000 ng/m(3), and 370 microg/m(3), respectively. These pollutants were significantly higher inside conventional diesel buses compared to the CNG bus, although formaldehyde concentrations were higher inside the CNG bus. Mean black carbon, PB-PAH, benzene and formaldehyde concentrations were higher when the windows were closed, compared with partially open, in part, due to intrusion of the bus's own exhaust into the bus cabin, as demonstrated through the use of a tracer gas added to each bus's exhaust. These same pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements. Mean concentrations of pollutants with substantial secondary formation, such as PM(2.5), showed smaller differences between open and closed window conditions and between bus routes. Type of bus, traffic congestion levels, and encounters with

  2. Ignition timing advance in the bi-fuel engine

    Directory of Open Access Journals (Sweden)

    Marek FLEKIEWICZ

    2009-01-01

    Full Text Available The influence of ignition timing on CNG combustion process has been presented in this paper. A 1.6 liter SI engine has been tested in the special program. For selected engine operating conditions, following data were acquired: in cylinder pressure, crank angle, fuel mass consumption and exhaust gases temperatures. For the timing advance correction varying between 0 to 15 deg crank angle, the internal temperature of combustion chamber, as well as the charge combustion ratio and ratio of heat release has been estimated. With the help of the mathematical model, emissions of NO, CO and CO2 were additionally estimated. Obtained results made it possible to compare the influence of ignition timing advance on natural gas combustion in the SI engine. The engine torque and in-cylinder pressure were used for determination of the optimum engine timing advance.

  3. Optimization of cAMP fluorescence dataset from ACTOne cannabinoid receptor 1 cell line

    Directory of Open Access Journals (Sweden)

    Chaela S. Presley

    2016-06-01

    Full Text Available The ACTOne cannabinoid receptor 1 functional system is comprised of transfected HEK cells with the parental cyclic nucleotide gated channel (CNG co-transfected with cannabinoid receptor 1 (CB1. The ACTOne CB1 cell line was evaluated for cAMP driven fluorescence by optimizing experimental conditions for sensitivity to forskolin and CP 55,940, reading time point, reliability of cell passage number, and pertussis inactivation of Gi/o.

  4. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  5. FY 1999 report on the investigational study of the actual state of the utilization of clean energy vehicles for the transport business use; 1999 nendo chosa hokokusho. Unso jigyo yo clean energy jidosha no shiyo jittai ni kakawaru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of promoting the utilization of clean energy vehicles (CEV), survey was made on the assessment of the pollution by the CEVs introduced by now, subjects on the utilization, etc. As to the transport business use CEV running in the market, CNG vehicle is mostly used, and therefore, the gas emitted from them was tested. As a result, it was found out that CNG vehicle emits fewer NOx, PM and soot/smoke than diesel cars and contributes to improving the air pollution in large cities. However, it emits more CO2 than diesel car, and accordingly, it is necessary to reduce the fuel consumption. The practicality in the limited running distance is almost the same as that of diesel car, but it is desirable to improve startability, acceleration and gradability. Further, the occurrence of any troubles was pointed out in a third of the total numbers of CEV vehicle. Improvement in reliability is a must. CEV is higher in car cost than diesel car, and for the spread/promotion, it is necessary to prepare for assistance such as subsidy. Moreover, there are many requests for improvement in number, business hours, supply capacity, etc. of fuel supply station. (NEDO)

  6. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  7. Methane as a Vehicle Fuel in Europe

    International Nuclear Information System (INIS)

    Maedge, M.

    2014-01-01

    NGVA Europe is aware of the importance of the promotion of Natural Gas and biomethane as an important vehicle fuels in Europe. The European Commission has recently adopted the Clean Power for Transport package including a Directive for deployment of alternative fuels infrastructure for CNG and LNG. Currently, the Member States have to report in their National Policy Frameworks, in a period of 24 months, their natural gas filling station development plans and fuel strategy in the nearest future. The European Union has a new transport infrastructure policy that connects the continent between East and West, North and South (TEN-T) and alternatives fuels will be taken into consideration for reducing the CO2 emissions, improve the air quality in urban areas, reduce the dependence with oil and enhance the competitiveness of the European industry. All of these researches have to be focus in the Horizon 2020, in which clean vehicles with CNG and LNG will be used to create 'smart cities and communities'. For achieving this idea, we are involved in the LNG Blue Corridor Project to demonstrate that the LNG is a real alternative for medium and long distance transport through the creation of new fuel stations in different countries such as Spain, France or Portugal. (author).

  8. Loss of CO2 sensing by the olfactory system of CNGA3 knockout mice

    Directory of Open Access Journals (Sweden)

    Jinlong HAN, Minmin LUO

    2010-12-01

    Full Text Available Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory system in mice sensitively detects CO2 in the air. Olfactory CO2 neurons are believed to rely on cyclic guanosine monophosphate (cGMP as the key second messenger; however, the specific ion channel underlying CO­2 responses remains unclear. Here we show that CO2-evoked neuronal and behavioral responses require cyclic nucleotide-gated (CNG channels consisting of the CNGA3 subunit. Through Ca2+-imaging, we found that CO2-triggered Ca2+ influx was abolished in necklace olfactory sensory neurons (OSNs of CNGA3-knockout mice. Olfactory detection tests using a Go/No-go paradigm showed that these knockout mice failed to detect 0.5% CO2. Thus, sensitive detection of atmospheric CO2 depends on the function of CNG channels consisting of the CNGA3 subunit in necklace OSNs. These data support the important role of the necklace olfactory system in CO2 sensing and extend our understanding of the signal transduction pathway mediating CO2 detection in mammals [Current Zoology 56 (6: 793–799, 2010].

  9. Dual fuel injection piggyback controller system

    Science.gov (United States)

    Muji, Siti Zarina Mohd.; Hassanal, Muhammad Amirul Hafeez; Lee, Chua King; Fawzi, Mas; Zulkifli, Fathul Hakim

    2017-09-01

    Dual-fuel injection is an effort to reduce the dependency on diesel and gasoline fuel. Generally, there are two approaches to implement the dual-fuel injection in car system. The first approach is changing the whole injector of the car engine, the consequence is excessive high cost. Alternatively, it also can be achieved by manipulating the system's control signal especially the Electronic Control Unit (ECU) signal. Hence, the study focuses to develop a dual injection timing controller system that likely adopted to control injection time and quantity of compressed natural gas (CNG) and diesel fuel. In this system, Raspberry Pi 3 reacts as main controller unit to receive ECU signal, analyze it and then manipulate its duty cycle to be fed into the Electronic Driver Unit (EDU). The manipulation has changed the duty cycle to two pulses instead of single pulse. A particular pulse mainly used to control injection of diesel fuel and another pulse controls injection of Compressed Natural Gas (CNG). The test indicated promising results that the system can be implemented in the car as piggyback system. This article, which was originally published online on 14 September 2017, contained an error in the acknowledgment section. The corrected acknowledgment appears in the Corrigendum attached to the pdf.

  10. Natural gas to improve energy security in Small Island Developing States: A techno-economic analysis

    Directory of Open Access Journals (Sweden)

    Pravesh Raghoo

    Full Text Available There is a paucity of studies on natural gas-based energy production in Small Island Developing States (SIDS even though technological improvements today are likely to make the application of natural gas more and more feasible. The development of natural gas in some of the regions of the Pacific, Africa, Indian Ocean and Caribbean attracts nearby countries and the coming up of the compressed natural gas (CNG technology which can serve regional markets are two motivations for SIDS to develop natural gas-based energy provision. A third factor concerns long-term energy security. Due to continued reliance on fossil fuels and slow uptake of renewable energy, there is a need to diversify SIDS’ energy mix for a sustainable electricity industry. Comparing the opportunities and constraints of liquefied natural gas (LNG and compressed natural gas (CNG in a SIDS-specific context, this paper discusses how to improve the integration of natural gas in prevailing energy regimes in SIDS as an alternative fuel to oil and complementary to renewable energy sources. To illustrate feasibility in practice, a techno-economic analysis is carried out using the island of Mauritius as an example. Keywords: Energy security, Natural gas, Small Island Developing States

  11. The development of natural gas as an automotive fuel in China

    International Nuclear Information System (INIS)

    Ma, Linwei; Geng, Jia; Li, Weqi; Liu, Pei; Li, Zheng

    2013-01-01

    This manuscript aims to systematically review the development of natural gas as an automotive fuel in China and to draw policy implications for decision making. This manuscript presents a brief overview of natural gas development and the potential of natural gas as an automotive fuel in China, followed by an introduction to the development of various technology pathways for using natural gas as an automotive fuel, including CNG (compressed natural gas) vehicles, LNG (liquefied natural gas) vehicles, and others. This material suggests, a large potential to increase the use of natural gas as an automotive fuel, especially for CNG and LNG vehicles. The following activities will promote the development of natural gas vehicles: prioritizing vehicle use in the utilization of natural gas, supporting the construction of natural gas filling stations, developing a favorable pricing policy for natural gas used in vehicles, and enhancing the research and development to further improve the technology performance, especially for the technology of LNG vehicles. -- Highlights: •An overview of the natural gas development in China. •A systematic introduction of the development of natural gas vehicles in China. •A review of the technological performance of natural gas vehicles. •Policy suggestions to promote the development of natural gas vehicles in China

  12. Abundance and Utility: For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas

    Science.gov (United States)

    2014-08-01

    GTL plants in the world (two in both Malaysia and Qatar and one in South Africa). As recent developments are increasing the supply of natural gas...SUPPLEMENTARY NOTES The article (likely in cleaner form) will eventually be posted online at: http://www.tacticaldefensemedia.com/archive/dod_power.php The...there are approximately 1,400 CNG and 100 LNG (public and private) refueling stations, compared to about 150,000 retail fueling stations. While

  13. Solar Photovoltaic and Liquid Natural Gas Opportunities for Command Naval Region Hawaii

    Science.gov (United States)

    2014-12-01

    panels made of monocrystalline (c-Si) panels (EPRI, 2010). The price breakdown is as follows: Table 8. Utility-Scale Solar PV Power Plant O&M Costs...Battery Energy Storage System CBA Cost Benefit Analysis CNG Containerized Natural Gas CNRH Command Naval Region Hawaii c-Si Monocrystalline ...of ground-mounted solar-PV panels on the West Loch Peninsula, on Pearl Harbor Naval Base. The second proposed project is a land lease to an

  14. The Effects of Bus Ridership on Airborne Particulate Matter (PM10) Concentrations

    OpenAIRE

    Jaeseok Her; Sungjin Park; Jae Seung Lee

    2016-01-01

    Air pollution caused by rapid urbanization and the increased use of private vehicles seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel buses with compressed natural gas (CNG) buses that emit less exhaust gas. Urban planning strategies such as transit-oriented development (TOD) posit that reducing private vehicle use and increasing public transportation use would reduce air pollution levels. The present study examined the effects of bus r...

  15. Industry and traffic related particles and their role in human health

    Energy Technology Data Exchange (ETDEWEB)

    Oravisjaervi, K.

    2013-11-01

    Combustion generated ultrafine particles have been found to be responsible for adverse effects on human health. New emission reduction technologies and fuels will change the composition of particle emissions. It is important to confirm that the new reduction technologies are designed to minimise the adverse health effects. In this doctoral thesis the potential health effects caused by traffic and industrially generated particles were studied using epidemiological, experimental and in silico studies. The effects of short-term changes in PM2.5 on the respiratory health of symptomatic children living near a steel works were studied to investigate whether specific sources of PM2.5 have the possible health effects. The PM2.5 emission sources were identified: long-range transport, a steel works, soil and street dust and a mechanical engineering works. Significant associations were not found between respiratory symptoms and PM2.5 or the sources markers. The deposition of traffic-related particles into the human respiratory system was computed using the lung deposition model. Particle size distribution was measured from diesel- and compressed natural gas (CNG)-fuelled busses and an off-road diesel engine under different combustion situations. The majority of the measured traffic-related particle numbers reach the alveolar region of the lungs. There were differences in the deposition of particles when different catalysts, engines or fuels were used. CNG or a diesel particulate filter (DPF) significantly reduced lung exposure to particles. Also physical activity, age and gender affected the deposition of particles. The diesel particles comprised compounds (carcinogenic PAHs, transition metals), which may have the ability to generate reactive oxygen. This study provides new knowledge how of the emission abatement technologies and fuels affects particle number and their composition, as well health hazards. Cleaner technology (CNG, DPF), emits significantly fewer particles in

  16. Biomethane as transport fuel – A comparison with other biogas utilization pathways in northern Italy

    International Nuclear Information System (INIS)

    Patrizio, P.; Leduc, S.; Chinese, D.; Dotzauer, E.; Kraxner, F.

    2015-01-01

    Highlights: • CHP and biomethane generation were investigated as biogas utilization pathways. • A spatially explicit biogas supply chain optimization model was developed. • Biomethane as vehicle fuel has lower investment and operational costs than CHP. • CHP has most favorable economics thanks to high carbon reduction potential. - Abstract: Italy is a large producer of biogas from anaerobic digestion, which is mainly used for power generation with limited use of cogenerated heat. Other utilization pathways, such as biomethane injection into the natural gas grid or biomethane used as a vehicle fuel, remain unexplored. Given the dense grid of natural gas pipelines and existing Compressed Natural Gas (CNG) refueling stations in northern Italy, significant market opportunities for biogas could also arise in the heating and transport sectors. The main objectives of this paper are to explore the potential role of agricultural biogas in different utilization pathways. Biogas combustion for simultaneous production of heat and power in small Combined Heat and Power (CHP) facilities is also assessed, as is upgrading to biomethane for transport or natural gas grid injection in the specific context of northern Italy. The spatially explicit optimization model BeWhere is used to identify optimal locations where greenfield biogas plants could be installed and to determine the most economic and environmentally beneficial mix of conversion technologies and plant capacities. Carbon price, for instance in the form of tradable emission permits, is assessed as a policy instrument and compared with other options such as price premiums on biomethane or electricity costs. Results show that starting from a carbon price of 15 EUR/tCO_2, the cogeneration option is preferable if plants are located in the proximity of existing district heating infrastructure. CNG plants are only competitive starting at a carbon price of 70 EUR/tCO_2 in areas with high feedstock availability. The

  17. New energy carriers in vehicles and their impact on confined infrastructures Overview of previous research and research needs

    OpenAIRE

    Salvi , Olivier; Lonnermark , Anders; Ingason , Haukur; Truchot , Benjamin; Leucker , Roland; Amberg , Félix; Molenaar , Dirk-Jan; Hejny , Horst

    2010-01-01

    International audience; The global warming debate forces the vehicle industry to come up with new environmentally friendly solutions. In 10 years time, or even faster depending on the pressure from different governments in particular in Europe, vehicles will not only use gasoline, diesel and LPG, but also CNG, Hydrogen, ethanol, DME and other bio-fuels, as well as batteries and fuel cells. This quick development and the diversity of new energy carriers can jeopardize the safety in underground...

  18. A system model for assessing vehicle use-phase water consumption in urban mobility networks

    International Nuclear Information System (INIS)

    Yen, Jeff; Bras, Bert

    2012-01-01

    Water consumption is emerging as an important issue potentially influencing the composition of future urban transportation networks, especially as projected urban populations are expected to outpace water availability and as alternative fuels and vehicles are being implemented in such regions. National and State policies aimed at reducing dependence on imported fuels and energy can increase local production of fuels and energy, impacting demand on local water resources. This article details the development of a model-based assessment on water consumption and withdrawal pertaining to the use-phase of conventional and alternative transportation modes based on regional energy and fuel production. An extensive literature review details water consumption from fuel extraction, processing, and distribution as well as power plant operations. Using Model-Based Systems Engineering principles and the Systems Modeling Language, a multi-level, multi-modal framework was developed and applied to the Metro Atlanta transportation system consisting of conventional and alternative vehicles across varying conditions. According to the analysis, vehicles powered by locally produced biofuels and electricity (assuming average local grid mix for charging) consume more water than locally refined gasoline and CNG-powered vehicles. Improvements in power plant technologies, electricity generation (e.g., use of solar and wind versus hydro power) and vehicle efficiencies can reduce such water consumption significantly. Total water withdrawal for each vehicle and fuel is significantly greater than water consumption. - Highlights: ► A model was made to assess the local water consumption due to conventional and alternatively powered vehicles in a city. ► Water consumed in the local and external production of various fuels was reviewed and included. ► Basic battery electric and biofuel powered vehicles consume on average more water than conventional gasoline and Compressed Natural Gas (CNG

  19. Building Community and Collaboration Applications for MMOGs

    Directory of Open Access Journals (Sweden)

    George Adam

    2012-01-01

    Full Text Available Supporting collaborative activities among the online players are one of the major challenges in the area of Massively Multiplayer Online Games (MMOG, since they increase the richness of gaming experience and create more engaged communities. To this direction, our study has focused on the provision of services supporting and enhancing the players' in-game community and collaboration activities. We have designed and implemented innovative tools exploiting a game adaptation technology, namely, the In-game Graphical Insertion Technology (IGIT, which permits the addition of web-based applications without any need from the game developers to modify the game at all, nor from the game players to change their game installation. The developed tools follow a design adapted to the MMOG players' needs and are based on the latest advances on Web 2.0 technology. Their provision is performed through the core element of our system, which is the so-called Community Network Game (CNG Server. One of the important features provided by the implemented system's underlying framework is the utilization of enhanced Peer-to-Peer (P2P technology for the distribution of user-generated live video streams. In this paper, we focus on the architecture of the CNG Server as well as on the design and implementation of the online community and collaboration tools.

  20. Co-benefit analysis of an air quality management plan and greenhouse gas reduction strategies in the Seoul metropolitan area

    International Nuclear Information System (INIS)

    Chae, Yeora

    2010-01-01

    This study assesses the co-benefits of an air quality management plan and CO 2 emission control measures in the Seoul metropolitan area. This co-benefit analysis includes NO x , PM 10 and CO 2 emission reductions and cost estimations, yielding cost-effectiveness values for each of the measures. It has been found that fuel switching from BC-oil to LNG, CNG bus operation are most cost effective in NO x and PM 10 emission reduction. For CO 2 emission reduction, landfill gas reuse and fuel switching were the most effective option. The correlation of cost-effectiveness analysis indicated that fuel switching and CNG bus operation were the most cost effective option to reduce NO x and CO 2 , PM 10 and CO 2 emissions at the same time. Based on cost effectiveness and co-benefit analysis, this study developed an alternative scenario of emission reduction measures through optimization in order to achieve both air quality improvements and CO 2 reduction targets at the minimum cost. These integrated environmental strategies make it possible to reduce 10.3 Mt of CO 2 emissions, which is beyond the target of the CO 2 reduction strategy, and achieve air quality improvement targets together and at a lower cost than the CO 2 emission reduction and air quality improvement measures combined.

  1. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope

    Science.gov (United States)

    Meyer, Stephanie A.; Ozbay, Baris N.; Potcoava, Mariana; Salcedo, Ernesto; Restrepo, Diego; Gibson, Emily A.

    2016-06-01

    We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ˜81 and ˜44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.

  2. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    Science.gov (United States)

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590

  3. Economics of natural gas upgrading

    International Nuclear Information System (INIS)

    Hackworth, J.H.; Koch, R.W.

    1995-01-01

    Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels

  4. Bibliography on Cold Regions Science and Technology. Volume 44, Part 2

    Science.gov (United States)

    1990-01-01

    eng1 44-2171 le08*3-10488 (IQk))it. i - gj 44-390" ly) Bomi Countly. Xizang (Tibet) 11989. p,148-160. chi) Lyons. weB . Niseilek. 3L. 44-2409 Diiminion... histoirical and technical dleveliopmnt Tesnsfssrmiiins andI dssisi-oi si late-fall applied sitrogen Schaytema. G.5. 11999, p. 77 -85. enpl 44-44 during...Usnn meling ice to teach radiomectric dating. Wise, Evaluating pie-winter soil preparation for reclamation 44-100 DU .. i199. p.38- 40 ,69, cng1

  5. Analysis of Air Force Compliance with Executive Order 13149

    Science.gov (United States)

    2004-03-23

    Stratus x x Dodge Minivan x x x Dodge Pickup x Ford Taurus x x x x Ford Explorer x x x x Ford Ranger x x x Mazda B3000 x x x Chevrolet S10 x x Chevrolet...from General Motors, Ford , Daimler Chrysler, Toyota, Honda, and many others. Although prices vary around the country, it is estimated that, CNG will...20-40%. Nitrogen Oxides are reduced by 15-20%. Particulates are reduced by 80-95% (Triangle Clean Cities Coalition, 2003). Ford is currently

  6. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  7. Concentrations of polycyclic aromatic hydrocarbons in resuspendable fraction of settled bus dust and its implications for human exposure

    International Nuclear Information System (INIS)

    Gao, Peng; Liu, Sa; Feng, Yujie; Lin, Nan; Lu, Binyu; Zhang, Zhaohan; Cui, Fuyi; Xing, Baoshan; Hammond, S. Katharine

    2015-01-01

    This preliminary study measured Polycyclic Aromatic Hydrocarbons (PAHs) concentrations in the resuspendable fraction of settled dust on 39 bus lines, to evaluate the impact of engine type (gasoline and compressed natural gas) on exposure for commuters and drivers. Benzo(b)fluoranthene(BbF) was the predominant PAH in resuspendable fraction of settled bus dust. The concentration of total PAHs was 92.90 ± 116.00 μg/g (range: 0.57–410) in gasoline buses and 3.97 ± 1.81 (range: 2.01–9.47) in compressed natural gas (CNG) buses. Based on Benzo[a]pyrene (BaP) equivalent concentrations for the sum of 16 PAHs, the average daily dose (ADD) via dust ingestion and dermal contact was calculated. The ADD of PAHs was higher for commuters and drivers in gasoline-powered buses than in buses using CNG buses. For both short and long duration journeys, young commuters were exposed to higher levels of PAHs via dust ingestion and dermal contact than adult commuters. - Highlights: • Resuspendable fraction of settled dust from microenvironment of buses in Harbin monitored for PAHs exposure assessment. • Higher levels of PAHs pollutants at gasoline-powered buses than at compressed natural gas-powered buses. • Non-occupational and occupational exposures in the microenvironment of buses are assessed. - Occupational and non-occupational exposure to PAHs from the microenvironment of bus

  8. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes

    Directory of Open Access Journals (Sweden)

    Uchikoga Nobuyuki

    2010-05-01

    Full Text Available Abstract Background Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. Results To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG, CaM kinase kinase (CaMKK and the plasma membrane Ca2+ ATPase pump (PMCA, and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. Conclusions The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  9. Effect of traffic restriction on atmospheric particle concentrations and their size distributions in urban Lanzhou, Northwestern China.

    Science.gov (United States)

    Zhao, Suping; Yu, Ye; Liu, Na; He, Jianjun; Chen, Jinbei

    2014-02-01

    During the 2012 Lanzhou International Marathon, the local government made a significant effort to improve traffic conditions and air quality by implementing traffic restriction measures. To evaluate the direct effect of these measures on urban air quality, especially particle concentrations and their size distributions, atmospheric particle size distributions (0.5-20 microm) obtained using an aerodynamic particle sizer (model 3321, TSI, USA) in June 2012 were analyzed. It was found that the particle number, surface area and volume concentrations for size range 0.5-10 microm were (15.0 +/- 2.1) cm(-3), (11.8 +/- 2.6) microm2/cm3 and (1.9 +/- 0.6) microm2/cm3, respectively, on the traffic-restricted day (Sunday), which is 63.2%, 53.0% and 47.2% lower than those on a normal Sunday. For number and surface area concentrations, the most affected size range was 0.5-0.7 and 0.5-0.8 microm, respectively, while for volume concentration, the most affected size ranges were 0.5-0.8, 1.7-2.0 and 5.0-5.4 microm. Number and volume concentrations of particles in size range 0.5-1.0 microm correlated well with the number of non-CNG (Compressed Natural Gas) powered vehicles, while their correlation with the number of CNG-powered vehicles was very low, suggesting that reasonable urban traffic controls along with vehicle technology improvements could play an important role in improving urban air quality.

  10. The Present Status of Using Natural Gas Cylinders and Acoustic Emission in Thailand

    Science.gov (United States)

    Jomdecha, C.; Jirarungsatian, C.; Methong, W.; Poopat, B.

    This chapter presents the status of using natural gas cylinders (CNG/NGV) and acoustic emission (AE) in Thailand. During the period from 2006 to 2013, more than 600,000 CNG cylinder units for vehicles were installed and used for transportation, cars, and trucks in Thailand. The number of cylinder units will be tentatively increased in the future due to the increase in gasoline price. Due to the use of high-pressurization equipment in public, the issue of a risk to public safety has been raised. As of this writing, in 2013, the testing standard from the Thai Department of Energy Business recommends inspection every 5 years using effective inspection methods in order to guarantee safe usage of gas cylinders, including the AE method, following ISO 16148. Normally in Thailand, AE is used in research and petrochemical plants as a special technique. The main applications are testing of pressure vessels, aboveground storage tanks, and university research. Few companies are available to conduct AE for testing natural gas cylinders due to the limited safety of the high-pressure operation and AE equipment and a lack of qualified AE personnel. To develop AE techniques, equipment, procedures, and acceptance criteria of natural gas cylinders are the main focus of AE personnel in Thailand. A desired achievement for current development is for natural gas cylinder testing, which can be applied in field tests and supported by a national testing standard.

  11. Gas-fuelled driving and sailing. Cost and environmental effects of natural gas and green gas in transport; Rijden en varen op gas. Kosten en milieueffecten van aardgas en groen gas in transport

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.E.; Croezen, H.J.; Verbraak, G.M.; Brouwer, F.P.E.

    2010-06-15

    A number of new gaseous fuels for cars and ships is becoming more popular: compressed natural gas (CNG), liquid natural gas (LNG) and biogas. This report presents the results of a study of the costs and environmental effects of these gas applications and compares them to diesel and petrol and the 'common' biofuels biodiesel and bio-ethanol. The green gas applications emit much less CO2 than biodiesel and bio-ethanol from wheat. The air-polluting emissions are much lower in all cases. The basic cost of driving or sailing on these gaseous fuels (excl. levies and taxes) are significantly higher than in case of diesel, but in some cases van be comparable or even lower than in case of liquid biofuels. [Dutch] Een aantal nieuwe gasvormige brandstoffen voor auto's en schepen is in opkomst: aardgas onder druk (CNG), vloeibaar aardgas (LNG) en biogassen. In dit rapport worden de resultaten van een onderzoek naar de kosten en de milieueffecten van deze gastoepassingen gepresenteerd en vergeleken met diesel en benzine en de 'gewone' biobrandstoffen bio-diesel en bio-ethanol. De groen gas-toepassingen stoten aanzienlijk minder CO2 uit dan biodiesel en bio-ethanol uit tarwe. De luchtvervuilende emissies zijn in alle gevallen een stuk lager. De kale kosten van rijden en varen op deze gasvormige brandstoffen (excl. heffingen en belastingen) zijn wel aanzienlijk hoger dan bij diesel, maar kunnen in sommige toepassingen vergelijkbaar of lager uitkomen dan van de vloeibare biobrandstoffen.

  12. A model for economic evaluation of the use of Adsorbed Natural Gas (ANG); Modelo de avaliacao economica do uso do Gas Natural Adsorvido (GNA)

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Diana C.S.; Cavalcante Junior, Celio L.; Torres, A. Eurico B.; Oliveira Junior, Jose A.; Medeiros, Vanildo M. de [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Campos, Flavio B.; Moura, Newton R. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Gerencia de Gas e Energia; Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Gerencia de Tecnologia de Gas e Energia; Alexandre, Francisco de Assis Souza

    2004-07-01

    Natural gas is currently transported by two main ways: through pipelines and stored in reservoirs, under compressed (CNG) or liquefied (LNG) forms. Adsorbed natural gas (ANG) is a third alternative to vessel storage, which has been intensively reported in the scientific and technical literature. Working pressures are considerably lower for ANG (3,5 MPa as compared to 25 MPa for CNG), which results in lower costs with vessel construction and compression and safer handling. The project ADSPOR, sponsored by PETROBRAS and part of the R and D portfolio of RedeGasEnergia, aims to assess the technical and economical feasibility of storing and transporting natural gas confined in carbon adsorbents. The objectives of this project are the production of high-capacity active carbons, the collection of adsorption data for NG storage and the economic evaluation of ANG. The present work presents a model for cost estimation of the ANG business, which comprises from the compression into ANG vessels until the distribution to the final costumer, taking into account several shipping modes. The variables involved in the model were: compression costs, equipment and materials technical data, costs with product handling and shipping costs for motor ways, railways and inland waterways. These variables were linked so as to generate a cost matrix that may be used to assess investment and calculate the final cost for GNA transport. The model may be used to carry out parameter sensitivity analysis, for decision-making and management purposes. (author)

  13. Review of Audits Issued by the Defense Contract Audit Agency in FY 2012 and FY 2013

    Science.gov (United States)

    2014-09-08

    cng.lnc.•ct•in~~ lahlw hnnrs. I h:: alsn .;:əllaincd lh<d lha1 i1 is aul the.: n,l.; .,.f •he ~’we.: nun ..:nt ..:ngin..:t’l hl .;valuo\\lc lite <.l...Perform a preliminary study of DMIS reporting of price proposal audit results at other DCAA locations and determine that net savings has been...Attachment 11 (cont’d) DODIG-2014-109 │ 93 Attachment 11 (cont’d) b. Where the preliminary study perfonned in 2.a shows that other DCAA locations have not

  14. CNG as a Feasible Replacement for the U.S. Transportation Sector

    Science.gov (United States)

    2012-03-01

    not convenient for drivers either to have gigantic fuel tanks on vehicles or to stop several times for refueling even in a short distance travel . In... Intercity 31.4 31.4 School 7.0 69.9 76.9 Medium/heavy trucks 611.5 5,452.7 20.3 6,084.5 237.1 NONHIGHWAY 721.4 0.0...18.4 31.6 Intercity 8.6 5.8 14.4 TOTAL HWY & NONHWY 16,898.5 6,735.0 65.3 2,099.3 839.4 638.7 312.9 27,589.0 Figure 24

  15. Downsizing concept with two-cylinder CNG engine; Downsizingkonzept mit Zweizylinder-Erdgasmotor

    Energy Technology Data Exchange (ETDEWEB)

    Bey, Ralf; Ohrem, Carsten [Meta Motoren- und Energie-Technik GmbH, Herzogenrath (Germany); Biermann, Jan-Welm; Buetterling, Patrick [RWTH Aachen Univ. (Germany). Inst. fuer Kraftfahrzeuge

    2013-09-15

    Meta Motoren- und Energie-Technik, ika and fka have jointly developed a new downsized engine concept to reduce CO{sub 2} emissions specifically in subcompact and small cars. The power unit combines a two-cylinder engine running on natural gas and using an innovative piston supercharger with a newly developed, active system to ensure smooth running of the drivetrain. On the vehicle side, the concept is rounded off by optimisation of driving resistances, the integration of a start/stop function and energy recovery. (orig.)

  16. A novel start algorithm for CNG engines using ion sense technology

    NARCIS (Netherlands)

    Bie, T. de; Ericsson, M.; Rask, P.

    2000-01-01

    This paper presents a start algorithm that is able to control the air/fuel ratio (AFR) during the cranking phase and immediately hereafter, where the ordinary ?-control is not yet enabled. The control is based on the ion sense principle, which means that a current through the spark plug is measured

  17. Impact of methanol and CNG fuels on motor-vehicle toxic emissions

    International Nuclear Information System (INIS)

    Black, F.; Gabele, P.

    1991-01-01

    The 1990 Clean Air Act Amendments require that the Environmental Protection Agency investigate the need for reduction of motor vehicle toxic emissions such as formaldehyde, acetaldehyde, benzene, 1,3-butadiene, and polycyclic organic matter. Toxic organic emissions can be reduced by utilizing the control technologies employed for regulated THC (NMHC) and CO emissions, and by changing fuel composition. The paper examines emissions associated with the use of methanol and compressed natural gas fuels. Both tailpipe and evaporative emissions are examined at varied ambient temperatures ranging from 20 C to 105 F. Tailpipe emissions are also examined over a variety of driving cycles with average speeds ranging from 7 to 48 mph. Results suggest that an equivalent ambient temperatures and average speeds, motor vehicle toxic emissions are generally reduced with methanol and compressed natural gas fuels relative to those with gasoline, except for formaldehyde emissions, which may be elevated. As with gasoline, tailpipe toxic emissions with methanol and compressed natural gas fuels generally increase when ambient temperature or average speed decreases (the sensitivity to these variables is greater with methanol than with compressed natural gas). Evaporative emissions generally increase when fuel volatility or ambient temperature increases (however, the relative contribution of evaporative sources to the aggregate toxic compound emissions is small)

  18. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  19. The new Mercedes Benz 4-cylinder gaseous-fuel engine for the B170 NGT - a further measure for the lasting reduction of the CO{sub 2}-emissions; Der neue Mercedes-Benz 4-Zylinder-Gasmotor im B170 NGT - eine weitere Massnahme zur nachhaltigen Reduktion der CO{sub 2}-Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Klaus; Merdes, Norbert; Kemmler, Roland; Klein, Rudolf; Gelse, Willi; Zeeb, Thomas; Otto, Frank; Schwedler, Klaus [Daimler AG, Stuttgart (Germany)

    2008-07-01

    With the model refinement of the B-Class, a CNG variant of the B170NGT BlueEFFICIENCY is now being offered since mid-2008. The powerplant is based on the fundamental engine line-up of this model series, the proven 4-cylinder gasoline engines. The displacement variant of the 2 liter basic drive assembly was accordingly modified for use as a bi-fuel gas engine. The article talks about the strategic aspects regarding concept design and the focal points in development. Furthermore, the system integration as well as the consumption and exhaust characteristics of the overall vehicle are examined. (orig.)

  20. Discussion paper: direction for Canada's alternate fuels program

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    There is a growing need to accelerate the consideration of alternate fuels for use in Canadian vehicle transportation. At the present time various governments and corporations are initiating alternate fuel programs involving ethanol, methanol, CNG, propane, etc. There is a bewildering array of perspectives as to which fuel or fuels will best serve Canada's needs in the future. In response to the 'Discussion Paper on Liquid Fuels Options, 1980', by the Federal Dept. of Energy, Mines and Resources, Ford of Canada has prepared this perspective on each of the alternate fuels from the company's vantage point as a vehicle manufacturer.

  1. Corn Ethanol: The Surprisingly Effective Route for Natural Gas Consumption in the Transportation Sector

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curran, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    Proven reserves and production of natural gas (NG) in the United States have increased dramatically in the last decade, due largely to the commercialization of hydraulic fracturing. This has led to a plentiful supply of NG, resulting in a significantly lower cost on a gallon of gasoline-equivalent (GGE) basis. Additionally, NG is a domestic, non-petroleum source of energy that is less carbon-intensive than coal or petroleum products, and thus can lead to lower greenhouse gas emissions. Because of these factors, there is a desire to increase the use of NG in the transportation sector in the United States (U.S.). However, using NG directly in the transportation sector requires that several non-trivial challenges be overcome. One of these issues is the fueling infrastructure. There are currently only 1,375 NG fueling stations in the U.S. compared to 152,995 fueling stations for gasoline in 2014. Additionally, there are very few light-duty vehicles that can consume this fuel directly as dedicated or bi-fuel options. For example, in model year 2013Honda was the only OEM to offer a dedicated CNG sedan while a number of others offered CNG options as a preparation package for LD trucks and vans. In total, there were a total of 11 vehicle models in 2013 that could be purchased that could use natural gas directly. There are additional potential issues associated with NG vehicles as well. Compared to commercial refueling stations, the at-home refueling time for NG vehicles is substantial – a result of the small compressors used for home refilling. Additionally, the methane emissions from both refueling (leakage) and from tailpipe emissions (slip) from these vehicles can add to their GHG footprint, and while these emissions are not currently regulated it could be a barrier in the future, especially in scenarios with broad scale adoption of CNG vehicles. However, NG consumption already plays a large role in other sectors of the economy, including some that are important to

  2. Emission inventory estimation of an intercity bus terminal.

    Science.gov (United States)

    Qiu, Zhaowen; Li, Xiaoxia; Hao, Yanzhao; Deng, Shunxi; Gao, H Oliver

    2016-06-01

    Intercity bus terminals are hotspots of air pollution due to concentrated activities of diesel buses. In order to evaluate the bus terminals' impact on air quality, it is necessary to estimate the associated mobile emission inventories. Since the vehicles' operating condition at the bus terminal varies significantly, conventional calculation of the emissions based on average emission factors suffers the loss of accuracy. In this study, we examined a typical intercity bus terminal-the Southern City Bus Station of Xi'an, China-using a multi-scale emission model-(US EPA's MOVES model)-to quantity the vehicle emission inventory. A representative operating cycle for buses within the station is constructed. The emission inventory was then estimated using detailed inputs including vehicle ages, operating speeds, operating schedules, and operating mode distribution, as well as meteorological data (temperature and humidity). Five functional areas (bus yard, platforms, disembarking area, bus travel routes within the station, and bus entrance/exit routes) at the terminal were identified, and the bus operation cycle was established using the micro-trip cycle construction method. Results of our case study showed that switching to compressed natural gas (CNG) from diesel fuel could reduce PM2.5 and CO emissions by 85.64 and 6.21 %, respectively, in the microenvironment of the bus terminal. When CNG is used, tail pipe exhaust PM2.5 emission is significantly reduced, even less than brake wear PM2.5. The estimated bus operating cycles can also offer researchers and policy makers important information for emission evaluation in the planning and design of any typical intercity bus terminals of a similar scale.

  3. Alineando uso energético, calidad del aire y cambio climático vía desarrollo sostenible: El caso de Delhi en India

    Directory of Open Access Journals (Sweden)

    Amit Garg

    2007-05-01

    Full Text Available La rápida industrialización y urbanización en India en la última década ha resultado en un alto consumo de combustibles fósiles, incremento en la emisión de gases de invernadero y deterioro de la calidad del aire. India ha emprendido varias iniciativas para resolver estos problemas como son nuevas políticas de combustibles de automóviles, medidas de uso eficiente de la energía, promoción del uso de recursos renovables, relocalización de industrias altamente contaminantes, uso de combustibles bajos en emisiones como el CNG en ciudades grandes, e introducción de redes de metro-ferrocarriles en mega-ciudades. El presente artículo resume los resultados de políticas adoptadas en Delhi que muestran los nexos entre calidad del aire y cambio climático teniendo como fuerza impulsora el desarrollo sostenible con énfasis en las dimensiones ambientales y sociales./ High consumption of fossil fuels, increased greenhouse gas emissions and deterioration of local air quality have resulted from rapid industrialization and urbanization in India in the last decade. India has taken many initiatives to address these problems such as new automobile fuel policies, energy efficiency measures, promotion of renewable energy use, relocation of highly polluting industries, enforcing use of low emission fuels like CNG for public transport in large cities, and introducing metro rail networks in megacities. This paper highlights results of adopted policies in Delhi showing relationships between air quality and climate change and having sustainable development as the driving force with focus on environmental and social dimensions.

  4. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    Science.gov (United States)

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  5. Clear road for sustainable fuels? Study on the willingness of consumers to switch to sustainable fuels; Weg vrij voor duurzame brandstoffen? Onderzoek naar bereidheid consument om over te schakelen op duurzame brandstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Van Amelsfoort, A.; Zwier, R.

    2007-07-01

    In the Netherlands, there are currently hardly any filling stations where various types of sustainable fuels are available next to the regular fuels. Green Planet wants to start a filling station in the province of Drenthe. However, first Green Planet want to examine if consumers are prepared to switch to sustainable fuels. In addition, they want to know how these fuels should be properly introduced. The authors have sent questionnaires to more than 300 car drivers in the provinces of Groningen en Drenthe. Based on the results of the questionnaire a marketing strategy was developed recommending to start offering sustainable fuels, and especially B10/E10 and CNG. The consumer must be informed about the composition of sustainable fuels and possible consequences that driving on sustainable fuels may have for cars and the environment. [mk]. [Dutch] In Nederland zijn op dit moment praktisch geen tankstations waar, naast reguliere brandstoffen, verschillende soorten duurzame brandstoffen worden aangeboden. Green Planet wil hiervoor een tankstation beginnen in de provincie Drenthe. Green Planet wil echter eerst laten onderzoeken of consumenten bereid zijn om op duurzame brandstoffen te gaan rijden. Daarnaast wil zij graag weten op welke wijze deze brandstoffen moeten worden geintroduceerd. De auteurs hebben een enquete uitgezet onder ruim 300 autorijders in Groningen en Drenthe. Op basis van de enqueteresultaten is een marketingstrategie opgesteld waarin wordt aanbevolen om duurzame brandstoffen te gaan aanbieden, met nadruk op B10/E10 en CNG. Hierbij moet de consument vooral ingelicht worden over de samenstelling van duurzame brandstoffen en over eventuele consequenties van het rijden op duurzame brandstoffen voor auto en milieu.

  6. Hybrid CNG propulsion for fleet vehicles: emission reduction potential and operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Drozdz, P. [BC Research Institute, BC (Canada)

    1997-12-31

    A project (1) to build an experimental hybrid electric vehicle to be used as a test bed for the development of EZEV-oriented technologies, (2) to develop a control system to manage the energy use in a series hybrid vehicle, (3) to evaluate the suitability of valve regulated lead acid batteries for hybrid propulsion, and (4) to investigate the feasibility of using hybrid propulsion for medium duty fleet vehicles was discussed. In this context, the electric G-Van, the BCRI hybrid G-Van battery, the hybrid power unit, and the electronic control unit were described. The concept of hybrid vehicle control, and the control system software were explained, and a summary of the hybrid system efficiency test was provided.

  7. Vehicular fleet operation on natural gas and propane: An overview. Final research report

    International Nuclear Information System (INIS)

    Taylor, D.B.; Mahmassani, H.; Euritt, M.A.

    1992-11-01

    The report attempts to contribute to the timely area of alternative vehicular fuels. It addresses the analysis of fleet operation on alternative fuels, specifically compressed natural gas (CNG) and propane, in terms of both fleet economics and societal impacts. Comprehensive information on engine technology, fueling infrastructure design, and societal impacts are presented. An evaluation framework useful for decisions between any vehicular fuels is developed. The comprehensive fleet cost-effectiveness analysis framework used in previous Project 983 reports is discussed in great detail. This framework/model is flexible enough to allow substantial sensitivity and scenario analysis. The model is used to perform sample analyses of both fleet economic and societal impacts

  8. Estudo das emissões de fontes móveis na região metropolitana de Porto Alegre, Rio Grande do Sul Study of the emissions from moving sources in the metropolitan area of Porto Alegre - RS - Brazil

    Directory of Open Access Journals (Sweden)

    Elba Calesso Teixeira

    2008-01-01

    Full Text Available The present study aims at assessing the influence of pollution from mobile sources on air quality in the Metropolitan Area of Porto Alegre by means of an inventory based on methods applied specifically to vehicular emissions. The study uses the method described by CETESB, based on inventories on vehicular emissions, according to USEPA methodology. Following fuel types were taken into account: gasoline (24% ethanol, alcohol, diesel oil, and CNG (compressed natural gas. Results have shown that gasoline-powered vehicles are still responsible for emitting the highest CO and HC concentrations, while diesel-powered vehicles are the source of highest NOx, MP and SOx concentrations.

  9. Energy and sustainable urban transport development in China: Challenges and solutions

    International Nuclear Information System (INIS)

    Zhang, Xilang; Hu, Xiaojun

    2002-01-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: e.g., promoting the development and dissemination of cleaner vehicle technologies, substitution of LPG, CNG, LNG and bio fuels for gasoline and diesel, strengthening regulations on vehicle emissions, expediting public transport development, and the effective management of the soaring private cars. (author)

  10. Polymer Masks for nanostructuring of graphene

    DEFF Research Database (Denmark)

    Shvets, Violetta

    This PhD project is a part of Center for Nanostructured Graphene (CNG) activities. The aim of the project is to develop a new lithography method for creation of highly ordered nanostructures with as small as possible feature and period sizes. The method should be applicable for graphene nanostruc...... demonstrated the opening of what could be interpreted as a band gap....... polymer masks is developed. Mask fabrication is realized by microtoming of 30-60 nm thin sections from pre-aligned polymer monoliths with different morphologies. The resulting polymer masks are then transferred to both silicon and graphene substrates. Hexagonally packed hole patterns with 10 nm hole...

  11. Energy and sustainable urban transport development in China: Challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xilang; Hu, Xiaojun

    2002-07-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: e.g., promoting the development and dissemination of cleaner vehicle technologies, substitution of LPG, CNG, LNG and bio fuels for gasoline and diesel, strengthening regulations on vehicle emissions, expediting public transport development, and the effective management of the soaring private cars. (author)

  12. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.

    2011-03-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

  13. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  14. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  15. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    International Nuclear Information System (INIS)

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations

  16. A guide to the emissions certification procedures for alternative fuel aftermarket conversions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Emissions certification is still relatively new to the aftermarket vehicle conversion industry. Many in the industry think that as soon as a vehicle is converted to operate on compressed natural gas (CNG) or liquefied petroleum gas (LFG), it automatically runs as clean as or cleaner than it did on the conventional fuel. However, recent studies have shown that aftermarket conversions may not always reduce emissions. To achieve emissions benefits, the conversion equipment must be designed and calibrated specifically for the engine and emissions control system on which it has been installed, and the installation and setup must be performed so as to not adversely affect the vehicle`s original emissions performance. The reason for certification, then, is to ensure that these criteria are met, that the vehicle continues to perform properly, and that it continues to satisfy all appropriate emissions standards throughout its useful life. The authors have prepared this guide to help equipment manufacturers, distributors, and installers understand the emissions certification process for aftermarket conversions. The guide gives an overview of the certification requirements established by the US EPA and by the state of California.

  17. NMVOCs speciated emissions from mobile sources and their effect on air quality and human health in the metropolitan area of Buenos Aires, Argentina

    Science.gov (United States)

    D'Angiola, Ariela; Dawidowski, Laura; Gomez, Dario; Granier, Claire

    2014-05-01

    Since 2007, more than half of the world's population live in urban areas. Urban atmospheres are dominated by pollutants associated with vehicular emissions. Transport emissions are an important source of non-methane volatile organic compounds (NMVOCs) emissions, species of high interest because of their negative health effects and their contribution to the formation of secondary pollutants responsible for photochemical smog. NMVOCs emissions are generally not very well represented in emission inventories and their speciation presents a high level of uncertainty. In general, emissions from South American countries are still quite unknown for the international community, and usually present a high degree of uncertainty due to the lack of available data to compile emission inventories. Within the Inter-American Institute for Global Change Research (IAI, www.iai.int) projects, UMESAM (Urban Mobile Emissions in South American Megacities) and SAEMC (South American Emissions, Megacities and Climate, http://saemc.cmm.uchile.cl/), the effort was made to compute on-road transport emission inventories for South American megacities, namely Bogota, Buenos Aires, Lima, Sao Paulo and Santiago de Chile, considering megacities as urban agglomerations with more than 5 million inhabitants. The present work is a continuation of these projects, with the aim to extend the calculated NMVOCs emissions inventory into the individual species required by CTMs. The on-road mobile sector of the metropolitan area of Buenos Aires (MABA), Argentina, accounted for 70 Gg of NMVOCs emissions for 2006, without considering two-wheelers. Gasoline light-duty vehicles were responsible for 64% of NMVOCs emissions, followed by compressed natural gas (CNG) light-duty vehicles (22%), diesel heavy-duty vehicles (11%) and diesel light-duty vehicles (7%). NMVOCs emissions were speciated according to fuel and technology, employing the European COPERT (Ntziachristos & Samaras, 2000) VOCs speciation scheme for

  18. Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling

    International Nuclear Information System (INIS)

    Xu, Yanzhi; Gbologah, Franklin E.; Lee, Dong-Yeon; Liu, Haobing; Rodgers, Michael O.; Guensler, Randall L.

    2015-01-01

    Highlights: • We present a practical fuel and emissions modeling tool for alternative fuel buses. • The model assesses well-to-wheels emissions impacts of bus fleet decisions. • Mode-based approach is used to account for duty cycles and local conditions. • A case study using real-world operations data from Atlanta, GA is presented. • Impacts of alternative bus options depend on operating and geographic features. - Abstract: Hybrid and electric powertrains and alternative fuels (e.g., compressed natural gas (CNG), biodiesel, or hydrogen) can often reduce energy consumption and emissions from transit bus operations relative to conventional diesel. However, the magnitude of these energy and emissions savings can vary significantly, due to local conditions and transit operating characteristics. This paper introduces the transit Fuel and Emissions Calculator (FEC), a mode-based life-cycle emissions modeling tool for transit bus and rail technologies that compares the performance of multiple alternative fuels and powertrains across a range of operational characteristics and conditions. The purpose of the FEC is to provide a practical, yet technically sophisticated tool for regulatory agencies and policy analysts in assessing transit fleet options. The FEC’s modal modeling approach estimates emissions as a function of engine load, which in turn is a function of transit service parameters, including duty cycle (idling and speed-acceleration profile), road grade, and passenger loading. This approach allows for customized assessments that account for local conditions. Direct emissions estimates are derived from the scaled tractive power (STP) operating mode bins and emissions factors employed in the U.S. EPA’s MOVES (MOtor Vehicle Emissions Simulator) model. Life-cycle emissions estimates are calculated using emissions factors from the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model. The case study presented in this paper

  19. Effect of Hydrogen and Hydrogen Enriched Compressed Natural Gas Induction on the Performance of Rubber Seed Oil Methy Ester Fuelled Common Rail Direct Injection (CRDi Dual Fuel Engines

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi

    2017-06-01

    Full Text Available Renewable fuels are in biodegradable nature and they tender good energy security and foreign exchange savings. In addition they address environmental concerns and socio-economic issues. The present work presents the experimental investigations carried out on the utilization of such renewable fuel combinations for diesel engine applications. For this a single-cylinder four-stroke water cooled direct injection (DI compression ignition (CI engine provided with CMFIS (Conventional Mechanical Fuel Injection System was rightfully converted to operate with CRDi injection systems enabling high pressure injection of Rubber seed oil methyl ester (RuOME in the dual fuel mode with induction of varied gas flow rates of hydrogen and hydrogen enriched CNG (HCNG gas combinations. Experimental investigations showed a considerable improvement in dual fuel engine performance with acceptable brake thermal efficiency and reduced emissions of smoke, hydrocarbon (HC, carbon monoxide (CO and slightly increased nitric oxide (NOx emission levels for increased hydrogen and HCNG flow rates. Further CRDi facilitated dual fuel engine showed improved engine performance compared to CMFIS as the former enabled high pressure (900 bar injection of the RuOME and closer to TDC (Top Dead Centre as well. Combustion parameters such as ignition delay, combustion duration, pressure-crank angle and heat release rates were analyzed and compared with baseline data generated. Combustion analysis showed that the rapid rate of burning of hydrogen and HCNG along with air mixtures increased due to presence of hydrogen in total and in partial combination with CNG which further resulted into higher cylinder pressures and energy release rates. However, sustained research that can provide feasible engine technology operating on such fuels in dual fuel operation can pave the way for continued fossil fuel usage.

  20. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xiufang [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Long Likun [Inspection and Quarantine Technology Centre of Zhongshan Entry-Exit Inspection and Quarantine Bureau, Zhongshan 528400, Guangdong Province (China); Zhang Yunhong; Xue Yiqun; Liu Jingchun; Lin Xiuyun [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Liu Bao [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China)], E-mail: baoliu6677@yahoo.com.cn

    2009-03-09

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  1. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Ou Xiufang; Long Likun; Zhang Yunhong; Xue Yiqun; Liu Jingchun; Lin Xiuyun; Liu Bao

    2009-01-01

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  2. A Brooks type theorem for the maximum local edge connectivity

    DEFF Research Database (Denmark)

    Stiebitz, Michael; Toft, Bjarne

    2018-01-01

    For a graph $G$, let $\\cn(G)$ and $\\la(G)$ denote the chromatic number of $G$ and the maximum local edge connectivity of $G$, respectively. A result of Dirac \\cite{Dirac53} implies that every graph $G$ satisfies $\\cn(G)\\leq \\la(G)+1$. In this paper we characterize the graphs $G$ for which $\\cn......(G)=\\la(G)+1$. The case $\\la(G)=3$ was already solved by Alboulker {\\em et al.\\,} \\cite{AlboukerV2016}. We show that a graph $G$ with $\\la(G)=k\\geq 4$ satisfies $\\cn(G)=k+1$ if and only if $G$ contains a block which can be obtained from copies of $K_{k+1}$ by repeated applications of the Haj\\'os join....

  3. Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.; Melendez, M.; Gonzales, J.; Lynch, L.; Boale, B.; Kohout, J.

    2017-09-28

    To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. This handbook covers the primary elements that must be considered when developing a CNG vehicle maintenance facility design that will protect against the ignition of natural gas releases. It also discusses specific protocols and training needed to ensure safety.

  4. Supply of carbon fiber for a natural gas car tank; Tennen gasu sha tanku muke tanso seni no kyokyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-31

    Mitsubishi Rayon shared investment with the Dynatech Company in Canada to produce carbon fiber tanks used in natural gas cars, and attempted to monopolize the supply of carbon fibers for tanks. As for the natural gas automobile with low air pollution and exhaust of carbon oxide compared to gasoline automobile, a heavy CNG tank is the bottleneck of its popularization, and its weight could be reduced to one fourth of a steel tank by using carbon fibers. In Japan, only steel tank has been licensed until now. Selling will be increasing in Japan by the co-operation with the Dynatech Company since this carbon fiber can be used from this April. (translated by NEDO)

  5. Sensors for online determination of CNG gas quality; Sensorer foer onlinebestaemnning av fordonsgaskvalitet

    Energy Technology Data Exchange (ETDEWEB)

    Stenlaaaas, Ola; Roedjegaard, Henrik

    2012-07-01

    Swedish automotive gas has until now been a very uniform, high quality automotive fuel. Elsewhere in Europe the quality of automotive gas varies significantly. Gas from different sources with different flammability require engine settings adjusted to the chosen gas' unique composition. The prospects for a vehicle-mounted sensor based on infrared technology for gas quality measurement has been studied and solutions are presented with questions that must be answered in a possible future work. The proposed vehicle mounted sensor is based on two channels, one of which measures the partial pressure of methane and the other measures the partial pressure of heavier hydrocarbons in 'equivalents of butane'. Ethane produces a signal of about 0.6 equivalents of butane and propane about 0.8 equivalents. The sensor can be accommodated in a cube with 5 cm side and should be equipped with nipple connections to the existing system. The sensor is expected to work throughout their entire lifetime without manual calibration, through continuous automatic calibration, so-called ABC (Automatic Baseline Compensation). The sensor will have to meet tough quality and environmental standards in which primarily contact ring, vibration and prevention of leakage are identified as extra difficult. Working temperatures and the electrical conditions of power supply and communication interface is considered less challenging. In one million volumes, the cost per sensor could be 200 to 300 SEK.

  6. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    Directory of Open Access Journals (Sweden)

    Engin GÜRTEKİN

    2008-03-01

    Full Text Available Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple and cost effective and also reaction occurs in a short time period. Fenton process is applied for many different proposes. In this study, Fenton process was evaluated as an advanced oxidation process in wastewater treatment.

  7. Well-to-wheel analysis of renewable transport fuels: synthetic natural gas from wood gasification and hydrogen from concentrated solar energy[Dissertation 17437

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.

    2007-07-01

    In order to deal with problems such as climate change, an increasing energy demand and the finiteness of fossil resources, alternative CO{sub 2}-low technologies have to be found for a sustainable growing future. Laboratories at PSI are conducting research on two pathways delivering such car fuels: synthetic natural gas from wood gasification (SNG) and hydrogen from solar thermochemical ZnO dissociation (STD). The biofuel SNG is produced using wood in an auto-thermal gasification reactor. It can be supplied to the natural-gas grid and be used in a compressed natural gas (CNG) vehicle. STD is a long-term option, using concentrated solar radiation in a thermochemical reactor, producing zinc as solar energy carrier. Zinc can be used for hydrolysis, in order to produce hydrogen as a locally low-polluting future car fuel. In the frame of the thesis, both fuels are assessed using a life cycle assessment, i.e. investigating all environmental interactions from the extraction of resources over the processing and usage steps to the final disposal. Different methodologies are applied for a rating, compared to alternatives and standard fuels of today. In addition, costs of the technologies are calculated in order to assess economic competitiveness. The thesis is structured as follows: After an introduction giving an overview (chapter A), the methodology is presented (chapter B). It includes various life cycle impact assessment methods such as greenhouse gas emissions, the cumulative energy demand or comprehensive rating approaches. Calculations of the production and supply costs of the assessed fuels are included as well as the eco-efficiency, a combination of environmental with economic indicators. In addition, external costs caused by the emissions are quantified. Sensitivity studies investigate the importance of different parameters and substantiate conclusions. In chapter C, the production, supply and use of the assessed fuels is discussed, following the well

  8. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    International Nuclear Information System (INIS)

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs

  9. Control system for technological processes in tritium processing plants with process analysis

    International Nuclear Information System (INIS)

    Retevoi, Carmen Maria; Stefan, Iuliana; Balteanu, Ovidiu; Stefan, Liviu; Bucur, Ciprian

    2005-01-01

    Integration of a large variety of installations and equipment into a unitary system for controlling the technological process in tritium processing nuclear facilities appears to be a rather complex approach particularly when experimental or new technologies are developed. Ensuring a high degree of versatility allowing easy modifications in configurations and process parameters is a major requirement imposed on experimental installations. The large amount of data which must be processed, stored and easily accessed for subsequent analyses imposes development of a large information network based on a highly integrated system containing the acquisition, control and technological process analysis data as well as data base system. On such a basis integrated systems of computation and control able to conduct the technological process could be developed as well protection systems for cases of failures or break down. The integrated system responds to the control and security requirements in case of emergency and of the technological processes specific to the industry that processes radioactive or toxic substances with severe consequences in case of technological failure as in the case of tritium processing nuclear plant. In order to lower the risk technological failure of these processes an integrated software, data base and process analysis system are developed, which, based on identification algorithm of the important parameters for protection and security systems, will display the process evolution trend. The system was checked on a existing plant that includes a removal tritium unit, finally used in a nuclear power plant, by simulating the failure events as well as the process. The system will also include a complete data base monitoring all the parameters and a process analysis software for the main modules of the tritium processing plant, namely, isotope separation, catalytic purification and cryogenic distillation

  10. HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY

    Energy Technology Data Exchange (ETDEWEB)

    APOLONIO DEL TORO

    2008-05-27

    Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

  11. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.

    2012-05-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

  12. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  13. Markov Processes in Image Processing

    Science.gov (United States)

    Petrov, E. P.; Kharina, N. L.

    2018-05-01

    Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.

  14. Thinning spatial point processes into Poisson processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Schoenberg, Frederic Paik

    , and where one simulates backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and thus can......This paper describes methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified...... be used as a diagnostic for assessing the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....

  15. Process validation for radiation processing

    International Nuclear Information System (INIS)

    Miller, A.

    1999-01-01

    Process validation concerns the establishment of the irradiation conditions that will lead to the desired changes of the irradiated product. Process validation therefore establishes the link between absorbed dose and the characteristics of the product, such as degree of crosslinking in a polyethylene tube, prolongation of shelf life of a food product, or degree of sterility of the medical device. Detailed international standards are written for the documentation of radiation sterilization, such as EN 552 and ISO 11137, and the steps of process validation that are described in these standards are discussed in this paper. They include material testing for the documentation of the correct functioning of the product, microbiological testing for selection of the minimum required dose and dose mapping for documentation of attainment of the required dose in all parts of the product. The process validation must be maintained by reviews and repeated measurements as necessary. This paper presents recommendations and guidance for the execution of these components of process validation. (author)

  16. Thinning spatial point processes into Poisson processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Schoenberg, Frederic Paik

    2010-01-01

    are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and......In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points......, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....

  17. Process correlation analysis model for process improvement identification.

    Science.gov (United States)

    Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong

    2014-01-01

    Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.

  18. Management of processes of electrochemical dimensional processing

    Science.gov (United States)

    Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.

    2017-09-01

    In different industries a lot high-precision parts are produced from hard-processed scarce materials. Forming such details can only be acting during non-contact processing, or a minimum of effort, and doable by the use, for example, of electro-chemical processing. At the present stage of development of metal working processes are important management issues electrochemical machining and its automation. This article provides some indicators and factors of electrochemical machining process.

  19. Chemical process engineering in the transuranium processing plant

    International Nuclear Information System (INIS)

    Collins, E.D.; Bigelow, J.E.

    1976-01-01

    Since operation of the Transuranium Processing Plant began, process changes have been made to counteract problems caused by equipment corrosion, to satisfy new processing requirements, and to utilize improved processes. The new processes, equipment, and techniques have been incorporated into a sequence of steps which satisfies all required processing functions

  20. Optimization experiment of gas oil direct injection valve for CNG dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.Y. [Chonnam National University Graduate School, Jeonju (Korea); Park, C. K. [Chonnam National University, Jeonju (Korea)

    1999-04-01

    In this study, we studied for a conversion from diesel engine to natural gas dual fuel engine. For this experimental, we tested about the injection quantity characteristics of pilot valve with the plunger diameter at the retraction volume and investigated to the engine performance and exhaust emissions with the nozzle hole number and injection nozzle diameter. As a result, when the plunger diameter is 7.5 mm at the retraction volume, 25 mm{sup 3}/st, the injection quantity characteristics develop. Also, when a nozzle type is 4*{phi} 0.24, total hydrocarbon(THC) emission reduce at low equivalence ratio. (author). 5 refs., 10 figs., 2 tabs.

  1. Managing Process Variants in the Process Life Cycle

    NARCIS (Netherlands)

    Hallerbach, A.; Bauer, Th.; Reichert, M.U.

    2007-01-01

    When designing process-aware information systems, often variants of the same process have to be specified. Each variant then constitutes an adjustment of a particular process to specific requirements building the process context. Current Business Process Management (BPM) tools do not adequately

  2. A cyclic nucleotide-gated channel mutation associated with canine daylight blindness provides insight into a role for the S2 segment tri-Asp motif in channel biogenesis.

    Directory of Open Access Journals (Sweden)

    Naoto Tanaka

    Full Text Available Cone cyclic nucleotide-gated channels are tetramers formed by CNGA3 and CNGB3 subunits; CNGA3 subunits function as homotetrameric channels but CNGB3 exhibits channel function only when co-expressed with CNGA3. An aspartatic acid (Asp to asparagine (Asn missense mutation at position 262 in the canine CNGB3 (D262N subunit results in loss of cone function (daylight blindness, suggesting an important role for this aspartic acid residue in channel biogenesis and/or function. Asp 262 is located in a conserved region of the second transmembrane segment containing three Asp residues designated the Tri-Asp motif. This motif is conserved in all CNG channels. Here we examine mutations in canine CNGA3 homomeric channels using a combination of experimental and computational approaches. Mutations of these conserved Asp residues result in the absence of nucleotide-activated currents in heterologous expression. A fluorescent tag on CNGA3 shows mislocalization of mutant channels. Co-expressing CNGB3 Tri-Asp mutants with wild type CNGA3 results in some functional channels, however, their electrophysiological characterization matches the properties of homomeric CNGA3 channels. This failure to record heteromeric currents suggests that Asp/Asn mutations affect heteromeric subunit assembly. A homology model of S1-S6 of the CNGA3 channel was generated and relaxed in a membrane using molecular dynamics simulations. The model predicts that the Tri-Asp motif is involved in non-specific salt bridge pairings with positive residues of S3/S4. We propose that the D262N mutation in dogs with CNGB3-day blindness results in the loss of these inter-helical interactions altering the electrostatic equilibrium within in the S1-S4 bundle. Because residues analogous to Tri-Asp in the voltage-gated Shaker potassium channel family were implicated in monomer folding, we hypothesize that destabilizing these electrostatic interactions impairs the monomer folding state in D262N mutant CNG

  3. The role of inspection and maintenance in controlling vehicular emissions in Kathmandu valley, Nepal

    Science.gov (United States)

    Faiz, Asif; Bahadur Ale, Bhakta; Nagarkoti, Ram Kumar

    Motor vehicles are a major source of air pollutant emissions in Kathmandu valley, Nepal. In-use vehicle emission limits were first introduced in Nepal in 1998 and updated in 2000. The emission regulations for gasoline vehicles limit CO emissions to 3-4.5% by volume and HC emissions to 1000 ppm for four-wheeled vehicles, and 7800 ppm for two- and three- wheelers. Emission limits for LPG/CNG vehicles are 3% for CO and 1000 ppm for HC. For diesel vehicles, smoke density must not exceed 65-75 HSU depending on the age of the vehicle. The Government operates a rudimentary inspection and maintenance (I/M) program based on an idle engine test, utilizing an exhaust gas analyzer (for gasoline/LPG/CNG vehicles) and an opacimeter for diesel vehicles. The I/M program is confined to four-wheeled vehicles and occasional three-wheelers. The inspections are required at least once a year and are conducted at designated vehicle testing stations. The I/M program is supplemented by roadside checks. This paper is based on the findings of an analysis of vehicle emissions test data for the period June 2000 to July 2002, covering some 45,000 data sets. Each data set includes information on vehicle type and ownership, the model year, and CO/HC test emission values. The analysis reported in this paper covers the characteristics and statistical distribution of emissions from gasoline-fuelled vehicles, including the impact of gross emitters. The effects of vehicle age, model year (with or without catalysts), usage, and ownership (private vs. public) on emissions of gasoline-fuelled vehicles are discussed. The findings for diesel vehicles have been reported earlier by Ale and Nagarkoti (2003b. Evaluation of Kathmandu valley inspection and maintenance program on diesel vehicles. Journal of the Institute of Engineering 3(1)). This study identifies the limitations of the current I/M program, given that it does not include 70% of the fleet consisting of two-wheelers and concludes with proposed

  4. Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude.

    Science.gov (United States)

    McCormick, R L; Graboski, M S; Alleman, T L; Yanowitz, J

    2000-11-01

    Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.

  5. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  6. Applications of Process Synthesis: Moving from Conventional Chemical Processes towards Biorefinery Processes

    DEFF Research Database (Denmark)

    Yuan, Zhihong; Chen, Bingzhen; Gani, Rafiqul

    2013-01-01

    Concerns about diminishing petroleum reserves, enhanced worldwide demand for fuels and fluctuations in the global oil market, together with climate change and national security have promoted many initiatives for exploring alternative, non-petroleum based processes. Among these initiatives......, biorefinery processes for converting biomass-derived carbohydrates into transportation fuels and chemicals are now gaining more and more attention from both academia and industry. Process synthesis, which has played a vital role for the development, design and operation of (petro) chemical processes, can...

  7. Visualizing the process of process modeling with PPMCharts

    NARCIS (Netherlands)

    Claes, J.; Vanderfeesten, I.T.P.; Pinggera, J.; Reijers, H.A.; Weber, B.; Poels, G.; La Rosa, M.; Soffer, P.

    2013-01-01

    In the quest for knowledge about how to make good process models, recent research focus is shifting from studying the quality of process models to studying the process of process modeling (often abbreviated as PPM) itself. This paper reports on our efforts to visualize this specific process in such

  8. Process Intensification: A Perspective on Process Synthesis

    DEFF Research Database (Denmark)

    Lutze, Philip; Gani, Rafiqul; Woodley, John

    2010-01-01

    In recent years, process intensification (PI) has attracted considerable academic interest as a potential means for process improvement, to meet the increasing demands for sustainable production. A variety of intensified operations developed in academia and industry creates a large number...... of options to potentially improve the process but to identify the set of feasible solutions for PI in which the optimal can be found takes considerable resources. Hence, a process synthesis tool to achieve PI would potentially assist in the generation and evaluation of PI options. Currently, several process...... design tools with a clear focus on specific PI tasks exist. Therefore, in this paper, the concept of a general systematic framework for synthesis and design of PI options in hierarchical steps through analyzing an existing process, generating PI options in a superstructure and evaluating intensified...

  9. Perceptual Processing Affects Conceptual Processing

    Science.gov (United States)

    van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.

    2008-01-01

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…

  10. A process insight repository supporting process optimization

    OpenAIRE

    Vetlugin, Andrey

    2012-01-01

    Existing solutions for analysis and optimization of manufacturing processes, such as online analysis processing or statistical calculations, have shortcomings that limit continuous process improvements. In particular, they lack means of storing and integrating the results of analysis. This makes the valuable information that can be used for process optimizations used only once and then disposed. The goal of the Advanced Manufacturing Analytics (AdMA) research project is to design an integrate...

  11. Two-stage process analysis using the process-based performance measurement framework and business process simulation

    NARCIS (Netherlands)

    Han, K.H.; Kang, J.G.; Song, M.S.

    2009-01-01

    Many enterprises have recently been pursuing process innovation or improvement to attain their performance goals. To align a business process with enterprise performances, this study proposes a two-stage process analysis for process (re)design that combines the process-based performance measurement

  12. Continuous Correctness of Business Processes Against Process Interference

    NARCIS (Netherlands)

    van Beest, Nick; Bucur, Doina

    2013-01-01

    In distributed business process support environments, process interference from multiple stakeholders may cause erroneous process outcomes. Existing solutions to detect and correct interference at runtime employ formal verification and the automatic generation of intervention processes at runtime.

  13. Process mining: making knowledge discovery process centric

    NARCIS (Netherlands)

    Aalst, van der W.M.P.

    2011-01-01

    Recently, the Task Force on Process Mining released the Process Mining Manifesto. The manifesto is supported by 53 organizations and 77 process mining experts contributed to it. The active contributions from end-users, tool vendors, consultants, analysts, and researchers illustrate the growing

  14. Business process model repositories : efficient process retrieval

    NARCIS (Netherlands)

    Yan, Z.

    2012-01-01

    As organizations increasingly work in process-oriented manner, the number of business process models that they develop and have to maintain increases. As a consequence, it has become common for organizations to have collections of hundreds or even thousands of business process models. When a

  15. Aerodynamic isotope separation processes for uranium enrichment: process requirements

    International Nuclear Information System (INIS)

    Malling, G.F.; Von Halle, E.

    1976-01-01

    The pressing need for enriched uranium to fuel nuclear power reactors, requiring that as many as ten large uranium isotope separation plants be built during the next twenty years, has inspired an increase of interest in isotope separation processes for uranium enrichment. Aerodynamic isotope separation processes have been prominently mentioned along with the gas centrifuge process and the laser isotope separation methods as alternatives to the gaseous diffusion process, currently in use, for these future plants. Commonly included in the category of aerodynamic isotope separation processes are: (a) the separation nozzle process; (b) opposed gas jets; (c) the gas vortex; (d) the separation probes; (e) interacting molecular beams; (f) jet penetration processes; and (g) time of flight separation processes. A number of these aerodynamic isotope separation processes depend, as does the gas centrifuge process, on pressure diffusion associated with curved streamlines for the basic separation effect. Much can be deduced about the process characteristics and the economic potential of such processes from a simple and elementary process model. In particular, the benefit to be gained from a light carrier gas added to the uranium feed is clearly demonstrated. The model also illustrates the importance of transient effects in this class of processes

  16. Business Process Innovation using the Process Innovation Laboratory

    DEFF Research Database (Denmark)

    Møller, Charles

    for practical applications has not been identified. The aim of this paper is to establish a conceptual framework for business process innovation in the supply chain based on advanced enterprise systems. The main approach to business process innovation in this context is to create a new methodology for exploring...... process models and patterns of applications. The paper thus presents a new concept for business process innovation called the process innovation laboratory a.k.a. the ?-Lab. The ?-Lab is a comprehensive framework for BPI using advanced enterprise systems. The ?-Lab is a collaborative workspace...... for experimenting with process models and an explorative approach to study integrated modeling in a controlled environment. The ?-Lab facilitates innovation by using an integrated action learning approach to process modeling including contemporary technological, organizational and business perspectives....

  17. Discovering Reference Process Models by Mining Process Variants

    NARCIS (Netherlands)

    Li, C.; Reichert, M.U.; Wombacher, Andreas

    Recently, a new generation of adaptive Process-Aware Information Systems (PAIS) has emerged, which allows for dynamic process and service changes (e.g., to insert, delete, and move activities and service executions in a running process). This, in turn, has led to a large number of process variants

  18. BUSINESS PROCESS REENGINEERING AS THE METHOD OF PROCESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    O. Honcharova

    2013-09-01

    Full Text Available The article is devoted to the analysis of process management approach. The main understanding of process management approach has been researched in the article. The definition of process and process management has been given. Also the methods of business process improvement has been analyzed, among them are fast-analysis solution technology (FAST, benchmarking, reprojecting and reengineering. The main results of using business process improvement have been described in figures of reducing cycle time, costs and errors. Also the tasks of business process reengineering have been noticed. The main stages of business process reengineering have been noticed. The main efficiency results of business process reengineering and its success factors have been determined.

  19. Fundamentals of process intensification: A process systems engineering view

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi; Sales Cruz, Alfonso Mauricio; Gani, Rafiqul

    2016-01-01

    This chapter gives an overview of the fundamentals of process intensification from a process systems engineering point of view. The concept of process intensification, including process integration, is explained together with the drivers for applying process intensification, which can be achieved...

  20. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  1. Analysis of Modifications on a Spark Ignition Engine for Operation with Natural Gas

    Directory of Open Access Journals (Sweden)

    Ramasamy D.

    2016-01-01

    Full Text Available Transportation is one of the key contributors to petroleum usage and emissions to the atmosphere. According to researchers, there are many ways to use transport by using renewable energy sources. Of these solutions, the immediate solution which requires less modification to current engine technology is by using gaseous fuels. Natural gas is the fuel of choice for minor modification to current engines. As it can be derived from anaerobic digestion process, the potential as a renewable energy source is tremendous, especially for an agricultural country such a Malaysia. The aim in the future will be operating an engine with natural gas only with pipelines straight to houses for easy filling. The fuel is light and can be easily carried in vehicles when in compressed form. As such, Compressed Natural Gas (CNG is currently used in bi-fuel engines, but is mostly not optimized in term of their performance. The focus of the paper is to optimize a model of natural gas engine by one dimensional flow modeling for operation with natural gas. The model is analyzed for performance and emission characteristics produced by a gasoline engine and later compared with natural gas. The average performance drop is about 15% from its gasoline counterpart. The 4% benchmark indicates that the modification to ignition timing and compression ratio does improve engine performance using natural gas as fuel.

  2. Process Accounting

    OpenAIRE

    Gilbertson, Keith

    2002-01-01

    Standard utilities can help you collect and interpret your Linux system's process accounting data. Describes the uses of process accounting, standard process accounting commands, and example code that makes use of process accounting utilities.

  3. Modeling of biopharmaceutical processes. Part 2: Process chromatography unit operation

    DEFF Research Database (Denmark)

    Kaltenbrunner, Oliver; McCue, Justin; Engel, Philip

    2008-01-01

    Process modeling can be a useful tool to aid in process development, process optimization, and process scale-up. When modeling a chromatography process, one must first select the appropriate models that describe the mass transfer and adsorption that occurs within the porous adsorbent. The theoret......Process modeling can be a useful tool to aid in process development, process optimization, and process scale-up. When modeling a chromatography process, one must first select the appropriate models that describe the mass transfer and adsorption that occurs within the porous adsorbent...

  4. Generalized Ornstein-Uhlenbeck processes and associated self-similar processes

    CERN Document Server

    Lim, S C

    2003-01-01

    We consider three types of generalized Ornstein-Uhlenbeck processes: the stationary process obtained from the Lamperti transformation of fractional Brownian motion, the process with stretched exponential covariance and the process obtained from the solution of the fractional Langevin equation. These stationary Gaussian processes have many common properties, such as the fact that their local covariances share a similar structure and they exhibit identical spectral densities at large frequency limit. In addition, the generalized Ornstein-Uhlenbeck processes can be shown to be local stationary representations of fractional Brownian motion. Two new self-similar Gaussian processes, in addition to fractional Brownian motion, are obtained by applying the (inverse) Lamperti transformation to the generalized Ornstein-Uhlenbeck processes. We study some of the properties of these self-similar processes such as the long-range dependence. We give a simulation of their sample paths based on numerical Karhunan-Loeve expansi...

  5. Generalized Ornstein-Uhlenbeck processes and associated self-similar processes

    International Nuclear Information System (INIS)

    Lim, S C; Muniandy, S V

    2003-01-01

    We consider three types of generalized Ornstein-Uhlenbeck processes: the stationary process obtained from the Lamperti transformation of fractional Brownian motion, the process with stretched exponential covariance and the process obtained from the solution of the fractional Langevin equation. These stationary Gaussian processes have many common properties, such as the fact that their local covariances share a similar structure and they exhibit identical spectral densities at large frequency limit. In addition, the generalized Ornstein-Uhlenbeck processes can be shown to be local stationary representations of fractional Brownian motion. Two new self-similar Gaussian processes, in addition to fractional Brownian motion, are obtained by applying the (inverse) Lamperti transformation to the generalized Ornstein-Uhlenbeck processes. We study some of the properties of these self-similar processes such as the long-range dependence. We give a simulation of their sample paths based on numerical Karhunan-Loeve expansion

  6. From Process Understanding to Process Control

    NARCIS (Netherlands)

    Streefland, M.

    2010-01-01

    A licensed pharmaceutical process is required to be executed within the validated ranges throughout the lifetime of product manufacturing. Changes to the process usually require the manufacturer to demonstrate that the safety and efficacy of the product remains unchanged. Recent changes in the

  7. Integrated Process Modeling-A Process Validation Life Cycle Companion.

    Science.gov (United States)

    Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-17

    During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.

  8. PC image processing

    International Nuclear Information System (INIS)

    Hwa, Mok Jin Il; Am, Ha Jeng Ung

    1995-04-01

    This book starts summary of digital image processing and personal computer, and classification of personal computer image processing system, digital image processing, development of personal computer and image processing, image processing system, basic method of image processing such as color image processing and video processing, software and interface, computer graphics, video image and video processing application cases on image processing like satellite image processing, color transformation of image processing in high speed and portrait work system.

  9. Meat Processing.

    Science.gov (United States)

    Legacy, Jim; And Others

    This publication provides an introduction to meat processing for adult students in vocational and technical education programs. Organized in four chapters, the booklet provides a brief overview of the meat processing industry and the techniques of meat processing and butchering. The first chapter introduces the meat processing industry and…

  10. Process for improving metal production in steelmaking processes

    Science.gov (United States)

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  11. Genetic Process Mining: Alignment-based Process Model Mutation

    NARCIS (Netherlands)

    Eck, van M.L.; Buijs, J.C.A.M.; Dongen, van B.F.; Fournier, F.; Mendling, J.

    2015-01-01

    The Evolutionary Tree Miner (ETM) is a genetic process discovery algorithm that enables the user to guide the discovery process based on preferences with respect to four process model quality dimensions: replay fitness, precision, generalization and simplicity. Traditionally, the ETM algorithm uses

  12. Business process modeling for processing classified documents using RFID technology

    Directory of Open Access Journals (Sweden)

    Koszela Jarosław

    2016-01-01

    Full Text Available The article outlines the application of the processing approach to the functional description of the designed IT system supporting the operations of the secret office, which processes classified documents. The article describes the application of the method of incremental modeling of business processes according to the BPMN model to the description of the processes currently implemented (“as is” in a manual manner and target processes (“to be”, using the RFID technology for the purpose of their automation. Additionally, the examples of applying the method of structural and dynamic analysis of the processes (process simulation to verify their correctness and efficiency were presented. The extension of the process analysis method is a possibility of applying the warehouse of processes and process mining methods.

  13. Novel process windows, part 1: Boosted micro process technology

    NARCIS (Netherlands)

    Hessel, V.; Wang, Q.

    2011-01-01

    Novel Process Windows (NPW) is the use of highly intensified, unusual and typically harsh process conditions to boost micro process technology and flow chemistry for the production of high-added value fine chemicals, pharmaceuticals, etc.. It is far from conventional processing and also from

  14. Spatial and temporal disaggregation of transport-related carbon dioxide emissions in Bogota - Colombia

    Science.gov (United States)

    Hernandez-Gonzalez, L. A.; Jimenez Pizarro, R.; Néstor Y. Rojas, N. Y.

    2011-12-01

    As a result of rapid urbanization during the last 60 years, 75% of the Colombian population now lives in cities. Urban areas are net sources of greenhouse gases (GHG) and contribute significantly to national GHG emission inventories. The development of scientifically-sound GHG mitigation strategies require accurate GHG source and sink estimations. Disaggregated inventories are effective mitigation decision-making tools. The disaggregation process renders detailed information on the distribution of emissions by transport mode, and the resulting a priori emissions map allows for optimal definition of sites for GHG flux monitoring, either by eddy covariance or inverse modeling techniques. Fossil fuel use in transportation is a major source of carbon dioxide (CO2) in Bogota. We present estimates of CO2 emissions from road traffic in Bogota using the Intergovernmental Panel on Climate Change (IPCC) reference method, and a spatial and temporal disaggregation method. Aggregated CO2 emissions from mobile sources were estimated from monthly and annual fossil fuel (gasoline, diesel and compressed natural gas - CNG) consumption statistics, and estimations of bio-ethanol and bio-diesel use. Although bio-fuel CO2 emissions are considered balanced over annual (or multi-annual) agricultural cycles, we included them since CO2 generated by their combustion would be measurable by a net flux monitoring system. For the disaggregation methodology, we used information on Bogota's road network classification, mean travel speed and trip length for each vehicle category and road type. The CO2 emission factors were taken from recent in-road measurements for gasoline- and CNG-powered vehicles and also estimated from COPERT IV. We estimated emission factors for diesel from surveys on average trip length and fuel consumption. Using IPCC's reference method, we estimate Bogota's total transport-related CO2 emissions for 2008 (reference year) at 4.8 Tg CO2. The disaggregation method estimation is

  15. Cognitive Processes in Discourse Comprehension: Passive Processes, Reader-Initiated Processes, and Evolving Mental Representations

    Science.gov (United States)

    van den Broek, Paul; Helder, Anne

    2017-01-01

    As readers move through a text, they engage in various types of processes that, if all goes well, result in a mental representation that captures their interpretation of the text. With each new text segment the reader engages in passive and, at times, reader-initiated processes. These processes are strongly influenced by the readers'…

  16. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  17. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  18. Clear road for sustainable fuels? Study on the willingness of consumers to switch to sustainable fuels

    International Nuclear Information System (INIS)

    Van Amelsfoort, A.; Zwier, R.

    2007-01-01

    In the Netherlands, there are currently hardly any filling stations where various types of sustainable fuels are available next to the regular fuels. Green Planet wants to start a filling station in the province of Drenthe. However, first Green Planet want to examine if consumers are prepared to switch to sustainable fuels. In addition, they want to know how these fuels should be properly introduced. The authors have sent questionnaires to more than 300 car drivers in the provinces of Groningen en Drenthe. Based on the results of the questionnaire a marketing strategy was developed recommending to start offering sustainable fuels, and especially B10/E10 and CNG. The consumer must be informed about the composition of sustainable fuels and possible consequences that driving on sustainable fuels may have for cars and the environment. [mk] [nl

  19. Data processing

    CERN Document Server

    Fry, T F

    2013-01-01

    Data Processing discusses the principles, practices, and associated tools in data processing. The book is comprised of 17 chapters that are organized into three parts. The first part covers the characteristics, systems, and methods of data processing. Part 2 deals with the data processing practice; this part discusses the data input, output, and storage. The last part discusses topics related to systems and software in data processing, which include checks and controls, computer language and programs, and program elements and structures. The text will be useful to practitioners of computer-rel

  20. In-process and post-process measurements of drill wear for control of the drilling process

    Science.gov (United States)

    Liu, Tien-I.; Liu, George; Gao, Zhiyu

    2011-12-01

    Optical inspection was used in this research for the post-process measurements of drill wear. A precision toolmakers" microscope was used. Indirect index, cutting force, is used for in-process drill wear measurements. Using in-process measurements to estimate the drill wear for control purpose can decrease the operation cost and enhance the product quality and safety. The challenge is to correlate the in-process cutting force measurements with the post-process optical inspection of drill wear. To find the most important feature, the energy principle was used in this research. It is necessary to select only the cutting force feature which shows the highest sensitivity to drill wear. The best feature selected is the peak of torque in the drilling process. Neuro-fuzzy systems were used for correlation purposes. The Adaptive-Network-Based Fuzzy Inference System (ANFIS) can construct fuzzy rules with membership functions to generate an input-output pair. A 1x6 ANFIS architecture with product of sigmoid membership functions can in-process measure the drill wear with an error as low as 0.15%. This is extremely important for control of the drilling process. Furthermore, the measurement of drill wear was performed under different drilling conditions. This shows that ANFIS has the capability of generalization.

  1. Quasi-Birth-and-Death Processes with Rational Arrival Process Components

    DEFF Research Database (Denmark)

    Bean, Nigel G.; Nielsen, Bo Friis

    to develop an analytic method for such a process, that parallels the analysis of a traditional QBD. We demonstrate the analysis by considering a queue where the arrival process and the sequence of service times are derived from two different RAPs that are not just Markovian Arrival processes. We also...... introduce an element of correlation between the arrival process and the sequence of service times.......In this paper we introduce the concept of a Quasi-Birth-and-Death process (QBD) with Rational Arrival Process components. We use the physical interpretation of a Rational Arrival Process (RAP), developed by Asmussen and Bladt, to consider such a Markov process. We exploit this interpretation...

  2. Processes subject to integrated pollution control. Petroleum processes: oil refining and associated processes

    International Nuclear Information System (INIS)

    1995-01-01

    This document, part of a series offering guidance on pollution control regulations issued by Her Majesty's Inspectorate of Pollution, (HMIP) focuses on petroleum processes such as oil refining and other associated processes. The various industrial processes used, their associated pollution release routes into the environment and techniques for controlling these releases are all discussed. Environmental quality standards are related to national and international agreements on pollution control and abatement. HMIP's work on air, water and land pollution monitoring is also reported. (UK)

  3. Reflow process stabilization by chemical characteristics and process conditions

    Science.gov (United States)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  4. Microcrystalline silicon deposition: Process stability and process control

    International Nuclear Information System (INIS)

    Donker, M.N. van den; Kilper, T.; Grunsky, D.; Rech, B.; Houben, L.; Kessels, W.M.M.; Sanden, M.C.M. van de

    2007-01-01

    Applying in situ process diagnostics, we identified several process drifts occurring in the parallel plate plasma deposition of microcrystalline silicon (μc-Si:H). These process drifts are powder formation (visible from diminishing dc-bias and changing spatial emission profile on a time scale of 10 0 s), transient SiH 4 depletion (visible from a decreasing SiH emission intensity on a time scale of 10 2 s), plasma heating (visible from an increasing substrate temperature on a time scale of 10 3 s) and a still puzzling long-term drift (visible from a decreasing SiH emission intensity on a time scale of 10 4 s). The effect of these drifts on the crystalline volume fraction in the deposited films is investigated by selected area electron diffraction and depth-profiled Raman spectroscopy. An example shows how the transient depletion and long-term drift can be prevented by suitable process control. Solar cells deposited using this process control show enhanced performance. Options for process control of plasma heating and powder formation are discussed

  5. The permanent process

    DEFF Research Database (Denmark)

    Møller, Jesper; McCullagh, Peter

    We extend the boson process first to a large class of Cox processes and second an even larger class of infinitely divisible point processes. Density and moment results are studied in detail. These results are obtained in closed form as weighted permanents, so the extension is called a permanent...... process. Temporal extensions and a particularly tractable case of the permanent process are also studied. Extensions of the ferminon process along similar lines, leading to so-called determinant processes, are discussed at the end. While the permanent process is attractive, the determinant process...

  6. Multidimensional process discovery

    NARCIS (Netherlands)

    Ribeiro, J.T.S.

    2013-01-01

    Typically represented in event logs, business process data describe the execution of process events over time. Business process intelligence (BPI) techniques such as process mining can be applied to get strategic insight into business processes. Process discovery, conformance checking and

  7. ZZ ANSLV, Multigroup Cross Sections Library for ANS Reactor Design Studies

    International Nuclear Information System (INIS)

    2000-01-01

    A - Description of program or function: - Format: AMPX Master Interface Library format. Number of groups: Fine Group (99 energy groups) General Purpose Neutron Library. Materials: H, He, Be, B, Graphite, N, O, Na, Mg, Al, Si, K, Ti, V, Cr, Mn, Fe, Co, Ni, Kr, Zr, Mo, Tc, Ru, Ag, Cd, Cs, Ce, Pr, Pm, Sm, Eu, Hf, Ta, U, C, F, Cu, Sn, Pb, Rh, I, Xe, Nd, Th, Np, Pu, Am, Cm, Bk, Cf, Es, MAFP, WAFP. Origin: ENDF/B-V. - Format: AMPX Master Interface Library format. Number of groups: Broad Group (39 energy groups) General Purpose Neutron Library. Materials: H, He, Be, B, Graphite, N, O, Na, Mg, Al, Si, K, Ti, V, Cr, Mn, Fe, Co, Ni, Kr, Zr, Mo, Tc, Ru, Ag, Cd, Cs, Ce, Pr, Pm, Sm, Eu, Hf, Ta, U, C, F, Cu, Sn, Pb, Rh, I, Xe, Nd, Th, Np, Pu, Am, Cm, Bk, Cf, Es, MAFP, WAFP. Origin: ENDF/B-V. - Format: AMPX Master Interface Library format. Number of groups: Gamma-Ray Interaction (GRI) Library in 44-groups. Materials: H, He, Be, B, C, N, O, Na, Mg, Al, Si, K, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Mo, Ag, Cd, Xe, Sm, Eu, Hf, Ta, Ir, Pb, Th, U, Pu. Origin: ENDF/B-V; LENDL-V evaluations for 12 materials. - Format: AMPX Master Interface Library format. Number of groups: Coupled Library containing (CNG) 99-group neutron and 44-group gamma-ray data. Materials: H, Be, B, C, N, O, Na, Mg, Al, Si, K, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Mo, Ag, Cd, Eu, Hf, Ta, Pb, Th, U, Pu. Origin: ENDF/B-V. - Format: AMPX Master Interface Library format. Number of groups: Coupled neutron-gamma (CNG) Library containing 39-group, and 44-group gamma-ray data. Materials: H, Be, B, C, N, O, Na, Mg, Al, Si, K, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Mo, Ag, Cd, Eu, Hf, Ta, Pb, Th, U, Pu. Origin: ENDF/B-V. Weighting spectrum: Maxwellian 300 K + 1/(E*sigma-total) + fission spectrum4 types of boundaries have been used depending isotope and library type (see report). Pseudo-problem-independent, multigroup cross section libraries were generated to support the Advanced Neutron source (ANS) reactor design studies. The ANS was

  8. Evaluation of the Swedish biogas standard - basis for a future audit; Utvaerdering av svensk biogasstandard - underlag foer en framtida revision

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Mattias

    2011-04-15

    This report is intended to constitute a basis for a future revision of the SS 15 54 38, 'Motor fuels - Biogas as fuel for high-speed otto engines.' When it was published in 1999, it was not deemed appropriate to source compressed biomethane from landfill gas, because of its wider range of trace elements, often in relatively high concentrations, such as siloxanes and halogenated hydrocarbons. Siloxanes are also present in the gas from waste water treatment plants, but the assessment was made that upgrading methods available at the time reduced these levels sufficiently. By putting a maximum limit on the nitrogen content, landfill gas was effectively shut out. Technical Development (cryogenic upgrading making it possible to clean landfill gas to biomethane quality; stricter emissions standards for vehicles that has led to a higher level of sophistication in engine and aftertreatment technologies) has now made it necessary to better control the levels of all trace elements. The state of standardization is not satisfactory for CNG in general and renewable CNG (biomethane) in particular. Standardization at the international level is mostly qualitative. Most standards are at the national level and with the exception of Sweden biomethane is only standardized for injection on the natural gas network. A mandate (M/475, 2010) from the European Commission to develop the CEN standards for biomethane fed into the grid, or used directly as renewable CNG, may change this, and the issue will be addressed in a new committee (CEN/TC408 'Project Committee - Biogas for use in transportation and injection into natural gas pipelines'). A variety of trace elements has been discussed for inclusion in the new standards, where countries such as Holland and France stand out as supporters of more stringent and comprehensive regulations. This report's working group considers it like the regulation of substances such as siloxanes and halogenated hydrocarbons will lead

  9. Process development

    Energy Technology Data Exchange (ETDEWEB)

    Schuegerl, K

    1984-01-01

    The item 'process development' comprises the production of acetonic/butonal with C. acetobylicum and the yeasting of potato waste. The target is to increase productivity by taking the following measures - optimation of media, on-line process analysis, analysis of reaction, mathematic modelling and identification of parameters, process simulation, development of a state estimator with the help of the on-line process analysis and the model, optimization and adaptive control.

  10. Statistical Process Control for KSC Processing

    Science.gov (United States)

    Ford, Roger G.; Delgado, Hector; Tilley, Randy

    1996-01-01

    The 1996 Summer Faculty Fellowship Program and Kennedy Space Center (KSC) served as the basis for a research effort into statistical process control for KSC processing. The effort entailed several tasks and goals. The first was to develop a customized statistical process control (SPC) course for the Safety and Mission Assurance Trends Analysis Group. The actual teaching of this course took place over several weeks. In addition, an Internet version of the same course complete with animation and video excerpts from the course when it was taught at KSC was developed. The application of SPC to shuttle processing took up the rest of the summer research project. This effort entailed the evaluation of SPC use at KSC, both present and potential, due to the change in roles for NASA and the Single Flight Operations Contractor (SFOC). Individual consulting on SPC use was accomplished as well as an evaluation of SPC software for KSC use in the future. A final accomplishment of the orientation of the author to NASA changes, terminology, data format, and new NASA task definitions will allow future consultation when the needs arise.

  11. A method for manufacturing a tool part for an injection molding process, a hot embossing process, a nano-imprint process, or an extrusion process

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for manufacturing a tool part for an injection molding process, a hot embossing process, nano-imprint process or an extrusion process. First, there is provided a master structure (10) with a surface area comprising nanometre-sized protrusions (11...

  12. Process control using modern systems of information processing

    International Nuclear Information System (INIS)

    Baldeweg, F.

    1984-01-01

    Modern digital automation techniques allow the application of demanding types of process control. These types of process control are characterized by their belonging to higher levels in a multilevel model. Functional and technical aspects of the performance of digital automation plants are presented and explained. A modern automation system is described considering special procedures of process control (e.g. real time diagnosis)

  13. DUAL-PROCESS, a highly reliable process control system

    International Nuclear Information System (INIS)

    Buerger, L.; Gossanyi, A.; Parkanyi, T.; Szabo, G.; Vegh, E.

    1983-02-01

    A multiprocessor process control system is described. During its development the reliability was the most important aspect because it is used in the computerized control of a 5 MW research reactor. DUAL-PROCESS is fully compatible with the earlier single processor control system PROCESS-24K. The paper deals in detail with the communication, synchronization, error detection and error recovery problems of the operating system. (author)

  14. Quasi-Birth-and-Death Processes with Rational Arrival Process Components

    DEFF Research Database (Denmark)

    Bean, Nigel G.; Nielsen, Bo Friis

    2010-01-01

    This paper introduces the concept of a Quasi-Birth-and-Death process (QBD) with Rational Arrival Process (RAP) components. We use the physical interpretation of the prediction process of the RAP, developed by Asmussen and Bladt, and develop an analysis that parallels the analysis of a traditional...... QBD. Further, we present an algorithm for the numerical evaluation of the matrix G. As an example, we consider two queues where the arrival process and the sequence of service times are taken from two dependent RAPs, that are not Markovian Arrival Processes......This paper introduces the concept of a Quasi-Birth-and-Death process (QBD) with Rational Arrival Process (RAP) components. We use the physical interpretation of the prediction process of the RAP, developed by Asmussen and Bladt, and develop an analysis that parallels the analysis of a traditional...

  15. Stochastic processes

    CERN Document Server

    Parzen, Emanuel

    1962-01-01

    Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

  16. Dosimetry and process control for radiation processing

    International Nuclear Information System (INIS)

    Mod Ali, N.

    2002-01-01

    Complete text of publication follows. Accurate radiation dosimetry can provide quality assurance in radiation processing. Considerable relevant experiences in dosimetry by the SSDL-MINT has necessitate the development of methods making measurement at gamma plant traceable to the national standard. It involves the establishment of proper calibration procedure and selection of appropriate transfer system/technique to assure adequate traceability to a primary radiation standard. The effort forms the basis for irradiation process control, the legal approval of the process by the public health authorities (medical product sterilization and food preservation) and the safety and acceptance of the product

  17. Process mining using BPMN: relating event logs and process models

    NARCIS (Netherlands)

    Kalenkova, A.A.; van der Aalst, W.M.P.; Lomazova, I.A.; Rubin, V.A.

    2017-01-01

    Process-aware information systems (PAIS) are systems relying on processes, which involve human and software resources to achieve concrete goals. There is a need to develop approaches for modeling, analysis, improvement and monitoring processes within PAIS. These approaches include process mining

  18. Process mining using BPMN : relating event logs and process models

    NARCIS (Netherlands)

    Kalenkova, A.A.; Aalst, van der W.M.P.; Lomazova, I.A.; Rubin, V.A.

    2015-01-01

    Process-aware information systems (PAIS) are systems relying on processes, which involve human and software resources to achieve concrete goals. There is a need to develop approaches for modeling, analysis, improvement and monitoring processes within PAIS. These approaches include process mining

  19. Process modeling for Humanities: tracing and analyzing scientific processes

    OpenAIRE

    Hug , Charlotte; Salinesi , Camille; Deneckere , Rebecca; Lamasse , Stéphane

    2011-01-01

    International audience; This paper concerns epistemology and the understanding of research processes in Humanities, such as Archaeology. We believe that to properly understand research processes, it is essential to trace them. The collected traces depend on the process model established, which has to be as accurate as possible to exhaustively record the traces. In this paper, we briefly explain why the existing process models for Humanities are not sufficient to represent traces. We then pres...

  20. Poisson processes

    NARCIS (Netherlands)

    Boxma, O.J.; Yechiali, U.; Ruggeri, F.; Kenett, R.S.; Faltin, F.W.

    2007-01-01

    The Poisson process is a stochastic counting process that arises naturally in a large variety of daily life situations. We present a few definitions of the Poisson process and discuss several properties as well as relations to some well-known probability distributions. We further briefly discuss the

  1. Process improvement : the creation and evaluation of process alternatives

    NARCIS (Netherlands)

    Netjes, M.

    2010-01-01

    Companies continuously strive to improve their processes to increase productivity and delivered quality against lower costs. With Business Process Redesign (BPR) projects such improvement goals can be achieved. BPR involves the restructuring of business processes, stimulated by the application of

  2. The permanental process

    DEFF Research Database (Denmark)

    McCullagh, Peter; Møller, Jesper

    2006-01-01

    We extend the boson process first to a large class of Cox processes and second to an even larger class of infinitely divisible point processes. Density and moment results are studied in detail. These results are obtained in closed form as weighted permanents, so the extension i called a permanental...... process. Temporal extensions and a particularly tractable case of the permanental process are also studied. Extensions of the fermion process along similar lines, leading to so-called determinantal processes, are discussed....

  3. Dry process potentials

    International Nuclear Information System (INIS)

    Faugeras, P.

    1997-01-01

    Various dry processes have been studied and more or less developed in order particularly to reduce the waste quantities but none of them had replaced the PUREX process, for reasons departing to policy errors, un-appropriate demonstration examples or too late development, although realistic and efficient dry processes such as a fluoride selective volatility based processes have been demonstrated in France (CLOVIS, ATILA) and would be ten times cheaper than the PUREX process. Dry processes could regain interest in case of a nuclear revival (following global warming fears) or thermal wastes over-production. In the near future, dry processes could be introduced in complement to the PUREX process, especially at the end of the process cycle, for a more efficient recycling and safer storage (inactivation)

  4. Business Process Customization using Process Merging Techniques

    NARCIS (Netherlands)

    Bulanov, Pavel; Lazovik, Alexander; Aiello, Marco

    2012-01-01

    One of the important application of service composition techniques lies in the field of business process management. Essentially a business process can be considered as a composition of services, which is usually prepared by domain experts, and many tasks still have to be performed manually. These

  5. Business process transformation the process tangram framework

    CERN Document Server

    Sharma, Chitra

    2015-01-01

    This book presents a framework through transformation and explains  how business goals can be translated into realistic plans that are tangible and yield real results in terms of the top line and the bottom line. Process Transformation is like a tangram puzzle, which has multiple solutions yet is essentially composed of seven 'tans' that hold it together. Based on practical experience and intensive research into existing material, 'Process Tangram' is a simple yet powerful framework that proposes Process Transformation as a program. The seven 'tans' are: the transformation program itself, triggers, goals, tools and techniques, culture, communication and success factors. With its segregation into tans and division into core elements, this framework makes it possible to use 'pick and choose' to quickly and easily map an organization's specific requirements. Change management and process modeling are covered in detail. In addition, the book approaches managed services as a model of service delivery, which it ex...

  6. Composable Data Processing in Environmental Science - A Process View

    NARCIS (Netherlands)

    Wombacher, Andreas

    Data processing in environmental science is essential for doing science. The heterogeneity of data sources, data processing operations and infrastructures results in a lot of manual data and process integration work done by each scientist individually. This is very inefficient and time consuming.

  7. Processing module operating methods, processing modules, and communications systems

    Science.gov (United States)

    McCown, Steven Harvey; Derr, Kurt W.; Moore, Troy

    2014-09-09

    A processing module operating method includes using a processing module physically connected to a wireless communications device, requesting that the wireless communications device retrieve encrypted code from a web site and receiving the encrypted code from the wireless communications device. The wireless communications device is unable to decrypt the encrypted code. The method further includes using the processing module, decrypting the encrypted code, executing the decrypted code, and preventing the wireless communications device from accessing the decrypted code. Another processing module operating method includes using a processing module physically connected to a host device, executing an application within the processing module, allowing the application to exchange user interaction data communicated using a user interface of the host device with the host device, and allowing the application to use the host device as a communications device for exchanging information with a remote device distinct from the host device.

  8. Improving the process of process modelling by the use of domain process patterns

    NARCIS (Netherlands)

    Koschmider, A.; Reijers, H.A.

    2015-01-01

    The use of business process models has become prevalent in a wide area of enterprise applications. But while their popularity is expanding, concerns are growing with respect to their proper creation and maintenance. An obvious way to boost the efficiency of creating high-quality business process

  9. Trends in business process analysis: from verification to process mining

    NARCIS (Netherlands)

    Aalst, van der W.M.P.; Cardoso, J.; Cordeiro, J.; Filipe, J.

    2007-01-01

    Business process analysis ranges from model verification at design-time to the monitoring of processes at runtime. Much progress has been achieved in process verification. Today we are able to verify the entire reference model of SAP without any problems. Moreover, more and more processes leave

  10. Automatic extraction of process categories from process model collections

    NARCIS (Netherlands)

    Malinova, M.; Dijkman, R.M.; Mendling, J.; Lohmann, N.; Song, M.; Wohed, P.

    2014-01-01

    Many organizations build up their business process management activities in an incremental way. As a result, there is no overarching structure defined at the beginning. However, as business process modeling initiatives often yield hundreds to thousands of process models, there is a growing need for

  11. Opportunities and challenges for process control in process intensification

    NARCIS (Netherlands)

    Nikacevic, N.M.; Huesman, A.E.M.; Hof, Van den P.M.J.; Stankiewicz, A.

    2012-01-01

    This is a review and position article discussing the role and prospective for process control in process intensification. Firstly, the article outlines the classical role of control in process systems, presenting an overview of control systems’ development, from basic PID control to the advanced

  12. Transforming spatial point processes into Poisson processes using random superposition

    DEFF Research Database (Denmark)

    Møller, Jesper; Berthelsen, Kasper Klitgaaard

    with a complementary spatial point process Y  to obtain a Poisson process X∪Y  with intensity function β. Underlying this is a bivariate spatial birth-death process (Xt,Yt) which converges towards the distribution of (X,Y). We study the joint distribution of X and Y, and their marginal and conditional distributions....... In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson...... process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking...

  13. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  14. Process Fragment Libraries for Easier and Faster Development of Process-based Applications

    Directory of Open Access Journals (Sweden)

    David Schumm

    2011-01-01

    Full Text Available The term “process fragment” is recently gaining momentum in business process management research. We understand a process fragment as a connected and reusable process structure, which has relaxed completeness and consistency criteria compared to executable processes. We claim that process fragments allow for an easier and faster development of process-based applications. As evidence to this claim we present a process fragment concept and show a sample collection of concrete, real-world process fragments. We present advanced application scenarios for using such fragments in development of process-based applications. Process fragments are typically managed in a repository, forming a process fragment library. On top of a process fragment library from previous work, we discuss the potential impact of using process fragment libraries in cross-enterprise collaboration and application integration.

  15. Rapid thermal processing and beyond applications in semiconductor processing

    CERN Document Server

    Lerch, W

    2008-01-01

    Heat-treatment and thermal annealing are very common processing steps which have been employed during semiconductor manufacturing right from the beginning of integrated circuit technology. In order to minimize undesired diffusion, and other thermal budget-dependent effects, the trend has been to reduce the annealing time sharply by switching from standard furnace batch-processing (involving several hours or even days), to rapid thermal processing involving soaking times of just a few seconds. This transition from thermal equilibrium, to highly non-equilibrium, processing was very challenging a

  16. Fractional Processes and Fractional-Order Signal Processing Techniques and Applications

    CERN Document Server

    Sheng, Hu; Qiu, TianShuang

    2012-01-01

    Fractional processes are widely found in science, technology and engineering systems. In Fractional Processes and Fractional-order Signal Processing, some complex random signals, characterized by the presence of a heavy-tailed distribution or non-negligible dependence between distant observations (local and long memory), are introduced and examined from the ‘fractional’ perspective using simulation, fractional-order modeling and filtering and realization of fractional-order systems. These fractional-order signal processing (FOSP) techniques are based on fractional calculus, the fractional Fourier transform and fractional lower-order moments. Fractional Processes and Fractional-order Signal Processing: • presents fractional processes of fixed, variable and distributed order studied as the output of fractional-order differential systems; • introduces FOSP techniques and the fractional signals and fractional systems point of view; • details real-world-application examples of FOSP techniques to demonstr...

  17. Clinical Processes - The Killer Application for Constraint-Based Process Interactions

    DEFF Research Database (Denmark)

    Jiménez-Ramírez, Andrés; Barba, Irene; Reichert, Manfred

    2018-01-01

    . The scenario is subject to complex temporal constraints and entails the need for coordinating the constraint-based interactions among the processes related to a patient treatment process. As demonstrated in this work, the selected real process scenario can be suitably modeled through a declarative approach....... examples. However, to the best of our knowledge, they have not been used to model complex, real-world scenarios that comprise constraints going beyond control-flow. In this paper, we propose the use of a declarative language for modeling a sophisticated healthcare process scenario from the real world......For more than a decade, the interest in aligning information systems in a process-oriented way has been increasing. To enable operational support for business processes, the latter are usually specified in an imperative way. The resulting process models, however, tend to be too rigid to meet...

  18. Process innovation laboratory

    DEFF Research Database (Denmark)

    Møller, Charles

    2007-01-01

    to create a new methodology for developing and exploring process models and applications. The paper outlines the process innovation laboratory as a new approach to BPI. The process innovation laboratory is a comprehensive framework and a collaborative workspace for experimenting with process models....... The process innovation laboratory facilitates innovation by using an integrated action learning approach to process modelling in a controlled environment. The study is based on design science and the paper also discusses the implications to EIS research and practice......Most organizations today are required not only to operate effective business processes but also to allow for changing business conditions at an increasing rate. Today nearly every business relies on their enterprise information systems (EIS) for process integration and future generations of EIS...

  19. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  20. PROPOSAL OF SPATIAL OPTIMIZATION OF PRODUCTION PROCESS IN PROCESS DESIGNER

    Directory of Open Access Journals (Sweden)

    Peter Malega

    2015-03-01

    Full Text Available This contribution is focused on optimizing the use of space in the production process using software Process Designer. The aim of this contribution is to suggest possible improvements to the existing layout of the selected production process. Production process was analysed in terms of inputs, outputs and course of actions. Nowadays there are many software solutions aimed at optimizing the use of space. One of these software products is the Process Designer, which belongs to the product line Tecnomatix. This software is primarily aimed at production planning. With Process Designer is possible to design the layout of production and subsequently to analyse the production or to change according to the current needs of the company.

  1. Design of a Natural Gas Liquefaction System with Minimum Components

    International Nuclear Information System (INIS)

    Bergese, Franco

    2004-01-01

    In this work an economic method for liquefying natural gas by diminishing its temperature by means of the Joule-Thomson effect is presented.The pressures from and to which the gas must be expanded arose from a thermodynamic calculation optimizing the cost per unit mass of Liquefied Natural Gas LNG).It was determined that the gas should be expanded from 200 atm to 4 atm.This expansion ratio can be used in different scales.Large Scale: liquefaction of gas at well.It takes advantage of the fact that the gas inside the well is stored at high pressure.The gas is expanded in a valve / nozzle and then compressed to the pressure of the local pipeline system.The objective of this project is to export natural gas as LNG, which is transported by ships to the markets of consumption.Using this method of liquefaction, the LNG production levels are limited to a fraction of the production of the well, due to the injection of the un condensed gas into the local pipelines system.Medium Scale: A high pressure pipeline is the source of the gas.The expansion is performed and then the gas is again compressed to the pressure of a lower pressure pipeline into which the gas is injected.The pressure reductions of natural gas are performed nearby big cities.The aim of this project scale is the storage of fuel for gas thermal power plants during periods of low energy consumption for later burning when the resource is limited. Another possibility that offers this size of plant is the transportation of gas to regions where the resource is unavailable.This transportation would be carried out by means of cistern trucks, in the same way that conventional liquid fuels are transported.Small scale: the place of production would be a CNG refueling station. The source of gas is in this case a gas pipeline of urban distribution and the gas should be compressed with the compressor of the refueling station.Compressors have generally low loading factor and the periods of time when they are not producing

  2. Process automation

    International Nuclear Information System (INIS)

    Moser, D.R.

    1986-01-01

    Process automation technology has been pursued in the chemical processing industries and to a very limited extent in nuclear fuel reprocessing. Its effective use has been restricted in the past by the lack of diverse and reliable process instrumentation and the unavailability of sophisticated software designed for process control. The Integrated Equipment Test (IET) facility was developed by the Consolidated Fuel Reprocessing Program (CFRP) in part to demonstrate new concepts for control of advanced nuclear fuel reprocessing plants. A demonstration of fuel reprocessing equipment automation using advanced instrumentation and a modern, microprocessor-based control system is nearing completion in the facility. This facility provides for the synergistic testing of all chemical process features of a prototypical fuel reprocessing plant that can be attained with unirradiated uranium-bearing feed materials. The unique equipment and mission of the IET facility make it an ideal test bed for automation studies. This effort will provide for the demonstration of the plant automation concept and for the development of techniques for similar applications in a full-scale plant. A set of preliminary recommendations for implementing process automation has been compiled. Some of these concepts are not generally recognized or accepted. The automation work now under way in the IET facility should be useful to others in helping avoid costly mistakes because of the underutilization or misapplication of process automation. 6 figs

  3. Process Analytical Technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control.

    Science.gov (United States)

    Gnoth, S; Jenzsch, M; Simutis, R; Lübbert, A

    2007-10-31

    The Process Analytical Technology (PAT) initiative of the FDA is a reaction on the increasing discrepancy between current possibilities in process supervision and control of pharmaceutical production processes and its current application in industrial manufacturing processes. With rigid approval practices based on standard operational procedures, adaptations of production reactors towards the state of the art were more or less inhibited for long years. Now PAT paves the way for continuous process and product improvements through improved process supervision based on knowledge-based data analysis, "Quality-by-Design"-concepts, and, finally, through feedback control. Examples of up-to-date implementations of this concept are presented. They are taken from one key group of processes in recombinant pharmaceutical protein manufacturing, the cultivations of genetically modified Escherichia coli bacteria.

  4. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  5. Comparative process mining in education : an approach based on process cubes

    NARCIS (Netherlands)

    van der Aalst, W.M.P.; Guo, S.; Gorissen, P.J.B.; Ceravolo, P.; Accorsi, R.; Cudre-Mauroux, P.

    2015-01-01

    Process mining techniques enable the analysis of a wide variety of processes using event data. For example, event logs can be used to automatically learn a process model (e.g., a Petri net or BPMN model). Next to the automated discovery of the real underlying process, there are process mining

  6. Process mining

    DEFF Research Database (Denmark)

    van der Aalst, W.M.P.; Rubin, V.; Verbeek, H.M.W.

    2010-01-01

    Process mining includes the automated discovery of processes from event logs. Based on observed events (e.g., activities being executed or messages being exchanged) a process model is constructed. One of the essential problems in process mining is that one cannot assume to have seen all possible...... behavior. At best, one has seen a representative subset. Therefore, classical synthesis techniques are not suitable as they aim at finding a model that is able to exactly reproduce the log. Existing process mining techniques try to avoid such “overfitting” by generalizing the model to allow for more...... support for it). None of the existing techniques enables the user to control the balance between “overfitting” and “underfitting”. To address this, we propose a two-step approach. First, using a configurable approach, a transition system is constructed. Then, using the “theory of regions”, the model...

  7. Process monitoring

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Many of the measurements and observations made in a nuclear processing facility to monitor processes and product quality can also be used to monitor the location and movements of nuclear materials. In this session information is presented on how to use process monitoring data to enhance nuclear material control and accounting (MC and A). It will be seen that SNM losses can generally be detected with greater sensitivity and timeliness and point of loss localized more closely than by conventional MC and A systems if process monitoring data are applied. The purpose of this session is to enable the participants to: (1) identify process unit operations that could improve control units for monitoring SNM losses; (2) choose key measurement points and formulate a loss indicator for each control unit; and (3) describe how the sensitivities and timeliness of loss detection could be determined for each loss indicator

  8. Metacognition in Creativity: Process Awareness Used to Facilitate the Creative Process

    DEFF Research Database (Denmark)

    Valgeirsdóttir, Dagný; Onarheim, Balder

    2017-01-01

    to ensure capture of all instances of process awareness. Through this iterative process it was revealed that process awareness was predominantly observed in creativity related tasks. Moreover three distinct facets to process awareness emerged; planning, monitoring and reflecting, which were employed...... respectively before, during and after initiating a process and/or a workshop. We conclude that process awareness is an important creativity skill, being a crucial mechanism to enhance all stages of the creative process. If a designer becomes able to plan, monitor and reflect on his or her own cognitive...... processes, as well as other team members, he or she will be able to understand what works and what does not for advancing the creative process. In turn, that enables the designer to become more strategic about which actions are appropriate and at what time they are most usefully deployed; making the use...

  9. Development of functionally-oriented technological processes of electroerosive processing

    Science.gov (United States)

    Syanov, S. Yu

    2018-03-01

    The stages of the development of functionally oriented technological processes of electroerosive processing from the separation of the surfaces of parts and their service functions to the determination of the parameters of the process of electric erosion, which will provide not only the quality parameters of the surface layer, but also the required operational properties, are described.

  10. Data processing

    International Nuclear Information System (INIS)

    Cousot, P.

    1988-01-01

    The 1988 progress report of the Data Processing laboratory (Polytechnic School, France), is presented. The laboratory research fields are: the semantics, the tests and the semantic analysis of the codes, the formal calculus, the software applications, the algorithms, the neuron networks and VLSI (Very Large Scale Integration). The investigations concerning the polynomial rings are performed by means of the standard basis approach. Among the research topics, the Pascal codes, the parallel processing, the combinatorial, statistical and asymptotic properties of the fundamental data processing tools, the signal processing and the pattern recognition. The published papers, the congress communications and the thesis are also included [fr

  11. PROCESS VARIABILITY REDUCTION THROUGH STATISTICAL PROCESS CONTROL FOR QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    B.P. Mahesh

    2010-09-01

    Full Text Available Quality has become one of the most important customer decision factors in the selection among the competing product and services. Consequently, understanding and improving quality is a key factor leading to business success, growth and an enhanced competitive position. Hence quality improvement program should be an integral part of the overall business strategy. According to TQM, the effective way to improve the Quality of the product or service is to improve the process used to build the product. Hence, TQM focuses on process, rather than results as the results are driven by the processes. Many techniques are available for quality improvement. Statistical Process Control (SPC is one such TQM technique which is widely accepted for analyzing quality problems and improving the performance of the production process. This article illustrates the step by step procedure adopted at a soap manufacturing company to improve the Quality by reducing process variability using Statistical Process Control.

  12. Emotional Processing, Interaction Process, and Outcome in Clarification-Oriented Psychotherapy for Personality Disorders: A Process-Outcome Analysis.

    Science.gov (United States)

    Kramer, Ueli; Pascual-Leone, Antonio; Rohde, Kristina B; Sachse, Rainer

    2016-06-01

    It is important to understand the change processes involved in psychotherapies for patients with personality disorders (PDs). One patient process that promises to be useful in relation to the outcome of psychotherapy is emotional processing. In the present process-outcome analysis, we examine this question by using a sequential model of emotional processing and by additionally taking into account a therapist's appropriate responsiveness to a patient's presentation in clarification-oriented psychotherapy (COP), a humanistic-experiential form of therapy. The present study involved 39 patients with a range of PDs undergoing COP. Session 25 was assessed as part of the working phase of each therapy by external raters in terms of emotional processing using the Classification of Affective-Meaning States (CAMS) and in terms of the overall quality of therapist-patient interaction using the Process-Content-Relationship Scale (BIBS). Treatment outcome was assessed pre- and post-therapy using the Global Severity Index (GSI) of the SCL-90-R and the BDI. Results indicate that the good outcome cases showed more self-compassion, more rejecting anger, and a higher quality of therapist-patient interaction compared to poorer outcome cases. For good outcome cases, emotional processing predicted 18% of symptom change at the end of treatment, which was not found for poor outcome cases. These results are discussed within the framework of an integrative understanding of emotional processing as an underlying mechanism of change in COP, and perhaps in other effective therapy approaches for PDs.

  13. Process Materialization Using Templates and Rules to Design Flexible Process Models

    Science.gov (United States)

    Kumar, Akhil; Yao, Wen

    The main idea in this paper is to show how flexible processes can be designed by combining generic process templates and business rules. We instantiate a process by applying rules to specific case data, and running a materialization algorithm. The customized process instance is then executed in an existing workflow engine. We present an architecture and also give an algorithm for process materialization. The rules are written in a logic-based language like Prolog. Our focus is on capturing deeper process knowledge and achieving a holistic approach to robust process design that encompasses control flow, resources and data, as well as makes it easier to accommodate changes to business policy.

  14. Analysis of Production and Delivery Center Hydrogen Applied to the Southern Patagonian Circuit

    Directory of Open Access Journals (Sweden)

    Maximiliano Fernando Medina

    2016-08-01

    Full Text Available The Desire department of the province of Santa Cruz, Argentina, presents the greatest potential electrolytic Hydrogen Production Country, From Three primary sources of sustainable energy: wind, solar, biomass. There, the Hydrogen Plant of Pico Truncado has capacity central production of hydrogen 100m3 of H2 / day, enough to supply 353 vehicles with hybrid fuel called HGNC, made by cutting 12% V / V of hydrogen in CNG (in situ at each station. Puerto Deseado, Fitz Roy, Caleta Olivia, Las Heras, Comodoro Rivadavia, Sarmiento and the Ancients: From the production cost, the cost of delivering hydrogen to the Southern Patagonian circuit comprised analyzed. Considering various local parameters are determined as a way of delivering more profitable virtual pipeline, with total cost of hydrogen estimated 6.5 USD / kg H2 and HGNC shipped in the station at 0.50 USD / Nm3.

  15. The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

    International Nuclear Information System (INIS)

    Kevin Walkowicz; Denny Stephens; Kevin Stork

    2001-01-01

    This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts

  16. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.

    2011-10-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

  17. Model and algorithm for bi-fuel vehicle routing problem to reduce GHG emissions.

    Science.gov (United States)

    Abdoli, Behroz; MirHassani, Seyed Ali; Hooshmand, Farnaz

    2017-09-01

    Because of the harmful effects of greenhouse gas (GHG) emitted by petroleum-based fuels, the adoption of alternative green fuels such as biodiesel and compressed natural gas (CNG) is an inevitable trend in the transportation sector. However, the transition to alternative fuel vehicle (AFV) fleets is not easy and, particularly at the beginning of the transition period, drivers may be forced to travel long distances to reach alternative fueling stations (AFSs). In this paper, the utilization of bi-fuel vehicles is proposed as an operational approach. We present a mathematical model to address vehicle routing problem (VRP) with bi-fuel vehicles and show that the utilization of bi-fuel vehicles can lead to a significant reduction in GHG emissions. Moreover, a simulated annealing algorithm is adopted to solve large instances of this problem. The performance of the proposed algorithm is evaluated on some random instances.

  18. Dangers of big investment in energy-intensive industries

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, L

    1980-05-01

    New Zealand needs efficient industries which can compete effectively with those overseas, but a popular view that major import-replacement projects are the way to economic salvation is not shared by Mr. Bayliss, one of New Zealand's leading economists. Capital, skilled labor, and skilled management are scarce, and overseas borrowing is limited. What is needed, he continues, is to maximize the return from these scarce resources (in financial and employment terms); not dissipate them on grandiose projects that sound good. Future investment must be examined with substantial regard for growing unemployment problems. Development of Maui gas is specifically discussed; rather than adopting a policy of not exporting non-renewable fuels. Mr. Bayliss would export it in LPG or CNG form and use the proceeds to buy imported oil. He also points out that New Zealand is unprepared to develop skill-based industries such as microelectronics.

  19. Information report submitted by the Commission for European Affairs on the directive proposition by the European Parliament and the Council on the deployment on alternative fuels infrastructure- Nr 1126

    International Nuclear Information System (INIS)

    Savary, Gilles

    2013-01-01

    As clean fuels are facing three main obstacles (high vehicle cost, low consumer receptivity, and lack of charge ports and refuelling stations), this report discusses the context and the implications of a European directive which aims establishing constraining objectives for infrastructures dedicated to clean fuels as electricity, hydrogen and natural gas. The author presents this directive in relationship with the objective of development of low-carbon or de-carbonated transports through the use of electricity, hydrogen, bio-fuels, liquefied or compressed natural gas (LNG and CNG), liquefied petroleum gas (LPG), and in relationship with European connector harmonisation. He outlines the interest of the European initiative with respect to the French position: being ahead with the existence of a French plan for the development of the electric vehicle, France must not fall behind on the issue of connector system. Two strategies are proposed in conclusion

  20. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  1. Partial processing

    International Nuclear Information System (INIS)

    1978-11-01

    This discussion paper considers the possibility of applying to the recycle of plutonium in thermal reactors a particular method of partial processing based on the PUREX process but named CIVEX to emphasise the differences. The CIVEX process is based primarily on the retention of short-lived fission products. The paper suggests: (1) the recycle of fission products with uranium and plutonium in thermal reactor fuel would be technically feasible; (2) it would, however, take ten years or more to develop the CIVEX process to the point where it could be launched on a commercial scale; (3) since the majority of spent fuel to be reprocessed this century will have been in storage for ten years or more, the recycling of short-lived fission products with the U-Pu would not provide an effective means of making refabrication fuel ''inaccessible'' because the radioactivity associated with the fission products would have decayed. There would therefore be no advantage in partial processing

  2. Bringing the light to high throughput screening: use of optogenetic tools for the development of recombinant cellular assays

    Science.gov (United States)

    Agus, Viviana; Di Silvio, Alberto; Rolland, Jean Francois; Mondini, Anna; Tremolada, Sara; Montag, Katharina; Scarabottolo, Lia; Redaelli, Loredana; Lohmer, Stefan

    2015-03-01

    The use of light-activated proteins represents a powerful tool to control biological processes with high spatial and temporal precision. These so called "optogenetic" technologies have been successfully validated in many recombinant systems, and have been widely applied to the study of cellular mechanisms in intact tissues or behaving animals; to do that, complex, high-intensity, often home-made instrumentations were developed to achieve the optimal power and precision of light stimulation. In our study we sought to determine if this optical modulation can be obtained also in a miniaturized format, such as a 384-well plate, using the instrumentations normally dedicated to fluorescence analysis in High Throughput Screening (HTS) activities, such as for example the FLIPR (Fluorometric Imaging Plate Reader) instrument. We successfully generated optogenetic assays for the study of different ion channel targets: the CaV1.3 calcium channel was modulated by the light-activated Channelrhodopsin-2, the HCN2 cyclic nucleotide gated (CNG) channel was modulated by the light activated bPAC adenylyl cyclase, and finally the genetically encoded voltage indicator ArcLight was efficiently used to measure potassium, sodium or chloride channel activity. Our results showed that stable, robust and miniaturized cellular assays can be developed using different optogenetic tools, and efficiently modulated by the FLIPR instrument LEDs in a 384-well format. The spatial and temporal resolution delivered by this technology might enormously advantage the early stages of drug discovery, leading to the identification of more physiological and effective drug molecules.

  3. Presence of Ca2+-dependent K+ channels in chemosensory cilia support a role in odor transduction.

    Science.gov (United States)

    Delgado, Ricardo; Saavedra, M Veronica; Schmachtenberg, Oliver; Sierralta, Jimena; Bacigalupo, Juan

    2003-09-01

    Olfactory receptor neurons (ORNs) respond to odorants with changes in the action potential firing rate. Excitatory responses, consisting of firing increases, are mediated by a cyclic AMP cascade that leads to the activation of cationic nonselective cyclic nucleotide-gated (CNG) channels and Ca2+-dependent Cl- (ClCa) channels. This process takes place in the olfactory cilia, where all protein components of this cascade are confined. ORNs from various vertebrate species have also been shown to generate inhibitory odor responses, expressed as decreases in action potential discharges. Odor inhibition appears to rely on Ca2+-dependent K+ (KCa) channels, but the underlying transduction mechanism remains unknown. If these channels are involved in odor transduction, they are expected to be present in the olfactory cilia. We found that a specific antibody against a large conductance KCa recognized a protein of approximately 116 kDa in Western blots of purified rat olfactory ciliary membranes. Moreover, the antibody labeled ORN cilia in isolated ORNs from rat and toad (Caudiverbera caudiverbera). In addition, single-channel recordings from inside-out membrane patches excised from toad chemosensory cilia showed the presence of 4 different types of KCa channels, with unitary conductances of 210, 60, 12, and 29 and 60 pS, high K+-selectivity, and Ca2+ sensitivities in the low micromolar range. Our work demonstrates the presence of K+ channels in the ORN cilia and supports their participation in odor transduction.

  4. Well-to-Wheels Analysis of Compressed Natural Gas and Ethanol from Municipal Solid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2016-10-01

    The amount of municipal solid waste (MSW) generated in the United States was estimated at 254 million wet tons in 2013, and around half of that generated waste was landfilled. There is a huge potential in recovering energy from that waste, since around 60% of landfilled material is biomass-derived waste that has high energy content. In addition, diverting waste for fuel production avoids huge fugitive emissions from landfills, especially uncontrolled CH4 emissions, which are the third largest anthropogenic CH4 source in the United States. Lifecycle analysis (LCA) is typically used to evaluate the environmental impact of alternative fuel production pathways. LCA of transportation fuels is called well-to-wheels (WTW) and covers all stages of the fuel production pathways, from feedstock recovery (well) to vehicle operation (wheels). In this study, the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET®) model developed by Argonne National Laboratory is used to evaluate WTW greenhouse gas (GHG) emissions and fossil fuel consumption of waste-derived fuels. Two waste-to-energy (WTE) pathways have been evaluated – one for compressed natural gas (CNG) production using food waste via anaerobic digestion, and the other for ethanol production from yard trimmings via fermentation processes. Because the fuel production pathways displace current waste management practices (i.e., landfilling waste), we use a marginal approach that considers only the differences in emissions between the counterfactual case and the alternative fuel production case.

  5. Assessment of Process Capability: the case of Soft Drinks Processing Unit

    Science.gov (United States)

    Sri Yogi, Kottala

    2018-03-01

    The process capability studies have significant impact in investigating process variation which is important in achieving product quality characteristics. Its indices are to measure the inherent variability of a process and thus to improve the process performance radically. The main objective of this paper is to understand capability of the process being produced within specification of the soft drinks processing unit, a premier brands being marketed in India. A few selected critical parameters in soft drinks processing: concentration of gas volume, concentration of brix, torque of crock has been considered for this study. Assessed some relevant statistical parameters: short term capability, long term capability as a process capability indices perspective. For assessment we have used real time data of soft drinks bottling company which is located in state of Chhattisgarh, India. As our research output suggested reasons for variations in the process which is validated using ANOVA and also predicted Taguchi cost function, assessed also predicted waste monetarily this shall be used by organization for improving process parameters. This research work has substantially benefitted the organization in understanding the various variations of selected critical parameters for achieving zero rejection.

  6. Perturbed GUE Minor Process and Warren's Process with Drifts

    Science.gov (United States)

    Ferrari, Patrik L.; Frings, René

    2014-01-01

    We consider the minor process of (Hermitian) matrix diffusions with constant diagonal drifts. At any given time, this process is determinantal and we provide an explicit expression for its correlation kernel. This is a measure on the Gelfand-Tsetlin pattern that also appears in a generalization of Warren's process (Electron. J. Probab. 12:573-590, 2007), in which Brownian motions have level-dependent drifts. Finally, we show that this process arises in a diffusion scaling limit from an interacting particle system in the anisotropic KPZ class in 2+1 dimensions introduced in Borodin and Ferrari (Commun. Math. Phys., 2008). Our results generalize the known results for the zero drift situation.

  7. Integrated stationary Ornstein-Uhlenbeck process, and double integral processes

    Science.gov (United States)

    Abundo, Mario; Pirozzi, Enrica

    2018-03-01

    We find a representation of the integral of the stationary Ornstein-Uhlenbeck (ISOU) process in terms of Brownian motion Bt; moreover, we show that, under certain conditions on the functions f and g , the double integral process (DIP) D(t) = ∫βt g(s) (∫αs f(u) dBu) ds can be thought as the integral of a suitable Gauss-Markov process. Some theoretical and application details are given, among them we provide a simulation formula based on that representation by which sample paths, probability densities and first passage times of the ISOU process are obtained; the first-passage times of the DIP are also studied.

  8. Integrating textual and model-based process descriptions for comprehensive process search

    NARCIS (Netherlands)

    Leopold, Henrik; van der Aa, Han; Pittke, Fabian; Raffel, Manuel; Mendling, Jan; Reijers, Hajo A.

    2016-01-01

    Documenting business processes using process models is common practice in many organizations. However, not all process information is best captured in process models. Hence, many organizations complement these models with textual descriptions that specify additional details. The problem with this

  9. Neurological evidence linguistic processes precede perceptual simulation in conceptual processing.

    Science.gov (United States)

    Louwerse, Max; Hutchinson, Sterling

    2012-01-01

    There is increasing evidence from response time experiments that language statistics and perceptual simulations both play a role in conceptual processing. In an EEG experiment we compared neural activity in cortical regions commonly associated with linguistic processing and visual perceptual processing to determine to what extent symbolic and embodied accounts of cognition applied. Participants were asked to determine the semantic relationship of word pairs (e.g., sky - ground) or to determine their iconic relationship (i.e., if the presentation of the pair matched their expected physical relationship). A linguistic bias was found toward the semantic judgment task and a perceptual bias was found toward the iconicity judgment task. More importantly, conceptual processing involved activation in brain regions associated with both linguistic and perceptual processes. When comparing the relative activation of linguistic cortical regions with perceptual cortical regions, the effect sizes for linguistic cortical regions were larger than those for the perceptual cortical regions early in a trial with the reverse being true later in a trial. These results map upon findings from other experimental literature and provide further evidence that processing of concept words relies both on language statistics and on perceptual simulations, whereby linguistic processes precede perceptual simulation processes.

  10. Silicon integrated circuit process

    International Nuclear Information System (INIS)

    Lee, Jong Duck

    1985-12-01

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  11. Silicon integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Duck

    1985-12-15

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  12. Industrial processing versus home processing of tomato sauce

    NARCIS (Netherlands)

    Tomas, Merve; Beekwilder, Jules; Hall, Robert D.; Sagdic, Osman; Boyacioglu, Dilek; Capanoglu, Esra

    2017-01-01

    The effect of industrial and home processing, in vitro gastrointestinal digestion, individual phenolic content, and antioxidant capacity of tomato into tomato sauce were investigated. Industrial processing of tomato fruit into sauce had an overall positive effect on the total antioxidant capacity

  13. Genetic process mining

    NARCIS (Netherlands)

    Aalst, van der W.M.P.; Alves De Medeiros, A.K.; Weijters, A.J.M.M.; Ciardo, G.; Darondeau, P.

    2005-01-01

    The topic of process mining has attracted the attention of both researchers and tool vendors in the Business Process Management (BPM) space. The goal of process mining is to discover process models from event logs, i.e., events logged by some information system are used to extract information about

  14. Marshaling and Acquiring Resources for the Process Improvement Process

    Science.gov (United States)

    1993-06-01

    stakeholders. ( Geber , 1990) D. IDENTIFYING SUPPLIERS Suppliers are just as crucial to setting requirements for processes as are customers. Although...output ( Geber , 1990, p. 32). Before gathering resources for process improvement, the functional manager must ensure that the relationship of internal...him patent information and clerical people process his applications. ( Geber , 1990, pp. 29-34) To get the full benefit of a white-collar worker as a

  15. Process for recovering uranium from wet process phosphoric acid (III)

    International Nuclear Information System (INIS)

    Pyrih, R.Z.; Rickard, R.S.; Carrington, O.F.

    1983-01-01

    Uranium is conventionally recovered from wet-process phosphoric acid by two liquid ion exchange steps using a mixture of mono- and disubstituted phenyl esters of orthophosphoric acid (OPPA). Efficiency of the process drops as the mono-OPPA is lost preferentially to the aqueous phase. This invention provides a process for the removal of the uranium process organics (OPPA and organic solvents) from the raffinate of the first liquid ion exchange step and their return to the circuit. The process organics are removed by a combination flotation and absorption step, which results in the recovery of the organics on beads of a hydrophobic styrene polymer

  16. Extensible packet processing architecture

    Science.gov (United States)

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  17. Process intensification on membrane-based process for blackcurrant juice concentration

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Rong, Ben-Guang; Christensen, Knud Villy

    Juice concentrate production is a field where process intensification and novel concentration processes need to be implemented. The paper presents a systematic approach for process synthesis based on membrane processes for the concentration of blackcurrant juice, exemplified by the aroma recovery...... using combinations of vacuum membrane distillation and traditional distillation. Furthermore, the paper further suggests a novel method for the combination of nanofiltration, reverse osmosis and membrane distillation for the concentration of the dearomatized juice....

  18. Application of various technological processes in red clover seed processing

    OpenAIRE

    Đokić, Dragoslav; Stanisavljević, Rade; Terzić, Dragan; Marković, Jordan; Radivojević, Gordana; Anđelković, Bojan; Barać, Saša

    2012-01-01

    This paper presents the results of the processing of natural red clover seed on the processing equipment using different technological methods. Red clover seed, for the establishment and crop utilization, must be of high purity, germination, and high genetic values. These requirements are achieved by processing, or removing impurities and poor quality seeds. Red clover seed processing involves a number of operations, of which the most important are: cleaning, packaging, labeling and storage. ...

  19. CO-PRODUCT ENHANCEMENT AND DEVELOPMENT FOR THE MASADA OXYNOL PROCESS PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Donald V. Watkins

    2010-06-14

    The focus of this project was an overall process improvement through the enhancement of the co-product streams. The enhancement of the process operations and co-products will increase both ethanol production and the value of other process outputs and reduces the amount of waste byproducts. This leads to a more economical and environmentally sound alternative to landfill disposal of municipal solid waste (MSW). These enhancements can greatly increase the commercial potential for the production of ethanol from MSW by the Masada CES OxyNol process. Both technological and economical issues were considered for steps throughout the conversion process. The research efforts of this project are varied but synergistic. The project investigated many of the operations involved in the Masada process with the overall goal of process improvements. The general goal of the testing was to improve co-product quality, improve conversions efficiencies, minimize process losses, increase energy efficiency, and mitigate process and commercialization risks. The project was divided into 16 subtasks as described in general terms below. All these tasks are interrelated but not necessarily interdependent.

  20. Modeling the Object-Oriented Software Process: OPEN and the Unified Process

    NARCIS (Netherlands)

    van den Berg, Klaas; Aksit, Mehmet; van den Broek, P.M.

    A short introduction to software process modeling is presented, particularly object-oriented modeling. Two major industrial process models are discussed: the OPEN model and the Unified Process model. In more detail, the quality assurance in the Unified Process tool (formally called Objectory) is

  1. Links between attachment and social information processing: examination of intergenerational processes.

    Science.gov (United States)

    Dykas, Matthew J; Ehrlich, Katherine B; Cassidy, Jude

    2011-01-01

    This chapter describes theory and research on intergenerational connections between parents' attachment and children's social information processing, as well as between parents' social information processing and children's attachment. The chapter begins with a discussion of attachment theorists' early insights into the role that social information processing plays in attachment processes. Next, current theory about the mechanisms through which cross-generational links between attachment and social information processing might emerge is presented. The central proposition is that the quality of attachment and/or the social information processing of the parent contributes to the quality of attachment and/or social information processing in the child, and these links emerge through mediating processes related to social learning, open communication, gate-keeping, emotion regulation, and joint attention. A comprehensive review of the literature is then presented. The chapter ends with the presentation of a current theoretical perspective and suggestions for future empirical and clinical endeavors.

  2. A Repeatable Collaboration Process for Exploring Business Process Improvement Alternatives

    NARCIS (Netherlands)

    Sol, H G; Amiyo, Mercy; Nabukenya, J.

    2012-01-01

    The dynamic nature of organisations has increased demand for business process agility leading to the adoption of continuous Business Process Improvement (BPI). Success of BPI projects calls for continuous process analysis and exploration of several improvement alternatives. These activities are

  3. Processing approaches to cognition: the impetus from the levels-of-processing framework.

    Science.gov (United States)

    Roediger, Henry L; Gallo, David A; Geraci, Lisa

    2002-01-01

    Processing approaches to cognition have a long history, from act psychology to the present, but perhaps their greatest boost was given by the success and dominance of the levels-of-processing framework. We review the history of processing approaches, and explore the influence of the levels-of-processing approach, the procedural approach advocated by Paul Kolers, and the transfer-appropriate processing framework. Processing approaches emphasise the procedures of mind and the idea that memory storage can be usefully conceptualised as residing in the same neural units that originally processed information at the time of encoding. Processing approaches emphasise the unity and interrelatedness of cognitive processes and maintain that they can be dissected into separate faculties only by neglecting the richness of mental life. We end by pointing to future directions for processing approaches.

  4. Editorial: "Business process intelligence : connecting data and processes"

    NARCIS (Netherlands)

    Aalst, van der W.M.P.; Zhao, J.L.; Wang, H.; Wang, Harry Jiannan

    2015-01-01

    This introduction to the special issue on Business Process Intelligence (BPI) discusses the relation between data and processes. The recent attention for Big Data illustrates that organizations are aware of the potential of the torrents of data generated by today's information systems. However, at

  5. Modeling the Object-Oriented Software Process: OPEN and the Unified Process

    OpenAIRE

    van den Berg, Klaas; Aksit, Mehmet; van den Broek, P.M.

    1999-01-01

    A short introduction to software process modeling is presented, particularly object-oriented modeling. Two major industrial process models are discussed: the OPEN model and the Unified Process model. In more detail, the quality assurance in the Unified Process tool (formally called Objectory) is reviewed.

  6. Process modelling on a canonical basis[Process modelling; Canonical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Siepmann, Volker

    2006-12-20

    Based on an equation oriented solving strategy, this thesis investigates a new approach to process modelling. Homogeneous thermodynamic state functions represent consistent mathematical models of thermodynamic properties. Such state functions of solely extensive canonical state variables are the basis of this work, as they are natural objective functions in optimisation nodes to calculate thermodynamic equilibrium regarding phase-interaction and chemical reactions. Analytical state function derivatives are utilised within the solution process as well as interpreted as physical properties. By this approach, only a limited range of imaginable process constraints are considered, namely linear balance equations of state variables. A second-order update of source contributions to these balance equations is obtained by an additional constitutive equation system. These equations are general dependent on state variables and first-order sensitivities, and cover therefore practically all potential process constraints. Symbolic computation technology efficiently provides sparsity and derivative information of active equations to avoid performance problems regarding robustness and computational effort. A benefit of detaching the constitutive equation system is that the structure of the main equation system remains unaffected by these constraints, and a priori information allows to implement an efficient solving strategy and a concise error diagnosis. A tailor-made linear algebra library handles the sparse recursive block structures efficiently. The optimisation principle for single modules of thermodynamic equilibrium is extended to host entire process models. State variables of different modules interact through balance equations, representing material flows from one module to the other. To account for reusability and encapsulation of process module details, modular process modelling is supported by a recursive module structure. The second-order solving algorithm makes it

  7. Uranium enrichment. Enrichment processes

    International Nuclear Information System (INIS)

    Alexandre, M.; Quaegebeur, J.P.

    2009-01-01

    Despite the remarkable progresses made in the diversity and the efficiency of the different uranium enrichment processes, only two industrial processes remain today which satisfy all of enriched uranium needs: the gaseous diffusion and the centrifugation. This article describes both processes and some others still at the demonstration or at the laboratory stage of development: 1 - general considerations; 2 - gaseous diffusion: physical principles, implementation, utilisation in the world; 3 - centrifugation: principles, elementary separation factor, flows inside a centrifuge, modeling of separation efficiencies, mechanical design, types of industrial centrifuges, realisation of cascades, main characteristics of the centrifugation process; 4 - aerodynamic processes: vortex process, nozzle process; 5 - chemical exchange separation processes: Japanese ASAHI process, French CHEMEX process; 6 - laser-based processes: SILVA process, SILMO process; 7 - electromagnetic and ionic processes: mass spectrometer and calutron, ion cyclotron resonance, rotating plasmas; 8 - thermal diffusion; 9 - conclusion. (J.S.)

  8. Science-based information processing in the process control of power stations

    International Nuclear Information System (INIS)

    Weisang, C.

    1992-01-01

    Through the application of specialized systems, future-orientated information processing integrates the sciences of processes, control systems, process control strategies, user behaviour and ergonomics. Improvements in process control can be attained, inter alia, by the preparation of the information contained (e.g. by suppressing the flow of signals and replacing it with signals which are found on substance) and also by an ergonomic representation of the study of the process. (orig.) [de

  9. Process mining: discovering direct successors in process logs

    NARCIS (Netherlands)

    Maruster, L.; Weijters, A.J.M.M.; Aalst, van der W.M.P.; Bosch, van den A.P.J.; Lange, S.; Satoh, K.; Smith, C.H.

    2002-01-01

    Workflow management technology requires the existence of explicit process models, i.e. a completely specified workflow design needs to be developed in order to enact a given workflow process. Such a workflow design is time consuming and often subjective and incomplete. We propose a learning method

  10. Internal process: what is abstraction and distortion process?

    Science.gov (United States)

    Fiantika, F. R.; Budayasa, I. K.; Lukito, A.

    2018-03-01

    Geometry is one of the branch of mathematics that plays a major role in the development of science and technology. Thus, knowing the geometry concept is needed for students from their early basic level of thinking. A preliminary study showed that the elementary students have difficulty in perceiving parallelogram shape in a 2-dimention of a cube drawing as a square shape. This difficulty makes the students can not solve geometrical problems correctly. This problem is related to the internal thinking process in geometry. We conducted the exploration of students’ internal thinking processes in geometry particularly in distinguishing the square and parallelogram shape. How the students process their internal thinking through distortion and abstraction is the main aim of this study. Analysis of the geometrical test and deep interview are used in this study to obtain the data. The result of this study is there are two types of distortion and abstraction respectively in which the student used in their internal thinking processes.

  11. Nonaqueous processing methods

    International Nuclear Information System (INIS)

    Coops, M.S.; Bowersox, D.F.

    1984-09-01

    A high-temperature process utilizing molten salt extraction from molten metal alloys has been developed for purification of spent power reactor fuels. Experiments with laboratory-scale processing operations show that purification and throughput parameters comparable to the Barnwell Purex process can be achieved by pyrochemical processing in equipment one-tenth the size, with all wastes being discharged as stable metal alloys at greatly reduced volume and disposal cost. This basic technology can be developed for large-scale processing of spent reactor fuels. 13 references, 4 figures

  12. Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach

    Science.gov (United States)

    Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.

    Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.

  13. Z-buffer image assembly processing in high parallel visualization processing

    International Nuclear Information System (INIS)

    Kaneko, Isamu; Muramatsu, Kazuhiro

    2000-03-01

    On the platform of the parallel computer with many processors, the domain decomposition method is used as a popular means of parallel processing. In these days when the simulation scale becomes much larger and takes a lot of time, the simultaneous visualization processing with the actual computation is much more needed, and especially in case of a real-time visualization, the domain decomposition technique is indispensable. In case of parallel rendering processing, the rendered results must be gathered to one processor to compose the integrated picture in the last stage. This integration is usually conducted by the method using Z-buffer values. This process, however, induces the crucial problems of much lower speed processing and local memory shortage in case of parallel processing exceeding more than several tens of processors. In this report, the two new solutions are proposed. The one is the adoption of a special operator (Reduce operator) in the parallelization process, and the other is a buffer compression by deleting the background informations. This report includes the performance results of these new techniques to investigate their effect with use of the parallel computer Paragon. (author)

  14. Explosive processes in nucleosynthesis

    International Nuclear Information System (INIS)

    Boyd, R.N.

    2002-01-01

    There are many explosive processes in nucleosynthesis: big bang nucleosynthesis, the rp-process, the γ-process, the ν-process, and the r-process. However, I will discuss just the rp-process and the r-process in detail, primarily because both seem to have been very active research areas of late, and because they have great potential for studies with radioactive nuclear beams. I will also discuss briefly the γ-process because of its inevitability in conjunction with the rp-process. (orig.)

  15. Processing Depth, Elaboration of Encoding, Memory Stores, and Expended Processing Capacity.

    Science.gov (United States)

    Eysenck, Michael W.; Eysenck, M. Christine

    1979-01-01

    The effects of several factors on expended processing capacity were measured. Expended processing capacity was greater when information was retrieved from secondary memory than from primary memory, when processing was of a deep, semantic nature than when it was shallow and physical, and when processing was more elaborate. (Author/GDC)

  16. Sewer Processes

    DEFF Research Database (Denmark)

    Hvitved-Jacobsen, Thorkild; Vollertsen, Jes; Nielsen, Asbjørn Haaning

    Since the first edition was published over a decade ago, advancements have been made in the design, operation, and maintenance of sewer systems, and new problems have emerged. For example, sewer processes are now integrated in computer models, and simultaneously, odor and corrosion problems caused...... by hydrogen sulfide and other volatile organic compounds, as well as other potential health issues, have caused environmental concerns to rise. Reflecting the most current developments, Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks, Second Edition, offers the reader updated...... and valuable information on the sewer as a chemical and biological reactor. It focuses on how to predict critical impacts and control adverse effects. It also provides an integrated description of sewer processes in modeling terms. This second edition is full of illustrative examples and figures, includes...

  17. AN OVERVIEW OF PHARMACEUTICAL PROCESS VALIDATION AND PROCESS CONTROL VARIABLES OF TABLETS MANUFACTURING PROCESSES IN INDUSTRY

    OpenAIRE

    Mahesh B. Wazade*, Sheelpriya R. Walde and Abhay M. Ittadwar

    2012-01-01

    Validation is an integral part of quality assurance; the product quality is derived from careful attention to a number of factors including selection of quality parts and materials, adequate product and manufacturing process design, control of the process variables, in-process and end-product testing. Recently validation has become one of the pharmaceutical industry’s most recognized and discussed subjects. It is a critical success factor in product approval and ongoing commercialization, fac...

  18. Phenomena based Methodology for Process Synthesis incorporating Process Intensification

    DEFF Research Database (Denmark)

    Lutze, Philip; Babi, Deenesh Kavi; Woodley, John

    2013-01-01

    at processes at the lowest level of aggregation which is the phenomena level. In this paper, a phenomena based synthesis/design methodology incorporating process intensification is presented. Using this methodology, a systematic identification of necessary and desirable (integrated) phenomena as well......Process intensification (PI) has the potential to improve existing as well as conceptual processes, in order to achieve a more sustainable production. PI can be achieved at different levels. That is, the unit operations, functional and/or phenomena level. The highest impact is expected by looking...... as generation and screening of phenomena based flowsheet options are presented using a decomposition based solution approach. The developed methodology as well as necessary tools and supporting methods are highlighted through a case study involving the production of isopropyl-acetate....

  19. Minimal and careful processing

    OpenAIRE

    Nielsen, Thorkild

    2004-01-01

    In several standards, guidelines and publications, organic food processing is strongly associated with "minimal processing" and "careful processing". The term "minimal processing" is nowadays often used in the general food processing industry and described in literature. The term "careful processing" is used more specifically within organic food processing but is not yet clearly defined. The concept of carefulness seems to fit very well with the processing of organic foods, especially if it i...

  20. The Newest Laser Processing

    International Nuclear Information System (INIS)

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  1. Process Integration Analysis of an Industrial Hydrogen Production Process

    OpenAIRE

    Stolten, Detlef; Grube, Thomas; Tock, Laurence; Maréchal, François; Metzger, Christian; Arpentinier, Philippe

    2010-01-01

    The energy efficiency of an industrial hydrogen production process using steam methane reforming (SMR) combined with the water gas shift reaction (WGS) is analyzed using process integration techniques based on heat cascade calculation and pinch analysis with the aim of identifying potential measures to enhance the process performance. The challenge is to satisfy the high temperature heat demand of the SMR reaction by minimizing the consumption of natural gas to feed the combustion and to expl...

  2. Analisis Kekuatan Tangki CNG Ditinjau dengan Material Logam Lapis Komposit pada Kapal Pengangkut Compressed Natural Gas

    Directory of Open Access Journals (Sweden)

    Aulia Firmansah

    2013-03-01

    Full Text Available Pada penelitian ini, dilakukan analisa perbandingan pada kekuatan pressure vessel compressed natural gas. Pressure vessel yang digunakan yaitu tipe satu dan tipe tiga, tipe satu adalah tabung menggunakan material logam yaitu Carbon Steel SA 516 Grade 70 dan Aluminium Alloy T6-6061. Pada tabung tipe tiga material menggunakan Aluminium Alloy T6-6061 dengan lapisan Komposit (Carbon Fibre – Epoxy pada seluruh tabung (full wrapped. Sudut orientasi serat yang digunakan 54.73560 dan terdiri dari 4 lapis komposit yang membungkus aluminium. Variasi yang dilakukan pada tebal komposit yaitu 25% komposit, 50% komposit, dan 75% komposit. Pressure vessel mendapat perlakuan internal pressure sebesar 125 bar dan temperatur -300C. Analisa dilakukan dengan dua metode yaitu dengan perhitungan manual dan software finite element method (NASTRAN 2010. Dari hasil perhitungan tersebut tabung tipe satu dengan material logam terbukti aman karena memenuhi dari faktor keamanan yang ditentukan tetapi pressure vessel sangat berat. Pada tabung tipe tiga lamina dengan komposisi 75% komposit dan 50% komposit dinyatakan aman karena memenuhi dari kriteria tegangan maksimum. Sedangkan pada komposisi 25% komposit lamina mengalami kegagalan yang disebabkan terlalu rendahnya lapisan komposit. Dari keseluruhan hasil perhitungan dan analisa didapatkan komposisi ideal pressure vessel yaitu 75% komposit dan 25% aluminium dari tebal keseluruhan sehingga menghasilkan tegangan yang sangat kecil dan memiliki berat yang paling ringan.

  3. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  4. Process-based costing.

    Science.gov (United States)

    Lee, Robert H; Bott, Marjorie J; Forbes, Sarah; Redford, Linda; Swagerty, Daniel L; Taunton, Roma Lee

    2003-01-01

    Understanding how quality improvement affects costs is important. Unfortunately, low-cost, reliable ways of measuring direct costs are scarce. This article builds on the principles of process improvement to develop a costing strategy that meets both criteria. Process-based costing has 4 steps: developing a flowchart, estimating resource use, valuing resources, and calculating direct costs. To illustrate the technique, this article uses it to cost the care planning process in 3 long-term care facilities. We conclude that process-based costing is easy to implement; generates reliable, valid data; and allows nursing managers to assess the costs of new or modified processes.

  5. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  6. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  7. Application of statistical process control and process capability analysis procedures in orbiter processing activities at the Kennedy Space Center

    Science.gov (United States)

    Safford, Robert R.; Jackson, Andrew E.; Swart, William W.; Barth, Timothy S.

    1994-01-01

    Successful ground processing at KSC requires that flight hardware and ground support equipment conform to specifications at tens of thousands of checkpoints. Knowledge of conformance is an essential requirement for launch. That knowledge of conformance at every requisite point does not, however, enable identification of past problems with equipment, or potential problem areas. This paper describes how the introduction of Statistical Process Control and Process Capability Analysis identification procedures into existing shuttle processing procedures can enable identification of potential problem areas and candidates for improvements to increase processing performance measures. Results of a case study describing application of the analysis procedures to Thermal Protection System processing are used to illustrate the benefits of the approaches described in the paper.

  8. Westinghouse modular grinding process - improvement for follow on processes

    Energy Technology Data Exchange (ETDEWEB)

    Fehrmann, Henning [Westinghouse Germany GmbH, Mannheim, State (Germany)

    2013-07-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. The resins can be in bead or powdered form. For waste treatment of spent IX resins, two methods are basically used: Direct immobilization (e.g. with cement, bitumen, polymer or High Integrity Container (HIC)); Thermal treatment (e.g. drying, oxidation or pyrolysis). Bead resins have some properties (e.g. particle size and density) that can have negative impacts on following waste treatment processes. Negative impacts could be: Floatation of bead resins in cementation process; Sedimentation in pipeline during transportation; Poor compaction properties for Hot Resin Supercompaction (HRSC). Reducing the particle size of the bead resins can have beneficial effects enhancing further treatment processes and overcoming prior mentioned effects. Westinghouse Electric Company has developed a modular grinding process to crush/grind the bead resins. This modular process is designed for flexible use and enables a selective adjustment of particle size to tailor the grinding system to the customer needs. The system can be equipped with a crusher integrated in the process tank and if necessary a colloid mill. The crusher reduces the bead resins particle size and converts the bead resins to a pump able suspension with lower sedimentation properties. With the colloid mill the resins can be ground to a powder. Compared to existing grinding systems this equipment is designed to minimize radiation exposure of the worker during operation and maintenance. Using the crushed and/or ground bead resins has several beneficial effects like facilitating cementation process and recipe development, enhancing oxidation of resins, improving the Hot Resin Supercompaction volume reduction performance. (authors)

  9. Westinghouse modular grinding process - improvement for follow on processes

    International Nuclear Information System (INIS)

    Fehrmann, Henning

    2013-01-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. The resins can be in bead or powdered form. For waste treatment of spent IX resins, two methods are basically used: Direct immobilization (e.g. with cement, bitumen, polymer or High Integrity Container (HIC)); Thermal treatment (e.g. drying, oxidation or pyrolysis). Bead resins have some properties (e.g. particle size and density) that can have negative impacts on following waste treatment processes. Negative impacts could be: Floatation of bead resins in cementation process; Sedimentation in pipeline during transportation; Poor compaction properties for Hot Resin Supercompaction (HRSC). Reducing the particle size of the bead resins can have beneficial effects enhancing further treatment processes and overcoming prior mentioned effects. Westinghouse Electric Company has developed a modular grinding process to crush/grind the bead resins. This modular process is designed for flexible use and enables a selective adjustment of particle size to tailor the grinding system to the customer needs. The system can be equipped with a crusher integrated in the process tank and if necessary a colloid mill. The crusher reduces the bead resins particle size and converts the bead resins to a pump able suspension with lower sedimentation properties. With the colloid mill the resins can be ground to a powder. Compared to existing grinding systems this equipment is designed to minimize radiation exposure of the worker during operation and maintenance. Using the crushed and/or ground bead resins has several beneficial effects like facilitating cementation process and recipe development, enhancing oxidation of resins, improving the Hot Resin Supercompaction volume reduction performance. (authors)

  10. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  11. On some applications of diffusion processes for image processing

    International Nuclear Information System (INIS)

    Morfu, S.

    2009-01-01

    We propose a new algorithm inspired by the properties of diffusion processes for image filtering. We show that purely nonlinear diffusion processes ruled by Fisher equation allows contrast enhancement and noise filtering, but involves a blurry image. By contrast, anisotropic diffusion, described by Perona and Malik algorithm, allows noise filtering and preserves the edges. We show that combining the properties of anisotropic diffusion with those of nonlinear diffusion provides a better processing tool which enables noise filtering, contrast enhancement and edge preserving.

  12. Grind hardening process

    CERN Document Server

    Salonitis, Konstantinos

    2015-01-01

    This book presents the grind-hardening process and the main studies published since it was introduced in 1990s.  The modelling of the various aspects of the process, such as the process forces, temperature profile developed, hardness profiles, residual stresses etc. are described in detail. The book is of interest to the research community working with mathematical modeling and optimization of manufacturing processes.

  13. Transuranium processing plant

    International Nuclear Information System (INIS)

    King, L.J.

    1983-01-01

    The Transuranium Processing Plant (TRU) is a remotely operated, hot-cell, chemical processing facility of advanced design. The heart of TRU is a battery of nine heavily shielded process cells housed in a two-story building. Each cell, with its 54-inch-thick walls of a special high-density concrete, has enough shielding to stop the neutrons and gamma radiation from 1 gram of 252/sub Cf/ and associated fission products. Four cells contain chemical processing equipment, three contain equipment for the preparation and inspection of HFIR targets, and two cells are used for analytical chemistry operations. In addition, there are eight laboratories used for process development, for part of the process-control analyses, and for product finishing operations. Although the Transuranium Processing Plant was built for the purpose of recovering transuranium elements from targets irradiated in the High Flux Isotope Reactor (HFIR), it is also a highly versatile facility which has extensive provisions for changing and modifying equipment. Thus, it was a relatively simple matter to install a Solvent Extraction Test Facility (SETF) in one of the TRU chemical processing cells for use in the evaluation and demonstration of solvent extraction flowsheets for the recovery of fissile and fertile materials from irradiated reactor fuels. The equipment in the SETF has been designed for process development and demonstrations and the particular type of mixer-settler contactors was chosen because it is easy to observe and sample

  14. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  15. Kidney transplantation process in Brazil represented in business process modeling notation.

    Science.gov (United States)

    Peres Penteado, A; Molina Cohrs, F; Diniz Hummel, A; Erbs, J; Maciel, R F; Feijó Ortolani, C L; de Aguiar Roza, B; Torres Pisa, I

    2015-05-01

    Kidney transplantation is considered to be the best treatment for people with chronic kidney failure, because it improves the patients' quality of life and increases their length of survival compared with patients undergoing dialysis. The kidney transplantation process in Brazil is defined through laws, decrees, ordinances, and resolutions, but there is no visual representation of this process. The aim of this study was to analyze official documents to construct a representation of the kidney transplantation process in Brazil with the use of business process modeling notation (BPMN). The methodology for this study was based on an exploratory observational study, document analysis, and construction of process diagrams with the use of BPMN. Two rounds of validations by specialists were conducted. The result includes the kidney transplantation process in Brazil representation with the use of BPMN. We analyzed 2 digital documents that resulted in 2 processes with 45 total of activities and events, 6 organizations involved, and 6 different stages of the process. The constructed representation makes it easier to understand the rules for the business of kidney transplantation and can be used by the health care professionals involved in the various activities within this process. Construction of a representation with language appropriate for the Brazilian lay public is underway. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. High temperature nuclear process heat systems for chemical processes

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1976-01-01

    The development planning and status of the very high temperature gas cooled reactor as a source of industrial process heat is presented. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system offers a unique combination of the two that is environmentally and economically attractive and technically sound. Conceptual studies of several energy-intensive processes coupled to a nuclear heat source are presented

  17. Process development

    International Nuclear Information System (INIS)

    Zapata G, G.

    1989-01-01

    Process development: The paper describes the organization and laboratory facilities of the group working on radioactive ore processing studies. Contains a review of the carried research and the plans for the next future. A list of the published reports is also presented

  18. Information Technology Process Improvement Decision-Making: An Exploratory Study from the Perspective of Process Owners and Process Managers

    Science.gov (United States)

    Lamp, Sandra A.

    2012-01-01

    There is information available in the literature that discusses information technology (IT) governance and investment decision making from an executive-level perception, yet there is little information available that offers the perspective of process owners and process managers pertaining to their role in IT process improvement and investment…

  19. Process synthesis, design and analysis using a process-group contribution method

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Eden, Mario R.; Gani, Rafiqul

    2015-01-01

    ) techniques. The fundamental pillars of this framework are the definition and use of functional process-groups (building blocks) representing a wide range of process operations, flowsheet connectivity rules to join the process-groups to generate all the feasible flowsheet alternatives and flowsheet property...... models like energy consumption, atom efficiency, environmental impact to evaluate the performance of the generated alternatives. In this way, a list of feasible flowsheets are quickly generated, screened and selected for further analysis. Since the flowsheet is synthesized and the operations......This paper describes the development and application of a process-group contribution method to model, simulate and synthesize chemical processes. Process flowsheets are generated in the same way as atoms or groups of atoms are combined to form molecules in computer aided molecular design (CAMD...

  20. Development of interface technology between unit processes in E-Refining process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The pyroprocessing is composed mainly four subprocesses, such as an electrolytic reduction, an electrorefining, an electrowinning, and waste salt regeneration/ solidification processes. The electrorefining process, one of main processes which are composed of pyroprocess to recover the useful elements from spent fuel, is under development by Korea Atomic Energy Research Institute as a sub process of pyrochemical treatment of spent PWR fuel. The CERS(Continuous ElectroRefining System) is composed of some unit processes such as an electrorefiner, a salt distiller, a melting furnace for the U-ingot and U-chlorinator (UCl{sub 3} making equipment) as shown in Fig. 1. In this study, the interfaces technology between unit processes in E-Refining system is investigated and developed for the establishment of integrated E-Refining operation system as a part of integrated pyroprocessing