WorldWideScience

Sample records for cnc machine tools

  1. Tool path in torus tool CNC machining

    Directory of Open Access Journals (Sweden)

    XU Ying

    2016-10-01

    Full Text Available This paper is about tool path in torus tool CNC machining.The mathematical model of torus tool is established.The tool path planning algorithm is determined through calculation of the cutter location,boundary discretization,calculation of adjacent tool path and so on,according to the conversion formula,the cutter contact point will be converted to the cutter location point and then these points fit a toolpath.Lastly,the path planning algorithm is implemented by using Matlab programming.The cutter location points for torus tool are calculated by Matlab,and then fit these points to a toolpath.While using UG software,another tool path of free surface is simulated of the same data.It is drew compared the two tool paths that using torus tool is more efficient.

  2. Program Design Report of the CNC Machine Tool(II)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.; Lee, I. B.; Yoon, K. B.; Lee, C. K.; Youm, J. H

    2007-06-15

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology.

  3. Program Design Report of the CNC Machine Tool(II)

    International Nuclear Information System (INIS)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.; Lee, I. B.; Yoon, K. B.; Lee, C. K.; Youm, J. H.

    2007-06-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  4. Program Design Report of the CNC Machine Tool(III)

    International Nuclear Information System (INIS)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.; Lee, I. B.; Yoon, K. B.; Lee, C. K.; Youm, J. H.

    2008-08-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  5. Program Design Report of the CNC Machine Tool(IV)

    International Nuclear Information System (INIS)

    Youm, Ki Un; Lee, I. B.; Youm, J. H.

    2009-09-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  6. Program Design Report of the CNC Machine Tool (I)

    International Nuclear Information System (INIS)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.

    2006-08-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  7. Case study of virtual reality in CNC machine tool exhibition

    Directory of Open Access Journals (Sweden)

    Kao Yung-Chou

    2017-01-01

    Full Text Available Exhibition and demonstration are generally used in the promotion and sale-assistance of manufactured products. However, the transportation cost of the real goods from the vender factory to the exposition venue is generally expensive for huge and heavy commodity. With the advancement of computing, graphics, mobile apps, and mobile hardware the 3D visibility technology is getting more and more popular to be adopted in visual-assisted communication such as amusement games. Virtual reality (VR technology has therefore being paid great attention in emulating expensive small and/or huge and heavy equipment. Virtual reality can be characterized as 3D extension with Immersion, Interaction and Imagination. This paper was then be focused on the study of virtual reality in the assistance of CNC machine tool demonstration and exhibition. A commercial CNC machine tool was used in this study to illustrate the effectiveness and usability of using virtual reality for an exhibition. The adopted CNC machine tool is a large and heavy mill-turn machine with the width up to eleven meters and weighted about 35 tons. A head-mounted display (HMD was attached to the developed VR CNC machine tool for the immersion viewing. A user can see around the 3D scene of the large mill-turn machine and the operation of the virtual CNC machine can be actuated by bare hand. Coolant was added to demonstrate more realistic operation while collision detection function was also added to remind the operator. The developed VR demonstration system has been presented in the 2017 Taipei International Machine Tool Show (TIMTOS 2017. This case study has shown that young engineers and/or students are very impressed by the VR-based demonstration while elder persons could not adapt themselves easily to the VR-based scene because of eyesight issues. However, virtual reality has successfully being adopted and integrated with the CNC machine tool in an international show. Another machine tool on

  8. Program Design Report of the CNC Machine Tool(V-1)

    International Nuclear Information System (INIS)

    Youm, Ki Un; Moon, J. S.; Lee, I. B.; Youn, J. H.

    2010-08-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  9. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    OpenAIRE

    Zhongqi Sheng; Lei Zhang; Hualong Xie; Changchun Liu

    2014-01-01

    Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to as...

  10. Modeling of tool path for the CNC sheet cutting machines

    Science.gov (United States)

    Petunin, Aleksandr A.

    2015-11-01

    In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.

  11. ANN Based Tool Condition Monitoring System for CNC Milling Machines

    Directory of Open Access Journals (Sweden)

    Mota-Valtierra G.C.

    2011-10-01

    Full Text Available Most of the companies have as objective to manufacture high-quality products, then by optimizing costs, reducing and controlling the variations in its production processes it is possible. Within manufacturing industries a very important issue is the tool condition monitoring, since the tool state will determine the quality of products. Besides, a good monitoring system will protect the machinery from severe damages. For determining the state of the cutting tools in a milling machine, there is a great variety of models in the industrial market, however these systems are not available to all companies because of their high costs and the requirements of modifying the machining tool in order to attach the system sensors. This paper presents an intelligent classification system which determines the status of cutt ers in a Computer Numerical Control (CNC milling machine. This tool state is mainly detected through the analysis of the cutting forces drawn from the spindle motors currents. This monitoring system does not need sensors so it is no necessary to modify the machine. The correct classification is made by advanced digital signal processing techniques. Just after acquiring a signal, a FIR digital filter is applied to the data to eliminate the undesired noisy components and to extract the embedded force components. A Wavelet Transformation is applied to the filtered signal in order to compress the data amount and to optimize the classifier structure. Then a multilayer perceptron- type neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.

  12. Preliminary Development of Real Time Usage-Phase Monitoring System for CNC Machine Tools with a Case Study on CNC Machine VMC 250

    Science.gov (United States)

    Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah

    2018-03-01

    The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.

  13. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2014-01-01

    Full Text Available Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to assembly connection strength to depict the assembling difficulty level. The transmissibility based on trust relationship was applied on the assembly connection strength. Assembly unit partition based on assembly connection strength was conducted, and interferential assembly units were identified and revised. The assembly sequence planning and optimization of parts in each assembly unit and between assembly units was conducted using genetic algorithm. With certain type of high speed CNC turning center, as an example, this paper explored into the assembly modeling, assembly unit partition, and assembly sequence planning and optimization and realized the optimized assembly sequence of headstock of CNC machine tool.

  14. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    Science.gov (United States)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  15. Tool management in manufacturing systems equipped with CNC machines

    Directory of Open Access Journals (Sweden)

    Giovanni Tani

    1997-12-01

    Full Text Available This work has been carried out for the purpose of realizing an automated system for the integrated management of tools within a company. By integrating planning, inspection and tool-room functions, automated tool management can ensure optimum utilization of tools on the selected machines, guaranteeing their effective availability. The first stage of the work consisted of defining and developing a Tool Management System whose central nucleus is a unified Data Base for all of the tools, forming part of the company's Technological Files (files on machines, materials, equipment, methods, etc., interfaceable with all of the company departments that require information on tools. The system assigns code numbers to the individual components of the tools and file them on the basis of their morphological and functional characteristics. The system is also designed to effect assemblies of tools, from which are obtained the "Tool Cards" required for compiling working cycles (CAPP, for CAM programming and for the Tool-room where the tools are physically prepared. Methods for interfacing with suitable systems for the aforesaid functions have also been devised

  16. STUDY OF THE VIBRATION LEVEL IN CASE OF MANUFACTURING ON A CNC MACHINE-TOOL

    Directory of Open Access Journals (Sweden)

    Ioan Călin ROȘCA

    2015-12-01

    Full Text Available The paper presents the results of an experimental research performed on a CNC machine tool type ISEL-GFV considering the vibration level developed during the manufacturing of different pieces of particleboard at six processing regimes. There were recorded signals on both time and frequency domains on the three main directions. Based on recorded data there are presented the main conclusions referring to the level of vibrations and the frequencies associated to the highest levels.

  17. Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools

    Science.gov (United States)

    Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu

    2018-03-01

    Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.

  18. Random and Systematic Errors Share in Total Error of Probes for CNC Machine Tools

    Directory of Open Access Journals (Sweden)

    Adam Wozniak

    2018-03-01

    Full Text Available Probes for CNC machine tools, as every measurement device, have accuracy limited by random errors and by systematic errors. Random errors of these probes are described by a parameter called unidirectional repeatability. Manufacturers of probes for CNC machine tools usually specify only this parameter, while parameters describing systematic errors of the probes, such as pre-travel variation or triggering radius variation, are used rarely. Systematic errors of the probes, linked to the differences in pre-travel values for different measurement directions, can be corrected or compensated, but it is not a widely used procedure. In this paper, the share of systematic errors and random errors in total error of exemplary probes are determined. In the case of simple, kinematic probes, systematic errors are much greater than random errors, so compensation would significantly reduce the probing error. Moreover, it shows that in the case of kinematic probes commonly specified unidirectional repeatability is significantly better than 2D performance. However, in the case of more precise strain-gauge probe systematic errors are of the same order as random errors, which means that errors correction or compensation, in this case, would not yield any significant benefits.

  19. Research on criticality analysis method of CNC machine tools components under fault rate correlation

    Science.gov (United States)

    Gui-xiang, Shen; Xian-zhuo, Zhao; Zhang, Ying-zhi; Chen-yu, Han

    2018-02-01

    In order to determine the key components of CNC machine tools under fault rate correlation, a system component criticality analysis method is proposed. Based on the fault mechanism analysis, the component fault relation is determined, and the adjacency matrix is introduced to describe it. Then, the fault structure relation is hierarchical by using the interpretive structure model (ISM). Assuming that the impact of the fault obeys the Markov process, the fault association matrix is described and transformed, and the Pagerank algorithm is used to determine the relative influence values, combined component fault rate under time correlation can obtain comprehensive fault rate. Based on the fault mode frequency and fault influence, the criticality of the components under the fault rate correlation is determined, and the key components are determined to provide the correct basis for equationting the reliability assurance measures. Finally, taking machining centers as an example, the effectiveness of the method is verified.

  20. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines

    OpenAIRE

    Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen

    2014-01-01

    Virtual manufacturing systems can provide useful means for products to be manufactured without the need of physical testing on the shop floor. As a result, the time and cost of part production can be decreased. There are different error sources in machine tools such as tool deflection, geometrical deviations of moving axis and thermal distortions of machine tool structures. Some of these errors can be decreased by controlling the machining process and environmental parameters. However other e...

  1. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines

    OpenAIRE

    Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen

    2016-01-01

    Virtual manufacturing systems can provide useful means for products to be manufactured without the need of physical testing on the shop floor. As a result, the time and cost of part production can be decreased. There are different error sources in machine tools such as tool deflection, geometrical deviations of moving axis and thermal distortions of machine tool structures. Some of these errors can be decreased by controlling the machining process and environmental parameters. However other e...

  2. Precise gouging-free tool orientations for 5-axis CNC machining

    KAUST Repository

    Kim, Yong-Joon

    2014-08-19

    We present a precise approach to the generation of optimized collision-free and gouging-free tool paths for 5-axis CNC machining of freeform NURBS surfaces using flat-end and rounded-end (bull nose) tools having cylindrical shank. To achieve high approximation quality, we employ analysis of hyper-osculating circles (HOCs) (Wang et al., 1993a,b), that have third order contact with the target surface, and lead to a locally collision-free configuration between the tool and the target surface. At locations where an HOC is not possible, we aim at a double tangential contact among the tool and the target surface, and use it as a bridge between the feasible HOC tool paths. We formulate all such possible two-contact configurations as systems of algebraic constraints and solve them. For all feasible HOCs and two-contact configurations, we perform a global optimization to find the tool path that maximizes the approximation quality of the machining, while being gouge-free and possibly satisfying constraints on the tool tilt and the tool acceleration. We demonstrate the effectiveness of our approach via several experimental results.

  3. Precise gouging-free tool orientations for 5-axis CNC machining

    KAUST Repository

    Kim, Yong-Joon; Elber, Gershon; Barton, Michael; Pottmann, Helmut

    2014-01-01

    We present a precise approach to the generation of optimized collision-free and gouging-free tool paths for 5-axis CNC machining of freeform NURBS surfaces using flat-end and rounded-end (bull nose) tools having cylindrical shank. To achieve high approximation quality, we employ analysis of hyper-osculating circles (HOCs) (Wang et al., 1993a,b), that have third order contact with the target surface, and lead to a locally collision-free configuration between the tool and the target surface. At locations where an HOC is not possible, we aim at a double tangential contact among the tool and the target surface, and use it as a bridge between the feasible HOC tool paths. We formulate all such possible two-contact configurations as systems of algebraic constraints and solve them. For all feasible HOCs and two-contact configurations, we perform a global optimization to find the tool path that maximizes the approximation quality of the machining, while being gouge-free and possibly satisfying constraints on the tool tilt and the tool acceleration. We demonstrate the effectiveness of our approach via several experimental results.

  4. Parameter identification and optimization of slide guide joint of CNC machine tools

    Science.gov (United States)

    Zhou, S.; Sun, B. B.

    2017-11-01

    The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.

  5. An innovation on high-grade CNC machines tools for B-spline curve method of high-speed interpolation arithmetic

    Science.gov (United States)

    Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng

    2017-04-01

    A novel on high-grade CNC machines tools for B Spline curve method of High-speed interpolation arithmetic is introduced. In the high-grade CNC machines tools CNC system existed the type value points is more trouble, the control precision is not strong and so on, In order to solve this problem. Through specific examples in matlab7.0 simulation result showed that that the interpolation error significantly reduced, the control precision is improved markedly, and satisfy the real-time interpolation of high speed, high accuracy requirements.

  6. Singer CNC sewing and embroidery machine

    Directory of Open Access Journals (Sweden)

    Lokodi Zsolt

    2011-12-01

    Full Text Available This paper presents the adaptation of a classic foot pedal operated Singer sewing machine to a computerized numerical control (CNC sewing and embroidery machine. This machine is composed of a Singer sewing machine and a two-degrees-of-freedom XY stage designed specifically for this application. The whole system is controlled from a PC using adequate CNC control software.

  7. Mini lathe machine converted to CNC

    Directory of Open Access Journals (Sweden)

    Alexandru Morar

    2012-06-01

    Full Text Available This paper presents the adaptation of a mechanical mini-lathing machine to a computerized numerical control (CNC lathing machine. This machine is composed of a ASIST mini-lathe and a two-degrees-of-freedom XZ stage designed specifically for this application. The whole system is controlled from a PC using adequate CNC control software.

  8. An open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and industrial CAM software.

    Science.gov (United States)

    Lu, Li; Liu, Shusheng; Shi, Shenggen; Yang, Jianzhong

    2011-10-01

    China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.

  9. Development of hole inspection program using touch trigger probe on CNC machine tools

    International Nuclear Information System (INIS)

    Lee, Chan Ho; Lee, Eung Suk

    2012-01-01

    According to many customers' requests, optical measurement module (OMM) applications using automatic measuring devices to measure the machined part rapidly on a machine tool have increased steeply. Touch trigger probes are being used for job setup and feature inspection as automatic measuring devices, and this makes quality checking and machining compensation possible. Therefore, in this study, the use of touch trigger probes for accurate measurement of the machined part has been studied and a macro program for a hole measuring cycle has been developed. This hole is the most common feature to be measured, but conventional methods are still not free from measuring error. In addition, the eccentricity change of the least square circle was simulated according to the roundness error in a hole measurement. To evaluate the reliability of this study, the developed hole measuring program was executed to measure the hole plate on the machine and verify the roundness error in the eccentricity simulation result

  10. 5-axes modular CNC machining center

    Directory of Open Access Journals (Sweden)

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available The paper presents the development of a 5-axes CNC machining center. The main goal of the machine was to provide the students a practical layout for training in advanced CAM techniques. The mechanical structure of the machine was built in a modular way by a specialized company, which also implemented the CNC controller. The authors of this paper developed the geometric and kinematic model of the CNC machining center and the post-processor, in order to use the machine in a CAM environment.

  11. Implementation of the geometrical problem in CNC metal cutting machine

    Directory of Open Access Journals (Sweden)

    Erokhin V.V.

    2017-06-01

    Full Text Available The article deals with the tasks of managing the production process (technological process and technological equip-ment, the most detailed analysis of the implementation of the geometric problem in CNC machines. The influence of the solution of the geometric CNC problem on the accuracy of workpiece machining is analyzed by implementing a certain interpolation algorithm and the values of the discreteness of the movements of the working bodies of the CNC machine. The technique of forming a given trajectory of motion of the machine's executive organ is given, by means of which it is required to ensure the coordinated movement of the shaping coordinates according to a certain law, depend-ing on the specified trajectory of the cutting edge of the tool. The advantages and disadvantages of the implementation of interpolation in CNC systems by various methods are considered, and particular attention is paid to combined meth-ods of realizing interpolation.

  12. Heuristic algorithms for solving of the tool routing problem for CNC cutting machines

    Science.gov (United States)

    Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.

    2015-11-01

    The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.

  13. Self-Improving CNC Milling Machine

    OpenAIRE

    Spilling, Torjus

    2014-01-01

    This thesis is a study of the ability of a CNC milling machine to create parts for itself, and an evaluation of whether or not the machine is able to improve itself by creating new machine parts. This will be explored by using off-the-shelf parts to build an initial machine, using 3D printing/rapid prototyping to create any special parts needed for the initial build. After an initial working machine is completed, the design of the machine parts will be adjusted so that the machine can start p...

  14. FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.

    Science.gov (United States)

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used.

  15. Fully automatic CNC machining production system

    Directory of Open Access Journals (Sweden)

    Lee Jeng-Dao

    2017-01-01

    Full Text Available Customized manufacturing is increasing years by years. The consumption habits change has been cause the shorter of product life cycle. Therefore, many countries view industry 4.0 as a target to achieve more efficient and more flexible automated production. To develop an automatic loading and unloading CNC machining system via vision inspection is the first step in industrial upgrading. CNC controller is adopted as the main controller to command to the robot, conveyor, and other equipment in this study. Moreover, machine vision systems are used to detect position of material on the conveyor and the edge of the machining material. In addition, Open CNC and SCADA software will be utilized to make real-time monitor, remote system of control, alarm email notification, and parameters collection. Furthermore, RFID has been added to employee classification and management. The machine handshaking has been successfully proposed to achieve automatic vision detect, edge tracing measurement, machining and system parameters collection for data analysis to accomplish industrial automation system integration with real-time monitor.

  16. Generation of gear tooth surfaces by application of CNC machines

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.

    1994-01-01

    This study will demonstrate the importance of application of computer numerically controlled (CNC) machines in generation of gear tooth surfaces with new topology. This topology decreases gear vibration and will extend the gear capacity and service life. A preliminary investigation by a tooth contact analysis (TCA) program has shown that gear tooth surfaces in line contact (for instance, involute helical gears with parallel axes, worm gear drives with cylindrical worms, etc.) are very sensitive to angular errors of misalignment that cause edge contact and an unfavorable shape of transmission errors and vibration. The new topology of gear tooth surfaces is based on the localization of bearing contact, and the synthesis of a predesigned parabolic function of transmission errors that is able to absorb a piecewise linear function of transmission errors caused by gear misalignment. The report will describe the following topics: description of kinematics of CNC machines with six degrees of freedom that can be applied for generation of gear tooth surfaces with new topology. A new method for grinding of gear tooth surfaces by a cone surface or surface of revolution based on application of CNC machines is described. This method provides an optimal approximation of the ground surface to the given one. This method is especially beneficial when undeveloped ruled surfaces are to be ground. Execution of motions of the CNC machine is also described. The solution to this problem can be applied as well for the transfer of machine tool settings from a conventional generator to the CNC machine. The developed theory required the derivation of a modified equation of meshing based on application of the concept of space curves, space curves represented on surfaces, geodesic curvature, surface torsion, etc. Condensed information on these topics of differential geometry is provided as well.

  17. Understanding and Writing G & M Code for CNC Machines

    Science.gov (United States)

    Loveland, Thomas

    2012-01-01

    In modern CAD and CAM manufacturing companies, engineers design parts for machines and consumable goods. Many of these parts are cut on CNC machines. Whether using a CNC lathe, milling machine, or router, the ideas and designs of engineers must be translated into a machine-readable form called G & M Code that can be used to cut parts to precise…

  18. Intellectual Control System of Processing on CNC Machines

    OpenAIRE

    Nekrasov, R. Y.; Lasukov, Aleksandr Aleksandrovich; Starikov, A. I.; Soloviev, I. V.; Bekareva, O. V.

    2016-01-01

    Scientific and technical progress makes great demands for quality of engineering production. The priority is to ensure metalworking equipment with required dimensional accuracy during the entire period of operation at minimum manufacturing costs. In article considered the problem of increasing of accuracy of processing products on CNC. The authors offers a solution to the problem by providing compensating adjustment in the trajectory of the cutting tool and machining mode. The necessity of cr...

  19. Complex Ornament Machining Process on a CNC Router

    Directory of Open Access Journals (Sweden)

    Camelia COŞEREANU

    2014-03-01

    Full Text Available The paper investigates the CNC routering possibilities for three species of wood, namely ash (Fraxinus Excelsior, lime wood (Tilia cordata and fir wood (Abies Alba, in order to obtain right surfaces of Art Nouveau sculptured ornaments. Given the complexity of the CNC tool path for getting wavy shapes of Art Nouveau decorations, the choice of processing parameters for each processed species of wood requires a laborious research work to correlate these parameters. Two Art Nouveau ornaments are proposed for the investigation. They are CNC routered using two types of cutting tools. The processed parameters namely the spindle speed, feed speed and depth of cut were the three variables of the machining process for the three species of wood, which were combined so, to provide good surface finish as a quality attribute. There were totally forty six variants of combining the processing parameter which were applied for CNC routering the samples made of the three species of wood. At the end, an optimum combination of the processed parameters is recommended for each species of wood.

  20. Optimizing the way kinematical feed chains with great distance between slides are chosen for CNC machine tools

    Science.gov (United States)

    Lucian, P.; Gheorghe, S.

    2017-08-01

    This paper presents a new method, based on FRISCO formula, for optimizing the choice of the best control system for kinematical feed chains with great distance between slides used in computer numerical controlled machine tools. Such machines are usually, but not limited to, used for machining large and complex parts (mostly in the aviation industry) or complex casting molds. For such machine tools the kinematic feed chains are arranged in a dual-parallel drive structure that allows the mobile element to be moved by the two kinematical branches and their related control systems. Such an arrangement allows for high speed and high rigidity (a critical requirement for precision machining) during the machining process. A significant issue for such an arrangement it’s the ability of the two parallel control systems to follow the same trajectory accurately in order to address this issue it is necessary to achieve synchronous motion control for the two kinematical branches ensuring that the correct perpendicular position it’s kept by the mobile element during its motion on the two slides.

  1. Investigation of influence of errors of cutting machines with CNC on displacement trajectory accuracy of their actuating devices

    Science.gov (United States)

    Fedonin, O. N.; Petreshin, D. I.; Ageenko, A. V.

    2018-03-01

    In the article, the issue of increasing a CNC lathe accuracy by compensating for the static and dynamic errors of the machine is investigated. An algorithm and a diagnostic system for a CNC machine tool are considered, which allows determining the errors of the machine for their compensation. The results of experimental studies on diagnosing and improving the accuracy of a CNC lathe are presented.

  2. Advanced CNC and CAM Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook [and] Student Laboratory Manual.

    Science.gov (United States)

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and student laboratory manual for a 1-year vocational training program to prepare students for entry-level positions as advanced computer numerical control (CNC) and computer-assisted manufacturing (CAM) technicians.. The program was developed through a modification of the DACUM…

  3. Intellectual Control System of Processing on CNC Machines

    Science.gov (United States)

    Nekrasov, R. Y.; Lasukov, A. A.; Starikov, A. I.; Soloviev, I. V.; Bekareva, O. V.

    2016-04-01

    Scientific and technical progress makes great demands for quality of engineering production. The priority is to ensure metalworking equipment with required dimensional accuracy during the entire period of operation at minimum manufacturing costs. In article considered the problem of increasing of accuracy of processing products on CNC. The authors offers a solution to the problem by providing compensating adjustment in the trajectory of the cutting tool and machining mode. The necessity of creation of mathematical models of processes behavior in an automated technological system operations (OATS). Based on the research, authors have proposed a generalized diagram of diagnosis and input operative correction and approximate mathematical models of individual processes of diagnosis.

  4. Improving Machining Accuracy of CNC Machines with Innovative Design Methods

    Science.gov (United States)

    Yemelyanov, N. V.; Yemelyanova, I. V.; Zubenko, V. L.

    2018-03-01

    The article considers achieving the machining accuracy of CNC machines by applying innovative methods in modelling and design of machining systems, drives and machine processes. The topological method of analysis involves visualizing the system as matrices of block graphs with a varying degree of detail between the upper and lower hierarchy levels. This approach combines the advantages of graph theory and the efficiency of decomposition methods, it also has visual clarity, which is inherent in both topological models and structural matrices, as well as the resiliency of linear algebra as part of the matrix-based research. The focus of the study is on the design of automated machine workstations, systems, machines and units, which can be broken into interrelated parts and presented as algebraic, topological and set-theoretical models. Every model can be transformed into a model of another type, and, as a result, can be interpreted as a system of linear and non-linear equations which solutions determine the system parameters. This paper analyses the dynamic parameters of the 1716PF4 machine at the stages of design and exploitation. Having researched the impact of the system dynamics on the component quality, the authors have developed a range of practical recommendations which have enabled one to reduce considerably the amplitude of relative motion, exclude some resonance zones within the spindle speed range of 0...6000 min-1 and improve machining accuracy.

  5. Techniques for the construction of an elliptical-cylindrical model using circular rotating tools in non CNC machines

    International Nuclear Information System (INIS)

    Villalobos Mendoza, Brenda; Cordero Davila, Alberto; Gonzalez Garcia, Jorge

    2011-01-01

    This paper describes the construction of an elliptical-cylindrical model without spherical aberration using vertical rotating tools. The engine of the circular tool is placed on one arm so that the tool fits on the surface and this in turn is moved by an X-Y table. The test method and computer algorithms that predict the desired wear are described.

  6. CNC LATHE MACHINE PRODUCING NC CODE BY USING DIALOG METHOD

    Directory of Open Access Journals (Sweden)

    Yakup TURGUT

    2004-03-01

    Full Text Available In this study, an NC code generation program utilising Dialog Method was developed for turning centres. Initially, CNC lathes turning methods and tool path development techniques were reviewed briefly. By using geometric definition methods, tool path was generated and CNC part program was developed for FANUC control unit. The developed program made CNC part program generation process easy. The program was developed using BASIC 6.0 programming language while the material and cutting tool database were and supported with the help of ACCESS 7.0.

  7. VIRTUAL MACHINES IN EDUCATION – CNC MILLING MACHINE WITH SINUMERIK 840D CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski

    2014-11-01

    Full Text Available Machining process nowadays could not be conducted without its inseparable element: cutting edge and frequently numerically controlled milling machines. Milling and lathe machining centres comprise standard equipment in many companies of the machinery industry, e.g. automotive or aircraft. It is for that reason that tertiary education should account for this rising demand. This entails the introduction into the curricula the forms which enable visualisation of machining, milling process and virtual production as well as virtual machining centres simulation. Siemens Virtual Machine (Virtual Workshop sets an example of such software, whose high functionality offers a range of learning experience, such as: learning the design of machine tools, their configuration, basic operation functions as well as basics of CNC.

  8. Optimization of machining parameters of hard porcelain on a CNC ...

    African Journals Online (AJOL)

    Optimization of machining parameters of hard porcelain on a CNC machine by Taguchi-and RSM method. ... Journal Home > Vol 10, No 1 (2018) > ... The conduct of experiments was made by employing the Taguchi's L27 Orthogonal array to ...

  9. Developing Parametric Models for the Assembly of Machine Fixtures for Virtual Multiaxial CNC Machining Centers

    Science.gov (United States)

    Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.

    2018-01-01

    This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.

  10. Preliminary Test of Upgraded Conventional Milling Machine into PC Based CNC Milling Machine

    International Nuclear Information System (INIS)

    Abdul Hafid

    2008-01-01

    CNC (Computerized Numerical Control) milling machine yields a challenge to make an innovation in the field of machining. With an action job is machining quality equivalent to CNC milling machine, the conventional milling machine ability was improved to be based on PC CNC milling machine. Mechanically and instrumentally change. As a control replacing was conducted by servo drive and proximity were used. Computer programme was constructed to give instruction into milling machine. The program structure of consists GUI model and ladder diagram. Program was put on programming systems called RTX software. The result of up-grade is computer programming and CNC instruction job. The result was beginning step and it will be continued in next time. With upgrading ability milling machine becomes user can be done safe and optimal from accident risk. By improving performance of milling machine, the user will be more working optimal and safely against accident risk. (author)

  11. Prediction of Machine Tool Condition Using Support Vector Machine

    International Nuclear Information System (INIS)

    Wang Peigong; Meng Qingfeng; Zhao Jian; Li Junjie; Wang Xiufeng

    2011-01-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  12. Behavioral study of cnc-retrofitting kits for lathe machine

    International Nuclear Information System (INIS)

    Ahmad, I.

    1999-01-01

    The aim of this project is to develop a Computerized Numerical Controlled (CNC) retrofitting kit for a lathe machine, study its behavior and compare its performance with the retrofitting kit already designed and fabricated at (Pakistan Institute of Engineering and Applied Sciences (PIEAS). Design calculations were performed assuming 100 mm work piece diameter and 800 mm length of stock using tool materials HSS, uncoated carbide, coated carbide, ceramic and cermet tools for different materials. Also cutting, thrust and radial forces on a single point cutting tool were determined. Stepper motors of torque 972 oz-in were selected to drive the carriage and cross-slide in Z and X-directions respectively. Power screws were replaced with ball screws of 0.63 inch dia. (x-direction) and 1.26 in. dia. (Z-direction) which were locally manufactured in the workshop. Deep groove and Angular contact ball bearings were used to support the ball screw shafts against axial and radial loads. Flexible and plain couplings were developed to couple encoders and motors to the ball screw shafts respectively. Panel mount optical rotary encoders are being used for feedback control. Mechanical assembly is complete but due to unavailability of wiring diagram for motors, control electronics could not be accomplished. Therefore, machine could not be evaluated in terms of accuracy, repeatability and resolution using computer software. (author)

  13. Pseudo-random tool paths for CNC sub-aperture polishing and other applications.

    Science.gov (United States)

    Dunn, Christina R; Walker, David D

    2008-11-10

    In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.

  14. Using the modern CNC controllers capabilities for estimating the machining forces during the milling process

    Directory of Open Access Journals (Sweden)

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available Machining forces can nowadays be measured by using 3D dynamometers, which are usually very expensive devices and hardly available for most of the CNC machine-tools users. On the other hand, modern CNC controllers have nowadays the ability to display and save many outputs within the machining process, such as the currents or even the torques at the shaft's level for the feed motors on each axis. These outputs can be used for estimating the machining forces, but it is to be noticed that the above-mentioned currents and torques are proportional with the overall resistant forces, which includes not only technological forces, but also friction, inertial and pre-tensioning forces. This paper presents an approach for estimating the machining forces during a milling process, by using the outputs stored in the CNC controller and separating the effects of technological forces from the other forces involved in the process. The separation was made by running two sets of experiments, one set for dry-run regime and the other one for machining regime.

  15. Keyboard with Universal Communication Protocol Applied to CNC Machine

    Directory of Open Access Journals (Sweden)

    Mejía-Ugalde Mario

    2014-04-01

    Full Text Available This article describes the use of a universal communication protocol for industrial keyboard based microcontroller applied to computer numerically controlled (CNC machine. The main difference among the keyboard manufacturers is that each manufacturer has its own programming of source code, producing a different communication protocol, generating an improper interpretation of the function established. The above results in commercial industrial keyboards which are expensive and incompatible in their connection with different machines. In the present work the protocol allows to connect the designed universal keyboard and the standard keyboard of the PC at the same time, it is compatible with all the computers through the communications USB, AT or PS/2, to use in CNC machines, with extension to other machines such as robots, blowing, injection molding machines and others. The advantages of this design include its easy reprogramming, decreased costs, manipulation of various machine functions and easy expansion of entry and exit signals. The results obtained of performance tests were satisfactory, because each key has the programmed and reprogrammed facility in different ways, generating codes for different functions, depending on the application where it is required to be used.

  16. A Multiple Model Prediction Algorithm for CNC Machine Wear PHM

    Directory of Open Access Journals (Sweden)

    Huimin Chen

    2011-01-01

    Full Text Available The 2010 PHM data challenge focuses on the remaining useful life (RUL estimation for cutters of a high speed CNC milling machine using measurements from dynamometer, accelerometer, and acoustic emission sensors. We present a multiple model approach for wear depth estimation of milling machine cutters using the provided data. The feature selection, initial wear estimation and multiple model fusion components of the proposed algorithm are explained in details and compared with several alternative methods using the training data. The final submission ranked #2 among professional and student participants and the method is applicable to other data driven PHM problems.

  17. Open architecture CNC system

    Energy Technology Data Exchange (ETDEWEB)

    Tal, J. [Galil Motion Control Inc., Sunnyvale, CA (United States); Lopez, A.; Edwards, J.M. [Los Alamos National Lab., NM (United States)

    1995-04-01

    In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool in a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.

  18. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  19. Design and accuracy analysis of a metamorphic CNC flame cutting machine for ship manufacturing

    Science.gov (United States)

    Hu, Shenghai; Zhang, Manhui; Zhang, Baoping; Chen, Xi; Yu, Wei

    2016-09-01

    The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing machines cannot meet the continuous cutting requirements with variable pass conditions through their fixed configuration, and cannot realize high-precision processing as the accuracy theory is not studied adequately. This paper deals with structure design and accuracy prediction technology of novel machine tools for solving the problem of continuous and high-precision cutting. The needed variable trajectory and variable pose kinematic characteristics of non-contact cutting tool are figured out and a metamorphic CNC flame cutting machine designed through metamorphic principle is presented. To analyze kinematic accuracy of the machine, models of joint clearances, manufacturing tolerances and errors in the input variables and error models considering the combined effects are derived based on screw theory after establishing ideal kinematic models. Numerical simulations, processing experiment and trajectory tracking experiment are conducted relative to an eccentric hole with bevels on cylindrical surface respectively. The results of cutting pass contour and kinematic error interval which the position error is from-0.975 mm to +0.628 mm and orientation error is from-0.01 rad to +0.01 rad indicate that the developed machine can complete cutting process continuously and effectively, and the established kinematic error models are effective although the interval is within a `large' range. It also shows the matching property between metamorphic principle and variable working tasks, and the mapping correlation between original designing parameters and kinematic errors of machines. This research develops a metamorphic CNC flame cutting machine and establishes kinematic error models for accuracy analysis of machine tools.

  20. Automatic fitting of conical envelopes to free-form surfaces for flank CNC machining

    OpenAIRE

    Bo P.; Bartoň M.; Pottmann H.

    2017-01-01

    We propose a new algorithm to detect patches of free-form surfaces that can be well approximated by envelopes of a rotational cone under a rigid body motion. These conical envelopes are a preferable choice from the manufacturing point of view as they are, by-definition, manufacturable by computer numerically controlled (CNC) machining using the efficient flank (peripheral) method with standard conical tools. Our geometric approach exploits multi-valued vector fields that consist of vectors in...

  1. Maximum Feedrate Interpolator for Multi-axis CNC Machining with Jerk Constraints

    OpenAIRE

    Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

    2012-01-01

    A key role of the CNC is to perform the feedrate interpolation which means to generate the setpoints for each machine tool axis. The aim of the VPOp algorithm is to make maximum use of the machine tool respecting both tangential and axis jerk on rotary and linear axes. The developed algorithm uses an iterative constraints intersection approach. At each sampling period, all the constraints given by each axis are expressed and by intersecting all of them the allowable interval for the next poin...

  2. Distributed Control System Design for Portable PC Based CNC Machine

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2014-07-01

    Full Text Available The demand on automated machining has been increased and emerges improvement research to achieve many goals such as portability, low cost manufacturability, interoperability, and simplicity in machine usage. These improvements are conducted without ignoring the performance analysis and usability evaluation. This research has designed a distributed control system in purpose to control a portable CNC machine. The design consists of main processing unit, secondary processing unit, motor control, and motor driver. A preliminary simulation has been conducted for performance analysis including linear accuracy and circular accuracy. The results achieved in the simulation provide linear accuracy up to 2 μm with total cost for the whole processing unit is up to 5 million IDR.

  3. Feedrate optimization in 5-axis machining based on direct trajectory interpolation on the surface using an open cnc

    OpenAIRE

    Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

    2014-01-01

    International audience; In the common machining process of free-form surfaces, CAM software generates approximated tool paths because of the input tool path format of the industrial CNC. Then, marks on finished surfaces may appear due to non smooth feedrate planning during interpolation. The Direct Trajectory Interpolation on the Surface (DTIS) method allows managing the tool path geometry and the kinematical parameters to achieve higher productivity and a better surface quality. Machining ex...

  4. Researches Regarding The Circular Interpolation Algorithms At CNC Laser Cutting Machines

    Science.gov (United States)

    Tîrnovean, Mircea Sorin

    2015-09-01

    This paper presents an integrated simulation approach for studying the circular interpolation regime of CNC laser cutting machines. The circular interpolation algorithm is studied, taking into consideration the numerical character of the system. A simulation diagram, which is able to generate the kinematic inputs for the feed drives of the CNC laser cutting machine is also presented.

  5. Static/dynamic Analysis and Optimization of Z-axis Stand of PCB CNC Drilling Machine*

    Directory of Open Access Journals (Sweden)

    Zhou Yanjun

    2016-01-01

    Full Text Available The finite element analysis is used for the static and dynamic analysis of the Z axis brace of PCB CNC drilling machine. With its results of maximum displacement deformation and von Mises stress and modal frequency, the defect of original design was found out. On such bases, a variety of optimization scheme is put forward and the best size of the Z axis brace is obtained by the performance comparison of the schemes. This method offers bases for the design and renovation of other machine tool components.

  6. Step-and-Repeat Nanoimprint-, Photo- and Laser Lithography from One Customised CNC Machine.

    Science.gov (United States)

    Greer, Andrew Im; Della-Rosa, Benoit; Khokhar, Ali Z; Gadegaard, Nikolaj

    2016-12-01

    The conversion of a computer numerical control machine into a nanoimprint step-and-repeat tool with additional laser- and photolithography capacity is documented here. All three processes, each demonstrated on a variety of photoresists, are performed successfully and analysed so as to enable the reader to relate their known lithography process(es) to the findings. Using the converted tool, 1 cm(2) of nanopattern may be exposed in 6 s, over 3300 times faster than the electron beam equivalent. Nanoimprint tools are commercially available, but these can cost around 1000 times more than this customised computer numerical control (CNC) machine. The converted equipment facilitates rapid production and large area micro- and nanoscale research on small grants, ultimately enabling faster and more diverse growth in this field of science. In comparison to commercial tools, this converted CNC also boasts capacity to handle larger substrates, temperature control and active force control, up to ten times more curing dose and compactness. Actual devices are fabricated using the machine including an expanded nanotopographic array and microfluidic PDMS Y-channel mixers.

  7. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    Science.gov (United States)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  8. Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution

    OpenAIRE

    Bo P.; Bartoň M.; Plakhotnik D.; Pottmann H.

    2016-01-01

    We introduce a new method that approximates free-form surfaces by envelopes of one-parameter motions of surfaces of revolution. In the context of 5-axis computer numerically controlled (CNC) machining, we propose a flank machining methodology which is a preferable scallop-free scenario when the milling tool and the machined free-form surface meet tangentially along a smooth curve. We seek both an optimal shape of the milling tool as well as its optimal path in 3D space and propose an optimiza...

  9. Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V

    Science.gov (United States)

    Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul

    2017-12-01

    Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.

  10. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    Science.gov (United States)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  11. Optimization of the Machining parameter of LM6 Alminium alloy in CNC Turning using Taguchi method

    Science.gov (United States)

    Arunkumar, S.; Muthuraman, V.; Baskaralal, V. P. M.

    2017-03-01

    Due to widespread use of highly automated machine tools in the industry, manufacturing requires reliable models and methods for the prediction of output performance of machining process. In machining of parts, surface quality is one of the most specified customer requirements. In order for manufactures to maximize their gains from utilizing CNC turning, accurate predictive models for surface roughness must be constructed. The prediction of optimum machining conditions for good surface finish plays an important role in process planning. This work deals with the study and development of a surface roughness prediction model for machining LM6 aluminum alloy. Two important tools used in parameter design are Taguchi orthogonal arrays and signal to noise ratio (S/N). Speed, feed, depth of cut and coolant are taken as process parameter at three levels. Taguchi’s parameters design is employed here to perform the experiments based on the various level of the chosen parameter. The statistical analysis results in optimum parameter combination of speed, feed, depth of cut and coolant as the best for obtaining good roughness for the cylindrical components. The result obtained through Taguchi is confirmed with real time experimental work.

  12. CAE Analysis of Secondary Shaft Systems in Great Five-axis Turning-Milling Complex CNC Machine

    Directory of Open Access Journals (Sweden)

    Chih-Chiang Hong

    2018-01-01

    Full Text Available The commercial computer aided engineering (CAE software is used to analyze the linear-static construction, stress and deformation for the secondary shaft systems in great five-axis turning-milling complex computer numerical control (CNC machine. It is convenient and always only three dimensional (3D graphic parts needed firstly prepared and further more detail used for the commercial CAE. It is desirable to predict a deformed position for the cut tool under external pressure loads in the working process of CNC machine. The linear results for static analysis of stresses, displacements in corresponding to the screw shaft locates at top, medium and bottom positions of the secondary shaft systems are obtained by using the simulation module of SOLIDWORKS®.

  13. Technical and Symbolic Knowledge in CNC Machining: A Study of Technical Workers of Different Backgrounds.

    Science.gov (United States)

    Martin, Laura M. W.; Beach, King

    Performances of 45 individuals with varying degrees of formal and informal training in machining and programming were compared on tasks designed to tap intellectual changes that may occur with the introduction of computer numerical control (CNC). Participants--30 machinists, 8 machine operators, and 7 engineers--were asked background questions and…

  14. Prepolishing on a CNC platform with bound abrasive contour tools

    Science.gov (United States)

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  15. Prediction and Control of Cutting Tool Vibration in Cnc Lathe with Anova and Ann

    Directory of Open Access Journals (Sweden)

    S. S. Abuthakeer

    2011-06-01

    Full Text Available Machining is a complex process in which many variables can deleterious the desired results. Among them, cutting tool vibration is the most critical phenomenon which influences dimensional precision of the components machined, functional behavior of the machine tools and life of the cutting tool. In a machining operation, the cutting tool vibrations are mainly influenced by cutting parameters like cutting speed, depth of cut and tool feed rate. In this work, the cutting tool vibrations are controlled using a damping pad made of Neoprene. Experiments were conducted in a CNC lathe where the tool holder is supported with and without damping pad. The cutting tool vibration signals were collected through a data acquisition system supported by LabVIEW software. To increase the buoyancy and reliability of the experiments, a full factorial experimental design was used. Experimental data collected were tested with analysis of variance (ANOVA to understand the influences of the cutting parameters. Empirical models have been developed using analysis of variance (ANOVA. Experimental studies and data analysis have been performed to validate the proposed damping system. Multilayer perceptron neural network model has been constructed with feed forward back-propagation algorithm using the acquired data. On the completion of the experimental test ANN is used to validate the results obtained and also to predict the behavior of the system under any cutting condition within the operating range. The onsite tests show that the proposed system reduces the vibration of cutting tool to a greater extend.

  16. Electricity of machine tool

    International Nuclear Information System (INIS)

    Gijeon media editorial department

    1977-10-01

    This book is divided into three parts. The first part deals with electricity machine, which can taints from generator to motor, motor a power source of machine tool, electricity machine for machine tool such as switch in main circuit, automatic machine, a knife switch and pushing button, snap switch, protection device, timer, solenoid, and rectifier. The second part handles wiring diagram. This concludes basic electricity circuit of machine tool, electricity wiring diagram in your machine like milling machine, planer and grinding machine. The third part introduces fault diagnosis of machine, which gives the practical solution according to fault diagnosis and the diagnostic method with voltage and resistance measurement by tester.

  17. Constant Cutting Force Control for CNC Machining Using Dynamic Characteristic-Based Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Hengli Liu

    2015-01-01

    Full Text Available This paper presents a dynamic characteristic-based fuzzy adaptive control algorithm (DCbFACA to avoid the influence of cutting force changing rapidly on the machining stability and precision. The cutting force is indirectly obtained in real time by monitoring and extraction of the motorized spindle current, the feed speed is fuzzy adjusted online, and the current was used as a feedback to control cutting force and maintain the machining process stable. Different from the traditional fuzzy control methods using the experience-based control rules, and according to the complex nonlinear characteristics of CNC machining, the power bond graph method is implemented to describe the dynamic characteristics of process, and then the appropriate variation relations are achieved between current and feed speed, and the control rules are optimized and established based on it. The numerical results indicated that DCbFACA can make the CNC machining process more stable and improve the machining precision.

  18. Learning Control: Sense-Making, CNC Machines, and Changes in Vocational Training for Industrial Work

    Science.gov (United States)

    Berner, Boel

    2009-01-01

    The paper explores how novices in school-based vocational training make sense of computerized numerical control (CNC) machines. Based on two ethnographic studies in Swedish schools, one from the early 1980s and one from 2006, it analyses change and continuity in the cognitive, social, and emotional processes of learning how to become a machine…

  19. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  20. Comparative study for different statistical models to optimize cutting parameters of CNC end milling machines

    International Nuclear Information System (INIS)

    El-Berry, A.; El-Berry, A.; Al-Bossly, A.

    2010-01-01

    In machining operation, the quality of surface finish is an important requirement for many work pieces. Thus, that is very important to optimize cutting parameters for controlling the required manufacturing quality. Surface roughness parameter (Ra) in mechanical parts depends on turning parameters during the turning process. In the development of predictive models, cutting parameters of feed, cutting speed, depth of cut, are considered as model variables. For this purpose, this study focuses on comparing various machining experiments which using CNC vertical machining center, work pieces was aluminum 6061. Multiple regression models are used to predict the surface roughness at different experiments.

  1. Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.

    Science.gov (United States)

    Crosswhite, Dwight

    This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…

  2. Theory and design of CNC systems

    CERN Document Server

    Suh, Suk-Hwan; Chung, Dae-Hyuk; Stroud, Ian

    2008-01-01

    Computer Numerical Control (CNC) controllers are high value-added products counting for over 30% of the price of machine tools. The development of CNC technology depends on the integration of technologies from many different industries, and requires strategic long-term support. a oeTheory and Design of CNC Systemsa covers the elements of control, the design of control systems, and modern open-architecture control systems. Topics covered include Numerical Control Kernel (NCK) design of CNC, Programmable Logic Control (PLC), and the Man-Machine Interface (MMI), as well as the major modules for t

  3. Nanocomposites for Machining Tools

    Directory of Open Access Journals (Sweden)

    Daria Sidorenko

    2017-10-01

    Full Text Available Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  4. Nanocomposites for Machining Tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Mishnaevsky, Leon

    2017-01-01

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials...

  5. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    Science.gov (United States)

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  6. Product quality management based on CNC machine fault prognostics and diagnosis

    Science.gov (United States)

    Kozlov, A. M.; Al-jonid, Kh M.; Kozlov, A. A.; Antar, Sh D.

    2018-03-01

    This paper presents a new fault classification model and an integrated approach to fault diagnosis which involves the combination of ideas of Neuro-fuzzy Networks (NF), Dynamic Bayesian Networks (DBN) and Particle Filtering (PF) algorithm on a single platform. In the new model, faults are categorized in two aspects, namely first and second degree faults. First degree faults are instantaneous in nature, and second degree faults are evolutional and appear as a developing phenomenon which starts from the initial stage, goes through the development stage and finally ends at the mature stage. These categories of faults have a lifetime which is inversely proportional to a machine tool's life according to the modified version of Taylor’s equation. For fault diagnosis, this framework consists of two phases: the first one is focusing on fault prognosis, which is done online, and the second one is concerned with fault diagnosis which depends on both off-line and on-line modules. In the first phase, a neuro-fuzzy predictor is used to take a decision on whether to embark Conditional Based Maintenance (CBM) or fault diagnosis based on the severity of a fault. The second phase only comes into action when an evolving fault goes beyond a critical threshold limit called a CBM limit for a command to be issued for fault diagnosis. During this phase, DBN and PF techniques are used as an intelligent fault diagnosis system to determine the severity, time and location of the fault. The feasibility of this approach was tested in a simulation environment using the CNC machine as a case study and the results were studied and analyzed.

  7. Desain dan Implementasi Sistem Kendali CNC Router Menggunakan PC untuk Flame Cutting Machine

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2012-03-01

    Full Text Available This paper focuses on design of router control systems based on computer numerical control (CNC using personal computer (PC implemented in flame cutting machine (FCM. NC-Code entered into the computer translated to be a command signal sent by the PC to a microcontroller to control the end effector’s movement alongthe X and Y axis simultaneously based on linear and circular interpolations calculation on the PC. This control system is implemented on FCM by connecting the output control of the microcontroller with the driver actuator of the FCM in the form of a DC motor. The obtained result is in the form of a CNC router control system prototype to be implemented in the FCM which is capable to perform linear interpolation and circular interpolation. 

  8. The Use of Open Source Software for Open Architecture System on CNC Milling Machine

    Directory of Open Access Journals (Sweden)

    Dalmasius Ganjar Subagio

    2012-03-01

    Full Text Available Computer numerical control (CNC milling machine system cannot be separated from the software required to follow the provisions of the Open Architecture capabilities that have portability, extend ability, interoperability, and scalability. When a prescribed period of a CNC milling machine has passed and the manufacturer decided to discontinue it, then the user will have problems for maintaining the performance of the machine. This paper aims to show that the using of open source software (OSS is the way out to maintain engine performance. With the use of OSS, users no longer depend on the software built by the manufacturer because OSS is open and can be developed independently. In this paper, USBCNC V.3.42 is used as an alternative OSS. The test result shows that the work piece is in match with the desired pattern. The test result shows that the performance of machines using OSS has similar performance with the machine using software from the manufacturer. 

  9. Assisting the Tooling and Machining Industry to Become Energy Efficient

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Bennett [Arizona Commerce Authority, Phoenix, AZ (United States)

    2016-12-30

    The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sized manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.

  10. Torque-Controlled Adaptive Speed Control on a CNC Marble Saw Machine

    Directory of Open Access Journals (Sweden)

    Ugur Simsir

    2015-02-01

    Full Text Available Although CNC marble saw machines can automatically cut marble slabs to desired dimensions, saw speed and feed rate are selected by operator according to stone parameters, features of the saw, and its immersion depth. If the feed rate is selected lower than the optimal value, there will be time-loss and capacity deficiencies or if it is selected faster, cutting quality will decrease, spindle motor will draw more current, and saw blade will corrode faster. While cutting especially thick materials, saw may be stacked in the stone, cutting quality may be impaired, saw blade may be abraded earlier, precision quality may go down because of increase in measurement errors, and machine may be damaged with the increase in vibrations when improper feed rates are selected. Because of nonhomogeneity of the slabs and deterioration of the saw blade, operator cannot determine a persistent feed rate. This study is targeted to find saw speeds according to saw diameter and optimum feed rate by means of limiting vibrations and current drawn from saw motor and torque accordingly in order to increase working performance of CNC marble saw machines. Thanks to adaptive adjustment of feed rate, one can save on material as well as time, labour, and cost by making use of optimum energy.

  11. Statistical analysis of surface roughness of machined graphite by means of CNC milling

    Directory of Open Access Journals (Sweden)

    Orquídea Sánchez López

    2016-09-01

    Full Text Available The aim of this research is to analyze the influence of cutting speed, feed rate and cutting depth on the surface finish of grade GSP-70 graphite specimens for use in electrical discharge machining (EDM for material removal by means of Computer Numerical Control (CNC milling with low-speed machining (LSM. A two-level factorial design for each of the three established factors was used for the statistical analysis. The analysis of variance (ANOVA indicates that cutting speed and feed rate are the two most significant factors with regard to the roughness obtained with grade GSP-70 graphite by means of CNC milling. A second order regression analysis was also conducted to estimate the roughness average (Ra in terms of the cutting speed, feed rate and cutting depth. Finally, the comparison between predicted roughness by means of a second order regression model and the roughness obtained by machined specimens considering the combinations of low and high levels of roughness is also presented.

  12. Machine Tool Software

    Science.gov (United States)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  13. VIRTUAL MODELING OF A NUMERICAL CONTROL MACHINE TOOL USED FOR COMPLEX MACHINING OPERATIONS

    Directory of Open Access Journals (Sweden)

    POPESCU Adrian

    2015-11-01

    Full Text Available This paper presents the 3D virtual model of the numerical control machine Modustar 100, in terms of machine elements. This is a CNC machine of modular construction, all components allowing the assembly in various configurations. The paper focused on the design of the subassemblies specific to the axes numerically controlled by means of CATIA v5, which contained different drive kinematic chains of different translation modules that ensures translation on X, Y and Z axis. Machine tool development for high speed and highly precise cutting demands employment of advanced simulation techniques witch it reflect on cost of total development of the machine.

  14. Overview of Sustainability Studies of CNC Machining and LAM of Stainless Steel

    Science.gov (United States)

    Nyamekye, Patricia; Leino, Maija; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to fabricate metal parts out of metal powder. The development of the technology from building prototype parts to functional parts has increased remarkably in 2000s. LAM of metals is promising technology that offers new opportunities to manufacturing and to resource efficiency. However, there is only few published articles about its sustainability. Aim in this study was to create supply chain model of LAM and CNC machining and create a methodology to carry out a life cycle inventory (LCI) data collection for these techniques. The methodology of the study was literature review and scenario modeling. The acquisition of raw material, production phase and transportations were used as basis of comparison. The modelled scenarios were fictitious and created for industries, like aviation and healthcare that often require swift delivery as well as customized parts. The results of this study showed that the use of LAM offers a possibility to reduce downtime in supply chains of spare parts and reduce part inventory more effectively than CNC machining. Also the gap between customers and business is possible to be shortened with LAM thus offering a possibility to reduce emissions due to less transportation. The results also indicated weight reduction possibility with LAM due to optimized part geometry which allow lesser amount of metallic powder to be used in making parts.

  15. Minimum Time Trajectory Optimization of CNC Machining with Tracking Error Constraints

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-01-01

    Full Text Available An off-line optimization approach of high precision minimum time feedrate for CNC machining is proposed. Besides the ordinary considered velocity, acceleration, and jerk constraints, dynamic performance constraint of each servo drive is also considered in this optimization problem to improve the tracking precision along the optimized feedrate trajectory. Tracking error is applied to indicate the servo dynamic performance of each axis. By using variable substitution, the tracking error constrained minimum time trajectory planning problem is formulated as a nonlinear path constrained optimal control problem. Bang-bang constraints structure of the optimal trajectory is proved in this paper; then a novel constraint handling method is proposed to realize a convex optimization based solution of the nonlinear constrained optimal control problem. A simple ellipse feedrate planning test is presented to demonstrate the effectiveness of the approach. Then the practicability and robustness of the trajectory generated by the proposed approach are demonstrated by a butterfly contour machining example.

  16. Development of Client-Server Application by Using UDP Socket Programming for Remotely Monitoring CNC Machine Environment in Fixture Process

    Directory of Open Access Journals (Sweden)

    Darmawan Darmawan

    2016-08-01

    Full Text Available The use of computer technology in manufacturing industries can improve manufacturing flexibility significantly, especially in manufacturing processes; many software applications have been utilized to improve machining performance. However, none of them has discussed the abilities to perform direct machining. In this paper, an integrated system for remote operation and monitoring of Computer Numerical Control (CNC machines is put into consideration. The integrated system includes computerization, network technology, and improved holding mechanism. The work proposed by this research is mainly on the software development for such integrated system. It uses Java three-dimensional (3D programming and Virtual Reality Modeling Language (VRML at the client side for visualization of machining environment. This research is aimed at developing a control system to remotely operate and monitor a self-reconfiguration fixture mechanism of a CNC milling machine through internet connection and integration of Personal Computer (PC-based CNC controller, a server side, a client side and CNC milling. The performance of the developed system was evaluated by testing with one type of common protocols particularly User Datagram Protocol (UDP.  Using UDP, the developed system requires 3.9 seconds to complete the close clamping, less than 1 second to release the clamping and it can deliver 463 KiloByte.

  17. Machine tool evaluation

    International Nuclear Information System (INIS)

    Lunsford, B.E.

    1976-01-01

    Continued improvement in numerical control (NC) units and the mechanical components used in the construction of today's machine tools, necessitate the use of more precise instrumentation to calibrate and determine the capabilities of these systems. It is now necessary to calibrate most tape-control lathes to a tool-path positioning accuracy of +-300 microinches in the full slide travel and, on some special turning and boring machines, a capability of +-100 microinches must be achieved. The use of a laser interferometer to determine tool-path capabilities is described

  18. Chatter and machine tools

    CERN Document Server

    Stone, Brian

    2014-01-01

    Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.

  19. Comparative study of manufacturing condyle implant using rapid prototyping and CNC machining

    Science.gov (United States)

    Bojanampati, S.; Karthikeyan, R.; Islam, MD; Venugopal, S.

    2018-04-01

    Injuries to the cranio-maxillofacial area caused by road traffic accidents (RTAs), fall from heights, birth defects, metabolic disorders and tumors affect a rising number of patients in the United Arab Emirates (UAE), and require maxillofacial surgery. Mandibular reconstruction poses a specific challenge in both functionality and aesthetics, and involves replacement of the damaged bone by a custom made implant. Due to material, design cycle time and manufacturing process time, such implants are in many instances not affordable to patients. In this paper, the feasibility of designing and manufacturing low-cost, custom made condyle implant is assessed using two different approaches, consisting of rapid prototyping and three-axis computer numerically controlled (CNC) machining. Two candidate rapid prototyping techniques are considered, namely fused deposition modeling (FDM) and three-dimensional printing followed by sand casting The feasibility of the proposed manufacturing processes is evaluated based on manufacturing time, cost, quality, and reliability.

  20. A methodology for online visualization of the energy flow in a machine tool

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Züst, Simon; Mayr, Josef

    2017-01-01

    the machining process and by this increasing its energy efficiency. This study intents to propose a method which has the capability of real-time monitoring of the entire energetic flows in a CNC machine tool including motors, pumps and cooling fluid. The structure of this approach is based on categorizing...

  1. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  2. PERFORMANCE STUDY ON AISI316 AND AISI410 USING DIFFERENT LAYERED COATED CUTTING TOOLS IN CNC TURNING

    Directory of Open Access Journals (Sweden)

    K. RAJA

    2015-01-01

    Full Text Available Stainless steel (SS is used for many commercial and industrial applications owing to its high resistance to corrosion. It is too hard to machine due to its high strength and high work hardening property. A surface property such as surface roughness (SR is critical to the function-ability of machined components. SS is generally regarded as more difficult to machine material and poor SR is obtained during machining. In this paper an attempt has been made to investigate the SR produced by CNC turning on austenitic stainless steel (AISI316 and martensitic stainless steel (AISI410 by different cases of coated cutting tool used at dry conditions. Multilayered coated with TiCN/Al2O3, multilayered coated with Ti(C, N, B and single layered coated with TiAlN coated cutting tools are used. Experiments were carried out by using Taguchi’s L27 orthogonal array. The effect of cutting parameters on SR is evaluated and optimum cutting conditions for minimizing the SR are determined. Analysis of variance (ANOVA is used for identifying the significant parameters affecting the responses. Confirmation experiments are conducted to validate the results obtained from optimization.

  3. Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation

    Science.gov (United States)

    Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah

    2018-04-01

    The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.

  4. Investigation and Evaluation on Influence of Machining (CNC Conditions on Surface Quality of Paulownia Wood

    Directory of Open Access Journals (Sweden)

    Mohammad Aghajani

    2012-01-01

    Full Text Available The aim of this study was to investigate the effective factors on surface quality of paulownia wood during machining by advanced computer numerical controled (CNC machine. For this aim paulownia logs were provided and were converted to proper sizes (2.5 x 10 x 15 cm and then air dried. The Variable of this study were cutting speed (8.37 and 15.07 m/s, feeding rate (6 and 12 m/min, cutting depth (1and 5 mm, cutting method (down and up-milling and cutting pattern (tangential and radial. Roughness of cut specimens edge were evaluated by profilometer method according to ISO 13565 standard. For evaluation of surface quality, average roughness (Ra, maximum roughness (R max, valley roughness (Rv and peak roughness (Rp were used. Degrees of effectiveness of the parameters were evaluated by fractional factorial design as completely random design at confidence level of 95%. The result showed that cutting speed, cutting method and feed rate are influencive factors on surface quality of machined specimens and their effects were significant. With increasing cutting speed and decreasing feeding rate the roughness decreased and surface quality improved. In up-milling cutting method, degree of roughness was higher and consequently surface quality was inferior. It is to be noted that cutting method in comparison to other factors had the high influence on surface quality. The rest variables did now have independent influence on surface quality at 95% Confidence level. This study for achieving the optimum surface quality recommends that cutting speed of 15.07 m/s, feeding rate of 6 m/min, cutting method of down-milling and cutting depth of 1 mm for tangential cross section.

  5. An integrated model for part-operation allocation and investments in CNC technology

    NARCIS (Netherlands)

    Bokhorst, J.A.C.; Slomp, J.; Suresh, N.

    2002-01-01

    This study addresses the issue of investment appraisal of new technology, specifically computer numerical control (CNC) machine tools in conjunction with optimal allocation of parts and operations on CNC machines as the investments take place. Part-operation allocation is the allocation of parts and

  6. Review on CNC-Rapid Prototyping

    International Nuclear Information System (INIS)

    M Nafis O Z; Nafrizuan M Y; Munira M A; Kartina J

    2012-01-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  7. OPMILL - MICRO COMPUTER PROGRAMMING ENVIRONMENT FOR CNC MILLING MACHINES THREE AXIS EQUATION PLOTTING CAPABILITIES

    Science.gov (United States)

    Ray, R. B.

    1994-01-01

    OPMILL is a computer operating system for a Kearney and Trecker milling machine that provides a fast and easy way to program machine part manufacture with an IBM compatible PC. The program gives the machinist an "equation plotter" feature which plots any set of equations that define axis moves (up to three axes simultaneously) and converts those equations to a machine milling program that will move a cutter along a defined path. Other supported functions include: drill with peck, bolt circle, tap, mill arc, quarter circle, circle, circle 2 pass, frame, frame 2 pass, rotary frame, pocket, loop and repeat, and copy blocks. The system includes a tool manager that can handle up to 25 tools and automatically adjusts tool length for each tool. It will display all tool information and stop the milling machine at the appropriate time. Information for the program is entered via a series of menus and compiled to the Kearney and Trecker format. The program can then be loaded into the milling machine, the tool path graphically displayed, and tool change information or the program in Kearney and Trecker format viewed. The program has a complete file handling utility that allows the user to load the program into memory from the hard disk, save the program to the disk with comments, view directories, merge a program on the disk with one in memory, save a portion of a program in memory, and change directories. OPMILL was developed on an IBM PS/2 running DOS 3.3 with 1 MB of RAM. OPMILL was written for an IBM PC or compatible 8088 or 80286 machine connected via an RS-232 port to a Kearney and Trecker Data Mill 700/C Control milling machine. It requires a "D:" drive (fixed-disk or virtual), a browse or text display utility, and an EGA or better display. Users wishing to modify and recompile the source code will also need Turbo BASIC, Turbo C, and Crescent Software's QuickPak for Turbo BASIC. IBM PC and IBM PS/2 are registered trademarks of International Business Machines. Turbo

  8. Pre-polishing on a CNC platform with bound abrasive contour tools

    Science.gov (United States)

    Schoeffer, Adrienne E.

    2003-05-01

    Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  9. Architecture for Direct Model-to-Part CNC Manufacturing

    Directory of Open Access Journals (Sweden)

    Gilbert Poon

    2006-02-01

    Full Text Available In the traditional paradigm for Computer Numerical Control (CNC machining, tool paths are programmed offline from the CNC machine using the Computer-Aided Design (CAD model of the workpiece. The program is downloaded to the CNC controller and the part is then machined. Since a CAD model does not exist inside the CNC controller, it is unaware of the part to be machined and cannot predict or prevent errors. Not only is this paradigm labor intensive, it can lead to catastrophic damage if there are errors during machining. This paper presents a new concept for CNC machine control whereby a CAD model of the workpiece exists inside the controller and the tool positions are generated in real-time by the controller using the computer's graphics hardware without human intervention. The new concept was implemented on an experimental lathe machine specifically designed to machine complicated ornamental wood workpieces with a personal computer. An example workpiece was machined and measured using a 3D camera. The measured data was registered to the CAD model to evaluate machining accuracy.

  10. Slide system for machine tools

    Science.gov (United States)

    Douglass, Spivey S.; Green, Walter L.

    1982-01-01

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  11. ANALYSIS OF CUTTING FORCES ON CNC LATHES EXPERIMENTAL APPROACH

    Directory of Open Access Journals (Sweden)

    Erdem Koç

    1996-01-01

    Full Text Available Objective of this study is to make use easy programming of CNC lathes and to achieve the optimization of part program prepared considering the limiting parameters of the machine. In the present study, a BOXFORD 250 B CNC lathe has been used for experiment and optimization process. The measurement of cutting forces exerted on the cutting tool of CNC lathe has been performed. The cutting forces occurring during the turning operation have been determined for different depth of" cut, feed rate and cutting speed as well as different cutting tools and related data base has been obtained.

  12. Accuracy Enhancement with Processing Error Prediction and Compensation of a CNC Flame Cutting Machine Used in Spatial Surface Operating Conditions

    Directory of Open Access Journals (Sweden)

    Shenghai Hu

    2017-04-01

    Full Text Available This study deals with the precision performance of the CNC flame-cutting machine used in spatial surface operating conditions and presents an accuracy enhancement method based on processing error modeling prediction and real-time compensation. Machining coordinate systems and transformation matrix models were established for the CNC flame processing system considering both geometric errors and thermal deformation effects. Meanwhile, prediction and compensation models were constructed related to the actual cutting situation. Focusing on the thermal deformation elements, finite element analysis was used to measure the testing data of thermal errors, the grey system theory was applied to optimize the key thermal points, and related thermal dynamics models were carried out to achieve high-precision prediction values. Comparison experiments between the proposed method and the teaching method were conducted on the processing system after performing calibration. The results showed that the proposed method is valid and the cutting quality could be improved by more than 30% relative to the teaching method. Furthermore, the proposed method can be used under any working condition by making a few adjustments to the prediction and compensation models.

  13. Tool grinding machine

    Science.gov (United States)

    Dial, Sr., Charles E.

    1980-01-01

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thickness may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  14. Improved tool grinding machine

    Science.gov (United States)

    Dial, C.E. Sr.

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thicknesses may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  15. A CNC Sheetmetal Fabrication System for Production of Ships Ventilation Components and Flatwork

    National Research Council Canada - National Science Library

    Galie, Thomas R; Blais, David R

    1981-01-01

    .... By utilizing computer graphics technology and Computer Numeric Control (CNC) machine tools, it is possible to reduce the manhours required for fabrication of ventilation and flatwork by as much as 40 percent...

  16. Fuzzy Linguistic Optimization on Surface Roughness for CNC Turning

    OpenAIRE

    Lan, Tian-Syung

    2010-01-01

    Surface roughness is often considered the main purpose in contemporary computer numerical controlled (CNC) machining industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme is deemed to be necessary for the industry. In this paper, the cutting depth, feed rate, speed, and tool nose runoff with low, medium, and...

  17. DIAGNOSTIC OF CNC LATHE WITH QC 20 BALLBAR SYSTEM

    Directory of Open Access Journals (Sweden)

    Jerzy Józwik

    2015-11-01

    Full Text Available This paper presents the evaluation of the influence of the feedmotion speed on the value of selected geometric errors of CNC lathe CTX 310 eco by DMG, indentified by QC 20 Ballbar system. Diagnostically evaluated were: the deviation of the axis squareness, reversal spike, and backlash. These errors determine the forming of the dimensional and shape accuracy of a machine tool. The article discusses the process of the CNC diagnostic test, the diagnostic evaluation and formulates guidelines on further CNC operation. The results of measurements were presented in tables and diagrams.

  18. A new accurate curvature matching and optimal tool based five-axis machining algorithm

    International Nuclear Information System (INIS)

    Lin, Than; Lee, Jae Woo; Bohez, Erik L. J.

    2009-01-01

    Free-form surfaces are widely used in CAD systems to describe the part surface. Today, the most advanced machining of free from surfaces is done in five-axis machining using a flat end mill cutter. However, five-axis machining requires complex algorithms for gouging avoidance, collision detection and powerful computer-aided manufacturing (CAM) systems to support various operations. An accurate and efficient method is proposed for five-axis CNC machining of free-form surfaces. The proposed algorithm selects the best tool and plans the tool path autonomously using curvature matching and integrated inverse kinematics of the machine tool. The new algorithm uses the real cutter contact tool path generated by the inverse kinematics and not the linearized piecewise real cutter location tool path

  19. Estimation of tool wear during CNC milling using neural network-based sensor fusion

    Science.gov (United States)

    Ghosh, N.; Ravi, Y. B.; Patra, A.; Mukhopadhyay, S.; Paul, S.; Mohanty, A. R.; Chattopadhyay, A. B.

    2007-01-01

    Cutting tool wear degrades the product quality in manufacturing processes. Monitoring tool wear value online is therefore needed to prevent degradation in machining quality. Unfortunately there is no direct way of measuring the tool wear online. Therefore one has to adopt an indirect method wherein the tool wear is estimated from several sensors measuring related process variables. In this work, a neural network-based sensor fusion model has been developed for tool condition monitoring (TCM). Features extracted from a number of machining zone signals, namely cutting forces, spindle vibration, spindle current, and sound pressure level have been fused to estimate the average flank wear of the main cutting edge. Novel strategies such as, signal level segmentation for temporal registration, feature space filtering, outlier removal, and estimation space filtering have been proposed. The proposed approach has been validated by both laboratory and industrial implementations.

  20. Performance optimization of a CNC machine through exploration of the timed state space

    NARCIS (Netherlands)

    Mota, M.A. Mujica; Piera, Miquel Angel

    2010-01-01

    Flexible production units provide very efficient mechanisms to adapt the type and production rate according to fluctuations in demand. The optimal sequence of the different manufacturing tasks in each machine is a challenging problem that can deal with important productivity benefits.

  1. Tool wear and breakage monitoring in machining

    International Nuclear Information System (INIS)

    Madl, J.

    1992-01-01

    Risk minimization of metal cutting operations is one of the main problems of metal cutting technology. This paper describes some aspects in monitoring and control of machining processes. Tool monitoring is the fokus of machining process monitoring. Tool breakage and tool life recognition are the main problems of tool monitoring. All problems of this type of monitoring have not yet been fully solved. (orig.)

  2. Low-Cost Fabrication of Hollow Microneedle Arrays Using CNC Machining and UV Lithography

    DEFF Research Database (Denmark)

    Lê Thanh, Hoà; Ta, B.Q.; Le The, H.

    2015-01-01

    In order to produce disposable microneedles for blood-collection devices in smart homecare monitoring systems, we have developed a simple low-cost scalable process for mass fabrication of sharp-tipped microneedle arrays. The key feature in this process is a design of computer numerical control......-machined aluminum sample (CAS). The inclined sidewalls on the CAS enable microfabricated traditional-shaped microneedles (TMNs) to be produced in the desired shape. This process provides significant advantages over other methods that use inclined lithography or anisotropic wet etching. TMNs with a length of 1510 mu...

  3. Direct Trajectory Interpolation on the Surface using an Open CNC

    OpenAIRE

    Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

    2014-01-01

    International audience; Free-form surfaces are used for many industrial applications from aeronautical parts, to molds or biomedical implants. In the common machining process, computer-aided manufacturing (CAM) software generates approximated tool paths because of the limitation induced by the input tool path format of the industrial CNC. Then, during the tool path interpolation, marks on finished surfaces can appear induced by non smooth feedrate planning. Managing the geometry of the tool p...

  4. Quantitative Evaluation of Heavy Duty Machine Tools Remanufacturing Based on Modified Catastrophe Progression Method

    Science.gov (United States)

    shunhe, Li; jianhua, Rao; lin, Gui; weimin, Zhang; degang, Liu

    2017-11-01

    The result of remanufacturing evaluation is the basis for judging whether the heavy duty machine tool can remanufacture in the EOL stage of the machine tool lifecycle management.The objectivity and accuracy of evaluation is the key to the evaluation method.In this paper, the catastrophe progression method is introduced into the quantitative evaluation of heavy duty machine tools’ remanufacturing,and the results are modified by the comprehensive adjustment method,which makes the evaluation results accord with the standard of human conventional thinking.Using the catastrophe progression method to establish the heavy duty machine tools’ quantitative evaluation model,to evaluate the retired TK6916 type CNC floor milling-boring machine’s remanufacturing.The evaluation process is simple,high quantification,the result is objective.

  5. The Influence of Tool Geometry towards Cutting Performance in Machining Aluminium 7075

    Directory of Open Access Journals (Sweden)

    Muhammad Syafik Jumali

    2017-01-01

    Full Text Available Aerospace industries often use Computer Numerical Control (CNC machining in manufacturing aerospace parts. Aluminium 7075 is the most common material used as aircraft components. This research aims to produce end mill with optimum geometry in terms of the helix angle, primary radial relief angle and secondary relief angle. End mills with different geometry parameters are tested on Aluminium 7075 and data on surface roughness and tool wear were collected. The results were then analysed to determine which parameters brought the optimum result with regards to surface roughness and tool wear.

  6. Fatigue and Model Analysis of the CNC Cylindrical Grinder

    OpenAIRE

    Lin Jui-Chang; Lin Cheng-Jen

    2016-01-01

    The purpose of this study is to lower deviation of workpiece by meeting high stability and rigidity to prevent the resonance in producing procedure of the CNC universal cylindrical grinding machine. Using finite element analysis software ABAQUS in grinder machine tools for numerical simulation of several analyses for the following: structural rigidity analysis, optimized design, vibration frequency analysis and fatigue damage analysis. This work aims on state of the transmission of outer diam...

  7. 3D Printing device adaptable to Computer Numerical Control (CNC)

    OpenAIRE

    GARDAN , Julien; Danesi , F.; Roucoules , Lionel; Schneider , A.

    2014-01-01

    This article presents the development of a 3D printing device for the additive manufacturing adapted to a CNC machining. The application involves the integration of a specific printing head. Additive manufacturing technology is most commonly used for modeling, prototyping, tooling through an exclusive machine or 3D printer. A global review and analysis of technologies show the additive manufacturing presents little independent solutions [6][9]. The problem studied especially the additive manu...

  8. Investigation into the accuracy of a proposed laser diode based multilateration machine tool calibration system

    International Nuclear Information System (INIS)

    Fletcher, S; Longstaff, A P; Myers, A

    2005-01-01

    Geometric and thermal calibration of CNC machine tools is required in modern machine shops with volumetric accuracy assessment becoming the standard machine tool qualification in many industries. Laser interferometry is a popular method of measuring the errors but this, and other alternatives, tend to be expensive, time consuming or both. This paper investigates the feasibility of using a laser diode based system that capitalises on the low cost nature of the diode to provide multiple laser sources for fast error measurement using multilateration. Laser diode module technology enables improved wavelength stability and spectral linewidth which are important factors for laser interferometry. With more than three laser sources, the set-up process can be greatly simplified while providing flexibility in the location of the laser sources improving the accuracy of the system

  9. Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating

    Science.gov (United States)

    Chen, Liangji; Guo, Guangsong; Li, Huiying

    2017-07-01

    NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.

  10. Calibration apparatus for a machine-tool

    International Nuclear Information System (INIS)

    Crespin, G.

    1985-01-01

    The invention proposes a calibration apparatus for a machine-tool comprising a torque measuring device, where the tool is driven by a motor of which supply electric current is proportional to the torque applied upon the tool and can be controlled and measured, a housing having an aperture through which the rotatable tool can pass. This device alloys to apply a torque on the tool and to measure it from the supply current of the motor. The invention applies, more particularly to the screwing machines used for the mounting of the core containment plates [fr

  11. New tool holder design for cryogenic machining of Ti6Al4V

    Science.gov (United States)

    Bellin, Marco; Sartori, Stefano; Ghiotti, Andrea; Bruschi, Stefania

    2017-10-01

    The renewed demand of increasing the machinability of the Ti6Al4V titanium alloy to produce biomedical and aerospace parts working at high temperature has recently led to the application of low-temperature coolants instead of conventional cutting fluids to increase both the tool life and the machined surface integrity. In particular, the liquid nitrogen directed to the tool rake face has shown a great capability of reducing the temperature at the chip-tool interface, as well as the chemical interaction between the tool coating and the titanium to be machined, therefore limiting the tool crater wear, and improving, at the same time, the chip breakability. Furthermore, the nitrogen is a safe, non-harmful, non-corrosive, odorless, recyclable, non-polluting and abundant gas, characteristics that further qualify it as an environmental friendly coolant to be applied to machining processes. However, the behavior of the system composed by the tool and the tool holder, exposed to the cryogenics temperatures may represent a critical issue in order to obtain components within the required geometrical tolerances. On this basis, the paper aims at presenting the design of an innovative tool holder installed on a CNC lathe, which includes the cryogenic coolant provision system, and which is able to hinder the part possible distortions due to the liquid nitrogen adduction by stabilizing its dimensions through the use of heating cartridges and appropriate sensors to monitor the temperature evolution of the tool holder.

  12. Transition Towards Energy Efficient Machine Tools

    CERN Document Server

    Zein, André

    2012-01-01

    Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The ...

  13. Transition towards energy efficient machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Zein, Andre [Technische Univ. Braunschweig (Germany). Inst. fuer Werkzeugmaschinen und Fertigungstechnik

    2012-07-01

    Provides unique data about industrial trends affecting the energy demand of machine tools. Presents a comprehensive methodology to assess the energy efficiency of machining processes. Contains an integrated management concept to implement energy performance measures into existing industrial systems. Includes an industrial case study with two exemplary applications. Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The target audience primarily comprises researchers and practitioners challenged to enhance energy efficiency in manufacturing. The book may also be beneficial for graduate students who want to specialize in this field.

  14. Machine Translation Tools - Tools of The Translator's Trade

    DEFF Research Database (Denmark)

    Kastberg, Peter

    2012-01-01

    In this article three of the more common types of translation tools are presented, discussed and critically evaluated. The types of translation tools dealt with in this article are: Fully Automated Machine Translation (or FAMT), Human Aided Machine Translation (or HAMT) and Machine Aided Human...... Translation (or MAHT). The strengths and weaknesses of the different types of tools are discussed and evaluated by means of a number of examples. The article aims at two things: at presenting a sort of state of the art of what is commonly referred to as “machine translation” as well as at providing the reader...... with a sound basis for considering what translation tool (if any) is the most appropriate in order to meet his or her specific translation needs....

  15. Diamond turning on advanced machine tool prototypes

    International Nuclear Information System (INIS)

    Arnold, J.B.; Steger, P.J.

    1975-01-01

    Specular-quality metal mirrors are being machined for use in laser optical systems. The fabrication process incorporates special quality diamond tools and specially constructed turning machines. The machines are controlled by advanced control techniques and are housed in an environmentally controlled laboratory to insure ultimate machine stability and positional accuracy. The materials from which these mirrors are primarily produced are the softer face-center-cubic structure metals, such as gold, silver, copper, and aluminum. Mirror manufacturing by the single-point diamond machining process is in an early stage of development, but it is anticipated that this method will become the most economical way for producing high-quality metal mirrors. (U.S.)

  16. Minimization of Surface Roughness and Tool Vibration in CNC Milling Operation

    Directory of Open Access Journals (Sweden)

    Sukhdev S. Bhogal

    2015-01-01

    Full Text Available Tool vibration and surface roughness are two important parameters which affect the quality of the component and tool life which indirectly affect the component cost. In this paper, the effect of cutting parameters on tool vibration, and surface roughness has been investigated during end milling of EN-31 tool steel. Response surface methodology (RSM has been used to develop mathematical model for predicting surface finish, tool vibration and tool wear with different combinations of cutting parameters. The experimental results show that feed rate is the most dominating parameter affecting surface finish, whereas cutting speed is the major factor effecting tool vibration. The results of mathematical model are in agreement with experimental investigations done to validate the mathematical model.

  17. A linear maglev guide for machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Tieste, K D [Inst. of Mechanics, Univ. of Hannover (Germany); Popp, K [Inst. of Mechanics, Univ. of Hannover (Germany)

    1996-12-31

    Machine tools require linear guides with high slide velocity and very high position accuracy. The three tasks of a linear guide - supporting, guiding and driving - shall be realised by means of active magnetic bearings (AMB). The resulting linear magnetically levitated (maglev) guide has to accomplish the following characteristics: High stiffness, good damping and low noise as well as low heat production. First research on a one degree-of-freedom (DOF) support magnet unit aimed at the development of components and efficient control strategies for the linear maglev guide. The actual research is directed to realise a five DOF linear maglev guide for machine tools without drive to answer the question whether the maglev principle can be used for a linear axis in a machine tool. (orig.)

  18. CNC Preparation Meets Manufacturing Opportunity

    Science.gov (United States)

    Cassola, Joel

    2006-01-01

    This article features the machining technology program at Cape Fear Community College (CFCC) of Wilmington, North Carolina. North Carolina's Cape Fear Community College is working to meet diverse industry needs through its CNC training. The school's program has gained the attention of the local manufacturing community and students when it shifted…

  19. Sine-Bar Attachment For Machine Tools

    Science.gov (United States)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  20. Modeling of Geometric Error in Linear Guide Way to Improved the vertical three-axis CNC Milling machine’s accuracy

    Science.gov (United States)

    Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna

    2018-03-01

    The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.

  1. Robotic edge machining using elastic abrasive tool

    Science.gov (United States)

    Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.

    2018-03-01

    The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.

  2. Material Choice for spindle of machine tools

    Science.gov (United States)

    Gouasmi, S.; Merzoug, B.; Abba, G.; Kherredine, L.

    2012-02-01

    The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.

  3. Material Choice for spindle of machine tools

    International Nuclear Information System (INIS)

    Gouasmi, S; Merzoug, B; Kherredine, L; Abba, G

    2012-01-01

    The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.

  4. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  5. Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges.

    Science.gov (United States)

    Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2013-01-14

    Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement.

  6. Machine tool metrology an industrial handbook

    CERN Document Server

    Smith, Graham T

    2016-01-01

    Maximizing reader insights into the key scientific disciplines of Machine Tool Metrology, this text will prove useful for the industrial-practitioner and those interested in the operation of machine tools. Within this current level of industrial-content, this book incorporates significant usage of the existing published literature and valid information obtained from a wide-spectrum of manufacturers of plant, equipment and instrumentation before putting forward novel ideas and methodologies. Providing easy to understand bullet points and lucid descriptions of metrological and calibration subjects, this book aids reader understanding of the topics discussed whilst adding a voluminous-amount of footnotes utilised throughout all of the chapters, which adds some additional detail to the subject. Featuring an extensive amount of photographic-support, this book will serve as a key reference text for all those involved in the field. .

  7. Numerical Analysis of CNC Milling Chatter Using Embedded Miniature MEMS Microphone Array System

    Directory of Open Access Journals (Sweden)

    Pang-Li Wang

    2018-01-01

    Full Text Available With the increasingly common use of industrial automation for mass production, there are many computer numerical control (CNC machine tools that require the collection of data from intelligent sensors in order to analyze their processing quality. In general, for high speed rotating machines, an accelerometer can be attached on the spindle to collect the data from the detected vibration of the CNC. However, due to their cost, accelerometers have not been widely adopted for use with typical CNC machine tools. This study sought to develop an embedded miniature MEMS microphone array system (Radius 5.25 cm, 8 channels to discover the vibration source of the CNC from spatial phase array processing. The proposed method utilizes voice activity detection (VAD to distinguish between the presence and absence of abnormal noise in the pre-stage, and utilizes the traditional direction of arrival method (DOA via multiple signal classification (MUSIC to isolate the spatial orientation of the noise source in post-processing. In the numerical simulation, the non-interfering noise source location is calibrated in the anechoic chamber, and is tested with real milling processing in the milling machine. As this results in a high background noise level, the vibration sound source is more accurate in the presented energy gradation graphs as compared to the traditional MUSIC method.

  8. Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools

    Directory of Open Access Journals (Sweden)

    Okokpujie Imhade Princess

    2017-12-01

    Full Text Available In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N, feed rate (f, axial depth of cut (a and radial depth of cut (r. The experiment was designed using central composite design (CCD in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM. The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.

  9. Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools

    Science.gov (United States)

    Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.

    2017-12-01

    In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.

  10. Selection of Levels of Dressing Process Parameters by Using TOPSIS Technique for Surface Roughness of En-31 Work piece in CNC Cylindrical Grinding Machine

    Science.gov (United States)

    Patil, Sanjay S.; Bhalerao, Yogesh J.

    2017-02-01

    Grinding is metal cutting process used for mainly finishing the automobile components. The grinding wheel performance becomes dull by using it most of times. So it should be reshaping for consistent performance. It is necessary to remove dull grains of grinding wheel which is known as dressing process. The surface finish produced on the work piece is dependent on the dressing parameters in sub-sequent grinding operation. Multi-point diamond dresser has four important parameters such as the dressing cross feed rate, dressing depth of cut, width of the diamond dresser and drag angle of the dresser. The range of cross feed rate level is from 80-100 mm/min, depth of cut varies from 10 - 30 micron, width of diamond dresser is from 0.8 - 1.10mm and drag angle is from 40o - 500, The relative closeness to ideal levels of dressing parameters are found for surface finish produced on the En-31 work piece during sub-sequent grinding operation by using Technique of Order Preference by Similarity to Ideal Solution (TOPSIS).In the present work, closeness to ideal solution i.e. levels of dressing parameters are found for Computer Numerical Control (CNC) cylindrical angular grinding machine. After the TOPSIS technique, it is found that the value of Level I is 0.9738 which gives better surface finish on the En-31 work piece in sub-sequent grinding operation which helps the user to select the correct levels (combinations) of dressing parameters.

  11. The impact of policy on firms' performance: the case of CNC machine tool industry in India

    NARCIS (Netherlands)

    Kumar, A.

    2003-01-01

    This study is about understanding how the government policy actually works at firm level in the context of developing countries' industrialization. In the literature, the discussions on impact of government policy on corporate performance primarily stress on macroeconomic aspects of industrial

  12. Probability distribution of machining center failures

    International Nuclear Information System (INIS)

    Jia Yazhou; Wang Molin; Jia Zhixin

    1995-01-01

    Through field tracing research for 24 Chinese cutter-changeable CNC machine tools (machining centers) over a period of one year, a database of operation and maintenance for machining centers was built, the failure data was fitted to the Weibull distribution and the exponential distribution, the effectiveness was tested, and the failure distribution pattern of machining centers was found. Finally, the reliability characterizations for machining centers are proposed

  13. Development of a QFD-based expert system for CNC turning centre selection

    Science.gov (United States)

    Prasad, Kanika; Chakraborty, Shankar

    2015-12-01

    Computer numerical control (CNC) machine tools are automated devices capable of generating complicated and intricate product shapes in shorter time. Selection of the best CNC machine tool is a critical, complex and time-consuming task due to availability of a wide range of alternatives and conflicting nature of several evaluation criteria. Although, the past researchers had attempted to select the appropriate machining centres using different knowledge-based systems, mathematical models and multi-criteria decision-making methods, none of those approaches has given due importance to the voice of customers. The aforesaid limitation can be overcome using quality function deployment (QFD) technique, which is a systematic approach for integrating customers' needs and designing the product to meet those needs first time and every time. In this paper, the adopted QFD-based methodology helps in selecting CNC turning centres for a manufacturing organization, providing due importance to the voice of customers to meet their requirements. An expert system based on QFD technique is developed in Visual BASIC 6.0 to automate the CNC turning centre selection procedure for different production plans. Three illustrative examples are demonstrated to explain the real-time applicability of the developed expert system.

  14. NEW ASPECTS OF MANUFACTURING ON MACHINE TOOLS

    Directory of Open Access Journals (Sweden)

    Dorian ŞTEF

    2012-11-01

    Full Text Available In the paper are presented the modality to minimize the production time and increase the machining accuracy in the milling operations and to analyze different milling strategies. In this analyze the only on modification for face milling operation was to change the tool geometry by mounted a special shape insert WIPER, that have a different geometry, and for pocketing operations the changes was by using different milling strategies for manufacturing pockets. The application for this analyze is a simulation between the process technologies in virtual fabrication made using Esprit CAM (Computer Aided Manufacturing software.

  15. Keeping you safe by making machine tools safe

    CERN Multimedia

    2012-01-01

    CERN’s third safety objective for 2012 concerns the safety of equipment - and machine tools in particular.   There are three prerequisites for ensuring that a machine tool can be used safely: ·      the machine tool must comply with Directive 2009/104/EC, ·      the layout of the workshop must be compliant, and ·      everyone who uses the machine tool must be trained. Provided these conditions are met, the workshop head can grant authorisation to use the machine tool. To fulfil this objective, an inventory of the machine tools must be drawn up and the people responsible for them identified. The HSE Unit's Safety Inspection Service produces compliance reports for the machine tools. In order to meet the third objective set by the Director-General, the section has doubled its capacity to carry out inspections: ...

  16. Modeling and Analysis of CNC Milling Process Parameters on Al3030 based Composite

    Science.gov (United States)

    Gupta, Anand; Soni, P. K.; Krishna, C. M.

    2018-04-01

    The machining of Al3030 based composites on Computer Numerical Control (CNC) high speed milling machine have assumed importance because of their wide application in aerospace industries, marine industries and automotive industries etc. Industries mainly focus on surface irregularities; material removal rate (MRR) and tool wear rate (TWR) which usually depends on input process parameters namely cutting speed, feed in mm/min, depth of cut and step over ratio. Many researchers have carried out researches in this area but very few have taken step over ratio or radial depth of cut also as one of the input variables. In this research work, the study of characteristics of Al3030 is carried out at high speed CNC milling machine over the speed range of 3000 to 5000 r.p.m. Step over ratio, depth of cut and feed rate are other input variables taken into consideration in this research work. A total nine experiments are conducted according to Taguchi L9 orthogonal array. The machining is carried out on high speed CNC milling machine using flat end mill of diameter 10mm. Flatness, MRR and TWR are taken as output parameters. Flatness has been measured using portable Coordinate Measuring Machine (CMM). Linear regression models have been developed using Minitab 18 software and result are validated by conducting selected additional set of experiments. Selection of input process parameters in order to get best machining outputs is the key contributions of this research work.

  17. Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based hastelloy - 276

    International Nuclear Information System (INIS)

    Khidhir, Basim A; Mohamed, Bashir

    2011-01-01

    Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.

  18. Coordinate measurement machines as an alignment tool

    International Nuclear Information System (INIS)

    Wand, B.T.

    1991-03-01

    In February of 1990 the Stanford Linear Accelerator Center (SLAC) purchased a LEITZ PM 12-10-6 CMM (Coordinate measurement machine). The machine is shared by the Quality Control Team and the Alignment Team. One of the alignment tasks in positioning beamline components in a particle accelerator is to define the component's magnetic centerline relative to external fiducials. This procedure, called fiducialization, is critical to the overall positioning tolerance of a magnet. It involves the definition of the magnetic center line with respect to the mechanical centerline and the transfer of the mechanical centerline to the external fiducials. To perform the latter a magnet coordinate system has to be established. This means defining an origin and the three rotation angles of the magnet. The datum definition can be done by either optical tooling techniques or with a CMM. As optical tooling measurements are very time consuming, not automated and are prone to errors, it is desirable to use the CMM fiducialization method instead. The establishment of a magnet coordinate system based on the mechanical center and the transfer to external fiducials will be discussed and presented with 2 examples from the Stanford Linear Collider (SLC). 7 figs

  19. INFLUENCE OF STRUCTURE COMPONENTS ON MACHINE TOOL ACCURACY

    Directory of Open Access Journals (Sweden)

    ConstantinSANDU

    2017-11-01

    Full Text Available For machine tools, the accuracy of the parts of the machine tool structure (after roughing should be subject to relief and natural or artificial aging. The performance of the current accuracy of machine tools as linearity or flatness was higher than 5 μm/m. Under this value there are great difficulties. The performance of the structure of the machine tools in the manufacture of structural parts of machine tools, with a flatness accuracy that the linearity of about 2 μm/m, are significant deviations form of their half-finished. This article deals with the influence of errors of form of semifinished and machined parts on them, on their shape and especially what happens to structure machine tools when the components of the structure were assembling this.

  20. Occupational Noise Reduction in CNC Striping Process

    Science.gov (United States)

    Mahmad Khairai, Kamarulzaman; Shamime Salleh, Nurul; Razlan Yusoff, Ahmad

    2018-03-01

    Occupational noise hearing loss with high level exposure is common occupational hazards. In CNC striping process, employee that exposed to high noise level for a long time as 8-hour contributes to hearing loss, create physical and psychological stress that reduce productivity. In this paper, CNC stripping process with high level noises are measured and reduced to the permissible noise exposure. First condition is all machines shutting down and second condition when all CNC machine under operations. For both conditions, noise exposures were measured to evaluate the noise problems and sources. After improvement made, the noise exposures were measured to evaluate the effectiveness of reduction. The initial average noise level at the first condition is 95.797 dB (A). After the pneumatic system with leakage was solved, the noise reduced to 55.517 dB (A). The average noise level at the second condition is 109.340 dB (A). After six machines were gathered at one area and cover that area with plastic curtain, the noise reduced to 95.209 dB (A). In conclusion, the noise level exposure in CNC striping machine is high and exceed the permissible noise exposure can be reduced to acceptable levels. The reduction of noise level in CNC striping processes enhanced productivity in the industry.

  1. Research on Error Modelling and Identification of 3 Axis NC Machine Tools Based on Cross Grid Encoder Measurement

    International Nuclear Information System (INIS)

    Du, Z C; Lv, C F; Hong, M S

    2006-01-01

    A new error modelling and identification method based on the cross grid encoder is proposed in this paper. Generally, there are 21 error components in the geometric error of the 3 axis NC machine tools. However according our theoretical analysis, the squareness error among different guide ways affects not only the translation error component, but also the rotational ones. Therefore, a revised synthetic error model is developed. And the mapping relationship between the error component and radial motion error of round workpiece manufactured on the NC machine tools are deduced. This mapping relationship shows that the radial error of circular motion is the comprehensive function result of all the error components of link, worktable, sliding table and main spindle block. Aiming to overcome the solution singularity shortcoming of traditional error component identification method, a new multi-step identification method of error component by using the Cross Grid Encoder measurement technology is proposed based on the kinematic error model of NC machine tool. Firstly, the 12 translational error components of the NC machine tool are measured and identified by using the least square method (LSM) when the NC machine tools go linear motion in the three orthogonal planes: XOY plane, XOZ plane and YOZ plane. Secondly, the circular error tracks are measured when the NC machine tools go circular motion in the same above orthogonal planes by using the cross grid encoder Heidenhain KGM 182. Therefore 9 rotational errors can be identified by using LSM. Finally the experimental validation of the above modelling theory and identification method is carried out in the 3 axis CNC vertical machining centre Cincinnati 750 Arrow. The entire 21 error components have been successfully measured out by the above method. Research shows the multi-step modelling and identification method is very suitable for 'on machine measurement'

  2. RANCANG BANGUN CNC MILLING MACHINEHOME MADE UNTUK MEMBUAT PCB

    Directory of Open Access Journals (Sweden)

    Dityo Pradana

    2011-06-01

    Full Text Available Kendala yang dimiliki oleh seorang penggemar elektronik untuk membuat PCB diantaranya adalah efisiensi waktu, tenaga, dan biaya. Pembuatan CNC milling machine merupakan salah satu solusi yang tepat untuk membuat PCB. CNC milling machine adalah mesin bubut otomatis yang bekerja atas dasar perintah Numerical Code. Rancang bangun CNC Milling Machine Home Made ini dikontrol oleh komputer yang akan mengontrol IC L297 melalui parallel port. IC L297 ini kemudian memberikan empat data digital a, b, c dan d untuk mengatur phase IC L298 yang menyalurkan tegangan untuk koil motor stepper unipolar. Pada akhirnya motor stepper unipolar akan memutar baut dan dapat menggerakkan meja sumbu menggunakan prinsip kerja ulir.

  3. Study on Surface Integrity of AISI 1045 Carbon Steel when machined by Carbide Cutting Tool under wet conditions

    Directory of Open Access Journals (Sweden)

    Tamin N. Fauzi

    2017-01-01

    Full Text Available This paper presents the evaluation of surface roughness and roughness profiles when machining carbon steel under wet conditions with low and high cutting speeds. The workpiece materials and cutting tools selected in this research were AISI 1045 carbon steel and canela carbide inserts graded PM25, respectively. The cutting tools undergo machining tests by CNC turning operations and their performances were evaluated by their surface roughness value and observation of the surface roughness profile. The machining tests were held at varied cutting speeds of 35 to 53 m/min, feed rate of 0.15 to 0.50 mm/rev and a constant depth of cut of 1 mm. From the analysis, it was found that surface roughness increased as the feed rate increased. Varian of surface roughness was suspected due to interaction between cutting speeds and feed rates as well as nose radius conditions; whether from tool wear or the formation of a built-up edge. This study helps us understand the effect of cutting speed and feed rate on surface integrity, when machining AISI 1045 carbon steel using carbide cutting tools, under wet cutting conditions.

  4. Fuzzy Linguistic Optimization on Surface Roughness for CNC Turning

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2010-01-01

    Full Text Available Surface roughness is often considered the main purpose in contemporary computer numerical controlled (CNC machining industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme is deemed to be necessary for the industry. In this paper, the cutting depth, feed rate, speed, and tool nose runoff with low, medium, and high level are considered to optimize the surface roughness for finish turning based on L9(34 orthogonal array. Additionally, nine fuzzy control rules using triangle membership function with respective to five linguistic grades for surface roughness are constructed. Considering four input and twenty output intervals, the defuzzification using center of gravity is then completed. Thus, the optimum general fuzzy linguistic parameters can then be received. The confirmation experiment result showed that the surface roughness from the fuzzy linguistic optimization parameters is significantly advanced compared to that from the benchmark. This paper certainly proposes a general optimization scheme using orthogonal array fuzzy linguistic approach to the surface roughness for CNC turning with profound insight.

  5. Design of a Three-Axis Machine Tool Module

    National Research Council Canada - National Science Library

    Childers, Marshal

    2003-01-01

    This report documents the design improvement process of the components in a tool module for a three-axis machine tool, which occurred during the period of March-April 2002 in support of a critical U.S...

  6. Stochastic Distribution of Wear of Carbide Tools during Machining ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... The stochastic point model was used to determine the rate of wear distribution of the carbide tool ... Keywords: cutting speed, feed rate, machining time, tool life, reliability, wear.

  7. Design principles of metal-cutting machine tools

    CERN Document Server

    Koenigsberger, F

    1964-01-01

    Design Principles of Metal-Cutting Machine Tools discusses the fundamentals aspects of machine tool design. The book covers the design consideration of metal-cutting machine, such as static and dynamic stiffness, operational speeds, gearboxes, manual, and automatic control. The text first details the data calculation and the general requirements of the machine tool. Next, the book discusses the design principles, which include stiffness and rigidity of the separate constructional elements and their combined behavior under load, as well as electrical, mechanical, and hydraulic drives for the op

  8. Market for multiaxis laser machine tools

    Science.gov (United States)

    Ream, Stanley L.

    1991-03-01

    While it's true that this is an exciting topic, it niay be more exciting than profitable, but it certainly has captured the attention of a lot of us laser folks, and it keeps growing almost because it wants to. First of all let me comment briefly with a word from our sponsor that GE Fanuc is one of the several ways the Fanuc laser product gets into the United States. We market it, GM Fanuc also markets it, and of course it shows up on Japanese machine tool built products. The information in this little presentation came from discussions with you folks wherever possible. In some cases I was unable to make contact with the horse's mouth as it were, but we got roundabout information so it's not gospel, but it's close. We've also had some updated information at the show here updated rumors maybe that suggest that some of the numbers may be high or low. I think in the aggregate it's not too far off.

  9. CNC Programming I.

    Science.gov (United States)

    Casey, Joe

    This document contains five units for a course in computer numerical control (CNC) for computer-aided manufacturing. It is intended to familiarize students with the principles and techniques necessary to create proper CNC programs manually. Each unit consists of an introduction, instructional objectives, learning materials, learning activities,…

  10. An expert machine tools selection system for turning operation

    NARCIS (Netherlands)

    Tan, C.F.; Khalil, S.N.; Karjanto, J.; Wahidin, L.S.; Chen, W.; Rauterberg, G.W.M.

    2015-01-01

    The turning machining process is an important process in the manufacturing industry. It is important to select the right tool for the turning process so that the manufacturing cost will be decreased. The main objective of this research is to select the most suitable machine tools with respect to

  11. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    International Nuclear Information System (INIS)

    Clough, D; Fletcher, S; Longstaff, A P; Willoughby, P

    2012-01-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  12. Onderzoeksresultaten introductie CNC bij een zestal bedrijven

    NARCIS (Netherlands)

    Mal, van H.H.; Ottink, M.S.; Peters, R.B.

    1987-01-01

    In het kader van een afstudeerproject van de faculteit bedrijfskunde aan de Technische Universiteit Eindhoven is er een onderzoek gedaan naar het gebruik en de gevolgen van het gebruikvan CNC-bewerkings machines in industriële organisaties [1]. Het onderzoek werd uitgevoerd in een zestal bedrijven,

  13. Carney complex (CNC

    Directory of Open Access Journals (Sweden)

    Bertherat Jérôme

    2006-06-01

    Full Text Available Abstract The Carney complex (CNC is a dominantly inherited syndrome characterized by spotty skin pigmentation, endocrine overactivity and myxomas. Skin pigmentation anomalies include lentigines and blue naevi. The most common endocrine gland manifestations are acromegaly, thyroid and testicular tumors, and adrenocorticotropic hormone (ACTH-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD. PPNAD, a rare cause of Cushing's syndrome, is due to primary bilateral adrenal defect that can be also observed in some patients without other CNC manifestations or familial history of the disease. Myxomas can be observed in the heart, skin and breast. Cardiac myxomas can develop in any cardiac chamber and may be multiple. One of the putative CNC genes located on 17q22-24, (PRKAR1A, has been identified to encode the regulatory subunit (R1A of protein kinase A. Heterozygous inactivating mutations of PRKAR1A were reported initially in 45 to 65 % of CNC index cases, and may be present in about 80 % of the CNC families presenting mainly with Cushing's syndrome. PRKAR1A is a key component of the cAMP signaling pathway that has been implicated in endocrine tumorigenesis and could, at least partly, function as a tumor suppressor gene. Genetic analysis should be proposed to all CNC index cases. Patients with CNC or with a genetic predisposition to CNC should have regular screening for manifestations of the disease. Clinical work-up for all the manifestations of CNC should be performed at least once a year in all patients and should start in infancy. Cardiac myxomas require surgical removal. Treatment of the other manifestations of CNC should be discussed and may include follow-up, surgery, or medical treatment depending on the location of the tumor, its size, the existence of clinical signs of tumor mass or hormonal excess, and the suspicion of malignancy. Bilateral adrenalectomy is the most common treatment for Cushing

  14. Carney complex (CNC).

    Science.gov (United States)

    Bertherat, Jérôme

    2006-06-06

    The Carney complex (CNC) is a dominantly inherited syndrome characterized by spotty skin pigmentation, endocrine overactivity and myxomas. Skin pigmentation anomalies include lentigines and blue naevi. The most common endocrine gland manifestations are acromegaly, thyroid and testicular tumors, and adrenocorticotropic hormone (ACTH)-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). PPNAD, a rare cause of Cushing's syndrome, is due to primary bilateral adrenal defect that can be also observed in some patients without other CNC manifestations or familial history of the disease. Myxomas can be observed in the heart, skin and breast. Cardiac myxomas can develop in any cardiac chamber and may be multiple. One of the putative CNC genes located on 17q22-24, (PRKAR1A), has been identified to encode the regulatory subunit (R1A) of protein kinase A. Heterozygous inactivating mutations of PRKAR1A were reported initially in 45 to 65% of CNC index cases, and may be present in about 80% of the CNC families presenting mainly with Cushing's syndrome. PRKAR1A is a key component of the cAMP signaling pathway that has been implicated in endocrine tumorigenesis and could, at least partly, function as a tumor suppressor gene. Genetic analysis should be proposed to all CNC index cases. Patients with CNC or with a genetic predisposition to CNC should have regular screening for manifestations of the disease. Clinical work-up for all the manifestations of CNC should be performed at least once a year in all patients and should start in infancy. Cardiac myxomas require surgical removal. Treatment of the other manifestations of CNC should be discussed and may include follow-up, surgery, or medical treatment depending on the location of the tumor, its size, the existence of clinical signs of tumor mass or hormonal excess, and the suspicion of malignancy. Bilateral adrenalectomy is the most common treatment for Cushing's syndrome due to PPNAD.

  15. Research on the tool holder mode in high speed machining

    Science.gov (United States)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  16. Study of on-machine error identification and compensation methods for micro machine tools

    International Nuclear Information System (INIS)

    Wang, Shih-Ming; Yu, Han-Jen; Lee, Chun-Yi; Chiu, Hung-Sheng

    2016-01-01

    Micro machining plays an important role in the manufacturing of miniature products which are made of various materials with complex 3D shapes and tight machining tolerance. To further improve the accuracy of a micro machining process without increasing the manufacturing cost of a micro machine tool, an effective machining error measurement method and a software-based compensation method are essential. To avoid introducing additional errors caused by the re-installment of the workpiece, the measurement and compensation method should be on-machine conducted. In addition, because the contour of a miniature workpiece machined with a micro machining process is very tiny, the measurement method should be non-contact. By integrating the image re-constructive method, camera pixel correction, coordinate transformation, the error identification algorithm, and trajectory auto-correction method, a vision-based error measurement and compensation method that can on-machine inspect the micro machining errors and automatically generate an error-corrected numerical control (NC) program for error compensation was developed in this study. With the use of the Canny edge detection algorithm and camera pixel calibration, the edges of the contour of a machined workpiece were identified and used to re-construct the actual contour of the work piece. The actual contour was then mapped to the theoretical contour to identify the actual cutting points and compute the machining errors. With the use of a moving matching window and calculation of the similarity between the actual and theoretical contour, the errors between the actual cutting points and theoretical cutting points were calculated and used to correct the NC program. With the use of the error-corrected NC program, the accuracy of a micro machining process can be effectively improved. To prove the feasibility and effectiveness of the proposed methods, micro-milling experiments on a micro machine tool were conducted, and the results

  17. Data Mining Practical Machine Learning Tools and Techniques

    CERN Document Server

    Witten, Ian H; Hall, Mark A

    2011-01-01

    Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place

  18. Implementing Machine Learning in the PCWG Tool

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    2016-12-13

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  19. Traceability of On-Machine Tool Measurement: A Review

    Science.gov (United States)

    Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor

    2017-01-01

    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand. PMID:28696358

  20. New active machine tool drive mounting on the frame

    Directory of Open Access Journals (Sweden)

    Švéda J.

    2007-10-01

    Full Text Available The paper deals with the new active mounting of the machine tool drives. The commonly used machine tools are at this time mainly equipped with fix-mounting of the feed drives. This structure causes full transmission of the force shocks to the machine bed and thereby restricts the dynamic properties of the motion axis and the whole machine. The spring-mounting of the feed drives is one of the possibilities how to partially suppress the vibrations. The force that reacts to the machine tool bed is transformed thereby the vibrations are lightly reduced. Unfortunately the transformation is not fully controlled. The new active mounting of the machine tool drives allows to fully control the force behaviour that react to the machine body. Thereby the number of excited frequencies on the machine tool bed is significantly reduced. The active variant of the feed drive mounting is characterized by the synergistic cooperation between two series-connected actuators (“motor on motor”. The paper briefly describes design, control techniques and optimization of the feed drives with the new active mounting conception.

  1. Traceability of On-Machine Tool Measurement: A Review.

    Science.gov (United States)

    Mutilba, Unai; Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor; Yagüe-Fabra, Jose A

    2017-07-11

    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand.

  2. A Method for Design of Modular Reconfigurable Machine Tools

    Directory of Open Access Journals (Sweden)

    Zhengyi Xu

    2017-02-01

    Full Text Available Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs. An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method consists of three steps: module identification, module determination, and layout synthesis. In the first step, the module components are collected from a family of general-purpose machines to establish a module library. In the second step, for a given family of parts to be machined, a set of needed modules are selected from the module library to construct a desired reconfigurable machine tool. In the third step, a final machine layout is decided though evaluation by considering a number of performance indices. Based on this method, a software package has been developed that can design an MRMT for a given part family.

  3. CAD/CAM/CNC.

    Science.gov (United States)

    Domermuth, Dave; And Others

    1996-01-01

    Includes "Quick Start CNC (computer numerical control) with a Vacuum Filter and Laminated Plastic" (Domermuth); "School and Industry Cooperate for Mutual Benefit" (Buckler); and "CAD (computer-assisted drafting) Careers--What Professionals Have to Say" (Skinner). (JOW)

  4. Simulation Tools for Electrical Machines Modelling: Teaching and ...

    African Journals Online (AJOL)

    Simulation tools are used both for research and teaching to allow a good comprehension of the systems under study before practical implementations. This paper illustrates the way MATLAB is used to model non-linearites in synchronous machine. The machine is modeled in rotor reference frame with currents as state ...

  5. Cyclic machine scheduling with tool transportation - additional calculations

    NARCIS (Netherlands)

    Kuijpers, C.M.H.

    2001-01-01

    In the PhD Thesis of Kuijpers a cyclic machine scheduling problem with tool transportation is considered. For the problem with two machines, it is shown that there always exists an optimal schedule with a certain structure. This is done by means of an elaborate case study. For a number of cases some

  6. Job Grading Standard for Machine Tool Operator, WG-3431.

    Science.gov (United States)

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard covers nonsupervisory work involved in the set up, adjustment, and operation of conventional machine tools to perform machining operations in the manufacture and repair of castings, forgings, or parts from raw stock made of various metals, metal alloys, and other materials. A general description of the job at both the WG-8 and WG-9…

  7. stepping motor - hydraulic motor servo drives for an nc milling machine

    African Journals Online (AJOL)

    Dr Obe

    stepping motor Drive Assembly especially Designed for CNC systems". 13th Machine Tool Design and. Research. (MTDR) conference,. University of Birmingham, 1972. 2 Ertongur, N.A. "Investigation into the instability in an electro hydraulic control system for machine tools" Ph.D. Thesis, University of. Birmingham, UK. 1966 ...

  8. Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool

    Science.gov (United States)

    Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.

    2018-02-01

    In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.

  9. Design of a novel parallel reconfigurable machine tool

    CSIR Research Space (South Africa)

    Modungwa, D

    2008-06-01

    Full Text Available of meeting the demands for high mechanical dexterity adaptation as well as high stiffness necessary for mould and die re-conditioning. This paper presents, the design of parallel reconfigurable machine tool (PRMT) based on both application...

  10. Pemanfaatan TKKS Sebagai Pengisi Komposit Epoxy Untuk Struktur Bergerak Mesin CNC Perkayuan

    Directory of Open Access Journals (Sweden)

    Farkhan

    2017-04-01

    Full Text Available Abstract CNC machinery is widely used at various kind of industrial sector to manufacture of art products up to satellite products. Instead of its massive utilization in automotive and electronic industry which mostly use metallic component, wood working industry has been using it to produces furniture’s, merchandises, and other house ware products which apply light weight non-metallic low density material. High removal rate in wood machining process needs high speed application due to its low density material; however most of wood working CNC machine is built on heavy steel structure for both its supporting structure and moving structure. In fact, the raw material is much lighter than the carrier itself. Its wasteful dynamic movement causes energy loses and vibrations that effect on machining accuracy, live of cutting tool, and productivity. This research applied new light weight composite material base on renewable resource of oil palm empty fruit bunch (EFB natural fiber as filler material combine with polymer epoxy as it’s matrix to be constructed as moving mechanical structure of high speed 3D CNC woodworking machine to improve its dynamic performance. Comparative analysis showed that it has better dynamic performance on high speed machining process compared with traditional cast iron material. Abstrak Mesin Perkakas CNC (Computerized Numerical Control digunakan luas oleh industri untuk memproduksi mulai dari benda-benda seni kerajinan hingga untuk membuat satelit. Selain pemanfaatannya secara besar-besaran di industri otomotif dan elektronika yang umumnya menggunakan komponen logam, industri perkayuan telah banyak menggunakannya untuk memproduksi mebel, barang kerajinan, dan peralatan rumah tangga lainnya dengan mengaplikasikan bahan bukan logam seperti kayu yang berberat jenis rendah dan ringan. Tingkat pemotongan yang tinggi pada proses permesinan kayu membutuhkan permesinan cepat akibat berat jenis bahannya yang rendah tersebut

  11. Practical implementation of machine tool metrology and maintenance management systems

    International Nuclear Information System (INIS)

    Perkins, C; Longstaff, A P; Fletcher, S; Willoughby, P

    2012-01-01

    Maximising asset utilisation and minimising downtime and waste are becoming increasingly important to all manufacturing facilities as competition increases and profits decrease. The tools to assist with monitoring these machining processes are becoming more and more in demand. A system designed to fulfil the needs of machine tool operators and supervisors has been developed and its impact on the precision manufacturing industry is being considered. The benefits of implementing this system, compared to traditional methods, will be discussed here.

  12. Tool path strategy and cutting process monitoring in intelligent machining

    Science.gov (United States)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  13. PECULIARITIES OF THE TECHNOLOGY OF CONTINUOUS CASTING OF SLUGS OF MACHINE- AND MACHINE-TOOL-BUILDING

    OpenAIRE

    E. B. Demchenko; E. I. Marukovich

    2006-01-01

    The peculiarities of technology of continuous casting of ingots of machine- and machine tool building are shown. At development of technology it is necessary to subject the nomenclature of ingots to analysis in order to reveal expediency of their production by means of continuous casting.

  14. Design of General SCP Servo Controller for Track Model CNC Cutting Machine Based on IPC Bus%基于工控机总线的单片机通用数控伺服控制器设计

    Institute of Scientific and Technical Information of China (English)

    周永鹏; 何顶新; 万淑芸

    2001-01-01

    为解决工控机结构的轨道式切割机数控系统与交流伺服和步进电机驱动系统的联结与精插补控制问题,提出一种基于IPC的80C196KC单片机控制系统,使系统的可靠性得到有效保证。%A control system based on 80C196KC single chip computer of IPC is proposed,the reliability of the system can be guaranteed validly.It can be used for solving couple problem between the track model CNC cutting machine based on a IPC and AC servo or stepping driving as well as elaborate interpolation control problem.

  15. Comportamiento del acabado superficial de la pieza y el desgaste de la herramienta al fresar aluminio con altas velocidades de corte en fresadoras cnc convencionales. // Superficial finish behavior and tool wear in aluminium milling with high cutting spee

    Directory of Open Access Journals (Sweden)

    F. Martínez Aneiro

    2006-05-01

    mechanical components of high quality and great accuracy for systems of high performance isincreasing considerably in the last years at world level. This fact has caused the development of new appliedtechnologies in cutting processes.The development of machine tools (control, high-speed spindle, the cutting tools (new materials, substrata and layers andthe technology of machining, facilitated the application of cut with high cutting speed (High speed Cutting HSC. Theincrease of cutting speeds increases the efficiency of the productive processes through the reduction of the manufacturingtimes. The reduction in several times of the manufacturing process, is not achieved alone for the time of machining but alsofor the substitution of other elaboration processes that are part of the productive chain that are relatively slow in occasionsas the electroerosion (spark erosion, the manual finishing in molds and dies production as well as the changes of spareoperations. Being a relatively new process introduced starting from the decade of the 90’s; many technological questionsare still without answer. This paper presents the benefit of the high cutting speeds HSC on the tool useful life and thesuperficial finishing in spares, working in conventional milling machines of CNC. The results stated, that within the studiedparameters, that the durability of the tool and the surface roughness improve and that the behavior of the machine is stablein spite of not being conceived for high speeds.Keywords: High speed cutting, HSC, HSM, Wear, surface roughness.

  16. Modelling Machine Tools using Structure Integrated Sensors for Fast Calibration

    Directory of Open Access Journals (Sweden)

    Benjamin Montavon

    2018-02-01

    Full Text Available Monitoring of the relative deviation between commanded and actual tool tip position, which limits the volumetric performance of the machine tool, enables the use of contemporary methods of compensation to reduce tolerance mismatch and the uncertainties of on-machine measurements. The development of a primarily optical sensor setup capable of being integrated into the machine structure without limiting its operating range is presented. The use of a frequency-modulating interferometer and photosensitive arrays in combination with a Gaussian laser beam allows for fast and automated online measurements of the axes’ motion errors and thermal conditions with comparable accuracy, lower cost, and smaller dimensions as compared to state-of-the-art optical measuring instruments for offline machine tool calibration. The development is tested through simulation of the sensor setup based on raytracing and Monte-Carlo techniques.

  17. Lathe tool bit and holder for machining fiberglass materials

    Science.gov (United States)

    Winn, L. E. (Inventor)

    1972-01-01

    A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.

  18. Concept of a Programmable Fixture for 3-Axis CNC

    Directory of Open Access Journals (Sweden)

    Ahmad Dalloul

    2017-09-01

    Full Text Available CNC machine is the one of the major reasons for industrial advancement in recent decades for its ability of producing accurate parts. The most commen CNC machines are of 3-axis and adopted widely in the industrial sector. However, for producing more complicated parts 5-axis CNC machines are required. Although the introduction of the 5-axis machine came after the 3-axis CNC machine has established itself and many manufacturers did not make the move toward the newer model and its high pricing compared to the 3-axis model did not help either. In this time the development of a fixture or a platform to help transfer the 3-axis to a 5-axis to some degree. This paper discusses the concept of a programmable fixture that gives 3-axis CNC machine the freedom to act in similar manner as the 5-axis. The paper describes the mechanism with some initial results of the testing. Result showed that the platform moves in translation manner with an average error of 5.58 % and 7.303% average error for rotation movement.

  19. SIMULATION TOOLS FOR ELECTRICAL MACHINES MODELLING ...

    African Journals Online (AJOL)

    Dr Obe

    ABSTRACT. Simulation tools are used both for research and teaching to allow a good ... The solution provide an easy way of determining the dynamic .... incorporate an in-built numerical algorithm, ... to learn, versatile in application, enhanced.

  20. Methods of In-Process On-Machine Auto-Inspection of Dimensional Error and Auto-Compensation of Tool Wear for Precision Turning

    Directory of Open Access Journals (Sweden)

    Shih-Ming Wang

    2016-04-01

    Full Text Available The purpose of this study is mainly to develop an information and communication technology (ICT-based intelligent dimension inspection and tool wear compensation method for precision tuning. With the use of vibration signal processing/characteristics analysis technology combined with ICT, statistical analysis, and diagnosis algorithms, the method can be used to proceed with an on-line dimension inspection and on-machine tool wear auto-compensation for the turning process. Meanwhile, the method can also monitor critical tool life to identify the appropriate time for cutter replacement to reduce machining costs and improve the production efficiency of the turning process. Compared to the traditional ways, the method offers the advantages of requiring less manpower, and having better production efficiency, high tool life, fewer scrap parts, and low costs for inspection instruments. Algorithms and diagnosis threshold values for the detection, cutter wear compensation, and cutter life monitoring were developed. In addition, a bilateral communication module utilizing FANUC Open CNC (computer numerical control Application Programming Interface (API Spec was developed for the on-line extraction of instant NC (numerical control codes for monitoring and transmit commands to CNC controllers for cutter wear compensation. With use of local area networks (LAN to deliver the detection and correction information, the proposed method was able to remotely control the on-machine monitoring process and upload the machining and inspection data to a remote central platform for further production optimization. The verification experiments were conducted on a turning production line. The results showed that the system provided 93% correction for size inspection and 100% correction for cutter wear compensation.

  1. Process Damping and Cutting Tool Geometry in Machining

    Science.gov (United States)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  2. Process Damping and Cutting Tool Geometry in Machining

    International Nuclear Information System (INIS)

    Taylor, C M; Sims, N D; Turner, S

    2011-01-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  3. Stagnant zone formation on diamond cutting tools during machining

    International Nuclear Information System (INIS)

    Izman, S.; Tamin, M.N.; Mon, T.T.; Venkatesh, V.C.; Shaharoun, A.M.

    2007-01-01

    Formation of an intact region on the rake face of cutting tool during machining is quite common phenomenon but its significance in maintaining tool edge sharpness has not been recognized by many researchers. This region is sometimes called stagnant zone. It is believed that when an intact zone present on the rake face, it delays the crater wear progress and hence maintaining the tool edge sharpness longer. This paper investigates the effect of edge radius, surface roughness of the rake face and cutting parameters on the formation of stagnant zone on two different type of diamond tools i.e. polycrystalline diamond PCD-KD100 and diamond-coated inserts when machining titanium alloy. The used inserta and post-processed chips were examined under FESEM and optical microscope after cutting at three different conditions. Experimental results show that the speed and feel, the tool edge radius, and the tool rake surface roughness significantly affect the stagnant zone formation. (author)

  4. High Accuracy Nonlinear Control and Estimation for Machine Tool Systems

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios

    Component mass production has been the backbone of industry since the second industrial revolution, and machine tools are producing parts of widely varying size and design complexity. The ever-increasing level of automation in modern manufacturing processes necessitates the use of more...... sophisticated machine tool systems that are adaptable to different workspace conditions, while at the same time being able to maintain very narrow workpiece tolerances. The main topic of this thesis is to suggest control methods that can maintain required manufacturing tolerances, despite moderate wear and tear....... The purpose is to ensure that full accuracy is maintained between service intervals and to advice when overhaul is needed. The thesis argues that quality of manufactured components is directly related to the positioning accuracy of the machine tool axes, and it shows which low level control architectures...

  5. Technique for Increasing Accuracy of Positioning System of Machine Tools

    Directory of Open Access Journals (Sweden)

    Sh. Ji

    2014-01-01

    Full Text Available The aim of research is to improve the accuracy of positioning and processing system using a technique for optimization of pressure diagrams of guides in machine tools. The machining quality is directly related to its accuracy, which characterizes an impact degree of various errors of machines. The accuracy of the positioning system is one of the most significant machining characteristics, which allow accuracy evaluation of processed parts.The literature describes that the working area of the machine layout is rather informative to characterize the effect of the positioning system on the macro-geometry of the part surfaces to be processed. To enhance the static accuracy of the studied machine, in principle, two groups of measures are possible. One of them points toward a decrease of the cutting force component, which overturns the slider moments. Another group of measures is related to the changing sizes of the guide facets, which may lead to their profile change.The study was based on mathematical modeling and optimization of the cutting zone coordinates. And we find the formula to determine the surface pressure of the guides. The selected parameters of optimization are vectors of the cutting force and values of slides and guides. Obtained results show that a technique for optimization of coordinates in the cutting zone was necessary to increase a processing accuracy.The research has established that to define the optimal coordinates of the cutting zone we have to change the sizes of slides, value and coordinates of applied forces, reaching the pressure equalization and improving the accuracy of positioning system of machine tools. In different points of the workspace a vector of forces is applied, pressure diagrams are found, which take into account the changes in the parameters of positioning system, and the pressure diagram equalization to provide the most accuracy of machine tools is achieved.

  6. A defect-driven diagnostic method for machine tool spindles.

    Science.gov (United States)

    Vogl, Gregory W; Donmez, M Alkan

    2015-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition.

  7. Design and implementation of five-axis transformation function in CNC system

    Directory of Open Access Journals (Sweden)

    Wang Feng

    2014-04-01

    Full Text Available To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC system is divided into the task layer and the motion layer. A five-axis transformation unit is integrated into the motion layer. After classifying five-axis machines into different types and analyzing their geometry information, the five-axis kinematic library is designed according to the abstract factory pattern. Furthermore, by taking CA spindle-tilting machine as an example, the forward and the inverse kinematic transformations are deduced. Based on the new software architecture and the five-axis kinematic library, algorithms of RTCP (rotation tool center point control and 3D radius compensation for end-milling are designed and realized. The milling results show that, with five-axis functions based on such software structure, the instructions with respect to the cutter’s position and orientation can be directly carried out in the CNC system.

  8. High speed dry machining of MMCs with diamond tools

    International Nuclear Information System (INIS)

    Collins, J.L.

    2001-01-01

    The increasing use of metal matrix composites (MMCs) has raised new issues in their machining. Industrial demands for higher speed and dry machining of MMCs with improved component production to closer tolerances have driven the development of new tool materials. In particular, the wear characteristics of synthetic diamond tooling satisfy many of the requirements imposed in cutting these highly abrasive workpieces. The use of diamond tool materials, such as polycrystalline diamond (PCD), has resulted in tool life improvements which, allied with environmental considerations, show great potential for the development of dry cutting. This paper explores the wear characteristics of PCD, which is highly suited to the dry machining of particulate silicon carbide MMCs. Also, two further diamond tool materials are evaluated - chemical vapor deposition (CVD) thick layer diamond and synthetic single crystal diamond. Their suitability for the efficient machining of high volume fraction MMC materials is shown and their potential impact an the subsequent acceptance and integration of MMCs into engineering components is discussed. (author)

  9. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    Science.gov (United States)

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  10. The Total Energy Efficiency Index for machine tools

    International Nuclear Information System (INIS)

    Schudeleit, Timo; Züst, Simon; Weiss, Lukas; Wegener, Konrad

    2016-01-01

    Energy efficiency in industries is one of the dominating challenges of the 21st century. Since the release of the eco-design directive 2005/32/EC in 2005, great research effort has been spent on the energy efficiency assessment for energy using products. The ISO (International Organization for Standardization) standardization body (ISO/TC 39 WG 12) currently works on the ISO 14955 series in order to enable the assessment of energy efficient design of machine tools. A missing piece for completion of the ISO 14955 series is a metric to quantify the design of machine tools regarding energy efficiency based on the respective assembly of components. The metric needs to take into account each machine tool components' efficiency and the need-oriented utilization in combination with the other components while referring to efficiency limits. However, a state of the art review reveals that none of the existing metrics is feasible to adequately match this goal. This paper presents a metric that matches all these criteria to promote the development of the ISO 14955 series. The applicability of the metric is proven in a practical case study on a turning machine. - Highlights: • Study for pushing forward the standardization work on the ISO 14955 series. • Review of existing energy efficiency indicators regarding three basic strategies to foster sustainability. • Development of a metric comprising the three basic strategies to foster sustainability. • Metric application for quantifying the energy efficiency of a turning machine.

  11. Effect of the Cutting Tool Geometry on the Tool Wear Resistance When Machining Inconel 625

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2017-12-01

    Full Text Available The paper deals with the design of a suitable cutting geometry of a tool for the machining of the Inconel 625 nickel alloy. This alloy is among the hard-to-machine refractory alloys that cause very rapid wear on cutting tools. Therefore, SNMG and RCMT indexable cutting insert were used to machine the alloy. The selected insert geometry should prevent notch wear and extend tool life. The alloy was machined under predetermined cutting conditions. The angle of the main edge and thus the size and nature of the wear changed with the depth of the material layer being cut. The criterion for determining a more suitable cutting geometry was the tool’s durability and the roughness of the machined surface.

  12. Effect of the Cutting Tool Geometry on the Tool Wear Resistance when Machining Inconel 625

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2018-03-01

    Full Text Available The paper deals with the design of a suitable cutting geometry of a tool for the machining of the Inconel 625 nickel alloy. This alloy is among the hard-to-machine refractory alloys that cause very rapid wear on cutting tools. Therefore, SNMG and RCMT indexable cutting insert were used to machine the alloy. The selected insert geometry should prevent notch wear and extend tool life. The alloy was machined under predetermined cutting conditions. The angle of the main edge and thus the size and nature of the wear changed with the depth of the material layer being cut. The criterion for determining a more suitable cutting geometry was the tool’s durability and the roughness of the machined surface.

  13. Performance Monitoring Of A Computer Numerically Controlled (CNC) Lathe Using Pattern Recognition Techniques

    Science.gov (United States)

    Daneshmend, L. K.; Pak, H. A.

    1984-02-01

    On-line monitoring of the cutting process in CNC lathe is desirable to ensure unattended fault-free operation in an automated environment. The state of the cutting tool is one of the most important parameters which characterises the cutting process. Direct monitoring of the cutting tool or workpiece is not feasible during machining. However several variables related to the state of the tool can be measured on-line. A novel monitoring technique is presented which uses cutting torque as the variable for on-line monitoring. A classifier is designed on the basis of the empirical relationship between cutting torque and flank wear. The empirical model required by the on-line classifier is established during an automated training cycle using machine vision for off-line direct inspection of the tool.

  14. Surface roughness and cutting force estimation in the CNC turning using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2015-04-01

    Full Text Available Surface roughness and cutting forces are considered as important factors to determine machinability rate and the quality of product. A number of factors like cutting speed, feed rate, depth of cutting and tool noise radius influence the surface roughness and cutting forces in turning process. In this paper, an Artificial Neural Network (ANN model was used to forecast surface roughness and cutting forces with related inputs, including cutting speed, feed rate, depth of cut and tool noise radius. The machined surface roughness and cutting force parameters related to input parameters are the outputs of the ANN model. In this work, 24 samples of experimental data were used to train the network. Moreover, eight other experimental tests were implemented to test the network. The study concludes that ANN was a reliable and accurate method for predicting machining parameters in CNC turning operation.

  15. Tool set for distributed real-time machine control

    Science.gov (United States)

    Carrott, Andrew J.; Wright, Christopher D.; West, Andrew A.; Harrison, Robert; Weston, Richard H.

    1997-01-01

    Demands for increased control capabilities require next generation manufacturing machines to comprise intelligent building elements, physically located at the point where the control functionality is required. Networks of modular intelligent controllers are increasingly designed into manufacturing machines and usable standards are slowly emerging. To implement a control system using off-the-shelf intelligent devices from multi-vendor sources requires a number of well defined activities, including (a) the specification and selection of interoperable control system components, (b) device independent application programming and (c) device configuration, management, monitoring and control. This paper briefly discusses the support for the above machine lifecycle activities through the development of an integrated computing environment populated with an extendable software toolset. The toolset supports machine builder activities such as initial control logic specification, logic analysis, machine modeling, mechanical verification, application programming, automatic code generation, simulation/test, version control, distributed run-time support and documentation. The environment itself consists of system management tools and a distributed object-oriented database which provides storage for the outputs from machine lifecycle activities and specific target control solutions.

  16. PENGEMBANGAN MESIN CNC VIRTUAL SEBAGAI MEDIA INTERAKTIF DALAM PEMBELAJARAN PEMROGRAMAN CNC

    OpenAIRE

    Bambang Setyo Hari Purwoko

    2013-01-01

    Penelitian ini bertujuan: (1) menghasilkan prototype tampilan lingkungan fisik sebuah mesin bubut CNC (Virtual Reality CNC) pada layar komputer yang dapat menerima masukan dan dioperasikan sebagaimana suatu mesin CNC dan (2) menguji keefektifan prototype mesin CNC Virtual tersebut sebagai media interaktif pembelajaran pemrograman CNC. Penelitian ini merupakan penelitian pengembangan. Obyek penelitian adalah rekayasa pemrograman dengan bahasa Visual Basic 6 guna menghasilkan mesin CNC Virtual....

  17. Development of Machinable Ellipses by NURBS Curves

    OpenAIRE

    Yuan L. Lai; Jian H. Chen; Jui P. Hung

    2008-01-01

    Owning to the high-speed feed rate and ultra spindle speed have been used in modern machine tools, the tool-path generation plays a key role in the successful application of a High-Speed Machining (HSM) system. Because of its importance in both high-speed machining and tool-path generation, approximating a contour by NURBS format is a potential function in CAD/CAM/CNC systems. It is much more convenient to represent an ellipse by parametric form than to connect points lab...

  18. Visualization tool for human-machine interface designers

    Science.gov (United States)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  19. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    Science.gov (United States)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  20. Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep hybrid composite

    Directory of Open Access Journals (Sweden)

    J.S. Pang

    2014-08-01

    Full Text Available This paper introduces the application of Taguchi optimization methodology in optimizing the cutting parameters of end-milling process for machining the halloysite nanotubes (HNTs with aluminium reinforced epoxy hybrid composite material under dry condition. The machining parameters which are chosen to be evaluated in this study are the depth of cut (d, cutting speed (S and feed rate (f. While, the response factors to be measured are the surface roughness of the machined composite surface and the cutting force. An orthogonal array of the Taguchi method was set-up and used to analyse the effect of the milling parameters on the surface roughness and cutting force. The result from this study shows that the application of the Taguchi method can determine the best combination of machining parameters that can provide the optimal machining response conditions which are the lowest surface roughness and lowest cutting force value. For the best surface finish, A1–B3–C3 (d = 0.4 mm, S = 1500 rpm, f = 60 mmpm is found to be the optimized combination of levels for all the three control factors from the analysis. Meanwhile, the optimized combination of levels for all the three control factors from the analysis which provides the lowest cutting force was found to be A2–B2–C2 (d = 0.6 mm, S = 1000 rpm, f = 40 mmpm.

  1. Parametric optimization of CNC end milling using entropy ...

    African Journals Online (AJOL)

    user

    Bayoumi,. Kopac and Krajnik (2007) had presented the robust design of flank milling parameters dealing with the ... to manufacture low cost, high quality products in short time. ... CNC machines are considered most suitable in flexible manufacturing system. ... important factor that greatly influences production rate and cost.

  2. CNC Turning Technician. A Competency-Based Instructional System.

    Science.gov (United States)

    Sloan, Kelly; Hilley, Robert

    This competency-based curriculum guide for instructing students in using computer numerically controlled (CNC) turning machines is one of a series of instructional guides for the machinist field developed in Oklahoma. Although developed jointly with Baxter Technologies Corporation and oriented toward the Baxter Vo-Tec 2000 Future Builder CNC…

  3. Creating Helical Tool Paths for Single Point Incremental Forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Hancock, Michael H.; Bay, Niels

    2007-01-01

    Single point incremental forming (SPIF) is a relatively new sheet forming process. A sheet is clamped in a rig and formed incrementally using a rotating single point tool in the form of a rod with a spherical end. The process is often performed on a CNC milling machine and the tool movement...

  4. Method and apparatus for characterizing and enhancing the functional performance of machine tools

    Science.gov (United States)

    Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

    2013-04-30

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

  5. Support Vector Machines as tools for mortality graduation

    Directory of Open Access Journals (Sweden)

    Alberto Olivares

    2011-01-01

    Full Text Available A topic of interest in demographic and biostatistical analysis as well as in actuarial practice,is the graduation of the age-specific mortality pattern. A classical graduation technique is to fit parametric models. Recently, particular emphasis has been given to graduation using nonparametric techniques. Support Vector Machines (SVM is an innovative methodology that could be utilized for mortality graduation purposes. This paper evaluates SVM techniques as tools for graduating mortality rates. We apply SVM to empirical death rates from a variety of populations and time periods. For comparison, we also apply standard graduation techniques to the same data.

  6. Laser beam machining of polycrystalline diamond for cutting tool manufacturing

    Science.gov (United States)

    Wyszyński, Dominik; Ostrowski, Robert; Zwolak, Marek; Bryk, Witold

    2017-10-01

    The paper concerns application of DPSS Nd: YAG 532nm pulse laser source for machining of polycrystalline WC based diamond inserts (PCD). The goal of the research was to determine optimal laser cutting parameters for cutting tool shaping. Basic criteria to reach the goal was cutting edge quality (minimalization of finishing operations), material removal rate (time and cost efficiency), choice of laser beam characteristics (polarization, power, focused beam diameter). The research was planned and realised and analysed according to design of experiment rules (DOE). The analysis of the cutting edge was prepared with use of Alicona Infinite Focus measurement system.

  7. Analysis on machine tool systems using spindle vibration monitoring for automatic tool changer

    OpenAIRE

    Shang-Liang Chen; Yin-Ting Cheng; Chin-Fa Su

    2015-01-01

    Recently, the intelligent systems of technology have become one of the major items in the development of machine tools. One crucial technology is the machinery status monitoring function, which is required for abnormal warnings and the improvement of cutting efficiency. During processing, the mobility act of the spindle unit determines the most frequent and important part such as automatic tool changer. The vibration detection system includes the development of hardware and software, such as ...

  8. Human Functions, Machine Tools, and the Role of the Analyst

    Directory of Open Access Journals (Sweden)

    Gordon R. Middleton

    2015-09-01

    Full Text Available In an era of rapidly increasing technical capability, the intelligence focus is often on the modes of collection and tools of analysis rather than the analyst themselves. Data are proliferating and so are tools to help analysts deal with the flood of data and the increasingly demanding timeline for intelligence production, but the role of the analyst in such a data-driven environment needs to be understood in order to support key management decisions (e.g., training and investment priorities. This paper describes a model of the analytic process, and analyzes the roles played by humans and machine tools in each process element. It concludes that human analytic functions are as critical in the intelligence process as they have ever been, and perhaps even more so due to the advance of technology in the intelligence business. Human functions performed by analysts are critical in nearly every step in the process, particularly at the front end of the analytic process, in defining and refining the problem statement, and at the end of the process, in generating knowledge, presenting the story in understandable terms, tailoring the presentation of the results of the analysis to various audiences, as well as in determining when to initiate iterative loops in the process. The paper concludes with observations on the necessity of enabling expert analysts, tools to deal with big data, developing analysts with advanced analytic methods as well as with techniques for optimal use of advanced tools, and suggestions for further quantitative research.

  9. Failure probabilistic model of CNC lathes

    International Nuclear Information System (INIS)

    Wang Yiqiang; Jia Yazhou; Yu Junyi; Zheng Yuhua; Yi Shangfeng

    1999-01-01

    A field failure analysis of computerized numerical control (CNC) lathes is described. Field failure data was collected over a period of two years on approximately 80 CNC lathes. A coding system to code failure data was devised and a failure analysis data bank of CNC lathes was established. The failure position and subsystem, failure mode and cause were analyzed to indicate the weak subsystem of a CNC lathe. Also, failure probabilistic model of CNC lathes was analyzed by fuzzy multicriteria comprehensive evaluation

  10. THE CONFORMITY OF MACHINE TOOLS WITH RESPECT TO EUROPEAN SAFETY STANDARDS

    CERN Multimedia

    TIS/TE

    2001-01-01

    European regulations require that all motorized machine tools conform to the latest safety standards by the end of the year 2000. CERN must follow these regulations and has already modified most of its machine tools accordingly. However, there is still a small number of machine tools which have not yet been modified as required. These machines should not be used until they are brought up to the required safety standards, failing which the machines should be discarded. One can recognise which machine tools conform with the latest standards by the indication 'CS' on the identification plate of the machine, see foto below. In cases of doubt about the status of a machine tool you should contact K. Altherr/EST or C. Margaroli/TIS for advice.

  11. THE CONFORMITY OF MACHINE TOOLS WITH RESPECT TO EUROPEAN SAFETY STANDARDS

    CERN Multimedia

    TIS/TE

    2000-01-01

    European regulations require that all motorized machine tools conform to the latest safety standards by the end of the year 2000. CERN must follow these regulations and has already modified most of its machine tools accordingly. However, there is still a small number of machine tools which have not yet been modified as required. These machines should not be used until they are brought up to the required safety standards, failing which the machines should be discarded. One can recognise which machine tools conform with the latest standards by the indication 'CS' on the identification plate of the machine, see foto below. In cases of doubt about the status of a machine tool you should contact K. Altherr/EST or C. Margaroli/TIS for advice.

  12. Process Machine Interactions Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures

    CERN Document Server

    Hollmann, Ferdinand

    2013-01-01

    This contributed volume collects the scientific results of the DFG Priority Program 1180 Prediction and Manipulation of Interactions between Structure and Process. The research program has been conducted during the years 2005 and 2012, whereas the primary goal was the analysis of the interactions between processes and structures in modern production facilities. This book presents the findings of the 20 interdisciplinary subprojects, focusing on different manufacturing processes such as high performance milling, tool grinding or metal forming. It contains experimental investigations as well as mathematical modeling of production processes and machine interactions. New experimental advancements and novel simulation approaches are also included.

  13. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process

    Directory of Open Access Journals (Sweden)

    N. V. Dhandapani

    2015-01-01

    Full Text Available This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

  14. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process.

    Science.gov (United States)

    Dhandapani, N V; Thangarasu, V S; Sureshkannan, G

    2015-01-01

    This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

  15. Application of a 16-bit microprocessor to the digital control of machine tools

    International Nuclear Information System (INIS)

    Issaly, Alain

    1979-01-01

    After an overview of machine tools (various types, definition standardization, associated technologies for motors and position sensors), this research thesis describes the principles of computer-based digital control: classification of machine tool command systems, machining programming, programming languages, dialog function, interpolation function, servo-control function, tool compensation function. The author reports the application of a 16-bit microprocessor to the computer-based digital control of a machine tool: feasibility, selection of microprocessor, hardware presentation, software development and description, machining mode, translation-loading mode

  16. A new tool for man/machine integration

    International Nuclear Information System (INIS)

    Sommer, W.C.

    1981-01-01

    A popular term within the nuclear power industry today, as a result of TMI, is man/machine interface. It has been determined that greater acknowledgement of this interface is necessary within the industry to integrate the design and operational aspects of a system. What is required is an operational tool that can be used early in the engineering stages of a project and passed on later in time to those who will be responsible to operate that particular system. This paper discusses one such fundamental operations tool that is applied to a process system, its display devices, and its operator actions in a methodical fashion to integrate the machine for man's understanding and proper use. This new tool, referred to as an Operational Schematic, is shown and described. Briefly, it unites, in one location, the important operational display devices with the system process devices. A man can now see the beginning and end of each information and control loop to better understand its function within the system. A method is presented whereby in designing for operability, the schematic is utilized in three phases. The method results in two basic documents, one describes ''what'' is to be operated and the other ''how'' it is to be operated. This integration concept has now considered the hardware spectrum from sensor-to-display and operated the display (on paper) to confirm its operability. Now that the design aspects are complete, the later-in-time operational aspects need to be addressed for the man using the process system. Training personnel in operating and testing the process system is as important as the original design. To accomplish these activities, documents are prepared to instruct personnel how to operate (and test) the system under a variety of circumstances

  17. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    International Nuclear Information System (INIS)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-01-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant. (paper)

  18. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    Science.gov (United States)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  19. Fatigue and Model Analysis of the CNC Cylindrical Grinder

    Directory of Open Access Journals (Sweden)

    Lin Jui-Chang

    2016-01-01

    Full Text Available The purpose of this study is to lower deviation of workpiece by meeting high stability and rigidity to prevent the resonance in producing procedure of the CNC universal cylindrical grinding machine. Using finite element analysis software ABAQUS in grinder machine tools for numerical simulation of several analyses for the following: structural rigidity analysis, optimized design, vibration frequency analysis and fatigue damage analysis. This work aims on state of the transmission of outer diameter spindle to proceed in stress and fatigue life analysis by FE-SAFE Subroutine. The max values of equivalent stress and average amount of displacement in structural rigidity analysis are 0.67(Mpa and 0.92(µm. Optimization design effectively reducing extreme value of stress, the largest decline of about 5.43%. Modal analysis compared with the experimental, the average error percentage was less than 10% of parts. The whole structure error does not exceed 3%. The fatigue life of approximately 1,193,988 times, estimates into real life time can use more than sixty years, from the viewpoint of structural strength, spindle has a good high breaking strength is designed to be safe.

  20. Performance of Process Damping in Machining Titanium Alloys at Low Cutting Speed with Different Helix Tools

    International Nuclear Information System (INIS)

    Shaharun, M A; Yusoff, A R; Reza, M S; Jalal, K A

    2012-01-01

    Titanium is a strong, lustrous, corrosion-resistant and transition metal with a silver color to produce strong lightweight alloys for industrial process, automotive, medical instruments and other applications. However, it is very difficult to machine the titanium due to its poor machinability. When machining titanium alloys with the conventional tools, the wear rate of the tool is rapidly accelerate and it is generally difficult to achieve at high cutting speed. In order to get better understanding of machining titanium alloy, the interaction between machining structural system and the cutting process which result in machining instability will be studied. Process damping is a useful phenomenon that can be exploited to improve the limited productivity of low speed machining. In this study, experiments are performed to evaluate the performance of process damping of milling under different tool helix geometries. The results showed that the helix of 42° angle is significantly increase process damping performance in machining titanium alloy.

  1. Virtual reality solutions for the design of machine tools in practice

    OpenAIRE

    Zickner, H.; Neugebauer, Reimund; Weidlich, D.

    2006-01-01

    At the Virtual Reality Centre Production Engineering (VRCP) the Institute for Machine Tools and Production Processes (IWP) of the Chemnitz University of Technology and the Fraunhofer Institute for Machine Tools and Forming Technology (IWU) have developed several practical Virtual Reality (VR) based solutions for the industry. Some practical examples will show the benefits gained by the application of Virtual Reality techniques in the design process of machine tools and assembly lines.

  2. Small machine tools for small workpieces final report of the DFG priority program 1476

    CERN Document Server

    Sanders, Adam

    2017-01-01

    This contributed volume presents the research results of the program “Small machine tools for small work pieces” (SPP 1476), funded by the German Research Society (DFG). The book contains the final report of the priority program, presenting novel approached for size-adapted, reconfigurable micro machine tools. The target audience primarily comprises research experts and practitioners in the field of micro machine tools, but the book may also be beneficial for graduate students.

  3. CrN-based wear resistant hard coatings for machining and forming tools

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S; Cooke, K E; Teer, D G [Teer Coatings Ltd, West Stone House, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS (United Kingdom); Li, X [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); McIntosh, F [Rolls-Royce plc, Inchinnan, Renfrewshire PA4 9AF, Scotland (United Kingdom)

    2009-05-21

    Highly wear resistant multicomponent or multilayer hard coatings, based on CrN but incorporating other metals, have been developed using closed field unbalanced magnetron sputter ion plating technology. They are exploited in coated machining and forming tools cutting and forming of a wide range of materials in various application environments. These coatings are characterized by desirable properties including good adhesion, high hardness, high toughness, high wear resistance, high thermal stability and high machining capability for steel. The coatings appear to show almost universal working characteristics under operating conditions of low and high temperature, low and high machining speed, machining of ordinary materials and difficult to machine materials, and machining under lubricated and under minimum lubricant quantity or even dry conditions. These coatings can be used for cutting and for forming tools, for conventional (macro-) machining tools as well as for micromachining tools, either as a single coating or in combination with an advanced, self-lubricating topcoat.

  4. DEVELOPMENT OF A CNC MICRO-LATHE FOR BONE MICROIMPLANTS DESARROLLO DE UN MICROTORNO CNC PARA MICROIMPLANTES DE HUESO DESENVOLVIMENTO DE UM MICROTORNO CNC PARA MICROIMPLANTES DE OSSO

    Directory of Open Access Journals (Sweden)

    Daniel A. Rangel

    2011-06-01

    Full Text Available This paper evaluates the development of a CNC micro-lathe concept, continuing with the research in the development of machine tool prototypes by LATEMM. A micromachining center developed in 2004-2005 at Universidad de los Andes was studied, and based on the results obtained, a new prototype was proposed. The motivation behind the design and construction of this machine tool was to achieve higher precision in the machining process compared with conventional turning produced in macro machine tools. A machine, with spindle rotation speed up to 300 000 rpm was achieved, the cutting tool moves in two axes through step motors connected to worm gear reductions, thus resolution of 1µm is achieved. The interpolator was programmed based on DDA integration. The machine was set under a stereoscope to visualize the machining operations with zoom up to 30X. Micromachining was reached adopting NC control and it was possible to characterize micro-turned cortical bone samples.Este artículo evalúa el desarrollo de un concepto de microtorno CNC, siguiendo la línea de investigación en el desarrollo de prototipos de máquinas-herramientas por parte del LATEMM. Se estudió un centro de micromecanizado desarrollado en 2004-2005 en la Universidad de los Andes y con base en los resultados obtenidos se propuso un nuevo prototipo. La motivación detrás del diseño y la construcción de esta micromáquina herramienta era alcanzar mayor precisión en el mecanizado en comparación con el torneado convencional producido en máquinas-herramientas de tamaño macro. Se logró una máquina que alcanzó una velocidad de rotación de hasta 300.000 rpm en el husillo, la herramienta de corte se mueve en dos ejes a través de motores de paso conectados a sistemas de reducción sinfín-corona con lo que se logra una resolución de 1µm, además se programó interpolación basada en integración DDA. La máquina fue montada bajo un estereoscopio para visualizar las operaciones de

  5. A Design to Digitalize Hydraulic Cylinder Control of a Machine Tool ...

    African Journals Online (AJOL)

    Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC milling machine which employs a small stepping motor to digitally actuated hydraulic piston - cylinder servo drives existing on the machines Y-axis is ...

  6. Assessing thermally induced errors of machine tools by 3D length measurements

    NARCIS (Netherlands)

    Florussen, G.H.J.; Delbressine, F.L.M.; Schellekens, P.H.J.

    2003-01-01

    A new measurement technique is proposed for the assessment of thermally induced errors of machine tools. The basic idea is to measure changes of length by a telescopic double ball bar (TDEB) at multiple locations in the machine's workspace while the machine is thermally excited. In addition thermal

  7. Analysis on machine tool systems using spindle vibration monitoring for automatic tool changer

    Directory of Open Access Journals (Sweden)

    Shang-Liang Chen

    2015-12-01

    Full Text Available Recently, the intelligent systems of technology have become one of the major items in the development of machine tools. One crucial technology is the machinery status monitoring function, which is required for abnormal warnings and the improvement of cutting efficiency. During processing, the mobility act of the spindle unit determines the most frequent and important part such as automatic tool changer. The vibration detection system includes the development of hardware and software, such as vibration meter, signal acquisition card, data processing platform, and machine control program. Meanwhile, based on the difference between the mechanical configuration and the desired characteristics, it is difficult for a vibration detection system to directly choose the commercially available kits. For this reason, it was also selected as an item for self-development research, along with the exploration of a significant parametric study that is sufficient to represent the machine characteristics and states. However, we also launched the development of functional parts of the system simultaneously. Finally, we entered the conditions and the parameters generated from both the states and the characteristics into the developed system to verify its feasibility.

  8. Development of CNC Program for Piston Production

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013. West African Journal of ... Surprisingly, this is not the case. Nigeria and many ... systems of machine tools, machines, electric control components ...

  9. Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process

    Science.gov (United States)

    Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.

    2018-03-01

    In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.

  10. Fidget with Widgets: CNC Activity Introduces the Flatbed Router

    Science.gov (United States)

    Tryon, Daniel V.

    2006-01-01

    The computer numerical control (CNC) flatbed router is a powerful tool and a must-have piece of equipment for any technology education program in which students will produce a product--whether it involves Manufacturing, Materials Processing, or any of the vast array of Project Lead the Way courses. This article describes an activity--producing a…

  11. Eddy currents self-tuning dynamic vibration absorber for machine tool chatter suppression

    OpenAIRE

    Aguirre , Gorka; Gorostiaga , Mikel; Porchez , Thomas; Munoa , Jokin

    2013-01-01

    International audience; The current trend in machine tool design aims at stiffer machines with lowerinfluence of friction, leading to faster and more precise machines. However, this is atthe expense of reducing the machine damping, which is mainly produced by friction,and thus increasing the risk of suffering from a self-excited vibration named chatter,which limits the productivity of the process. Dynamic vibration absorbers (DVAs)offer a relatively simple and low cost solution to reduce chat...

  12. A comparative machining study of diamond-coated tools made by ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    adherent diamond films on WC–CO tools by all three deposition models and has allowed completion of the ..... cesses with hard turning machining will affect future demand for PCBN (and cBN coated) tools. 6. ... Business Communication Co.

  13. Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hocheng, H.; Chou, C.Y.; Deng, C.S.

    2003-01-01

    In this work the electrical discharge machining (EDM) of AISI D2 tool steel was investigated. The surface characteristics and machining damage caused by EDM were studied in terms of machining parameters. Based on the experimental data, an empirical model of the tool steel was also proposed. A new damage variable was used to study the EDM damage. The workpiece surface and re-solidified layers were examined by a scanning electron microscopy. Surface roughness was determined with a surface profilometer. The residual stress acting on the EDM specimen was measured by the X-ray diffraction technique. Experimental results indicate that the thickness of the recast layer, and surface roughness are proportional to the power input. The EDM process introduces tensile residual stress on the machined surface. The EDM damage leads to strength degradation

  14. Machine and Woodworking Tool Safety. Module SH-24. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on machine and woodworking tool safety is one of 50 modules concerned with job safety and health. This module discusses specific practices and precautions concerned with the efficient operation and use of most machine and woodworking tools in use today. Following the introduction, 13 objectives (each keyed to a page in the…

  15. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    Science.gov (United States)

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  16. MLBCD: a machine learning tool for big clinical data.

    Science.gov (United States)

    Luo, Gang

    2015-01-01

    Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

  17. Identification of Technological Parameters of Ni-Alloys When Machining by Monolithic Ceramic Milling Tool

    Science.gov (United States)

    Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej

    2017-12-01

    The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.

  18. Integration of CAM and CNC operation through code editing and manipulation

    International Nuclear Information System (INIS)

    Rosli Darmawan; Shalina Sheik Muhammad

    2004-01-01

    The IT technology for engineering design and manufacturing has gone through significant advancement for the last 30 years. It is widely acknowledged that IT would provide competitive advantage for engineering company in term of production cycle, productivity and efficiency. The recent development in this area is on the total system integration. While standard off-shelf CAD/CAM/CNC software and hardware packages would provide solution for system integration, more often than not users will stumble upon compatibility problems. Moreover, most of the integration deals with CAD and CAM systems. CNC integration has not been fully developed. Users always found problems in the integration of CAM and CNC machine due to the different level of technological development. CNC codes have not fundamentally progressed in the last 50 years, while CAD/CAM software packages have undergone massive evolution and improvement. This paper discusses a practical solution of CAM and CNC integration through code editing and manipulation within the CAM system in order to comply with the CNC machine requirements. (Author)

  19. Vyhodnocení CNC stroje versus konvenční stroj ve firmě

    OpenAIRE

    Kopecký, Štěpán

    2016-01-01

    Bakalářská práce se zabývá analýzou CNC stroje ve firmě a porovnáním CNC oproti konvenčnímu stroji. Analýza CNC se zaměřuje na ekonomické přínosy a přínosy pro firmu z hlediska zlepšení produktivity a přesnosti. Po prostudování odborné literatury a seznámením se s CNC frézou a jejím řídicím systémem a konvenčními stroji firmy Alubra s.r.o. je porovnán výrobek. Bachelor thesis describes analysis of CNC machine in company. The analysis of CNC machine focus on economical benefits and compare ...

  20. Adaptive control of mechatronic machine-tool equipment

    Directory of Open Access Journals (Sweden)

    R.G. Kudoyarov

    2015-09-01

    Full Text Available In this paper the method for designing a functional structure of mechatronic modules based on the developed classification of functional subsystems and the proposed turning machine modular structure is presented.

  1. Foam-machining tool with eddy-current transducer

    Science.gov (United States)

    Copper, W. P.

    1975-01-01

    Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.

  2. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    Science.gov (United States)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  3. Wear mechanism of CBN cutting tool during high-speed machining of mold steel

    International Nuclear Information System (INIS)

    Farhat, Z.N.

    2003-01-01

    Wear behavior of cubic boron nitride (CBN) cutting tool when cutting P20 tool steel was investigated. Oblique cutting tests were performed on a CNC lathe using five speeds, namely, 240, 600 and 1000 m min -1 . The CBN cutting tools were found to be superior to tungsten carbide (WC) tools. Fourfold increase in productivity and significant reduction in chipping and cratering was achieved for CBN as compared to WC. Wear, as the width of the wear land (VB), was monitored at selected time intervals; furthermore, topography of worn surfaces was performed, using a profilometer. Wear characterization of the rake and the flank surfaces as well as of the collected chips was conducted using a scanning electron microscopy (SEM), backscattered electron imaging and energy depressive X-ray (EDX). It was found that deformation in the chips occurs by localized shear deformation and the dominant wear mechanism at all speeds used was identified to be diffusive wear. At a 1000 m min -1 cutting speed, a secondary wear mechanism was identified, which is melt wear, i.e., formation of low melting point Cr and Mn compounds with the tool material and the subsequent ejection from the cutting zone

  4. Direct numerical control of machine tools in a nuclear research center by the CAMAC system

    International Nuclear Information System (INIS)

    Zwoll, K.; Mueller, K.D.; Becks, B.; Erven, W.; Sauer, M.

    1977-01-01

    The production of mechanical parts in research centers can be improved by connecting several numerically controlled machine tools to a central process computer via a data link. The CAMAC Serial Highway with its expandable structure yields an economic and flexible system for this purpose. The CAMAC System also facilitates the development of modular components controlling the machine tools itself. A CAMAC installation controlling three different machine tools connected to a central computer (PDP11) via the CAMAC Serial Highway is described. Besides this application, part of the CAMAC hardware and software can also be used for a great variety of scientific experiments

  5. The relationships between ceramic tool life and different machining parameters

    International Nuclear Information System (INIS)

    El-Axir, M.H.; El-Masry, A.A.; Mashal, Y.A.H.

    2001-01-01

    With the increasing use of ceramic tool materials in applications, has come an increasing need for experimental data to assign the behavior of the life of these tool materials. Experimental results during turning operation show that it is possible to increase cutting tool life substantially by a proper variation of the cutting parameters used in this work. The tool lives (tool flank wear land length) of three different ceramic materials, namely; Silicon carbide (SiC), Alumina (Al/sub 2/O/sub 3/) and partially stabilized zirconia (PSZ) in addition to, Titanium carbide and high speed steel tools are investigated in this work. Also, The effect of varying the cutting speed, feed rate and tool rake angle on tool life of each tool material is studied. The experimental work was carried out utilizing one of the experimental design techniques based on response surface methodology. It was found that the SiC cutting tool showed the highest tool life among all materials tested in this work. It was also noticed that increasing the cutting speed has led to an increase in tool life for ceramic tools only. However, increasing the feed rate and tool rake angle resulted in a reduction in tool life in all materials examined in the present study. Further analysis conducted on SiC tool material to examine the effect of the interaction of cutting parameters on the tool life. (author)

  6. Optimization of Surface Finish in Turning Operation by Considering the Machine Tool Vibration using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Muhammad Munawar

    2012-01-01

    Full Text Available Optimization of surface roughness has been one of the primary objectives in most of the machining operations. Poor control on the desired surface roughness generates non conforming parts and results into increase in cost and loss of productivity due to rework or scrap. Surface roughness value is a result of several process variables among which machine tool condition is one of the significant variables. In this study, experimentation was carried out to investigate the effect of machine tool condition on surface roughness. Variable used to represent machine tool\\'s condition was vibration amplitude. Input parameters used, besides vibration amplitude, were feed rate and insert nose radius. Cutting speed and depth of cut were kept constant. Based on Taguchi orthogonal array, a series of experimentation was designed and performed on AISI 1040 carbon steel bar at default and induced machine tool\\'s vibration amplitudes. ANOVA (Analysis of Variance, revealed that vibration amplitude and feed rate had moderate effect on the surface roughness and insert nose radius had the highest significant effect on the surface roughness. It was also found that a machine tool with low vibration amplitude produced better surface roughness. Insert with larger nose radius produced better surface roughness at low feed rate.

  7. Comparison of tool feed influence in CNC polishing between a novel circular-random path and other pseudo-random paths.

    Science.gov (United States)

    Takizawa, Ken; Beaucamp, Anthony

    2017-09-18

    A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.

  8. Winding machine and tools for the ISR Superconducting Quadrupole Prototype

    CERN Multimedia

    1975-01-01

    The picture shows the rotating and rocking winding machine with its "light" clamping system to keep the conductor turns in place during winding.At the back left one sees the conductor spool with its electromagnetic brake and the "heavy" clamping system used during curing. See also 7510217X, 7702690X.

  9. Support vector machine: a tool for mapping mineral prospectivity

    NARCIS (Netherlands)

    Zuo, R.; Carranza, E.J.M

    2011-01-01

    In this contribution, we describe an application of support vector machine (SVM), a supervised learning algorithm, to mineral prospectivity mapping. The free R package e1071 is used to construct a SVM with sigmoid kernel function to map prospectivity for Au deposits in western Meguma Terrain of Nova

  10. Towards a Tool for Computer Supported Configuring of Machine Systems

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp

    1996-01-01

    An engineering designer designing a product determines not only the product's component structure, but also a set of different structures which carry product behaviour and performance and make the product suited for its life phases. Whereas the nature of the elements of a machine system is fairly...

  11. Optimasi Parameter Permesinan Terhadap Waktu Proses Pada Pemrograman Cnc Milling Dengan Berbasis Cad/cam

    OpenAIRE

    Yudhyadi, IGNK; Rachmanto, Tri; Ramadan, Adnan Dedy

    2016-01-01

    The milling process is one of many machining processes for manufacturing component. The length of time in the process of milling machining is influenced by selection and design of machining parameters including cutting speed, feed rate and depth of cut. The purpose of this study to know the influence of cutting speed, feed rate and depth of cut as independent variables versus operation time at CNC milling process as dependent variables. Each independent variable consists of three level of fac...

  12. Machining of high performance workpiece materials with CBN coated cutting tools

    International Nuclear Information System (INIS)

    Uhlmann, E.; Fuentes, J.A. Oyanedel; Keunecke, M.

    2009-01-01

    The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 μm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.

  13. Modeling and simulation of five-axis virtual machine based on NX

    Science.gov (United States)

    Li, Xiaoda; Zhan, Xianghui

    2018-04-01

    Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.

  14. Development and evaluation of intelligent machine tools based on knowledge evolution in M2M environment

    International Nuclear Information System (INIS)

    Kim, Dong Hoon; Song, Jun Yeob; Lee, Jong Hyun; Cha, Suk Keun

    2009-01-01

    In the near future, the foreseen improvement in machine tools will be in the form of a knowledge evolution-based intelligent device. The goal of this study is to develop intelligent machine tools having knowledge-evolution capability in Machine to Machine (M2M) wired and wireless environment. The knowledge evolution-based intelligent machine tools are expected to be capable of gathering knowledge autonomously, producing knowledge, understanding knowledge, applying reasoning to knowledge, making new decisions, dialoguing with other machines, etc. The concept of the knowledge-evolution intelligent machine originated from the process of machine control operation by the sense, dialogue and decision of a human expert. The structure of knowledge evolution in M2M and the scheme for a dialogue agent among agent-based modules such as a sensory agent, a dialogue agent and an expert system (decision support agent) are presented in this paper, and work-offset compensation from thermal change and recommendation of cutting condition are performed on-line for knowledge-evolution verification

  15. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    International Nuclear Information System (INIS)

    Guu, Y.H.

    2005-01-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM

  16. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    Science.gov (United States)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  17. Support Vector Machine Based Tool for Plant Species Taxonomic Classification

    OpenAIRE

    Manimekalai .K; Vijaya.MS

    2014-01-01

    Plant species are living things and are generally categorized in terms of Domain, Kingdom, Phylum, Class, Order, Family, Genus and name of Species in a hierarchical fashion. This paper formulates the taxonomic leaf categorization problem as the hierarchical classification task and provides a suitable solution using a supervised learning technique namely support vector machine. Features are extracted from scanned images of plant leaves and trained using SVM. Only class, order, family of plants...

  18. Study on Dynamic Characteristics of Heavy Machine Tool-Composite Pile Foundation-Soil

    Directory of Open Access Journals (Sweden)

    CAI Li-Gang

    2014-09-01

    Full Text Available Heavy duty computer numerical control machine tools have characteristics of large self-weight, load and. The insufficiency of foundation bearing capacity leads to deformation of lathe bed, which effects machining accuracy. A combined-layer foundation model is created to describe the pile group foundation of multi-soil layer in this paper. Considering piles and soil in pile group as transversely isotropic material, equivalent constitutive relationship of composite foundation is constructed. A mathematical model is established by the introduction of boundary conditions, which is based on heavy duty computer numerical control machine tools-composite pile foundation-soil interaction system. And then, the response of different soil and pile depth is studied by a case. The model improves motion accuracy of machine tools.

  19. Application of new tool material for electrical discharge machining ...

    Indian Academy of Sciences (India)

    Administrator

    MST Division, National Metallurgical Laboratory, Jamshedpur 831 007, India. MS received 8 July 2007; revised 25 April 2009. Abstract. In EDM, Cu and graphite are commonly used as tool materials. The poor wear resistance is the drawback of these tools. In the current study, an attempt has been made to develop a ...

  20. Data mining practical machine learning tools and techniques

    CERN Document Server

    Witten, Ian H

    2005-01-01

    As with any burgeoning technology that enjoys commercial attention, the use of data mining is surrounded by a great deal of hype. Exaggerated reports tell of secrets that can be uncovered by setting algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no alchemy. Instead there is an identifiable body of practical techniques that can extract useful information from raw data. This book describes these techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same

  1. Possibilities of Application of High Pressure Jet Assisted Machining in Hard Turning with Carbide Tools

    Directory of Open Access Journals (Sweden)

    G. Globočki Lakić

    2017-06-01

    Full Text Available High Pressure Jet Assisted Machining (HPJAM in turning is a hybrid machining method in which a high pressure jet of cooling and lubrication fluid, under high pressure (50 MPa, leads to the zone between the cutting tool edge and workpiece. An experimental study was performed to investigate the capabilities of conventional and high pressure cooling (HPC in the turning of hard-to-machine materials: hard-chromed and surface hardened steel Ck45 (58 HRc and hardened bearing steel 100Cr6 (62 HRc. Machining experiments were performed using coated carbide tools and highly cutting speed. Experimental measurements were performed for different input process parameters. The cooling capabilities are compared by monitoring of tool wear, tool life, cooling efficiency, and surface roughness. Connection between the tool wear and surface roughness is established. Experimental research show that the hard turning with carbide cutting tools and HP supply CLF provides numerous advantages from the techno-economic aspect: greater productivity, reduce of temperature in the cutting zone, improved control chip formation, extended tool life, low intensity of tool wear, surface roughness in acceptable limits, significant reduce of production costs related to the CLF.

  2. Effect of different machining processes on the tool surface integrity and fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chuan Liang [College of Mechanical and Electrical Engineering, Nanchang University, Nanchang (China); Zhang, Xianglin [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-08-15

    Ultra-precision grinding, wire-cut electro discharge machining and lapping are often used to machine the tools in fine blanking industry. And the surface integrity from these machining processes causes great concerns in the research field. To study the effect of processing surface integrity on the fine blanking tool life, the surface integrity of different tool materials under different processing conditions and its influence on fatigue life were thoroughly analyzed in the present study. The result shows that the surface integrity of different materials was quite different on the same processing condition. For the same tool material, the surface integrity on varying processing conditions was quite different too and deeply influenced the fatigue life.

  3. Study of the stiffness for predicting the accuracy of machine tools

    International Nuclear Information System (INIS)

    Ortega, N.; Campa, F.J.; Fernandez Valdivielso, A.; Alonso, U.; Olvera, D.; Compean, F.I.

    2010-01-01

    Machining processes are frequently faced with the challenge of achieving more and more precision and surface qualities. These requirements are usually attained taking into account some process variables, including the cutting parameters and the use or not of refrigerant, leaving aside the mechanical aspects associated with the influence of machine tool itself. There are many sources of error linked with machine-workpiece interaction, but, in general, we can summarize them into two types of error: quasi-static and dynamic. This paper shows the influence of quasi-static error caused by low machine rigidity on the accuracy applied on two very different processes: turning and grinding. For the study of the static stiffness of these two machines, two different methods are proposed, both of them equally valid. The first one is based on separated parameters and the second one on finite elements. (Author).

  4. Bayesian networks modeling for thermal error of numerical control machine tools

    Institute of Scientific and Technical Information of China (English)

    Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN

    2008-01-01

    The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.

  5. Tool feed influence on the machinability of CO(2) laser optics.

    Science.gov (United States)

    Arnold, J B; Steger, P J; Saito, T T

    1975-08-01

    Influence of tool feed on reflectivity of diamond-machined surfaces was evaluated using materials (gold, silver, and copper) from which CO(2) laser optics are primarily produced. Fifteen specimens were machined by holding all machining parameters constant, except tool feed. Tool feed was allowed to vary by controlled amounts from one evaluation zone (or part) to another. Past experience has verified that the quality of a diamond-machined surface is not a function of the cutting velocity; therefore, this experiment was conducted on the basis that a variation in cutting velocity was not an influencing factor on the diamondturning process. Inspection results of the specimens indicated that tool feeds significantly higher than 5.1 micro/rev (200 microin./rev) produced detrimental effects on the machined surfaces. In some cases, at feeds as high as 13 microm/rev (500 microin./rev), visible scoring was evident. Those surfaces produced with tool feeds less than 5.1 microm/rev had little difference in reflectivity. Measurements indicat d that their reflectivity existed in a range from 96.7% to 99.3% at 10.6 microm.

  6. Monitoring wear and corrosion in industrial machines and systems: A radiation tool

    International Nuclear Information System (INIS)

    Konstantinov, I.O.; Zatolokin, B.V.

    1994-01-01

    Industrial equipment and machines, transport systems, nuclear and conventional power plants, pipelines, and other materials is substantially influenced by degradation processes such as wear and corrosion. For safety and economic reasons, appropriately monitoring the damage could prevent dangerous accidents. When the surfaces of machine parts under investigation are not easy to reach or are concealed by overlying structures, nuclear methods have become powerful tools for examination. They include X-ray radiography, neutron radiography, and a technique known as thin layer activation (TLA)

  7. Adaption of commercial off the shelf modules for reconfigurable machine tool design

    CSIR Research Space (South Africa)

    Mpofu, K

    2008-01-01

    Full Text Available . University of Ljubljana (Slovenia) Machine Design Approach. Butala and Sluga [4] view the architecture of the machine tool as a system structure which is reflected in its configuration and which impacts the systems performance. The interfaces... process movements. This approach was also implemented in a computer aided planning system, they clarify the need of having the features to be implemented embedded in the collective drives that constitute it. This resulted in an adaption...

  8. Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools

    DEFF Research Database (Denmark)

    Loginov, P.A.; Sidorenko, D.A.; Levashov, E.A.

    2018-01-01

    The applicability of metallic nanocomposites as binder for diamond machining tools is demonstrated. The various nanoreinforcements (carbon nanotubes, boron nitride hBN, nanoparticles of tungsten carbide/WC) and their combinations are embedded into metallic matrices and their mechanical properties...... are determined in experiments. The wear resistance of diamond tools with metallic binders modified by various nanoreinforcements was estimated. 3D hierarchical computational finite element model of the tool binder with hybrid nanoscale reinforcements is developed, and applied for the structure...

  9. Multi-Parameter Analysis of Surface Finish in Electro-Discharge Machining of Tool Steels

    Directory of Open Access Journals (Sweden)

    Cornelia Victoria Anghel

    2006-10-01

    Full Text Available The paper presents a multi- parameter analysis of surface finish imparted to tool-steel plates by electro-discharge machining (EDM is presented. The interrelationship between surface texture parameters and process parameters is emphasized. An increased number of parameters is studied including amplitude, spacing, hybrid and fractal parameters,, as well. The correlation of these parameters with the machining conditions is investigated. Observed characteristics become more pronounced, when intensifying machining conditions. Close correlation exists between certain surface finish parameters and EDM input variables and single and multiple statistical regression models are developed.

  10. Progressive Tool Wear in Cryogenic Machining: The Effect of Liquid Nitrogen and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Yusuf Kaynak

    2018-05-01

    Full Text Available This experimental study focuses on various cooling strategies and lubrication-assisted cooling strategies to improve machining performance in the turning process of AISI 4140 steel. Liquid nitrogen (LN2 and carbon dioxide (CO2 were used as cryogenic coolants, and their performances were compared with respect to progression of tool wear. Minimum quantity lubrication (MQL was also used with carbon dioxide. Progression of wear, including flank and nose, are the main outputs examined during experimental study. This study illustrates that carbon dioxide-assisted cryogenic machining alone and with minimum quantity lubrication does not contribute to decreasing the progression of wear within selected cutting conditions. This study also showed that carbon dioxide-assisted cryogenic machining helps to increase chip breakability. Liquid nitrogen-assisted cryogenic machining results in a reduction of tool wear, including flank and nose wear, in the machining process of AISI 4140 steel material. It was also observed that in the machining process of this material at a cutting speed of 80 m/min, built-up edges occurred in both cryogenic cooling conditions. Additionally, chip flow damage occurs in particularly dry machining.

  11. FINITE ELEMENT ANALYSIS OF CONCRETE FILLER INFLUENCE ON DYNAMIC RIGIDITY OF HEAVY MACHINE TOOL PORTAL

    Directory of Open Access Journals (Sweden)

    Yu. V. Vasilevich

    2016-01-01

    Full Text Available Virtual testing of portal machine tool has been carried out with the help of finite elements method (FEM. Static, modal and harmonic analyses have been made for a heavy planer. The paper reveals influence of concrete filler on machine tool dynamic flexibility. A peculiar feature of the simulation is concrete filling of a high-level transverse beam. Such approach oes look a typical one for machine-tool industry. Concrete has been considered as generalized material in two variants. It has been established that concrete application provides approximately 3-fold increase in machine tool rigidity per each coordinate. In this regard it is necessary to arrange closure of rigidity contour by filling all the cavities inside of the portal. Modal FEA makes it possible to determine that concrete increases comparatively weakly (1.3–1.4-fold frequencies of resonance modes. Frequency of the lowest mode rises only from 30.25 to 42.86 Hz. The following most active whole-machine eigenmodes have been revealed in the paper: “Portal pecking”, “Parallelogram” and “Traverse pecking”. In order to restrain the last mode it is necessary to carry out concrete filling of the traverse, in particular. Frequency-response characteristics and curves of dynamic rigidity for a spindle have been plotted for 0–150 Hz interval while using harmonic FEM. It has been determined that concrete increases dynamic machine tool rigidity by 2.5–3.5-fold. The effect is obtained even in the case when weakly damping concrete (2 % is used. This is due to distribution of vibrational energy flow along concrete and along cast iron as well. Thus energy density and vibration amplitudes must decrease. The paper shows acceptability for internal reinforcement of high-level machine tool parts (for example, portal traverses and fillers are applied for this purpose. Traverse weighting is compensated by additional torsional, shear and bending rigidity. The machine tool obtains the

  12. The use of machine learning and nonlinear statistical tools for ADME prediction.

    Science.gov (United States)

    Sakiyama, Yojiro

    2009-02-01

    Absorption, distribution, metabolism and excretion (ADME)-related failure of drug candidates is a major issue for the pharmaceutical industry today. Prediction of ADME by in silico tools has now become an inevitable paradigm to reduce cost and enhance efficiency in pharmaceutical research. Recently, machine learning as well as nonlinear statistical tools has been widely applied to predict routine ADME end points. To achieve accurate and reliable predictions, it would be a prerequisite to understand the concepts, mechanisms and limitations of these tools. Here, we have devised a small synthetic nonlinear data set to help understand the mechanism of machine learning by 2D-visualisation. We applied six new machine learning methods to four different data sets. The methods include Naive Bayes classifier, classification and regression tree, random forest, Gaussian process, support vector machine and k nearest neighbour. The results demonstrated that ensemble learning and kernel machine displayed greater accuracy of prediction than classical methods irrespective of the data set size. The importance of interaction with the engineering field is also addressed. The results described here provide insights into the mechanism of machine learning, which will enable appropriate usage in the future.

  13. Toward transient finite element simulation of thermal deformation of machine tools in real-time

    Science.gov (United States)

    Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg

    2018-01-01

    Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.

  14. Process planning optimization on turning machine tool using a hybrid genetic algorithm with local search approach

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-04-01

    Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.

  15. Design of Smooth Ramp Feedrate for Machining Complex NURBS Paths

    Science.gov (United States)

    Sekar, M.; Suresha, B.; Kantharaj, I.

    2017-10-01

    The feedrate scheduling algorithms proposed in this work permit the complex NURBS tool paths to be traversed quickly in those areas not limited by dynamic constraints, but slowdown in critical areas just enough to keep the machine within its dynamic limits and the specified tolerance zone. Due to the typically improved path tracking performance, surface finish can improve greatly, reducing the need for secondary finishing operations such as polishing. This work implements the Acceleration Deceleration Before Interpolation (ADBI) approach which is desired in modern CNC controller design and high speed machining of complex micro profiles common in Aerospace applications.

  16. A Method to Optimize Geometric Errors of Machine Tool based on SNR Quality Loss Function and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Cai Ligang

    2017-01-01

    Full Text Available Instead improving the accuracy of machine tool by increasing the precision of key components level blindly in the production process, the method of combination of SNR quality loss function and machine tool geometric error correlation analysis to optimize five-axis machine tool geometric errors will be adopted. Firstly, the homogeneous transformation matrix method will be used to build five-axis machine tool geometric error modeling. Secondly, the SNR quality loss function will be used for cost modeling. And then, machine tool accuracy optimal objective function will be established based on the correlation analysis. Finally, ISIGHT combined with MATLAB will be applied to optimize each error. The results show that this method is reasonable and appropriate to relax the range of tolerance values, so as to reduce the manufacturing cost of machine tools.

  17. Increase efficiency CNC lathe with the help of fuzzy logic controller (FLC

    Directory of Open Access Journals (Sweden)

    Mošorinski Predrag R.

    2016-01-01

    Full Text Available This paper discusses the process of increasing the effectiveness of CNC lathe for carrying out the appropriate experiments. Experiments are related to the plastics processing machine and programming fuzzy logic controller (FLC for the requirements of machining. Input parameters of the FLCare obtained as a result of previous experimental parameters set by experience and with a great subjective impact of technologists. Expected results of FLC's settings are based on the complete autonomy of the process and eliminating subjective errors.

  18. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation.

    Directory of Open Access Journals (Sweden)

    Huu-Tho Nguyen

    Full Text Available Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process and a fuzzy COmplex PRoportional ASsessment (COPRAS for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.

  19. Efficient thermal error prediction in a machine tool using finite element analysis

    International Nuclear Information System (INIS)

    Mian, Naeem S; Fletcher, Simon; Longstaff, Andrew P; Myers, Alan

    2011-01-01

    Thermally induced errors have a major significance on the positional accuracy of a machine tool. Heat generated during the machining process produces thermal gradients that flow through the machine structure causing linear and nonlinear thermal expansions and distortions of associated complex discrete structures, producing deformations that adversely affect structural stability. The heat passes through structural linkages and mechanical joints where interfacial parameters such as the roughness and form of the contacting surfaces affect the thermal resistance and thus the heat transfer coefficients. This paper presents a novel offline technique using finite element analysis (FEA) to simulate the effects of the major internal heat sources such as bearings, motors and belt drives of a small vertical milling machine (VMC) and the effects of ambient temperature pockets that build up during the machine operation. Simplified models of the machine have been created offline using FEA software and evaluated experimental results applied for offline thermal behaviour simulation of the full machine structure. The FEA simulated results are in close agreement with the experimental results ranging from 65% to 90% for a variety of testing regimes and revealed a maximum error range of 70 µm reduced to less than 10 µm

  20. Miniaturized multiwavelength digital holography sensor for extensive in-machine tool measurement

    Science.gov (United States)

    Seyler, Tobias; Fratz, Markus; Beckmann, Tobias; Bertz, Alexander; Carl, Daniel

    2017-06-01

    In this paper we present a miniaturized digital holographic sensor (HoloCut) for operation inside a machine tool. With state-of-the-art 3D measurement systems, short-range structures such as tool marks cannot be resolved inside a machine tool chamber. Up to now, measurements had to be conducted outside the machine tool and thus processing data are generated offline. The sensor presented here uses digital multiwavelength holography to get 3D-shape-information of the machined sample. By using three wavelengths, we get a large artificial wavelength with a large unambiguous measurement range of 0.5mm and achieve micron repeatability even in the presence of laser speckles on rough surfaces. In addition, a digital refocusing algorithm based on phase noise is implemented to extend the measurement range beyond the limits of the artificial wavelength and geometrical depth-of-focus. With complex wave field propagation, the focus plane can be shifted after the camera images have been taken and a sharp image with extended depth of focus is constructed consequently. With 20mm x 20mm field of view the sensor enables measurement of both macro- and micro-structure (such as tool marks) with an axial resolution of 1 µm, lateral resolution of 7 µm and consequently allows processing data to be generated online which in turn qualifies it as a machine tool control. To make HoloCut compact enough for operation inside a machining center, the beams are arranged in two planes: The beams are split into reference beam and object beam in the bottom plane and combined onto the camera in the top plane later on. Using a mechanical standard interface according to DIN 69893 and having a very compact size of 235mm x 140mm x 215mm (WxHxD) and a weight of 7.5 kg, HoloCut can be easily integrated into different machine tools and extends no more in height than a typical processing tool.

  1. Design and Development of an Automatic Tool Changer for an Articulated Robot Arm

    International Nuclear Information System (INIS)

    Ambrosio, H; Karamanoglu, M

    2014-01-01

    In the creative industries, the length of time between the ideation stage and the making of physical objects is decreasing due to the use of CAD/CAM systems and adicitive manufacturing. Natural anisotropic materials, such as solid wood can also be transformed using CAD/CAM systems, but only with subtractive processes such as machining with CNC routers. Whilst some 3 axis CNC routing machines are affordable to buy and widely available, more flexible 5 axis routing machines still present themselves as a too big investment for small companies. Small refurbished articulated robots can be a cheaper alternative but they require a light end-effector. This paper presents a new lightweight tool changer that converts a small 3kg payload 6 DOF robot into a robot apprentice able to machine wood and similar soft materials

  2. Design and Development of an Automatic Tool Changer for an Articulated Robot Arm

    Science.gov (United States)

    Ambrosio, H.; Karamanoglu, M.

    2014-07-01

    In the creative industries, the length of time between the ideation stage and the making of physical objects is decreasing due to the use of CAD/CAM systems and adicitive manufacturing. Natural anisotropic materials, such as solid wood can also be transformed using CAD/CAM systems, but only with subtractive processes such as machining with CNC routers. Whilst some 3 axis CNC routing machines are affordable to buy and widely available, more flexible 5 axis routing machines still present themselves as a too big investment for small companies. Small refurbished articulated robots can be a cheaper alternative but they require a light end-effector. This paper presents a new lightweight tool changer that converts a small 3kg payload 6 DOF robot into a robot apprentice able to machine wood and similar soft materials.

  3. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  4. Influence of Workpiece Material on Tool Wear Performance and Tribofilm Formation in Machining Hardened Steel

    Directory of Open Access Journals (Sweden)

    Junfeng Yuan

    2016-04-01

    Full Text Available In addition to the bulk properties of a workpiece material, characteristics of the tribofilms formed as a result of workpiece material mass transfer to the friction surface play a significant role in friction control. This is especially true in cutting of hardened materials, where it is very difficult to use liquid based lubricants. To better understand wear performance and the formation of beneficial tribofilms, this study presents an assessment of uncoated mixed alumina ceramic tools (Al2O3+TiC in the turning of two grades of steel, AISI T1 and AISI D2. Both workpiece materials were hardened to 59 HRC then machined under identical cutting conditions. Comprehensive characterization of the resulting wear patterns and the tribofilms formed at the tool/workpiece interface were made using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy. Metallographic studies on the workpiece material were performed before the machining process and the surface integrity of the machined part was investigated after machining. Tool life was 23% higher when turning D2 than T1. This improvement in cutting tool life and wear behaviour was attributed to a difference in: (1 tribofilm generation on the friction surface and (2 the amount and distribution of carbide phases in the workpiece materials. The results show that wear performance depends both on properties of the workpiece material and characteristics of the tribofilms formed on the friction surface.

  5. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  6. a design to digitalize hydraulic cylinder control of a machine tool

    African Journals Online (AJOL)

    Dr Obe

    1995-09-01

    Sep 1, 1995 ... Department of Mechanical Engineering. FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI,. P.M.B. 1526, OWERRI. ABSTRACT. Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC ...

  7. 76 FR 5832 - International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA...

    Science.gov (United States)

    2011-02-02

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,554] International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA, San Jose, CA; Notice of Affirmative Determination Regarding Application for Reconsideration By application dated November 29, 2010, a worker and a state workforce official...

  8. Technology and Jobs: Computer-Aided Design. Numerical-Control Machine-Tool Operators. Office Automation.

    Science.gov (United States)

    Stanton, Michael; And Others

    1985-01-01

    Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…

  9. FEM-DEM coupling simulations of the tool wear characteristics in prestressed machining superalloy

    Directory of Open Access Journals (Sweden)

    Ruitao Peng

    2016-01-01

    Full Text Available Due to the complicated contact loading at the tool-chip interface, ceramic tool wear in prestressed machining superalloy is rare difficult to evaluate only by experimental approaches. This study aims to develop a methodology to predict the tool wear evolution by using combined FEM and DEM numerical simulations. Firstly, a finite element model for prestressed cutting is established, subsequently a discrete element model to describe the tool-chip behaviour is established based on the obtained boundary conditions by FEM simulations, finally, simulated results are experimentally validated. The predicted tool wear results show nice agreement with experiments, the simulation indicates that, within a certain range, higher cutting speed effectively results in slighter wear of Sialon ceramic tools, and deeper depth of cut leads to more serious tool wear.

  10. Investigation of tool engagement and cutting performance in machining a pocket

    Science.gov (United States)

    Adesta, E. Y. T.; Hamidon, R.; Riza, M.; Alrashidi, R. F. F. A.; Alazemi, A. F. F. S.

    2018-01-01

    This study investigates the variation of tool engagement for different profile of cutting. In addition, behavior of cutting force and cutting temperature for different tool engagements for machining a pocket also been explored. Initially, simple tool engagement models were developed for peripheral and slot cutting for different types of corner. Based on these models, the tool engagements for contour and zig zag tool path strategies for a rectangular shape pocket with dimension 80 mm x 60 mm were analyzed. Experiments were conducted to investigate the effect of tool engagements on cutting force and cutting temperature for the machining of a pocket of AISI H13 material. The cutting parameters used were 150m/min cutting speed, 0.05mm/tooth feed, and 0.1mm depth of cut. Based on the results obtained, the changes of cutting force and cutting temperature performance there exist a relationship between cutting force, cutting temperature and tool engagement. A higher cutting force and cutting temperature is obtained when the cutting tool goes through up milling and when the cutting tool makes a full engagement with the workpiece.

  11. Effect of changing polarity of graphite tool/ Hadfield steel workpiece couple on machining performances in die sinking EDM

    Directory of Open Access Journals (Sweden)

    Özerkan Haci Bekir

    2017-01-01

    Full Text Available In this study, machining performance ouput parameters such as machined surface roughness (SR, material removal rate (MRR, tool wear rate (TWR, were experimentally examined and analyzed with the diversifying and changing machining parameters in (EDM. The processing parameters (input par. of this research are stated as tool material, peak current (I, pulse duration (ton and pulse interval (toff. The experimental machinings were put into practice by using Hadfield steel workpiece (prismatic and cylindrical graphite electrodes with kerosene dielectric at different machining current, polarity and pulse time settings. The experiments have shown that the type of tool material, polarity (direct polarity forms higher MRR, SR and TWR, current (high current lowers TWR and enhances MRR, TWR and pulse on time (ton=48□s is critical threshold value for MRR and TWR were influential on machining performance in electrical discharge machining.

  12. Appendix to rationally designing of machine tools for example of universal lathe

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2015-01-01

    Full Text Available In this paper, for the universal machine tool for turning and function of the thrust of the cutting speed for blasting area efficiency and stability of the tool and sectional filings. These dependencies were used to determine the main characteristics of the optimal and maximum operating power equipment. Based on this, an analysis of the increase in operating power equipment typical cases in order to adapt to the new needs of exploitation properties and improve productivity. Using the previous analysis, it was determined the best solution in terms of the rational design of machines, by ensuring the simultaneous use of the main features on the basis of increase in speed with the use of tools and higher stability. In order to better display problems, an analysis of the appropriate diagrams P-V and V-D. On a typical example of the manufacturing practice at the end of the work, we demonstrate improvement of exploitation characteristics of a universal machine through appropriate calculations in terms of new needs adjustment feature, where it is expected that the reconstruction of the smallest machines.

  13. Statistical investigations into the erosion of material from the tool in micro-electrical discharge machining

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2018-01-01

    This paper presents a statistical study of the erosion of material from the tool electrode in a micro-electrical discharge machining process. The work involves analysis of variance and analysis of means approaches on the results of the tool electrode wear rate obtained based on design...... current (Id) and discharge frequency (fd) control the erosion of material from the tool electrode. The material erosion from the tool electrode (Me) increases linearly with the discharge frequency. As the current index increases from 20 to 35, the Me decreases linearly by 29%, and then increases by of 36......%. The current index of 35 gives the minimum material erosion from the tool. It is observed that none of the two-factor interactions are significant in controlling the erosion of the material from the tool....

  14. Development of effective tool for iterative design of human machine interfaces in nuclear power plant

    International Nuclear Information System (INIS)

    Nakagawa, Takashi; Matsuo, Satoko; Yoshikawa, Hidekazu; Wu, Wei; Kameda, Akiyuki; Fumizawa, Motoo

    2000-01-01

    The authors have developed SEAMAID, which is a Simulation-based Evaluation and Analysis support system for MAn-machine Interface Design (SEAMAID) in the domain of nuclear power plants. The SEAMAID simulated the interaction between an operator and human machine interfaces (HMI), and supports to evaluate the HMI by using the simulation results. In this paper, a case study of evaluation for conventional center control room design was conducted. The authors were confirmed that SEAMAID is a useful tool for improvements of HMI design (J.P.N.)

  15. Study on effect of tool electrodes on surface finish during electrical discharge machining of Nitinol

    Science.gov (United States)

    Sahu, Anshuman Kumar; Chatterjee, Suman; Nayak, Praveen Kumar; Sankar Mahapatra, Siba

    2018-03-01

    Electrical discharge machining (EDM) is a non-traditional machining process which is widely used in machining of difficult-to-machine materials. EDM process can produce complex and intrinsic shaped component made of difficult-to-machine materials, largely applied in aerospace, biomedical, die and mold making industries. To meet the required applications, the EDMed components need to possess high accuracy and excellent surface finish. In this work, EDM process is performed using Nitinol as work piece material and AlSiMg prepared by selective laser sintering (SLS) as tool electrode along with conventional copper and graphite electrodes. The SLS is a rapid prototyping (RP) method to produce complex metallic parts by additive manufacturing (AM) process. Experiments have been carried out varying different process parameters like open circuit voltage (V), discharge current (Ip), duty cycle (τ), pulse-on-time (Ton) and tool material. The surface roughness parameter like average roughness (Ra), maximum height of the profile (Rt) and average height of the profile (Rz) are measured using surface roughness measuring instrument (Talysurf). To reduce the number of experiments, design of experiment (DOE) approach like Taguchi’s L27 orthogonal array has been chosen. The surface properties of the EDM specimen are optimized by desirability function approach and the best parametric setting is reported for the EDM process. Type of tool happens to be the most significant parameter followed by interaction of tool type and duty cycle, duty cycle, discharge current and voltage. Better surface finish of EDMed specimen can be obtained with low value of voltage (V), discharge current (Ip), duty cycle (τ) and pulse on time (Ton) along with the use of AlSiMg RP electrode.

  16. Obtaining Global Picture From Single Point Observations by Combining Data Assimilation and Machine Learning Tools

    Science.gov (United States)

    Shprits, Y.; Zhelavskaya, I. S.; Kellerman, A. C.; Spasojevic, M.; Kondrashov, D. A.; Ghil, M.; Aseev, N.; Castillo Tibocha, A. M.; Cervantes Villa, J. S.; Kletzing, C.; Kurth, W. S.

    2017-12-01

    Increasing volume of satellite measurements requires deployment of new tools that can utilize such vast amount of data. Satellite measurements are usually limited to a single location in space, which complicates the data analysis geared towards reproducing the global state of the space environment. In this study we show how measurements can be combined by means of data assimilation and how machine learning can help analyze large amounts of data and can help develop global models that are trained on single point measurement. Data Assimilation: Manual analysis of the satellite measurements is a challenging task, while automated analysis is complicated by the fact that measurements are given at various locations in space, have different instrumental errors, and often vary by orders of magnitude. We show results of the long term reanalysis of radiation belt measurements along with fully operational real-time predictions using data assimilative VERB code. Machine Learning: We present application of the machine learning tools for the analysis of NASA Van Allen Probes upper-hybrid frequency measurements. Using the obtained data set we train a new global predictive neural network. The results for the Van Allen Probes based neural network are compared with historical IMAGE satellite observations. We also show examples of predictions of geomagnetic indices using neural networks. Combination of machine learning and data assimilation: We discuss how data assimilation tools and machine learning tools can be combine so that physics-based insight into the dynamics of the particular system can be combined with empirical knowledge of it's non-linear behavior.

  17. Design and Implementation of 3 Axis CNC Router for Computer Aided Manufacturing Courses

    Directory of Open Access Journals (Sweden)

    Aktan Mehmet Emin

    2016-01-01

    Full Text Available In this paper, it is intended to make the mechanical design of 3 axis Computer Numerical Control (CNC router with linear joints, production of electronic control interface cards and drivers and manufacturing of CNC router system which is a combination of mechanics and electronics. At the same time, interface program has been prepared to control router via USB. The router was developed for educational purpose. In some vocational schools and universities, Computer Aided Manufacturing (CAM courses are though rather theoretical. This situation cause ineffective and temporary learning. Moreover, students at schools which have the opportunity to apply for these systems can face with various dangerous accidents. Because of this situation, these students start to get knowledge about this system for the first time. For the first steps of CNC education, using smaller and less dangerous systems will be easier. A new concept CNC machine and its user interface suitable and profitable for education have been completely designed and realized during this study. To test the validity of the hypothesis which the benefits that may exist on the educational life, enhanced traditional education method with the contribution of the designed machine has been practiced on CAM course students for a semester. At the end of the semester, the new method applied students were more successful in the rate of 27.36 percent both in terms of verbal comprehension and exam grades.

  18. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    Directory of Open Access Journals (Sweden)

    Qiaokang Liang

    2016-11-01

    Full Text Available Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  19. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  20. Delay dynamical systems and applications to nonlinear machine-tool chatter

    International Nuclear Information System (INIS)

    Fofana, M.S.

    2003-01-01

    The stability behaviour of machine chatter that exhibits Hopf and degenerate bifurcations has been examined without the assumption of small delays between successive cuts. Delay dynamical system theory leading to the reduction of the infinite-dimensional character of the governing delay differential equations (DDEs) to a finite-dimensional set of ordinary differential equations have been employed. The essential mathematical arguments for these systems in the context of retarded DDEs are summarized. Then the application of these arguments in the stability study of machine-tool chatter with multiple time delays is presented. Explicit analytical expressions ensuring stable and unstable machining when perturbations are periodic, stochastic and nonlinear have been derived using the integral averaging method and Lyapunov exponents

  1. MECHANISMS OF CUTTING BLADE WEAR AND THEIR INFLUENCE ON CUTTING ABILITY OF THE TOOL DURING MACHINING OF SPECIAL ALLOYS

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2016-09-01

    Full Text Available With increased requirements for quality and shelf life of machined parts there is also a higher share of the use of material with specific properties that are identified by the term “superalloys”. These materials differ from common steels by mechanical and physical properties that cause their worse machinability. During machining of “superalloys” worse machinability has negative influence primarily on the amount of cutting edge wear, which shortens durability of the cutting tool. The goal of experimental activity shown in this contribution is to determine individual mechanisms of the cutting edge wear and their effects on the cutting ability during high speed machining of nickel superalloy. A specific exchangeable cutting insert made from cubic boric nitride was used for machining of the 625 material according to ASM 5666F. The criteria to evaluate cutting ability and durability of the cutting tool became selected parameters of surface integrity and quality of the machined surface.

  2. Design and Analysis of a Collision Detector for Hybrid Robotic Machine Tools

    Directory of Open Access Journals (Sweden)

    Dan ZHANG

    2015-10-01

    Full Text Available Capacitive sensing depends on the physical parameter changing either the spacing between the two plates or the dielectric constant. Based on this idea, a capacitive based collision detection sensor is proposed and designed in this paper for the purpose of detecting any collision between the end effector and peripheral equipment (e.g., fixture for the three degrees of freedom hybrid robotic machine tools when it is in operation. One side of the finger-like capacitor is attached to the moving platform of the hybrid robotic manipulator and the other side of the finger-like capacitor is attached to the tool. When the tool accidently hits the peripheral equipment, the vibration will make the distance of the capacitor change and therefore trigger the machine to stop. The new design is illustrated and modelled. The capacitance, sensitivity and frequency response of the detector are analyzed in detail, and finally, the fabrication process is presented. The proposed collision detector can also be applied to other machine tools.

  3. Machinability of Stainless Tool Steel using Nitrogen Oil-Mist coalant

    Directory of Open Access Journals (Sweden)

    Amad E. Elshwain

    2017-01-01

    Full Text Available For all dry machining process, temperature generated in the cutting zone is the major challenge. It causes tool failure and results in unsatisfactory surface finish. Application of flood coolant method during machining processes can significantly reduce the temperature and consequently extend the cutting tool life. However, it has serious concerns regarding environmental pollution, operator health and manufacturing cost. These issues are usually attempts to be overcame by using minimum quantity lubrication (MQL technique. This method merges the advantages of both dry cutting and flood cooling by spraying a small amount of lubricant to the cutting zone using vegetable oil. In this paper, another technique is proposed in order to further enhance the machineability of the stainless tool steel (STAVAX ESR 48 HRC. This involves using of nitrogen gas (N2 and air as cooling medium in combination with oil mist lubricant (MQL. The results show that the combination between nitrogen and oil-mist lubricant much more prolonged the tool life and improved the surface finish than the air-oil mist lubricant medium.

  4. Machining tools in AISI M2 high-speed steel obtained by spray forming process

    International Nuclear Information System (INIS)

    Jesus, Edilson Rosa Barbosa de.

    2004-01-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  5. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  6. Performance of Ti-multilayer coated tool during machining of MDN431 alloyed steel

    Science.gov (United States)

    Badiger, Pradeep V.; Desai, Vijay; Ramesh, M. R.

    2018-04-01

    Turbine forgings and other components are required to be high resistance to corrosion and oxidation because which they are highly alloyed with Ni and Cr. Midhani manufactures one of such material MDN431. It's a hard-to-machine steel with high hardness and strength. PVD coated insert provide an answer to problem with its state of art technique on the WC tool. Machinability studies is carried out on MDN431 steel using uncoated and Ti-multilayer coated WC tool insert using Taguchi optimisation technique. During the present investigation, speed (398-625rpm), feed (0.093-0.175mm/rev), and depth of cut (0.2-0.4mm) varied according to Taguchi L9 orthogonal array, subsequently cutting forces and surface roughness (Ra) were measured. Optimizations of the obtained results are done using Taguchi technique for cutting forces and surface roughness. Using Taguchi technique linear fit model regression analysis carried out for the combination of each input variable. Experimented results are compared and found the developed model is adequate which supported by proof trials. Speed, feed and depth of cut are linearly dependent on the cutting force and surface roughness for uncoated insert whereas Speed and depth of cut feed is inversely dependent in coated insert for both cutting force and surface roughness. Machined surface for coated and uncoated inserts during machining of MDN431 is studied using optical profilometer.

  7. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp

    International Nuclear Information System (INIS)

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-01

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A ''running in'' phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  8. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp

    Science.gov (United States)

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-01

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A "running in" phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  9. Mounting arrangement for the drive system of an air-bearing spindle on a machine tool

    Science.gov (United States)

    Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.

    1987-12-07

    The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.

  10. Machinability of IPS Empress 2 framework ceramic.

    Science.gov (United States)

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.

  11. Analytical sensitivity analysis of geometric errors in a three axis machine tool

    International Nuclear Information System (INIS)

    Park, Sung Ryung; Yang, Seung Han

    2012-01-01

    In this paper, an analytical method is used to perform a sensitivity analysis of geometric errors in a three axis machine tool. First, an error synthesis model is constructed for evaluating the position volumetric error due to the geometric errors, and then an output variable is defined, such as the magnitude of the position volumetric error. Next, the global sensitivity analysis is executed using an analytical method. Finally, the sensitivity indices are calculated using the quantitative values of the geometric errors

  12. Parametric optimization of CNC end milling using entropy ...

    African Journals Online (AJOL)

    Parametric optimization of CNC end milling using entropy measurement technique combined with grey-Taguchi method. ... International Journal of Engineering, Science and Technology ... Keywords: CNC end milling, surface finish, material removal rate (MRR), entropy measurement technique, Taguchi method ...

  13. High productivity machining of holes in Inconel 718 with SiAlON tools

    Science.gov (United States)

    Agirreurreta, Aitor Arruti; Pelegay, Jose Angel; Arrazola, Pedro Jose; Ørskov, Klaus Bonde

    2016-10-01

    Inconel 718 is often employed in aerospace engines and power generation turbines. Numerous researches have proven the enhanced productivity when turning with ceramic tools compared to carbide ones, however there is considerably less information with regard to milling. Moreover, no knowledge has been published about machining holes with this type of tools. Additional research on different machining techniques, like for instance circular ramping, is critical to expand the productivity improvements that ceramics can offer. In this a 3D model of the machining and a number of experiments with SiAlON round inserts have been carried out in order to evaluate the effect of the cutting speed and pitch on the tool wear and chip generation. The results of this analysis show that three different types of chips are generated and also that there are three potential wear zones. Top slice wear is identified as the most critical wear type followed by the notch wear as a secondary wear mechanism. Flank wear and adhesion are also found in most of the tests.

  14. Development of Dual-Axis MEMS Accelerometers for Machine Tools Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Chih-Yung Huang

    2016-07-01

    Full Text Available With the development of intelligent machine tools, monitoring the vibration by the accelerometer is an important issue. Accelerometers used for measuring vibration signals during milling processes require the characteristics of high sensitivity, high resolution, and high bandwidth. A commonly used accelerometer is the lead zirconate titanate (PZT type; however, integrating it into intelligent modules is excessively expensive and difficult. Therefore, the micro electro mechanical systems (MEMS accelerometer is an alternative with the advantages of lower price and superior integration. In the present study, we integrated two MEMS accelerometer chips into a low-pass filter and housing to develop a low-cost dual-axis accelerometer with a bandwidth of 5 kHz and a full scale range of ±50 g for measuring machine tool vibration. In addition, a platform for measuring the linearity, cross-axis sensitivity and frequency response of the MEMS accelerometer by using the back-to-back calibration method was also developed. Finally, cutting experiments with steady and chatter cutting were performed to verify the results of comparing the MEMS accelerometer with the PZT accelerometer in the time and frequency domains. The results demonstrated that the dual-axis MEMS accelerometer is suitable for monitoring the vibration of machine tools at low cost.

  15. Influence of Cooling Lubricants on the Surface Roughness and Energy Efficiency of the Cutting Machine Tools

    Directory of Open Access Journals (Sweden)

    Jersák J.

    2017-08-01

    Full Text Available The Technical University of Liberec and Brandenburg University of Technology Cottbus-Senftenberg investigated the influence of cooling lubricants on the surface roughness and energy efficiency of cutting machine tools. After summarizing the achieved experimental results, the authors conclude that cooling lubricants extensively influence the cutting temperature, cutting forces and energy consumption. Also, it is recognizable that cooling lubricants affect the cutting tools lifetime and the workpiece surface quality as well. Furthermore, costs of these cooling lubricants and the related environmental burden need to be considered. A current trend is to reduce the amount of lubricants that are used, e.g., when the Minimum Quantity Lubrication (MQL technique is applied. The lubricant or process liquid is thereby transported by the compressed air in the form of an aerosol to the contact area between the tool and workpiece. The cutting process was monitored during testing by the three following techniques: lubricant-free cutting, cutting with the use of a lubricant with the MQL technique, and only utilizing finish-turning and finish-face milling. The research allowed the authors to monitor the cutting power and mark the achieved surface quality in relation to the electrical power consumption of the cutting machine. In conclusions, the coherence between energy efficiency of the cutting machine and the workpiece surface quality regarding the used cooling lubricant is described.

  16. Influence of export control policy on the competitiveness of machine tool producing organizations

    Science.gov (United States)

    Ahrstrom, Jeffrey D.

    The possible influence of export control policies on producers of export controlled machine tools is examined in this quantitative study. International market competitiveness theories hold that market controlling policies such as export control regulations may influence an organization's ability to compete (Burris, 2010). Differences in domestic application of export control policy on machine tool exports may impose throttling effects on the competitiveness of participating firms (Freedenberg, 2010). Commodity shipments from Japan, Germany, and the United States to the Russian market will be examined using descriptive statistics; gravity modeling of these specific markets provides a foundation for comparison to actual shipment data; and industry participant responses to a user developed survey will provide additional data for analysis using a Kruskal-Wallis one-way analysis of variance. There is scarce academic research data on the topic of export control effects within the machine tool industry. Research results may be of interest to industry leadership in market participation decisions, advocacy arguments, and strategic planning. Industry advocates and export policy decision makers could find data of interest in supporting positions for or against modifications of export control policies.

  17. Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only)

    Science.gov (United States)

    Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn

    1987-01-01

    Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively

  18. Mathematical support for automated geometry analysis of lathe machining of oblique peakless round-nose tools

    Science.gov (United States)

    Filippov, A. V.; Tarasov, S. Yu; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2017-01-01

    Automatization of engineering processes requires developing relevant mathematical support and a computer software. Analysis of metal cutting kinematics and tool geometry is a necessary key task at the preproduction stage. This paper is focused on developing a procedure for determining the geometry of oblique peakless round-nose tool lathe machining with the use of vector/matrix transformations. Such an approach allows integration into modern mathematical software packages in distinction to the traditional analytic description. Such an advantage is very promising for developing automated control of the preproduction process. A kinematic criterion for the applicable tool geometry has been developed from the results of this study. The effect of tool blade inclination and curvature on the geometry-dependent process parameters was evaluated.

  19. CNC Turning Center Operations and Prove Out. Computer Numerical Control Operator/Programmer. 444-334.

    Science.gov (United States)

    Skowronski, Steven D.

    This student guide provides materials for a course designed to instruct the student in the recommended procedures used when setting up tooling and verifying part programs for a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 discusses course content and reviews and demonstrates set-up procedures…

  20. Development process and data management of TurnSTEP, a STEP-compliant CNC system for turning

    NARCIS (Netherlands)

    Choi, I.; Suh, S.-H; Kim, K.; Song, M.S.; Jang, M.; Lee, B.-E.

    2006-01-01

    TurnSTEP is one of the earliest STEP-compliant CNC systems for turning. Based on the STEP-NC data model formalized as ISO 14649-12 and 121, it is designed to support intelligent and autonomous control of NC machines for e-manufacturing. The present paper introduces the development process and data

  1. Fuzzy Linguistic Optimization on Multi-Attribute Machining

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2010-06-01

    Full Text Available Most existing multi-attribute optimization researches for the modern CNC (computer numerical control turning industry were either accomplished within certain manufacturing circumstances, or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme proposed is deemed to be necessary for the industry. In this paper, four parameters (cutting depth, feed rate, speed, tool nose runoff with three levels (low, medium, high are considered to optimize the multi-attribute (surface roughness, tool wear, and material removal rate finish turning. Through FAHP (Fuzzy Analytic Hierarchy Process with eighty intervals for each attribute, the weight of each attribute is evaluated from the paired comparison matrix constructed by the expert judgment. Additionally, twenty-seven fuzzy control rules using trapezoid membership function with respective to seventeen linguistic grades for each attribute are constructed. Considering thirty input and eighty output intervals, the defuzzifierion using center of gravity is thus completed. The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution is moreover utilized to integrate and evaluate the multiple machining attributes for the Taguchi experiment, and thus the optimum general deduction parameters can then be received. The confirmation experiment for optimum general deduction parameters is furthermore performed on an ECOCA-3807 CNC lathe. It is shown that the attributes from the fuzzy linguistic optimization parameters are all significantly advanced comparing to those from benchmark. This paper not only proposes a general deduction optimization scheme using orthogonal array, but also contributes the satisfactory fuzzy linguistic approach for multiple CNC turning attributes with profound insight.

  2. Study of Cutting Edge Temperature and Cutting Force of End Mill Tool in High Speed Machining

    Directory of Open Access Journals (Sweden)

    Kiprawi Mohammad Ashaari

    2017-01-01

    Full Text Available A wear of cutting tools during machining process is unavoidable due to the presence of frictional forces during removing process of unwanted material of workpiece. It is unavoidable but can be controlled at slower rate if the cutting speed is fixed at certain point in order to achieve optimum cutting conditions. The wear of cutting tools is closely related with the thermal deformations that occurred between the frictional contact point of cutting edge of cutting tool and workpiece. This research paper is focused on determinations of relationship among cutting temperature, cutting speed, cutting forces and radial depth of cutting parameters. The cutting temperature is determined by using the Indium Arsenide (InAs and Indium Antimonide (InSb photocells to measure infrared radiation that are emitted from cutting tools and cutting forces is determined by using dynamometer. The high speed machining process is done by end milling the outer surface of carbon steel. The signal from the photocell is digitally visualized in the digital oscilloscope. Based on the results, the cutting temperature increased as the radial depth and cutting speed increased. The cutting forces increased when radial depth increased but decreased when cutting speed is increased. The setup for calibration and discussion of the experiment will be explained in this paper.

  3. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    Science.gov (United States)

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.

  4. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process

    OpenAIRE

    Dhandapani, N. V.; Thangarasu, V. S.; Sureshkannan, G.

    2015-01-01

    This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the...

  5. Surface texturing of Si3N4–SiC ceramic tool components by pulsed laser machining

    CSIR Research Space (South Africa)

    Tshabalala, LC

    2016-03-01

    Full Text Available texturing of Si(sub3)N(sub4)–SiC composites in the fabrication of machining tool inserts for various tribological applications. The samples were machined at varied laser energy (0.1–0.6 mJ) and lateral pulse overlap (50–88%) in order to generate a sequence...

  6. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fell, H.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  7. Robust iterative learning contouring controller with disturbance observer for machine tool feed drives.

    Science.gov (United States)

    Simba, Kenneth Renny; Bui, Ba Dinh; Msukwa, Mathew Renny; Uchiyama, Naoki

    2018-04-01

    In feed drive systems, particularly machine tools, a contour error is more significant than the individual axial tracking errors from the view point of enhancing precision in manufacturing and production systems. The contour error must be within the permissible tolerance of given products. In machining complex or sharp-corner products, large contour errors occur mainly owing to discontinuous trajectories and the existence of nonlinear uncertainties. Therefore, it is indispensable to design robust controllers that can enhance the tracking ability of feed drive systems. In this study, an iterative learning contouring controller consisting of a classical Proportional-Derivative (PD) controller and disturbance observer is proposed. The proposed controller was evaluated experimentally by using a typical sharp-corner trajectory, and its performance was compared with that of conventional controllers. The results revealed that the maximum contour error can be reduced by about 37% on average. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Status of Preliminary Design on the Assembly Tools for ITER Tokamak Machine

    International Nuclear Information System (INIS)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin; Moon, Jae Hwan; Kim, Byung Seok; Lee, Jae Hyuk; Shaw, Robert

    2012-01-01

    The ITER Tokamak device is principally composed of nine 40 .deg. sectors. Each 40 .deg. sector is made up of one 40 .deg. vacuum vessel (VV), two 20 .deg. toroidal filed coils (TFC) and associated vacuum vessel thermal shield (VVTS) segments which consist of one inboard and two outboard vacuum vessel thermal shields. Based on the design description document and final report prepared by the ITER organization (IO) and conceptual design, Korea has carried out the preliminary design of these assembly tools. The assembly strategy and relevant tools for the 40 .deg. sector sub-assembly and sector assembly at in-pit should be developed to satisfy the basic assembly requirements of the ITER Tokamak machine. Assembly strategy, preliminary design of the sector sub-assembly and assembly tools are described in this paper

  9. Tool Wear Analysis due to Machining In Super Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Polishetty Ashwin

    2017-01-01

    Full Text Available This paper presents tool wear study when a machinability test was applied using milling on Super Austenitic Stainless Steel AL6XN alloy. Eight milling trials were performed under two cutting speeds, 100 m/min and 150 m/min, combined with two feed rates at 0.1mm/tooth and 0.15 mm/tooth and two depth of cuts at 2 mm and 3 mm. An Alicona 3D optical surface profilometer was used to scan cutting inserts flank and rake face areas for wear. Readings such as maximum and minimum deviations were extracted and used to analyse the outcomes. Results showed various types of wear were generated on the tool rake and flank faces. The common formed wear was the crater wear. The formation of the build-up edge was observed on the rake face of the cutting tool.

  10. Profiles of Major Suppliers to the Automotive Industry : Vol. 7. Machine Tool Suppliers to the Automotive Industry.

    Science.gov (United States)

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  11. corrosion and wear resistant ternary Cr-C-N coatings deposited by the ARC PVD process for machining tools and machining parts

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Zimmermann, H.; Bobzin, K.

    1997-01-01

    With the deposition of PVD hard coatings on the tools applied in machining operations it is possible to achieve significant improvements in the performance and quality of the machining processes. Depending on the machined material and the operating principle, e.g. turning, milling or drilling, not only different machining parameters but also different coating materials are necessary. In interrupted cut machining of tempered steel, for example, the life time of Ti-C-N coated inserts is several times greater than the Ti-C-N coated ones. This is a result of the favourable thermophysical and tribological properties of Ti-N-C. The potential for tool protection by CrN coatings is a result of the high ductility and low internal stress of this coating materials. CrN films can be deposited with greater film thickness, still maintaining very good adhesion. This paper presents the development of new arc PVD coatings in the system Cr-C-N. Owing to the carbon content in the coating an increased hardness and a better wear behavior in comparison to CrN was expected. The effects of various carbon carrier gases on the coating properties were examined. The coating properties were investigated by mechanical tests. X-ray diffraction, SEM analysis and corrosion tests. Some of the coatings were tested in machining tests. The results of these tests are presented in this paper. (author)

  12. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning

    International Nuclear Information System (INIS)

    Zhu Xiaofeng; Ge Yaorong; Li Taoran; Thongphiew, Danthai; Yin Fangfang; Wu, Q Jackie

    2011-01-01

    Purpose: To ensure plan quality for adaptive IMRT of the prostate, we developed a quantitative evaluation tool using a machine learning approach. This tool generates dose volume histograms (DVHs) of organs-at-risk (OARs) based on prior plans as a reference, to be compared with the adaptive plan derived from fluence map deformation. Methods: Under the same configuration using seven-field 15 MV photon beams, DVHs of OARs (bladder and rectum) were estimated based on anatomical information of the patient and a model learned from a database of high quality prior plans. In this study, the anatomical information was characterized by the organ volumes and distance-to-target histogram (DTH). The database consists of 198 high quality prostate plans and was validated with 14 cases outside the training pool. Principal component analysis (PCA) was applied to DVHs and DTHs to quantify their salient features. Then, support vector regression (SVR) was implemented to establish the correlation between the features of the DVH and the anatomical information. Results: DVH/DTH curves could be characterized sufficiently just using only two or three truncated principal components, thus, patient anatomical information was quantified with reduced numbers of variables. The evaluation of the model using the test data set demonstrated its accuracy ∼80% in prediction and effectiveness in improving ART planning quality. Conclusions: An adaptive IMRT plan quality evaluation tool based on machine learning has been developed, which estimates OAR sparing and provides reference in evaluating ART.

  13. Hardware and software and machine-tool simulation with parallel structures mechanisms

    Directory of Open Access Journals (Sweden)

    Keba P.V.

    2016-12-01

    Full Text Available The usage spectrum of mechanisms with parallel structure is spreading all the time. The mechanisms of machine-tools and manipulators become more complicated and it is necessary to improve the program-controlled modules. Closed circuit mechanisms are mostly spread in robotic complexes, where manipulator performs complicated spatial movements by the given trajectory. The usage spectrum is very wide and the most popular are sorting, welding, assembling and others. However, the problem of designing the operating programs is still present even today. It is just because the developed post-processors are created for the equipment that we have for now. But new machine tool constructions appear every day and there is a necessity to control them. The problems associated with using of hardware and software of mechanisms with parallel structure in computer-aided simulation are considered. The program for inverse problem kinematics solving is designed. New method of designing the control programs is found. The kinematic analysis methods options and calculated data obtained by computer mathematics systems are shown with «Tools Glide» software taken as an example.

  14. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    Science.gov (United States)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  15. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    International Nuclear Information System (INIS)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, Jose C.; Shivpuri, Rajiv

    2007-01-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change

  16. CONDITIONS FOR STABLE CHIP BREAKING AND PROVISION OF MACHINED SURFACE QUALITY WHILE TURNING WITH ASYMMETRIC TOOL VIBRATIONS

    Directory of Open Access Journals (Sweden)

    V. K. Sheleh

    2015-01-01

    Full Text Available The paper considers a process of turning structural steel with asymmetric tool vibrations directed along feeding. Asymmetric vibrations characterized by asymmetry coefficient of vibration cycle, their frequency and amplitude are additionally transferred to the tool in the turning process with the purpose to crush chips. Conditions of stable chip breaking and obtaining optimum dimensions of chip elements have been determined in the paper. In order to reduce a negative impact of the vibration amplitude on a cutting process and quality of the machined surfaces machining must be carried out with its minimum value. In this case certain ratio of the tool vibration frequency to the work-piece rotation speed has been ensured in the paper. A formula has been obtained for calculation of this ratio with due account of the expected length of chip elements and coefficient of vibration cycle asymmetry.Influence of the asymmetric coefficient of the tool vibration cycle on roughness of the machined surfaces and cutting tool wear has been determined in the paper. According to the results pertaining to machining of work-pieces made of 45 and ШХ15 steel the paper presents mathematical relationships of machined surface roughness with cutting modes and asymmetry coefficient of tool vibration cycle. Tool feeding being one of the cutting modes exerts the most significant impact on the roughness value and increase of the tool feeding entails increase in roughness. Reduction in coefficient of vibration cycle asymmetry contributes to surface roughness reduction. However, the cutting tool wear occurs more intensive. Coefficient of the vibration cycle asymmetry must be increased in order to reduce wear rate. Therefore, the choice of the coefficient of the vibration cycle asymmetry is based on the parameters of surface roughness which must be obtained after machining and intensity of tool wear rate.The paper considers a process of turning structural steel with asymmetric

  17. Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data.

    Science.gov (United States)

    Janik, M; Bossew, P; Kurihara, O

    2018-07-15

    Machine learning is a class of statistical techniques which has proven to be a powerful tool for modelling the behaviour of complex systems, in which response quantities depend on assumed controls or predictors in a complicated way. In this paper, as our first purpose, we propose the application of machine learning to reconstruct incomplete or irregularly sampled data of time series indoor radon ( 222 Rn). The physical assumption underlying the modelling is that Rn concentration in the air is controlled by environmental variables such as air temperature and pressure. The algorithms "learn" from complete sections of multivariate series, derive a dependence model and apply it to sections where the controls are available, but not the response (Rn), and in this way complete the Rn series. Three machine learning techniques are applied in this study, namely random forest, its extension called the gradient boosting machine and deep learning. For a comparison, we apply the classical multiple regression in a generalized linear model version. Performance of the models is evaluated through different metrics. The performance of the gradient boosting machine is found to be superior to that of the other techniques. By applying learning machines, we show, as our second purpose, that missing data or periods of Rn series data can be reconstructed and resampled on a regular grid reasonably, if data of appropriate physical controls are available. The techniques also identify to which degree the assumed controls contribute to imputing missing Rn values. Our third purpose, though no less important from the viewpoint of physics, is identifying to which degree physical, in this case environmental variables, are relevant as Rn predictors, or in other words, which predictors explain most of the temporal variability of Rn. We show that variables which contribute most to the Rn series reconstruction, are temperature, relative humidity and day of the year. The first two are physical

  18. Strategic Performance Measurement Using Balanced Scorecard: A Case of Machine Tool Industry

    Directory of Open Access Journals (Sweden)

    Kshatriya Anil

    2017-02-01

    Full Text Available This paper focuses on implementation, monitoring, and application of balanced scorecard (BSC techniques in an organization involved in providing machine tool solutions to the industrial sector. The growth of the company considered in real time constituted improvements of both top and bottom lines. In the industry under consideration, it was observed that in our company, the top line was steadily growing but not the bottom line. This is when we started getting down to brass tacks and strategically focusing on growth in overall profits of the company. This included growing revenues by improving of EBITDA (earnings before interests, taxes, depreciation, and amortization and by increasing efficiency (i.e., cutting costs. These improvements were implemented by chalking out a comprehensive BSC designed to suit the machine tool industry. The four perspectives of the management, namely, internal business process, organizational learning, financial perspective, and customer perspective, have been considered lucidly and enunciate the parameters that affect the BSC very aptly. The BSC designed considered 9 objectives and 27 relative measures of these factors to quantify the various quantitative and qualitative dimensions that affect the company’s performance. A Balanced Lean Index (BL Score was used to measure the results for company X.

  19. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Rafał Świercz

    2017-12-01

    Full Text Available New materials require the use of advanced technology in manufacturing complex shape parts. One of the modern materials widely used in the tool industry for injection molds or hot stamping dies is high conductivity tool steel (HTCS 150. Due to its hardness (55 HRC and thermal conductivity at 66 W/mK, this material is difficult to machine by conventional treatment and is being increasingly manufactured by nonconventional technology such as electrical discharge machining (EDM. In the EDM process, material is removed from the workpiece by a series of electrical discharges that cause changes to the surface layers properties. The final state of the surface layer directly influences the durability of the produced elements. This paper presents the influence of EDM process parameters: discharge current Ic and the pulse time ton on surface layer properties. The experimental investigation was carried out with an experimental methodology design. Surface layers properties including roughness 3D parameters, the thickness of the white layer, heat affected zone, tempered layer and occurring micro cracks were investigated and described. The influence of the response surface methodology (RSM of discharge current Ic and the pulse time ton on the thickness of the white layer and roughness parameters Sa, Sds and Ssc were described and established.

  20. Multidisciplinary Investigations Regarding the Wear of Machine Tools Operating Into the Soil

    Science.gov (United States)

    Cardei, P.; Vladutoiu, L. C.; Gheorghe, G.; Fechete, T. L. V.; Chisiu, G.

    2018-01-01

    The paper presents the results obtained by the authors in investigating the problem of wear of work organs of machines working in continuous interaction with the soil. The phenomenon of the interaction of the tools of agricultural machinery for ploughing, and the soil, is a complex of phenomena, one of the most difficult to model. Among the phenomena involved in this interaction, friction and wear (of many types) are the most important. We did not take into account the chemical wear, and by the wear caused by weather conditions. Research has focused on formulating a theory that has more than a descriptive character, for it be used for application purposes. For this we used classical theoretical models, mathematical models based on the theory of continuous bodies, theory of flow of fluids around the profiles, as well as other theories, approached or not, in an attempt to solve as satisfactorily the issue of the wear, for the tools of the agricultural machines for the tillage. We also sought to highlight the fact that wear is a phenomenon on a micro and macro-scale scale, and its generating causes must ultimately be related to observable effects, on the macro-structural scale.

  1. Quality of clinical brain tumor MR spectra judged by humans and machine learning tools.

    Science.gov (United States)

    Kyathanahally, Sreenath P; Mocioiu, Victor; Pedrosa de Barros, Nuno; Slotboom, Johannes; Wright, Alan J; Julià-Sapé, Margarida; Arús, Carles; Kreis, Roland

    2018-05-01

    To investigate and compare human judgment and machine learning tools for quality assessment of clinical MR spectra of brain tumors. A very large set of 2574 single voxel spectra with short and long echo time from the eTUMOUR and INTERPRET databases were used for this analysis. Original human quality ratings from these studies as well as new human guidelines were used to train different machine learning algorithms for automatic quality control (AQC) based on various feature extraction methods and classification tools. The performance was compared with variance in human judgment. AQC built using the RUSBoost classifier that combats imbalanced training data performed best. When furnished with a large range of spectral and derived features where the most crucial ones had been selected by the TreeBagger algorithm it showed better specificity (98%) in judging spectra from an independent test-set than previously published methods. Optimal performance was reached with a virtual three-class ranking system. Our results suggest that feature space should be relatively large for the case of MR tumor spectra and that three-class labels may be beneficial for AQC. The best AQC algorithm showed a performance in rejecting spectra that was comparable to that of a panel of human expert spectroscopists. Magn Reson Med 79:2500-2510, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Five-axis Control Processing Using NC Machine Tools : A Tool Posture Decision Using the Tangent Slope at a Cut Point on a Work

    OpenAIRE

    小島, 龍広; 西田, 知照; 扇谷, 保彦

    2003-01-01

    This report deals with the way to decide tool posture and the way to analytically calculate tool path for the work shape requiring 5-axis control machining. In the tool path calculation, basic equations are derived using the principle that the tangent slope at a cut point on a work and the one at a cutting point on a tool edge are identical. A tool posture decision procedure using the tangent slope at each cut point on a work is proposed for any shape of tool edge. The valid- ity of the way t...

  3. Effect of Stiffness of Rolling Joints on the Dynamic Characteristic of Ball Screw Feed Systems in a Milling Machine

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2015-01-01

    Full Text Available Dynamic characteristic of ball screw feed system in a milling machine is studied numerically in this work. In order to avoid the difficulty in determining the stiffness of rolling joints theoretically, a dynamic modeling method for analyzing the feed system is discussed, and a stiffness calculation method of the rolling joints is proposed based on the Hertz contact theory. Taking a 3-axis computer numerical control (CNC milling machine set ermined as a research object, the stiffness of its fixed joint between the column and the body together with the stiffness parameters of the rolling joints is evaluated according to the Takashi Yoshimura method. Then, a finite element (FE model is established for the machine tool. The correctness of the FE model and the stiffness calculation method of the rolling joints are validated by theoretical and experimental modal analysis results of the machine tool’s workbench. Under the two modeling methods of joints incorporating the stiffness parameters and rigid connection, a theoretical modal analysis is conducted for the CNC milling machine. The natural frequencies and modal shapes reveal that the joints’ dynamic characteristic has an important influence on the dynamic performance of a whole machine tool, especially for the case with natural frequency and higher modes.

  4. Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel

    International Nuclear Information System (INIS)

    Farhat, Z.N.

    2003-01-01

    The wear behavior of tungsten carbide (WC)-TiC-Co cutting tools during cutting P20 tool steel was investigated. Orthogonal cutting tests were performed on a CNC lathe using five speeds, namely, 60, 120, 240, 380 and 600 m/min. Wear, as the width of the wear land, was monitored at five time intervals. Wear characterization of the rake and the flank surfaces as well as the collected chips was performed using scanning electron microscopy (SEM), backscattered electron imaging and energy-dispersive X-ray analysis (EDX). Microhardness of collected chips was also performed to monitor strain hardening effects during cutting. Two dominant wear mechanisms were identified: at high speed (380-600 m/min), wear was found to occur by a melt wear mechanism; at low speed (60-120 m/min), adhesion (built-up edge) followed by delamination was found to be the cause of wear damage. It was also found that deformation in the chips occurred by localized shear deformation

  5. A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

    OpenAIRE

    He, Shanshan; Ou, Daojiang; Yan, Changya; Lee, Chen-Han

    2015-01-01

    Piecewise linear (G01-based) tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical...

  6. Evaluation of Surface Roughness and Power Consumption in Machining FCD 450 Cast Iron using Coated and Uncoated Irregular Milling Tools

    International Nuclear Information System (INIS)

    Yusoff, Ahmad Razlan; Arsyad, Fitriyanti

    2016-01-01

    In this project, the effects of different cutting parameters on surface roughness and power consumption when machining FCD450 cast iron were studied using coated and uncoated irregular milling tool geometry of variable helix and pitch. Their responses on roughness and power consumption were evaluated based on the spindle speed, feed rate, and depth of cut, machining length and machining time. Results showed that except spindle speed and machining length, other parameters such as feed rate, axial and radial depth of cut and also machining time proportionate with surface roughness. The power consumption proportionately increase for all cutting parameters except feedrate. It is showed that the average decrement 27.92 percent for surface roughness and average decrement 9.32 percent for power consumption by using coated compared to uncoated tool. Optimum cutting parameters for both minimum surface roughness and power consumption can be determined. The coated tools performed better than uncoated milling tools for responses of surface roughness and power consumption to increase machining productivity and profit. (paper)

  7. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques.

    Science.gov (United States)

    Martorelli, Massimo; Gerbino, Salvatore; Giudice, Michele; Ausiello, Pietro

    2013-02-01

    Aim of the research is to compare the orthodontic appliances fabricated by using rapid prototyping (RP) systems, in particular 3D printers, with those manufactured by using computer numerical control (CNC) milling machines. 3D printing is today a well-accepted technology to fabricate orthodontic aligners by using the thermoforming process, instead the potential of CNC systems in dentistry have not yet been sufficiently explored. One patient, with mal-positioned maxillary central and lateral incisors, was initially selected. In the computer aided virtual planning was defined that, for the treatment, the patient needed to wear a series of 7 removable orthodontic appliances (ROA) over a duration of 21 weeks, with one appliance for every 3 weeks. A non-contact reverse engineering (RE) structured-light 3D scanner was used to create the 3D STL model of the impression of the patient's mouth. Numerical FEM simulations were performed varying the position of applied forces (discrete and continuous forces) on the same model, simulating, in this way, 3 models with slice thickness of 0.2 mm, 0.1 mm (RP staircase effect) and without slicing (ideal case). To define the areas of application of forces, two configuration "i" and "i-1" of the treatment were overlapped. 6 patients to which for three steps (3rd, 4th and 5th step) were made to wear aligners fabricated starting from physical models by 3D printing (3DP-ROA) and afterwards, for the next steps (6th, 7th and 8th step), aligners fabricated starting from physical models by CNC milling machine (CNC-ROA), were selected. For the 6 patients wearing the CNC-ROA, it was observed a best fitting of the aligner to the teeth and a more rapid teeth movement than the 3DP-ROA (2 weeks compared to 3 weeks for every appliance). FEM simulations showed a more uniform stress distribution for CNC-ROA than 3DP-ROA. In this research, 6 different case studies and CAD-FEM simulations showed that, to fabricate an efficient clear and removable

  8. Building an asynchronous web-based tool for machine learning classification.

    Science.gov (United States)

    Weber, Griffin; Vinterbo, Staal; Ohno-Machado, Lucila

    2002-01-01

    Various unsupervised and supervised learning methods including support vector machines, classification trees, linear discriminant analysis and nearest neighbor classifiers have been used to classify high-throughput gene expression data. Simpler and more widely accepted statistical tools have not yet been used for this purpose, hence proper comparisons between classification methods have not been conducted. We developed free software that implements logistic regression with stepwise variable selection as a quick and simple method for initial exploration of important genetic markers in disease classification. To implement the algorithm and allow our collaborators in remote locations to evaluate and compare its results against those of other methods, we developed a user-friendly asynchronous web-based application with a minimal amount of programming using free, downloadable software tools. With this program, we show that classification using logistic regression can perform as well as other more sophisticated algorithms, and it has the advantages of being easy to interpret and reproduce. By making the tool freely and easily available, we hope to promote the comparison of classification methods. In addition, we believe our web application can be used as a model for other bioinformatics laboratories that need to develop web-based analysis tools in a short amount of time and on a limited budget.

  9. Normative data for the Maryland CNC Test.

    Science.gov (United States)

    Mendel, Lisa Lucks; Mustain, William D; Magro, Jessica

    2014-09-01

    The Maryland consonant-vowel nucleus-consonant (CNC) Test is routinely used in Veterans Administration medical centers, yet there is a paucity of published normative data for this test. The purpose of this study was to provide information on the means and distribution of word-recognition scores on the Maryland CNC Test as a function of degree of hearing loss for a veteran population. A retrospective, descriptive design was conducted. The sample consisted of records from veterans who had Compensation and Pension (C&P) examinations at a Veterans Administration medical center (N = 1,760 ears). Audiometric records of veterans who had C&P examinations during a 10 yr period were reviewed, and the pure-tone averages (PTA4) at four frequencies (1000, 2000, 3000, and 4000 Hz) were documented. The maximum word-recognition score (PBmax) was determined from the performance-intensity functions obtained using the Maryland CNC Test. Correlations were made between PBmax and PTA4. A wide range of word-recognition scores were obtained at all levels of PTA4 for this population. In addition, a strong negative correlation between the PBmax and the PTA4 was observed, indicating that as PTA4 increased, PBmax decreased. Word-recognition scores decreased significantly as hearing loss increased beyond a mild hearing loss. Although threshold was influenced by age, no statistically significant relationship was found between word-recognition score and the age of the participants. RESULTS from this study provide normative data in table and figure format to assist audiologists in interpreting patient results on the Maryland CNC test for a veteran population. These results provide a quantitative method for audiologists to use to interpret word-recognition scores based on pure-tone hearing loss. American Academy of Audiology.

  10. Machinability of an experimental Ti-Ag alloy in terms of tool life in a dental CAD/CAM system.

    Science.gov (United States)

    Inagaki, Ryoichi; Kikuchi, Masafumi; Takahashi, Masatoshi; Takada, Yukyo; Sasaki, Keiichi

    2015-01-01

    Titanium is difficult to machine because of its intrinsic properties. In a previous study, the machinability of titanium was improved by alloying with silver. This study aimed to evaluate the durability of tungsten carbide burs after the fabrication of frameworks using a Ti-20%Ag alloy and titanium with a computer-aided design and computer-aided manufacturing system. There was a significant difference in attrition area ratio between the two metals. Compared with titanium, the ratio of the area of attrition of machining burs was significantly lower for the experimental Ti-20%Ag alloy. The difference in the area of attrition for titanium and Ti-20%Ag became remarkable with increasing number of machining operations. The results show that the same burs can be used for a longer time with Ti-20%Ag than with pure titanium. Therefore, in terms of tool life, the machinability of the Ti-20%Ag alloy is superior to that of titanium.

  11. On CNC Commuting Contractive Tuples

    Indian Academy of Sciences (India)

    The characteristic function has been an important tool for studying completely non-unitary contractions on Hilbert spaces. In this note, we consider completely non-coisometric contractive tuples of commuting operators on a Hilbert space H . We show that the characteristic function, which is now an operator-valued analytic ...

  12. The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping

    Directory of Open Access Journals (Sweden)

    Vopát Tomáš

    2014-12-01

    Full Text Available The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.

  13. The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping

    Science.gov (United States)

    Vopát, Tomáš; Peterka, Jozef; Kováč, Martin

    2014-12-01

    The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life) of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.

  14. Evaluation of machine learning tools for inspection of steam generator tube structures using pulsed eddy current

    Science.gov (United States)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2017-02-01

    Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.

  15. Finite Element Analysis as a response to frequently asked questions of machine tool mechanical design-engineers

    Directory of Open Access Journals (Sweden)

    Kehl Gerhard

    2017-01-01

    Full Text Available The finite element analysis (FEA nowadays is indispensable in the product development of machining centres and production machinery for metal cutting processes. It enables extensive static, dynamic and thermal simulation of digital prototypes of machine tools before production start-up. But until now less reflection has been made about what are the most pressing questions to be answered in this application field, with the intention to align the modelling and simulation methods with substantial requirements. Based on 3D CAD geometry data for a modern machining centre (Deckel-Maho-Gildemeister DMG 635 V eco merely the basic steps of a static analysis are reconstructed by FEA. Particularly the two most frequently asked questions by the design departments of machine tool manufacturers are discussed and highlighted. For this authentic simulation results are used, at which their selection is a consequence of long lasting experience in the industrial application of FEA in the design process chain. Noticing that such machine tools are mechatronic systems applying a considerable number of actuators, sensors and controllers in addition to mechanical structures, the answers to those core questions are required for design enhancement, to save costs and to improve the productivity and the quality of machined workpieces.

  16. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  17. Analysis of residual stress in subsurface layers after precision hard machining of forging tools

    Directory of Open Access Journals (Sweden)

    Czan Andrej

    2018-01-01

    Full Text Available This paper is focused on analysis of residual stress of functional surfaces and subsurface layers created by precision technologies of hard machining for progressive constructional materials of forging tools. Methods of experiments are oriented on monitoring of residual stress in surface which is created by hard turning (roughing and finishing operations. Subsequently these surfaces were etched in thin layers by electro-chemical polishing. The residual stress was monitored in each etched layer. The measuring was executed by portable X-ray diffractometer for detection of residual stress and structural phases. The results significantly indicate rise and distribution of residual stress in surface and subsurface layers and their impact on functional properties of surface integrity.

  18. DIAGNOSTICS OF WORKPIECE SURFACE CONDITION BASED ON CUTTING TOOL VIBRATIONS DURING MACHINING

    Directory of Open Access Journals (Sweden)

    Jerzy Józwik

    2015-05-01

    Full Text Available The paper presents functional relationships between surface geometry parameters, feed and vibrations level in the radial direction of the workpiece. Time characteristics of the acceleration of cutting tool vibration registered during C45 steel and stainless steel machining for separate axes (X, Y, Z were presented as a function of feedrate f. During the tests surface geometric accuracy assessment was performed and 3D surface roughness parameters were determined. The Sz parameter was selected for the analysis, which was then collated with RMS vibration acceleration and feedrate f. The Sz parameter indirectly provides information on peak to valley height and is characterised by high generalising potential i.e. it is highly correlated to other surface and volume parameters of surface roughness. Test results presented in this paper may constitute a valuable source of information considering the influence of vibrations on geometric accuracy of elements for engineers designing technological processes.

  19. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    Science.gov (United States)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  20. Evaluation on machined surface of hardened stainless steel generated by hard turning using coated carbide tools with wiper geometry

    International Nuclear Information System (INIS)

    Noordin, M.Y.; Kurniawan, D.; Sharif, S.

    2007-01-01

    Hard turning has been explored to be the finish machining operation for parts made of hardened steel. Its feasibility is determined partially by the quality of the resulting machined surface. This study evaluates the surface integrity of martensitic stainless steel (48 HRC) resulting from hard turning using coated carbide tool with wiper geometry at various cutting speed and feed and compares to that obtained using coated carbide tool with conventional geometry. The wiper coated carbide tool is able to produce machined surface which is of finer finish (Ra is finer than 0.4 μm at most cutting parameters) and yet is similarly inducing only minor microstructural alteration compared to its conventional counterpart. From the view of the chip morphology where continuous type of chip is desired rather than sawtooth chip type, the wiper tool generates continuous chip at almost similar range of cutting parameters compared to the case when using conventional tool. Additionally, the use of wiper tool also induces the preferred compressive residual stress at the machined surface. (author)

  1. Optimization of machining parameters of hard porcelain on a CNC ...

    African Journals Online (AJOL)

    s (2010) focus was to calculate drilled composite's surface roughness with the application of ... instance, objective function as well as restrictions on rotor enactment. ..... to aerodynamic optimization design of helicopter rotor blade, International.

  2. Straightness measurement of large machine guideways

    Directory of Open Access Journals (Sweden)

    W. Ptaszyñski

    2011-10-01

    Full Text Available This paper shows the guideway types of large machines and describes problems with their straightness measurement. A short description of straightness measurement methods and the results of investigation in straightness of 10 meter long guideways of a CNC machine by means of the XL-10 Renishaw interferometer are also presented.

  3. Finite Element Modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel

    International Nuclear Information System (INIS)

    Sulaiman, S; Roshan, A; Ariffin, M K A

    2013-01-01

    In this paper, a Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material model was used to simulate cutting force and tool temperature during high speed machining (HSM) of AISI 4340 steel. In this simulation work, a tool rake angle ranging from 0° to 20° and a range of cutting speeds between 300 to 550 m/min was investigated. The purpose of this simulation analysis was to find optimum tool rake angle where cutting force is smallest as well as tool temperature is lowest during high speed machining. It was found that cutting forces to have a decreasing trend as rake angle increased to positive direction. The optimum rake angle observed between 10° and 18° due to decrease of cutting force as 20% for all simulated cutting speeds. In addition, increasing cutting tool rake angle over its optimum value had negative influence on tool's performance and led to an increase in cutting temperature. The results give a better understanding and recognition of the cutting tool design for high speed machining processes

  4. Specified international joint research. Report for fiscal 1997 on the result of `Development of Machining Supporting System`; Kokusai tokutei kyodo kenkyu. `Kikai kako shien system no kaihatsu` 1997 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    On the basis of information obtained from actually performed designing of machines with the aid of computers, researches are conducted for the development of a system that automatically designs required machine tools, machining procedures, machining conditions, and tool paths. The research and development efforts made in fiscal 1997 are enumerated below. In the development of man-machine interfaces, one that integrates a machining procedure designing system, machining condition designing system, and a tool path designing system, all of which are subsystems belonging in a machining supporting system, is developed. In a system evaluation performed through actual machining, an interface between CAD (Computer-Aided Design) technology and a machining supporting system is evaluated, when machining is actually performed for experimentation in an environment in which a machining procedure designing system, machining condition designing system, tool path designing system, and CNC (Computerized Numerical Control) technology collaborate as integrated. As the result, the performance expected to be achieved at the beginning is realized. Two scientists of Russian Academy of Sciences are invited, and researches are conducted concerning knowledge processing technology. 20 refs., 21 figs., 10 tabs.

  5. Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance

    Science.gov (United States)

    Doetz, M.; Dambon, O.; Klocke, F.; Bulla, B.; Schottka, K.; Robertson, D. J.

    2017-10-01

    Ultra-precision diamond turning enables the manufacturing of parts with mirror-like surfaces and highest form accuracies out of non-ferrous, a few crystalline and plastic materials. Furthermore, an ultrasonic assistance has the ability to push these boundaries and enables the machining of materials like steel, which is not possible in a conventional way due to the excessive tool wear caused by the affinity of carbon to iron. Usually monocrystalline diamonds tools are applied due to their unsurpassed cutting edge properties. New cutting tool material developments have shown that it is possible to produce tools made of nano-polycrystalline diamonds with cutting edges equivalent to monocrystalline diamonds. In nano-polycrystalline diamonds ultra-fine grains of a few tens of nanometers are firmly and directly bonded together creating an unisotropic structure. The properties of this material are described to be isotropic, harder and tougher than those of the monocrystalline diamonds, which are unisotropic. This publication will present machining results from the newest investigations of the process potential of this new polycrystalline cutting material. In order to provide a baseline with which to characterize the cutting material cutting experiments on different conventional machinable materials like Cooper or Aluminum are performed. The results provide information on the roughness and the topography of the surface focusing on the comparison to the results while machining with monocrystalline diamond. Furthermore, the cutting material is tested in machining steel with ultrasonic assistance with a focus on tool life time and surface roughness. An outlook on the machinability of other materials will be given.

  6. Study on lean thinking among MSMEs in the Machine tool sector in India

    Science.gov (United States)

    Priyaadarshini, R. G.; Sathish Kumar, V. R.; Aishwarya Rajlakshmi, S.

    2018-02-01

    In the era of stiff competition and customer expectations, manufacturing organizations across the world are struggling hard to minimize their costs and maximise their performance. Micro, Small and Medium enterprises (MSMEs), who are dependent on large corporate for business and support have a tall task of keeping pace quality in processes and output. They are in the constant vigil to adopt new systems and practices so that they can minimise their cost and maximize the productivity. This study has been conducted in the machine tool sector of Coimbatore, India; which houses more than 9000 companies and offers employment to over one lakh employees. They have a tremendous pressure to use scientific processes to increase their product quality and productivity. While Lean manufacturing has been the thrust to improve the competitiveness among MSMEs in India, this study has attempted to understand their attitude towards lean management and understand the extent to which companies practice lean tools and practices. It has been found that most of the organizations in the study possess a culture of lean thinking and possess the support of top management and employees also towards the initiative. It is also seen that the organizations that incorporated lean in their daily operations have been able to scale up their productivity.

  7. Machine learning-based assessment tool for imbalance and vestibular dysfunction with virtual reality rehabilitation system.

    Science.gov (United States)

    Yeh, Shih-Ching; Huang, Ming-Chun; Wang, Pa-Chun; Fang, Te-Yung; Su, Mu-Chun; Tsai, Po-Yi; Rizzo, Albert

    2014-10-01

    Dizziness is a major consequence of imbalance and vestibular dysfunction. Compared to surgery and drug treatments, balance training is non-invasive and more desired. However, training exercises are usually tedious and the assessment tool is insufficient to diagnose patient's severity rapidly. An interactive virtual reality (VR) game-based rehabilitation program that adopted Cawthorne-Cooksey exercises, and a sensor-based measuring system were introduced. To verify the therapeutic effect, a clinical experiment with 48 patients and 36 normal subjects was conducted. Quantified balance indices were measured and analyzed by statistical tools and a Support Vector Machine (SVM) classifier. In terms of balance indices, patients who completed the training process are progressed and the difference between normal subjects and patients is obvious. Further analysis by SVM classifier show that the accuracy of recognizing the differences between patients and normal subject is feasible, and these results can be used to evaluate patients' severity and make rapid assessment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. GA based CNC turning center exploitation process parameters optimization

    Directory of Open Access Journals (Sweden)

    Z. Car

    2009-01-01

    Full Text Available This paper presents machining parameters (turning process optimization based on the use of artificial intelligence. To obtain greater efficiency and productivity of the machine tool, optimal cutting parameters have to be obtained. In order to find optimal cutting parameters, the genetic algorithm (GA has been used as an optimal solution finder. Optimization has to yield minimum machining time and minimum production cost, while considering technological and material constrains.

  9. Effect of cutting parameters on sustainable machining performance of coated carbide tool in dry turning process of stainless steel 316

    Science.gov (United States)

    Bagaber, Salem A.; Yusoff, Ahmed Razlan

    2017-04-01

    The manufacturing industry aims to produce many products of high quality with relatively less cost and time. Different cutting parameters affect the machining performance of surface roughness, cutting force, and material removal rate. Nevertheless, a few studies reported on the effects of sustainable factors such as power consumed, cycle time during machining, and tool life on the dry turning of AISI 316. The present study aims to evaluate the machining performance of coated carbide in the machining of hard steel AISI 316 under the dry turning process. The influence of cutting parameters of cutting speed, feed rate, and depth of cut with their five (5) levels is established by a central composite design. Highly significant parameters were determined by analysis of variance (ANOVA), and the main effects of power consumed and time during machining, surface roughness, and tool wear were observed. Results showed that the cutting speed was proportional to power consumption and tool wear. Meanwhile, insignificant to surface roughness, feed rate most significantly affected surface roughness and power consumption followed by depth of cut.

  10. CNC proteins in physiology and pathology

    Directory of Open Access Journals (Sweden)

    Agnieszka Gęgotek

    2015-07-01

    Full Text Available CNC proteins consist of Bach1, Bach2 and 4 homologous transcription factors: Nrf1, Nrf2, Nrf3 and p45NF-E2. Transcription factors belonging to this group of proteins play a crucial role in protection of cells against oxidative stress. Under physiological conditions, they remain in the cytoplasm in the inactive form or are degraded. However, in oxidative stress conditions, they are translocated to the nucleus, and bind to DNA in the ARE sequence. Consequently, there is transcription of genes encoding cytoprotective proteins, such as phase II enzymes, or low molecular weight antioxidant proteins (i.e., thioredoxin, ferritin, metallothionein responsible for protecting cells from reactive oxygen species (ROS action. The activity of transcriptional proteins depends directly on the redox state of the cell. ROS as second messenger signals, control inhibitors of cytoplasmic CNC proteins or potentiate the activity of kinases (MAPK, PKC, PI3K, PERK, leading to phosphorylation of transcription factors. This is conducive to translocation of these molecules into the nucleus and to formation of complexes that initiate the gene expression. Disorders of regulation of the activity of transcription factors belonging to the CNC proteins caused by gene mutations, epigenetic modifications or increased activity of p62, p21, or k-Ras, B-Raf and c-Myc oncogenes, induce changes in the level of ARE-dependent gene expression, which can lead even to the development of carcinogenesis. On the other hand, Nrf transcription factors, inducing the expression of antioxidants and enzymes responsible for the detoxification of xenobiotics, can be considered as a potential target of the action of chemopreventive factors in anticancer therapy.

  11. [CNC proteins in physiology and pathology].

    Science.gov (United States)

    Gęgotek, Agnieszka; Skrzydlewska, Elżbieta

    2015-07-06

    CNC proteins consist of Bach1, Bach2 and 4 homologous transcription factors: Nrf1, Nrf2, Nrf3 and p45NF-E2. Transcription factors belonging to this group of proteins play a crucial role in protection of cells against oxidative stress. Under physiological conditions, they remain in the cytoplasm in the inactive form or are degraded. However, in oxidative stress conditions, they are translocated to the nucleus, and bind to DNA in the ARE sequence. Consequently, there is transcription of genes encoding cytoprotective proteins, such as phase II enzymes, or low molecular weight antioxidant proteins (i.e., thioredoxin, ferritin, metallothionein) responsible for protecting cells from reactive oxygen species (ROS) action. The activity of transcriptional proteins depends directly on the redox state of the cell. ROS as second messenger signals, control inhibitors of cytoplasmic CNC proteins or potentiate the activity of kinases (MAPK, PKC, PI3K, PERK), leading to phosphorylation of transcription factors. This is conducive to translocation of these molecules into the nucleus and to formation of complexes that initiate the gene expression. Disorders of regulation of the activity of transcription factors belonging to the CNC proteins caused by gene mutations, epigenetic modifications or increased activity of p62, p21, or k-Ras, B-Raf and c-Myc oncogenes, induce changes in the level of ARE-dependent gene expression, which can lead even to the development of carcinogenesis. On the other hand, Nrf transcription factors, inducing the expression of antioxidants and enzymes responsible for the detoxification of xenobiotics, can be considered as a potential target of the action of chemopreventive factors in anticancer therapy.

  12. Advanced CNC Programming (EZ-CAM). 439-366.

    Science.gov (United States)

    Casey, Joe

    This document contains two units for an advanced course in computer numerical control (CNC) for computer-aided manufacturing. It is intended to familiarize students with the principles and techniques necessary to create proper CNC programs using computer software. Each unit consists of an introduction, instructional objectives, learning materials,…

  13. Heat-Assisted Machining for Material Removal Improvement

    Science.gov (United States)

    Mohd Hadzley, A. B.; Hafiz, S. Muhammad; Azahar, W.; Izamshah, R.; Mohd Shahir, K.; Abu, A.

    2015-09-01

    Heat assisted machining (HAM) is a process where an intense heat source is used to locally soften the workpiece material before machined by high speed cutting tool. In this paper, an HAM machine is developed by modification of small CNC machine with the addition of special jig to hold the heat sources in front of the machine spindle. Preliminary experiment to evaluate the capability of HAM machine to produce groove formation for slotting process was conducted. A block AISI D2 tool steel with100mm (width) × 100mm (length) × 20mm (height) size has been cut by plasma heating with different setting of arc current, feed rate and air pressure. Their effect has been analyzed based on distance of cut (DOC).Experimental results demonstrated the most significant factor that contributed to the DOC is arc current, followed by the feed rate and air pressure. HAM improves the slotting process of AISI D2 by increasing distance of cut due to initial cutting groove that formed during thermal melting and pressurized air from the heat source.

  14. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2018-03-01

    Full Text Available Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA is proposed. PCA allowed to identify a smaller number of features (k = 2 features, the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax was achieved, with predicted values very close to the measured tool wear values.

  15. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition.

    Science.gov (United States)

    Caggiano, Alessandra

    2018-03-09

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features ( k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear ( VB max ) was achieved, with predicted values very close to the measured tool wear values.

  16. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition

    Science.gov (United States)

    2018-01-01

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values. PMID:29522443

  17. Thermo-energetic design of machine tools a systemic approach to solve the conflict between power efficiency, accuracy and productivity demonstrated at the example of machining production

    CERN Document Server

    2015-01-01

    The approach to the solution within the CRC/TR 96 financed by the German Research Foundation DFG aims at measures that will allow manufacturing accuracy to be maintained under thermally unstable conditions with increased productivity, without an additional demand for energy for tempering. The challenge of research in the CRC/TR 96 derives from the attempt to satisfy the conflicting goals of reducing energy consumption and increasing accuracy and productivity in machining. In the current research performed in 19 subprojects within the scope of the CRC/TR 96, correction and compensation solutions that influence the thermo-elastic machine tool behaviour efficiently and are oriented along the thermo-elastic functional chain are explored and implemented. As part of this general objective, the following issues must be researched and engineered in an interdisciplinary setting and brought together into useful overall solutions:   1.  Providing the modelling fundamentals to calculate the heat fluxes and the resulti...

  18. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites.

    Science.gov (United States)

    Kamal, Musa R; Khoshkava, Vahid

    2015-06-05

    In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of dispersion of CNC in polymer nanocomposites, it was shown that supporting evidence of the quality and influence of dispersion in a polypropylene (PP)/CNC nanocomposite could be obtained by studying the rheological behavior, mechanical properties and crystallization characteristics of PP/CNC nanocomposites. In an effort to produce a sustainable, fully biosourced, biodegradable nanocomposite, this manuscript presents the results of a study of the rheological, mechanical and crystallization behavior of PLA/CNCSFD nanocomposites obtained by melt processing. The results are analyzed to determine CNC network formation, rheological percolation threshold concentrations, mechanical properties in the rubbery and glassy states, and the effect of CNCSFD on crystalline nucleation and crystallization rates of PLA. These results suggest that the porosity and network structure of CNCSFD agglomerates contribute significantly to good dispersion of CNC in the PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  20. Dust Creation in CNC Drilling of Wood Composites

    Directory of Open Access Journals (Sweden)

    Tomasz Rogoziński

    2015-04-01

    Full Text Available This paper presents the particle-size distribution of dust created by the drilling of selected wood composites, which was carried out using a CNC machine. The particle-size distribution was studied through two methods. Two analyses were performed: the sieve analysis of samples from the whole mass of collected dust and the laser diffraction analysis of the finest fraction isolated by sieving. The results presented general information about the particle-size distribution of the dust, as well as detailed information on the content of the finest particles. This information revealed that the particles might pose a potential risk to the health of workers employed in the woodworking industry. This potential risk is due to the possibility of their dispersion in the atmosphere surrounding the workplace and their size, which allows them to be respirable. The relationship between the fineness of the dust and the type of wood composite was also tested. Most ultrafine particles are formed during the drilling of fibreboards and are especially produced in traditional wet technology.

  1. Prediction of ttt curves of cold working tool steels using support vector machine model

    Science.gov (United States)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    The cold working tool steels are of high carbon steels with metallic alloy additions which impart higher hardenability, abrasion resistance and less distortion in quenching. The microstructure changes occurring in tool steel during heat treatment is of very much importance as the final properties of the steel depends upon these changes occurred during the process. In order to obtain the desired performance the alloy constituents and its ratio plays a vital role as the steel transformation itself is complex in nature and depends very much upon the time and temperature. The proper treatment can deliver satisfactory results, at the same time process deviation can completely spoil the results. So knowing time temperature transformation (TTT) of phases is very critical which varies for each type depending upon its constituents and proportion range. To obtain adequate post heat treatment properties the percentage of retained austenite should be lower and metallic carbides obtained should be fine in nature. Support vector machine is a computational model which can learn from the observed data and use these to predict or solve using mathematical model. Back propagation feedback network will be created and trained for further solutions. The points on the TTT curve for the known transformations curves are used to plot the curves for different materials. These data will be trained to predict TTT curves for other steels having similar alloying constituents but with different proportion range. The proposed methodology can be used for prediction of TTT curves for cold working steels and can be used for prediction of phases for different heat treatment methods.

  2. Applying CBR to machine tool product configuration design oriented to customer requirements

    Science.gov (United States)

    Wang, Pengjia; Gong, Yadong; Xie, Hualong; Liu, Yongxian; Nee, Andrew Yehching

    2017-01-01

    Product customization is a trend in the current market-oriented manufacturing environment. However, deduction from customer requirements to design results and evaluation of design alternatives are still heavily reliant on the designer's experience and knowledge. To solve the problem of fuzziness and uncertainty of customer requirements in product configuration, an analysis method based on the grey rough model is presented. The customer requirements can be converted into technical characteristics effectively. In addition, an optimization decision model for product planning is established to help the enterprises select the key technical characteristics under the constraints of cost and time to serve the customer to maximal satisfaction. A new case retrieval approach that combines the self-organizing map and fuzzy similarity priority ratio method is proposed in case-based design. The self-organizing map can reduce the retrieval range and increase the retrieval efficiency, and the fuzzy similarity priority ratio method can evaluate the similarity of cases comprehensively. To ensure that the final case has the best overall performance, an evaluation method of similar cases based on grey correlation analysis is proposed to evaluate similar cases to select the most suitable case. Furthermore, a computer-aided system is developed using MATLAB GUI to assist the product configuration design. The actual example and result on an ETC series machine tool product show that the proposed method is effective, rapid and accurate in the process of product configuration. The proposed methodology provides a detailed instruction for the product configuration design oriented to customer requirements.

  3. Inventory management performance in machine tool SMEs: What factors do influence them?

    Directory of Open Access Journals (Sweden)

    Rajeev Narayana Pillai

    2010-12-01

    Full Text Available Small and Medium Enterprises (SMEs are one of the principal driving forces in the development of an economy because of its significant contribution in terms of number of enterprises, employment, output and exports in most developing as well as developed countries. But SMEs, particularly in developing countries like India, face constraints in key areas such as technology, finance, marketing and human resources. Moreover these SMEs have been exposed to intense competition since early 1990s because of globalization. However, globalization, the process of continuing integration of the countries in the world has opened up new opportunities for SMEs of developing countries to cater to wider international market which brings out the need for these SMEs to develop competitiveness for their survival as well as growth. It is observed from literature that pursuing appropriate IM practice is one of the ways of acquiring competitiveness among others, by effectively managing and minimizing inventory investment. Inventory management can therefore be one of the crucial determinants of competitiveness as well as operational performance of SMEs in inventory intensive manufacturing industries. The key issue is whether Indian SMEs pursue better IM practices with an intension to reduce their inventory cost and enhance their competitiveness. If so, what are the IM practices pursued by these enterprises? What are the factors which influence the inventory cost and IM performance of enterprises? These questions have been addressed in this study with reference to machine tool SMEs located in the city of Bangalore, India.

  4. MODEL OF THE QUALITY MANAGEMENT SYSTEM OF A MACHINE TOOL COMPANY

    Directory of Open Access Journals (Sweden)

    Катерина Вікторівна КОЛЕСНІКОВА

    2016-02-01

    Full Text Available Development of models and methods such that would improve the competitive position of enterprises by improving management processes is an important task of project management. Lack of project management within the information technology and continuous improvement of methods for the management of the environment, interaction, community, value and trust, based on the strategic objectives of enterprises and based on models that take into account the relationship of the system, resulting in significant material and resource costs. In the current work the improvement of the quality management system machine-tool company HC MIKRON® and proved that the introduction of new processes critical analysis requirements for products, support processes of the products to consumers and enterprises in the formation of a system of responsibility, division of responsibilities and reporting (according to ISO 9001: 2009 is an important scientific and reasonable step to improve the level of technological maturity and structural modernization of enterprise management. For the improved structure of the analysis model and test the properties of ergodicity, as a condition of efficiency, a new quality management system.

  5. Modeling of optimization strategies in the incremental CNC sheet metal forming process

    International Nuclear Information System (INIS)

    Bambach, M.; Hirt, G.; Ames, J.

    2004-01-01

    Incremental CNC sheet forming (ISF) is a relatively new sheet metal forming process for small batch production and prototyping. In ISF, a blank is shaped by the CNC movements of a simple tool in combination with a simplified die. The standard forming strategies in ISF entail two major drawbacks: (i) the inherent forming kinematics set limits on the maximum wall angle that can be formed with ISF. (ii) since elastic parts of the imposed deformation can currently not be accounted for in CNC code generation, the standard strategies can lead to undesired deviations between the target and the sample geometry.Several enhancements have recently been put forward to overcome the above limitations, among them a multistage forming strategy to manufacture steep flanges, and a correction algorithm to improve the geometric accuracy. Both strategies have been successful in improving the forming of simple parts. However, the high experimental effort to empirically optimize the tool paths motivates the use of process modeling techniques.This paper deals with finite element modeling of the ISF process. In particular, the outcome of different multistage strategies is modeled and compared to collated experimental results regarding aspects such as sheet thickness and the onset of wrinkling. Moreover, the feasibility of modeling the geometry of a part is investigated as this is of major importance with respect to optimizing the geometric accuracy. Experimental validation is achieved by optical deformation measurement that gives the local displacements and strains of the sheet during forming as benchmark quantities for the simulation

  6. Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor

    Directory of Open Access Journals (Sweden)

    Chen Gao

    2017-03-01

    Full Text Available Tool fault diagnosis in numerical control (NC machines plays a significant role in ensuring manufacturing quality. However, current methods of tool fault diagnosis lack accuracy. Therefore, in the present paper, a fault diagnosis method was proposed based on stationary subspace analysis (SSA and least squares support vector machine (LS-SVM using only a single sensor. First, SSA was used to extract stationary and non-stationary sources from multi-dimensional signals without the need for independency and without prior information of the source signals, after the dimensionality of the vibration signal observed by a single sensor was expanded by phase space reconstruction technique. Subsequently, 10 dimensionless parameters in the time-frequency domain for non-stationary sources were calculated to generate samples to train the LS-SVM. Finally, the measured vibration signals from tools of an unknown state and their non-stationary sources were separated by SSA to serve as test samples for the trained SVM. The experimental validation demonstrated that the proposed method has better diagnosis accuracy than three previous methods based on LS-SVM alone, Principal component analysis and LS-SVM or on SSA and Linear discriminant analysis.

  7. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    OpenAIRE

    Mo Yang; Lin Gui; Yefa Hu; Guoping Ding; Chunsheng Song

    2018-01-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. ...

  8. Structural Reorganization of CNC in Injection-Molded CNC/PBAT Materials under Thermal Annealing.

    Science.gov (United States)

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain

    2016-10-04

    Composite materials were prepared by extrusion and injection molding from polybutyrate adipate terephthalate (PBAT) and high aspect ratio cellulose nanocrystals (CNCs) extracted from capim dourado fibers. Three CNC contents were used, corresponding to 0.5, 1, and 2 times the theoretical percolation threshold. Small-amplitude oscillary shear (SAOS) experiments show that as the CNC content increases, a more elastic behavior is observed but no percolating network can form within the polymeric matrix as a result of the high shear rates involved during the injection-molding process. Annealing of the samples at 170 °C was performed, and the possible reorganization of the nanofiller was investigated. This reorganization was further elucidated using 2D-SAOS and creep experiments.

  9. Simulating the Effect of Modulated Tool-Path Chip Breaking On Surface Texture and Chip Length

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.S.; McFarland, J.T.; Tursky, D. A.; Assaid, T. S.; Barkman, W. E.; Babelay, Jr., E. F.

    2010-04-30

    One method for creating broken chips in turning processes involves oscillating the cutting tool in the feed direction utilizing the CNC machine axes. The University of North Carolina at Charlotte and the Y-12 National Security Complex have developed and are refining a method to reliably control surface finish and chip length based on a particular machine's dynamic performance. Using computer simulations it is possible to combine the motion of the machine axes with the geometry of the cutting tool to predict the surface characteristics and map the surface texture for a wide range of oscillation parameters. These data allow the selection of oscillation parameters to simultaneously ensure broken chips and acceptable surface characteristics. This paper describes the machine dynamic testing and characterization activities as well as the computational method used for evaluating and predicting chip length and surface texture.

  10. Comparison of Advanced Machine Learning Tools for Disruption Prediction and Disruption Studies

    Czech Academy of Sciences Publication Activity Database

    Odstrčil, Michal; Murari, A.; Mlynář, Jan

    2013-01-01

    Roč. 41, č. 7 (2013), s. 1751-1759 ISSN 0093-3813 R&D Projects: GA ČR GAP205/10/2055 Institutional support: RVO:61389021 Keywords : Learning Machines * Support Vector Machines * Neural Network * ASDEX Upgrade * JET * Disruption mitigation * Tokamaks * ITER Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.950, year: 2013

  11. Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module

    Directory of Open Access Journals (Sweden)

    Yuan-Chieh Lo

    2018-02-01

    Full Text Available Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe. Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t| °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR technique and implemented into the real-time embedded system.

  12. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACHINE INDEPENDENT VERSION)

    Science.gov (United States)

    Baffes, P. T.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  13. Tool life of ceramic wedges during precise turning of tungsten

    Directory of Open Access Journals (Sweden)

    Legutko Stanislaw

    2017-01-01

    Full Text Available Properties, application and machinability of tungsten and its alloys have been demonstrated. The comparison of the tool life and wear of the wedges made of SiAlON and whisker ceramics during the precise turning at different cutting parameters have been presented. The CNC lathe DMG CTX 310 Ecoline and tungsten of 99.7 % purity were used during the experiments. Only the wedge of whisker ceramics has proved to be sufficiently suitable and only for relatively low cutting speeds.

  14. A friendly tool to remotely follow-up fusion machines experiments

    International Nuclear Information System (INIS)

    Signoret, J.; Balme, S.; Theis, J.M.

    2013-01-01

    Highlights: • ShotListener allows a remote user to easily follow up the shot sequence and receive information on the shot operation. • ShotListener is a java application available for Windows and Linux platform. • ShotListener is suitable for any tokamak. -- Abstract: When the international collaborations gather around a project more and more geographically scattered participants, it is imperative for them to get tools to keep in touch with the laboratory hosting the experiment, to know about the ongoing operations or even to remotely participate in them. The CEA-IRFM developed ShotListener to meet these needs, which should appear for actual or future tokamaks. This Java application intercepts the main events of a discharge sequence and notifies the user with visual or sound alerts, allowing him to follow the distant experiments easily. An API based on an MDSplus server has been developed to insure communication with the local CODAC supervision system. This API translates the Tokamak events as MDSplus events, available for any subscribers. The java application ShotListener, available for Windows and Linux platforms as an auto-installable package, connects to the MDSplus server, subscribes to a list of shot events (customizable by the end-user) and sends a visual or sound alert when a selected event occurs. For example, depending on the selected events, the user can display an extract of the shots log or visualize the video of the pulse. This architecture is obviously suitable for any machine, as long as the specific API sending MDSplus events is implemented. The aim of this paper is to describe the detailed architecture of ShotListener, to present its different functionalities and to introduce some possible enhancements

  15. Machine Assistance in Collection Building: New Tools, Research, Issues, and Reflections

    Directory of Open Access Journals (Sweden)

    Steve Mitchell

    2006-12-01

    Full Text Available Digital tool making offers many challenges, involving much trial and error. Developing machine learning and assistance in automated and semi-automated Internet resource discovery, metadata generation, and rich-text identification provides opportunities for great discovery, innovation, and the potential for transformation of the library community. The areas of computer science involved, as applied to the library applications addressed, are among that discipline’s leading edges. Making applied research practical and applicable, through placement within library/collection-management systems and services, involves equal parts computer scientist, research librarian, and legacy-systems archaeologist. Still, the early harvest is there for us now, with a large harvest pending. Data Fountains and iVia, the projects discussed, demonstrate this. Clearly, then, the present would be a good time for the library community to more proactively and significantly engage with this technology and research, to better plan for its impacts, to more proactively take up the challenges involved in its exploration, and to better and more comprehensively guide effort in this new territory. The alternative to doing this is that others will develop this territory for us, do it not as well, and sell it back to us at a premium. Awareness of this technology and its current capabilities, promises, limitations, and probable major impacts needs to be generalized throughout the library management, metadata, and systems communities. This article charts recent work, promising avenues for new research and development, and issues the library community needs to understand.

  16. A friendly tool to remotely follow-up fusion machines experiments

    Energy Technology Data Exchange (ETDEWEB)

    Signoret, J., E-mail: jacqueline.signoret@cea.fr; Balme, S.; Theis, J.M.

    2013-10-15

    Highlights: • ShotListener allows a remote user to easily follow up the shot sequence and receive information on the shot operation. • ShotListener is a java application available for Windows and Linux platform. • ShotListener is suitable for any tokamak. -- Abstract: When the international collaborations gather around a project more and more geographically scattered participants, it is imperative for them to get tools to keep in touch with the laboratory hosting the experiment, to know about the ongoing operations or even to remotely participate in them. The CEA-IRFM developed ShotListener to meet these needs, which should appear for actual or future tokamaks. This Java application intercepts the main events of a discharge sequence and notifies the user with visual or sound alerts, allowing him to follow the distant experiments easily. An API based on an MDSplus server has been developed to insure communication with the local CODAC supervision system. This API translates the Tokamak events as MDSplus events, available for any subscribers. The java application ShotListener, available for Windows and Linux platforms as an auto-installable package, connects to the MDSplus server, subscribes to a list of shot events (customizable by the end-user) and sends a visual or sound alert when a selected event occurs. For example, depending on the selected events, the user can display an extract of the shots log or visualize the video of the pulse. This architecture is obviously suitable for any machine, as long as the specific API sending MDSplus events is implemented. The aim of this paper is to describe the detailed architecture of ShotListener, to present its different functionalities and to introduce some possible enhancements.

  17. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    International Nuclear Information System (INIS)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-01-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces. (paper)

  18. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    Science.gov (United States)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  19. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  20. Market structure, industrial organisation and technological development: the case of the Japanese electronics-based nc-machine tool industry.

    OpenAIRE

    Watanabe, S

    1983-01-01

    ILO pub-WEP pub. Working paper on the impact of market structure and business organization on technological change in the automatic control machine tool industry in Japan - based on a 1982 sample survey of 40 industrial enterprises, discusses research and development trends, demand, production, subcontracting, competition, etc.; investigates the impact of electronics Innovation on small scale industry, the international division of labour and on developing countries. Bibliography and graphs.

  1. Novel CNC Grinding Process Control for Nanometric Surface Roughness for Aspheric Space Optical Surfaces

    Directory of Open Access Journals (Sweden)

    Jeong-Yeol Han

    2004-06-01

    Full Text Available Optics fabrication process for precision space optical parts includes bound abrasive grinding, loose abrasive lapping and polishing. The traditional bound abrasive grinding with bronze bond cupped diamond wheel leaves the machine marks of about 20 μm rms in height and the subsurface damage of about 1 μm rms in height to be removed by subsequent loose abrasive lapping. We explored an efficient quantitative control of precision CNC grinding. The machining parameters such as grain size, work-piece rotation speed and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis. The effectiveness of such grinding prediction models was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment achieved the predictability down to ±20 nm in height and the surface roughness down to 36 nm in height. This study contributed to improvement of the process efficiency reaching directly the polishing and figuring process without the need for the loose abrasive lapping stage.

  2. Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys.

    Science.gov (United States)

    Cadena, Natalia L; Cue-Sampedro, Rodrigo; Siller, Héctor R; Arizmendi-Morquecho, Ana M; Rivera-Solorio, Carlos I; Di-Nardo, Santiago

    2013-05-24

    The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum-chromium-nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.

  3. Automated Parallel Computing Tools for Multicore Machines and Clusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to improve productivity of high performance computing for applications on multicore computers and clusters. These machines built from one or more chips...

  4. Designing CNC Knit for Hybrid Membrane And Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Holden Deleuran, Anders; Gengnagel, Christoph

    2015-01-01

    specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate...... means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work...

  5. New Observations on High-Speed Machining of Hardened AISI 4340 Steel Using Alumina-Based Ceramic Tools

    Directory of Open Access Journals (Sweden)

    Mohamed Shalaby

    2018-05-01

    Full Text Available High-speed machining (HSM is used in industry to improve the productivity and quality of the cutting operations. In this investigation, pure alumina ceramics with the addition of ZrO2, and mixed alumina (Al2O3 + TiC tools were used in the dry hard turning of AISI 4340 (52 HRC at different high cutting speeds of 150, 250, 700 and 1000 m/min. It was observed that at cutting speeds of 150 and 250 m/min, pure alumina ceramic tools had better wear resistance than mixed alumina ones. However, upon increasing the cutting speed from 700 to 1000 m/min, mixed alumina ceramic tools outperformed pure ceramic ones. Scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS were used to investigate the worn cutting edges and analyze the obtained results. It was found that the tribo-films formed at the cutting zone during machining affected the wear resistances of the tools and influenced the coefficient of friction at the tool-chip interface. These observations were confirmed by the chip compression ratio results at different cutting conditions. Raising cutting speed to 1000 m/min corresponded to a remarkable decrease in cutting force components in the dry hard turning of AISI 4340 steel.

  6. Effect of Micro Electrical Discharge Machining Process Conditions on Tool Wear Characteristics: Results of an Analytic Study

    DEFF Research Database (Denmark)

    Puthumana, Govindan; P., Rajeev

    2016-01-01

    Micro electrical discharge machining is one of the established techniques to manufacture high aspect ratio features on electrically conductive materials. This paper presents the results and inferences of an analytical study for estimating theeffect of process conditions on tool electrode wear...... characteristicsin micro-EDM process. A new approach with two novel factors anticipated to directly control the material removal mechanism from the tool electrode are proposed; using discharge energyfactor (DEf) and dielectric flushing factor (DFf). The results showed that the correlation between the tool wear rate...... (TWR) and the factors is poor. Thus, individual effects of each factor on TWR are analyzed. The factors selected for the study of individual effects are pulse on-time, discharge peak current, gap voltage and gap flushing pressure. The tool wear rate decreases linearly with an increase in the pulse on...

  7. Structure and sorption properties of CNC reinforced PVA films.

    Science.gov (United States)

    Popescu, Maria-Cristina

    2017-08-01

    Bio-nanocomposite films based on cellulose nanocrystals reinforced poly(vinyl alcohol) were obtained by solvent casting method. To assess the structural features of the films, different spectral techniques (FTIR, 2D COS and XRD) have been used. Infrared and 2D correlation spectroscopy evidenced the presence of H-bond interactions between the PVA and CNC, and the variation in the conformational rearrangements, while XRD showed that the crystallite size and the crystallinity degree were affected by the incorporation of CNC. At low content of CNC in the PVA matrix, the crystallinity degree decreased to 29.9%, while at higher CNC content increased to 80.6%, comparing to PVA (35.4%). To evaluate the interaction with water, contact angle measurement, water sorption and NIR spectroscopy were used, respectively. The increase of the CNC content induced a reduction in water sorption ability from 93% for PVA to 75% for PVA/CNC films, indicating the involvement of the hydroxyl groups in new hydrogen bonded interactions. By analyzing the variation of the NIR bands from 1930, 1902 and 1985nm, was observed that the water molecules interact with the polymer matrix through moderate hydrogen bond before diffusing into the free volume of the matrix and form stronger hydrogen bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Study of Tool Wear Mechanisms and Mathematical Modeling of Flank Wear During Machining of Ti Alloy (Ti6Al4V)

    Science.gov (United States)

    Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.

    2015-07-01

    Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.

  9. Tool life of the edges coated with the c-BN+h-BN coatings with different structures during hard machinable steel machining

    Directory of Open Access Journals (Sweden)

    Kupczyk, M.

    2005-12-01

    Full Text Available In the presented paper the experimental results concerning the functional quality (durability during steel machining of thin, superhard coatings produced on the cutting edges are described. Differences among mentioned properties of coatings mainly result from a coating structure. But the structure of coatings results from deposition parameters Superhard boron nitride coatings were deposited on insert cutting edges made of cemented carbides by the pulse-plasma method applying different values of the discharge voltage. The comparative investigations of mentioned coatings have been concerned of tool life of edges during hard machinable material machining (nitriding steel hardened in oil. In these investigations for the purpose of additional increase of coatings adhesion to substrates an interfacial layers were applied.

    En este trabajo se describen los resultados experimentales referentes a la calidad funcional (durabilidad durante el mecanizado del acero de recubrimientos delgados, de elevada dureza del filo de corte. Las diferencias en las propiedades de los recubrimientos se deben, principalmente, a la estructura del recubrimiento. No obstante, la estructura del recubrimiento está relacionada con los parámetros de la deposición. Recubrimientos de nitruro de boro de elevada dureza se depositaron sobre filos de corte insertados, fabricados con carburos cementados mediante el método de pulsos de plasma aplicando diferentes valores de voltaje de descarga. Las investigaciones comparativas de los mencionados recubrimientos han relacionado la vida del filo de la herramienta durante el mecanizado del material (acero nitrurado endurecido en aceite. En estas investigaciones se aplicaron capas interfaciales para aumentar la adherencia del recubrimiento.

  10. Simulation of dynamic processes when machining transition surfaces of stepped shafts

    Science.gov (United States)

    Maksarov, V. V.; Krasnyy, V. A.; Viushin, R. V.

    2018-03-01

    The paper addresses the characteristics of stepped surfaces of parts categorized as "solids of revolution". It is noted that in the conditions of transition modes during the switch to end surface machining, there is cutting with varied load intensity in the section of the cut layer, which leads to change in cutting force, onset of vibrations, an increase in surface layer roughness, a decrease of size precision, and increased wear of a tool's cutting edge. This work proposes a method that consists in developing a CNC program output code that allows one to process complex forms of stepped shafts with only one machine setup. The authors developed and justified a mathematical model of a technological system for mechanical processing with consideration for the resolution of tool movement at the stages of transition processes to assess the dynamical stability of a system in the process of manufacturing stepped surfaces of parts of “solid of revolution” type.

  11. Fiscal 2000 achievement report. Research on machine tool not necessitating hydraulic system; 2000 nendo yuatsu resu kosaku kikai no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    From the viewpoint that the manufacturing process, expendable items, and recycling should all be taken into consideration when machine tool energy consumption is the matter to discuss, it is concluded that the most important policy to follow in the effort to enhance energy conservation is to enable the tool to operate without hydraulic systems. For the realization of a general-purpose machine tool (lathe) to operate free of hydraulic systems, efforts are exerted to develop element technologies, tool rests, tail stocks, and chuck drives usable for the construction of a practical hydraulic system-free machine tool. In fiscal 2000, comprehensive evaluation of experimental machine tools continued, problems to solve for practical application were put together for the fabrication of improved units, and the improved units and an improved control method were integrated into a prototype of practical machine tools. The prototype was exhibited at Japan International Machine Tool Fair (JIMTOF) as a hydraulic system-free NC (numerically controlled) lathe Type LB300, and won a high valuation. The prototype was then tested for basic performance and for possibility of improvement, and problems to be solved before commercialization were isolated. (NEDO)

  12. Computer Aided Simulation Machining Programming In 5-Axis Nc Milling Of Impeller Leaf

    Science.gov (United States)

    Huran, Liu

    At present, cad/cam (computer-aided design and manufacture) have fine wider and wider application in mechanical industry. For the complex surfaces, the traditional machine tool can no longer satisfy the requirement of such complex task. Only by the help of cad/cam can fulfill the requirement. The machining of the vane surface of the impeller leaf has been considered as the hardest challenge. Because of their complex shape, the 5-axis cnc machine tool is needed for the machining of such parts. The material is hard to cut, the requirement for the surface finish and clearance is very high, so that the manufacture quality of impeller leaf represent the level of 5-axis machining. This paper opened a new field in machining the complicated surface, based on a relatively more rigid mathematical basis. The theory presented here is relatively more systematical. Since the lack of theoretical guidance, in the former research, people have to try in machining many times. Such case will be changed. The movement of the cutter determined by this method is definite, and the residual is the smallest while the times of travel is the fewest. The criterion is simple and the calculation is easy.

  13. Effects of Cutting Tool Parameters on Vibration

    Directory of Open Access Journals (Sweden)

    Ince Mehmet Alper

    2016-01-01

    Full Text Available This paper presents of the influence on vibration of Co28Cr6Mo medical alloy machined on a CNC lathe based on cutting parameters (rotational speed, feed rate, depth of cut and tool tip radius. The influences of cutting parameters have been presented in graphical form for understanding. To achieve the minimum vibration, the optimum values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 318 rpm, 0.25 mm/rev, 0.9 mm and 0.8 mm. Maximum vibration has been revealed the values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 636 rpm, 0.1 mm/rev, 0,5 mm and 0.8 mm.

  14. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Fu; Hope, A D; Javed, M [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1998-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  15. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Fu Pan; Hope, A.D.; Javed, M. [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1997-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  16. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    Directory of Open Access Journals (Sweden)

    Mo Yang

    2018-03-01

    Full Text Available Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM, this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool. Keywords: CFRP drive-line system, Dynamic behavior, Transfer matrix, Vibration measurement

  17. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    Science.gov (United States)

    Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng

    2018-03-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.

  18. Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers

    Science.gov (United States)

    Devillez, Arnaud; Dudzinski, Daniel

    2007-01-01

    Today the knowledge of a process is very important for engineers to find optimal combination of control parameters warranting productivity, quality and functioning without defects and failures. In our laboratory, we carry out research in the field of high speed machining with modelling, simulation and experimental approaches. The aim of our investigation is to develop a software allowing the cutting conditions optimisation to limit the number of predictive tests, and the process monitoring to prevent any trouble during machining operations. This software is based on models and experimental data sets which constitute the knowledge of the process. In this paper, we deal with the problem of vibrations occurring during a machining operation. These vibrations may cause some failures and defects to the process, like workpiece surface alteration and rapid tool wear. To measure on line the tool micro-movements, we equipped a lathe with a specific instrumentation using eddy current sensors. Obtained signals were correlated with surface finish and a signal processing algorithm was used to determine if a test is stable or unstable. Then, a fuzzy classification method was proposed to classify the tests in a space defined by the width of cut and the cutting speed. Finally, it was shown that the fuzzy classification takes into account of the measurements incertitude to compute the stability limit or stability lobes of the process.

  19. Application of grey fuzzy logic for the optimization of CNC milling parameters for Al–4.5%Cu–TiC MMCs with multi-performance characteristics

    Directory of Open Access Journals (Sweden)

    Biswajit Das

    2016-06-01

    Full Text Available With the major application of MMCs, it is thus necessary to develop an appropriate technology for their efficient machining. Milling is the most common and versatile technology among different machining processes, characterized by an extensive range of metal cutting capacity that places it in a central role in the manufacturing industries. In the present study an attempt has been made to find out the most optimal level of process parameters for CNC milling of Al–4.5%Cu–TiC metal matrix composites using grey-fuzzy algorithm. Taguchi's L25 orthogonal array design is used for performing CNC milling operation on the composite plates. The Grey fuzzy optimization of CNC milling parameters consist of three different output characteristics; such as, cutting force Fc, surface roughness Ra and surface roughness Rz. It was found that a cutting speed of 600 rpm, feed of 40 mm/min and a depth of cut of 0.30 mm is the optimal combination of CNC milling parameters that has produced a high value of grey fuzzy reasoning grade of 0.8191 which is close to the reference value. ANOVA analysis is carried out and it is found that among three different process parameters, the cutting speed played a major role on the determination of GFRG.

  20. A new optimization tool path planning for 3-axis end milling of free-form surfaces based on efficient machining intervals

    Science.gov (United States)

    Vu, Duy-Duc; Monies, Frédéric; Rubio, Walter

    2018-05-01

    A large number of studies, based on 3-axis end milling of free-form surfaces, seek to optimize tool path planning. Approaches try to optimize the machining time by reducing the total tool path length while respecting the criterion of the maximum scallop height. Theoretically, the tool path trajectories that remove the most material follow the directions in which the machined width is the largest. The free-form surface is often considered as a single machining area. Therefore, the optimization on the entire surface is limited. Indeed, it is difficult to define tool trajectories with optimal feed directions which generate largest machined widths. Another limiting point of previous approaches for effectively reduce machining time is the inadequate choice of the tool. Researchers use generally a spherical tool on the entire surface. However, the gains proposed by these different methods developed with these tools lead to relatively small time savings. Therefore, this study proposes a new method, using toroidal milling tools, for generating toolpaths in different regions on the machining surface. The surface is divided into several regions based on machining intervals. These intervals ensure that the effective radius of the tool, at each cutter-contact points on the surface, is always greater than the radius of the tool in an optimized feed direction. A parallel plane strategy is then used on the sub-surfaces with an optimal specific feed direction for each sub-surface. This method allows one to mill the entire surface with efficiency greater than with the use of a spherical tool. The proposed method is calculated and modeled using Maple software to find optimal regions and feed directions in each region. This new method is tested on a free-form surface. A comparison is made with a spherical cutter to show the significant gains obtained with a toroidal milling cutter. Comparisons with CAM software and experimental validations are also done. The results show the

  1. Tribological and Wear Performance of Carbide Tools with TiB2 PVD Coating under Varying Machining Conditions of TiAl6V4 Aerospace Alloy

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2017-11-01

    Full Text Available Tribological phenomena and tool wear mechanisms during machining of hard-to-cut TiAl6V4 aerospace alloy have been investigated in detail. Since cutting tool wear is directly affected by tribological phenomena occurring between the surfaces of the workpiece and the cutting tool, the performance of the cutting tool is strongly associated with the conditions of the machining process. The present work shows the effect of different machining conditions on the tribological and wear performance of TiB2-coated cutting tools compared to uncoated carbide tools. FEM modeling of the temperature profile on the friction surface was performed for wet machining conditions under varying cutting parameters. Comprehensive characterization of the TiB2 coated vs. uncoated cutting tool wear performance was made using optical 3D imaging, SEM/EDX and XPS methods respectively. The results obtained were linked to the FEM modeling. The studies carried out show that during machining of the TiAl6V4 alloy, the efficiency of the TiB2 coating application for carbide cutting tools strongly depends on cutting conditions. The TiB2 coating is very efficient under roughing at low speeds (with strong buildup edge formation. In contrast, it shows similar wear performance to the uncoated tool under finishing operations at higher cutting speeds when cratering wear predominates.

  2. Modal Analysis and Experimental Determination of Optimum Tool Shank Overhang of a Lathe Machine

    Directory of Open Access Journals (Sweden)

    Nabin SARDAR

    2008-12-01

    Full Text Available Vibration of Tool Shank of a cutting tool has large influence on tolerances and surface finish of products. Frequency and amplitude of vibrations depend on the overhang of the shank of the cutting tool. In turning operations, when the tool overhang is about 2 times of the tool height, the amplitude of the vibration is almost zero and dimensional tolerances and surface finish of the product becomes high. In this paper, the above statement is verified firstly by using a finite element analysis of the cutting tool with ANSYS software package and secondly, with experimental verification with a piezoelectric sensor.

  3. Diagnostic Machine Learning Models for Acute Abdominal Pain: Towards an e-Learning Tool for Medical Students.

    Science.gov (United States)

    Khumrin, Piyapong; Ryan, Anna; Judd, Terry; Verspoor, Karin

    2017-01-01

    Computer-aided learning systems (e-learning systems) can help medical students gain more experience with diagnostic reasoning and decision making. Within this context, providing feedback that matches students' needs (i.e. personalised feedback) is both critical and challenging. In this paper, we describe the development of a machine learning model to support medical students' diagnostic decisions. Machine learning models were trained on 208 clinical cases presenting with abdominal pain, to predict five diagnoses. We assessed which of these models are likely to be most effective for use in an e-learning tool that allows students to interact with a virtual patient. The broader goal is to utilise these models to generate personalised feedback based on the specific patient information requested by students and their active diagnostic hypotheses.

  4. The Python Spectral Analysis Tool (PySAT) for Powerful, Flexible, and Easy Preprocessing and Machine Learning with Point Spectral Data

    Science.gov (United States)

    Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T.; Morris, R. V.; Laura, J.

    2018-04-01

    The PySAT point spectra tool provides a flexible graphical interface, enabling scientists to apply a wide variety of preprocessing and machine learning methods to point spectral data, with an emphasis on multivariate regression.

  5. Hybrid genetic algorithm for minimizing non productive machining ...

    African Journals Online (AJOL)

    user

    The movement of tool is synchronized with the help of these CNC codes. Total ... Lot of work has been reported for minimizing the productive time by ..... Optimal path for automated drilling operations by a new heuristic approach using particle.

  6. Employing a virtual reality tool to explicate tacit knowledge of machine operations

    NARCIS (Netherlands)

    Vasenev, Alexandr; Hartmann, Timo; Doree, Andries G.; Hassani, F.

    2013-01-01

    The quality and durability of asphalted roads strongly depends on the final step in the road construction process; the profiling and compaction of the fresh spread asphalt. During compaction machine operators continuously make decisions on how to proceed with the compaction accounting for

  7. Ultraprecise parabolic interpolator for numerically controlled machine tools. [Digital differential analyzer circuit

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, C. M.

    1977-02-01

    The mathematical basis for an ultraprecise digital differential analyzer circuit for use as a parabolic interpolator on numerically controlled machines has been established, and scaling and other error-reduction techniques have been developed. An exact computer model is included, along with typical results showing tracking to within an accuracy of one part per million.

  8. The Python Spectral Analysis Tool (PySAT): A Powerful, Flexible, Preprocessing and Machine Learning Library and Interface

    Science.gov (United States)

    Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T. G.; Morris, R. V.; Laura, J.; Gaddis, L. R.

    2017-12-01

    Machine learning is a powerful but underutilized approach that can enable planetary scientists to derive meaningful results from the rapidly-growing quantity of available spectral data. For example, regression methods such as Partial Least Squares (PLS) and Least Absolute Shrinkage and Selection Operator (LASSO), can be used to determine chemical concentrations from ChemCam and SuperCam Laser-Induced Breakdown Spectroscopy (LIBS) data [1]. Many scientists are interested in testing different spectral data processing and machine learning methods, but few have the time or expertise to write their own software to do so. We are therefore developing a free open-source library of software called the Python Spectral Analysis Tool (PySAT) along with a flexible, user-friendly graphical interface to enable scientists to process and analyze point spectral data without requiring significant programming or machine-learning expertise. A related but separately-funded effort is working to develop a graphical interface for orbital data [2]. The PySAT point-spectra tool includes common preprocessing steps (e.g. interpolation, normalization, masking, continuum removal, dimensionality reduction), plotting capabilities, and capabilities to prepare data for machine learning such as creating stratified folds for cross validation, defining training and test sets, and applying calibration transfer so that data collected on different instruments or under different conditions can be used together. The tool leverages the scikit-learn library [3] to enable users to train and compare the results from a variety of multivariate regression methods. It also includes the ability to combine multiple "sub-models" into an overall model, a method that has been shown to improve results and is currently used for ChemCam data [4]. Although development of the PySAT point-spectra tool has focused primarily on the analysis of LIBS spectra, the relevant steps and methods are applicable to any spectral data. The

  9. On-line Cutting Tool Condition Monitoring in Machining Processes Using Artificial Intelligence

    OpenAIRE

    Vallejo, Antonio J.; Morales-Menéndez, Rub&#;n; Alique, J.R.

    2008-01-01

    This chapter presented new ideas for monitoring and diagnosis of the cutting tool condition with two different algorithms for pattern recognition: HMM, and ANN. The monitoring and diagnosis system was implemented for peripheral milling process in HSM, where several Aluminium alloys and cutting tools were used. The flank wear (VB) was selected as the criterion to evaluate the tool's life and four cutting tool conditions were defined to be recognized: New, half new, half worn, and worn conditio...

  10. Development of a state machine sequencer for the Keck Interferometer: evolution, development, and lessons learned using a CASE tool approach

    Science.gov (United States)

    Reder, Leonard J.; Booth, Andrew; Hsieh, Jonathan; Summers, Kellee R.

    2004-09-01

    This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  11. A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

    Directory of Open Access Journals (Sweden)

    Shanshan He

    2015-10-01

    Full Text Available Piecewise linear (G01-based tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1 an improved technique for initial control point determination over Dominant Point Method, (2 an algorithm that updates foot point parameters as needed, (3 analysis of the degrees of freedom of control points to insert new control points only when needed, (4 chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.

  12. Formability behavior studies on CP-Al sheets processed through the helical tool path of incremental forming process

    Science.gov (United States)

    Markanday, H.; Nagarajan, D.

    2018-02-01

    Incremental sheet forming (ISF) is a novel die-less sheet metal forming process, which can produce components directly from the CAD geometry using a CNC milling machine at less production time and cost. The formability of the sheet material used is greatly affected by the process parameters involved and tool path adopted, and the present study is aimed to investigate the influence of different process parameter values using the helical tool path strategy on the formability of a commercial pure Al and to achieve maximum formability in the material. ISF experiments for producing an 80 mm diameter axisymmetric dome were carried out on 2 mm thickness commercially pure Al sheets for different tool speeds and feed rates in a CNC milling machine with a 10 mm hemispherical forming tool. The obtained parts were analyzed for springback, amount of thinning and maximum forming depth. The results showed that when the tool speed was increased by keeping the feed rate constant, the forming depth and thinning were also increased. On contrary, when the feed rate was increased by keeping the tool speed constant, the forming depth and thinning were decreased. Springback was found to be higher when the feed rate was increased rather than the tool speed was increased.

  13. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    Science.gov (United States)

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  14. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source

    Directory of Open Access Journals (Sweden)

    K. Venkatesan

    2017-07-01

    Full Text Available Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60–150 m/min, feed rates of 0.05–0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  15. Machining of Some Difficult-to-Cut Materials with Rotary Cutting Tools

    OpenAIRE

    Stjernstoft, Tero

    2004-01-01

    Automobile and aero industries have an increasing interestin materials with improved mechanical properties. However, manyof these new materials are classified as difficult-to-cut withconventional tools. It is obvious that tools, cutting processesand cutting models has to be devel-oped parallel to materialsscience. In this thesis rotary cutting tools are tested as analternative toexpensive diamond or cubic bore nitridetools. Metal matrix composites mostly consist of a light metalalloy (such as...

  16. Computer-Numerical-Control and the EMCO Compact 5 Lathe.

    Science.gov (United States)

    Mullen, Frank M.

    This laboratory manual is intended for use in teaching computer-numerical-control (CNC) programming using the Emco Maier Compact 5 Lathe. Developed for use at the postsecondary level, this material contains a short introduction to CNC machine tools. This section covers CNC programs, CNC machine axes, and CNC coordinate systems. The following…

  17. Application of Ethernet Powerlink for communication in a Linux RTAI open CNC control system

    OpenAIRE

    Erwiński, Krystian; Paprocki, Marcin; Grzesiak, Lech; Karwowski, Kazimierz; Wawrzak, Andrzej

    2013-01-01

    In computerized numerical control (CNC) systems, the communication bus between the controller and axis servo drives must offer high bandwidth, noise immunity, and time determinism. More and more CNC systems use real-time Ethernet protocols such as Ethernet Powerlink (EPL). Many modern controllers are closed costly hardware-based solutions. In this paper, the implementation of EPL communication bus in a PC-based CNC system is presented. The CNC system includes a PC, a s...

  18. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    Science.gov (United States)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  19. Using internally cooled cutting tools in the machining of difficult-to-cut materials based on Waspaloy

    Directory of Open Access Journals (Sweden)

    Yahya Isik

    2016-05-01

    Full Text Available Nickel-based superalloys such as Waspaloy are used for engine components and in the nuclear industry, where considerable strength and corrosion resistance at high operating temperatures are called for. These characteristics of such alloys cause increases in cutting temperature and resultant tool damage, even at low cutting speeds and low feed rates. Thus, they are classified as difficult-to-cut materials. This article presents a cooling method to be used in metal cutting based on a tool holder with a closed internal cooling system with cooling fluid circulating inside. Hence, a green cooling method that does not harm the environment and is efficient in removing heat from the cutting zone was developed. A series of cutting experiments were conducted to investigate the practicality and effectiveness of the internally cooled tool model. The developed system achieved up to 13% better surface quality than with dry machining, and tool life was extended by 12%. The results clearly showed that with the reduced cutting temperature of the internal cooling, it was possible to control the temperature and thus prevent reaching the critical cutting temperature during the turning process, which is vitally important in extending tool life during the processing of Waspaloy.

  20. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites.

    Science.gov (United States)

    Khoshkava, Vahid; Kamal, Musa R

    2014-06-11

    Polypropylene (PP) nanocomposites containing spray-dried cellulose nanocrystals (CNC), freeze-dried CNC, and spray-freeze-dried CNC (CNCSFD) were prepared via melt mixing in an internal batch mixer. Polarized light, scanning electron, and atomic force microscopy showed significantly better dispersion of CNCSFD in PP/CNC nanocomposites compared with the spray-dried and freeze-dried CNCs. Rheological measurements, including linear and nonlinear viscoelastic tests, were performed on PP/CNC samples. The microscopy results were supported by small-amplitude oscillatory shear tests, which showed substantial rises in the magnitudes of key rheological parameters of PP samples containing CNCSFD. Steady-shear results revealed a strong shear thinning behavior of PP samples containing CNCSFD. Moreover, PP melts containing CNCSFD exhibited a yield stress. The magnitude of the yield stress and the degree of shear thinning behavior increased with CNCSFD concentration. It was found that CNCSFD agglomerates with a weblike structure were more effective in modifying the rheological properties. This effect was attributed to better dispersion of the agglomerates with the weblike structure. Dynamic mechanical analysis showed considerable improvement in the modulus of samples containing CNCSFD agglomerates. The percolation mechanical model with modified volume percolation threshold and filler network strength values and the Halpin-Kardos model were used to fit the experimental results.

  1. Prediction of the wear and evolution of cutting tools in a carbide / titanium-aluminum-vanadium machining tribosystem by volumetric tool wear characterization and modeling

    Science.gov (United States)

    Kuttolamadom, Mathew Abraham

    The objective of this research work is to create a comprehensive microstructural wear mechanism-based predictive model of tool wear in the tungsten carbide / Ti-6Al-4V machining tribosystem, and to develop a new topology characterization method for worn cutting tools in order to validate the model predictions. This is accomplished by blending first principle wear mechanism models using a weighting scheme derived from scanning electron microscopy (SEM) imaging and energy dispersive x-ray spectroscopy (EDS) analysis of tools worn under different operational conditions. In addition, the topology of worn tools is characterized through scanning by white light interferometry (WLI), and then application of an algorithm to stitch and solidify data sets to calculate the volume of the tool worn away. The methodology was to first combine and weight dominant microstructural wear mechanism models, to be able to effectively predict the tool volume worn away. Then, by developing a new metrology method for accurately quantifying the bulk-3D wear, the model-predicted wear was validated against worn tool volumes obtained from corresponding machining experiments. On analyzing worn crater faces using SEM/EDS, adhesion was found dominant at lower surface speeds, while dissolution wear dominated with increasing speeds -- this is in conformance with the lower relative surface speed requirement for micro welds to form and rupture, essentially defining the mechanical load limit of the tool material. It also conforms to the known dominance of high temperature-controlled wear mechanisms with increasing surface speed, which is known to exponentially increase temperatures especially when machining Ti-6Al-4V due to its low thermal conductivity. Thus, straight tungsten carbide wear when machining Ti-6Al-4V is mechanically-driven at low surface speeds and thermally-driven at high surface speeds. Further, at high surface speeds, craters were formed due to carbon diffusing to the tool surface and

  2. Micro-EDM process modeling and machining approaches for minimum tool electrode wear for fabrication of biocompatible micro-components

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    Micro-electrical discharge machining (micro-EDM) is a potential non-contact method for fabrication of biocompatible micro devices. This paper presents an attempt to model the tool electrode wear in micro-EDM process using multiple linear regression analysis (MLRA) and artificial neural networks...... linear regression model was developed for prediction of TWR in ten steps at a significance level of 90%. The optimum architecture of the ANN was obtained with 7 hidden layers at an R-sq value of 0.98. The predicted values of TWR using ANN matched well with the practically measured and calculated values...... (ANN). The governing micro-EDM factors chosen for this investigation were: voltage (V), current (I), pulse on time (Ton) and pulse frequency (f). The proposed predictive models generate a functional correlation between the tool electrode wear rate (TWR) and the governing micro-EDM factors. A multiple...

  3. Experimental research of kinetic and dynamic characteristics of temperature movements of machines

    Science.gov (United States)

    Parfenov, I. V.; Polyakov, A. N.

    2018-03-01

    Nowadays, the urgency of informational support of machines at different stages of their life cycle is increasing in the form of various experimental characteristics that determine the criteria for working capacity. The effectiveness of forming the base of experimental characteristics of machines is related directly to the duration of their field tests. In this research, the authors consider a new technique that allows reducing the duration of full-scale testing of machines by 30%. To this end, three new indicator coefficients were calculated in real time to determine the moments corresponding to the characteristic points. In the work, new terms for thermal characteristics of machine tools are introduced: kinetic and dynamic characteristics of the temperature movements of the machine. This allow taking into account not only the experimental values for the temperature displacements of the elements of the carrier system of the machine, but also their derivatives up to the third order, inclusively. The work is based on experimental data obtained in the course of full-scale thermal tests of a drilling-milling and boring CNC machine.

  4. A comparative machining study of diamond-coated tools made by ...

    Indian Academy of Sciences (India)

    The successful implementation of diamond coatings also expedited similar research in the deposition of cubic boron nitride. This paper presents superhard coating tools, with emphasis on diamond-coated WC–Co tools, the corresponding deposition of technologies and the foreseen metal-cutting applications.

  5. On the development of a dual-layered diamond-coated tool for the effective machining of titanium Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Srinivasan, Balaji; Rao, Balkrishna C; Ramachandra Rao, M S

    2017-01-01

    This work is focused on the development of a dual-layered diamond-coated tungsten carbide tool for machining titanium Ti-6Al-4V alloy. A hot-filament chemical vapor deposition technique was used to synthesize diamond films on tungsten carbide tools. A boron-doped diamond interlayer was added to a microcrystalline diamond layer in an attempt to improve the interface adhesion strength. The dual-layered diamond-coated tool was employed in machining at cutting speeds in the range of 70 to 150 m min −1 with a lower feed and a lower depth of cut of 0.5 mm rev −1 and 0.5 mm, respectively, to operate in the transition from adhesion- to diffusion-tool-wear and thereby arrive at suitable conditions for enhancing tool life. The proposed tool was then compared, on the basis of performance under real-time cutting conditions, with commercially available microcrystalline diamond, nanocrystalline diamond, titanium nitride and uncoated tungsten carbide tools. The life and surface finish of the proposed dual-layered tool and uncoated tungsten carbide were also investigated in interrupted cutting such as milling. The results of this study show a significant improvement in tool life and finish of Ti-6Al-4V parts machined with the dual-layered diamond-coated tool when compared with its uncoated counterpart. These results pave the way for the use of a low-cost tool, with respect to, polycrystalline diamond for enhancing both tool life and machining productivity in critical sectors fabricating parts out of titanium Ti-6Al-4V alloy. The application of this coating technology can also be extended to the machining of non-ferrous alloys owing to its better adhesion strength. (paper)

  6. A Practical Framework Toward Prediction of Breaking Force and Disintegration of Tablet Formulations Using Machine Learning Tools.

    Science.gov (United States)

    Akseli, Ilgaz; Xie, Jingjin; Schultz, Leon; Ladyzhynsky, Nadia; Bramante, Tommasina; He, Xiaorong; Deanne, Rich; Horspool, Keith R; Schwabe, Robert

    2017-01-01

    Enabling the paradigm of quality by design requires the ability to quantitatively correlate material properties and process variables to measureable product performance attributes. Conventional, quality-by-test methods for determining tablet breaking force and disintegration time usually involve destructive tests, which consume significant amount of time and labor and provide limited information. Recent advances in material characterization, statistical analysis, and machine learning have provided multiple tools that have the potential to develop nondestructive, fast, and accurate approaches in drug product development. In this work, a methodology to predict the breaking force and disintegration time of tablet formulations using nondestructive ultrasonics and machine learning tools was developed. The input variables to the model include intrinsic properties of formulation and extrinsic process variables influencing the tablet during manufacturing. The model has been applied to predict breaking force and disintegration time using small quantities of active pharmaceutical ingredient and prototype formulation designs. The novel approach presented is a step forward toward rational design of a robust drug product based on insight into the performance of common materials during formulation and process development. It may also help expedite drug product development timeline and reduce active pharmaceutical ingredient usage while improving efficiency of the overall process. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Manufacturing technology development of plasma/ion nitriding for improvement of hardness of machine components and tools

    International Nuclear Information System (INIS)

    Suprapto; Tjipto Sujitno; Saminto

    2015-01-01

    The manufacturing technology development of plasma/ion nitriding to improve of hardness of machine components and tools has been done. The development of this technology aims to improve device performance plasma nitriding double chamber and conducted with the addition of thermal radiation shield. Testing was done by testing for preheating operation (start-up), test operation for conditions nitriding and test for nitriding process. The results show that: the plasma nitriding device can be operated for nitriding process at the temperature of about 500 °C for 6 hours, using the thermal radiation shield obtained outside wall temperature of about 65 °C and shorten start-up time to about 60 minutes. The use of thermal radiation shield can also improve the efficiency of the electric power supply and increase the operating temperature for nitriding process. Test for nitriding obtained increase of hardness 1.33 times for the original camshaft (genuine parts) and 1.8 times for the imitation camshaft (imitation parts), the results are compared with after the tempering process at a temperature of 600 °C. For sample SS 304 was 2.45 times compared with before nitrided These results indicate that the development of manufacturing technology of plasma/ion nitriding to increase hardness of machine components and tools have been successfully able to increase the hardness, although still need to be optimized. Besides that, these devices can be developed to use for the process of carburizing and carbonitriding. (author)

  8. Lutidine-derived Ru-CNC hydrogenation pincer catalysts with versatile coordination properties

    NARCIS (Netherlands)

    Filonenko, Georgy A.; Cosimi, Elena; Lefort, Laurent; Conley, Matthew P.; Copéret, Christophe; Lutz, Martin; Hensen, Emiel J M; Pidko, Evgeny A.

    2014-01-01

    Lutidine-derived bis-N-heterocyclic carbene (NHC) ruthenium CNC-pincer complexes (Ru-CNC's) were prepared. Depending on the synthetic procedure, normal (1, 2) or mixed normal/abnormal NHC-complexes (3) are formed. In the presence of phosphazene base, Ru-CNC complexes activate nitriles to give

  9. Extending the features of RBMK refuelling machine simulator with a training tool based on virtual reality

    International Nuclear Information System (INIS)

    Khoudiakov, M.; Slonimsky, V.; Mitrofanov, S.

    2004-01-01

    The paper describes a continuation of efforts of an international Russian - Norwegian joint team to improve operational safety during the refuelling process of an RBMK-type reactor by implementing a training simulator based on an innovative Virtual Reality (VR) approach. During the preceding 1st stage of the project a display-based simulator was extended with VR models of the real Refuelling Machine (RM) and its environment in order to improve both the learning process and operation's effectiveness. The simulator's challenge is to support the performance (operational activity) of RM operational staff firstly by helping them to develop basic knowledge and skills as well as to keep skilled staff in close touch with the complex machinery of the Refuelling Machine. During the 2nd stage of the joint project the functional scope of the VR-simulator was greatly enhanced - firstly, by connecting to the RBMK-unit full-scope simulator, and, secondly, by including a training program and simulator model upgrade. The present 3rd stage of the Project is primarily oriented towards the improvement of the training process for maintenance and operational personnel by means of a development of the Training Support Methodology and Courses (TSMC) to be based on Virtual Reality and enlarged functionality of 3D and process modelling. The TMSC development is based on Russian and International Regulatory Bodies requirements and recommendations. Design, development and creation of a specialised VR-based Training System for RM Maintenance Personnel are very important for the Russian RBMK plants. The main goal is to create a powerful, autonomous VR-based simulator for training technical maintenance personnel on the Refuelling Machine. VR based training is expected to improve the effect of training compared to the current training based on traditional methods using printed documentation. The LNPP management and the Regulatory Bodies supported this goal. The VR-based Training System should

  10. Lean energy analysis of CNC lathe

    Science.gov (United States)

    Liana, N. A.; Amsyar, N.; Hilmy, I.; Yusof, MD

    2018-01-01

    The industrial sector in Malaysia is one of the main sectors that have high percentage of energy demand compared to other sector and this problem may lead to the future power shortage and increasing the production cost of a company. Suitable initiatives should be implemented by the industrial sectors to solve the issues such as by improving the machining system. In the past, the majority of the energy consumption in industry focus on lighting, HVAC and office section usage. Future trend, manufacturing process is also considered to be included in the energy analysis. A study on Lean Energy Analysis in a machining process is presented. Improving the energy efficiency in a lathe machine by enhancing the cutting parameters of turning process is discussed. Energy consumption of a lathe machine was analyzed in order to identify the effect of cutting parameters towards energy consumption. It was found that the combination of parameters for third run (spindle speed: 1065 rpm, depth of cut: 1.5 mm, feed rate: 0.3 mm/rev) was the most preferred and ideal to be used during the turning machining process as it consumed less energy usage.

  11. Measuring large aspherics using a commercially available 3D-coordinate measuring machine

    Science.gov (United States)

    Otto, Wolfgang; Matthes, Axel; Schiehle, Heinz

    2000-07-01

    A CNC-controlled precision measuring machine is a very powerful tool in the optical shop not only to determine the surface figure, but also to qualify the radius of curvature and conic constant of aspherics. We used a commercially available 3D-coordinate measuring machine (CMM, ZEISS UPMC 850 CARAT S-ACC) to measure the shape of the GEMINI 1-m convex secondary mirrors at different lapping and polishing stages. To determine the measuring accuracy we compared the mechanical measurements with the results achieved by means of an interferometrical test setup. The data obtained in an early stage of polishing were evaluated in Zernike polynomials which show a very good agreement. The deviation concerning long wave rotational symmetrical errors was 20 nm rms, whereas the accuracy measuring of mid spatial frequency deviations was limited to about 100 nm rms.

  12. Adiabatic shear bands as predictors of strain rate in high speed machining of ramax-2

    International Nuclear Information System (INIS)

    Zeb, M.A.; Irfan, M.A.; Velduis, A.C.

    2008-01-01

    Shear band formation was studied in the chips obtained by turning of stainless steel- Ramax-2 (AISI 420F). The machining was performed on a CNC lathe using a PVD (Physical Vapor Deposition) cutting tool insert. The cutting speeds ranged from 50 m/ min to 250 m/min. Dry cutting conditions were employed. At cutting speeds higher than 30 m/mill, the chip did not remain intact with the workpiece using quick stop device. It was difficult to get the chip root SEM (Scanning Electron Microscope) micrographs at further higher speeds. Therefore, the width of the shear bands was used as the predictor of the strain rates involved at various cutting speeds. The results showed that the strain rates are quite in agreement with the amount of strain rate found during machining of such types of stainless steels. It was also observed that shear band density increased with increasing cutting speed. (author)

  13. Tools for man-machine interface development in accelerator control applications

    International Nuclear Information System (INIS)

    Kopylov, L.; Mikhev, M.; Trofimov, N.; Yurpalov, V.

    1994-01-01

    For the UNK Project a development of the Accelerator Control Applications is in the progress. These applications will use a specific Graphical User Interface for data presentation and accelerator parameter management. A number of tools have been developed based on the Motif Tool Kit. They contain a set of problem oriented screen templates and libraries. Using these tools, full scale prototype applications of the UNK Tune and Orbit measurement and correction were developed and are described, as examples. A subset of these allows the creation of the synoptic control screens from the Autocad pictures files and Oracle DB equipment descriptions. The basic concepts and a few application examples are presented. ((orig.))

  14. Machine vision system: a tool for quality inspection of food and agricultural products.

    Science.gov (United States)

    Patel, Krishna Kumar; Kar, A; Jha, S N; Khan, M A

    2012-04-01

    Quality inspection of food and agricultural produce are difficult and labor intensive. Simultaneously, with increased expectations for food products of high quality and safety standards, the need for accurate, fast and objective quality determination of these characteristics in food products continues to grow. However, these operations generally in India are manual which is costly as well as unreliable because human decision in identifying quality factors such as appearance, flavor, nutrient, texture, etc., is inconsistent, subjective and slow. Machine vision provides one alternative for an automated, non-destructive and cost-effective technique to accomplish these requirements. This inspection approach based on image analysis and processing has found a variety of different applications in the food industry. Considerable research has highlighted its potential for the inspection and grading of fruits and vegetables, grain quality and characteristic examination and quality evaluation of other food products like bakery products, pizza, cheese, and noodles etc. The objective of this paper is to provide in depth introduction of machine vision system, its components and recent work reported on food and agricultural produce.

  15. Design of a real-time open architecture controller for a reconfigurable machine tool

    CSIR Research Space (South Africa)

    Masekamela, I

    2008-11-01

    Full Text Available The paper presents the design and the development of a real-time, open architecture controller that is used for control of reconfigurable manufacturing tools (RMTs) in reconfigurable manufacturing systems (RMS). The controller that is presented can...

  16. Investigation of Coated Cutting Tool Performance during Machining of Super Duplex Stainless Steels through 3D Wear Evaluations

    Directory of Open Access Journals (Sweden)

    Yassmin Seid Ahmed

    2017-08-01

    Full Text Available In this study, the wear mechanisms and tribological performance of uncoated and coated carbide tools were investigated during the turning of super duplex stainless steel (SDSS—Grade UNS S32750, known commercially as SAF 2507. The tool wear was evaluated throughout the cutting tests and the wear mechanisms were investigated using an Alicona Infinite Focus microscope and a scanning electron microscope (SEM equipped with energy dispersive spectroscopy (EDS. Tribo-film formation on the worn rake surface of the tool was analyzed using X-ray Photoelectron Spectroscopy (XPS. In addition, tribological performance was evaluated by studying chip characteristics such as thickness, compression ratio, shear angle, and undersurface morphology. Finally, surface integrity of the machined surface was investigated using the Alicona microscope to measure surface roughness and SEM to reveal the surface distortions created during the cutting process, combined with cutting force analyses. The results obtained showed that the predominant wear mechanisms are adhesion and chipping for all tools investigated and that the AlTiN coating system exhibited better performance in all aspects when compared with CVD TiCN + Al2O3 coated cutting insert and uncoated carbide insert; in particular, built-up edge formation was significantly reduced.

  17. Using Artificial Neural Networks to Model the Surface Roughness of Massive Wooden Edge-Glued Panels Made of Scotch Pine (Pinus sylvestris L. in a Machining Process with Computer Numerical Control

    Directory of Open Access Journals (Sweden)

    Sait Dundar Sofuoglu

    2015-08-01

    Full Text Available An artificial neural network (ANN approach was employed for the prediction and control of surface roughness (Ra and Rz in a computer numerical control (CNC machine. Experiments were performed on a CNC machine to obtain data used for the training and testing of an ANN. Experimental studies were conducted, and a model based on the experimental results was set up. Five machining parameters (cutter type, tool clearance strategy, spindle speed, feed rate, and depth of cut were used. One hidden layer was used for all models, while there were five neurons in the hidden layer of the Ra and Rz models. The RMSE values were calculated as 1.05 and 3.70. The mean absolute percentage error (MAPE values were calculated as 20.18 and 15.14, which can be considered as a good prediction. The results of the ANN approach were compared with the measured values. It was shown that the ANN prediction model obtained is a useful and effective tool for modeling the Ra and Rz of wood. The results of the present research can be applied in the wood machining industry to reduce energy, time, and cost.

  18. Machine terms dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-15

    This book gives descriptions of machine terms which includes machine design, drawing, the method of machine, machine tools, machine materials, automobile, measuring and controlling, electricity, basic of electron, information technology, quality assurance, Auto CAD and FA terms and important formula of mechanical engineering.

  19. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  20. GAPscreener: An automatic tool for screening human genetic association literature in PubMed using the support vector machine technique

    Directory of Open Access Journals (Sweden)

    Khoury Muin J

    2008-04-01

    Full Text Available Abstract Background Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM, a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. Results The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. Conclusion GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.

  1. myChEMBL: a virtual machine implementation of open data and cheminformatics tools.

    Science.gov (United States)

    Ochoa, Rodrigo; Davies, Mark; Papadatos, George; Atkinson, Francis; Overington, John P

    2014-01-15

    myChEMBL is a completely open platform, which combines public domain bioactivity data with open source database and cheminformatics technologies. myChEMBL consists of a Linux (Ubuntu) Virtual Machine featuring a PostgreSQL schema with the latest version of the ChEMBL database, as well as the latest RDKit cheminformatics libraries. In addition, a self-contained web interface is available, which can be modified and improved according to user specifications. The VM is available at: ftp://ftp.ebi.ac.uk/pub/databases/chembl/VM/myChEMBL/current. The web interface and web services code is available at: https://github.com/rochoa85/myChEMBL.

  2. Research on Dynamic Modeling and Application of Kinetic Contact Interface in Machine Tool

    Directory of Open Access Journals (Sweden)

    Dan Xu

    2016-01-01

    Full Text Available A method is presented which is a kind of combining theoretic analysis and experiment to obtain the equivalent dynamic parameters of linear guideway through four steps in detail. From statics analysis, vibration model analysis, dynamic experiment, and parameter identification, the dynamic modeling of linear guideway is synthetically studied. Based on contact mechanics and elastic mechanics, the mathematic vibration model and the expressions of basic mode frequency are deduced. Then, equivalent stiffness and damping of guideway are obtained in virtue of single-freedom-degree mode fitting method. Moreover, the investigation above is applied in a certain gantry-type machining center; and through comparing with simulation model and experiment results, both availability and correctness are validated.

  3. A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA

    Science.gov (United States)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-03-01

    Coronal mass ejections (CMEs) are arguably the most violent eruptions in the solar system. CMEs can cause severe disturbances in interplanetary space and can even affect human activities in many aspects, causing damage to infrastructure and loss of revenue. Fast and accurate prediction of CME arrival time is vital to minimize the disruption that CMEs may cause when interacting with geospace. In this paper, we propose a new approach for partial-/full halo CME Arrival Time Prediction Using Machine learning Algorithms (CAT-PUMA). Via detailed analysis of the CME features and solar-wind parameters, we build a prediction engine taking advantage of 182 previously observed geo-effective partial-/full halo CMEs and using algorithms of the Support Vector Machine. We demonstrate that CAT-PUMA is accurate and fast. In particular, predictions made after applying CAT-PUMA to a test set unknown to the engine show a mean absolute prediction error of ∼5.9 hr within the CME arrival time, with 54% of the predictions having absolute errors less than 5.9 hr. Comparisons with other models reveal that CAT-PUMA has a more accurate prediction for 77% of the events investigated that can be carried out very quickly, i.e., within minutes of providing the necessary input parameters of a CME. A practical guide containing the CAT-PUMA engine and the source code of two examples are available in the Appendix, allowing the community to perform their own applications for prediction using CAT-PUMA.

  4. Study of the stiffness for predicting the accuracy of machine tools; Estudio de la rigidez para la prediccion de la precision de las maquinas-herramientas

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, N.; Campa, F.J.; Fernandez Valdivielso, A.; Alonso, U.; Olvera, D.; Compean, F.I.

    2010-07-01

    Machining processes are frequently faced with the challenge of achieving more and more precision and surface qualities. These requirements are usually attained taking into account some process variables, including the cutting parameters and the use or not of refrigerant, leaving aside the mechanical aspects associated with the influence of machine tool itself. There are many sources of error linked with machine-workpiece interaction, but, in general, we can summarize them into two types of error: quasi-static and dynamic. This paper shows the influence of quasi-static error caused by low machine rigidity on the accuracy applied on two very different processes: turning and grinding. For the study of the static stiffness of these two machines, two different methods are proposed, both of them equally valid. The first one is based on separated parameters and the second one on finite elements. (Author).

  5. Curcumin-carboxymethyl chitosan (CNC) conjugate and CNC/LHR mixed polymeric micelles as new approaches to improve the oral absorption of P-gp substrate drugs.

    Science.gov (United States)

    Ni, Jiang; Tian, Fengchun; Dahmani, Fatima Zohra; Yang, Hui; Yue, Deren; He, Shuwang; Zhou, Jianping; Yao, Jing

    2016-11-01

    The low oral bioavailability of numerous drugs has been mostly attributed to the significant effect of P-gp-mediated efflux on intestinal drug transport. Herein, we developed mixed polymeric micelles (MPMs) comprised of curcumin-carboxymethyl chitosan (CNC) conjugate, as a potential inhibitor of P-gp-mediated efflux and gastrointestinal absorption enhancer, and low-molecular-weight heparin-all-trans-retinoid acid (LHR) conjugate, as loading material, with the aim to improve the oral absorption of P-gp substrate drugs. CNC conjugate was synthesized by chemical bonding of curcumin (Cur) and carboxymethyl chitosan (CMCS) taking advantage of the inhibition of intestinal P-gp-mediated secretion by Cur and the intestinal absorption enhancement by CMCS. The chemical structure of CNC conjugate was characterized by 1 H NMR with a degree of substitution of Cur of 4.52-10.20%. More importantly, CNC conjugate markedly improved the stability of Cur in physiological pH. Cyclosporine A-loaded CNC/LHR MPMs (CsA-CNC/LHR MPMs) were prepared by dialysis method, with high drug loading 25.45% and nanoscaled particle size (∼200 nm). In situ single-pass perfusion studies in rats showed that both CsA + CNC mixture and CsA-CNC/LHR MPMs achieved significantly higher K a and P eff than CsA suspension in the duodenum and jejunum segments (p CNC mixture and CsA-CNC/LHR MPMs significantly increased the oral bioavailability of CsA as compared to CsA suspension. These results suggest that CNC conjugate might be considered as a promising gastrointestinal absorption enhancer, while CNC/LHR MPMs had the potential to improve the oral absorption of P-gp substrate drugs.

  6. Experimental Investigation on Tool Wear Behavior and Cutting Temperature during Dry Machining of Carbon Steel SAE 1030 Using KC810 and KC910 Coated Inserts

    Directory of Open Access Journals (Sweden)

    Y. Tamerabet

    2018-03-01

    Full Text Available The removal of cutting fluids and lubrication in dry machining operations requires a good knowledge and full control of all the mechanisms that lead to tool damage. In order to optimize dry machining operations, it is necessary to clearly identify the wear patterns, determine the contact conditions and define the relationship between the contact parameters and the operating conditions. The idea is to choose optimal cutting conditions which lead to the best contact conditions limiting the triggering or aggravation of wear phenomena. The purpose of this paper is to determine the impact multilayer coatings and cutting parameters on tool wear and temperature at the tool-chip interface for two types of coated carbides (KC810 and KC910 Commercialized inserts during dry turning operation of carbon steel SAE 1030, in order to determine the ideal parameters and guarantee the best performances of the cutting tools. Cutting temperature, Crater and Flank wear have been systematically recorded in order to determine their influence on tool life time. To ensure the optimum choice of machining conditions; the TAGUCHI method associated to multi-factorial method were applied to plan the experiments. It has been noted that cutting speed was the most influential factor on temperature and wear evolution. We noted also that the KC810 insert was more suitable for machining of SAE 1030 Carbon Steel; where The best life time was registered (T=228 min. The KC810 inserts offer 30 min of additional machining time for the same work conditions.

  7. Development and improvement of radioactive methods for tribiological researches on elements of tools, machines and devices

    International Nuclear Information System (INIS)

    Ivkovic, B.

    1979-02-01

    Charged particle activation analysis based on the bombardment with 15MeV protons from cyclotron was used to study the friction wearing at the zone of contacts in cutting tools, roller bearings and gear teeth. The radioactivity of resulting isotopes such as Co-56, Co-58, Re-183 serves as a measure of the mass changes on the surface tools. The method is suitable for studying the parameters effecting wearing processes and the role of cutting fluid, and also to envisage the economic factors in production planning

  8. Optimization of CNC end milling process parameters using PCA ...

    African Journals Online (AJOL)

    Optimization of CNC end milling process parameters using PCA-based Taguchi method. ... International Journal of Engineering, Science and Technology ... To meet the basic assumption of Taguchi method; in the present work, individual response correlations have been eliminated first by means of Principal Component ...

  9. Performance of PVD-Coated Carbide Tools When Turning Inconel 718 in Dry Machining

    Directory of Open Access Journals (Sweden)

    Gusri Akhyar Ibrahim

    2011-01-01

    Full Text Available Inconel 718 has found its niche in many industries, owing to its unique properties such as high oxidation resistance and corrosion resistance even at very high temperatures. Coated carbide tool with hard layer of PVD TiAlN is used to turn Inconel 718. Taguchi method with the orthogonal array L9 is applied in this experiment with the parameter cutting speed of 60–80 m/min, feed rate of 0.2–0.3 mm/rev, and depth of cut of 0.3–0.5 mm. The results show that depth of cut is a significant influence to the tool life. Cutting speed of 60 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm are the optimum parameters. The flank wear, crater wear, notch wear, and nose wear are the wear mechanisms on the carbide tool. Through the SEM, abrasion, attrition, and adhesion are the wear mechanisms which can be seen on the cutting tool.

  10. Validation of TGLF in C-Mod and DIII-D using machine learning and integrated modeling tools

    Science.gov (United States)

    Rodriguez-Fernandez, P.; White, Ae; Cao, Nm; Creely, Aj; Greenwald, Mj; Grierson, Ba; Howard, Nt; Meneghini, O.; Petty, Cc; Rice, Je; Sciortino, F.; Yuan, X.

    2017-10-01

    Predictive models for steady-state and perturbative transport are necessary to support burning plasma operations. A combination of machine learning algorithms and integrated modeling tools is used to validate TGLF in C-Mod and DIII-D. First, a new code suite, VITALS, is used to compare SAT1 and SAT0 models in C-Mod. VITALS exploits machine learning and optimization algorithms for the validation of transport codes. Unlike SAT0, the SAT1 saturation rule contains a model to capture cross-scale turbulence coupling. Results show that SAT1 agrees better with experiments, further confirming that multi-scale effects are needed to model heat transport in C-Mod L-modes. VITALS will next be used to analyze past data from DIII-D: L-mode ``Shortfall'' plasma and ECH swing experiments. A second code suite, PRIMA, allows for integrated modeling of the plasma response to Laser Blow-Off cold pulses. Preliminary results show that SAT1 qualitatively reproduces the propagation of cold pulses after LBO injections and SAT0 does not, indicating that cross-scale coupling effects play a role in the plasma response. PRIMA will be used to ``predict-first'' cold pulse experiments using the new LBO system at DIII-D, and analyze existing ECH heat pulse data. Work supported by DE-FC02-99ER54512, DE-FC02-04ER54698.

  11. CellSort: a support vector machine tool for optimizing fluorescence-activated cell sorting and reducing experimental effort.

    Science.gov (United States)

    Yu, Jessica S; Pertusi, Dante A; Adeniran, Adebola V; Tyo, Keith E J

    2017-03-15

    High throughput screening by fluorescence activated cell sorting (FACS) is a common task in protein engineering and directed evolution. It can also be a rate-limiting step if high false positive or negative rates necessitate multiple rounds of enrichment. Current FACS software requires the user to define sorting gates by intuition and is practically limited to two dimensions. In cases when multiple rounds of enrichment are required, the software cannot forecast the enrichment effort required. We have developed CellSort, a support vector machine (SVM) algorithm that identifies optimal sorting gates based on machine learning using positive and negative control populations. CellSort can take advantage of more than two dimensions to enhance the ability to distinguish between populations. We also present a Bayesian approach to predict the number of sorting rounds required to enrich a population from a given library size. This Bayesian approach allowed us to determine strategies for biasing the sorting gates in order to reduce the required number of enrichment rounds. This algorithm should be generally useful for improve sorting outcomes and reducing effort when using FACS. Source code available at http://tyolab.northwestern.edu/tools/ . k-tyo@northwestern.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. IT-tools for Mechatronic System Engineering and Design

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben; Andersen, T. O.

    2003-01-01

    Companies are facing the on-going challenge that customers always increase their needs for capability of products and machinery. They want improved productivity and efficiency - if possible to lower prices; value for money. The demands often focus on extensions of functionality, faster response......, operation capability, man-machine interface (MMI), robustness, reliability and safety in use. Information Technology (IT) offers both software and hardware for improvement of the engineering design and industrial applications. The latest progress in IT makes integration of an overall design...... the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a hydraulic robot and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP controller utilizes the dSPACE System suitable...

  13. Application of Machine Learning tools to recognition of molecular patterns in STM images

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Kiguchi, Manabu; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kalinin, Sergei; Sumpter, Bobby

    The ability to utilize individual molecules and molecular assemblies as data storage elements has motivated scientist for years, concurrent with the continuous effort to shrink a size of data storage devices in microelectronics industry. One of the critical issues in this effort lies in being able to identify individual molecular assembly units (patterns), on a large scale in an automated fashion of complete information extraction. Here we present a novel method of applying machine learning techniques for extraction of positional and rotational information from scanning tunneling microscopy (STM) images of π-bowl sumanene molecules on gold. We use Markov Random Field (MRF) model to decode the polar rotational states for each molecule in a large scale STM image of molecular film. We further develop an algorithm that uses a convolutional Neural Network combined with MRF and input from density functional theory to classify molecules into different azimuthal rotational classes. Our results demonstrate that a molecular film is partitioned into distinctive azimuthal rotational domains consisting typically of 20-30 molecules. In each domain, the ``bowl-down'' molecules are generally surrounded by six nearest neighbor molecules in ``bowl-up'' configuration, and the resultant overall structure form a periodic lattice of rotational and polar states within each domain. Research was supported by the US Department of Energy.

  14. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool

    Directory of Open Access Journals (Sweden)

    Kaining Shi

    2016-01-01

    Full Text Available Magnesium alloy has attracted more attentions due to its excellent mechanical properties. However, in process of dry cutting operation, many problems restrict its further development. In this article, the effect of cutting parameters on machinabilities of magnesium alloy is explored under dry milling condition. This research is an attempt to investigate the impact of cutting speed at multiple feed rates on cutting force and surface roughness, while a statistical analysis is adopted to determine the influential intensities accurately. The results showed that cutting force is affected by the positively constant intensity from feed rate and the increasingly negative intensity from cutting speed. In contrast, surface roughness is determined by the gradually increasing negative tendency from feed rate and the positive effect with constant intensity from cutting speed. Within the range of the experiments, feed rate is the leading contribution for cutting force while the cutting speed is the dominant factor for surface roughness according to the absolute intensity values. Meanwhile, the trends of influencing intensities between cutting force and surface roughness are opposite. Besides, it is also found that in milling magnesium alloy, chip morphology is highly sensitive to cutting speed while the chip quality mainly depends on feed rate.

  15. Tools of integration of innovation-oriented machine-building enterprises in industrial park environment

    Directory of Open Access Journals (Sweden)

    К.О. Boiarynova

    2017-08-01

    Full Text Available The research is devoted to the development of the tools for the integration of innovation-oriented mechanical engineering enterprises into the environment of industrial park as functional economic systems, which are capable on the own development basis to provide the development of resident enterprises. The article analyzes the opportunities for the development of mechanical engineering enterprises. The formed structure of the mechanism of integration of mechanical engineering enterprises as functional economic systems into the industrial park environment is based on: 1 the development of participation programs in the industrial park of the mechanical engineering enterprises as an innovation-oriented partner, which foresees the development of the enterprise immediately and the development of other residents; 2 the provision of high-tech equipment of resident enterprises of industrial parks; 3 the creation of subsidiary-spin-out enterprises of large mechanical engineering enterprises for high-tech production in the industrial park. The author proposes the road map that reveals the procedures for the integration and functioning the investigated enterprises through interaction as well as in the ecosystem of the industrial park and in the general ecosystem of functioning, and the tools for providing economic functionality through economic and organizational proceedings at preventive, partner and resident phases of integration. The tools allow the innovation-oriented mechanical engineering enterprises to integrate into such territorial structures as industrial parks, this in complex will allow carrying out their purposes in the development of the real sector of the economy.

  16. On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II.

    Science.gov (United States)

    Jin, Ersuo; Guo, Jiaqi; Yang, Fang; Zhu, Yangyang; Song, Junlong; Jin, Yongcan; Rojas, Orlando J

    2016-06-05

    Polymorphic and morphological transformations of cellulosic materials are strongly associated to their properties and applications, especially in the case of emerging nanocelluloses. Related changes that take place upon treatment of cellulose nanocrystals (CNC) in alkaline conditions are studied here by XRD, TEM, AFM, and other techniques. The results indicate polymorphic transformation of CNC proceeds gradually in a certain range of alkali concentrations, i.e. from about 8% to 12.5% NaOH. In such transition alkali concentration, cellulose I and II allomorphs coexists. Such value and range of the transition concentration is strongly interdependent with the crystallite size of CNCs. In addition, it is distinctively lower than that for macroscopic fibers (12-15% NaOH). Transmission electron microscopy and particle sizing reveals that after mercerization CNCs tend to associate. Furthermore, TEMPO-oxidized mercerized CNC reveals the morphology of individual nanocrystal of the cellulose II type, which is composed of some interconnected granular structures. Overall, this work reveals how the polymorphism and morphology of individual CNC change in alkali conditions and sheds light onto the polymorphic transition from cellulose I to II. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Modeling Plan-Related Clinical Complications Using Machine Learning Tools in a Multiplan IMRT Framework

    International Nuclear Information System (INIS)

    Zhang, Hao H.; D'Souza, Warren D.; Shi Leyuan; Meyer, Robert R.

    2009-01-01

    Purpose: To predict organ-at-risk (OAR) complications as a function of dose-volume (DV) constraint settings without explicit plan computation in a multiplan intensity-modulated radiotherapy (IMRT) framework. Methods and Materials: Several plans were generated by varying the DV constraints (input features) on the OARs (multiplan framework), and the DV levels achieved by the OARs in the plans (plan properties) were modeled as a function of the imposed DV constraint settings. OAR complications were then predicted for each of the plans by using the imposed DV constraints alone (features) or in combination with modeled DV levels (plan properties) as input to machine learning (ML) algorithms. These ML approaches were used to model two OAR complications after head-and-neck and prostate IMRT: xerostomia, and Grade 2 rectal bleeding. Two-fold cross-validation was used for model verification and mean errors are reported. Results: Errors for modeling the achieved DV values as a function of constraint settings were 0-6%. In the head-and-neck case, the mean absolute prediction error of the saliva flow rate normalized to the pretreatment saliva flow rate was 0.42% with a 95% confidence interval of (0.41-0.43%). In the prostate case, an average prediction accuracy of 97.04% with a 95% confidence interval of (96.67-97.41%) was achieved for Grade 2 rectal bleeding complications. Conclusions: ML can be used for predicting OAR complications during treatment planning allowing for alternative DV constraint settings to be assessed within the planning framework.

  18. Comparative Investigation on Tool Wear during End Milling of AISI H13 Steel with Different Tool Path Strategies

    Science.gov (United States)

    Adesta, Erry Yulian T.; Riza, Muhammad; Avicena

    2018-03-01

    Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.

  19. Research of a smart cutting tool based on MEMS strain gauge

    Science.gov (United States)

    Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.

    2018-03-01

    Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.

  20. Data Mining and Machine Learning Tools for Combinatorial Material Science of All-Oxide Photovoltaic Cells.

    Science.gov (United States)

    Yosipof, Abraham; Nahum, Oren E; Anderson, Assaf Y; Barad, Hannah-Noa; Zaban, Arie; Senderowitz, Hanoch

    2015-06-01

    Growth in energy demands, coupled with the need for clean energy, are likely to make solar cells an important part of future energy resources. In particular, cells entirely made of metal oxides (MOs) have the potential to provide clean and affordable energy if their power conversion efficiencies are improved. Such improvements require the development of new MOs which could benefit from combining combinatorial material sciences for producing solar cells libraries with data mining tools to direct synthesis efforts. In this work we developed a data mining workflow and applied it to the analysis of two recently reported solar cell libraries based on Titanium and Copper oxides. Our results demonstrate that QSAR models with good prediction statistics for multiple solar cells properties could be developed and that these models highlight important factors affecting these properties in accord with experimental findings. The resulting models are therefore suitable for designing better solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.